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STRESS IN A BONDED WAFER

INTRODUCTION

Joining two structural parts with adhesive is common
engineering practice. The joint is often used to transmit a
force between the parts. Such a force generates stresses in the
parts and in the adhesive layer. If the mechanical properties of
the structural parts are markedly different from the mechanical
properties of the adhesive, the stress system at the adhesive
interfaces becomes complex.

This is a report on the stresses due to forces normal to a
flat adhesive layer. The experimental testing was restricted to
an approximately constant thickness layer between two circular
bars subjected to axial load (see Fig., 1 and Ref 1). Because the
adhesive layer has the form of a thin circular disk, it is termed
a bonded wafer. This study is prompted by the interest in a
glass wafer between metal bars. However, many of the results can

* be applied to other materials and geometries.

* PREVIOUS THEORETICAL ANALYSIS

The stress analysis of a wafer under axial load is reviewed
by Adams at al (2). They point out that the simplest analysis
assumes no strains perpendicular to the axis, in either the wafer
or the adjoining parts. This gives a stress ratio, in terms of
the adhesive's Poisson's ratio, (LVa) of

!A .4).

where a* is the applied vertical stress and is the generated
horizontal stress. A.,

They further point out that, using Kuenzi & Stevens' (3)
* assumption of lateral contraction (Poisson's effect) in the

adjoining parts, this stress ratio comes out to be somewhat less

(2)

where Ea and Ep are the elastic moduli of the adhesive and
adjoining parts, respectively. Adams et al make clear that this
solution assumes a uniform horizontal stress over the whole of
both interface surfaces and neglects shear stresses that must
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exist near the free boundary. To supplement this solution they
conducted a finite element analysis that shows the uniformity of
normal stresses (both horizontal and vertical) in the central
region, and the analysis also shows the variation of normal
stresses near the edge, along with the build-up of shear
stresses. The work of Adams et al is reviewed by Kinloch (4).

THEORETICAL ANALYSIS REPORTED HERE

The stress analysis in the three references cited above
(2,3,4) emphasizes application to adhesives which are much softer

than the adjoining parts. As the adhesive approaches (or passes)
the stiffness of the adjoining parts, there are additional
strains put on both the adhesive and the adjoining parts. The

stress analysi of an interface, far from the edge, of two

dissimilar mate tale, of any stiffness, bonded on a flat plane
and loaded unifrmly perpendicular to the plane, is presented in
the appendix. This analysis applies to the central region of the
wafer and extends the solution given in Eqn. (2) to all
stiffnesses. From Eqn A-IO the horizontal stress ratio is

" = , o,(3)

Note that for very low values of Ea/Ep Eqn (3) agrees with Eqn
(2), and even Eqn (1).

To conduct a stress analysis in the central region of a thin

wafer, Eqn (3) can be used by dividing the load by the cross

sectional area of the wafer to obtain the vertical stress. This
gives C. Using the material properties of the wafer (Ea,Va) and
the material properties of the adjoining parts (Ep, V'p) the
horizontal stresses, which act in all horizontal directions, can

be obtained . This gives a complete stress tensor (G tST4, ) at
all points in the central region of the wafer, both" on the
interfaces, and between the interfaces.

Equations (1) to (3) are specified as acting only in the

central" region of the adhesive wafer. This central region can

be taken as all of the wafer beyond several wafer thicknesses
from the free edge of the wafer. So to use these equations, the
wafer thickness can be no more than about 1/4 of the wafer

diameter, and the thinner the wafer becomes, with respect to the
diameter, the larger the portion of the wafer for which Eqns (1,

2 and 3) apply.

EXPERIMENTAL ANALYSIS

In order to complete the stress analysis, it is necessary to
obtain the stresses near the free edge of the wafer. This
requires additional, and more elaborate, analysis. The finite
element method used by Adams et al is one approach. The method,

once set up, can provide a number of solutions, with a wide
variation of material properties, and various thickness-to-width

2
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ratios. If there is a weakness in the method, as applied to the
wafer problem, the weakness is that the maximum stress is
concentrated at a point , the sharp corner at the free edges of
the interfaces. The finite element method can only approximate
the stress at this point, by the use of smaller and smaller size
elements. .4:

Alternatively, an analysis which physically measures the
stress at the corners is the photoelastic model analysis of the
wafer. Of course, this method has its own limitatioins to be
discussed below.

TWO-DIMENSIONAL ANALYSIS

A two-dimensional photoelastic analysis of the problem was
conducted by Mylonas (5). Figure 2 shows patterns and plots
obtained from that study. Mylonas noted a serious difficulty of
the two-dimensional approach. In order to be applied to the
plane strain case, the two-dimensional model must be in a state
of plane stress, with no stresses perpendicular to the model
surfaces. However, as Mylonas shows, the bonded interface
generates out-of-plane stresses when loaded. The many fringes
along the bonded surfaces in Fig. 2 emphasize this condition.
Indeed, the bonded surface is in a state of plane strain. So the
two-dimensional model of a bonded interface is a hybrid model,
half plane-stress, half plane-strain, and validly representing
neither case.

Figure 3 shows the Photoelastic patterns of a two dimensional
strip model which attempt to achieve a plane stress condition
along the bonded edges by bonding to a knives so that there is no
out-of-plane restraint, and thus no out-of-plane stress. The
high build-up of fringes along the bonded edge seen in Fig. 2 has
been eliminated, but, it is not certain that the stress build-up
at the corners is quantitatively exact. Despite these questions,
the fringe patterns do indicate the stress distribution in the
wafer.

The strip model shown in Fig. 3 is loaded by a thermal
shrinkage produced during curing of the model material on the
knife edges. In the Appendix, the correspondence between
stresses on a wafer subjected to load (Eqn A-10) and the stresses
due to thermal shrinkage (Eqn A-i1) is indicated. This.
correspondence is developed below for the 2-D and 3-D cases.
The strain optic law for photoelastic materials is

where 1 , and 2 are the principal strains in the plane
perpendicular to the direction of view, n is the fringe order at
the point of strains -I and O2, and FE is the photoelastic model
constant.

S% -.
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The model constant can -be obtained directly from the strip
model since a fringe order no, and the principal strains in terms
of the shrinkage are known in the central region. The horizontal
strain , =91,and the vertical strain E 2 - -V . Using these
values to solve for F,

the strain optic law can then be written

or if the strains are taken in a normalized form

~ (6)

This use of a known strain (or stress) somewhere on the model
is sometimes referred to as autocalibration.

The cartesian normal and shear strains are related to the
principal strains as follows:

- (7)

~ c~26

where x and y are the normal strains and axy is the
cartesian shear strain at the same point at whichF 1 and2 are
acting, and 9 is the direction of the principal strain with
respect to the cartesian direction.

Thus, the cartesian strains can be written in terms of the

photoelastic data

C,- LY (8)
..

Both n and no can be taken directly from the pattern shown
in Fig. 3. The value of 9 is obtained by rotating the
polariscope until the point of analysis darkens. So all the
variables on the right hand side of Eqn (8) are available from
the photoelastic patterns.

Along the interface between the strip and the knife edge, the
strain tangential to the knife edge must be equal to the free

.5%4 0,.P%
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shrinkage, just as it is everywhere in the central region.
Calling the direction of the knife edge, the x-direction

0,- ±-=1(9) 1

and Eqn (8) reduces to

Y -) (10)
(A A

The photoelastic variables n and 9 along the knife edge are
plotted in Fig. 4, no is 0.71. Since C x/ ae 1, all the
normalized strains along the knife are determined. From the two-
dimensional form of Hooke's Law, the stresses in this same
normalized form can be determined.

The cartesian stresses along the knife edge are plotted in
Fig. 5.

As indicated in the appendix, these stresses have the same
distribution as the stresses due to pinching in the wafer
problem. The shrinkage load in terms of the horizontal stress is
Em. The corresponding pinching load on the wafer is V)r, whereI7
is Poisson's ratio of the strip material. Thus, to convert from
shrinkage load to pinching load it is necessary to replace E@C
with VTr.

Replacing Ea with the j)0- in Eqn (11) would normalize the
stresses in terms ofVT. To normalize the stresses in terms of" ,
it is necessary to multiply the values obtained from the right

side of Eqn 11 (and plotted in Fig. 5) by V . Further, in order
to complete the stress field, it is necessary to add the axial
stress field ( Cy - T ) to the pinching stress field obtained from
the shrinkage field. So the stress values shown in Fig 5 have
all been multiplied by 1.7 (-0.48) and the d"y values all increased
by (ry/0 - 1). The two-dimensional stress field in the strip
bonded on its edges and subjected to uniaxial load is shown in
Fig 6. Note the shear stresses are just reduced by about one
half and the normal stresses (4'x and Ty) more or less change
places. To complete the picture, the principal stresses are
obtained using the standard tensor transformation equations and
are plotted in Fig. 7 along the maximum shear stress.
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The transformation equations are:

= + (12)

The stresses given in Figs 5 and 7 are "plane stress"
stresses. In the case of first boundary value problems these
stresses would apply rigorously to the "plane strain" case.
Because the wafer problem is a mixed boundary value problem, the
plane stresses apply to the plane strain case for which

____ (13)

where Vl, is Poisson's ratio of the material in plane strain and 0
is Poisson's ratio of the material in plane stress.

For 1)7 0.48 in plane stress, the analysis applies rigorously
to a material in plane strain with J7, - 0.324.

Finally, because the regions of interest (the corners) are at
and near the ends of the plane stress and plane strain bodies,
the analysis can be extended to a square body and to the round
axisymmetric case. This chain of applications, from the 2-D
shrinkage strip model to the 3-D axisymmetric bonded wafer is
shown in Fig. 8.

The main point, through all of this, as the data shows, is that
the stresses drop off to the values described in the theoretical
section, within about 2 vwafer thicknesses from the boundary.

THREE-DIMENSIONAL EXPERIMENTAL ANALYSIS
.5.

Three-dimensional photoelasticity provides a direct physical
measurement of stress in a wafer. This method also has its
limitations. First, it is difficult to model various material
property ratios. Second, because of meniscus and shrinking
effects, the corner of the cast model is never completely
square. Third, and most important (as in the two-dimensional
modeling), the thermal changes which occur in three-dimensional
photoelasticity when applied to bonded interfaces, create
thermal stresses, in addition to those stresses of interest (the
mechanical stresses due to load).

These thermal stresses, as in the two-dimensional case occur
in part during curing. However, the three-dimensional photo-
elastic analysis requires heating the model to "freeze-in" the
stresses so that the model can be disected at room temperature to
view the stress pattern. Thus, thermal stresses are inherent in
three-dimensional photoelastic analysis of bonded bodies.

6
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Af ter several attempts to minimize the thermal stresses and

maximize the axial load stresses, it was decided to use the same

obtin heload stress distribution from the analysis of the
shrnkgestress field. To simplify the modeling, it was also

decdedto ondthe wafer on one side only, thus representing a
half wafer. Since the shrinkage load cannot create any overall
axial force, no significant axial stresses were expected in the .
midplane of the wafer. This has been shown to be the case in the
two-dimensional models, by cutting them in half, lengthwise.

* . Figure 9 is the photoelastic pattern in a slice cut f rom a
wafer which was cast, bonded, and shrunk on a thick steel disk. :
Figure 10 shows the photoelasticity variables, n and eq along the
interface of the wafer. Figure 11 gives the normalized :
cartesian stresses, along the interface, obtained from a -

development of Eqn (8) similar to the 2-D approach, except that
in the 3-D case the strains on and tangential to the interface
are assumed equal to c4. in all directions (both x and Z). The
principal stresses calculated from Eqn (12) are plotted in Fig.
12.

The main differences from the 2-D analysis is the increase in
normal stresses near the end of the interface, and the fact that
at each point the principal stresses are almost the same. Both
these differences are due to the high Poisson's ratio of the
wafer material (V 7 - 0.48) and the high Young's modulus ratio of
the model base material to model wafer material. Despite these
differences, the results indicate the main point in this report,
that the strains, and stresses, drop off to a uniform value,
within several thicknesses from the free boundary of the wafer.

DISCUSSION OF WAFER FAILURE

Despite the fact that the maximum stress has been shown to
occur and does occur at the edge of the wafer interface, most
failures occur in the central region on one of the interfaces.
The seeming contradiction is due to at least three factors.
First, the central region is in a triaxial state of stress
whereas the corner, at the intersection of the interface and the
free edge, is in a biaxial state of stress. Second, the volume
under the triaxial stress is larger than the volume under the
biaxial stress. The third, not so obvious, factor is suggested

* by Eqn (A-li) in the appendix. That equation shows that the
thermal contradiction (and curing shrinkage), that occurs during
curing of the adhesive, sets up interior horizontal stresses. SO

* there is a significant state of uniform biaxial tension on the
wafer before any axial load is ever applied. This third
factor needs some qualification. As seen Fig. 11, the curing
shrinkage does create some axial tensile strain near the corner
in addition to the biaxial horizontal tension in the interior.
This additional corner stress must be considered in terms of the
first two factors (it's non-triaxial nature, and it's small
volume of extent).



CONCLUSIONS

A rigorous solution has been found for the stresses in the
central region of a bonded wafer under axial load, and also for
the same wafer subjected to uniform thermal (or curing) shrinkage.

Model analysis demonstrates that the stresses away from the
free boundary of the loaded wafer decay to the value of stresses
in the central region, within a few wafer thicknesses from the

boundary.
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Fig. 2 -Two-dimensional photoelastic patterns of strips of various width-to-height ratios Wr bonded
on the upper and lower edges and subjected to uniaxial force. The fringes on the bonded edges of all
the models indicate out-of-plane restraint due to the bonding (drawn from Reference 5)
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Appendix

STRESSES ON A LOADED, BONDED INTERFACE

Probably the simplest, non-trivial example of stresses on a

bonded interface subjected to load, is a specimen made of two

circular rods, bonded and loaded with axial tension, as shown in

Fig. A-1. The rods are assumed bonded to each other, without a

bonding agent. A bonding agent would complicate the stress

system. The rods are assumed to be of different materials, with

different mechanical properties. If they have the same material

properties, the stress system would reduce to the trivial case of

uniform uniaxial stress throughout the two rods. Two material

constants are sufficient to describe the pertinent material

properties. Young's modulus, E, and Poisson's ratio,V, are the

most commonly chosen constant properties and will be used here.

The average vertical stress throughout the rods will be the

force divided by the horizontal cross section. This stress will

be termed a and the subscripts 1 and 2 used to distinguish

between the more rigid rod, 1, and less rigid rod, 2.

For simplicity, consider the loading divided into two
steps. First step, the load is applied to both rods without

bonding, so that both rods are stretched vertically and contract

horizontally, both differently depending on their material -

* properties. Second step, the interface surface of the more rigid 1

rod is squeezed, and the interface surface of the less rigid rod

is stretched until both surfaces coincide in the position they

would have physically due to t1.e loading.

The stress due to the first part of the loading will be

1 ~2 everywhere in both rods. That is, the actual stress

everywhere on the rods will be the average stress.

21



Stresses due to the second step of the load will combine

with the streass due to the first step. These additional

stresses will occur only on or near the interface.

From the theory of elasticity, the vertical strains due to

the first step of the load will be,

C M -- (A-i)
v 1 E1

a

2 (A-1)
v2

and the horizontal strains of contraction due to the first step

of load will be

C = _ 1 P%.
h lEl (A-2)

2  2

If AC is defined as the difference in these two horizontal

strains, as illustrated in Fig-A-2, it can be written,

h1 h ( A- 3)

or Ae = (-v ) - (v 2 = 2 1
1 Ti 2 E 2 1

In the second step of loading, the interface surface of the

more rigid material, 1, must be "pinched-in" to mate with the

interface surface of the less rigid material, 2, which must be

"stretched-out". This is illustrated in Fig. A-3.

If C is defined as the negative horizontal pinching

strain of t~e more rigid material and C is defined as the
2

positive horizontal stretching strain of the less rigid material

v2  v(A-4)

2 E2
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Both the pinching and stretching act to produce horizontal
stresses in all directions but no vertical stresses, except near
the edges. Hooke's law for the "plane stress", uniform, biaxial,

horizontal stress can be written,

~h M lV Ch

For the hard and soft materials,

E

=- E2 e

h2 =l--- 2  €2

Both these horizontal stress fields must be in balance with

horizontal shear force acting on the respective interfaces. The
horizontal forces on the interfaces are equal, but act in

opposite directions on each material, thus the horizontal

stresses must be equal in magnitude, but opposite in sign.

(A-6)

Combining Eqns. (5) and (6)

E 2  (1-V 1sE (i2)

(A-7)

E (1-V)
Cs2' 2

2 (1 i

Combining Eqns. (A-7) and (A-4) gives the horizontal strain

in terms of the applied stress and the elastic constants.
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"2 VI / EW ( - VV 

i El (1-V)
2 1 2 1

= -! - - ) + -7
(A-)

s2 E 2 E
E  

(-v2

Substituting Eqn. (A-8) into Eqn. (A-5) gives the

eomplsete horizontal stresses in both materials,

hi 12 1  2 1

(A- 9)

bohhh2mr /iidan ls r.l mtrial..-~ 4nFE

E- V V
2 2 1 E 1%l

After some algebra the equations can be written,

a h V- (E 1/E)2V

o -1- + k E IE2)(1- 2

(A-1 0)

a = l~2 E 2 J 1 )UV 1

Note that the two equations are the same, with an

exchange of subscripts. This indicates that the same

equation can be used to express horizontal stresses in

both the more rigid and less rigid materials. In Fig.

A-4V the expression is plotted for selected and equal

Poisson's ratios, over the complete range of ratios of

Young's modulus. Fig. A-5 shows an example of stresses

due to different values of Poisson's ratio. Fig. A-6

shows stresses in two materials with a ratio of Young's

modulus of 3, over the whole range of Poisson's ratios.

Fig. A-7 shows stresses in two materials with the same

modulus for all values of Poisson's ratio.

24



These equations illustrate the complexity of stress

around even the simplest interface of two different

materials. The additional stresses and strains are
caused primarily by the difference of Young's modulus,

and to a much lesser extent due to the difference in

Poisson's ratio.

ADDITIONAL COMUM1TS

IEG E EFFECT

The pinching and stretching strains that are

analyzed occur on the interface and are average strains

over the whole interface and do not apply near the free

edge of the interface. On or near the free edge of the

interface, stresses, primarily tensile and shear, build

up. These stresses also depend on the ratio of

properties and can be many times higher than the average

stresses due to the load.

TUP ZERATURN EFFECT

A similar state of stress can occur without load,

due to Just temperature, if the materials have a

difference in their coefficients of thermal

expansion, (a- ). If an increase in temperature is

termed AT , then the expression on the right side of

Eqn. (A-4) can be replaced by (ca -a 2 ) AT, and a
development similar to that shown above leads to the

horizontal stresses due to an increase in temperature,

(a Q2) AT E E2

I I

1 "2 1

1 2 (- ) + E(l-v2 )
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This observation is useful in the experimental

stress analysis of bonded materials, using the stress-

freezing technique of three-dimensional

photoelasticity. Since temperature changes occur in the

test, if there is sufficient differential contraction

during the stress-freezing portion of the temperature

range, the resultant frozen stress pattern in the

thermally loaded body without mechanical load can be

used to represent the stress in the mechanically loaded

body with the simple addition of the average uniform

stress.

THE WAFER PROBLEM

The case of two circular rods of the same material

separated by, but bonded to, a wafer of the same

* diameter but of a different material is analyzed exactly

as given above. In this case, there are two inierfaces

which respond similarly *to the interface described in

the first example. All the above equations apply. This

loading can also be simulated by differential thermal

cont ract ion.

There is a difference in the interpretation of the

equations. In this case the whole wafer is near the

interfaces, and so practically all the material of the

wafer is pinched or stretched. Where the wafer is made

of the less rigid material, this can lead to triaxial
tension stresses throughout the central region of the

wafer. If the wafer has a Poisson's ratio of near 0.5,

the triaxial tension can approach a state of hydrostatic

tensiton. '
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Fi. A- I- Two irclar rods of different materials bonded toether and subjted

to an axial tensile load
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Fig. A-2 - A section at the corner of the intersection of two rods with unit radii showing the
difference in the horizontal strains of diametral contraction after the first step of loading
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HORIZONTAL STRESS
IN THE SOFT MATERIAL

NU-I. 4

NU-&. 3

NU-G. 2

NU-I. 1

MU-B. 2

NUL 

HORIZONTAL STRESS
IN THE HARD MATERIAL

Fig. A-4 - Ratio of horizontal stress to vertical stress in the central region of an interface of two
materials under load, for all combinations of Young's moduli and Poisson's ratios for which the
Poisson's ratios are equal
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.8 -HORIZONTAL STRESS
IN THE SOFT MATERIAL

a8-

NNU-0.

- N00.

N-= NU-0.3

.2 NU-0.4

NU=0.4

-. 2 INTH HRDMAERA
~NU= 2

-1. 01-

Fig. A-5 Ratio of horizontal stress to vertical stress in the central region of the interface of two
materials under load, for all combinations of Young's moduli and all Poisson's ratios of the hard
material (NU) with Poisson's ratio equal to 0.35 in the soft material
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HORIZONTAL STRESS
IN THE SOFT MATERIAL- =

2

NJ-0..3

N.
0.0-".

NU-0.l
.2- zX~~Nm

-. 4 1

NU0 3U0

( HORIZONTAL STRESS
IN THE HARD MATERIAL

Fig. A-6 - Ratio of horizontal stress to vertical stress in the central region of an interface of two
materials under load, for a Young's modulus ratio equal to 3 (1/3) and the full range of Poisson's
ratios for isotropic materials (0 to 0.5)
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55 MATERIAL 1

.2-

-. 2 HOIZONTALf STESSIN

NU IS POISSON'S RATIO OF MATL 2
Fig. A-7 - Ratio of horizontal stress to vertical stress in the central region of an interface of two

materials under load. The two have the same Young's modulus.
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