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In many cognitive tasks, such as problem solving (Simon, 1975), solving

analogies (R. Sternberg, 1977), and answering questions (Reder, 1982),

individuals appear to employ a variety of different strategies. Nowhere is

this variability in strategy use so apparent as in decision-making. A major

finding of the last decade of decision research is that an individual may use

many different kinds of strategies in making a decision, contingent upon task

demands (Payne, 1982).

Given the evidence for the use of multiple strategies in such a diverse

set of cognitive tasks, a fundamental issue is how people decide what to do.

This concern with how problem solvers and decision-makers select a strategy is

reflected in the growing concernw ith the regulation of cognition and

tmetacognition" (Brown, Bransford, Ferrara, & Campioni, 1983).

An approach advocated by many researchers is to look at various

strategies as having differing advantages and disadvantages, and hypothesize

that an individual might select the strategy that is, in some sense, best for

the task. For example, Siegler notes that "Children (and adults) have good

reasons to use multiple strategies. Strategies differ in their accuracy, in

how long they take to execute, in their demands on processing resources, and

in the range of problems to which they apply. (p. 1)" Theorists studying

decision behavior have expanded upon such ideas and have explicitly viewed q

selection among decision strateies as a tradeoff between (1) the amount of 4

cognitive resources (mental effort) required to use each strategy, and (2) the

ability of each strategy to produce an "accurate" response (Beach and

Mitchell, 1978; Johnson and Payne, 1985; Russo and Dosher, 1983; Wright, L]
i

1975).

The general notion that different processing strategies require

different amounts of computational effort to execute seems obvious in the

., or
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domain of decision making. The decision strategy of expected utility

maximization, for instance, requires a person to process all relevant problem

information and to trade off values and beliefs. The lexicographic choice

rule (Tversky, 1969), on the other hand, chooses the alternative which is best

on the most important attribute, ignoring much of the potentially relevant

problem information. Thus, there appear to be clear differences among

decision strategies in the amount of information that is processed in making a

choice.

At a more precise level of analysis, however, a comparison among

decision strategies in terms of mental effort is much more difficult. In part

this is because the decision strategies that have been proposed in the

literature have varied widely in terms of their formal expression. Some have

been proposed as formal mathematical models (e.g., elimination-by-aspects,

Tversky, 1972), and others as verbal process descriptions (e.g., the majority

of confirming dimensions rule, Russo & Dosher,1983). What is needed is a

language that could be used to express a diverse set of decision strategies in

terms of a common set of cognitive operations. Such a language would also

allow a more detailed analysis of the components of processing (effort)

involved when a particular decision strategy is used to solve a particular

decision problem. In other words, one could examine whether the amount of

information to be processed is the major determinant of effort, or whether the

specific mix of cognitive operations which is utilized affects effort.

Another difficulty facing such cost-benefit approaches, in addition to

conceptualizing effort, is actually measuring the effort associated with a

given strategy. There have been a number of measurement techniques proposed

for the related concept of mental workload (Gopher & Donchin, in press;

Wickens, 1984), ranging from self-reports to physiological measures. However,
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the different measures of workload, such as response latencies, secondary

tasks, error rates, or self-reports, do not always agree. Hence, Gopher and

Donchin (in press) recommend the use of a battery of multiple measures, along

with a detailed theoretical analysis of the expected workload of a task.

The primary purpose of this paper is to examine the effort required to

use various decision strategies in choice environments that vary on several

dimensions. We first develop a metric of decision effort based on the concept

of elementary information processes (Chase, 1978; Newell & Simon, 1972). We

then use this componential approach to modeling decision effort to predict

multiple indicators of strategy execution effort: decision latencies, self-

reports of task difficulty, and errors in strategy execution. The independent

variables used include measures based upon the proposed componential approach

to decision effort as well as some alternative models. Our goal is not to

propose a complete theory of mental workload, but to illustrate an approach to

measuring the execution effort of choice strategies. Such an approach may

allow us to better understand when a particular decision strategy will be used

to solve certain decision problems.

A secondary goal of the current research is to provide evidence that

decomposition in general is a useful concept in decision-making. While

commonplace throughout much of cognitive psychology, the notion of dividing

strategies into a small set of shared components is relatively untested in

decision-making.

In the following section, previous attempts to conceptualize and measure

decision effort are briefly addressed, and the proposed approach is outlined.

Then the methodology and results of a study designed to test this approach are

described in detail.
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Measuring Decision Effort

The theoretical construct of mental effort has a long and venerable

history in psychology (Kahneman, 1973; Navon & Gopher, 1979; Thomas, 1983).

However, there have been only a few attempts to model and compare decision

rules in terms of an effort metric.

Two studies that attempted to directly measure the execution effort of

various decision rules are Wright (1975) and Bettman & Zins (1979). In each

study, subjects were instructed to use particular decision rules to solve

certain problems. The percent of correct judgments using the rules and self-

reports of task difficulty or ease of use were obtained in both studies. In

addition, Bettman and Zins obtained a measure of the time taken to apply a

rule to a problem. The results clearly show that certain rules were perceived

as less effortful then others. For example, a lexicographic rule vas

generally perceived as less effortful than other decision rules. That rule

also tended to be the most accurate and quickest in its execution. However,

these two studies had significant limitations. First, neither study employed

a method beyond initial instruction to ensure that subjects actually used the

prescribed decision rules. Second, neither study provided a conceptual basis

(model) for why a certain decision rule would be expected to be more or less

effortful in a particular task. That is, neither study attempted to model the

components of decision-making effort.

Shugan (1980) suggested an effort metric based upon one operation, the

binary comparison of two alternatives on an attribute. More effortful

decisions involved more comparisons. Shugan also showed that the effort of

strategies would vary with certain task characteristics like the correlational

structure among attributes. Unfortunately, using the binary comparison as the

fundamental unit of effort restricts Shugan's analysis to certain decision

2*
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rules. However, Shugan's work implies that any approach to modeling strategy

effort must be sensitive to the joint effects of strategy and task.

Based upon the work of Newell and Simon (1972), Huber (1980) and Johnson

(1979) offered decompositions of choice strategies using more extensive sets

of components. Each independently suggested that decision strategies be

described by a set of elementary information processes (EIP's). A decision

rule or strategy was represented as a sequence of mental events, such as

reading a piece of information into STM (short-term memory), multiplying a

probability and a payoff1, or comparing the values of two alternatives on an

attribute. Johnson and Payne (1985) employed a similar set of EIP's for

decision making, shown in Table 1, and constructed production system

implementations of several different choice strategies.

We propose this set of EIP's as underlying components from which various

decision strategies can be constructed. That is, we assume that a set of

EIP's like those-in Table 1 is at a sufficient level of detail to provide a

comon language .to describe the diverse set of decision strategies that exist.

Furthermore, we propose that by using such EIP's to describe strategies at the

componential level, meaningful comparisons among strategies in terms of

decision effort can be made.
2

Insert Table I about here

Given a decomposition of decision strategies into a comnon set of

components, a general measure of decision effort is the number of component

EIP's required to execute a particular strategy in a particular task

environment. This notion of measuring decision effort in terms of the number

of EIP's builds on an idea for measuring processing effort proposed by Newell

and Simon (1972). Empirical support for this approach has been provided by
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showing a relationship between the predicted number of EIP's used and response

times for a variety of cognitive tasks (Card, Moran, & Newell, 1983; Carpenter

& Just, 1975).

To validate this particular proposed decomposition into EIP's, we

examine several alternative models. Specifically, we investigate several

models of decision effort in a setting where subjects make choices for six

sets of twenty decision problems varying in size and other factors, using a

different decision strategy for each set. The simplest model of decision

effort in terms of EIP's would be to treat each component process as equally

• .effortful and simply sum the numbers of each component process to get an

overall measure of effort. Alternatively, the effort required by individual

components could be estimated and the tally for the individual operations

weighted by those estimates before sumuing across all components. In this

study we will examine both of these versions of the componential approach to

2measuring decision effort in terms of EIP's.

Alternative models of effort not based on the componential approach are

also considered. At the structural level, we characterize effort as a

function of task complexity (number of alternatives and attributes) and the

particular strategy used. Next, we investigate a model of effort based on the

number of items of information processed by a particular strategy in a choice

environment. Since it is easy to monitor information acquisition behavior,

this might be called an explicit behavioral model of strategy effort. Third,

we will examine EIP models of decision effort based upon the conceptualization

of the underlying components of decision processes outlined above. Finally,

we explore models of decision effort that combine the EIP concept with

additional factors, such as the task complexity variables and individual

differences variables.
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Each model of strategy effort will be investigated using three

indicators of execution effort: (1) the time to make a response, (2) self-

reports of effort, and (3) the number of errors in the execution of a

strategy. For the models using response times as the measure of effort,

analyses can be carried out at different levels of aggregation: the overall

decision, acquisitions of individual items of information, and intermediate

levels of aggregation (e.g., total time spent on each individual alternative

(Card, Moran, & Newell, 1983)). The overall goal of performing these multiple

analyses using different models of effort, different indicators of effort, and

different levels of aggregation is to attempt to determine the most

appropriate conceptualization for measuring the effort required to execute

decision strategies. We hypothesize that the componential approach described

above will provide the best fits to the data across the varying levels of

analysis. If the componential approach can be shown to be both robust over

different indicators of effort and different levels of aggregation, and at the

same time superior to alternative models, we will have provided strong support

for this approach to conceptualizing decision making effort.

Method

Overview

Subjects were trained to use six different decision strategies for

making these decisions. Each strategy was used in a separate session to make

twenty decisions for decision problems ranging in size from two to six

alternatives and from two to four attributes. Subjects used a computer-based

information acquisition system to acquire information and make decisions among

sets of alternatives. The computer-based acquisition system monitored the

subjects' information sequences; recorded latencies for each acquisition;

recorded the overall time for each problem; and recorded any errors made by
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the subject (i.e., departures from the prescribed search pattern or choice).

In addition, subjects rated the difficulty of each choice and the effort each

required on two response scales presented at the end of each decision problem.

The data recorded by the computer-based acquisition system provided for

three major types of dependent variable: response times, self-reports of

effort and difficulty, and observations of errors in execution of a strategy.

Three basic models were used to generate independent variables: structural,

behavioral, and EIP, as noted above. These models were then used to predict

the three types of dependent measures. Regression models were used for the

response time and self-report data, and logistic regressions were used to

predict the error data. Finally, for the response time data, the EIP model

analyses were performed at three levels of aggregation: the overall time for

each problem, the time for each individual acquisition, and the aggregate

times spent on each alternative and on each attribute in a problem (e.g.,

seven separate times for a four alternative, three attribute problem).

We describe the details of the methodology as follows: first, the six

decision strategies used are described, followed by a description and examples

of b-v the EIP counts were generated. Then the generation of the sets of

twenty decision problems is discussed, followcd by details on the computer-

based acquisition system. Finally, the experimental procedure is discussed in

detail, preliminary analyses are reported, and an overview of the major

analyses performed is presented.

Decision Strategies

Rules Used. Six different decision strategies were used in the

experiment: weighted additive; equal weighted additive; lexicographic;

elimination by aspects; satisficing (conjunctive); and majority of confirming

dimensions. Each of these rules was implemented as a production system model

I

I
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(for examples see Johnson and Payne 1985; Payne, Bettman, and Johnson, 1986).

These particular rules were selected for two reasons: 1) each rule has been a

focus of previous research on choice processes; and 2) this set of rules

provides a broad coverage of the set of basic elementary operations (EIP's)

used as the components in our conceptualization of strategy execution effort.

We first describe the strategies, and then the elementary operations are

considered.

To facilitate our description, we first outline a typical choice

problem. A choice problem consists of a set of alternatives, each of which is

described on several attributes, or criteria. In this study, the alternatives

were job candidates, and Lhe attributes were scores, or ratings' on various

selection criteria (e.g., leadership potential and motivation). The decision

problems had from two to six candidates, each described by from two to four

criteria. For each attribute, an importance weight and a cutoff value

specifying a minimally acceptable level for that attribute were also

displayed. Different decision strategies might use both weights and cutoffs,

one of the two, or neither, as described below.

The weighted additive rule requires the subject to develop an evaluation

for each alternative by multiplying each weight times the attribute rating and

*adding those products for all attributes. The alternative with the highest

evaluation is selected. In the equal weighted additive model, the evaluation

for each alternative is obtained by adding the ratings for all the attributes,

with the alternative with the highest evaluation selected. No weights or

cutoffs are used.

The lexicographic rule requires the subject to first find the most

important attribute (the attribute with the largest weight) and then search

the values on that attribute for the alternative with the highest value. That
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alternative is selected, unless there are ties. In this case, those tied

alternatives are examined on the second most important attribute. That

process continues until a winner is found.

The elimination by aspects (EBA) strategy also begins by determining the

most important attribute and examining that attribute's cutoff value. Next,

all alternatives with ratings below the cutoff for that attribute are

eliminated. This process continues with the second most important attribute,

and so on, until one alternative remains. The satisficing (conjunctive) rule

*. requires the subject to consider one alternative at a time, comparing each

attribute to the cutoff value. If any attribute is below the cutoff value,

that alternative is rejected. The first alternative which has values which

pass the cutoff for all attributes is chosen.

Finally, the majority of confirming dimensions rule (MCD) processes

pairs of alternatives. The values of the two alternatives are compared for

each attribute, and a running evaluation is kept: if the first alternative

has a greater value on an attribute than the second, one is added to the

score; if the second alternative is greater, one is subtracted; if the two

alternatives are tied, the score is not changed. After all attributes have

*been examined, if the score is positive, the first alternative is retained; if

the score is negative, the second alternative is retained; and if the score is

zero, the alternative winning the comparison on the last attribute is

retained. Thus, the general idea is to retain the alternative which is better

on the most criteria. The alternative which is retained is then compared to

the next alternative remaining among the set of alternatives. If no other

alternative remains, the retained alternative is selected.
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Calculating EIP Counts

To describe the steps a subject followed in more detail and to show how

EIP counts were determined, we first consider the particular EIP's used and

then present two more detailed examples of rules applied to a particular

decision problem. The major EIP's utilized were MOVES, READS, ADDITIONS,

*PRODUCTS, COMPARES, ELIMINATIONS, and DIFFERENCES. A MOVE involves moving to

another piece of information, while a READ consists of acquiring that

information (moving it to short term memory). Since MOVES and READS are in

general perfectly correlated, we will only consider READS (acquisitions) in

this study. ADDITIONS, PRODUCTS (of weights and ratings), and DIFFERENCES are

self-evident. COMPARES involved comparing two pieces of information and

determining the larger (two ratings, two overall alternative scores, two

weights, a rating and cutoff, etc.). Finally, ELIMINATIONS could be either

discarding an attribute (because it had already been used) or an alternative

(because its score was surpassed, it failed a cutoff, etc.).

Examples. Two examples will be considered in more detail, a weighted

adding case and an EBA example. Before doing this, however, some general

coments are in order. First, the number of EIP's required for a particular

decision is a function of the specific rule used, the size of the problem (the

number of alternatives and attributes), and the specific values of the data.

Rules which examine all of the ratings for each alternative, such as the

weighted adding rule, need more EIP's than rules which may process only part

of the data, such as the EBA rule. Larger problems also tend to require more

EIP's. Problems with more values which surpass cutoffs will also generally

require more EIP's. Second, in the specification of the rules, an attempt was

made to take advantage of the left to right, top to bottom natural reading

order.
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Insert Table 2 about here

For the weighted adding rule, consider the 4 alternative, 3 attribute

decision problem shown in Table 2. The numbers in parentheses are labels that

will be used for convenience for identifying the sequence of acquisitions in

the following. Subjects were instructed to acquire the first weight (1) and

then the rating on the first attribute (4). They then multiplied these two

numbers and retained the score. This process was repeated (sequence (2), (5),

(3), (6)) until alternative A was finished. For the first alternative, the

total score of 60 was simply retained as the current best. After processing

the first alternative, there would be six READS, three PRODUCTS, two ADDS, and

no COMPARISONS, DIFFERENCES, or ELIMINATIONS. For alternative B, the sequence

would be (1), (7), (2), (8), (3), (9). Then the total score for B, 44, would

be compared to the current best, and the current best of 60 would be retained.

The assumption was made that in the comparison of total scores, the losing

alternative was not explicitly eliminated. Rather, the subject would merely

store the one retained. Thus, after two alternatives we would have twelve

READS, six PRODUCTS, four ADDS, one COMPARISON, no DIFFERENCES, and no

ELIMINATIONS. This process would be repeated for the remaining two

alternatives (sequence (1), (10), (2), (11), (3), (12), (1), (13), (2), (14),

(3), (15)). Hence, the production system model predicts that in total this

problem would require 24 READS, 8 ADDITIONS, 12 PRODUCTS, 3 COMPARISONS, no

DIFFERENCES, and no ELIMINATIONS.

Insert Table 3 about here

The example of a three alternative, four attribute problem shown in

Table 3 is used to clarify the EBA rule specification. The subject had to

"'e "N ° q. =-m -°-°-.
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first find the most important attribute. This was done by starting with the

first weight and comparing it to the second, retaining the larger (the

second). The second was then compared to the third, and the second was

retained. Then the second was compared to the fourth, and the fourth

(experience) was retained as the most important attribute. The sequence of

acquisitions would thus be (1), (2), (3), (4). There would be four READS and

three COMPARISONS. Then the subject acquired the cutoff for experience and

examined the value for all alternatives on experience, comparing each value to

the cutoff and eliminating any alternative not passing the cutoff. In this

case, the sequence would be (8), (12), (16), and (20), with alternative C

eliminated. The total EIP's thus far would be eight READS, six COMPARISONS,

*and one ELIMINATION. Then the experience attribute would be eliminated, and

the weights for the remaining three criteria would be acquired and compared,

resulting in motivation's being selected as the second most important.

attribute (sequence (1), (2), (3)). Then the cutoff for motivation was

acquired and the. values for the retained alternatives, A and B, were compared

to the cutoff (sequence (6), (10), (14)). At this point, there would be a

total of 14 READS, 10 COMPARISONS, and two ELIMINATIONS. Both A and B passed

the cutoff, so the subject would then eliminate the motivation attribute and

return to the weights to determine the third most important remaining

attribute, leadership (sequence (1), (3)). Then the cutoff for leadership was

examined, A and B were compared to the cutoff, and A was eliminated. B would

then be chosen (sequence (5), (9), (13). In total, there would be 19 READS,

13 COMPARISONS, and four ELIMINATIONS (two attributes and two alternatives).

These examples illustrate two principles: the number of EIP's varies

with problem size and with the particular values used, and different rules use

different subsets of the EIP's. With regard to the second point, the weighted

...- . ...... j * I
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adding rule uses READS, ADDITIONS, MULTIPLICATIONS, and COMPARISONS; the equal

weighted adding rule uses READS, ADDITIONS, and COMPARISONS; the lexicographic

rule uses READS, COMPARISONS, and ELIMINATIONS; the EBA rule uses READS,

COMPARISONS, and ELIMINATIONS; the satisficing rule uses READS, COMPARISONS,

and ELIMINATIONS; and the MCD rule uses READS, ADDITIONS, COMPARISONS,

ELIMINATIONS, and DIFFERENCES.

It should also be noted that certain rules (weighted adding, equal

weighted adding) have the same EIP counts for any problems of the same size

(i.e., with the same number of alternatives and attributes). On the other

*hand, the other rules (lexicographic, EBA, satisficing, and MCD) can have

different EIP counts even for problems of the same size, depending upon the

particular values of the data. This property of the rules affected the

selection of decision problems for the experiment, as discussed next.

Selection of the Decision Problems

As noted above, subjects completed twenty decision problems for each of

the six decision rules. These decision problems were generated by taking

several factors into account. First, pilot studies revealed that numbers of

attributes greater than four were extremely difficult for subjects,

particularly for the weighted adding rule. Second, numbers of alternatives

greater than six caused crowding problems on the computer display used in the

information acquisition system. Hence, decision problems with from two to six

alternatives and two to four attributes were used. This generated 15 possible

sizes, ranging from two alternatives and two attributes to six alternatives

and four attributes.

For the weighted adding and equal-weighted adding rules, since problem

size determines the EIP count, one problem of each size was included, making

fifteen decision problems. Then five problem sizes were randomly selected to
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complete the twenty decision problems. Values for the weights and ratings

were assigned randomly, with the restriction that no overall scores for

alternatives in the same problem set were tied.

For the remaining rules, several problems were generated for each

problem size that represented low, intermediate and high EIP counts for that

size (e.g., for a three alternative, four attribute EBA problem, elimination

of two alternatives on the first attribute would lead to a low count,

retention of all three alternatives until the last attribute would be a high

count, and the operations used for the example described above might be an

intermediate count). Then sets of twenty problems were randomly selected for

each rule from the total set of forty-five size/count combinations.

The random selection procedure just described was repeated many times in

an attempt to deal with correlation problems among the EIP counts. Since the

lIP counts were to be used as independent variables in models to predict

decision times, effort self-reports, and errors, it was desirable that their

intercorrelations across all 120 decision problems should be as low as

possible to avoid multi-collinearity problems (Kmenta 1971).' As noted above,

however, certain rules use only some EIP's and not others, so there are some

correlations that will be high because of the definition of the rules. For

example, the correlation between COMPARISONS and ELIMINATIONS will tend to be

high because rules with no ELIMINATIONS (e.g., the adding rules) tend to do

very few COMPARISONS, whereas rules with many COMPARISONS also have more

ELIMINATIONS. To minimize these intercorrelation problems, we repeated the

random selection procedure 1,000 times, and selected the set of 120 decision

problems with the smallest intercorrelations. The resulting intercorrelations

are shown in Table 4. We were unable to further reduce the highest, COMPARES

and ELIMINATIONS, for the reasons outlined above. Although these

X
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intercorrelations will present some interpretation problems for the analysis

of the overall decision times, the EIP's at other levels of aggregation have

lower intercorrelations.

Insert Table 4 about here

The Computer-Based Information Acquisition System

A computer-based information acquisition system was utilized in carrying

out the experiment. A software system for personal computers, Mouselab

(Johnson, Payne, Schkade, & Bettman, 1986), was developed to monitor

information acquisition patterns and decisions of subjects. Mouselab can

present several different types of information displays to subjects. In this

study, the subject saw a matrix display on the computer monitor for each

decision problem. The rows of the matrix were labeled weights, cutoffs, and

then the names of the alternatives to be .considered. The columns were labeled

with the names of the attributes. At the bottom of the monitpr screen were

boxes used to indicate choice of an alternative (hence termed choice boxes).

For an example of this display, see Figure 1.

Insert Figure 1 about here

Initially, the matrix display provides only the labels for the rows and

columns and the choice boxes. The information is hidden in the blank cells on

the screen. To acquire information, the subject must move a cursor controlled

by the mouse to the desired cell of the matrix. The cell then opens,

displaying the information. For each decision, the subject would use the

mouse to acquire the appropriate information in the sequence specified by the

current strategy. Mouselab recorded the sequence in which cells were opened

and the time spent in each cell. The time measurements use the system clock
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of the personal computer, providing a resolution of approximately 17

milliseconds. After the requisite information had been examined, the subject

moved to the appropriate choice box and clicked a button on the mouse to

designate the chosen alternative. Mouselab can also present response scales

and text instructions to subjects, as noted below.

A crucial feature of Mouselab for the present study is the ability to

monitor the sequence of acquisitions made by a subject. Since the EIP models

of effort we propose required EIP counts for each problem, it is crucial that

subjects use the strategy exactly as it is specified, so that the EIP counts

can be predicted accurately. For example, to ensure that the EIP counts for

the weighted adding and EBA examples given above are correct, we must monitor

that subjects follow the exact acquisition sequence for each rule. Mouselab

includes a move monitoring feature, which allows the correct sequence of cells

to be specified for each decision problem. If the subject enters a "wrong"

cell, the ell will not open, and after two seconds the computer will emit an

audible buzz. The attempt to enter an incorrect cell is also recorded in the

output information about the subject's move sequence. Hence, trials where a

specified number of incorrect moves has occurred can later be discarded or

analyzed as error trials if desired.

A mouse-based information acquisition system was used for several

reasons. Card, Moran, and Newell (1983) compared the mouse, joystick, and two

keyboard-based devices. They found that the mouse was easy to learn, was

significantly faster than the other devices, and had a lower error rate. An

analysis of a typical decision task for this study using Fitts Law indicates

that subjects could move between information cells in less than 100

milliseconds. This suggests that the time to move the mouse is limited mainly

o" ,. ' " '-'-. ..' " . .. %'-. -. ,.'- " ,'.'..'." "-. -.'.'.. -. " " -." . -.' .'. ,o'.-,-.- ' . ' -'.,',.... '.. ". . .. '
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by the time it takes to think where to point, not the movement of the mouse

itself.

Procedure

Overview. Subjects participated in eight separate sessions over a

period of several days. Each session lasted from one to one and a half hours.

No more than two sessions were run in one day, and separate sessions were at

least four hours apart. The first session taught subjects the decision rules

and familiarized them with the computer-based information acquisition system.

In each of the subsequent six estimation sessions, a subject made twenty

choices using a different specified rule. The order of the rules was

randomized across subjects. The final session had twelve choice problems

*where the subject was free to use any strategy desired. These "free" choices

are not analyzed further in this report.

Subjects. Subjects were seven adults, ranging in age from 21 to 34, and

included four males and three females. They varied in their prior awareness

of the decision making literature, ranging from graduate students who had

studied decision making to non-students who had never been exposed to those

concepts.

Training. It was crucial that subjects thoroughly learn the six

decision strategies to be used (weighted adding, equal-weighted adding,

lexicographic, elimination by aspects, satisficing, and majority of confirming

dimensions) and learn to use the mouse-based acquisition system. Hence, a

familiarization session was developed. Subjects were first introduced to the

mouse and were shown how to use it to open the cells, respond to various

response scales, and indicate a choice. After practicing these tasks,

subjects were next given a training session for the decision rules which was

developed using the Mouselab system.

zo_ *_. .
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The subject was first informed about the type of decision problem to be

presented. He or she was informed that the decisions to be made were

persoTnel decisions involving selection of job candidates. These selections

were to be made according to the rules specified by different divisions of

their company, and the sets of candidates might have both differing numbers of

candidates and different amounts of information on each candidate. Subjects

were then told that information on up to four attributes might be presented:

leadership potential, creativity, job experience, and motivation. The left to

right ordering of the subset of these attributes used on any given trial was

randomized.

Following this overview of the problem setting, subjects were introduced

to the ratings used to describe each candidate on each attribute. Ratings

ranging from 2 (poor) to 7 (excellent) were used as the information in each

cell. Subjects were next introduced to the ideas of importance weights for

the attributes and cutoffs for the attributes. They were then asked to select

the most important attribute and to pick candidates surpassing a cutoff to

provide training using these ideas. These concepts were then reviewed before

the decision rules were introduced.

For each rule, the subject was first given a thorough written

description of the rule on the computer monitor. Then the subject was given

several decision problems and told to apply the rule using the mouse. The

move monitoring system was used on the last trial to inform subjects of

mistakes. The subject was also told what the correct choice using the rule

should have been. Thus, subjects had accuracy feedback on both the sequence

of acquisitions and their choices during training. Following these practice

trials, the next rule was presented. The rules were presented in the

familiarization session in an order ranging from simple to more complex:
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equal-weighted adding, lexicographic, satisficing, elimination by aspects,

weighted adding, and majority of confirming dimensions.

Finally, after all six rules had been presented, subjects were given six

practice trials, one for each rule. These trials introduced the use of two

response scales to measure the difficulty of the decision task and how

effortful the decision was. The first scale asked the subject to rate how

difficult the choice was to make on a scale ranging from 0 (not difficult at

all) to 10 (extremely difficult). The second scale asked the subject to rate

how much effort he or she put into making the choice on a scale ranging from 0

(hardly any effort) to 10 (a great deal of effort). The purpose of these six

practice trials was threefold: 1) to introduce the response scale; 2) to

consolidate the learning of the rules; and 3) to introduce subjects to the

range of difficulty in the problems so that they could calibrate their use of

the response scales more accurately during the actual estimation sessions.

This latter purpose was accomplished by selecting a variety of problem sizes

and difficulty levels for the six practice trials.

Estimation Sessions. At the beginning of each session, the subject was

given a review of that session's decision rule. The rule was described again,

and several practice trials were given, with feedback on the accuracy of the

acquisition sequence and choice. Then subjects were given a sequence of

decision problems where they had to make two consecutive choices using the

rule with no errors in acquisition sequence or alternative chosen. Following

successful completion of these trials to criterion, the actual experimental

trials for that session began.

As noted above, the twenty choice problems for each decision rule were

presented to the subject on an IBM Personal Computer via the Mouselab

software. Subjects used a Mouse systems mouse as a pointing device. These
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problems were randomly ordered (the random order was the same for all

subjects). For each problem, the subject followed the sequence of

acquisitions implied by the rule. The move monitoring system described above

was used to monitor subjects' adherence to the correct sequence for the rule.

Subjects then indicated the alternative chosen, and responded to the

difficulty and effort scales described above. For each choice, Mouselab

recorded the sequence of acquisitions, the time of entry and exit for each

cell, the alternative chosen, and values on the two response scales. The

overall latencies for the choice and the two scale responses were also

recorded. Finally, any errors in acquisition sequence were recorded. These

data were then written to a disk file for later analysis. This process was

repeated until all twenty choices had been completed for the given rule.

After completing all eight sessions, subjects received $40 for their

participation. In addition, they were told.that three $5 bonuses would- be

paid for (1) above average performance in terms of overall accuracy, (2)

minimization of incorrect search, and (3) speed of decision, respectively. In

other words, subjects were informed that they could earn an additional payment

of up to $15 dollars depending upon their performance.

Preliminary Analyses

Before the major analyses could be performed, the data were analyzed to

determine the prevalence of errors, the existence of speed-accuracy tradeoffs,

and the relationship between the two self-report measures of effort.

Subjects selected incorrect alternatives on 11.4% of the trials. In

addition, slightly less than 1% (.8%) of the trials contained severe

deviations from the correct sequence of acquisitions specified for that trial

(i.e., more than two "buzzes"), even though the correct alternative was still

selected. Taken together, this yields a total of 12.2 error trials. Over
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half of these errors come from the weighted adding (27.1%) and elimination by

aspects (32.2%) rules. For all analyses, all error trials of both types were

removed from the data. However, analyses performed when all trials were

included show virtually identical results.

To examine the possible existence of speed-accuracy tradeoffs, response

latency was correlated with error, both across and within strategies.

Overall, the correlation between time for each decision and the probability of

an error was .15 (p<.0001). Similar positive correlations were obtained for

each rule, subject, and rule by subject combination. In no case was there a

significant negative correlation, which indicated that these data are

relatively free from any concerns with speed-accuracy tradeoffs.

Finally, the two self-report measures of effort and difficulty were

examined. Their intercorrelation was .85, suggesting that they measure the

same underlying construct. A principal components analysis showed that the

first factor accounted for 93% of the variance in the scores, so the two

ratings were added to form an overall index of subjective effort.

For the analyses we report, several models are estimated using different

independent variables. In every model, however, dummy variables representing

the subject and session (i.e., the order of that session among the six

estimation sessions) are included, as are variables representing the linear

and quadratic effects of trial (i.e., the order among the twenty decision

problems within any session). These variables, although statistically

significant, account for small portions of the explained variance and simply

allow for changes in the intercept term across sessions and subjects and for

any effects of practice across trials to be taken into account. Since the

effects are not theoretically important for our purposes, they are not

reported in the discussion of the results.
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)verview of the Analyses

As discussed above, we examined three major indicators of strategy

e execution effort: response times, subjective reports of effort and

difficulty, and errors. By use of these multiple measures, we hope to gain

covergent evidence for the proposed approach to characterizing strategy

execution effort in terms of EIP's.

effo Recall that we have described three different classes of models for

effort: structural, behavioral, and ElP. The structural model attempts to

I'describe effort solely in terms of problem characteristics: the number of

alternatives and attributes, their product, and a dummy variable for each

rule. The behavioral model attempts to explain effort using the only overtly

observable behavior, the number of information acquisitions (READS). Finally,

we examine two different ElP models: the weighted EIP model attempts to

predict each dependent measure using as variables a count for each of the

EIP's. Each mental oueation is thus allowed to have its own characteristic

effect upon the dependent measure. For example, each ElP has its own latency

in the response time analyses. In contrast, the equal-weighted EIP model

represents the null hypothesis, in which all EIP's are given the same weight.

Such models have proven surprisingly robust (Dawes, 1979) and provide a

reasonable baseline for the elementary operations model. We can assess the

relative fit of each of these models and test certain comparisons.3 All

models also contain the blocking variables (Session, subject and trial)

described above.

For response time, we can estimate some models at three different levels

of aggregation. The overall latency for the decision; the latency for each

acquisition; and, at intermediate levels, the total times spent examining each

alternative and each attribute. For the overall decision times, all the
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models can be estimated, using regression analysis. At the level of each

acquisition, the structural and behavioral models do not make sense; hence,

only the equal-weight EIP and weighted EIP models are estimated.4 To predict

the times spent on each alternative or attribute, the behavioral model, equal-

weight EIP model, and weighted EIP model were estimated.5 We examine multiple

models at several levels of aggregation because it helps us deal with

intercorrelation problems and also provides convergent evidence for the fit of

the EIP models relative to the others regardless of the level of detail of the

0analysis (Card, Moran, & Newell, 1983).

For the self-reports of effort, regression analyses were performed using

the structural, behavioral, equal-weight EIP, and weighted EIP models, with

the index of subjective effort as the dependent measure. Since this index was

only meaningful at the level of an individual decision problem, no analyses at

more disaggregate levels were done.

Finally, for the error analyses, logistic regressions (Neter and

*Wasserman, 1974, p. 322), were used to predict the probability that a given

trial would produce an error. Since the dependent variable is dichotomous (an

error occurred or not), logistic regression is an appropriate technique which

allows the use of all trials without having to reduce the data to proportions.

Since errors are also only defined at the level of each decision problem, no

analyses at disaggregate levels were performed. The structural, behavioral,.

equal-weight EIP, and weighted EIP models were run using the occurrence of an

error or not as the dependent measure.

Table 5 summarizes these analyses across the various dependent measures,

models, and levels of aggregation. In all cases, the basic hypotheses are

essentially the same. The greater the number of alternatives and attributes

(structural), reads (behavioral), sum of EIP's (equal-weight EZIP), or weighted
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sum of EIP's (weighted EIP), then the more time taken, greater subjective

feelings of effort reported, and greater likelihood of execution error. Our

central hypothesis is that the EIP models will provide significantly better

fits than the structural and behavioral models.

Results

The degree of fit for the analyses indicated in Table 5 is summarized in

Table 6. To provide the most sensitive tests of the models, these analyses

were run by pooling across all seven subjects and including dummy variables

for the subjects. Since these analyses use all of the data, they provide the

most powerful tests for separating the various models. However, this also

makes the assumption that all subjects have identical latencies for each EIP.

We relax this assumption below. We examine the results for each of the three

major classes of dependent variables in turn: response time, subjective

effort, and errors.

Insert Table 6 about here

Response Time Analyses

Overall Decision Times. Table 6 indicates that all of the models

provide good fits for the overall response times (p < .0001). As

hypothesized, the weighted EIP model provides the best degree of fit, R2 -

.81. The fit of the weighted EIP model is significantly better than that of

the behavioral model (F(5, 713) - 77.8, p < .0001) or that of the equal-weight

EIP model (F(5, 713) a 74.6, p < .0001).6 While the structural and weighted

EIP models cannot be directly compared statistically, it is clear that the

weighted ElP model provides a better degree of fit. In addition, if we add

the variables from the structural model (problem size and rule dummy

variables) to the weighted EIP model, the expanded model does not provide

%i" ° " : . . . . . ..- ... .. . . . .. .
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improved fit, with an incremental R2 = .005, n.s. Finally, these results hold

up well in cross validation. Estimating the model on one-half of the data and

using these estimates to predict the other half yields average R2 of .63, .70,

.68, and .89 for the structural, behavioral, equal-weight EIP, and weighted

EIP models, respectively.
7

Individual Acquisition Times. Given the success of the weighted EIP

model at the level of overall decision times, we turn to other levels of

analysis for evidence that the results obtained are consistent across levels

of aggregation. However, as Card, Moran, and Newell (1983) argue, analyses at

more disaggregate levels will tend to have lower absolute levels of fit, for

several reasons: measurement of the exact operators employed is likely to be

more errorful at lower levels of aggregation, and variation in the time

required to execute operators will be more apparent when the number of EIP's

for each case is smaller, as in these more disaggregate analyses. For

example, while we assume that all additions take the same amount of time, it

is clear that some additions (i.e. 2+2) take less time than others (i.e. 8+7).

This assumption is most problematic at the more disaggregate level, where the

characteristics of a single addition largely determine the latency.

In examining the fit of the equal-weight and weighted EIP models at the

individual acquisition level, also shown in Table 6, it is apparent that the

absolute level of fit has indeed declined, although it is still significant at

p < .0001. The weighted cognitive model (R2 - .23) still performs better than

the equal-weight cognitive model (R2 - .16) (F(4, 12159) - 325.30, p < .0001).

Times for Each Alternative and Attribute. The models estimated to

predict the total time spent on each alternative and the total time spent on

each attribute replicate those reported above (See Table 6). The behavioral

and equal-weight EIP models perform roughly equally, and both provide
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significantly lower fits than the weighted EIP model. For time spent on

alternatives, the weighted EIP model is superior to the behavioral and equal-

weight EIP models, F(5, 2943) - 297.54, p < .0001 and F(5, 2943) - 351.02, p <

.0001, respectively. For time spent on attributes, the same is true, F(5,

2313) - 204.39, p < .0001 and F(5, 2313) - 178.86, p < .0001, respectively.

More Complex Models. These analyses strongly and consistently support

the proposed EIP model for measuring strategy execution effort. The weighted

EIP model provides the greatest degree of fit across four levels of

aggregation in response times. The degree of fit at the overall decision time

level is quite impressive, given the complexity of the decision tasks studied.

In addition, the model comparisons allow several conclusions: 1) Models which

examine structural characteristics of the task (e.g., problem size and rule

dummy variables) are not sufficient; 2) Models using observable behaviors

(acquisitions) alone do not suffice, so a more complete set of EIP's is

necessary; 3) Each EIP should be allowed to have its own weight, as the

weighted EIP model consistently outperforms the equal-weighted model.

Since the weighted EIP model seems necessary, in the sense that it

provides superior fit to its three simpler competitors, we also examine

whether it is sufficient. That is, will more complex models improve on the

degree of fit? These models are reported only for the overall decision time

analysis, but were replicated at other levels with similar results. The first

complex model directly tested the hypothesis that the EIP's require the same

time for each rule. This is tested by allowing the time taken by each EIP to

vary from rule to rule. The weighted EIP model is then a special case of this

augmented model, and the significance of the incremental fit can be tested.

Although the incremental fit is significant (F13, 700) u 1.91, p < .05), the

Incremental R2 is very small, .007. Hence, as a first approximation, the
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assumption that each operation requires a constant amount of time independent

of the strategy in which it is used seems reasonable.

The second more complex model allows the times for the EIP's to vary

across subjects. Even if individuals use the same strategy, they may differ

in the amount of time required for each component process (Hunt, 1978; R.

Sternberg, 1977). This model achieves an R2 - .90, with significantly better

fit than the weighted cognitive model (Incremental R2 - .09, F(19, 674) a

17.9, p < .001).8 Given the small number of individuals in the sample, these

individual differences are not pursued further.

Thus, based upon the analyses of response times, the weighted EIP model,

and hence the EIP conceptualization of decision effort, receives strong

support. The EIP times appear to vary across individuals, although not across

rules. Moreover, the weighted EIP model provides the best fit across all of

the various analyses attempted.

Estimates of EIP Times. Since the weighted EIP model received strong

support, estimates of the times for each operator are shown in Table 7.

Although the estimates vary to some extent across individuals, as noted above,

we will examine the pooled results for the different levels of aggregation.

Insert Table 7 about here

The estimates are generally consistent across levels, which provides

increased confidence in the values. The coefficients are all positive, with

most significantly so. The estimates also tend to agree with estimates for

similar RIP's provided by other studies. Focusing upon the overall decision

time analysis, we now consider the estimates of each operator.

The READ EIP combines encoding information with the motor activity of

moving the mouse. Its estimated latency is 1.19 seconds (t713) 6.55, p <

%.
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.0001). This estimate is plausible, since it might consist of the movement of

the mouse, estimated to be in the range of .2 - .8 seconds by Johnson, Payne,

Schkade, and Bettman (1986), and an eye fixation, estimated to require a

minimum of .2 seconds (Russo, 1978). ADDITIONS and SUBTRACTIONS both take

less than one second, with estimates of .84 (t(713) - 4.54, p < .0001) and .32

(t(713) - .98, n.s.) respectively. These values are not significantly

different (t(713) - 1.03, n.s.) and are consistent with those provided by

Dansereau (1969), Groen and Parkman (1972), and others (see Chase, 1978, Table

3, p .76). Our estimate for the PRODUCT EIP, 2.23 seconds (t(713) = 10.36, p

< .0001), is larger than that commonly reported in the literature.

The time for COMPARISONS is very short, .08 seconds (t(713) = .22,

n.s.), and that for ELIMINATIONS, 1.80 seconds (t(713) - 3.00, p < .01), is

relatively long. This may reflect the collinearity of COMPARES and

ELIMINATIONS at the overall decision time level. There is some suggestive

evidence for this in the results at the more disaggregate levels. Although

the estimates for READS, ADDITIONS, PRODUCTS, and DIFFERENCES are fairly

similar across levels, the COMPARISON and ELIMINATION estimates vary widely.

Since the intercorrelation between COMPARISONS and ELIMINATIONS is no higher

than .51 for these more disaggregate analyses, it is likely that the lower

estimates for ELIMINATIONS and higher estimates for COMPARISONS found in the

disaggregate analyses are more plausible.

In sum, based both upon its degree of fit and the generally plausible

time estimates for the EIP's, the proposed weighted EIP model receives

impressive support when response times are used as an indicator of effort.

The next set of results examines the performance of the various models when

subjective effort reports form the indicator of effort.

.- .. . .. ,
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Subjective Effort Analyses

There are several reasons why subjective reports of effort are

interesting as a second indicator of decision effort. First, subjective

effort might tap different aspects of strategy execution effort and might not

be closely related to decision latency. As Kahneman (1973) observed, two

different mental tasks may take similar amounts of time, but one might be seen

as much more effortful than the other. This speculation receives support in

our data: the overall correlation between time and the subjective effort

index is .29. Secondly, while the analysis of latency helps validate the

proposed EIP conceptualization of effort, subjective perceptions of effort may

be important in understanding why decision-makers avoid certain strategies.

If certain mental operations are perceived to be more effortful than others,

such operations may well be avoided in decision-making. Associating a typical

perception of effort with these EIP's may help us better understand strategy

choice. Several cogent arguments for caution in the use of subjective

measures of effort should also be noted. Foremost among these is the

possibility that subjects cannot accurately report demands on cognitive

resources (Gopher and Donchin, 1986), or that such reports do not allow
4

4comparisons across tasks which make widely differing demands.
J

Model Fit. From the results shown in Table 6, it can be seen that the

weighted ElF model again provides the best fit to the subjective effort data.

The absolute levels of fit are lower than for the overall response latencies,

but are still highly significant (p < .0001). The weighted EIP model provides

significantly greater fit than the behavioral (F5, 717) - 10.52, p < .001)

and equal-weight EIP (F(5, 717) - 13.32, p < .001) models.

The weighted EIP model of subjective effort can also be compared to more

complex models. Adding the structural variables (problem size and rule
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dummies) does not improve the fit (incremental R2 = .007, n.s.). However, as

was the case for the response time analysis, allowing the effort for each

operation to vary for each rule produces a small, but statistically

significant, increase in fit (incremental R2 - .01, F(13, 704) - 2.47, p <

.01). Finally, and again very similar to the case for response times,

allowing the effort estimates for each EIP to vary across individuals

significantly improves the degree of fit (R2 - .80, p < .0001).

Hence, the results essentially replicate those for response times. The

weighted EIP model provides the best explanation of decision-makers' self

reports of the effort associated with each decision problem, and the effort

estimates appear to vary across individuals, but only slightly across rules.

Estimates of EIP Effort. Estimates of the subjective effort associated

with each EIP from the weighted cognitive model pooled across subjects are

given in Table 8,. These estimates represent the increase in reported effort

per EIP on the sum of two 0-10 scales. The largest estimate is for the

ELIMINATION operator, .32. However, the high intercorrelation between

ELIMINATIONS and COMPARISONS (.85) must temper any interpretation of this

coefficient and the small (.04) coefficient for COMPARISONS. The PRODUCT

operator, as might be expected, is seen as fairly effortful, with a

coefficient of .19, while the coefficients for READS and ADDITIONS are also

significantly positive. These coefficients suggest that the perceived effort

associated with various EIP's may vary widely, which would help to explain why

some strategies are perceived more favorably than others in situations where

subjects are free to select their own strategies.

* Error Analyses

A final indicator of strategy execution effort is errors in strategy

execution, under the hypothesis that greater required effort leads to a higher

A Jh A
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probability of making an execution error. The logistic regression results for

the error analysis are given in Table 6. The pseudo-R2 reported in the table

is analogous to an F-test in regression, and nested tests of competing models

can also be conducted using tests for differences in X2 .

From the results, we see that the weighted EIP model again performs

better than the behavioral model (X2(5) w 11.43, p < .05) and marginally

better than the equal-weight EIP model (X2(5) - 9.15, p - .105). This largely

replicates the findings for time and subjective effort. However, and in

contrast to those earlier findings, the structural model performs better than

the weighted EIP model in terms of fit. In addition, adding the structural

variables to the weighted EIP model improves its fit (R2 - .69, X2(8) - 27.87,

p < .001). Thus, errors appear to depend not only on the proposed measure of

strategy execution effort but on the size of the choice problem. Hence,

errors may involve aspects of strategy execution not directly captured by the

EIP's considered here. In particular, these EIP's may not capture various

"bookkeeping" aspects of decision strategies, such as remembering the current

best or which alternatives and attributes have been eliminated. Such aspects

may increase with the size of the problem and lead to greater likelihood of an

execution error.

Discussion

The concept of effort plays a major role in attempts to understand the

contingent use of processing strategies. An approach to measuring the effort

associated with different decision strategies is proposed in this study, using

a set of elementary operators (i.e., READS, ADDITIONS, COMPARISONS, PRODUCTS,

DIFFERENCES, and ELIMINATIONS) as a conon "language" for describing decision

strategies. This is used to generate a metric of the effort required to

execute a decision strategy in terms of the number of EIP's involved.

%I
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The empirical results yielded strong support for this proposed

componential approach to strategy effort. A model of effort based upon

weighted EIP counts (the weighted EIP model) was found to provide the best

predictions of response times at several different levels of aggregation and

of self-reports of effort, two different measures of decision effort. The

weighted EIP model also provided good fits to another indicator of effort,

error data. In addition to this absolute level of fit, the weighted EIP model

also was statistically superior to a behavioral model using only reads and to

an equal-weight EIP model for each of the three indicators of effort. The

weighted EIP model was also superior to a structural model using predictors

based upon problem size for the response time and self-reported effort data,

although the structural model was superior for modeling errors. Taken

together, these results imply that a small number of simple operators can be

viewed as the fundamental components from which decision rules are constructed

(Bettman and Park, 1980). Whether the current set of proposed operators is

sufficient is open to debate, based upon the error results, but the important

point is that an EIP approach seems highly promising.

In addition to the support obtained from the overall levels of fit, the

estimates of time taken for each EIP were mostly plauiible and in line with

prior research, hence providing additional confidence in the approach.

Similar estimates also generally emerge as the analysis is repeated at

different levels of aggregation. Significantly, the estimates also appear to

remain essentially the same regardless of the strategy used. However, there

do appear to be significant individual differences in the times taken for the

individual EIP's. For example, for some individuals, arithmetic operators may

be relatively more difficult than comparisons; for others the difference may

be less pronounced or even reversed. This implies that individuals may choose
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.ifferent rules in part because the different component EIP's may be

-elatively more or less difficult or effortful across individuals. Although

:he number of subjects was too small to consider these issues in the current

7esearch, they offer intriguing possibilities for future research.

Another contribution of the study is more methodological. The Mouselab

Jecision-monitoring software and hardware worked exceptionally veil in

providing detailed data about the decision task. The ability to monitor the

sequence of acquisitions, measure latencies, and in general maintain

experimental control over the choice task makes this system potentially very

valuable for a variety of research issues in decision making and other areas

of cognition.

The attainment of experimental control, necessary to predict the

operators used and implement the proposed ElF models of effort, is not without

costs. Subjects do not select strategies; rather, they apply given rules.

Hence, the task eliminates many difficult problems normally faced by

individuals making decisions. Subjects did not have to select or construct a

strategy, and the sequence of operations was specified. Thus, they did not

have to engage in possibly effortful control processes determining what to do

next. In addition, by providing all of the weights, cutoffs, and ratings, the

need for potentially difficult valuation processes was eliminated. Finally,

some of the timing estimates are undoubtedly affected by the specific

apparatus used (i.e., the matrix display and the mouse). Further research

relaxing these restrictions on processing flexibility would be desirable.

However, maintaining sufficient experimental control is essential for research

at this level of detail regarding decision effort.

A second set of caveats is that although an approach which breaks down

decision strategies into more detailed components seems to be strongly

-o *. *. : . , ,. . .. *. . ,. . . . . . .- ...
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supported as an approach to measuring decision effort, we have focused on a

particular level of detail in taking such an approach. For example, one could

model multiplications in terms of underlying arithmetic operations (e.g.,

Dansereau, 1969; Lopes, 1982). In addition, one could extend our models to

include EIP's that model short-term memory load and other mental "bookkeeping"

, operations. The error analyses provide a hint that such an extension to the

models used would be fruitful, but a demonstration awaits future research.

The proposed weighted EIP model appears to provide a good approach to

measuring decision effort. To examine strategy selection, however, one must

A lso consider the accuracy of a strategy in terms of the goodness of the

:hoices made. Since strategies were specified in the current study, not

:hosen, there were no data available on accuracy in the above sense. However,

:he effort models can provide important input regarding accuracy-effort

:radeoffs. The EIP time estimates, for example, could be used to model effort

in simulation studies which have examined accuracy-effort tradeoffs (e.g.,

Johnson and Payne, 1985; Payne, Bettman, and Johnson, 1986). These estimates

night also be used to predict strategy selection across decision problems or

Lndividuals, particularly if individuals were trained on a variety of

;trategies and constrained to select one. These selections could be modeled

)ased upon predicted effort, the relative accuracy of the strategies, and any

!xperimental variables affecting the weights given to accuracy versus effort.

The approach to measuring cognitive effort developed in this paper may

ilso have applied value. For example, recently it has been suggested that the

ise of nutritional information in the supermarket by consumers might be

.mproved by decreasing the effort costs associated with processing that

.nformation (Russo, Staelin, Nolan, Russell, and Metcalf, 1986). The

iethodology developed in this paper could be used to test the impact of
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different information displays on the use of a preferred decision strategy. A

related area of application would be the design of computer-based decision

aids (Keen & Scott-Morton, 1978).

As a final point, research on decision making is a field of study that

has drawn from cognitive psychology, but has not been as integrated into

cognitive psychology as it might be (See Pitz, 1977, for a discussion of why

such a schism may exist). The issues of measuring strategy execution effort

and contingent strategy use in making a decision or solving a problem,

however, are ones where the two fields might benefit from a closer

interaction. The present investigation draws upon ideas of decomposition,

chronometric techniques, and error analysis that have proved successful in

understanding performance in a variety of cognitive tasks. On the other hand,

characterizing factors affecting strategy, effort, accuracy, and selection

across individuals and problem characteristics in various cognitive tasks may

benefit from the extensive work on contingent decision strategies that

currently exists. The results of the current research on modeling decision

effort demonstrate that such a partnership can be highly fruitful. Hopefully,

this will encourage further research efforts of this sort.
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Footnotes

1Note that the adjustment of values by probabilities or decision weights

implied by the PRODUCT operator in Table 1 may not involve a literal

multiplication of two quantities; rather, they may be combined by some more

basic analogical process which adjusts the value of one quantity given another

(Lopes, 1982). For computer simulations of choice strategies as production

systems based upon collections of such EIPs, see Johnson and Payne (1985).

2Another advantage of the decomposition approach to decision strategies

is that it expresses choice strategies using elementary processes similar to

those used for describing other cognitive tasks. If EIP's possess essentially

the same properties across a variety of problem solving tasks, the integration

of decision research with research in other areas of cognitive psychology

would be facilitated. Chase (1978) provides a more general discussion of

using the EIP concept in the analysis of information processing across a

variety of cognitive tasks.

3The behavioral model and the equal-weight EIP model are special cases

of (or nested within) the weighted EIP model. Hence, the additional fit

provided by the weighted EIP model over each of these two simpler models can

be tested statistically (Neter.and Wasserman, 1974, p. 89).

4For the individual acquisitions, the EIP's involved can be predicted.

For example, in the weighted adding example provided above, when a rating is

acquired, a READ, a PRODUCT, and possibly an ADDITION (if it is not the first

attribute) are performed. Since every acquisition has a READ, the behavioral

model cannot be used, and the READ operator cannot be used in the weighted EIP

model. Also, it is not clear how to relate the overall problem size to

predictions for each acquisition.

: . o., ., .,. ,'?' ' ' ,.- ' : ,' T . . : : . " - : N a' | m ! m- m
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5Since these analyses aggregate over different numbers of acquisitions

3r each problem size and rule, the behavioral model can again be estimated

6The degrees of freedom for the numerator in these comparisons represent

ie difference between the use of six EIP variables for the weighted EIP model

ad one variable for the behavioral and equal-weight EIP models. The degrees

f freedom for the denominator reflect the total trials and the total number

f variables used for the weighted EIP model (Neter and Wasserman, 1974, p.

9).

* 7All of these analyses were repeated deleting the observations with the

argest latencies. The results were essentially identical.

8Models of overall decision times were run for each of the seven

ubjects, with degrees of fit ranging from .72 to .97. The average degree of

it was .71, .77, .77, and .89 for the structural, behavioral, equal-weight

IP, and weighted EIP models respectively. Thus, these results essentially

* eplicate the analyses pooling across subjects reported in Table 6.
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Table 1

Elementary EIP's Used in Decision Strategies

READ Read an alternative's value on an attribute into STh

COMPARE Compare two alternatives on an attribute

DIFFERENCE Calculate the size of the difference of two alternatives for

an attribute

ADD Add the values of an attribute in STh

PRODUCT Weight one value by another (Multiply)

ELIMINATE Remove an alternative or attribute from consideration

% MOVE Go to next element of external environment

CHOOSE Announce preferred alternative and stop process

-4
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ExaMpe of a Four Alternative, Three-Attribute Decision Problem

Attributes

Alternatives Leadership Creativity Experience

Weights 6(l) 4(2) 2(3)

A 4(4) 7(5) 4(6)

*B 2(0) 7(8) 2(9)

*C 6010) 6(11) 3(02)

D 5(13) 7(14) 2(15)
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Table 3

Example of a Three Alternative, Four Attribute Decision Problem

Attributes

Alternatives Leadership Motivation Creativity Experience

Weights 4(l) 5(2) 3(3) 6(4)

Cutoffs 7(5) 4(6) 6(7) 6(8)

A 6(9) 5(10) 7(11) 7(12)

e.B 7(13) 4(14) 3(15) 6(16)
01.

eC 4(17) 3(18) 4(19) 4(20)

-~~~ ft. .*.P.
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Table 4

Intercorrelations Among EIP Counts for the 120 Decision Problems Selected

Operators

ADDITIONS PRODUCTS COMPARES ELIMINATIONS DIFFERENCES

READS .487 .543 .541 .280 .272

ADDITIONS .591 -.259 -.495 .140

PRODUCTS -.302 -.374 -.146

COMPARES .852 .492

ELIMINATIONS .158

" .\\rI§.e. *'~%*'I ~- .
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Table 5

Summary of Analyses Performeda

Models

Dependent Variable Structural Behavioral Equal-Weight EIP Weighted EIP

Response Times

Overall Decision X I X X

Individual Acquisition X X

Time on Each Alternative X X X

Time on Each Attribute X X X

Index of Subject Effort X X X X

Errors X X X X

aAn X in a cell means that analysis was performed.
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Table 6

Sumary of Model Fit Statistics

Models
Structural Behavioral Equal-Weight EIP Weighted EIP

Dependent
Variable

Response Timea

Overall Decision .65 .70 .71 .81

Individual Acquisition --- -- .16 .23

Time for Each Alternative --- .49 .48 .68

Time for Each Attribute --- .64 .65 .75

Index of Subjective Effortb .57 .56 .55 .59

Errorsc .68 .62 .63 .64

aThe fit statistics are R2 values for regressions. The sample sizes were 733,

12178, 2963, and 2313 for the overall decision, individual acquisition, time

for each alternative, and time for each attribute models respectively.

bThe fit statistics are R2 values for regressions. The sample size was 737.

cThe fit statistics are pseudo-R2 values for logistic regressions. The sample

size was 840.

% %!
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iates of Time for EIP's (seconds)

'of EIP

igation READS ADDITIONS PRODUCTS COMPARISONS ELIMINATIONS DIFFERENCES

ill Decision 1.19* .84* 2.23* .09 1.80* .32

iidual Acquisition -- .57* 1.22* .17* .01 .19*

for Each
Iternative 1.42* .33* 1.42* .16* .10 .28*

for Each
:tribute 1.22* .68* 1.97* *45* .26* .72*

iificant at p < .05.
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Table 8

Estimates of Subjective Effort for EIP's

EIP

READS ADDITIONS PRODUCTS COMPARISONS ELIMINATIONS DIFFERENCES

.10* .08* .19* .04 .32* -.12

*Significant at p < .05.
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Figure 1

An Example Problem Display
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