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FREQUENCY ESTInATION BY PRINCIPAL COMPONENT

AR SPECTRAL ESTIMATION METHOD WITHOUT

EIGENDECOMPOSITION

Steven K. lay and Arnab K. Shaw
Electrical Engineering Devartment

University Of Rhode Island

Kingston, RI 02881.

ABSTRACT

For accurate frequency estimation Princival Component Autoregressive (PC-Al)
suectral estimation methods have received considerable attention in the
recent literature. Explicit comnutation of the Eigen-decomposition of the
autooorrelation matrix is required to obtain the PC-AR solution. An
alternative aproach called the oligenvalue filtering method" (EFM) where
the eigenspace need not be computed, is proposed in this paper. The vrovosed
method utilizes the geometry of the distribution of the eigenvalnes in a
matrix function so that it closely avproximates the pseudoinverse of the
antocorrelation matrix. It is shown via computer simulation that compared
with the Forward/Backward method, the proposed method enhances the
threshold in SNI by about 6-8 dB. Further improvement is obtained by a
simple subset selection method and a second eigenvalue filtering iteration.
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1NTRODUCTION

Estimation of parameters of multinle sinusoidal signals imbedded in

white noise is a very well researched problem in signal processing. It is

also one of the fundamental problems encountered in a variety of seemingly

unrelated fields. e.g. geophysics, economics, radar, astronomy, sonar, etc..

Ideas and techniques emerging from different fields have transgressed and

intermingled, resulting in a certain maturity of this problem. many

researchers have reported various aspects of this problem in recent and

earlier literature. Useful references are listed in Kumaresan's thesis [11

and also in a recent book by Haykin et al [21 and in the forthcoming book by

lay [3].

One of the ideas which has received considerable attention is the use

of Singular Value Decomposition (SVD) of a large order (larger than number

of sinusoids) autocorrelation matrix estimated from data or equivalently.
W3

the principal comonent analysis of the autocorrelation matrix. The SVD

approach produces orthogonal eigenspeces consisting of the signal snbspRce

and the noise subspace. The many variants of SVD based frequency estimation

methods that are presently available, usually make use of either the signal

subsoace or the noise subsiace to estimate the frequency copmonents. One

disadvantage of these approaches is thb burden of computing the eigensoaces

explicitly. To avoid this, a different approach has been nndertaken in the

present work, where the knowledge of the geometry of the distribution of

eigeuvalues has been exploited. An appropriate function of the

autocorrelation matrix is suggested to preserve the signal qnbspace and

nullify the noise subspace. It is shown that if the geoqetry of the
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distribution of the eigenvalues is exactly known, then the suggested matrix

function eliminates the noise subspace while keevinq the signal eigenvalues

intact. In practical situations, however, the exact distribution of the

eigenvalues will not be known. A few theorems which relate the elements of

a hermitian matrix to its eigenvalues have been invoked to obtain bounds on

the signal eigenvalues. Then the estimated bound (or threshold) is utilized

in the provosed matrix function to remove the effects of most of the noise

eigenvalues. Simulations on the same data with a large number of

independent noise realizations have been performed and the results have been

compared to those obtained by using the modified covariance or

Forward/Backward (FB) method and the Cramer-lao (CR) lower bound. Without

computing the eigenspace explicitly, the proposed method enhances the

threshold (of Signal to Noise Ratio) by about 6-8 dB over the FB method.

Then a subset selection method is used which imoroves the threshold by 2-6

dB for the FB and the proposed methods. For the present method a second

iteration is then shown to enhance the threshold further.

This paper is arranged as follows. In Section I the problem is

formulated for multiple sinusoids in noise and a brief discussion of the FB

method and the Principal Component Autoregressive (PC-AR) method is

aresented. In Section I1, the proposed eigenvalue filtering method is

described with theoretical analysis and simulation results. Section III

consists of some concluding observations.
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SBCTION I * PKOBLK FORNUIATION

Is : Problem Definition

Given N samples of observation data composed of p complex sinusoids in

white noise denoted by

p J(2wfin + 0 i)
x(n) A i • + z(n) (1)

i n= 0.1 .... N-1

where AI. ....A. are the amplitudes fl3f2 ... fv are the frequencies and

are the phases associated with each sinusoid, the problem is to

estimate A 1A2... Ap. fi-f 2 ... fp and z92s.. on.  The observation noise

z(n) is assumed to be zero mean and white. Usually, the number of complex

sinusoids p is known or an estimate of it is available and the phases

0100190..001Pare assumed to be random (or fixed but unknown) and uniformly

distributed between 0 and 2w.

1b : Previous Results

The oldest and probably the most widely used frequency estimator is the

periodogram. It can be shown [8] that for o - 1. veriodogram maximizes the

likelihood function. But for p > 1. the interaction between the frequencies

causes poorer estimates except when the frequencies are far enough avart or

if they are separated by K/N , where K is an integer not equal to a multiele

of N. Especially, for closely spaced sinusoids. i.e. when the separation

between two sinusoids is less than 11N. then periodogram cannot resolve the

two peaks and exhibits a single peak instead of two. The maximum likelihood
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estimator for p greater than 1 is comiutationally intensive whether grid

search [1] or iterative techniques [3.41 are used. High resolution spectral

estimation techniques have been extensively used by many researchers to

overcome the problems of the veriodogram. Since the apvroach taken in this

paper is an indirect implementation of the principal comoonent

autoregressive frequency estimator [5]. a brief review of this method is in

order. The proposed method is then described in Section Ir.

The data composed of p sinusoids as given by equation (1) may be

thought of as a limiting form AR orocess with narrow band peaks at the v

sinusoidal frequency locations. Such an AR process can be modeled as the

output of an Al filter driven by white noise, With this model at hand, one

can use a reasonable estimator of the antocorrelation function (ACF) from

the date and then estimate the AR varameters from the following

relationship,

a -- 71 r (2)

The last equation is the solution of the following normal eqnatinns

encountered in FB method.

Cl C12 . . . C M I C O'

C21  C2 2  • C2L a2  C20

. . .. *(3)

C~ *** *SCa aL, CLO,

or R a -
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where.

1 N-1 11--L1 0,.L

C [jx"-)xnJ xni xln+j) I 0. 1: . L.S"2(N-L, 1MLU0 i+

are the ACF estimates used in the FB method. The frequency estimates are

obtained by choosing v zeros of A(z) that are closest to the unit circle,

where A(;) = 1 + I ai z
- ' is known as the estimated prediction error filter

(PEP). A Choice of L such that N13 ( p ( N/2 has been shown to yield

reasonably good estimates. At low SNR values (below 20 dB). the FB method

fails to resolve closely spaced peaks due to the effect of noise on the ACF

estimates. This problem has been alleviated to a great extent by the use of

the principal comonent solution. In the PC-AR method, the following eixen-

decomposition of the R matrix is used,

p L

I-V-ii-i iinp+1

where, X 2 - " " X+I X " L are the eiqenvalues (real valued

and positive, because R is hermitian and positive definite) and vl, Y20

YL are the corresponding orthonormal eigenvectors. Using this notation, the

solution in (2) can now be expressed as,

a =i -  - (4)
iml i =0+

A principal component solution would omit the second term which corres,ends

to the L-u noise eiRenvalues and retain the first term that corresi~onds to

the v signal eigenvalues so that the PC solution is qiven by,

"M vS Z,~ ez
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PC - - i Ii vi r (5)

Equation (5) is also written as.

,PC - R (6)

where R#. which is commonly known as the pseudoinverse of R, is defined as,

#
YiX (7)i1

As an interesting interpretation of the apC solution that should be noted

is that if R is singular the normal equations (3) will have infinitely many

solutions out of which one unique solution that minimizes the Euclidean norm

ana is. in fact, the _pC solution given by (6). This is also known as a

'minimum-norm' solution. For the FB case, this occurs when the order L is

greater than the number of sinusoids p and no additive noise is Dresent.

Also for the noiseless PD case. the corresvoudinx PEF A(z) has D zeros on

the unit circle at the sinusoidal frequency locations and the other L-n

zeros of the PEF lie inside the unit circle [1].

4



SECTION 11 NEW MEMO

Ila: Motivation

The PC-AR solution retains the p smallest eigenvalues of R71 and zeros out

the L--p largest eigenvalues. This operation can be functionally represented

as,

-rlC = - f(71) r (8)

where f(R-1 ) defines the functional operation of zeroing out the L-v largest

eigenvalues of R7. i.e. f(R - 1 ) - _. where _ is defined in (7). The

sigenvalues corresponding to the matrix f(R-1) are given by f(A). where A

denotes the eigenvalues of R71 which are related to the eigenvalues of R

as,

Al 1/X1 = A22 2  .... AL = 1'/L so that A1  -. .A At

InR as given by equation (7), all eigenvalues greater than An i.e. the

L-pv largest eigenvalues are zeros which may be represented as

f(A) -A for A- A

- 0 for A> (9)

Geometrically. f(A) as described by equation (9), can be represented by the

plot in Fig. 1. This geometry suggests that one could as well find a

function g(A) that closely aproximates f(A) of Fig. 1 and then use

the corresponding matrix function X(R- 1 ) in place of Rl in the -PC

solution in equation (6). The advantage of using g(R - 1 ) instead of R# is

that the eigen-decomaosition of R7- need not be computed since q(R -1 ) has

the same effect on R71 as the use of R#-. This aporoach whereby a desired

matrix function f(A) is replaced by an easier-to-calculate matrix function

R(A), where A is any L x L matrix, has received some attention in numerical

%~ '. V.~ .
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analysis (7]. These techniques are based on the idea that if x(A). the

eigenfunction corresoonding to %(A). closely aproximates f(A) on the

eigensoace of the corresponding matrix A. then f(A) is approximated by %(A).

The approximate matrix functions do not involve eigenvalues and

eigenvectors, thus avoiding explicit eixen-decomoosition.

Ib : Possible Approximations of f(A)

It can be easily shown (7] that the function g(A) of an L x L matrix A.

has the same eigenvectors as the original matrix. Also, if A is any

eigenvalue of the original matrix A. then the corresponding eiqenvalue of

the matrix function g(A) is simply x(A). Some approximating functions are

now discussed.

1) Polynomial Approximation The coefficients of the polynomial.

,,(A) = g0 + i A + g2 A2 + • + M A0M  (10)

can be found by a least squares fit with f(A) at equally (or uneqnally)

spaced A values. N may be any arbitrary integer. This approximation was

attempted using IMSL Package Subroutines and also by directly programming it

in Fortran. But as shown in Fig.2 for the case of N = 10, the avoroximations

always yielded a poor fit, possibly because of the discontinuity of f(A) at

A - A . Also. x(A) is seen to have negative going valnes for some regions of

A > Ap. The effect of this may be adverse in the equivalent matrix function

because negative values of g(A) may result in negative elgenvalnes of g(R-

1). In such cases, the resulting matrix function will not be nositive

semidefinite, which is inconsistent with the Oronerty of a covariance

*2 - *.- ,* ** V .* .* . . . .- .L ~ I f l ~ ~ L A 1 ~ q
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matrix. The frequency estimates obtained using this apnroximation technique

were uoor and hence the polynomial approximation seemed unacceptable.

2) Rational Function Approximation : The use of a rational function of A

given by,

N(A)
g(A) = - (11)

D(A)

is now examined. One choice of x(A) which closely approximates f(A) in (9)

is given by,

A
g (A) = for 0 A SAL (12)

where A is chosen such that, A, ( A < A,.,1. It can be easily verified that

for sufficiently large M

i(A) = A for A (

= 0 for A >

In Fig. 3 (1/70g(A) vs. A /A is plotted. It is evident that even for small

values of M, x(A) dies off quickly enough for A )> A. In vracticsl

situations most of the noise eigenvalues of R-1 are much larger than An Ao

that even if a low value of M is used. those noise eiqenvalues will be

substantially suppressed.

lIc : Analysis of the rational matrix function g(R- 1 )

The matrix function corresponding to the eigenvalue function R(A) in (12)

. PL, , - . ' L, ' . . , .. . . , ' . . . . . " " .. . . . .



can be written as

x(21- 271 + F -1I (13)

where I is the L x L identity matrix. It is vroved that x(271) -> R#as N

becomes large. Since the sigenvalues of I~l/ are A1/X. A2/X. ALA*

and IC' and R /Xhave the same set of eigenvectors v1,!2, * L. X(R7

1) has the following decomoosition.

-1 A 0 A/)0.-1

JIII ! (AL/A)')

0AL I (ALM
where Y - I-!l !2 10*!L] Now.since ft is a positive definite matrix its

eigenvectors form an orthogonal set, so that* VVE I if the eiqenvectors

are normalized to have unit lengthso Since R71 has the same eigenvectors as,

one can write.

I , [ l ( 1 + ( A 2 / ~ ) 0

-V A2I(1+(A 2/X)M )-q(A2 ) V

0AL' (1+AL/A)M)(AL)
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This derivation verifies the statement made in Section ITb about the

eigenvalues and eigenvectors of a function of a matrix.

Now, for large enough K.

x(A)- 0 for A ) and

-- > A for A <

So we have for large M.

"2 
0

0

The above analysis justifies that if the proper scaling parameter A is known

such that <,, ( ( A,+1 " then the suggested matrix function indeed tends to

Ri for large I. In practical situations, however, A will not be known unless

one computes the eigenvalues explicitly, but that, in fact, was intended to

be avoided in the first place. In the next section. two matrix theorems are

stated to obtain a reasonable estimate of 7'

Ild : Choice of ?(

It is a well known fact that the trace of matrix is equal to the sum of

the eigenvalues of the matrix. The noise eigenvalues A,+ 1 ' • * ,AL are much

larger than the signal eixenvalues. Therefore, it can be expected that the

average of the eigenvalues will be larger than AD. So one choice of X is

(i/L) * sum of the eigenvalnes of 2-1 = (I/L) I R71 (i.i) = (I/L)

Trace(_t- 1 ). where R-1 (.i) denotes the (i.ilth element of the matrix R-1.

Also, since _-1 is a hermitian matrix with eigenvalues 1 S 2 _ . . A t.



the following fact is also true [6J.

if 02.03. . . .cL and dl.d2 . . . .dL are real numbers such that,

di R7(L+l-i.L~l-i) + ci. I 1R1 (L+1-i,j)12  i - 1, 2, .

c, > 0. di -di..I 1 /ci 1 i2@39 L (14)

thou Ai Sdi. i -192. L

im numerous simulation examp~les with large number of noise realizations. the

explicit computation of the eigenvalues of R7 indicated that if cj - 1 for

all i. i.e. if the di's are chosen such that

di - irl(L+1-i,L+1-i) + I I R71(L+1-i,i) 12 1 - 1.2. L..

then A, S di Yi. i.e. the sigenvalues were found to be always less than

the corresponding di's. So the di's obtained from the above expression can

be used as the noperbounds of the Ai's. For the simulation example

described in the following section where p - 2 was considered. d2

provides an uvperbound for A2. So another choice of A is. AR - R71(L-1.L-1)

+ fR71 (L-1.L)1 2 . Finally. X~ was chosen as the smaller of tho above two

bounds, i.e. =min '. ")

Ile: Simulation Results

For the process given by (1) with two sinusoids or

A a) j(2rfin + 01) + A2 e J(2xf2n + 2) + z(n) (15)

where fl 0.52. f2 = 0.50. Al - 1.0, A2 - 1.0. 01 - f/4 and 02 - 0. z(nt) is

a computer generated, complex white gaussian noise sequence with variance

2o2 '. whore a2is the variance of the real and imaginary parts of z(,n). SNR

for either sinusoid is defined as 10 1oq10(Aj2/2tr2). For every trial 25 (-N)

data points were generated. This same data set was used in references[1
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and [5]. For every trial the sinusoidal signal was kept unchanged and a

different realization of z(n) was generated. 500 such trials were performed

for the FB method and the proposed method. The mean, variance and USE were

calculated for fl. In Table I, bias and USE are tabulated for different SNR

values. A plot of 101og10 (1/MSE) vs. SNR is shown in Fig. 4 for the present

method (plot marked UM) and the FB method. For the FB method with L-9 which

exihibited the best results, the threshold USE occurs at about an SNR of 20

dB and for the present method with L-10 and M-6 which produced the best

results, the threshold occured at 14-15 dB. As shown in Fig. 4. improved

performance is obtained for L-10 and M-6 with a second eigenvalue filtering

iteration which will be explained in Section lh. The Cramer-Rao lower

bound for an unbiased estimator is also tabulated in Table I and plotted

in Fix. 4 for comparison.

To indicate the improvement in performance which may be obtained if A could

be more accurately determined, the threshold parameter A was coumuted

exnlicitly as (Ao + Ao+ 1 )/2. Then, the oresent method exhibited results very

close to the PC-AR method when L - 12 to 16 was used with N = 4.5. The best

results are obtained for L - 16 and N - 5 as seen in Fig.4.

Ilf : Computation of amplitudes (Ai's)

Once the estimates fl, f2 are obtained, the complex amolitudes Acl =

AleJi1 and A0 2 - A2eJos are computed as the least squares solution.

[Acl AcZ]T = [82+ g2i1 E2+ 1 (16)

where 'T' denotes matrix transoose and '+' denotes matrix trananose

conjugated and

.. .. . ,:*. .. .
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J2xfl eJ2wf2

d ~ j2niN-)f *J= [ if, !f2  of (17)
-E2= . j , i-1 ) .j2xi*-1, f2

and z z(O) z(1) . . . T(N-1) ]T .h absolute values of A.1 and At2

are used as the amolitude estimates A1 and A2.

Ihg: Threshold enhancement by subset selection

A simple subset selection method for frequency estimates which performed

well in simulations is now described. Computationally, this method is

relatively less expensive than similar approaches reported earlier in [91

and [101. Instead of choosing only 2 zeros of A(z) nearest to the unit

circle. 4 zeros closest to the unit circle were chosen. The amplitudes

corresponding to those 4 frequency estimates were computed from.

[A0 A 2 A0 3 A0 4 4T [ _ 14 -1 _E4 _ (18)

where.

'4 [ ]f and the OfIs are similarly defined as in (17).1f fe2 1f3 2fl4 I'f~ I

Then the frequencies corresponding to the two largest amplitude estimates

were used as frequency estimates. The results of subset selection aeoroach

are plotted in FR.S. Comered to the case of choosing the frequency

estimates from the two zeros closest to the unit circle, about 2-3 dB

threshold enhancement is observed. KIN was used for L-8 and 1l in both the

cases. For the case of n sinusoids. 2v zeros of A(z) closest to the unit

- V A*- . > ddJl
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circle would produce 2o amolitude estimates, out of which the frequency

estimates should be chosen corresponding to the p largest amlitudes.

Simulation ezerience indicates that instead of 2o zeros, if even more zeros

closest to the unit circle are picked to estimate the largest p amolitudes,

further threshold enhancement may be obtained. Using L = 8 and M = 15. the

best results were obtained when the two frequencies had been chosen in the

same manner from the six zeros of A(z) closest to the unit circle. As shown

in Fig. 5, about 3 dB further threshold enhancement is observed.

Ilh : Threshold Enhancement by a Second iteration

The choice of A as described in section TId leaves a few noise eigeuvalues

unchanged in the approximating matrix function X(g-1) because the A chosen

according to those bounds is usually larger than a few eigenvalues which

are greater than A,. In the second iteration, one can eliminate a few more

noise eigenvaluos from g(R- 1) following the same procedure as in the first

iteration. X should be chosen as the average of the diagonal elements of

x(g-l), because the first iteration reduces most of the noise eigenvalues.

causing the average eigenvalue to be decreased. In the second iteration, the
-1

new matrix function can again be obtained from equation (13) where R

should be replaced by %(!7 1 ) and the new X should be used for scaling. The

best results were obtained for L - 10 and N = 6. The results are plotted in

Fig. 4 along with the previous results. This second iteration reduces the

NO5 so that the plot is closer to the CR bound line and the threshold also

decreases by 2-3dB. The subset selection method suggested in the section 11g

provided further enhancement of this threshold. The best results were
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obtained for L - 12 and N - 4. as shown in Fig. 5. The clots show the

results of two cases. For the first case. the two frequencies having the two

largest amplitudes were chosen out of the six zeros of A(z) closest to the

unit circle, whereas for the second case. eight zeros closest to the unit

circle were used to obtain the two frequency estimates. As seen in Fig. 5.,

the second case yielded the best performance compared to the Cramer-Rao

bounds and the known X case.

SECTION III: OBSRVATIONS AND CONCLUSIONS

It has been shown that if A is known exactly, the proposed eigenvalue

filtering method works almost as well as the Principal Component based

frequency estimation method. If 7 is estimated from the covariance matrix.

an improvement of 5-6 dB in the threshold is obtained over the

Forward/Backward method. Additional threshold enhancement of about 6-7 dB

can be obtained with a second iteration at the cost of more computation. A

PEP order L m NI3 was observed to yield the best results when only the

first iteration was used. A possible reason for this may be that for L <

NIS, the signal eigenvalues are too noise corrupted while for L > NI3, the

eigenvalue filtering method preserves too many noise eigoenvalues. A better

choice of X should enhance the threshold at least to that of the Princiaal

Component based techniques. A simole subset selection method has also been

suggested to improve the threshold for the Forward/Backward and the proposed

methods.

n n l i u- m .
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SNR BIAS MSE CR BOUND

in dB

30.0 0.1924 x 10 0.193 x 10-6 0.967 x107

20.0 0.1179 x 10 0.197 x 10- 0.968 x106

15.0 0.1620 x 10- 0.970 x 10- 0.306 x 10-

12.0 0.6969 x 10-2  0.195 x 10o2  0.762 x 10-

10.0 0.1485 x 10- 0.432 x 10o2  0.967 x 10-

5.0 0.8570 x 10-1 0.278 x 10- 1 0.306 x104

TABLE 1 :BIAS and MSE for the estimate of f1  0.52

using Eigenfiltering method. Cramer-Rao bounds

are also listed. 500 different noise realizat-

-ions were used at each SNR.
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* Fig. 1. Gsaiietric representation of the distribution of the eigenvalues
of the pseudoinverse of Z. The plot depicts that the pseudoinverse
retains only the signal eigenvalues A,, ., , and sets the rest
of the eigenvalues to zero



22

-&--True (1/P))f(A)

- 0

(0

- -Polynomial Approximation (M =10)

9bO .0 0 ,4 . 0 e-O 12. 16.0 00

Fig. 2. Polynomial approximation of f(A). 'The coefficients of eq. (10)

were found for M = 10. 'The approximation is seen to have

negativ values for sone regions of A > V~,
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0

r-4
+

0' /;

0"-

C)

0 or 'do 2,00 3.00 4 00 5.00

Fig. 3. Rational function approximation of f(A). Normalized version of

g(A) as in eqn. (12) is shown for M = 2,3, . . ,15.7he desired
f(A) is shown by the dotted line. The rational function approx-

-imation is seen to approach the desired one as M increases.

i -
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Known A
o (L-16,M=5)

0

006'00 1'2. 00 18.00 2'4-00 30.00o
SNR (dB)

Fig. 4. Performance ccmparison of the Eigenvalue filtering
method With FB method and CiR bound. Frequency estimates
were chosen from the tw zeros of the PEF closest to
the unit circle on the z-plane. Plots are shown for the
estimate of f 1 (=0.52).
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Twq iterations
out of 8 Known A

0 (L12,M4.)(L=16,M=5)

LUTwo iterations CR bound

C0 One iteration
two closest

One iteration (8M5
2out of4

(L=B8,M=15)

one iteration

00~ 6'.00 1'2. 00 1'8-00 2'4.00 3b.oo
SNR (dB)

Fig. 5. Performance comparison of the Elgenvalue filtering

method with CR bound. rihe two frequencies having the

largest amplitudes were chosen out of 4-8 zeros of

the PEF closest to the unit circle on the z-plane.

Plots are shown for the estimate of f 1 (0.52).
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