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FREQUENCY ESTIMATION BY PRINCIPAL COMPONENT

AR SPECTRAL ESTIMATION METHOD WITHOUT

EIGENDECOMPOSITION

Steven M, Kay and Arnab K, Shaw
Electrical Engineering Devartment
University Of Rhode Island
Kingston, RI 02881,

ABSTRACT

For accurate frequency estimation Princival Component Autoregressive (PC-AR)
spectral estimation methods have received considerable attention in the
recent literature. Explicit comvutation of the Eigen—-decomposition of the
autoocorrelation matrix is required to obtain the PC-AR soluntion, An
alternative approach called the “Rigenvalue filtering method’ (EFM) where
the eigenspace need not be compnted, is proposed in this paver, The provosed
method utilizes the geometry of the distribution of the eigenvalnes in a
matrix function so that it closely anoroximates the psendoinverse of the
autocorrelation matrix., It is shown via computer simmlation that compnaced
with the Forward/Backward method, the wproposed method enhances the
threshold in SNR by abont 6-8 dB. Further improvement is obtained by a
simple subset selection method and a second eigenvalue filtering iteration,
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. INTRODUCTION

Estimation of parameters of mmltinle sinusoidal signals imbedded in
white noise is a very well researched problem in signal nrocessln:; It is
also one of the fundemental problems encountered in s variety of seemingly
1 unrelated fields, e;g. geophysics, economics, radar, astronomy, sonar, etc..
Ideas and techniques emerging from different fields have transgressed and
intermingled, resulting in a certain wmaturity of this brobleu: Many

researchers have reported various aspects of this problem in recent and

earlier litorature; Useful references are listed in Kumaresan's thesis [1]

and also in a recent book by Haykin et sl [2] and in the forthooming book by
Kay [3].
One of the ideas which has received considerable atteation is the use
i

of Singular Valne Decomvosition (SVD) of a large order (larger than number
of sinusoids) autocorrelation matrix estimated from data or equivalently,
the vrincinal component analysis of the autocorrelation mattix?tqrhe SVD
aporoach produces orthogonal eigenspaces consisting of the signal subspace
and the noise subspace, The many variants of SVD based frequency estimation
methods that are presently available, usually make use of either the signal
subspace or the noise subspace to estimate the frequency components. One
disadvantage of these asnproaches is thd® burden of computing the eigensvaces
exolicitly; To avoid this, a different svproach has been nundertaken in the
present work, where the knowledge of the geometry of the distribution of
eigenvalues has been exploited. An  aopropriate function of the

sutocorrelation matrix is suggested to opreserve the signal smbspace and

nullify the noise subsonce; It is shown that if the geometry of the
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distribution of the eigenvalues is exactly known, theau the suggested matrix
function eliminates the noise subspace while keeping the signal eigenvalunes
intact. In oractical situations, however, the exact distribution of the
eigenvalues will not be known. A few theorems which relate the elements of
2 hermitian matrix to its eigenvalues have been invoked to obtain bounds on
the signal eigenvalues. Then the estimated bound (or threshold) is utilized
in the pronosed matrix function to remove the effects of most of the noise
eigenvalues, Sisulations on the same dats with a large namber of
independent noise realizations have been performed and the results have been
compared to those obtained by nusing the modified covariance or
Forward/Backward (FB) method and the Cramer-Rao (CR) lower bound. Without
computing the eigenspace explicitly; the oprovosed method enhances the
threshold (of Signal to Noise Ratio) by about 6-8 dB over the FB method. |
Then a subset selection method is used which imoroves the threshold by 2-6
dB for the FB and the pnroposed methods, For the nresent method a second
iteration is then shown to enhance the threshold further,

This paper 1is arranged as follovs: In Section I the oproblem is
formulated for multiple sinusoids im noise and a brief discussion of the FB
nmethod and the Princinal Component Autoregressive (PC-AR) method is
vresented., In Section II, the proposed eigenvalue filtering method |is
descridbed with theoretical analysis and simulation resalts, Section III

consists of some concluding observations,
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SECTION I : PROBLEN FORMULATION

Ja : Problem Definition

Given N samples of observation data composed of p complex sinusoids in
white noise denoted by
j(anin + ’i)

+ z(n) (1)

) ]
x(n)*}Aie I

i=1
where AI'AZ::"Ap are the amplitudes fl'fZ""fp are the frequencies and
$1.95....8, are the phases associated with each sinusoid, the problem is to
estimate Ai.Az:;;.Ap. fi;fz::;;fp and pl;ﬂ,;:;;ﬁo. The observation noise
2(n) is assumed to be zero mean and white. Usually, the number of complex
sinusoids p is known or an estimate of it is available and the phases
$1.9,....6, are assumed to be random (or fixed but unknown) and uniformly

distributed between O and 2rm.

Ib : Previous Results

The oldest and probably the most widely used frequency estimator is the
periodogram, It can be shown [8] that for o = 1, periodogram maximizes the
likelihood function., But for » > 1, the interaction between the frequencies
causes poorer estimates except when the frequencies are far enough avart or
if they are separated by K/N , where K is an integer not equal to a multiole
of N. Especially, for closely spaced sinusoids, i.e. when the separation
between two sinusoids is less than 1/N, them periodogram cannot resolve the

two peaks and exhibits a single peak instead of two. The maxismmm likelihood
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5
estimator for p greater tham 1 is computationally intensive whether grid
search [1] or iterative techniques [3,4] are used. High resolution spectral
estimation technigques have been extensively used by many researchers to
overcome the problems of the periodogram, Since the anproach takem in this
paper is an indirect implementation of the princinal comvonent
sutoregressive frequency estimator [5], a brief review of this method is in
order, The provosed method is then described in Section II,

The data composed of p sinusoids as given by equation (1) may be
thought of as & limiting form AR vnrocess with narrow band peaks at the o
sinusoidal frequency locations, Such an AR process can be modeled as the
output of an AR filter driven by white noise. With this model at hand, one
can use a reasonable estimator of the autocorrelation faunction (ACF) from
the data and then estimate the AR oparameters from the following
relationship,

1=-R': (2)

The 1last equation is the solution of the following normal equations

encountered in FB nethod:

cll C12 o o e C a C
C

21 G2 - -
[ ] [ ] [ ] . * ] * L ] [ ] L ] (3)
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where,

N-1 N-L

1 —
C = e } xzn-i) x(n~-j) +§ x{n+i) !zﬂ*j) ]' ; ; g.

1 L
3 anu . 1

L.

n=L 1=0 e
are the ACF estimates used in the FB method. The frequency estimates are
obtained by choosing p zeros of A(z) that are closest to the unit cirecle,
where A(z) =1 + 3 8y z 1 is known as the estimated prediction error filter
(PEF). A Choice of L such that N/3 ¢ p ¢ N/2 has been shown to yield
reasonably good estimates. At low SNR values (below 20 dB), the FB method
fails to resolve closely spaced peaks due to the effect of noise on the ACF
estimates. This problem has been alleviated to a great extent by the use of

the nrincinal component solution: In the PC-AR method; the following eigen-—

decomposition of the R matrix is used,

] L
. 1,3 B
B o= ) hyyy + ) A vy
i=1 i=p+1

where, 11 2 Ay 22 XD 2 lp+1 22 A, are the eigenvalues (real valued
and positive, because R is hermitian and positive definite) and vy, v3. .
¥y sre the corresponding orthonormal eigenvectors; Using this notation, the

solution in (2) can now be expressed as,

P L
[2-— PETTAL
j=1 1 j=p+1 ©

A principal component solution wonld omit the second term which corresmonds

to the L-v noise eigenvalues and retain the first term that corresnonds to

the p signal eigenvelues so that the PC solution is given by,

Nt
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8¢ = “ R« (6)

where 3#. which is commonly known as the pseudoinverse of R, is defined as,

?
2.%. (7

As an interesting interpretation of the apc solution that should be noted
is that if R is singular the normal equations (3) will have infinitely many
solutions out of which one unique solution that minimizes the Euclidean norm
gng is, in faot, the ap. solution given by (6). This is also known as a
‘minimum-norm’ solution, For the FB case, this occurs when the order L is
greater than the number of sinusoids p and no additive noise is present.
Also for the noiseless FB case, the corresvonding PEF A(z) has p zeros on

the unit circle at the sinusoidal frequency 1locations and the other UL-n

zeros of the PEF lie inside the unit circle [1].
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SECTION II : NEW METHOD
IIa : Motivation
The PC-AR solution retains the p smallest eigenvalues of 5’1 and zeros ont
the L-p largest eigenvalues. This operation can be functionally represented
as,

ape = - £@D £ (8)
where f(gfl) defines the functional operation of zeroing out the L-p largest

eigenvalues of R, i.e, f(R1) = 3#. vhere 5# is defined in (7). The

3 eigenvalues corresponding to the matrix f(g-l) are given by f(A), where A
i denotes the eigenvalues of 5—1 which are related to the eigenvalues of R
b as,
M=1/y , A=1/, .. . AL=1/Ap sothat Ay S A S0 L SN

; In 3# as given by equation (7), all eigenvalues greater than Ay, i.e, the
) L-p largest eigenvalues are zeros which may be represented as
P £A) = A for AL A
‘ =0 for A> A (9)
E Geometricaslly, f(A) as described by equation (9), can be represented by the

plot ia Fig. 1. This geometry suggpests that one could as well find a
4 function g(A) that closely approximates f(A) of Fig. 1 and then nse
. the corresponding matrix fanction g(g_l) in place of g# in the ay.
: solation in equation (6). The advantage of using g(g-l) instead of B# is

that the eigen—decomnosition of 5-1 need not be computed since q(g-l) has
the same effect on g‘l as the use of 5#; This aporoach whereby a desired
matrix function f(A) is replaced by an easier-to-calculate matrix function

g(A), where A is any L x L wmatrix, has received some attention in numerical

RIS A R .‘-.\.\ R T R 2% 0 NN W AN N VYRS N 1
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analysis [7]. These techniques are based on the idea that if g(A), the
eigenfunction corresvonding to g(A), closely approximates f(A) on the
eigensnace of the corresponding matrix A, then f(A) is aporoximated by g(A).
The approximate matrix functions do mnot involve eigenvalues and

eigenvectors, thus avoiding exnlicit eigen—-decomvosition,

ITb : Possible Approximations of f(A)

It can be easily shown [7] that the function g(A) of an L x L matrix A,
has the same eigenvectors as the original matrix. Also, if A is any
eigenvalue of the original wmatrix é; then the corresponding eigenvalue of
the matrix function g(A) is simply g(A). Some approximating functions are

now discussed:

1) Polynomial Approximation : The coefficients of the polynomial,

K(A) = gg+ mg At g AP+ .. +ay MM (10)
can be found by a least squares fit with f(A) at equally (or uneqnally)
spaced A values, M may be any arbitrary integer., This approximation was
attempted nsing IMSL Package Subroutines and also by directly nrogramming it
in Fortran. But as shown in Fig.2 for the case of M = 10, the approximations
always yielded a voor fit, possibly because of the discontinuity of f(A) at
A= A,. Also, g(A) is seen to have negative going valnes for some regions of
A> Ab' The effect of this may be adverse in the equivalent matrix fuanction
because negative values of g(A) may result in negative eigenvalnes of g(R™
1y, In such cases, the resnlting matrix function will not be nositive

semidefinite, which isx inconsistent with the opronerty of a covariance
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10
matrix. The frequency estimates obtained using this aporoximation techniqme
were ooor and hence the polynomial aporoximation seemed unacceptable,

2) Rational Function Aporoximation : The use of a rational function of A

given by,
N(A)
g(A) = ——— (11)
D(A)

is now examined, One choice of g(A) which closely approximates f(A) in (9)

is given by,

A
g(A) = for 0 £ A S /\L (12)

1+ (A7 Y

where K is chosen such that, Ab < K < An+1. It can be easily verified that

for sufficiently large M

g = A for ACA

= 0 for A> K

In Fig. 3 (1/0g(A) vs, A /K is vlotted, It is evident that even for small
values of M, g(A) dies off quickly enough for A >> KA. In practical
situations most of the noise eigenvalues of 3_1 are much larger than Ab so
that even if a low valne of M is used, those noise eigenvalues will be
substantially suporessed.

IXe : Analysis of the rational matrix fnnction;g(R-l)

The matrix function corresoonding to the eigenvalue function g(A) in (12)




T

11

can be written as

() - gt [; + [_;__1-]“ ]-1 (13)

where I is the L x L identity matrix. It is proved that g(g-l) -> g# as M
becomes large. Since the eigenvalues of g’ilx are A /A, MK ... AR
and B! and 71/ have the same set of eigenvectors 21.32; e e vr. s(R

1) nes the following decomvosition,

N o MR W N
sl =y .- Vlr+y W v

) 0

2 A

where , V=1[Ivy vy .. !L1; Now,since R is a vpositive definite matrix its

'(A,_/A)"

eigenvectors form an orthogonsl set, so that, !!H = I if the eigenvectors
are normalized to have unit lengths, Since 5’1 has the same eigenvectors as,

one can write,

. -1
A 0 [ 0" L0
A’"_ vy [1+r B

0 A [“"\.’K’"]-l |

5
o
>
;"

[ A/ A M= (A
- Ayl 1+ (A, O™y =g (A,)

"o

AL;(1+(AL/X)")=1(I\‘) |
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12
This derivation verifies the statement made in Section IIb about the
eigonvalues and eigenvectors of a fanction of a matrix.
Now, for large enough N,
g(A) —> 0 for A > X and
-=> A for ACK

So we have for large M,

({-]

i=1

10

. |, 0 .
The above analysis justifies that if the proper scaling parameter K is known

such that A, < X< Ay+1. then the suggested matrix function indeed tends to
f: g# for large M. In practical situations, however, A will not be known unless
N one computes the eigenvalunes exulicitly: but that: in fact: was intended to
be avoided in the first place. In the next section, two matrix theorems are

stated to obtain a reasonable estimate of K;

*
s GZ Y

. .

IId : Choice of X

It is s well known fact that the trace of matrix is equal to the sum of

4

ﬁ the eigenvalues of the matrix. The noise eigenvalues Ab+1' . . », are wuch
‘ larger than the signal eigenvalues, Therefore, it can be expected that the
;’ average of the eigenvalues will bde larger than Ab' So ome choice of A is
4 K = (1/L) ® sum of the eigenvalnes of R°1 = (1/U) 3 R l(i,1) = (1/L)

T&lco(gfl); where gfl(i;i) denotes the (i,i)th element of the matrix 3-1.

Also, since 371 is & hermitian matrix with eigenvalues A £ NS < N
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the following fact is also true [6].
If o5,c3. .. .cp, and dq.dy, .. .dy, are real numbers such that,

4 2 BLLH-1,L4-0) + oy I IRIM-, 012 i=1,2, .. 0L
JvLat-t ,

©; >0, d;-d;3421¢;,1=23,. .,L (14)

then A $4;, i=12,...L
In numerous simmlation examples with large number of noise realizations, the
explicit computation of the eigenvalues of g‘l indicated that if ¢; = 1 for
all i; i;a. if the di’s are chosen such that

a; = RUL+1-4,L41-0) + 3 | RMLe-4,p 2 i=12, ... L,

o J>Lat-t

then Ay £ a; Vi, i.e, the eigenvalues were found to be always less than
the corresponding d;’'s. So the di's obtained from the above expression can
be used as the unperbounds of the Ai's; For the simulation exammle
described in the following section where p = 2 was considered, dy
provides an upperbound for Ay. So another choice of A s, A = B_I(L-l.L-l)
+ Igfl(L-l.L)lz. Finally, K was chosen as the smaller of the above two

bounds, i.e, A=min ( A* , A* ).

ITe: Simulation Results

For the process given by (1) with two sinusoids or

x(n) = A JJ(2nfyn + 4 A, e J(2nfan + 83) 4 4(n) (15)
where f; = 0.52, 5 = 0.50, Ay = 1.0, Ay = 1.0, 8; = n/4 and ¢y = 0. z(n) is
a computer generated, complex white gamssian noise sequence with variance
202; where 62 is the variance of the real and imaginary varts of z(n); SNR
for either sinusoid is defined as 10 loglo(A12/202). For every trial 25 (=N)

data points were generlted; This same data set was used in references [1]
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and [5]. For every trial the sinusoidal signal was kept nnchanged and a

. different realization of z(n) was generated. 500 such trials were performed

for the FB method and the proposed method. The mean, variance and MSE were
calculated for fl; In Table I, bias and MSE are tabulated for different SNR
values. A plot of 101oxy o(1/MSE) vs. SNR is shown in Fig. 4 for the present
method (plot marked EFM) and the FB method. For the FB method with L=8 which
exihibited the best results, the threshold MSE occurs at sbout an SNR of 20
dB and for the present method with L=10 and M=6 which produced the best
results, the threshold occured at 14-15 4B, As shown in Fig, 4, improved
performance is obtained for L=10 and M=6 with a second eigenvalue filtering
iteration which will be explained in Section IIh, The Cramer—Rao Ilower
bound for an unbiased estimator is also tabulated in Table I and plotted
in Fig. 4 for comparison.

To indicate the imnrovement in performance which may be obtained if X could
be wmore accurately determined, the threshold oparameter X was commuted
exvlicitly as (A, + Ab+1)/2; Then, the nresent method exhibited results very
close to the PC-AR method when L = 12 to 16 was used with M = 4,5, The best

results are obtained for L = 16 and N = § as seen in Fig.4;

IIf : Computation of awplitudes (A;’s)

Ouce the estimates fl' fy are obtained, the complex amolitudes A,y =
Alej’t and Ac2 = Azoj’z are computed as the least squares solutionm,
[Agy Ag2]T = [By* By) 71 Byt (16)

where 'T’ denotes matrix transvoss and '+’ denotes matrix transnose

conjugated and
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i 1 1 ]
‘j2ﬂf1 .qufz
. . - an
gz. . R [gfl gfz]
.j2n(N-1)21 .jzn(N—l)fz

and x = [ x(0) x(1) . . . x(N-1) 1T | The sbsolute values of Ayq and A,y

are used as the amnlitude estimates A1 and Az;

IIg: Threshold enhancement by subset selection

A simple subset selection method for frequency estimates ihich verformed
well in simulations is now described. Computationally, this method is
relatively less expensive than similar approaches reported earlier in [9]
and [10], Instead of choosing only 2 gzeros of A(z) nearest to the unit
circle, 4 zeros closest to the unit circle were chosen, The amplitudes

corresponding to those 4 frequency estimates were computed from,

[Acr Agz Agz Agy 1T=1 §4+ B, 171 §4+ x (18)

where,

§4 = [ e, o e, ¢ ]. and the gf's are similarly defined as in (17),
1 "2 i3 Tfy i

Then the frequencies corresponding to the two largest amplitude estimates
were used as frequency estimates. The results of subset selection aporoach
are oplotted in Fig.5. Comvared to the case of choosing the freguency
estimates from the two zeros closest to the unit circle, about 2-3 4B
threshold enhancement is observed. EFM was used for UL=8 and M=1S5 in both the

cases. For the case of n sinusoids, 2p zeros of A(z) closest to the nnit

T
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circle would vroduce 2p amnlitude ostiuatos; out of which the frequency
estimates shounld be chosen corresponding to the p largest ammlitudes.
Simmlation exverience indicates that instead of 2p zeros, if even more zeros
closest to the unit circle are nicked to estimate the largest p amplitudes,
further threshold enhancement may be obtained. Using L = 8 and M = 15, the
best results were obtained when the two frequencies had been chosen in the
same manner from the six zeros of A(z) closest to the umit circle. As shown

in Fig. 5, about 3 dB further threshold enhancement is observed.

ITh : Threshold Enhancement by a Second iteration

The choice of X as described in section IId leaves a few noise eigenvalues
unchanged in the approximating matrix function g(g-l) becsuse the A chosen
sccording to those bounds is usnally 1larger than a few eigenvalues which
are greater than AD; In the soecond iteration, one can eliminate a few more
noise eigenvalues from ;(3’1) following the same procedure as in the first
iteration. X should be chosen as the average of the diagonal elements of
g(g"i). because the first iteration reduces most of the mnoise eigenvalues,
causing the average eigenvalue to be decreased. In the second iteration, the

-1
new matrix function can again be obtained from equation (13) where R

should be revlaced by g(g'l) and the new X should be used for scaling. The
best results were obtained for L = 10 and M = 6. The results are plotted in
Fig. 4 along with the previous results, This second iteration reduces the
MSE so that the plot is closer to the CR bound line and the threshold also
decreases by 2-3dB. The subset selection method suggested in the section Ilg

provided further enhancement of this threshold. The best results were

_ - - ' <
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obtained for L = 12 and M = 4, as shown in Fig. 5. The vlots show the

results of two cases. For the first case, the two frequencies having the two
largest amplitudes were chosen out of the six zeros of A(z) closest to the
unit circle, whereas for the second case, eight zeros closest to the umit
circle were used to obtain the two frequency estimates. As seen in Fig, §.,
the second case yielded the best performance compared to the Cramer-Rao

bounds and the kmown X caso;

SECTION YII: OBSERVATIONS AND CONCLUSIONS

It has been shown that if A is kmown exactly, the proposed eigenvalue
filtering method works almost as well' as the Princinal Component based

frequency estimation method. If X is estimated from the covariance matrix,

an imorovement of 5-6 dB in the threshold is obtained over the
Forward/Backward method. Additional threshold enhancement of about 6-7 dB
can be obtained with a second iteration at the cost of more computation, A
PEF order L =~ N/3 was observed to yield the best results when only the
first iteration was used. A possible reason for this may be that for L <
N/3, the signal eigenvalues are too noise corrupted while for L > N/3, the
eigenvealue filtering method preserves too many noise eigenvalnes, A better
choice of X should enhance the threshold at least to that of the Princinal
Component based techniques. A simple subset selection method has also been

suggested to improve the threshold for the Forward/Backward and the orovosed

methods.
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SNR BIAS MSE CR BOUND
in 4B
30.0 0.1924 x 1074 0.193 x 10" 0.967 x 10’
20.0 0.1179 x 103 0.197 x 10~ 0.968 x 10~°
15.0 0.1620 x 103 0.970 x 10 0.306 x 102
12.0 0.6969 x 102 0.195 x 10" 0.762 x 107>
10.0 0.1485 x 10~ 0.432 x 10~ 0.967 x 102
5.0 0.8570 x 101 0.278 x 10" 0.306 x 102 :
(3
TABLE 1 : BIAS and MSE for the estimate of f1 0.52 ) :
using Eigenfiltering method. Cramer-Rao bounds
are also listed. 500 different noise realizat-
-ions were used at each SNR.
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A

Fig. 1. Geametric representation of the distribution of the eigenvalues
of the pseudoinverse of B. The plot depicts that the pseudoinverse
retains only the signal eigenvalues 4,, . "Ap and sets the rest
of the eigenvalues to zero .
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«i-—— True (1/%)f(A)

- --- Polynomial Approximation (M = 10)

N\

.00 \_A4-00 <00 12. 16.00 0.00

Fig. 2. Polynomial approximation of f£(/). The coefficients of eq. (10)
were found for M = 10. The approximation is seen to have

negativg values for some regions of A > /l)
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Fig. 3. Rational function approximation of £()). Normalized version of
g(A) as in egn. (12) is shown for M = 2,3, . . ,15.The desired
£(A) is shown by the dotted line. The rational function approx-
-imation is seen to approach the desired one as M increases.
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- Fig. 4. Performance camparison of the Eigenvalue filtering
;: method with FB method and CR bound. Frequency estimates
4 were chosen from the two zeros of the PEF closest to

« the unit circle on the z-plane. Plots are shown for the
estimate of f1(=0‘52)'
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Fig. 5. Performance camparison of the Eigenvalue filtering
method with CR bound. The two frequencies having the
largest amplitudes were chosen out of 4-8 zeros of
the PEF closest to the unit circle on the z-plane.
Plots are shown for the estimate of fl(=0.52) .
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