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Drs. Robert F. Gaugush, David C. Blouin, James P. Geaghan, Kenneth H.

Reckhow, and William G. Warren, APEG. Dr. Gaugush, who served as tech-
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ated with APEG through IPA's with the Department of Experimental Statis-

tics, Louisiana State University, Baton Rouge, La. Dr. Reckhow was
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and Environmental Studies, Duke University, Durham, N. C. This report

was prepared under the supervision of Dr. Thomas Hart, Chief, APEG;

Mr. Donald L. Robey, Chief, ERSD; and Dr. John Harrison, Chief, EL.

Dr. Jerome L. Mahloch was Program Manager of EWQOS. The report was pre-

pared for publication by Ms. Jessica S. Ruff of the WES Publications and
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Director of WES was COL Allen F. Grum, USA. Technical Director

was Dr. Robert W. Whalin.
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This report should be cited as follows:

Gaugush, R. F., tech. ed. 1986. "Statistical Methods for
Reservoir Water Quality Investigations," Instruction Report
E-86-2, US Army Engineer Waterways Experiment Station,
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STATISTICAL METHODS FOR RESERVOIR WATER

QUALITY INVESTIGATIONS

PART I: INTRODUCTION

Background

1. Through its Civil Works Program, the US Army Corps of Engineers

(CE) is responsible for the operation of a large number of water resources

projects. Over 400 of these projects are reservoirs which are operated

for a number of purposes, including flood control, hydropower, recreation,

navigation, and water supply. In addition, the CE is required by Federal

legislation in the operation of its reservoirs to comply with Federal and

state water quality requirements.

2. To provide policy and guidance in addressing Federal and state

water quality legislative requirements, the CE has issued Engineer Regu-

lations (ER) on the collection and interpretation of water quality data.

Specifically:

a. ER 1110-2-334, "Reporting Water Quality Management Activi-
ties," established the consideration of water quality as
an integral feature of CE responsiblities and set out the
requirements for monitoring programs and the reporting of
water quality data collected at CE reservoirs.

b. ER 1110-2-415, "Water Quality Data Collection, Interpreta-
tion, and Application," established guidelines for water
quality monitoring programs and data interpretation at CE
projects.

While these ERs establish the general guidelines and requirements for

assessing water quality, they do not provide specific assistance to the

CE Division and District offices in developing water quality programs,

including data analysis and interpretation.

3. To address the national environmental water quality objectives

delineated in Federal legislation, in 1978 the Office, Chief of Engineers,

instituted a major research effort, the Environmental and Water Quality

Operational Studies (EWQOS). The EWQOS Program has addressed a number

of environmental quality issues and provided guidance for the design

3 .'
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and operation of CE projects with respect to maintaining or enhancing

environmental quality in a manner that is compatible with project

purpose.

4. One of the major efforts of the EWQOS Program, Reservoir Field

Studies (Work Unit VIIA), was initiated to develop various operational,

control, and management procedures to address environmental and water

quality problems at CE reservoirs. One specific objective of this

research program was to provide guidance on the design of District and

Division reservoir water quality sampling programs. This report is

intended to provide guidance to field personnel in the data analysis and

interpretation phase of a water quality monitoring program.

Purpose and Scope ./ _,%

5. The purpose of this report is to provide to CE Division and

District personnel a general introduction to the statistical analysis of '

water quality data. The major and most common concepts and techniques -.
%%

involved in the statistical interpretation of water quality data will be "

discussed. It will not be possible to provide a comprehensive or

thorough treatment of all of the statistical methods that can be applied

to water quality data. This report is not intended to replace statisti-

cal textbooks, rather it provides the necessary background for more .

effective and efficient use of those reference works. Also, this report

does not provide specific guidance on the statistical techniques to be ..

used for data interpretation. The application of specific statistical : ' .

methods will be dependent on and constrained by site-specific features

and the data collected in a water quality monitoring program.

6. This report is intended for use by all personnel involved in
S..-..

the design, implementation, and data interpretation of water quality
monitoring programs in CE reservoirs. Most of the information contained

in this report is discussed in a more detailed manner in other sources.

A number of introductory statistics textbooks are Identified in the bib-

liography, and it is suggested that at least one of these be on hand as

this report is read. These textbooks also contain mathematical and '-.....'

4 ~c till ':,j~~



statistical tables that vill be required for the implementation of the

techniques presented in this report.

7. The presentation of the material in this report is divided

into several parts. Parts II and III discuss the use of data displays

and descriptive statistics, both of which are effective means of sm-

marizing water quality data. The application of inferential statistics

is presented in Part IV. Inferential statistics are required to make

sound conclusions about differences, relationships, or trends within the -U

data. Part V presents a brief introduction to the statistical concerns 4'

involved in sampling program design that are necessary for the proper

execution of a water quality monitoring program. A glossary of statis-

tical terms is provided as Appendix A.

.
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PART II: DATA DISPLAYS V

Introduction

8. It is good practice in statistical analysis to begin with a

study involving graphical displays of the data. That is, before

descriptive statistics are calculated from a data set, and before analy-

ses such as correlation, analysis of variance, or linear regression are

performed, it is wise to look at various displays of the raw data. The

graphs recommended for this task are useful in identifying the need to

edit or transform the data prior to conducting the statistical analysis.

Most procedures in statistics (e.g., regression analysis, hypothesis -.

testing) derive summary values (e.g., mean and standard deviation) from .

a data set. Thus, if the inferences drawn from the statistical proce- "--

dures are to be valid for the entire data set, it is important that the

summary statistics represent the entire data set. The graphical dis- .

plays help guide the choice of any necessary manipulations of the data

set and the selection of appropriate statistics (see Part III: Basic

Descriptive Statistics) to summarize the data. Examples presented in

the following sections should underscore the importance of examining

data displays at the beginning of a statistical study.

9. Graphs can also be useful during the course of a statistical

study. For example, bivariate scatter plots are helpful in the selec-

tion of independent variables for a regression equation. Upon comple-

tion of the statistical analysis, the scientist often wisely chooses to

present some of the results in graphical form. Not infrequently, con- v s

clusions are most effectively conveyed in a graphical display.

Histograms

10. In the most fundamental study, data on a single character-

istic are analyzed. For example, the limnologist has data on chloro-

phyll a from a particular reservoir on a particular date and desires to

6
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summarize the information obtained. The limnologist could calculate the

mean and standard deviation of the sample data set; alternatively, he

could calculate other statistics representing central tendency and dis-

persion (see Part III). Prior to calculating any statistics for the

sample, however, the limnologist should first look at a plot of the

data. For data representing a single characteristic (such as chloro-

phyll a), the histogram is often a useful graphical display.

11. As an example, assume that the summer chlorophyll a data in .

Table 1 have just been acquired, and the limnologist would like a "pic-

ture" of this sample. As a first cut, the histogram in Figure 1 is .' q

plotted. To construct the histogram, the limnologist must first divide

the range (highest value to lowest value) into equal-sized intervals.

In Figure 1, the range is approximated by 10 to 160 (actually it is 17.7

to 150, but the approximation is good enough) and is divided into inter-

vals of 10 units (micrograms per litre). For each interval, 10 to 20,

30 to 40, and so on, simply count the number of data points that lie in

the interval and construct vertical bars with height proportional to

that number. So, for example, there are three observations in the

40 to 50 range and six observations in the 60 to 70 range. Thus, the

bar for the 60 to 70 interval is twice the height of the 40 to 50 bar.

12. What does the histogram tell us about the sample? Basically,

it provides us with a visual image of the distribution of the sample.

In specific terms, this means that we are able to quickly see such

things as location of the "center" of the sample, amount of "disper-".

sion," extent of "symmetry," and existence of "outliers" in the sample.

In Figure 1, the center is clearly identified by the peak in the

50 to 60 interval, and dispersion could perhaps be characterized by

stating that about 85 percent of the observations lie between 30 pg/L ,

and 80 pg/i. The histogram is not symmetric, however, and one might

want to check on the validity of the two outlying observations at the .%., e

extreme right.

13. The picture created by the histogram is of considerable value

in the selection of descriptive statistics, as is noted in the next

section. Some care should be observed in the construction of the

7



Table 1

Hypothetical Total Phosphorus (TP) and Chlorophyll a (CHLa) ,.

Data for Two Sampling Periods

Sample Summer Fall
Number TP CHEa TP CHLa

150 52.1 95 11.3

260 55.6 110 20.4
3 60 61.9 140 36.9

4 6061.2 130 46.6

5 50 46.1 120 12.9

6 58 56.6 110 8.1 ~
7 65 63.8 110 14.1

8 60 25.5 120 23.0

9 110 133.4 90 9.9

10 80 74.8 120 26.2

*11 70 59.4 120 26.6 ~1
12 70 53.6 120 22.5

13 70 57.6 110 22.1

14 80 76.0 140 21.6

15 90 39.5 110 28.0
16 73 53.6 120 29.0

17 60 37.7 120 34.8

18 70 60.3 140 36.2 V

19 90 79.5 100 26.8

20 70 63.1 120 27.9

21 120 42.6 120 32.2

22 60 17.7 70 1.2

23 220 150.0 120 35.6

24 65 42.5 150 66.3

25 70 30.0 100 15.6
26 130 67.4 50 4.7

27 90 52.2 80 18.2 N.

8
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Figure 1. Histogram of summer chlorophyll a data from Table 1

histogram, however. With changes in interval size, the histogram may
assume different shapes which might affect the inferences drawn. For

example, in Figure 2a the chlorophyll a data are plotted using an

interval size of 20 units. With that scale, the two highest observa-

tions are less likely to be considered outliers than they are on the ....-.

basis of the five-unit interval size histogram in Figure 2b. It is

probably good practice to scale the histogram so that the observations

are neither too bunched (as in Figure 2a, where 75 percent are con- '. -"

centrated in two intervals) nor too spread out to permit reasonable

inferences to be drawn.

14. As noted above, the histogram provides an impression of the

extent of symmetry in the sample. Symmetry in a data set is a desir-
•.i. A .

able attribute for two reasons. First, it often means that one can

9
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Figure 2. Histograms of summer chlorophyll a data

characterize the sample as having a distribution with a shape similar to

those symmetric distributions (e.g., the normal and uniform distribu-

tions) which are commonly an assumption of statistical analysis.

Stating, for example, that a sample approximates the normal distribution

conveys useful information to a reader. Beyond that, symmetry implies

10



that the common descriptive statistics such as the mean and standard

deviation can be used to provide an adequate summary of the sample (see

Part III).

15. The foregoing discussion suggests that it might be useful to

apply a transformation (see Part III), if necessary, in order to create

symmetry in an asymmetric data set. Fortunately, limnological data are

often lognormally distributed, so the choice of transformation is often

straightforward. The lognormal distribution is strictly positive (all

observations > 0) and it contains skew to the right. As an example, the

chlorophyll a histogram in Figure 1 approximately fits this description.

To check for lognormality, the logarithmic transformation is applied to

the data, and a histogram of the transformed data is plotted. Compari-

son of this histogram with a normal distribution (i.e., a bell-shaped

curve) provides a rough test of lognormality; formal tests do exist

(e.g., Kolmogorov-Smirnov test or chi-square test) and may be found in

many statistics texts (e.g., Wonnacott and Wonnacott 1972, Benjamin and

Cornell 1970).

16. To illustrate how a transformation may change the shape of a

histogram, the summer chlorophyll a data from Table I were log-

transformed, and the histogram of the logarithms of the chlorophyll a

observations was constructed in Figure 3. Compare Figure 1 with

Figure 3. Note how the logarithmic transformation achieved approximate

symmetry. Note also that the observations at the extreme right are less

likely to be considered outliers than they were in the original data.

In fact, the observation in Figure 3 at the extreme left is further from

the mean of the log-transformed sample (the geometric mean) than is

either of the points on the right. This is a result of the effect of

the logarithmic transformation: to "spread out" low values and "squeeze .'

in" high values. Through the study of histograms of this sample, we are Q
now in a position to determine descriptive statistics and to summarize

the data set.

11
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Stem and Leaf Displays

17. An alternative and often informative version of the histogram -

is the stem and leaf display. Developed by Tukey (1977), the stem and

leaf plot provides the shape of a histogram while at the same time

presenting the numerical values from the data set. As an example, the

stem and leaf display for the summer chlorophyll a data in Table 1 is

plotted in Figure 4; note that the shape is nearly the same (round-off

variations create the slight differences) as the histogram in Figure 1.

18. To construct the stem and leaf diagram, first choose the

interval width. The "stem" becomes the digit level corresponding to

this interval width (for Figure 4, the stem contains the "tens" digit -$-4. '-

12l'" -

12-



0
1 8
2 6
3 80

Figure 4. Stem and leaf display of
5 26794842 the summer chlorophyll a data
6 214037
7 56
8 0
9

10
11
12
13 3
14
15 0
16 .

since the interval width is 10 units), and values for the stem are

placed to the left of a vertical line. On the right side of this line,

the "leaves" are vritten. For each data point, the leaf is the next

digit lover in value than the stems digit. Since the stems in Figure 4

are composed of the tens digit, the leaves are made up of the units

digits. Each observation contributes one leaf to the roy containing its

stem. For the summer chlorophyll a data in Table 1, the first observa-

tion (52.1 ug/) results in a 2 (the units digit) placed in the row for

the stem value 5 (the tens digit, the second observation) (55.6 Ug/L,

rounded to 56) results in a 6 placed in the row for stem value 5, and so

on.

19. The primary advantage of the stem and leaf display (over the

histogram) is that it contains information on the numerical values in

the data set (while retaining the ability to provide information on the

shape of the sample distribution). There may be advantages to this,

particularly when the data are displayed for presentation purposes.

Tukey (1977) describes several variations of the stem and leaf display,

including an interesting way to look at covariation in bivariate (e.g.,

chlorophyll and phosphorus) data.

13



Box Plots

20. Often there is a need to compare two or more samples of the

same characteristic (e.g., samples for chlorophyll a from two different

sampling stations or reservoirs). This comparison may be purely sta-

tistical, perhaps using one of the procedures presented in Part IV.

Alternatively, a graphical method could be used that provides both a

pictorial comparison as well as a statistical comparison. The graphical a

display that permits this is the box plot. 14

21. In Figure 5, two box plots are presented, one for the summer 
%l §

chlorophyll a data and the other for the fall chlorophyll a data in m..

Table 1. (Assume the data were collected at two different times of the %t

year in the same reservoir.) Box plots are based on order statistics

(Table 2). These are observations, like the median, that are used to

summarize a sample because of their order in a ranking of low value to

high value, and convey information on the sample median, dispersion,

skew, relative size of the data set, and statistical significance of the

median. To construct a box plot for a sample on a single variable, the -

steps below may be followed (from Reckhow and Chapra 1983):

a. Order the data from lowest to highest.

b. Plot the lowest and highest values on the graph as short 0

horizontal lines. These represent the extreme values for
each box plot.

c. Determine the upper and lower quartiles for the data set
(see Part III). These values define the positions of the
upper and lower edges of the box. Using vertical lines,
connect the highest value with the upper quartile and the
lowest value with the lower quartile. ,., -

d. Plot the median as a dashed horizontal line within the
box.

e. Select a scale so that the width of the box represents
the sample size (the size of the data set used to con- -' -.

struct each box). For example, each centimetre of width

f. Determine the height of the notch (in the box at the

median) based on the statistical significance of the - .p 4

median. Based on work by McGill, Tukey, and Larsen

14



(1978), the height of the notch above and below the median %
is approximately:

where Notch limits - Median -[1.7(l.25I/l.35I r)]

I =interquartile range
upper quartile-lower quartile

n = sample size

With this mathematical definition of the notch limits,
the notch in the box provides an approximate 95-percent
confidence interval for comparison of box medians.
Therefore, when the notches for any two boxes overlap in
a vertical sense, the medians are not significantly dif-
ferent at about the 95-percent level. . *

15S
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fall chlorophyll a data

1P

, ,,16

L



Table 2

Order Statistics for Chlorophyll a Data Presented in Table I

Order Statistics Summer Fall

Minimum 17.7 1.2

Maximum 150.0 66.3

Median 56.6 23.0

Quartiles

Lower 44.4 14.9

Upper 63.5 30.5

Interquartile range 19.1 15.6 i f

Notch limits t5.8 t4.7
% % *% 

.• . .+

22. The first of -he two box plots in Figure 5 is labeled so that

the characteristics mentioned above may be identified. The plot pro-

vides information on both a single sample and a comparison among 46%

samples. For a single sample we see:

a. An est.md+ of the center of the sample (the median).

b. measure of dispersion for the sample (the interquartile
range) . -

c. The range (highest value - lowest value) and an impres-
sion of skew through a visual comparison of the symmetry
above and below the median.

23. For a study involving two or more samples we see:

a. A statistical test of significance in the difference
between two medians, based on vertical overlap between '
notches.

b. A visual comparison of samples, based simply on observing
the similarities and differences between features of two
box plots.

24. Note that the notches for the two box plots in Figure 5 do

not overlap in a vertical sense, indicating that the median chloro-

phyll a observation for the summer sampling date is significantly dif-
.'

ferent from the median chlorophyll a observation for the fall sampling

date. The skew in the summer sample is evident from the elongated upper

17
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NI
tail, and the summer sample as a whole is largely above the fall sample.

25. Box plots are helpful both in diagnostic work as above or in

presenting conclusions about samples following the completion of a sta-

tistical study. Reckhow (1979) describes several additions to the basic

box plot that might be useful in limnological analyses. Tukey (1977)

created the box plot and presents many interesting examples in his book

on exploratory methods in statistics.

Scatter Plots

26. Many statistics (e.g., correlation coefficients) and many

statistical methods (e.g., regression analysis) are fundamentally con-

cerned with relationships between pairs of variables. Without doubt,

the best way to examine a relationship between pairs of variables, a S.

bivariate relationship, is through a scatter plot. The scatter plot is

simply a two-variable plot of observations on an x-y coordinate system.

27. In Figure 6, a bivariate scatter plot is presented for the

data on summer phosphorus and chlorophyll a in Table 1. From the plot,

we can examine the distribution of data for each of the variables

separately as well as for the two variables together. For example, we

can see from Figure 6 that two high observations for chlorophyll a tend

to stand apart from the rest of the data (which was the same conclusion

drawn from the histogram in Figure 1). Likewise, one observation for

phosphorus tends to stand apart from the rest of the data. . .y
28. When both variables in Figure 6 are examined together, we see

that the point at the upper right of the plot might be considered an

outlier. With this point removed, the linear relationship that seems to

exist in Figure 6 is much less apparent. Therefore, it might be useful

to remove this point from the sample, replot the data, and effectively

spread out the remainder of the observations so that we may closely

examine the pattern in the cluster of points at the lower left.

29. Basically two characteristics of a bivrriate sample are of

interest in most statistical studies. First, the analyst often is -

interested in the linearity or nonlinearity in the relationship. Linear %

18
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Figure 6. Bivariate scatter plot of the summer total phosphorus
and chlorophyll a data

relationships are clearly desirable and are necessary for the correct

application of correlation analysis and ordinary least squares regres-

sion. If the bivariate relationship is nonlinear, it is possible that a

transformation (see Part III) can be applied to make it linear. Without

question, the scatter plot is the most important diagnostic device for

evaluating linearity, and it is often quite helpful in selecting a

transformation.

30. The second characteristic of a bivariate sample of particular

concern is the presence or absence of outliers. Outliers have no

universally accepted objective definition; rather the term is used here

to identify observations that stand apart from a cluster of points. We

are concerned about outliers because they exert more than their fair

share of influence on the value of statistics (such as correlation

coefficients and regression coefficients). Statistics and statistical

inferences are preferred when they are robust, or in other words, when

they change little if any particular observation is deleted from the

19
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sample. Outliers can have a substantial influence on certain statis-

tics; therefore, it is good practice either to transform the data to

reduce the influence of the outlier or to carefully examine the outlier

to determine if it is a correctly measured, legitimate member of the 4

population sampled. A study of scatter plots is the best way to check

for the presence of outliers. *

31. The bivariate scatter plot is an extremely useful diagnostic

tool. It should always be examined near the beginning of any work

involving the study of covariation in pairs of variables. Beyond that,

it is the single most effective way to convey information on bivariate

relationships in a set of data. Examples illustrating the use of

scatter plots are found throughout this manual. . .
%
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PART III: BASIC DESCRIPTIVE STATISTICS

Introduction

32. When a set of data is quite small., one may choose to present

the entire data set in a report. For large data sets, the scientist

recognizes that to most effectively transfer information he must summa-

rize the data set with a few well-chosen statistics. A choice is made

to trade some of the information contained in the entire data set for

the convenience of a few descriptive statistics. This choice is usually '-.

a good one, provided the descriptive statistics that are selected cor-

rectly represent the original data.

33. Some descriptive statistics are so commonly used we forget . .

that they actually represent only one option among many candidate sta- .j_:... ,

tistics. For example, the mean and the standard deviation (or variance)

are statistics used to estimate the center of a data set and the spread 1 -e.*

on those data. When these statistics are to be used, the scientist .. #..

should decide beforehand that they are the best choices to describe the

aforementioned characteristics of the data set. Often they are (notably

for symmetrically distributed data following an approximate normal dis-

tribution), so their use is frequently justified. However, as we see

below, there are many situations with reservoir water quality data where .

alternative descriptive statistics are preferred.

34. In the selection of descriptive statistics, it is important LC

that the scientist have a clear understanding of the purpose that the %

statistic serves. Descriptive statistics are selected because the con-

venience of a few summary numbers outweighs the loss of information that

results when the entire data set is described by the statistics. It is

therefore essential that as much information as possible be summarized

in the descriptive statistics because the alternative may be a misrepre- *

sentation of the original data.

35. Certain specific features of the data set are characterized

by using descriptive statistics. For example, the center, or central %

tendency of a set of data, is probably the most important measure.

21%
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Among the candidate statistics are the mean, median, mode, and geometric

mean. Once the center of a data set is described, the next important ,

feature requires a statistic estimating the spread, scale, or disper-

sion. Among the candidates for this task are the range, standard devia- %

tion, and interquartile range. These two characteristics of a data set, _

central tendency and dispersion, are the most common descriptive statis-

tics. Other characteristics, such as skewness and kurtosis, are occa-

sionally important as well. It is useful now to look at some examples

that illustrate the choice of descriptive statistics.

Measures of Central Tendency

36. Probably the single most useful statistic summarizing a data

set is an indication of the center of the sample. By center we imply

the vague notion of the middle of the cluster of points or perhaps the

region of greatest concentration of points. Since samples exhibit a

variety of distributions when plotted as histograms, it is not possible

to unambiguously define the center, and as a result there are several

statistical estimators that serve as candidates for determining central

tendency or location. Each candidate, as noted below, may be considered IF
to have its own advantages and disadvantages for the task at hand.

Mean (arithmetic)

37. The arithmetic mean, or simply, the mean, is the most fre-

quently used of the central tendency estimators. It is so commonly used

that the investigator often loses sight of the true reason for calculat- .

ing descriptive statistics. The result is that the mean is sometimes

calculated as the central tendency statistic in situations where another

estimator would be better.

38. The arithmetic mean x) is the sum of the observations (xi)

divided by the number of observations (n):

Exix 'S-

n
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Each observation contributes its magnitude to the sum of the observa-
tions and hence to the mean. For symmetric distributions (like the

normal or Gaussian distribution), this is desirable and leads to an

efficient (minimum variance) estimator. However, as noted in Part II,

limnological data are often not symmetrically distributed. Skewed data -, v.
"pull" the mean in the direction of the skew; this means that a few _ ,-

extremely high observations can pull the mean away from the bulk of the

observations and toward the few high data points. In those situations,

a robust estimator, like the median or the mode, might be preferred.

Median '.'.'v

39. When a set of data is ordered from lowest to highest value,

the median is identified as the middle value. The median is therefore

known as an "order statistic" since it is based on an ordering or rank- ,".

ing of observations. When the total number of observations is an even

number, leading to two middle values, the median is then the average of

the two middle values. " .

40. The "order" of the median observation is: *.. *.**

Median observation = (n + 1)/2

Since the effect on the median of all but the middle-ranking observa-

tions is simply to hold a place in the ranking, outlying observations do

not pull the median toward the extremes. The median is robust to the

influence of any single observation, and thus it is a good statistic to .
use when the histogram is skewed or unusually shaped."

." " ..'. ,:

Mode , .

41. The mode is the value in the sample that is most frequently

observed. In terms of a histogram, the mode is represented by the bar

of greatest height. The mode is considered a good estimator for central

tendency because the most frequently observed value is usually near the

middle of a distribution. An examination of a histogram of the sample

will indicate whether, in fact, the mode does correspond with the ..

center.
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Geometric mean

42. The geometric mean is the antilog of the mean of logarith-

mically transformed observations. It is, therefore, a reasonable mea-

sure of central tendency for a set of data that exhibit a lognormal
th

distribution. It may also be determined by calculating the n root

of a product of n observations:

Geometric mean (Hx) 1/n

where Rx =  x 2  x 3  . x

Geometric mean antilog n log.-xi)
n

43. The data presented in Table 1 for chlorophyll a, and repro-

duced in a histogram in Figure 1, are used to calculate statistics for -

central tendency; these values are listed in Table 1. Note that the

mode is given as the range of values corresponding to the highest bar on - .

the histogram; it is not meaningful to identify a particular chloro-

phyll a value (in units of 0.1 jg/i) as the mode in this example because

few values are duplicated. Some skewness is apparent in the histogram

in Figure 1, and these data appear to have an approximate lognormal dis-

tribution. With skewed data, the mean is "pulled" to the right relative

to the median and the geometric mean. Thus, the mean in Table 3 is

higher than the median and the geometric mean.

Measures of Dispersion

44. Other than central tendency, measures of dispersion or spread

are the most commonly cited statistics used to summarize a data set.

Dispersion in a data set refers to the variability in the observations

about the center of the distribution. Good measures of dispersion will %Ol

be obtained from symmetric distributions. Asymmetry, or skewness, will %

affect the estimate of dispersion so that it overestimates spread in the ,
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shorter tail of the data distribution (while underestimating the spread %

in the longer tail). A transformation may be used to create a symmetric

distribution.

Table 3

Measures of Central Tendency for the Summer

Chlorophyll a Data in Table 1

Measure Value

Mean 59.8

Median 56.6

Mode 50-60 .

Geometric mean 54.6 N

Standard deviation

45. The most commonly used statistic for dispersion is the

standard deviation. Like the mean, the standard deviation has been used

so often that it sometimes is thought to be equivalent in definition to

dispersion. In fact, like the mean, the standard deviation is strongly

affected by extreme values. Thus, the standard deviation for a distri- $...

bution of data with a long tail to the right (e.g., the histogram in

Figure 1) is inflated by the values at the extreme right. It may be

preferable to apply a transformation to create a symmetric distribution

before calculating the standard deviation.
46. For a sample, the sample variance (s2 is: .

-2
2 £(xi X)

n- 1 - ' %
2* 1

and the sample standard deviation (s) is the square root of the vari-

ance 4s.
Interquartile range ,,." -

47. Since the standard deviation is unduly influenced by extreme
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observations in asymmetric distributions of data, we would like a robust p
alternative to the standard deviation (like the median is to the mean)

for situations in which the data are skewed but a transformation is

undesirable. Fortunately a good alternative exists: the interquartile -N0

range. Like the median, the interquartile range is based on order sta-

tistics, and thus is unaffected by the magnitude of the extreme observa-

tions in either tail. It is calculated as the difference between the

observation at the 75-percent level (upper quartile) and the observation

at the 25-percent level (lower quartile):-.

Lower quartile rank order - 1/2 (1 + median rank order)

Upper quartile rank order = 1/2 (1 + n - low quartile rank) - p...

Interquartile range i I = lower quartile value - upper quartile
value

The interquartile range is used as the measure of dispersion in the box

plot presented in Part II.

Range

48. An easily determined and therefore frequently cited measure

*of dispersion is the range. The range is simply the maximum value minus

the minimum value. Since it is clearly affected by the magnitude of the

observations at either extreme, the range should not be relied upon as

the sole indicator of variability. Nonetheless, it is often informative
to list the range along with one of the other two dispersion statistics

mentioned above.

49. In Table 4, measures of dispersion have been calculated for

the summer chlorophyll a data presented in Table 1. The range, of

course, is largest in magnitude. The skewness in the data results in a '

standard deviation that is next largest in magnitude of those statistics

presented. If the two largest chlorophyll a observations are removed ..

from the data set, the standard deviation drops from 27.9 ug/t to

26 , -' #'
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Table 4

Measures of Dispersion for the Summer

Chlorophyll a Data in Table 1

Measure Value

Standard deviation 27.9

Interquartile range 19.1

Range 132.7

Antilog SD (log CHLa)* 24.5

1/2 [antilog (mean + std dev) -

antilog (mean - std dev)] for log-
transformed chlorophyll a data.

15.3 g/1. This is a substantial effect due to only 2 of 27 observa-

tions, and it underscores the impact that extreme observations have on

the standard deviation.

50. Since two observations greatly affect the value of the stan-

dard deviation for the data in Table 1 , and if there is no basis for

removal of these observations from the data set, then it may be wise to

state that the data are skewed right and use one of the other measures

of dispersion. In Table 4, both the interquartile range and the antilog %' -

SD lie between the two standard deviations previously cited (n - 27 and

n - 25), and thus may represent good compromise choices. The antilog SD

is a reasonable expression of the standard deviation (in antilog units)

for a data set that has a lognormal distribution. Given the familiarity j. ."

of applied scientists with various measures of dispersion, a good rule ,'..

of thumb might be to cite the standard deviation and the range for sym-

metric data sets, and the interquartile range and the range for asym- . .

metric data sets. .,:% % --

Ranks

51. On occasion it is preferable to examine and test a data set

on the basis of the rank order of observations. In those situations, 'p

27
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the observations in a data set are simply ordered from low value to high .J

value according to one particular variable. As an example, the data set

presented in Table 1 has been ordered according to the magnitude of the

chlorophyll a observations and is presented in Table 5.

Table 5

Summer Chlorophyll a Data of Table 1

Ordered by Magnitude

Order CHLa (jig/i) Order CElia (Wig/)

1 17.70 15 57.60

2 25.50 16 59.40

3 30.00 17 60.30

4 37.70 18 61.20

5 39.50 19 61.90

6 42.50 20 63.10 %

7 42.60 21 63.80

8 46.10 22 67.40

9 52.10 23 74.80 U

10 52.20 24 76.00 '

11 53.60 25 79.50

12 53.60 26 133.40 % %

13 55.60 27 150.00

14 56.60..

52. Ranks or ordered data are useful in nonparametric analyses

(see section, Nonparametric Analyses) and in exploratory data analysis

(see Part II). In particular, when the assumption of normality is not

reasonable, or when the underlying probability distribution (generating

a set of data) is unknown, rank-based statistics and statistical tests

are often appropriate. .

28



Frequencies

53. Once a data set is rank ordered, it is often useful to group

the data and present the frequency of observations found within a

subsection of the entire range. This is done graphically in Part II

(Data Displays); both the stem and leaf diagram and the histogram are

graphical displays of the frequency of an observation for equally spaced

intervals of the range. For example, the bars in the histogram in

Figure 1 have a relative height proportional to the relative frequency

of observations within each class. ", '

54. In Table 6, the absolute and relative frequencies are

presented for each of the cells (or classes) in Figure 1. The absolute

frequency is expressed in terms of number of observations within each

class, and the relative frequency is expressed as the percent (of the

total number of observations) contained within each class. Cumulative %

frequencies are also presented in Table 6; these indicate the relative

or absolute number of observations less than or equal to a particular

class level. Thus, in Table 6, it is indicated that 92.59 percent of

the chlorophyll a observations are less than 80 Ug/.

Trans format ions

55. It is often necessary to apply a transformation to reservoir

water quality data in order to meet the assumptions of the procedures.

For example, methods of estimation (e.g., regression analysis) and

hypothesis testing are based on certain assumptions about the observa- 'i

tions. In some cases, it is permissible to violate the assumptions

without greatly affecting the analysis; alternatively, it is sometimes

possible to apply a method (e.g., distribution-free procedures) with

less restrictive assumptions. However, there are still likely to be

situations in which the assumptions must be approximately met and in

which the best approach is to apply a transformation to the data.

56. Transformations are most commonly used in data analysis to

reexpress a data set so that it is more consistent with the important N

.29- '.
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Table 6

Absolute and Relative Frequencies for the Summer

Chlorophyll a Data in Table 1

Cumulative

Class Limits Frequency Percent Frequency Percent

10 < 20 1 3.70 1 3.70

20 < 30 1 3.70 2 7.41

30 < 40 3 11.11 5 18.52
40 < 50 3 11.11 8 29.63

50 < 60 8 29.63 16 59.26

60 < 70 6 22.22 22 81.48

70 < 80 3 11.11 25 92.59

80 < 90 0 0.00 25 92.59

90 < 100 0 0.00 25 92.59

100 < 110 0 0.00 25 92.59

110 < 120 0 0.00 25 92.59
120 < 130 0 0.00 25 92.59

130 < 140 1 3.70 26 96.30

140< 150 0 0.00 26 96.30

150 < 160 1 3.70 27 100.00

Total 27 100.00

assumptions (e.g., normality) of a statistical analysis, and/or to

diminish the impact of outlying observations (see section Scatter Plots,

Part II). To achieve these objectives, transformations may:

a. Straighten (linearize) a nonlinear relationship between
two variables,

b. Reduce skew (achieve symmetry) in a data set for a single
variable, and/or -'

c. Stabilize variance (create constant variance) for a
particular variance across two or more data sets.

57. Selection of a transformation for these three functions is

30
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beyond the scope of this manual, but fortunately it is quite clearly and

simply presented by Velleman and Hoaglin (1981) using transformations of i.

selected order statistics. Reservoir water quality data are often

skewed right, exhibiting an approximate lognormal distribution. When

this occurs, the logarithmic transformation is generally appropriate if

the objective is to obtain a symmetric, approximately normal distribu-

tion of data. Reckhow and Chapra (1983, Chap. 6) show how the appli-

cation of the log transformation to a data set simultaneously addressed

problems of nonlinearity and skewness. Achievement of more than one

objective with a transformation is actually not uncommon; the investi- ,i'

gator should therefore be encouraged to consider data transformations

whenever it appears that they may improve an analysis.

58. To illustrate the effect of a transformation (note that the
J,..

discussion of data displays (Part II) also contains an examination of " ..

the transformations), the chlorophyll a and total phosphorus (TP) data

from Table 1 were plotted, transformed, and then plotted again. The

logarithmic transformation was applied, since it is likely to be the

most frequently used transformation in limnological studies. Figure 7

presents the untransformed bivariate plots of chlorophyll a versus total

phosphorus for the two samples; Figure 8 is a log-transformed plot of

the data from Table 1.

59. The effect of a log transformation is to "stretch out" data

on the left side of a plot and to "pull in" data on the right side of a

plot. This is the reason that the log transform tends to create a sym-

metric distribution from data that are skewed right. Note that the

stretching-out and pulling-in effects are observed when comparing Fig- ,%.. #
ure 8a with Figure 7a in either a horizontal or vertical direction.

The effect of the transformation in Figure 8a is desirable since the

"bunched" data near the origin in Figure 7a are spread out in Figure 8a. :. %

Correspondingly, the two highest chlorophyll a observations are closer % o

to the center of the data in Figure 8a. As a result of these effects, k -'

the investigator is likely to obtain more representative statistical ,,

summaries of the data under the logarithmic transformation.

60. In contrast, the stretching and pulling effects that favored
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the log transformation above have an undesirable effect on the data in

Figures 7b and 8b. Since the untransformed data in Figure 7b are not "

bunched near the origin (nor are they particularly nonlinear), the log

transform spreads the data near the origin and bunches them at the upper

right in Figure 8b. In this case, the untransformed data should lead to

better statistical summaries. This latter situation is somewhat unusual

for limnological data; nonetheless, the investigator should always

examine plots of the data to check on the effectiveness of a

transformation.

-~ ,
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PART IV: ANALYSIS OF WATER QUALITY DATA

Introduction

61. Data analysis will generally fit into one of two categories,

estimation of parameters or tests of hypotheses. Since hypothesis ,

testing is basic to much statistical analysis, at least an elementary

understanding of the concept is necessary. .:.

62. Commonly one wishes to test hypotheses about the parameters

that have been estimated. In particular, in considering the relation-

ship between one variable and another, one will often wish to test

hypotheses concerning the slope and/or intercept of the regression.

Also, experimentation is frequently directed toward the testing of-" .- 
% % .

hypotheses rather than parameter estimation. Both topics, regression

and experimental design, will be discussed more fully in subsequent

sections.

Population parameters .

63. One must first have an understanding of what is meant by the

term population parameter. The most common parameters are the mean,

represented by U , and the variance, represented by a2. The mean, or

arithmetic average, is the most familiar and commonly estimated param-

eter. It is calculated as the sum of all the individual observations

(Yi) in the population divided by the total number (N) of observations

in the population.

Y i + Y2 + N Yi N

where ""' *j

N - the size of the population

Y - an observation from the population %%

i - a subscript value from I to N which identifies the
individual observation being summed "'
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and E indicates that the observations are to be summed from obser-

vation i - 1 to observation i - N.

64. Variance is given by the formula

a2 N -Y U) 2/IN

where previous definitions apply.
V.

65. Variance is obtained from the sum (across all observations in

the population from i = 1 to N ) of the squared deviations of the

individual observations (Y from the population mean (P). This sum of

squared deviations is then divided by N , giving an "average squared

deviation." If an individual observation deviates greatly from the . -

mean, the variance will be high. If the observations deviate only %* .*.***

slightly from the mean, the variance will be low. .

66. It will be noted that, in determining the population vari-

ance, the deviations were squared. Clearly some of the individual

values will fall below the mean, giving a negative deviation, and the

remainder will fall above the mean, giving a positive deviation. With

regard to sign, the deviations will thus always sum to zero. The sum of

the actual deviations is, therefore, not useful as a measure of var-

ability, and some method of considering only the size of the deviations,

without regard to their sign, is needed. There are two obvious alterna-

tives, the squares of the deviations and the absolute values, both of

which are always positive. The square of the value has some theoretical r.

advantages over the absolute value, so statistical calculations of

variability usually employ the variance as defined above.

67. The variance is the average squared deviation of the individ- .,

ual observations from the mean of the population. It is reasonable to I
convert this value to the same scale as the observations by taking the

square root. This is, indeed, what is usually done. The resulting

value a 42 is called the standard deviation. . ,

68. The calculation described earlier for the variance was the 4 - -
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sum of the N squared deviations in the whole population, which was P,- P

then divided by N . When dealing with a sample from a population, one

usually defines the sample variance as the sum of the squared deviations

from the sample mean divided by one less than the sample size. Thus, if

the sample size is n , the sum of the squared deviations is divided by

n-l (called the degrees of freedom).

69. The population deviation was calculated as Y- ' where B

is known for the population and does not have to be estimated. For a P,

sample, the deviation is calculated as Y - Y , which uses the sample

mean Y Since Y is calculated from the same sample used to calcu-
2 )""

late the sample variance (s ), one degree of freedom is lost, and the

denominator is reduced by one. The resulting calculation is

2 n -2
S (Y ) /(n 1)

2- .
which gives an unbiased estimate of a . Using n -1 rather than n

corrects for the bias introduced by using x to estimate p . The use

of n - 1 instead of n is particularly important when n is small.

Although it becomes less important as n gets larger, it appears to be

good policy always to use n - 1 as the divisor.

Hypothesis testing

70. Repeated mention will be made of assumptions for the various

tests and analyses discussed. All analyses assume that the data used .-2. --'

are drawn at random from the target population, i.e., the population

about which inferences are to be made. .":
....
- S..

71. We also need to consider the distribution of the sample mean,

which exists conceptually rather than in reality. Specifically, a ran- -' .,

dom sample from a population provides a single sample mean. A second

independent sample from the same population provides a second sample

mean. We could in theory, if not in practice, take an indefinitely ,

large number of random samples of the population and thus obtain an .41, .

indefinitely large number of sample means. These sample means then have . %
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their own frequency distribution (the distribution of the sample means)

which can be determined from knowledge of the population distribution

and the sample size. The sample variance, likewise, has a distribution,

as does any statistic or function of the sample observations. V

72. A further assumption common to the early discussion of hypo-

thesis testing is that the data are normally distributed. Tests of

hypothesis have been developed based on the normal distribution because

it commonly arises, if not exactly, as an extremely good approximation

of the population distribution. Indeed, even if the distribution from

which the samples are drawn is not normal, the distribution of the means

of various samples will approximate the normal distribution for a suf-

ficiently large sample size. The larger the sample size, the more

nearly normal the distribution of the means. Although the rate at which

the distribution of a sample mean approaches normality depends on the

nature of the population distribution, it is quite rapid for most

practical situations, and the normality assumption can be quite viable

for fairly small samples.

73. Since the normal distribution plays a central role, it is *.

pertinent that it be examined more closely. A normal distribution can

be represented by a bell-shaped curve, three examples of which are given

in FiFre 9. Each of the curves in this figure has the same mean ( .
2

20), but different variances ( 1 1, 2, and 3). An objective of a

test of hypothesis might be to detect values that are unusually large

and therefore probably do not belong to a population with the hypothe-

sized distribution. The taller, narrow curve in Figure I has the small- ,

est variance, and the density, or occurrence of observations, is almost -

zero below 17 or above 23. Therefore, if a value of 15 were observed,

it is highly unlikely that the value belongs in the narrowest distribu-

tion. However, it may well belong to one of the wider distributions. .- ,

74. Unfortunately, there is an infinite number of possible normal .

curves with different combinations of mean and variance. A method of

standardizing the distribution is therefore necessary. The standardized

normal distribution is a bell-shaped curve with a mean of zero and a

variance of one as shown in Figure 10.

38

6 0



LL.. % %

%,~ %

IL

tU --

\ ,,,.

10 15 20 25 30

X

Figure 9. Three normal distributions with a common mean
(U - 20) but different variances

75. Examination of this curve will show that most of the distri-

bution (indeed about 95 percent) is contained in the interval from -2 to

+2, although the ends taper off to infinity. Standardization is accom-

plished by applying the formula , '

Standard normal deviate - z =

76. If, for example, a normal distribution is given with a mean

of 20 and a variance of 25, then would an observation with a value of 35

be a likely value to draw from the distribution? Standardization pro-

duces a value of [(35 - 20)/5] - 3. Ninety-five percent of the standard

normal curve falls between -1.96 and +1.96, and 99 percent between

-2.576 and +2.576. With an observed value of 35 either (a) the assumed

normal distribution (v - 20, a - 25) is applicable and a very rare

event has occurred, or (b) the distribution from which the observation "

was drawn is other than that assumed. In this example the event would

appear to be so rare that one would be prepared to believe (b) rather
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Figure 10. The standardized normal distribution

than (a). It is this type of reasoning that lies behind all statistical

hypothesis testing.

I % * .• ° "

One-Sample Hypotheses <..,:

77. The simplest type stdardizeden a comparison of an

observed parameter estimate against some hypothesized value. As an

example, suppose the objective is to determine if a reservoir chloro-

phyll concentration exceeds some subjective estimate of trophic state. ,

Chlorophyll concentrations in excess of 10 mg/i are generally considered

to be indicative of eutrophy. To test reservoir chlorophyll concentra-

tions against this level, the investigator might obtain samples at

randomly selected times during the growing season. e

78. The hypothesis to be tested should be stated formally in W -

advance of the study. Hypotheses may be "one-sided" or "two-sided." In

the case of the chlorophyll concentrations presented above, the two-

sided test would have the null hypothesis stated as "the chlorophyll %%
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concentration is 10 mg/l," and the alternate hypothesis would state that

"the chlorophyll concentration is not equal to 10 mg/L." ' ' .

79. These hypotheses can be stated mathematically as

NULL HYPOTHESIS HO: - I0

ALTERNATE HYPOTHESIS HA: I 10

80. However, these hypotheses are of little interest and are not ,. %

appropriate for use in this situation. What is of interest is the

magnitude of the chlorophyll concentration with respect to the value of

10 mg/i. Therefore, the appropriate hypotheses are ,

NULL HYPOTHESIS H0 : > 10

ALTERNATE HYPOTHESIS H : p< 10

81. This null hypothesis states that the parameter (p) is greater

than or equal to 10 mg/i, which is indicative of eutrophy. The alterna-

tive hypothesis states that the parameter is less than 10 mg/i, or

chlorophyll concentrations are below the eutrophic level. These, then,

are the correct hypotheses for the stated objective. The investigator

is now faced with the decisionmaking process, the testing of the hypo-

theses. This will first require an estimate of p , the target popula- ."J.

tion mean to be tested. Suppose that a sample of 10 observations has

been taken during the growing season and that the mean is 11.09 mg/i. %

Can the reservoir be considered eutrophic? This value is above the

boundary of 10 mg/i, but first examine the raw data values below. .

RAW DATA VALUES: 5.2, 6.3, 4.1, 13.2, 35.7,

3.5, 3.4, 6.0, 8.8, 24.7

82. Only three of the values exceeded the boundary condition of

10 mg/i; the remaining values were considerably lower. However, we are
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not interested in individual observations; we wish to test the estimate

of the population parameter (M) against 10 mg/L. Even with most of the

individual values below 10 mg/k, it is possible that the actual popula-

tion value is greater than 10 mg/t.

83. An appropriate method for the evaluation of the observed mean

is by way of the Student t-statistic, the value of which is given by

where

, the estimated (indicated by the "hat,"A) value of the .

parameter (i.e., the sample mean)

= hypothesized value (10 mg/k in the example)
2 2,

s = square root of the estimated variance of the mean (sy) P

(see below for the calculation of s )

Note: the sample mean follows a distribution which has its own mean and

variance; s! is a sample-based estimate of the latter.

84. The statistic provides a measure of the size of the differ-

ence between the measured and hypothesized value relative to the vari-

ability of the mean. If the t value is large enough, the null

hypothesis may be rejected; in this case, the difference is said to be
"osignificant." 

"

85. The problem with simply looking at the mean is that it is

impossible to know the characteristics of the distribution unless pre-

vious work has been done on the parent population. How large a differ-

ence is large enough to indicate that the difference is significant?

The advantage with the t statistic is that the characteristics of its

distribution are known, provided that the population distribution is

normal. Before continuing, the t distribution should be examined. . .'%.,,

86. The t distribution is described by a bell-shaped curve, simi- -.

lar to the normal curve discussed earlier. The curve is symmetrical,

highest in the center, and tapers on either end. The curve is centered

on zero, and about 0.66 of the total area under the curve (66 percent) .,
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is contained in an interval one standard deviation unit above and below

the center (the standard deviation is a measure of the variability). An

interval from two standard deviation units below the center to two

standard deviation units above the center again contains about 0.95 (or

95 percent) of the total area. The difference between the t distribu-

tion and the standard normal distribution is that there is but one

standard normal distribution. There are many t distributions, one for

each possible sample size. For very large samples, the t and standard

normal distributions are virtually identical, but the t distribution is

wider for smaller samples.

87. Just as important as the area in the center of the distribu-

tion is the area in the tail (or tails) of the distribution. Values

that fall outside the two standard deviation units from the mean only

occur about 5 percent of the time, so they are relatively rare events,

not expected to occur very often by random chance. The t table,

Table 7, gives the values of t that will be exceeded with specified

probability p .

88. If a t value were calculated for a sample of size 10, the

sample would have 9 degrees of freedom (d.f.), and the appropriate

tabular values would be obtained from the line corresponding to d.f.

- 9 . For a two-sided (two-tailed) hypothesis test, a t value of 1.833

or larger would be found by random chance 1/10 of the time, a value of

2.262 or larger would be found 1/20 of the time, and a value of 3.250 or

more only 1/100 of the time. If we were to calculate a t value and find

it was 2.3, then either the sample is an unusual one (occurring only

about 5 percent of the time by random chance) or the true mean of the % .

population is other than hypothesized. We may thus be prepared to con-

clude that the null hypothesis is false. In so doing, we would err ....

about once in 20 tests, if we always employed a probability level of

0.05.

89. The above demonstrates the central theme in understanding

tests of hypotheses. Even if the values come from an underlying popula-

tion in which the actual mean is equal to or greater than 10, it is

still possible to observe individual values that are less than 10. It
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Representative Portion of the t Table

Probabili.. Leve

Two Tails One Tail
d0 .310 1.0 63.601 Level 0.05.0

_____ 0.01 ___ .0 .5 ____

1 634 1.0 63673.078 6.314 31.821

2 .2 .33 9951.886 2.920 6.965

3 4%~

674..
d ,. *.P*.**5

86

9 1.833 2.262 3.250 1.383 1.833 2.821

10 1.812 2.228 3.169 1.372 1.812 2.764

20......

ieven possible that the sample Imean will be: less than 1,atog
this would be less common.

90.Forexample, we now evaluate the t value for the data set

given above on chlorophyll values, for testing against the standard

j value of 10.0.

91. The sample mean and variance are calculated first, thus

4. Y Z= ~/n - 110.9/10 - 11.09

=Y 2,279.61
i

dP0 -
92. The sum of squared deviations is given by
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-Y .(Yt - ) .y - (EY )2/n - 2,279.61 - (110.9) 2/10 - 1,049.73

and the variance by

2 Ey2 /(n-1) 1,049.73/9 - 116.64

The variance of the means is not the same as the population variance.

Means are expected to be much less variable than the individual observa-

tions in the population. Indeed, the variance of the means of samples

of size n equals the population variance divided by n and may be

estimated as the sample variance divided by n ; thus,

sl . s22 2/n,
s - /n - 116.64/10 - 11.664

The standard error, used for the t test, is the square root of the

variance of the means. The t statistic is then calculated as

0 11.09 - 10t = v 3.1 = 0.319
s- 3.415

93. This value is then compared to the value in the table of t

values. The critical value selected depends on the degrees of freedom

and the probability of error selected. If a probability of error of

0.05 were selected for this one-tailed example and since there are

9 d.f., the critical value would be 1.833 (one-tailed); so, the test

statistic above would not fall outside the range of normal variation.

The hypothesis that these values could have come from a population with

a mean greater than or equal to 10.0 could not be rejected on the basis

of the available data.

94. There is one other point that should be made about hypothesis

testing. In doing the test above, the probability of error that was set

was for one type of error, called Type I error, or a (alpha) error.

This error probability is the "probability of rejecting a null
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hypothesis which is true." In the example above, the null hypothesis

was I 2 10.0 , which indicates compliance. Therefore, the probability '

of erroneously rejecting this hypothesis and concluding that the samples

indicated noncompliance was required to be at most 0.05 or 5 percent.

95. There is, however, another type of error, called a Type II or

8 (beta) error. This is the probability of accepting a null hypothesis

which is false. In the above example, since the null hypothesis was not

rejected, there is a possibility of a 8 error. Unfortunately, the

probability of a 8 error depends on the magnitude of the deviation from

the null hypothesis, which is unknown. Nevertheless, the t test will,

if the assumptions are met, minimize the probability of a B-type error.

Therefore, for the data available and under the assumptions previously -

stated, the t test is considered a "powerful" test because it does have

the smallest probability of 8 error. eh*

Confidence Intervals

96. It has been pointed out that the sample mean can be regarded -

as having a distribution although usually we will have only one observa-

tion, i.e., one sample mean, from that distribution. Further, the lot

standard error plays the same role with respect to the distribution of

the sample mean as the standard deviation does to the individual pop-

ulation values. Recall that in the case of a normal distribution,

95 percent of the population values are contained within an interval

approximately two standard deviations above and below the population ,. _'
mean--the actual value is 1.96 standard deviation units. We might,

therefore, expect to be able to determine an interval about the sample

* mean, as a multiple of the standard error, which would contain 95 per-

cent of the possible sample means, which are distributed about the

population mean. Looked at in another way, this is equivalent to deter-

mining an interval that, with high probability, say 0.95, would contain

the population mean. We refer to this as a 95-percent confidence inter-

val for the mean; it is a measure of the precision of the sample mean.

97. Because we are dealing with the sample, we cannot determine
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such an interval as simply as with the population, given normality of

distribution. Recall, however, that the frequency distribution of

t - ) is known, where P is here the actual, but unknown,S-

popula~lon mean. We can thus readily determine, usually by reference to

tables, a value t such that

P(t a to) - a/2

where a is a specified, usually small value, say 0.05.

98. That is ' ' <J

- to = 2 . "-

99. On rearranging, this is equivalent to

P(Y - tSr > i) = a/2

100. Likewise we can determine t such that

P "- t = a12

101. Indeed t1 - -t , i.e.,

P s .5 -t a/2

•e .. '.-

which on rearrangement gives

P(Y + tS 7 < i) 0 eii2

*, . , i. . ,_

47.
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That is,

P (P Y - tosq) - a/2

p (P Y + toSB) - a/2

so that

P (Y - tS i :5 u Y + toS ) = I - (a/2-a/2)

1 - a= 0.95

with a = 0.05.
102.~~ Thus, Y.. a

102. Thus, Y _+ toS- provides a confidence interval for the

mean. Loosely, we say that the probability that the population mean is

contained within this interval is 1 - a (= 95 percent if a = 0.05 ).

What we are really saying, however, is that intervals computed this way

will, on the average, cover the population mean 95 times out of 100.

The probability statement is about the interval and not the population

mean which is a fixed, but unknown, quantity. Note that t a-

depends only on the sample and the unknown parameter; such a statistic

is called a "pivotal" quantity.

103. The calculations will be demonstrated using the previous

values for the chlorophyll concentration example. Degrees of freedom

are the same as previously, i.e., d.f. - 9 . However, since confidence

intervals are usually placed symmetrically above and below the mean Z _ VI %

value, a two-sided t value is needed for the 9 d.f. (t - 2.262). The !k " .0.

calculations proceed as follows:

, -11.09

2 2
- s /n = 11.664

sv - 3.415
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Lover 95-percent confidence limit (LI)

L = tsq - 11.09 - 2.262(3.415) 3.37

Upper 95-percent confidence limit (L2)

L 2 + ts_ - 11.09 + 2.262(3.415) = 18.81

104. In the sense indicated above, we may feel 95 percent sure

that the true value of P , the population mean, lies within the inter- '%.P .l %

val 3.37 to 18.81. There is, of course, on the average, a 5-percent

chance that the true value of P falls outside the interval.

Two-Sample Hypotheses

105. In many situations it is necessary to compare two means , %

rather than simply test a mean against a hypothesized value. Examples y
include the comparison of two reservoirs, two areas in the same reser- .

voir, or the same area at two different times of the year. Obviously,

such comparisons require two samples and lead to two sample hypotheses. .*

As with one-sample hypotheses, two-sample hypotheses may be two-sided or . r

one-sided.

Two-sided:

Ho: =
2 or H:l - 12 0 -J.

A: I 2 or HA:LI - 2 # 0.'

One-sided:

H < 2 or H: - P2 - 0 'o1 2o 1,
HA:UI > U2 or HA: I - U2 > 0
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These hypotheses can be tested using the t test. The t test, as before,

requires an assumption of randomly selected samples from normal popula- ,

tions and, strictly speaking, also requires an assumption of homogeneity

of variance (i.e., variances of the two populations are equal).

106. The F test is used to test the equality of two population _

variances. It also arises as a test for differences between two or more -.- -.-.-

means in an analysis of variance (see below). If both populations are

normally distributed with equal variances, the distribution of the ratio

of the sample variances is known; it is called the F distribution.

107. Unlike the normal and t distributions, the F distribution is

asymmetric. Since two variances are estimated, there will be degrees of

freedom for the numerator and denominator of the ratio, which will not **.*. -

necessarily be the same.

108. Specifically,

2 2
F s I=/s2

where
s = one variance estimate with DF n1 - 1

2
2= second variance estimate with DF = n-i

2 2

109. The F test most commonly tests the hypotheses

H :o02 C ..o. 2 ,.

2 2%

H:of ;.

The two-tailed F test is commonly calculated with the larger variance in

the numerator. This is because tables of the F statistic are often used

in conjunction with the analysis of variance, in which, perforce, the

test is one-tailed. Given this convention, the F statistic becomes

larger and larger as the two variances become more different. There-

fore, a significantly large F value indicates the inequality of
* -.- *..*.:,

variances, whereas a small F value indicates the equality of variances.
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110. Calculated values of the F statistic must be compared with

the proper critical value of the F distribution from an F table. The -%

critical value of F is specified by the numerator and denominator

degrees of freedom. If the calculated F statistic exceeds the critical
2 . 2 "

value, the null hypothesis (Ho :O2 = 02) can be rejected; whereas, if the .

F statistic is less than the critical value, the assumption of homogene-

ity of variance can be accepted.

111. If the assumption of equal variances can be made on the

basis of the result of the F test, one can proceed with the t test for

the comparison of sample means. The two-sample t statistic is ,

1 21

1 21

t = -7 Y2 )/s7 1 _ 2 ... " " "

where Y - Y2 is simply the difference between the two means and

s is the standard error of the difference between the means.
1 22

112. The quantities S- and its square, s21_ 2are statis-"".
1 2 1 2 &

tics that can be calculated from the sample and are estimates of the -

parameters oai v and oGi , respectively. The variance of the
1-2 11 --

difference (or sum) of two variables is equal to the sum of their

variances, so

2l 2 +

1 2 1 2

-. .-. ..t

Remember that the variance of the mean (i.e., the standard error of the

mean) is the variance divided by sample size

2 =02 ".-.- '
0- U2I07  /n •,;., .

Therefore, the variance of the difference between the means can be

written as
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2 2 2
cry -l/nl + a2/n 2

22 2

Given the assumption of equal variances (a2 - 2 we can write

2 2 2V 1_ a /n + 0 /

1-Y 2 2 j

113. In order to estimate 2 it is necessary to estimate de.

a * Given the assumption of equal variances, both samples can be used .,*..&-.

to calculate a pooled variance ( 2) to estimate 0 2

s2 = (DF1s2 + DF2 s2)/(DFI + DF2) '

where

DF = degrees of freedom, sample I

2
8 - variance of sample 1

DF2 = degrees of freedom, sample 2

s 2  variance of sample 2
2

114. The pooled variance is then used to calculate the variance e'.

of the difference between the means

2 2) + (W /n + /n) :. .

1 2 .".,.

The standard error of the difference between the means is the square

root of the variance estimate

2 flsSY 1-Y 2 p/n, + p/n 2). .

and has degrees of freedom equal to the sum of the degrees of freedom of

the two samples " " ,
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DF W DF + DF2  :

115. The calculated t statistic

t 1 ( 1 - 2) Val _Y
1 2

is then compared to the critical value of t selected from the t table.

A sample t statistic larger than the critical value would lead to the

rejection of the null hypothesis of equality of means.

116. As an example of the use of the two-sample F and t tests,

suppose that phosphorus concentrations have been measured at random from '.

two areas in the same reservoir, and the sample means and variances .1**.

calculated. These sample estimates are given below. %'"p

Area Number of samples (n) Mean, ug/ml (Y) Variance (a) g

A 7 14 45

B 11 7 20

117. Prior to sampling we have no basis for a hypothesis about - . *'

which area has higher concentrations or more variation. Therefore, a

two-tailed test will be employed for both the F test and the t test.

The hypotheses are

H:2 2 H 02 2
Ho: A 

0B H A B oA

and

Ho:PA = B HA:)JA B

118. The F statistic is

2 2
F s A/S2 45/20 - 2.25 - •For a 5-percent level test, the critical value from the table with

degrees of freedom 6 (numerator) and 10 (denominator) is 4.07. (One

53

7 * % -



" _- -,T - "

must check whether the table is designed for one- or two-tailed tests.)

This value was not exceeded, so we conclude that 2.25 is not an unusu- W

ally large F value and that the assumption of equal variances can be

accepted. ,V.-

119. Since the assumption of equal variances is acceptable, the

two estimates may be combined into a single estimate of the pooled vari-

ance, given by

2=/2 s+ DF ) F+ DF %dArA UB B A B'

= (6(45) + 10(20)] = 470
16 = 29.37516 16

This estimate of the combined variance also has degrees of freedom equal
to the sum of the degrees of freedom for the two components (6 + 10.

16). It can then be used to calculate the standard error for the t test

of the two means.

2 2 2nA
a~ p /A (s /n B)

= (29.375/7) + (29.375/11)

= 6.687

-~ -~ = 2.620

120. The two-sample t statistic is then

t-(Y A " '
A - B sYAYB -

- (14 - 7)/2.620

- 2.672
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This value would be compared to the tabular t value for 16 d.f. which is

2.120 for a probability of type I error of a - 0.05 . The assumption

of equal phosphorus concentrations would thus be rejected by a 5-percent

level test.

121. One problem with the F test is that it is much more depen-

dent on the normality assumption that the t test. Rejection of the null

hypothesis (equal variances) may be due to a violation of this assump-

tion rather than a difference in the population variances.

Regression

122. Regression is a type of statistical analysis that is used to

express and quantify the relationship between two variables. Its appli- .

cation usually requires the estimation of two or more parameters of a

target population. Regression analysis also involves hypothesis

testing. Any time a regression is performed, there is an implicit

hypothesis that the slope is not zero. A zero value for the slope

implies that there is no relationship between the variables.

Linear regression

123. In a quantitative analysis of data, relationships are often

observed between two variables. One objective of statistical analysis

is to express these relationships quantitatively and, often, to test the .

magnitude of the relationship, if any, between the two variables.

124. The population regression line follows the average of one

variable (Y) at unique values of the other (X). In some cases the ".'.

relationship is obvious and direct. For example, the salinity of water

is often measured as conductivity because increased salinity results in

increased conductivity. In other cases the relationship is not as .

obvious. There are many relationships between water quality variables .,

that can be described quantitatively. The statistical method used to

quantify these relationships is called regression analysis.

125. It should be noted that the demonstration of a relationship

does not in any way imply "cause and effect." A strong relationship may

be demonstrated simply because both variables relate to a third variable
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which may not have been included in the analysis.

126. Figure 11 demonstrates the relationship measured between two

variables. Pairs of values (X and Y) are measured as sample values.

There is an obvious tendency for Y to increase as X increases, mndi-

cating that there is some kind of quantitative relationship between the , '-

two variables.

4

4,

3
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Figure 11. Bivariate scatter plot of X and Y

127. There are two aspects of this line expressing a relationship

between the variables X and Y which can be used to describe the

relationship quantitatively. The first is the angle that the line makes

with the X axis, that is, the slope of the line. As one passes from

X - 0 to X - I , say, there is an increase in Y . Since the line is

straight, for any increase in X of one unit, there is a constant "

increase in Y . This "increase in Y per unit increase in X " pro-

vides a measure of the slope.

128. The second aspect of the line needed to quantify it is some

measure of its level. Knowing only the slope, there are an infinite

number of possible lines which could be drawn, each parallel to the
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other. If we can define one point that the line must pass through,

there is then only one line that will satisfy the conditions. This

point is usually defined as the value of Y when X - 0 , or the point

at which the line crosses the Y axis. This point is known as the

intercept.

129. The simplest linear regression model is represented by the

equation

Y =i a + OXi + ei

where " **

= . an individual observation of variable Y
i
X M a value of variable X

a - a population parameter for the intercept of the regression
line between X and Y

8 - a population parameter for the slope of the regression line

M a random variate describing the deviations of the observed
points from the line . .-

130. The method usually used to find estimates for the population

parameters for a linear relationship is least squares regression. It

consists of finding a line that minimizes the sum of the squares of the

vertical distances between the points and the line. The bars connecting

the points to the line in Figure 12 indicate the distances the sum of

squares of which would be minimized in a least squares regression

estimate.

131. Some assumptions are made whenever a least squares regres- .

sion line is fit to a data set. First, we must assume that the rela-

tionship that is used is appropriate. If a straight line is used, there

is an assumption that the relationship is linear. Other options exist

and are discussed later. Several additional assumptions are given

below.

a. The units in the sample with any one value of X are
randomly chosen from all units in the target population
with that value of X . This can be achieved by select-
ing the units at random from the entire target popula-
t5ion.



b. The values of Y at any particular value of X arenormally distributed about the regression line.

c. The variance of the Y values is homogeneous, that is,
the variance of Y is the same at each value of X

d. The differences between the points and the line, i.e.,
the c , are independent; this can be achieved by
independent, random selection of the units. Multiple
observations in a single unit will not, in general, be
independent.

e. All of the variation, due to sampling or other causes,
occurs in the Y variable; the X variable is measured
without error.

4

3

S2 3 4
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Figure 12. Representation of the distances to be minimized by
least squares regression

132. The first assumption is made to ensure that the values cho- -]

sen are representative of the target population. Such an assumption is

appropriate for all statistical analyses. The second assumption is

necessary only if hypothesis tests or confidence intervals are required. -

The statistics employed will then have t and F distributions. The third
. %~

and fourth assumptions are necessary for the parameter estimates to be .
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"best," i.e., to be the most precise possible. Sometimes, it is

observed that the Y values are more widely scattered as the X value

increases. In this case the assumption of homogeneous variance is vio-

lated. The difficulty may be overcome by using one of the transforma-

tions discussed later.

133. It should be noted that the least squares fit will always -.

yield an unbiased regression line which minimizes the vertical dis-

tances, even if the values are not normally distributed, the variances

heterogeneous, and the Li not independent. Therefore, the estimated

values may be useful. The hypothesis tests and confidence intervals

would not be correct, however, if the normality assumption is not met.

134. The fifth assumption is necessary because the linear regres-
sion techniques used minimize the vertical distance. No consideration

is made for variation in X . If the assumption is not met, the

estimates will be biased although the bias may be negligible if the

measurement errors are small in relation to the standard deviation of

the X values employed. Statistical techniques do exist which can

address the problem, but are not as easy to use and are not usually

applied.

135. As one might gather from the above, regression analysis is

generally considered to be robust against violation of several assump-

tions. This means that adequate results can often be obtained even when

minor violations of the assumptions are made.

Fitting simple linear relationships

136. Fitting the regression line requires that estimates of

population parameters be obtained from a sample. The values obtained,

of course, are not a and 8 (the population parameters), but rather

a and b , the sample estimates of the population parameters. The

resulting equation is then "- .

Y, a + bX + e 
"

where a is an estimate of a , b an estimate of 8 , and each ei

an estimate of the corresponding Li %
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137. Six intermediate values must be obtained from the sample

data to fit a regression relationship. These are:

n--the sample size

EX --the sum of the values of the X variable =P

EY i--the sum of the Y values

Y--the sum of the squares of the Y variables

EX2--the sum of squares of the X variable s
i

EXiYi--the sum of the products of the X and Y variables

The slope of the fitted line is calculated as:

.2
b - Exy/Zx 2  " *

The lowercase representations used for Ex and Exy signify that these

values have been adjusted about the means, i.e., x = X-X y = Y-Y .

Thus,

Ex2 = Z(X - R)2 E LX - (EX)2 /n

Exy - E(X - )(Y - V) M ZX XZY/n p

We shall later require

*2 - 2 2Zy =E(YY) _ (EY) 2n '

138. The estimated line will pass through the sample mean

(XY) . Failure to make the adjustment will force the regression line -

through the origin.

139. Once the slope is calculated, the intercept can be esti-

mated. This is obtained as

a- Y - bX

60 ' .
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* ." -*. ".

where 6 -.-

- mean of the Y variable

-mean of the X variable

b - previously calculated slope

140. Once the estimates of the slope and intercept have been cal-

culated, it is necessary to determine how well the regression line

"fits" the data. In other words, how much of the variation in the

dependent variable is explained or accounted for by the regression with "n

the dependent variable. The total variability in the dependent variable

is calculated by computing the sum of the squared deviations (Y - )

called the corrected total sum of squares

ss 2 2
corr. total ( i Y) 2

141. The amount of variability among the Yi values that is

accounted for by the regression is the sum of the squared deviations

(Y- called the model or regression sum of squares

SSmodel ) 
- 2 - (Exy) 2 /Ex

where the Y i (reads as Ely hat") values are the Y values generated from #

the regression equation

Y, " a + bXi

The model sum of squares can also be calculated by

model bxy

The model sum of squares expresses the amount of variability of the Yi *! " 'N
values about the mean of the Y values.

142. The amount of variability not accounted for by the regres- I NP -,Am

sion is the sum of the squared deviations (Yi - Yi) , called the error

or residual sum of squares 
I
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2 y2 . .2.

SSerror ( 2 )  - bExy

The total variability in Y is the sum of the variability accounted for

by the regression and the error variability, or

ss -SS +sscorr. total model error

Therefore, given the corrected total and the model sum of squares, the ,.

error sum of squares can be calculated by difference,

error corr. total SSmodel

The SS expresses the variability due to differences between the "'error
sampled values of Y (Yi) and the Y values generated from the

regression equation.

143. The proportion of the total variation in the dependent

variable that is accounted for by the regression is called the
2coefficient of determination (r ), where 0, \._.;

2 r . odel/SS - - ._
model corr. total .

2* Values of r can range from 0 (no relationship between Y and X ) to .,

1 (every value of Yi lies on the regression line, Y, Y "

144. The model and error sum of squares also provide the basis

for a test of the significance of a regression. The test is based on

the null hypothesis that the slope is zero, or that no relationship

exists between Y and X . The hypotheses are

H :8- 0 HA: 0""

145. An F test is used to determine if the calculated slope is

significantly different from zero. In order to perform this test it is " " , "

necessary to calculate the model and error mean squares. Mean squares .%.' ..

(short for mean squared deviations) are calculated by dividing the model
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and error sum of squares by their respective degrees of freedom

MSmodel = SSmodel/DFmodel

MS - SS /DF
error error error

where

DFd -1Dmodel 1 .... ,

DF =DF -DF
error total model

(n- i) -

n- 2

Note: DFmodel for a linear regression will always be 1.

146. The F statistic used to test the null hypothesis is

F = MSmodel/MSerror V

and is then compared to the critical F value with numerator DF -

DF and denominator DF - DF .model error
147. A t test can also be used to test the null hypothesis of a

zero slope, as well as testing the significance of the intercept. The

two-tailed hypotheses are '

H :8 = 0 HA:B 0

and

H 0 :a H : A  :a'0

148. The t statistic used to test the slope is '.
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t ( b -
0 ) / b = b / s b " " -.J O

where

b - calculated slope

b  standard error of b

149. Similarly, the t statistic used to test the intercept is

t (a -0)s -a/s
a

where

a - calculated intercept

s = standard error of a

The standard error of b is .
"

%

asb " (HSerror/X2)  P,

and the standard error of a is .4..

S MS
S= Merror  (-n+ _22

These t tests are evaluated in the same manner as for those t tests
previously discussed. ,.,,•

150. Use of the t test also allows for the testing of one-sided

hypotheses about the slope. Either . N

H: B c HA:B > c

or

Ho08 > c HA:B < c

can be tested using a t statistic. Remember that the F test only
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allowed for the two-sided hypothesis. The t statistic used for these N

tests is calculated as

t - (b - c)/sb b~

151. As an example of a regression analysis, suppose that an .

investigator wishes to quantify the relationship between precipitation

in a subwatershed of the reservoir and the mean daily discharge from

this area into the reservoir. The precipitation may be measured at one

site in the subwatershed and the discharge (in 1,000 m/day) could be

determined from gage data. Sample data are given below.

Precipitation X) Discharge (Y)

0.0 19.3

0.2 20.5 ---...

1.3 27.4

1.7 25.7

2.5 34.1 •~

3.2 50.4 '

6.1 68.4

152. Note that a point has been included which has zero precipi-

tation. This is to illustrate the fact that some discharge is expected .. .

even when there is no precipitation. ,.- -

153. It is obvious from the data that there is some relationship

between the precipitation in the basin and discharge into the reservoir.

The calculations now proceed as described. The six intermediate values . '.0.,

required are

EX = 15

EY = 245.8
E2 = 58.32

2
EY2 .10,585.52

EXY = 747.18

n - 7.

154. The next step is to calculate the adjusted sums of squares
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and products needed for the calculation of the slope, and the mean

values needed to calculate the intercept.

Ex 2- X (EX) I n - 58.32 - (15) 2 7 - 26.177

Exy - EXY - (EXZY)/n - 747.18 - 15(245.8)/7 - 220.466 "

Y - ZY/n - 245.8/7 - 35.114

X - ZX/n - 15/7 - 2.143

We shall later require

Ly 2 E(Y Y) Y (EY) 2/n - 1,8.2-(245.8) 2/7 - 1,954.429

% *

155. The final calculations are then made to obtain estimates for

the slope and intercept.

b -Exy/Ex 2 -220.466/26.177 -8.422

a =Y-bX - 35.114 - 8.422(2.143) -17.067

156. The resulting regression line is shown in Figure 13. The

slope is positive, indicating that, as would be expected, Y (the dis-

charge) increases as X (the precipitation) increases.

157. The sums of squares are

SS cr.total L y 2-1,954.429

SS model ' bExy - (8.422)(220.466) -1,856.765

error co55 total ~Smodel

-1,954.429 -1,856.765 -97.664
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Figure 13. Linear regression of discharge and precipitation ..

Therefore, the coefficient of determination is

2
r . SSmodel /SScorr. total

- 1,856.765/1,954.429

- 0.95

The value of r2  indicates that 0.95 or 95 percent of the variation in
the dependent variable is accounted for by the regression.

158. The F statistic used to test the null hypothesis that the

slope is zero is

F =MSmodel /MSerror
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where 4

MS model = SS model/DF model= 1,856.765/1 - 1,856.765

MS = SS /DF = 97.664/5 - 19.533Merror error error

F = 1,856.765/19.533

- 95.059

The critical value of F , with a = 0.05 , numerator DF = 1 , and

denominator DF = 5 , is 10.0. The calculated F statistic is much

larger than the critical value and, as a result, the null hypothesis can

be rejected.

159. The t statistic used to test the same hypothesis (Ho:8 = 0)

is

t = (b - o)/sb

- 8.422 / Serror/I~x

= 8.422 / 19.533/26.177

,..

= 9.750

The critical value of t , with a = 0.05 and DF = 5 , is 2.571. As

with the F test, the null hypothesis can be rejected. $

160. Regression lines not only quantify a relationship, but also

allow for the estimation of the average value of Y at any specified

value of X , whether or not the X value was observed. For example, no

precipitations of 5 cm were observed, but the regression relationship

can estimate the mean discharge for a precipitation of 5 cm. This would

be calculated as

Y a + bX = 17.067 + 8.422(5) = 59.177

161. The regression line can also be used to estimate values
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outside the range of observed data. In the example, the greatest

observed precipitation was 6.1 cm. However, the discharge can be

calculated for a greater value, 7 cm, 10 cm, or any other number. For

example, the estimated discharge resulting from 10 cm of rainfall is

Y - a + bX - 17.067 + 8.422(10) - 101.287

Caution must be employed, however. There is a tacit assumption that the

same linear relationship applies outside the range of the data. This

may or may not be the case and, unfortunately, cannot be tested unless

the range of the data is extended.

162. It is also important to understand that the closer one moves

to the extremes of the data, the less precise are the estimates of the

mean discharge. The most precise estimate is the one that occurs at the

mean of the X values, namely Y (since a simple linear regression line

always passes through the sample means). The precision is even less '

outside the range of the data, even if extrapolation of the line is

valid. Thus, the precision of the estimate, or the confidence in the

predictive ability, decreases as the distance from the mean of the X

values increases. This can be graphically illustrated by a confidence

interval about the regression line.
Confidence intervals for regression .

163. The regression line is an estimate of the true situation for

a population, and it can be given a confidence interval. Since the

estimate is a line, the confidence interval is a band about the line.

It has been pointed out that estimation becomes less precise the farther

one moves away from X . This is reflected into the confidence interval

bands which are narrowest (closest to the regression line) at the point

where X - X and become wider in either direction moving away from X eq.

(Figure 14). i 9"

164. Confidence intervals for the regression line can be cal-

culated as an interval at any point on the regression line and are then .

connected to give the confidence bands. The equation for the confidence ' ..

interval at any value of X , say X° , is S
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Figure 14. Confidence intervals for the regression of discharge
and precipitation 0.

Upper limit - Y + t

0 sY
Lower limit Yo ts

0% By

where 
A

Y - a + bX (predicted Y value)o o

s= standard error of the predicted Y values
y,. ..

t - critical value of t with degrees of freedom equal to those
of se:. 1

The standard error of Y at X is

0

Y = Serror n + (X -

and has n - 2 degrees of freedom. It should be obvious that the
standard error is at a minimum for X - X and will increase as

0

estimates are made at values of X farther from the mean.
0
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165. Confidence limits are often expressed as ~'

I 1 0 ( -X1)2 2
Yo n 2

x

166. The confidence limit at the mean is

2 1

y t&

167. In the example, for a mean discharge at X0- 5 ,the 95-

percent limits can be calculated, given

MS - 19.533
error

% %.
K- 2.143

n- 7 4' .

t -2.157 (a* 0.05, DF -5)

The standard error of Y at X -5 is '
0

F19.533 +( 2.4 261

2.980

and Y at X -5 is

Y - 17.067 + 8.422(5)

- 59.177
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The upper and lower confidence limits are

59.177 ± ts"
y

- 59.177 ± 2.571(2.980)

- 59.177 ± 7.662

Example with computer output

168. Many applications of statistics employ a computer to obtain

the results of the calculations. It will be useful to examine typical

output in order to see how the values are likely to be presented. The

computer program used is the General Linear Models (GLM) procedure from A%

the Statistical Analysis System (SAS). The example is taken from data

on the percent organic content and percent clay of sediment samples from

Red Rock Reservoir (Gunkel et al. 1984). The data used in the study are .

given in Table 8, and the computer output of a simple linear regression

is given in Table 9.

169. The computer summary in Table 9 is subdivided into five sec-

tions. The first section gives values for the MODEL, ERROR, and the 1

CORRECTED TOTAL sums of squares. The MODEL is simply the sum of squares #., .

attributable to the simple linear regression line (= bExy) and has a

single degree of freedom. In multiple regressions and other types of

analysis, the MODEL may have many more degrees of freedom. The ERROR is

the sum of squared deviations from the regression line (- Ey2 - bExy)

and provides a measure of random error (i.e., Ee2). The CORRECTED TOTAL

sum of squares is the total sum of squares adjusted for the mean

(= ). These statistics provide a basis for a test of the simple lin-

ear regression model. If there were no linear relationship, i.e.,

8 = 0, the MEAN SQUARE for the MODEL would also estimate the variance of *

the Li . Thus, under the null hypothesis, the MEAN SQUARE for the MODEL

should equal the MEAN SQUARE for ERROR. The ratio of this MEAN SQUARE

for the MODEL to the MEAN SQUARE for ERROR would then follow an F dis-

tribution, if the Li were normally distributed. The F value is here
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Table 8

Data Used for Example of Comnputer Output of Simple Linear Regression

Sample Percent Percent Organic
Observation Transect Station No. Clay Matter

1 1 A 1 60.0 7.7 '
2 1 A 2 62.5 8.3

3 1 A 3 40.0 4.9

4 1 B 2 62.5 9.6 - -

5 1 C 1 55.0 7.8

6 1 D 1 57.5 9.0

7 1 E 1 67.5 9.0

8 1 F 1 65.0 9.4

9 2 A 1 30.0 7.1

10 2 B 1 17.5 3.6

11 2 B 2 20.0 3.5

12 2 B 3 17.5 3.5

13 2 C 1 30.0 4.8

14 2 D 1 65.0 9.6

15 2 E 1 47.5 7.3

16 3 A 1 57.5 9.4

17 3 B 1 67.5 9.3 -t. '

18 3C 1 52.5 8.9

19 3 C 2 52.5 8.6

20 3 C 3 60.0 8.5 J.. .

21 3 D 1 32.5 3.9

22 3 E 1 62.5 7.8

23 4 A 1 47.5 7.9

24 4 A 2 50.0 8.1

25 4 A 3 45.0 8.3

26 4 B 1 27.5 6.2

27 4 C 1 42.5 7.2

(Continued)
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Table 8 (Concluded)

Sample Percent Percent Organic ~ " i
Observation Transect Station No. Clay Matter

28 4 D 1 40.0 6.9

29 4 E 1 60.0 9.6

30 5 B 1 42.5 7.7

31 5 B 1 40.0 6.5

32 5 C 1 40.0 7.6

33 5 C 2 60.0 8.6

34 5 D 1 42.5 5.7

35 5 E 1 52.5 8.5

36 6 A 1 42.5 8.2

37 6 B 1 45.0 7.8 S

38 6 C 1 37.5 8.1

39 6 D 1 30.0 7.5

40 6 E 1 40.0 8.2

41 7 A 1 42.5 8.2

42 7 B 1 40.0 7.5

43 8 A 1 27.5 6.4

44 8 B 1 32.5 6.9

45 8 D 1 32.5 5.3

46 9 A 1 22.5 4.4

47 9 B 1 20.0 3.9

48 9 C 1 25.0 4.4
*%S. ' .
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Table 9

Example of Computer Output for Simple Linear Regression

.(Red Rock Data - Organic Content Regressed on Clay,

Percent - General Linear Models Procedure)

Section 1

DEPENDENT VARIABLE: ORGANIC

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 1 113.80279461 113.80279461 128.68

ERROR 46 40.68033039 0.88435501 PR > F

CORRECTED TOTAL 47 154.48312500 0.0001

Section 2

R-SQUARE C.V. ROOT MSE ORGANIC MEAN

0.736668 13.0047 0.94040151 7.23125000

Section 3

SOURCE DF TYPE I SS F VALUE PR > F

PCTCLAY 1 113.80279461 128.68 0.0001

Section4

SOURCE DF TYPE III SS F VALUE PR > F

PCTCLAY 1 113.80279461 128.68 0.0001

Section 5 '.

T FOR HO: PR >T STD ERROR OF .

PARAMETER ESTIMATE PARAMETER-0 ESTIMATE

INTERCEPT 2.50877086 5.73 0.0001 0.43787001

PCTCLAY 0.10743080 11.34 0.0001 0.00947034
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128.68. As described in the section on hypothesis testing, one must

assess whether this is an unlikely value to have arisen by chance alone.

Instead of referring to statistical tables to see if the value would

occur less than once in 20 times (a - 0.05) or less than once in 100

times (a - 0.01) by chance, the computer program provides an exact

solution (Pr > F) and here indicates that there is approximately only

one chance in 10,000 that the value would have occurred by chance alone.

Note that here the test is, perforce, two-tailed since under the alter-

native 8 0 the expected value of the MEAN SQUARE for the MODEL must

exceed the MEAN SQUARE for ERROR.

170. The second section of the computer output presents some

simple summary statistics. The r2 value is presented and is obtained by

dividing the MODEL sum of squares by the CORRECTED TOTAL sum of squares
2(b~xy/Ey ). It indicates that the model accounts for approximately

74 percent of the total variation. The ROOT MSE is the square root of

the MEAN SQUARE ERROR and is a measure of the variation about the

regression line, analogous to a standard deviation. The mean of the

dependent variable (ORGANIC material) is given, as is the coefficient of

variation (C.V.). The C.V. gives an indication of the amount of error

which exists relative to the mean (C.V. - ROOT MSE/MEAN) x 100 percent. *. ..

171. The next two segments of the output of this particular con-

puter procedure, viz, GLM, gives two types of sums of squares (Type I SS

and Type III SS). For simple linear regression, these sums of squares

are equal and provide no new information. They will, however, be dis-

cussed in a subsequent section. "
. '.

172 The last component of the output gives the parameter esti-

mates, both the intercept (b ) and the coefficient (b1) of the indepen-
0

dent variable (PCTCLAY). These can then be used to form the estimated

regression equation.

Y- 2.5088 + 0.1074 (PCTCLAY)

This equation provides a method of estimating mean organic content from

percent clay content of the substrate. The output also provides the
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standard error for each of the parameter estimates, t statistics for

testing the hypothesis that each parameter equals zero, and the

probability that the values would be equaled or exceeded by chance.

Observe that the value of t for testing the slope (11.34) is the

square root of the F statistic (128.68), i.e., the tests are equivalent.

Multiple regression

173. The concepts applicable to simple linear regression extend

to multiple regression. The purpose is still to quantify a relationship -

between a dependent response variable and some independent variable.

However, in multiple regression there is more than one independent

variable. Since there may exist interrelationships between the

so-called independent variables, the regression coefficients for the 77 MZ..

dependent variables from a multiple regression are not the same as would

be obtained if the dependent variable was regressed on each independent

variable separately.

174. The formulas for a multiple regression will not be derived :.. .

in this manual. For simple two-factor (i.e., two independent variables)

multiple regression, formulas are available in some textbooks, but broad

application of multiple regressions requires matrix algebra. We will

presume that the calculations will be done on a computer and shall

therefore concentrate on the interpretation of computer output. Con- .%

puter table and graphic output presented in this chapter were obtained

from SAS procedure GLM (SAS (1981) GRAPH User's Guide; SAS (1982) User's

Guide).

175. An example of multiple regression data is given in Table 10.

These data represent levels of a pollutant measured at various distances

downstream from a source. The pollutant decreases with distance from

the source of pollution, but additional factors are expected to -

influence the results of measurements taken on different occasions.

Therefore, two other independent variables have been included in the %6

multiple regression--temperature and discharge. The model is then

Y a +8X + X + a3X + A,
1 iii 2 X218 3 2 1  1
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Table 10

Hypothetical Data for Multiple Regression Example %_%

Discharge
3 t

Observation Pollutant Distance, m Temperature, 0C m /sec %

1 15.5 1,000 24 0.8
2 12.9 1,000 20 1.0 k#
3 14.8 1,000 19 1.3
4 10.3 1,000 25 1.8
5 10.7 1,000 15 2.0 :
6 14.9 2,000 17 0.57 6.6 2,000 20 1.0 " "" -'

8 9.5 3,000 21 1.0• "'"-"
9 5.1i 3,000 15 2.0 -- " "

10 7.4 4,000 15 0.5 l P -  i

" ii 11.9 4,000 24 0.8 -•..-'.
12 5.4 4,000 21 1.0.""-"

J . .1%

where X, X l and X refer to distance, temperature, and dis-

charge, respectively. .

176. Examination of the computer output (Table 11) will illu-

strate several concepts. The output first indicates that the analysis
was performed on a dependent variable called POLLUTNT. The sources of

variation are listed as MODEL and ERROR, which will sum to the CORRECTED %.

* 2TOTAL (= Ey ) as before. Note that the model now has 3 d.f., one for

each of the independent variables. Since there were 12 observations,

the CORRECTED TOTAL carries 11 d.f., one being lost when the variables .

are adjusted about their means. Three degrees of freedom were required .. :.:.....

for the three variables in the model, leaving eight as a measure of ran-

dom error. The computer provides calculations of the sum of squares for

each source, and the corresponding mean square. An F test is calculated

for the mean square of the model, using the mean square error. For the

example in Table 11, the F test indicates that the regression does

account for a significant portion of the total variation. This F test

is a joint test of all three of the independent variables and does not

indicate which one(s) contribute significantly to the description of

POLLUTNT. 1. ,-

:.-.-.. .A
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Table 11
%

Comnputer Output for Multiple Regression Example

(General Linear Model Procedure)

DEPENDENT VARIABLE: POLLUTANT

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 3 97.73161461 32.57720487 4.84

ERROR 8 53.82505206 6.72813151 PR > F

CORRECTED TOTAL 11 151.55666667 0.0331

R-SQUARE C.V. ROOT MSE POLLUTANT MEAN

0.644852 24.9011 2.59386420 10.41666667

SOURCE DF TYPE I SS F VALUE PR > F ~

DISTANCE 1 54.19739726 8.06 0.0219

TEMP 1 7.19969359 1.07 0.3312

DISCHARG 1 36.33452376 5.40 0.0486

SOURCE DF TYPE III SS F VALUE PR > F

DISTANCE 1 77.32993941 11.9 0.0095

TEMP 1 1.69303058 0.25 0.6294

DISCHARG 1 36.33452376 5.40 0.0486

R FOR HO: PR > T STD ERROR OF

PARAMETER ESTIMATE PARAMETER=0 ESTIMATE

INTERCEPT 17.59409833 3.02 0.0166 5.82622109

DISTANCE -0.00225161 -3.39 0.0095 0.00066415

TEMP 0.11241376 0.50 0.6294 0.22409610

DISCHARG -3. 78579922 -2.32 0.0486 1.62909000
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177. That portion accounted for by the model is given by the r2

the b being the estimate of the B ) to the CORRECTED TOTAL sum of

squares (Eyi ) . Thus 65.49 percent of the variation was accounted for by

the model. There are several important points to be made about these

calculations. Usual practice is to adjust about the mean (i.e., to fit

an intercept not necessarily equal to zero), but there are some excep-

tions. An option in the computer algorithm will provide results not

adjusted about the means, but the r value then does not have the same

interpretation.

178. Following the synopsis of the model are the results of the

individual independent variables for the regression. As before, two

types of sums of squares are provided, but in the case of multiple

regression they differ. They are the "sequential sums of squares" or,

in the jargon of SAS GLM, Type I SS, and partial sums of squares or

Type III SS.

179. The sequential sums of squares are commonly, but not neces-

sarily, larger than the corresponding partial sums of squares; indeed,

Table 11 provides an example of a case where one partial sum of squares

is larger. The sequential sums of squares depend on the order in which ...

they were entered into the computer program. Here distance was entered
first, and on its own accounted for 54.1974 of the sum of squares car- i,'$' ,

ried by the model. This is exactly the same as would be obtained if a

simple linear regression was done for POLLUTNT on DISTANCE, with no . *

other variables in the model. TEMP was the second variable entered into .... .

the model, so the variable POLLUTNT was already adjusted for DISTANCE

when TEMP was entered. A model containing DISTANCE and TEMP carries a

sum of squares of 61.3971 (not given explicitly) so that contribution of ..

TEMP, given that DISTANCE is already in the model, is 61.3971 - 54.1974

- 7.1997. DISCHARG was last to enter the model, so the effect of

DISTANCE and TEMP jointly was already included. Accordingly, the sum of -
squares carried by DISCHARG, given that DISTANCE and TEMP are already in

the model, is 97.7316 61.3971 36.3345.
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180. The partial sums of squares for each variable are obtained

as if all other variables were already included in the model; i.e., they

give the contribution to the total sum of squares carried by each vari-

able adjusted for the previous inclusion of all other variables jointly. kW

Thus, the partial sum of squares for DISCHARG is here equal to the

sequential sum of squares since this was the last variable entered.

Clearly, the sequential sums of squares will differ according to the

order that the variables are entered. The partial sums of squares are

independent of this ordering.

181. The appropriate sums of squares for testing hypothesis -

depend on the circumstances. These tests are specific to the model so

if one of the variables were to be omitted, or another variable added,

the values would change.

182. For instance, in the example, the partial sums of squares

show that there is virtually no merit in including TEMP in the model in

addition to DISTANCE and DISCHARG (i.e., the hypothesis 82 = 0 can be

accepted). The sequential sums of squares also show that there would be .

little or no merit in including TEMP in addition to DISTANCE, but

neither sequential nor partial sums of squares provide a test of adding

DISCHARG to DISTANCE or vice versa. Nor do we see how a model that

includes TEMP and DISCHARG would perform. For these we would have to .. ,

fit two-variable models or enter the variables in a different order.

183. The final section of output from the computer contains the

parameter estimates, or regression coefficients. These values, as with

simple linear regression, can be used to estimate the mean pollution, ,

given values of distance, temperature, and discharge. The equation for

this example would be

POLLUTNT 17.5941 - 0.00225*DISTANCE + 0.1124*TEMP - 3.7858*DISCHARG

184. Note, however, that the regression coefficients for a vari-

able are always calculated with adjustments for all other variables in -*

the model. The parameter would have to be reestimated if TEMP were

excluded.
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Curvilinear models

185. All of the regression models demonstrated so far have been

linear, the defining feature being that the response can be written as a

linear combination of the parameters, that is as the sum of the param-

eters each multiplied by known quantities. Models with parameters that

are multiplied, raised to powers, or are powers of known or unknown

quantities are not linear models. Some models with these characteris-

tics can be linearized by transformation, e.g., the taking of -

logarithms, and thus permit parameter estimation by linear least squares

methods. There are also models that involve the inverses of variables,

or powers of variables, or even trigonometric or exponential functions

of variables, and thus appear curvilinear, but since the parameters

satisfy the defining feature of linear models these are still, strictly -
% ." % ..

speaking, linear models. Thus, for example " .e

YI " a + a1Xi + a2 I/Xt + Ci

* .-

and •

Y = a + 81 sin Xii + a2e + e

are linear models.

186. These can be treated as cases of multiple linear regression .*

with, e.g., X - sin Xhf, Xi - e X2i . The simplest cases of this type

are, perhaps, polynomials, in which the dependent variable Y is

modeled as the sum of the independent variable X raised to succes-

sively greater powers, e.g.

y x~2 +8 3 +Yi a+ 8 1X+ 82  3i + +i a +

187. The family of polynomial curves is described graphically

below. The simplest is , ' ,
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Y= + 8X i + IA

and is just simple linear regression as discussed previously. As shown

in Figures 15a and 15b, simple linear regression may have either a posi-

tive or negative slope. Next in the series is the quadratic

Yt , + 01X i + 0 2X2 + C t

This will fit a parabolic-shaped curve and may be concave (Figure 15c)

or convex (Figure 15d). Each additional model in the series incor- : >

porates an additional power term one higher than the preceding (cubic,

quartic, etc.). Thus .

2 3

cubic Y, = a + 81X + 82X2 + X3 + C
1i 2i 3 i

quartic Y, M a + 81Xi + 82X2 + 83X 3+ 84X i + C

Each additional term allows for a possible change in direction of the

curve. Thus, high-order polynomials can be used to fit rather compli-

cated patterns of lines along some independent variable.

188. Nevertheless, a polynomial equation reveals very little

about the underlying nature of the relationship it is attempting to

describe. Principally, it provides a very flexible method of fitting

complex curvature and does allow for the detection of pattern and the

demonstration that portions of the variation can be described by some

pattern. An example of the application of a polynomial regression based tAA:

on the data in Table 12 is given in the computer output in Table 13. A

plot of the original data and the resultant polynomial is given in Fig-

ure 16. NO.

189. The fitting of a polynomial is one situation in which there

is a logical ordering for the entry of the variable into the model (lin-

ear, quadratic, cubic, etc.), so for testing purposes sequential sums of

squares are usually appropriate.
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Table 12
Hypothetical Data for the Polynomial

Regression Example

Station

Observation No. X Oxygen Month

1 118 1 2.2 6

2 118 2 1.3 7

3 118 3 0.1 8

4 118 4 010 9

5 118 5 2.1 10

6 118 6 7.3 11

7 118 7 7.0 12

8 118 8 10.1 13

9 118 9 10.4 14

10 118 10 10.5 15

11 118 11 10.9 16

12 118 12 8.4 17

13 1308 1 0.5 6

14 1308 2 0.0 7

15 1308 3 0.1 8

16 1308 4 0.0 9 :

17 1308 5 2.5 10

18 1308 6 7.9 11

19 1308 7 8.2 12

20 1308 8 11.3 13

21 1308 9 11.4 14

22 1308 10 11.6 15

23 1308 11 11.7 16

24 1308 12 8.9 17
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Table 13

Example of Polynomial Regression

General Linear Models Procedure *
DEPENDENT VARIABLE: OXYGEN

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE

MODEL 3 475.46737152 158.48912384 136.48

ERROR 20 23.22596182 1.16129809 PR > F :%

CORRECTED TOTAL 23 498.69333333 0.0001 .. , .

R-SQUARE C.V. ROOT MSE OXYGEN MEAN

0.953426 17.9108 1.07763542 6.01666667

SOURCE DF TYPE I SS F VALUE PR>F

X 1 386.56031469 332.87 0.0001 P6

X*X 1 9.14807859 7.88 0.0109

X*X*X 1 79.75897824 68.68 0.0001 .- ,'

SOURCE DF TYPE III SS F VALUE PR > F

X 1 33.26566326 28.65 0.0001 A .

X*X 1 70.20390107 60.45 0.0001

X*X*X 1 79.75897824 68.68 0.0001

T FOR HO: PR > T STD ERROR OF

PARAMETER ESTIMATE PARAMETER-0 ESTIMATE

*INTERCEPT 4.69343434 3.76 0.0012 1.24670068 ' ' > "

X*X 1.08565046 7.78 0.0001 0.13963081
X*X*X -0.05867651 -8.29 0.0001 0.00708021 ,a
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Figure 16. Polynomial regression of dissolved oxygen .

190. In the real nonlinear models, the parameters are nonaddi-. . f#

rive. These can sometimes be linearized by transformation of the I I~

variables, particularly logarithms. Examples of such models are given

below.

Semilog model

Nonlinear equation Y, e e .. ,

040

Linearized equation loge (Y) loge(o + 81Xt + Ctk' "

* , I. ,. .

e e0

0 j
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Log-log model

Nonlinear equation Y 8oX e

Linearized equation log e (Y - log e (ao) + al log e (Xi) + Li

or Y* 8* + 81xa + C

Note that a multiplicative error is assumed. This has been written asLi o i 4
e . Since e 1 , i > 0 implies that e > 1 and ci < 0

implie, 0 < < 1

191. The semilog model is commonly associated with exponential

growth or decay; it is useful whenever a dependent variable Y is

expected to increase or decrease as a proportion of itself over time or

some other independent variable X . The slope of the line 81 pro-

vides a measure of the proportional increase (decrease) per unit of X 14.0

(e.g., Y may be said to increase by 0.053 or 5.3 percent per unit of

time). It can be used, for example, to describe the degradation of

chemicals over time in aquatic systems.. 77

192. The log-log model is sometimes used to describe nonlinear '' ,
relationships where the variables X and Y increase proportionately,

and to calibrate instruments. The equation may be expressed as

Y Li

i e0

which, apart from the random error, indicates that the ratio of Y to ,-. .

X is a constant (0). If a1 = 1, the model implies that Y is a

constant fraction or multiple of X . Note that the taking of loga-

rithms is still appropriate because of the multiplicative error; the

situation is not equivalent to :/.L '

88
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Yi o Xi i +

If 1 is not equal to unity, the relationship is curved. In such

relationships, if the error is not multiplicative, e.g., if

Y 1 0 e 1+ C

or
8i

Yi a 0X + l

the taking of logarithms will no longer linearize the equation and

special nonlinear least squares have to be applied. These are outside

the scope of this manual. They are also required by the more complex

models that cannot be linearized by any transformation.

Multisource regression %

193. We are sometimes faced with regression data from more than M

one source, for example data collections from each of several lakes. It

may be of interest to know not simply that the relationship is of the

same form for each source but whether the relationships are quantita-

tively equivalent. We shall here assume that the relationships are of

the same form, i.e., involve the same structure of the variables, and OPJV

examine the second question.

194. Assume that three sets of bivariate (X and Y) data have been ,

collected and each set of data has been fit to a simple linear regres-

sion. The three regression equations are

Y a1 + bX i i , 2...n I1i 1 ii 1.

Y21 a 2 + b2X21 I 1, 2 ...n2

Y 3- a3 + b3X31 
= 1, 2 ...n3
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Also assume that all slopes (b1, b2, and b3) are significantly different

than zero.

195. The hypotheses to be tested are

H0 : I 1 2 ' 03  H A : 1 0 2 0 03

The basic calculations necessary to compare the slopes were computed

during the linear regressions for each data set. For each data set we

need

2 - 2 2Zx . Z(Xi - . Ex _ (EX) /n

2 -2 ¥2 ( 2
Ey .EY-Y) Y (EY) /n

Exy - Z(Xi - R)(Yi - = EXY - ZXZY/n

~% %

and the error sum of squares and error degrees of freedom ..

SSerror W y2 - (Exy) 2/Ex2

DF =n- 2
error

The values necessary for the comparison of slopes are presented in

Table 14. .'

196. The values of the three error sums of squares can be added

to provide what may be called a "pooled" error sum of squares

SS =SS + SS2 + SS3
p 1 2 3

with

DF =DF1 + DF2 + DF3

2 2The values of Ex2 , Exy , and Ey must also be summed

90 -:
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Ac  A 1 + A2 + A3

B B + B + B
c 1 2 3

C -C + C + C
c 1 2 34

and from these sums a "common" error sum of squares can be calculated

SS - C - (B 2/Ac)

These calculations are also presented in Table 14.

197. An F statistic is used to test the null hypothesis that the .

three slopes are equal

(SSc - SS p)/(k- I)
(SSp/DFp : . ;

where k - number of slopes being compared (in this example k - 3 ).

This calculated F statistic would be compared with a critical value of

F having k - 1 numerator degrees of freedom and denominator degrees

of freedom of DF .P
198. If the calculated F is smaller than the critical value,

the null hypothesis (H o' 1 - a 3 ) can be accepted. If, and only if,

this hypothesis can be accepted, it is possible to determine if the -

intercepts are equal. Given that the slopes are equal, if the inter-

cepts are all equal the regressions for each of the three data sets are

identical.

199. The hypotheses to be tested are

Ho: 1 -2 3  A 1 2  3
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To perform this test it is necessary to combine the three data sets and

calculate Ex2  . Exy ,and Ey2

-2 -
(X 2)T = -_ r J2nT

(Exy)T = EXTYT - E EYT/n T

(2) T2 (EY) 2 /n

where :
XT - X value from the set of all Xs -.

Y Y value from the set of all Ys

nT= n + n2 +n 3  -

An error sum of squares can be computed from these values as

SST = (Ey)T - (Exy)2/(EX2)T

200. An F statistic is used to test the hypothesis that the three

intercepts are all equal

(SST SSc)/(k - 1)

(SS c/DF .

where SS DF and k are as defined for the F test comparing ..c p
slopes. This calculated F statistic would be compared with a critical

value of F having k - 1 numerator degrees of freedom and denominator

degrees of freedom of DF

201. These methods extend in a straightforward manner to simple . .

or multiple regressions or more than three sources. Indeed one may "5',* ",

conclude that the same parameters satisfy some but not all sources.

Likewise some, but not necessarily all, may have the same slope (i.e.,

be parallel) but be distinct, i.e., have different intercepts. Any
combination is possible; usually the objective is to find the most ,

93. -. -
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parsimonious representation that gives a satisfactory fit.

202. The case where one tests for differences between intercepts,

under the assumption that all the lines are parallel, is the conven-

tional analysis of covariance. There is a tendency recently, however, '-
'4'. 46

to refer to the whole multisource regression situation as the analysis %

of covariance. *''' '

Analysis of Variance ' *

203. As the terminology implies, an analysis of variance (ANOVA)

is a procedure for quantifying sources of variability in a set of data.

Of prime importance is the realization that an ANOVA does not identify

the sources or components of variance per se. The researcher specifies

the components and the ANOVA merely assesses the amount of variability

accounted for by the factors which have been postulated to explain the

variability in the data.

204. The factors or cause-and-effect relationships are specified

explicitly in a model. However, model formulation is characteristically "

different from many modeling endeavors. A large number of modeling

enterprises are typified by seeking the one model, from various classes

of models, which best describes the data. Classic examples are physical 4.-

or mathematical models of ecosystems. The ANOVA is based on a single . . .

class of models called general linear models. Within this class, model

construction is a direct consequence of the sampling or experimental

design used to gather the data. Only after model formulation does the

ANOVA come into play. The ANOVA ascertains the degree to which model

components and their interrelationships account for the variability

observed in the data.

205. In suimmary, model formulation is dependent upon the ques-

tions posed by the researcher and the design of the sampling or experi- ,'

mental process followed to obtain the data. The ANOVA operates as the

analytical tool for generating the answers. The questions asked may be

exploratory or take on the character of a fact-finding mission, but most

9,



often the questions will be posed as "a priori" statements or hypotheses

about what one expects to find.

Two hypothetical examples

206. Consider a study dealing with the chlorophyll concentration

of surface water samples from two reservoirs. Table 15 presents the

data. The sampling design involved the random selection of five sta-

tions located in the main pool of each reservoir, followed by the draw-

ing of three samples at each station. The sampling design may have been

a consequence of research objectives to determine (a) if reservoirs dif-

fer in mean chlorophyll concentration; (b) if a significant degree of

heterogeneity exists among stations and if reservoirs differed sub- 'l

stantially in this heterogeneity; and (c) if sampling variability within

stations was relatively high or low. .

207. Based on these objectives and the sampling design, the model

would be defined. Three model components are explicitly required: a

component reflecting between-reservoir mean differences, a component .

dealing with variability among stations within each reservoir, and a

component expressing sample heterogeneity within stations. No other

components are provided for by the objectives and sampling design. If

different or additional objectives had to be met, the sampling design

and model would have to be modified in order to accommodate the needs of

the researcher. An ANOVA performed on these data would quantify the

degree to which model components explained the variability inherent in

the data.

208. Consider a second example, experimental rather than sam- ,
9% V%"N

pling. Assume that a researcher wanted to identify the limiting nutri- , r

ent that was controlling algal productivity during summer stratification

in the near-dam region of a given reservoir. Identification of the 6

limiting nutrient was carried out using the Algal Assay Procedure

(National Eutrophication Research Program 1971). This procedure uses !

nutrient additions (usually phosphorus, nitrogen, and EDTA (ethylene-

diaminetetraacetic acid), separately and in combination) to filtered

water samples to which a test algae has been added. After 14 to

21 days, the standing crop (usually expressed as dry weight/litre or

95 %
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Table 15

Chlorophyll Concentration of Surface Water Samples

Sample Mean
Reservoir Station 1 2 3 Station Reservoir Overall

Al 11.3 9.9 14.1 11.8
A2 26.8 29.0 26.8 27.5

A A3 12.9 8.1 12.4 11.1 20.9
A4 34.7 29.0 32.1 31.9
A5 22.1 21.6 22.5 22.1

16.0

Bl 14.1 15.6 11.3 13.7 1.

B2 8.4 9.9 7.9 8.7
B B3 4.7 1.2 3.3 3.1 11.0

B4 12.9 11.3 14.1 12.8
B5 15.6 18.2 16.7 16.8

cells/litre) of the algae is determined. Under controlled laboratory

conditions of light and temperature, the maximum standing crop of the

algae is related to the amount of limiting nutrient initially available.

The results of this experiment are given in Table 16.

209. The experiment involved taking 24 subsamples (eight treat-

ments x three replicates per treatment) from a single epilimnetic sample

taken from the near-dam area of the reservoir. There was not sufficient

space in any single environmental chamber for all of the subsamples to ,

be processed together, so the investigator randomly assigned the sub-

samples to three different environmental chambers. The random assign-

ment of the subsamples to the chambers was necessary because identical ..

conditions (i.e., light and temperature) between chambers could not be

assured. Within any given chamber, all subsamples are considered to be

at identical conditions (except for the experiment treatment applied).

210. Once the experiment is designed and executed, the ANOVA

model is predetermined. For the example presented above, the model ,%%

includes only one component, the effect of the nutrient additions. The

ANOVA would provide the information. The null hypothesis of equal -

standing crop for all treatments can be readily tested. Casual : "
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inspection of the means (Table 16) suggests that phosphorus is the

limiting nutrient and that combinations with nitrogen and EDTA have

little effect on the standing crop.

Table 16

Dry Weights (mg/litre) of the Test Algae After 14 days

of Incubation

Block

Treatment Chamber 1 Chamber 2 Chamber 3 Mean

CONTROL 7.6 8.4 7.8 7.9

+ P 30.5 34.2 32.3 32.3

" N 9.6 10.1 9.9 9.9

+ EDTA 8.4 9.3 10.4 9.4 ,'.-.

+ P, + N 33.7 35.8 34.2 34.6

+ P, + EDTA 32.3 33.1 33.5 33.0

+ N, + EDTA 10.9 11.4 11.2 11.2,"

" P, + N, + EDTA 34.3 35.0 33.8 34.4 -\. J

Fundamentals of design '

211. Although a complete discussion of sampling and experimental

design is beyond the scope of this text, a discussion of some basic

principles and major issues is worthwhile. The major objective of any

design, sampling or experimental, is to generate the most powerful, 4 ..

efficient, and accurate results relative to the research questions at

hand within the constraints imposed by time, money, and manpower.

212. All designs (sampling or experimental) leading to an ANOVA

are characterized by a random sample of units from each of the series of

treatment-populations. Henceforth, the terminology "treatment-.%

populations" will be used in a generic sense to refer to the populations

under consideration in sampling designs or the controlled manipulations .. ,.

employed by the researcher in experimental designs. Likewise, "sampling okuoft

units" and "experimental units" will be used to refer to the primary

9.7 .'_.
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sample of units from each treatment-population. For instance, our first J ..

hypothetical example involved the random selection of five stations from

each reservoir and the subsequent selection of three water samples from

each station. Accordingly, reservoirs would represent treatment-

populations, and stations would be the primary sampling units. Water

samples would simply represent the process of secondary sampling or

subsampling.

213. Our second example is more complex, but the complexity pro-

vides the flexibility to introduce additional concepts and issues. It

should be clear that the treatment-populations are the eight experi-

mental manipulations. The manipulations used were under the control of

the investigator or, in other words, the investigator chose a specific

experimental design. A design is the plan followed in selecting units

from populations (i.e., a sampling design) or in applying treatments to

units (i.e., an experimental design).

214. In summary, all designs can be characterized by a random

sample of units from a set of treatment-populations, but specific

designs are differentiated according to the plan followed in selecting

sampling units from populations or applying treatments to experimental

units. Sampling units could be lakes (units) selected from different

regions (treatment-populations) of the country, sediment core samples

(units) drawn at different locations (treatment-populations) of a

reservoir, coves (units) selected from different reservoirs (treatment-

populations), or water samples (units) drawn at different times of the N

year (treatment-population) and/or at different depths (treatment- *-

population). Two examples of experimental units are limnetic enclosures

(units) supplied with different nutrients (treatments) to study nutrient

limitation, or littoral stations (units) treated with different herbi-

cides (treatments) to determine effectiveness for macrophyte control.

215. Even though some might claim this characterization of

designs to be an oversimplification, the fact remains that the myriad of

designs, models, and associated analyses of variance are based on the

concept of a random sample of experimental or sampling units from a set

of treatment-populations. The complexity arises not from the #.

98 " - '..

*. .4.



fundamental process but from (a) the procedures followed in conducting

the entire sampling or experiment plan, (b) the presumed or known under-

lying structure of the treatment-populations, (c) the number of factors

that need to be controlled so as to lead to valid and reliable conclu-

sions, and (d) the procedures followed in performing the analysis. The

result is virtually an infinite array of designs and computational

algorithms that are situation specific but conceal the underlying

simplicity.

216. Selection of design cannot be separated from the research

objectives. The design that best meets the needs of the researcher must

be found. Sometimes objectives vary over a wide range, and no design

may be available to maximize efficiency for all. Prioritization is not . ; -

negative; certain objectives might be sacrificed, entirely or partially,

in order to obtain a design that is best for those objectives of primary

concern. Moreover, different designs may be selected to satisfy dif-

ferent sets of objectives. Fortunately, all designs that have been

developed and have been documented are extensions of two fundamental

building-block designs which are the topic of the next section.

The two basic designs

217. The two studies discussed above exemplify the two designs on

which all designs are based. These designs are called "completely ran-

domized design" (CRD) and the "randomized block design" (RBD). A CRD

may be defined as follows: Given a set of treatment-populations, a sim-

ple random sample of elements is selected from each population or a sim-

ple random sample of units is evaluated under each treatment. " -

218. Consider a study designed to compare three reservoirs in .'-

terms of the total phosphorus concentration of the surface water during

a particular time of the year. Table 17 presents the data. Sampling

merely involved taking one water sample from each station of a randomly

selected set of stations. Note that the three reservoirs represent the

treatment-populations while stations represent the sampling units from

each cove. The situation typifies a CRD, or a simple random sample of ,

units from a series of treatment-populations. It is true that more than

one water sample could have been drawn at each station. This added
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Table 17 ...

Total Phosphorus Concentration (Ug/k) of Surface Water

Samples Drawn at Randomly Selected Set of Stations

from Three Reservoirs

Reservoir
Station 1 2 3

1 31 32 22

2 28 30 21 ".%

3 27 30 23

4 30 31

5 34

sampling stage does not define the design. As was the case with the

comparative study on reservoirs (Table 15), the primary stage of sam-

pling defines the design, and as such the examples of Tables 15 and 17 *. _

are cases of a CRD.

219. An RBD, the second basic design, involves a two-stage pro- ;

cess. Initially, the sampling or experimental units are grouped into

"blocks." The grouping is based on one or more organismic or environ-

mental characteristics which are presumed to affect or influence the .--

response of a unit. The fundamental premise is that variability within

". a block is quite small relative to the variability between blocks;

homogeneity within versus heterogeneity between is the rule. Subsequent "

to blocking, random sampling occurs as in a CRD, but the sampling pro-

cess is implemented block by block.,Sr..

220. The experiment reported in Table 16 followed an RBD. The

three environmental chambers constitute the blocks and homogenization .

prior to subsampling ensured the similarity of initial nutrient concen-

trations within each block (i.e., low within-block variability). Var-

ability between blocks (due to differences in light and temperature

between environmental chambers) is controlled by the design.

221. Randomized block designs have wide applicability. Consider

a study with the objective of assessing water quality as a function of

100
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depth (let us say surface, shallow, deep). Suppose further that several

stations on the reservoir have been established as monitoring points.

Now suppose that during a particular month, several samples are selected

at each depth. If this were the case, then an RBD would result where

stations would constitute the blocks while depths would represent the 0

treatment-populations.

222. A slight variation on the theme of depth sampling involves
time sampling and again would yield an RBD. Restricting assessments to..

surface water, several samples might be drawn each month for 12 months.

Stations would again constitute the blocks, but month (time of sampling) -

would represent treatment-populations.

223. Some care must be exercised in time and depth sampling.-.

What at first glance appears to be an RBD is oftentimes not. In addi- . .

tion, a treatment-population factor in one instance may not be in

another. Regarding the first point, consider time sampling of surface

water on a reservoir. If water samples are drawn at distinctly differ- .

ent stations each month, a CRD results, not an RBD. This is so because .

each month constitutes the treatment-populations and a different set of ,

stations, not a replicated set of stations, is sampled each time.

224. Regarding the second point, consider a comparative study on

two reservoirs. Suppose each month a different set of stations is sam- s..

pled on each reservoir. The result would be an RBD, but reservoirs .

would represent the treatment-populations and month would constitute

replicated time sampling.

225. These were just a few examples of completely randomized

designs and randomized block designs. As the basic designs, they can be

combined in interesting ways to produce other designs having wide appli-

cability in water quality and field research. Of particular importance ......

is a class of designs that are called "split-plot designs" (SPD). Under -

certain conditions these designs are called "repeated measures designs."

226. Consider a combination of depth and time sampling. Suppose

an established set of monitoring stations is sampled each month for

12 months. The result would be an RBD with stations as blocks and time .-.

as treatment-populations. If, in addition, depth sampling were to be

101 !

% f41_ _ _.



executed, then each station at each time would in effect be split as a

function of depth in the water column. In concept, water quality mea-

surement is repeated for each station-month combination, but the repeat

measure is equivalent to depth sampling.

227. Other examples are direct. Consider a random set of sta-

tions from each of two reservoirs at a particular time of the year. If

this were the case, the design would be a CRD by virtue of the fact that

a random set of units (stations) is selected from each treatment-

population (reservoir). Add depth sampling at each station and the

results would be an SPD--each station is split according to depth in the.P%

water column. Notice that the only difference between this example and

the previous example is the base design. Here the basic design is a

CRD, while the base design of the previous example was an RBD.

228. In summary, many designs are available on which to base sam-

pling or experimental studies. The key issue is to select the design

which optimizes the quality of information for meeting the objectives of

the research. Although only three designs have been discussed (CRD,

* RBD, SPD) and only a few examples have been given, these three designs

and related examples characterize a large body of the studies performed

in water quality research.

229. In order to appreciate fully how designs vary in maximizing

efficiency in answering research questions, an understanding of methods

of data analysis is required. As has been pointed out, the questions of

the researcher dictate the design which in turn defines the model with ..

its component sources of variability. The ANOVA quantifies these com-

ponent sources so as to provide objective criteria on which to base

one's inferences and conclusions. -
One-way analysis of variance

230. To develop and explain the fundamentals of models and analy-

ses of variance, attention will be restricted to the example of the %f

three reservoirs and a random sample of stations from each reservoir

(Table 17). This example provides a minimum level of complexity, but

within this level of complexity, all basic concepts and principles can

be demonstrated and explained. Formally, this example represents a
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CRD with experimental error and leads to a one-way ANOVA which tests the
% %

hypothesis that no differences exist between treatment populations. The %

precise meaning of this terminology will become clear as the discussion

proceeds. -e

The model ._P

231. Based on the design followed in gathering the data, only two

sources of variability are explicitly allowed, the variability due to

differences between reservoirs and the variability due to differences

among stations within each reservoir. The function of the model thereby

becomes one of expressing total phosphorus (TP) concentrations (the

dependent variable) as a function of treatment-population parameters

(the independent variables). The model (typical of all CRDs with

experimental error and one-way ANOVA) is given by

%d 16

X +ia +c (1)
ij i ii

where
thX .  TP concentration for the j sampling unit (surface water

sample at the jth station) from the ith treatment-population
(reservoir)

P overall mean TP concentration

th
a- effect of i treatment-population

I -J i

ith.......
-i mean TP concentration for the i treatment-population

ij- residual or random error effect "ii" -- ,- " "

-X -i
i j i .'"

232. The model in Equation I expresses the dependent variable

(Xl) as an additive partition of a sequence of terms (0, ai , £).'ii ij
Within the context of an ANOVA, all terms have a unique meaning. The

terms are linear functions of treatment-population mean parameters, 11 %"%

and u (i.e., the parameters are not in any nonlinear form such as

logarithmic or exponential). Hence, ANOVA models are called "population

linear additive models." The model includes only a simple dependent
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variable (X ) which is functionally related to the sequence of termsij%

0', a,* Ci). Models with the feature of one dependent variable and e. 4 J

multiple independent variables form the basis of "univariate analyses of -"

variance." Models involving multiple dependent variables and multiple

independent variables lead to "multivariate analyses of variance"

(MANOVAA) and will not be considered in this work. %

233. The ANOVA is designed to partition the total variability

into its component parts. The terms in the model define the partitions.

Expressing the model in Equation I in a slightly different fashion

(Equation 2), the partitioning accomplished by an ANOVA and its inter-

pretation are fairly direct and easy to comprehend.

NOW'X *-ia + C (2)
ij i ii

0= - + (Xi - )

According to the models in Equations 1 and 2, the total deviation (Xi-

i) is decomposed into two additive partitions, namely ci = - i and

C Li = Xij - P. • These two partitions give rise to the decomposition of

the total variability. The two partitions are appropriately called

(a) the variability due to or explained by between-treatment-population

effects and (b) the variability due to the heterogeneity which exists

withi !ach treatment-population. Alternative and more commonly used

terminology is "the treatment-population sourc, of variance" and "the

residual or error source of variance," respectively. ,Y

234. The ANOVA is based on the component sources as identified in

the model, and the essence of an ANOVA is simple. As the treatment-

populations become more distinct, the treatment-population source of

variance accounts for a larger portion of the total variance relative to

that which is accounted for by the residual, error on within-treatment-

population variance. In Figure 17 the treatment-population becomes more

distinct as a function of increased mean (P1) separation. In Figure 18

the treatment-populations become more distinct as a function of reduced

error variance. %
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235. The treatment-population distributions in Figures 17 and 18 e

conceptually represent all possible TP concentrations (X ) for surface
ith rsror Cosqety ij

water samples from the t reservoir. Consequently, u refers to the

overall mean TP concentration across all three reservoirs. Similarly,

the total variance across all three reservoirs represents the failure of %

all observations to be the same and equal to the overall mean (j).,'

Therefore, it is the totality of all deviations (Xii -i) in the model

in Equation 2 which gives rise to the total variance.

236. In the two-sample t test, where it is assumed that the

variances of the two sampled populations are equal, the common popula-
2tion variance a was estimated by the pooled variance m

s.(SS + SS)(F+ DFp SS / (DF1  DF2)

where

S -S sum of squares, sample i

DFi = degrees of freedom, sample i

The ANOVA also assumes the equality of variance :.'.'.-;b

a2 2 a2a1  a2 -k

and the estimated population variance common to all k groups is given ,"""'

by

p SSerror /DFerror

where

SS error I- 1 C" 1 -i)

DF N N k

error
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The quantities SSero and DFero are often referred to as the '

error sum of squares and the error degrees of freedom, respectively.

The pooled variance Sp2 is the best estimate of the variance common to : .,

all k groups. ,. .

, .

237. To test the null hypothesis (no differences exist between ''>

I_ ..

I *

the qn its is is necessary to ifet the reoete o variability

ero the of s oues a The eroriegre is given byfredm rpectiely

squares"

22

SSoups n (X i - )2 '.

ilJ=l 'J '"

Tih pooled'vaianed w i

DFtoa k 1

all k groups

degrees of freedom. t n h t i o f n xt w

the .k Irup)t is s necessary to detsern the atot ofraiaiyity

bew t he k grus. Ts aris giveis gn b y te group su of

.I.
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IV

SS ~ X N
total 1 J- n i

i-i i x J -I \i I /

SSgroups i I1-Ln - = J.1 X N

The error sum of squares is calculated by difference

SS - SS -s tvSS
error total groups

240. To complete the calculations required for the one-way ANOVA

it is necessary to divide the groups and error sums of squares by their

respective degrees of freedom:

b

=S SS /DF .

MSgroups groups groups %

MS = SS /DF
error error error .. ,

Dividing a sum of squares by the degrees of freedom results in a vari-

ance which is called a mean square (MS) in the ANOVA. Mean square is

short for "mean squared deviations from the mean." Table 18 presents a

sumary of the calculations required for a single-factor ANOVA. %

241. Hypothesis testing with an ANOVA is based on the ratio of

the two sources of variance ..
%

F - MSgroups /MSerror %

The interpretation is direct. The larger the F value, the more distinct

the treatment-population distributions become and a greater amount of

the total variability is accounted for or explained by
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treatment-population (group) differences. If the calculated F value is

at least as large as the critical F value (with numerator DF - DFgroups

and denominator DF - DF ), then the conclusion that the treatment-error

populations are not equal can be made. If the calculated F is less

than the critical value, the conclusion is not warranted.

242. Tables 19 and 20 present the computational steps involved in

the one-way ANOVA for the TP data from the three reservoirs. Based on

the observed F value (31.24), the null hypothesis of no differences

can be rejected. However, the exact meaning of an F test in an ANOVA is

inherently tied to what the mean squares (MSgroups' MSerror) estimate.

Residual (error) effects
and the mean-square error

243. All analyses of variance reduce to situations involving a r.....

random sample of units from a series of treatment-populations. The

dependent variable represents the property of the units which is pur-

portedly influenced by the treatment-population to which the unit

belongs. As such, the dependent variable is expressed as a function of 4 1 #"

the treatment-population parameters. But in drawing inferences about

these population parameters based on sample data and the results of an

ANOVA, certain assumptions are made about the dependent variable. The

assumptions that typify virtually all analyses of variance are given in

Equation 3, which states that the X values are distributed normally
ij 2 

. 4and independently about a mean V with variance G "

Xlj - NID (lIi 2i) (3)iii

244. These assumptions say that each observation comes from a

normal population with a particular unknown mean and variance.

Naturally, the parameters are unknown, but sample estimates are avail-

able. However, when inferences are based on the sample data (Table 17) V'
and the ANOVA (Table 20), an additional assumption is made. The

within-treatment-population variances are assumed to be equal to a

common value, denoted a2 - a2 for all i . The assumptions of Equa-
i

tion 3 thereby become those of Equation 4.



Table 19

Calculations for a One-Way ANOVA Using the Data from Table 17

Reservoir Reservoir Reservoir

31 32 22
28 30 21
27 30 23
30 31

34

n 4 5 3 N- 12

n i
E X  116 157 66

x 29.0 31.4 22.0 P
i iI

3,364.0 4,928.8 1,452.0 "'

X\33.0D -1I I
ni

%',

k ni
B - - 9,769.0 DF k- 12

i-I J. groups
%. % 4 .

B . -9,744.8 DF -N-k 1 2 'e.

i-1 j=1 jgroups
e rerror N

11

SSB (A2/N) 192.2

total-

A% 'P%

(A2/) SSrup 84.0
SS group s -C (A 2 -N 168.05 HS group s - grus . 0

groups

S S S S t o a S S r up -2 4 .2 0 m S S S e r ro r . 2 6Serror toa ruserror DF error  i ',.
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Table 20

Analysis of Variance on the Data of Table 19

Source of Variation SS DF MS

Total 192.25 11
Reservoirs (i.e., groups) 168.05 2 84.03
Error 24.20 9 2.69

F MS groups 84.03 31.24

MS 2.69
error

a 0.05 F2 ,9 " 4.26

X -j NID (ig 0 (4)

245. The consequences of this last constraint are immediate.

Since each treatment-population has the same variance, each sample -o * 4%

variance (see Table 18) estimates the common value. In turn, since all

sample variances estimate the common variance, the sample variances can

be pooled to provide a combined sample estimate of the within-

treatment-population variance. It is precisely this combined or pooled

sample estimate of the within-treatment-population variance which is

called the mean-square error (MS e) in the ANOVA. The idea of pooling is

simple and can be shown using the data of Table 19. After pooling A-

(i.e., adding) the individual sum-of-squares (i.e., SS -0.1875 + * N

0.272 + 0.14 - 0.5995), divide the pooled sum-of-squares by the pooled

degrees of freedom (i.e., df = 3 + 4 + 2 - 9) to generate the mean-
e

square error (MSe = 0.5995/9=- 0.0666). . .*

246. Since the assumption of equality of variances (Equation 4)

refers to within-treatment-population variability and since the devia-

tions ciJ of the models in Equations 1 and 2 yield the within-

treatment-population variance, the assumptions of Equation 4 are .. ,
:'.-.. ." '-,

typically stated in terms of the residual (error) component of the model

as given in Equation 5, which states that residual (error) effects are
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distributed normally and independently about a mean 0 and common error .. v

variance. The moral is that the MS estimates the common within-
2e

treatment-population variance (a ). Hence, Equation 6 says that the

expected value of the MS is a 2
e C

i - NID (o, a) (5)

)£

Treatment-population
effects: fixed or random?

247. Often a researcher faces a dilemma in deciding which of P ._

several or many treatment-populations he should study intensively. The

researcher's dilemma may be phrased as follows: "Does the researcher

want to know about differences between the three reservoirs and only the

three reservoirs that were sampled?" or "Does the researcher want to ,%...

draw inferences about all reservoirs in the region based on the subset

of three reservoirs?" If the answer to the first question is "yes,"

the researcher is dealing with fixed effects. If the answer to the

second question is "yes," the researcher is dealing with random effects.

Expected mean-squares forfixed effects (Model I ANOVA),. 1

248. Fixed effects refer to a set of treatment-populations which

is finite either by nature or by an "a priori" selection process; more % .%

importantly, inferences are limited to only those treatment-populations

that are sampled. If the researcher samples all or some of the '

treatment-populations and if the researcher's concern is with the sam-

pled treatment-populations and only those evaluated, the model in Equa- .

tion 1 is a fixed effects model, and the analysis of variance is called V %0*-

a Model I ANOVA. Consequently, for the data of Table 17 and its analy- -_

sis (Tables 19 and 20), if the researcher's interest lies solely in the

three sampled coves, then cove effects would be considered fixed.

249. Due to the nature of fixed effects, the inferential process %

conventionally involves either or both estimation of -

114 V% '.'
X. i tAA',--

A, %



treatment-population means or mean differences and tests of hypotheses

about significant differences among means. Fixed effects mean-squares

are consistent with the nature of the inferenceR. The expected mean-

square for the treatment-population source of variance is written in the

form of Equation 7, and its meaning and interpretation are linked to the

quadratic portion of the expected mean-square (Equation 8) and the

hypothesis (H0 ) of conventional interest. Thus,

E(MSa) G a2 + Q(a) (7) .
a -

where Q(M) is a function of the treatment-population effects ( =

reservoir effects) -

P 2
Q(M) involves 1 (8) __ ;

i--i

Ho:all treatment-population means are equal or all treatment-

population effects are zero (9) . .?.

250. Since the F value is the ratio of the MS. to the MS , .
e

the interpretation of the F test statistic is direct. If the null .-.....

hypothesis (Ho:the hypothesis of no differences) is true, then (a) all

treatment-population distribution and means would be superimposed and,

as such, equal to each other and equal to the overall mean; (b) all

effects would be equal to zero and, as such, Q(a) would be equal to .,e. .
zero; (c) the E(MS a 2 . E(MS) and (d) the researcher would

expect the F value to be close to one. Conversely, if the null hypothe-

sis was not true (i.e., all means were not equal), then (a) the

treatment-population effects would show larger and larger deviations

from zero as the treatment-population distributions become more dis-

tinct; (b) Q(a) would show a corresponding increase; and (c) the

researcher would expect the F value to get larger and larger since the

E(MSa) would increase relative to the E(MSe)
a e
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251. If the F value reached the selected significance level, the

inference would be that significant differences exist among the means.

A natural question of the researcher would be, "Which means are differ-

ent from each other?" The issue is that an ANOVA and its F test do not

lead to the inference that all means are different from each other. A '.d

significant F test merely claims that differences do exist. Specific %b

questions about particular means and mean differences (i.e., post-ANOVA

type questions) require techniques which supplement the ANOVA. These

techniques are the subject of a later section.

Expected mean-squares for

random effects (Model II ANOVA)

252. Random effects are considered by many to be conceptually . .-

more elusive than fixed effects. This should not be so. Random effects .

refer to a random sample of treatment-populations. Consider the dilemma

of the researcher regarding which reservoirs to study intensively. If

the researcher wished to infer something about the variability among all-" ' '

reservoirs across an entire region, then he certainly will not be able

to study all reservoirs. He could, however, draw a sample of reservoirs

at random, compute the variance of the reservoir effects sampled
2(denoted s ) and let this sample variance estimate the variance of the

2entire population reservoir effects (denoted a2). In essence, this is -. *

precisely what happens in random effects models or Model II ANOVA. ' -

253. For random effects, the nature of the hypothesis changes

from that for fixed effects. The hypothesis (Equation 10) is stated in

terms of the variance component being estimated. Likewise, the expected . b

mean-square (Equation 11) is a function of the variance component.

2
HO :a 0 (10) "

E(MS) = °2 +k 2  (11) - ""'.r-

254. The meaning of the F test is clear. If the null hypothesis ". ..
2

(Equation 10) is true, the E(MS a . E(MS )and the researcher
a E e

would expect the F value to draw closer to one as the variance drew
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2closer to zero. Conversely, if the variance of cove effects (a ) were
a or0

large, the F value would increase and the inference would be that a sig- I No NI.P4L

nificant degree of variability exists among the reservoirs of the

region. Naturally, the researcher would want to estimate this variance.

As with post-ANOVA tests for fixed effects, this estimation enterprise

will be pursued later.

255. Several issues need to be raised and explained before con-

cluding the discussion of random effects. Random effects, by defini-

tion, involve a two-stage random sampling process. The first stage

involves the random selection of a set of treatment-populations while

the second stage involves the random sampling of units from each

treatment-population. There are cases, however, where the first stage

will not actually involve a random sampling process. If this occurs,

a minimum requirement is that the researcher must be willing to assume :,e

that his set of treatment-population represents a random sample.

256. The second issue is tied to the first. In the presence of %

random effects, special assumptions (Equation 12) are made in addition %.*
to these made about error effects (Equation 5). The assumptions of

Equation 12 read, "The a values are normally distributed about a mean of
2

zero with variance a a These assumptions are not problematic in con-

cept. They simply mirror the assumptions made about residual or error

effects which are, in actuality, random effects themselves. .

aI (o 02) (12) % - %'-

% . %

257. The third issue is simply a point of clarification. The - %

models of an ANOVA need not be simply fixed effects or random effects

models. The structure or nature of the treatment-population may be

partially random. If so, the models are called "mixed models." *.%.% %%.

Examples of these types of models are discussed in a later section.

258. The final issue is related to the nature of the inferential

process in random effects models. Sometimes a completely valid F test

is unavailable. This situation occurs in studies involving unbalanced

data (i.e., unequal sample sizes from each treatment-population). The
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nature of the inferential process thereby becomes one of estimating

variance components rather than specific tests of hypotheses. Variance

component estimation is discussed in more detail later. As a final

note, the problems caused by unbalanced data within the content of

random effects do not occur in fixed effects models.

Fixed effects and arrange-
ments of treatment-populations

259. Inferences about fixed effects are normally restricted to - .
(a) tests of hypotheses about significant differences between

treatment-population means, and (b) point or interval estimation of

treatment-population means and mean differences. Remember, sampling or

experimental designs refer to the plan or procedure followed to obtain a

random sample of units from a series of treatment-populations. Except

for the prior and more detailed discussion of fixed and random effects, .. .

little has been said about how the set of treatment-populations to be

studied might be defined.

260. Often treatment-populations differ according to more than

one dimension or can be distinguished by more than one factor. Consider

a study designed to evaluate surface water quality in two coves (cI , c2)

as a function of two depths (dI, d2) across three seasonal months

(MI, 2 , m 3 ) and suppose further that several water samples are drawn at

each depth from each cove during each month. As a result, 12 treatment-

population combinations exist, but the treatment-populations are distin-

guished by three factors or dimensions, cove at two levels, depth at two "

levels, and month at three levels. The cross-classification of these

factors yields the 12 treatment-population combinations. The factors

are said to be cross-classified because each level of each factor, or

each cove sampling, is conducted during the same months at the same

depths. This property of cross-classification yields a set of treat-

ment-populations which are said to follow a "factorial arrangement of-"

factors."

261. Contrast this factorial structure to the following example.

Suppose the study involved two different reservoirs (rI , r ) but two

coves from one reservoir (cl, c2 from r1 ) and three coves from the
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second reservoir (c, c3  )r2 . Suppose further that the sam-

pling of coves was done during different months. For instance, let the

12 months be denoted by mi, m ... nm1 2 with the following sampling scheme

rlc I during mi, ml0 ; rlc 2  during m 4 , i 2 , m9 ; r2cI during V

m3 , m 4 ; r2c 2 during m5 , ill, mi1 2 ; r2 c3 during m2 , m7 , m 8 * Note,

immediately that 12 treatment-populations exist based on three factors

(reservoir, cove, month) which are not cross-classified, different coves

within each reservoir, and different sampling dates for each cove. This

property of different levels of a factor at different levels of other

factors yields what is termed a "nested" or "hierarchical" structure.

Factorial arrangements
(main and interaction effects)

262. The function of an ANOVA in fixed effects models is to

determine whether significant differences exist among treatment-

population means. Table 21 and Figure 19 present the mean water quality

(WQ) for each of the 12 treatment-populations which are based on a 2 by

2 by 3 factorial arrangement of three factors (cove, depth, month). The """ ;

raw data of Table 21 are totally contrived to expedite the subsequent

discussion. Results of the ANOVA are given in Table 22. i

CDM k f mean water quality for the ith cove (i-1.. .c2) .?
at the jth depth (J=l.. .d=2) (13) -- l.

during the kth month (kfl.. .m=3)

263. As can be seen easily in Figure 19 and Table 21, the ANOVA

would lead to the conclusion that differences between means exist, and

water quality varies as a function of cove, depth, and month. The

question arises, "How might treatment-population effects be explained?" "

According to the factorial structure of the treatment-populations, two '; .-." -' %

types of effects can be identified, "main" and "interaction" effects.

264. The distinction between main and interaction effects is '

quite simple. Questions about main effects can be stated, "Are there

significant differences among the means at each level of a single lop,

factor?" For instance, questions about whether coves differ in mean

**' -" "
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Table 21

Hypothetical Water Quality for a 2 by 2 by 3

Factorial Arrangement of Three Factors--

Cove, Depth, Month

Cove (i) Depth (J) Month (k) Sample (1) WQ (ijkl) Mean (CDMiIk)

1 1 1 1 1.8 2.0
1 1 1 2 2.2
1 2 1 1 2.0 2.0
1 1 2 1 3.7
1 1 2 2 4.3 4.0

1 1 2 3 4.0
1 2 2 1 8.4
1 2 2 2 7.5
1 2 2 3 7.6 8.0
1 2 2 4 8.5
1 1 3 1 5.5 ,
1 1 3 2 6.5 6.0

1 2 3 1 7.8 ,
1 2 3 2 8.2 8.0
2 1 1 1 1.0 1.0
2 2 1 1 0.9 '
2 2 1 2 1.1 1.0
2 2 1 3 1.0
2 1 2 1 3.6
2 1 2 2 4.4 4.0 ,.

2 2 2 1 8.1
2 2 2 2 7.9 8.0
2 1 3 1 0.8
2 1 3 2 1.2 1.0 .. ,.
2 1 3 3 1.0
2 2 3 1 3.0 3.0

water quality and whether mean water quality changed as a function of *,:,..

depth are main effect questions, and three main effect questions exist ,..'.,

(one for each factor).

265. Questions about interaction effects refer to interrelation- -Y M'

ships among the levels of the different factors and can be stated,

(a) "Is the effect of a factor the same across levels of other factors?"

or (b) "Are the mean differences among levels of a factor consistent

across levels of other factors?" If the answer is "yes," the factors do
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%

Table 22 %.

Results of ANOVA for the Data of Table 21

Source df SS MS F Pr> F

CDM 11 209.538 19.049 126.99 0.0001*

Error 14 2.100 0.150

Total 25 211.638

• Significant at the 0.0001 level.

not interact and the individual factor effects are said to be "addi-

tive." If the answer is "no," an interaction effect is said to exist. %..

266. In our example, four interaction effects are possible:

interaction effects for each pair of factors (i.e., the three two-factor

interactions of C with D, C with M, and D with M) and an interaction

effect for all three factors (i.e., one three-factor interaction). For

instance, the two-factor interaction (C by D) would concern whether the

change in water quality as a function of depth was the same for both

coves. The three-factor interaction (C by D by M) would refer to

whether or not the interrelationship for C and D was the same across

months.

267. Generalization to higher order factorial structures is

fairly direct. Consider a four-way cross-classification system (arbi-

trarily, let the four factors be A, B, C, and D). If this were the ....

situation, four main effects (A, B, C, D), six two-factor interactions '
(AB, AC, AD, BC, BD, CD), four three-factor interactions (ABC, ABD, ACD,

BCD), and one four-factor interaction (ABCD) are possible.

268. To understand the nature of main effects and interaction

effects, the means of Table 21 (CDMijk) and Figure 19 require additional

summarization. Table 23 and Figure 20 present the means as defined in "

Equations 14-16, to explain main effects, while Table 24 and Figure 21

present the means, as defined Equations 17-19, to explain the two-factor

interactions. Table 25 and Figure 22 present the means of Table 21 and

Figure 19, but the presentation is in a form that is better suited for

122 " .
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Table 23

Summarization of Means and Mean Differences for Each Main

Effect

Factor Means Mean Differences

Cove (i)

C1  5.6 1 2-2.

C2  2.81 2

Depth (J1)

D 1 3.1
D -D -2.4551 2

Month (k) %

M 11.42.

M6.21 3
H -M 1.7

432 3

interpretation of the three-factor interaction. .

thC - mean for the i cove (14)

k-il -1hr*

ni number of samples from the i t cove

*i .

r.

% % .%P % e %

P.
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MAIN EFFECTS
8

6

K 4

2a

22

COVE

6 .

Figure 20. Main effects for
the 12 treatment-populations

2

*d4e

DEPTH * .

8

6

* I2~4

* 2 1

2 3

MONTH

*D -mean at the j thdepth (15)

nl number of samples from the j thdepth
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Table 24

Summarization of Means and Mean Differences for Each Two-

Factor Interaction

Cove Differences Difference by Month
CM Cove by Month of Cove Differences

Month C1 C2 0C1 2) by (M1 -M 3  M 2 - H3 )

M2.0 1.0 1.0

M2 6.3 6.0 0.3 -5.2

3  7.0 1.5 5.5

Cove Differences Difference by Depth : e
CDtj Cove by Depth of Cove Differences

Depth 1 2 (1 2' by M '1 - 2)

V1  4.0 2.0 2.0

D 7.1 3.7 3.4 ON

Depth Differences Difference by Month k".
MDJk Depth by Month of Depth Differences

Month D1  D2  (D1 - 2) by M (MI  M 3 9 M2 -M 3)

HI  1.7 1.25 0.5
3.8

4.0 8.0 -4.0
-0.7

M3  3.0 6.3 -3.3

- th
M= mean during the k month (16)

J-1 1=1, ."., . .

th .nk number of samples from the k month

12. . -_

125 °



TWO FACTOR INTERACTIONS
8

C1

4 %

2 2 34

MONTH

C1

6
Figure 21. Two-factor interac- ~
tions for the 12 treatment-

0 populations .

200

0 1 2 **'* 'd
DEPTH

8

6 D2

2

0
1 2 3 ~n

MONTH

CD ij mean at j t depth for it cove (17)

N - number of samples from the it cove at the j depth
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Table 25

Summarization of Means and Mean Differences for the Three-

Factor Interaction

CDM. Cove ClDifference of
ijic -Z - E2) CM Interaction CM Interactions

Depth Month C1 C2 by M at D I (D 1  D D2 )

I M 1 2.0 1.0 1.0
1 -4.0

M 4.0 4.0 0.0 -.

M 3 6.0 1.0 5.0 4 '

0.0

0.0

CDM Cove -Difference of .. % "

ijk 0C1 - 2) CM Interaction CM Interactions

DP~th Month C1  C2  by D at 1  D1 D 2)

2 M 1  2.0 1.0 1.0 -.

2 -5.0
M 8.0 3.0 5.03

-5.0.

CM~k mean durin kt5ot .orihcv0(8
3 *

IN-'

Cik =nmedriof sape romt the t cove duigth18)mnh, .

AA

thth t



THREE FACTOR INTERACTION

6m1 -~T 3 C 1 0 2

%k %
% %

s%

/ %
Figure 22 Three-fatr o nyeffct interaction for the 12

treatment-populat ions mredfngcntas

" th % % w

Th f mean during k othe at j csdepth (19)itodvlp hecnrs

njk number of samples from the jth depth during the kth month e

269 The essential feature of any effect (main, interaction,nadut pre ti o

nested, etc) is that each is defined in terms of differences among

means. Hence, every effect has a set of one u w o defining contrasts. 

The final objectiv of the present discussion is to develop the contrast

matrix of Table 25 and to establish a set of rules for specifying the
defining contrasts for any effect. An adequate appreciation of a -  %.i

contrast matrix will not only allow for the presentation of many more .- .-%'

examples than would otherwise be possible but will also significantly,.".( :

expedite the discussion of future topics.,.' • r
270. Only one contrast is needed to establish the presence or..,,:',;_

absence of a cove main effect. If water quality does not depend on the PI...

cove from which the water was drawn, the cove means in Table 23

would be equal and the difference between cove means would be zero .* .
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(i.e., C1 - C2  - 0). As is obvious, such is not the case (i.e.,

C1 - C2 - 2.0). Water quality at C was different than at C2  Only

one contrast among means is required because the cove factor has only

two levels. A general rule (Rule 1) for main effects is that the

required number of defining contrasts is or i less than the total number

of levels. By identical arguments, a main effect for depth exists. The

magnitude of the water quality variable increased with depth. Natu-

rally, more depths could have been sampled to provide a more thorough

picture of change in water quality.

271. A month main effect exists along with the cove and depth

main effects. Water quality changed with time. Since the factor of
month had three levels, only two defining contrasts are required even

though three contrasts are possible (i.e., M1 - M2, H1 - H3, M2 - M3),

Table 23 gives the contrasts, M - H and H - H3 .1 3 2 3
272. The means and mean differences show that, with time, water

quality rises and then falls, but not to the level observed for the

first i.,nth. A second general rule (Rule 2) for main effects is that

the set of all possible defining contrasts consists of all possible

differences among means. A convenient selection consists of those

differences involving the mean for the last level of the factor. As a

precautionary note, other contrasts are possible (e.g., H1 - 2H2 -H 3 is "-1 2-.,3

a contrast), but Rule 2 provides a convenient and easily generated set.

273. Having chosen the two defining contrasts, a third general

rule (Rule 3) for main effects (in fact, for any effect) is that all .. ,

defining contrasts must be zero in order to establish the absence of a ..

main effect. Rule 3 can be shown easily with some simple algebra.

Merely let one contrast be different from zero (e.g., suppose

H1 - H3 -0 but H2 -H 3  2 ). By the first contrast H1 M 3 , and

by the second contrast H - 2M Therefore, H is twice as big as V'.
2 3~ 2

M1  and, as such, not all means are equal (i.e., a main effect exists).

Rule 3 also illustrates an extremely important principle--the presence

of an effect does not imply that all means are different. If an ANOVA

indicates the presence of an effect, then the inference is simply that eA.
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differences exist somewhere. Precisely where these differences occur

requires supplementing the ANOVA with other techniques. Many specific

techniques are available for ascertaining precisely which means are

different from each other. These techniques are discussed later, but

all are based on the concept of contrasts among means.

274. Two-factor interactions are more complex than main effects,

but certain principles are the same. Attention is restricted initially

to the C by D interaction (Table 24, Figure 21). A CD interaction
exists; the difference between C1 and C2 is exactly the same at both ,.

depths.

275. To define a two-factor interaction, simply perform a

double-contrast operation (Rule 4): (a) choose a factor and evaluate -
its defining contrast(s) at each level of the second factor, then
(b) apply the defining contrast(s) of the second factor to the results

of the contrasts from (a). Referring to the C by D interaction in

Table 24, the defining contrast for cove differences (i.e., C1 - C2 ) is ... -
1* 2

applied separately at each depth. The defining contrast for depth dif-

ferences (i.e., D1 - D2) is then applied to the cove differences. The

result is not zero and, by Rule 3, an interaction exists. The double- .

contrast operation yields Rule 5, which specifies the number of defining

contrasts required to establish any interaction effect--the number of

defining contrasts equals the product of the number of defining con-

trasts for each factor involved in the interaction (e.g., since both the

C main effect and the D main effect had only one defining contrast,

only one defining contrast is required for the C by D interaction).

276. Identical arguments are used in Table 24 to establish the

presence of a C by M and D by M interaction. Figure 21 shows that

the change in water quality as a function of time is different depending
upon cove (C by M) and depending upon depth of sampling (D by M). %x--..-

Restricting attention to the C by M interaction (same arguments apply

to the M by D interaction), the defining contrast for coves (C1 - C2) ""4
• 2

is applied for each month and then, by Rule 4, the defining contrasts

for month (M1 - M3, M2 - H3) are applied to the cove contrasts. By
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Rule 5, the C by H interaction requires two defining contrasts and, by

Rule 3, all must be zero to claim no interaction. Obviously, such is

not the case for either C by M or M by D interaction.

277. Evaluation of the three-factor interaction (C by D by M)

simply requires generalizing Rule 4 to produce Rule 6: to evaluate any

higher order interaction: (a) establish the defining contrast(s) for

any interaction which is 1 degree lower than the interaction of concern

and (b) apply the defining contrasts of the ignored factor to the

defining contrasts of the lower order interaction. Rule 6 is followed

in Table 25. The defining contrasts for the C by M interaction are lb

established at each depth and then the defining contrast for depths is

applied. By Rule 5, the three-factor interaction requires two defining

contrasts, and by Rule 3, no three-factor interaction exists because all

defining contrasts equal zero.

278. The results of all main effect and interaction effect com-

parisons may be summarized. By Figure 19, differences existed between

means. Not all effects (main and interaction) contributed to the dif- e

ferences witnessed in Figure 19--the differences were not due to the

C by M nor the C by D by M interaction, even though a quick glance at

all ongoing fluctuations across coves, months, and depths would seem to

indicate otherwise (Figure 19 or 22). Consequently, visual inspection i

is insufficient for establishing higher order interaction effects.

Finally, main effects and interaction effects constitute only one set of

contrasts among means. Many contrasts are possible; the researcher's .

task is to select the set of contrasts which has the most meaning for ."

the research questions at hand.

Hierarchical arrangements

279. "Nested" or "hierarchical" arrangements are not that far..

removed from a factorial arrangement. Structurally, the difference is

that there are different levels of one factor at each level of another

factor. For instance, a study may involve two reservoirs and three

recreational areas on each reservoir, thereby yielding six treatment-.. ._

populations. The nature of the inferences about the
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treatment-population effects is somewhat different from those under a '• #.
factorial structure. To describe the inferential process, the data of v /*

Table 26 can be useds In Case I there is a reservoir main effect (j

are not equal), but a reservoir main effect does not exist in Case II.

280. A word of caution is required regarding main effects in a

hierarchical structure. The marginal means are based on different 4

levels of another factor. Hence, main effects comparisons are not made

across common or comparable levels of other factors. This word of cau-

tion also points to the character of nested effect questions. Rather

than asking about comparability of factor levels as a function of other

factors, as is done with factorial structures, hierarchical structure

inquiries take the form, "Are there differences among the particular

levels of a factor within each level of other factors?" Based on the [.-,.'•

data of Table 26 this question must be answered in the affirmative in %-

both cases.

281. It probably goes without saying that as the number of fac-

tors and number of levels of each factor increase, the interpretation of

higher order interaction effects and nested effects becomes a more dif- J. es

ficult enterprise. In actuality, this is true only for higher order

interaction effects. The interpretation of higher order nested effects

is incredibly easier. The reason lies in the definition of the effects.

In the case of higher order interactions, the effects are stated in

terms of differences of differences of differences. For instance, if .

the situation involved a four-way interaction of A , B , C , and D "

then the four-way interaction would ask if a three-way interaction (such

as A by B by C) was constant across the fourth factor (D). But evaluat-

ing the three-way interaction across the fourth would involve, "Are the

differences (among C) of the differences (among B) of the differences -

(among A) constant over D?" But for nested effects, the question is ..

simply one of whether or not differences do exist among levels of the

factor which is nested.

282. Suppose a three-factor hierarchical arrangement of A , B

within A (B/A) , and C within B within A (C/B/A) is employed. Letting
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Table 26 .

Two Hypothetical Situations for a 3 by 2 Factorial Arrangement of Area - . . .

(Factor A at 3 Levels) and Depth (Factor B at 2 Levels)--All Entries

Are Means (u, i.9 U. 9
Area (i)

Reservoir ( ) 2 3

Case I
BI  3 5 1 3 ... . .

B2  5 7 3 5

4 6 2

Case II

B1  3 5 1 3

B2  1 1 7 3

li.2 3 4

ijk denote the ABC means, the effects may be defined as a, .

(Ui... - ' = - j.) and k/ij = ('ijk -ij.

Notice that these effects are 0 if and only if the means within a group

are equal. For instance / = 0 if and only if all 6 means (Pij)
th th sv.within the i level of A are equal to the overall i A mean ..

(i.) " Thus, nested effects exist if differences among means within a

group simply exist.

Post-ANOVA Hypotheses

283. Researchers often need to make specific contrasts or test

specific hypotheses about differences among means, hypotheses which are

not answered directly by main effects, interaction effects, nested

effects on combinations thereof. For instance, the analysis of Table 19

tests the omnibus hypothesis, "Are there differences among coves?" How-

ever, the researcher may wish to know whether pairwise differences

exist, that is, which coves are different. ,
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284. Define a contrast by

a
L ctiv

where

1t = ith treatment-population mean

c, - contrast multiplier for the tth mean

285. Suppose the researcher wants to test whether cove 1 differs *' "

significantly from cove 2.

286. Then the hypothesis would be

4%

o - 2 %0

where c1 = 1 , c2  0 ,and c3 in-1 .3

287. On the other hand, suppose the researcher wants to know if

the average of the means for the first two coves is significantly dif-

ferent from the mean for the third cove.

288. Then the hypothesis would be

H II+ ). 0
H: 2 1 3 0

where c1  1/2 , c2  1/2 , and c3  -1

289. To test these hypotheses, an F test statistic may be defined

as follows:

2

MS 3e 11 n
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AM6

where L- a

290. Referring to Tables 17 and 19, and the latter hypothesis, 0

F [1/2(29.0) + 1/2(31.4) - 22.012

2.69 (1/2) + (1/2) + (-1)
4 5 3 3~

67.24
1.20

- 56.03

291. The question is whether the F test statistic is significant. "

It is here that many methods are available which differ according to

control of the Type I error (a) rate so that when several contrasts are

made, the desired a-level is maintained. Two methods are Bonferroni's

and Scheffe's. The Bonferroni method defines the critical F value for

a/k with degrees of freedom equal to I and df . For instance (seee

Tables 17 and 19), if a - 0.05 and five contrasts are made, F - 10.6

for c/k - 0.01 , df - 1, and dfe - 9 . The Scheffe method uses

F* - (a-1)F where F is defined for a and degrees of freedom equal

to a-1 and df . For instance (see Tables 17 and 19), if a - 0.05e

and five contrasts are made, then F* - 2(4.26) - 8.52 where 4.26 is F

for a - 0.05 and degrees of freedom equal to 2 and 9.

292. As a final note, the Bonferroni method is the preferred

method for a priori planned comparisons and if the number of contrasts

is less than or equal to the number of means. As the number of con-

trasts increases and if the contrasts are mainly a matter of post hoc
searches for differences among means, the Scheffe method would be .=

preferable.

293. Before leaving the topic of contrasts, we will address a

special set of contrasts, most often called orthogonal polynomials,

which are particularly useful for trend analyses. These contrasts apply
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~~~when the treatments represent equally spaced quantitative levels such as -.-. .
time or distance. For instance, suppose the levels of the treatment-

populations represent 4 months. The research question might be, "across

months, what is the nature of the trend in the means?" Because there

are 4 months, the trend might be linear, quadratic, cubic, or some com-

bination of linear, quadratic, and cubic. Multipliers for polynomial

contrasts for up to four treatment levels are given in Table 27.

Nonparametric Analyses

294. The motivation underlying the use of nonparametric tech-

niques is quite simple and direct. Nonparametric (NP) methods rely gen-

erally on a set of assumptions that is less stringent than the set

required by the analyses presented in the previous chapters. Basic to.

all previously discussed ANOVA was a set of assumptions about the under-

lying distribution of the treatment-populations. The restrictions were

that the dependent variable (usually stated in terms of residual

effects) comes from underlying continuous distributions which are normal

with equal variances. At face value these constraints appear quite

restrictive. Many would argue that those conditions are rarely

satisfied. For instance, if there are in fact no mean-differences among

the treatment-populations, then the significance level (a = Type I error

rate) represents the probability of declaring mean-differences based
simply on chance or the random sampling process (that is, a - percent of

the time significant differences will be detected merely by chance).

However, the Type I error rate statement is true if and only if the

assumptions of the model are, in fact, satisfied. The question thereby

becomes, "If one or more of the conditions of the model are not

satisfied, are alternative methods available which maintain 'correct-

ness' in the probability inferences?" The answer is a resounding "yes." - .

295. Nonparametric analyses of variance yield valid inferences

about treatment-population differences yet rely upon satisfying a less

stringent set of conditions. However, as is usually the case in the

world, one does not get something for nothing. Depending upon the
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Contrast 1 2 3 4

Linear -1 1

Linear -1 0 1
quadratic 1 -2 1

Linear -3 -1 1 3
quadratic 1 -1 -1 1 " .

cubic -1 3 -3 1

degree of mildness in the constraints imposed for NP methods, the loss

incurred may lie in (a) less specificity in the precise nature of the

differences among the treatment-population that the methods are sensi-

tive to or (b) less power in detecting differences which do in fact

exist. Parenthetically, in the latter case, the loss in power is rela-

tive to the particular methods used but more importantly is relative to

the degree of violation of the assumptions of the parametric analyses.

While some NP techniques incur minimal loss in power efficiency, others

maintain equal or greater power efficiency depending upon the degree of

violation of the parametric assumptions.

296. The fundamental point of departure from parametric methods

lies in the assumed form of the underlying treatment-population distri-

butions. Whereas a parametric ANOVA requires normal populations, NP

analyses do not. In fact, an NP ANOVA does not even require similarity ./

of distribution form across treatment-populations. Similarly, whereas a %4%

parametric ANOVA requires the normal populations to possess equal spread

(variance), an NP ANOVA does not. Hence, NP methods are often called ,.. -

"distribution-freer" methods. Some clarification of the term "freer" is q...
% %t

warranted. The use of "distribution-freer" does not say that no distri- IN -V"

butional assumptions are made. Quite the contrary. The terminology b ? %

simply implies that less restrictive conditions are required. For

instance, NP methods share with parametric methods two assumptions--the

9 %
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residual effects are continuous and distributed independently.

297. Beyond these two basic assumptions of continuity and inde-

pendence, NP methods vary in their assumptions, and this variation is

reflected in the precise meaning of the estimation and hypothesis test-

ing processes. NP analyses of variance techniques are, in a strict

sense, sensitive to differences between treatment-populations other than

those selected by mean-separation. However, this sensitivity to differ-

ences in shape or dispersion (spread) is minimal. However, if assump-

tions such as equivalence of form (not necessarily normal) and/or spread -

are valid, NP methods test for and estimate mean-differences. For

instance, some NP techniques require in addition to the two basic

assumptions of continuity and independence only the assumption that

treatment-population distributions are symmetrical regardless of their

form or spread.

298. The mechanics of NP ANOVA are conceptually easy to compre-

hend. The estimation and test processes are based on transforming the

original data by ranking the data. Hence, NP analyses are oftentimes

referred to as "analyses of variance by ranks." The meaning of the pro- '

cedures is simple. Suppose we desire to compare three treatment-

populations and suppose a random sample of five experimental units is

selected from each. Let us rank the observations in ascending order

irrespective of the treatment-population yielding the data. As a result

and under the presumption of no ties, the ranks will range from I to

15 units of 1. Now if no difference between treatment-populations

exists, one would expect the average of the ranks from each sample to be

equal. Conversely, if substantive differences exist (e.g., Population A

> Population C > Population B), the means of the sample ranks should

reflect the underlying inequalities. Therein lies the meaning of NP

techniques.

299. Three nonparametric analyses will be illustrated: one-way

ANOVA by ranks for a completely randomized design (Kruskal-Wallis test),

two-way ANOVA by ranks for a randomized block design (Friedman test),

and correlation (Spearman s rho).

300. The Kruskal-Wallis test for a one-way ANOVA by ranks is
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based on the H statistic, calculated as

k 2
12 k i 3(N + 1)

N(N + 1) - 3(N+1)

where

ni M number of observations in treatment-population i

k - number of treatment-populations
k

N - n, - total number of observations ",. %.

Ri - sum of the ranks of the ni observations in treatment
population i .

301. The calculated H statistic is compared to a chi-square (x2)

value with degrees of freedom equal to the number of treatment popula- Wi

tions minus one (DF - k - 1). If the calculated H statistic exceeds the

chi-square value, the null hypothesis can be rejected.

302. As an example of a one-way ANOVA by ranks, consider the data

presented in Table 28. Twelve samples for chlorophyll a were taken from -

each of three reservoirs, and the data ranked in ascending order. In *.-.

nonparametric tests, population parameters are not used in statements of .

hypotheses, so the hypotheses in this example are stated as

H :chlorophyll concentration is the same in all three ?s- .
0

reservoirs e S %

HA:chlorophyll concentration is not the same in all three
reservoirs

303. The statistics necessary to calculate H are

n1  n 2 - n3 -12

km 3

N -36 5.
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and

R -206 R2 -163 R3 -297

The H statistic is

H12 +(20+23(362297)1_)
H- 36(36 + 1) 12 + 12 + 12'J 3(36 + 1)

0.009(13,101.167) -111.0 : .2

= 118.029 - 111.0 2-'. .'.

=7.029 .: ,( e

2
The critical value of x with DF = 2 and a = 0.05 is 5.991, so the
null hypothesis of equal chlorophyll concentration can be rejected. -;.',-¢

304. Just as with the parametric one-way ANOVA, the nonparametric
one-way ANOVA indicates only whether significant differences exist.

Rejection of the null hypothesis by the one-way NP ANOVA does not indi-

cate which of the treatment-populations are different. Nonparametric I "

multiple comparisons can be performed in a manner similar to the

Student-Newman-Kuels test by using rank sums instead of means.

305. In order to perform the multiple comparisons, the rank sums

from the Kruskal-Wallis test are arranged in increasing order of magni-

tude. Pairwise differences between rank sums are then computed. The.1

standard error is calculated as

SE n(np) (np + 1) "SE V 12

where

n - number of observations in each treatment population e-

p - range of rank sums \- .
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Table 28

Data for a One-Way ANOVA by Ranks

Reservoir (M)
1 2 3

CHLaRank CLa Rank CHLa Rank

59.4 16 44.7 6 82.3 29
60.6 18 60.5 17 87.4 31
65.9 22 55.0 13 67.0 23
51.1 11 64.2 21 61.1 19
63.1 20 92.1 33 73.8 26
52.6 12 69.2 24 77.8 28
59.2 15 49.8 10 88.5 32
45.1 8 56.5 14 96.4 34
83.1 30 34.8 4 23.5 1
29.2 2 46.0 9 32.0 3
77.6 27 42.2 5 114.9 36

71.4 25 44.8 7 100.8 35

n 12 12 12

E R1  206 163 297 -'

R 17.17 13.58 24.75

Note that this multiple range test requires that there be equal num-

bers (n) of data in each of the treatment populations.

306. Using the example of chlorophyll a concentrations from three

reservoirs, the rank sums can be ordered

Rank of rank sums (RRi) 1 2 3

Rank sum (Ri) 163 206 297

(Res 2) (Res 1) (Res 3) - -

and the multiple comparisons are given in Table 29. Based on the mul-

tiple comparisons it can be concluded that chlorophyll concentration in

reservoir 3 is greater than that in reservoirs 1 and 2 and that .. * -
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Data for a Nonparametric Multiple Range Test

Comparison Difference ,
(R vs. Ri) (Ri-R) E q

_______ SE q C9

3 vs. 1 134 3 36.479 3.672 3.314
3 vs. 2 91 2 24.495 3.715 2.772

2 vs. 1 43 2 24.495 1.755 2.772

chlorophyll concentration is the same in reservoirs 1 and 2. These con-

clusions can be summarized by

163 206 297

or .. -

Res 2 Res I Res 3 " .
'

-

307. Friedman's test is a nonparametric method that can be

applied on a randomized block design. Remember that a randomized block

design consists of b blocks and t treatments. To perform Friedman's

test, the data within each block are ranked (i.e., values are ranked

with respect to members of the given block) and then the ranks are
2

summed for each treatment. The test statistic xr is calculated as

2 2 -

r 2bt 2  1 -.... .' -
.(nt + 1);.

where

b -number of blocks

t - number of treatments
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n - number of observations per cell '.--v'
Ri  rank sum for the ith treatment

The calculated x2  is compared to a critical x2 value with degrees of
r ..

freedom equal to the number of treatments minus one (DF - t - 1). If %

the calculated x 2 exceeds the critical x , the null hypothesis canr
be rejected. .

Table 30

Data for Two-Way ANOVA by Ranks

Month()
June (1) July (2) August (3)

Station SRP Rank SRP Rank SRP Rank

A 7 9.0 3 8.0 1 2.5 ...
8 10.5 2 6.0 2 6.0 . .
8 10.5 1 2.5 2 6.0 de,

10 12.0 1 2.5 1 2.5

B 7 10.0 4 8.0 1 3.0
7 10.0 3 7.0 1 3.0
7 10.0 2 6.0 1 3.0
9 12.0 1 3.0 1 3.0 '

C 11 11.0 4 5.5 1 2.5
8 8.0 6 7.0 1 2.5 Or
9 9.0 4 5.5 1 2.5 %

12 12.0 10 10.0 1 2.5 ,.•

D 17 9.0 5 4.5 3 1.0
25 12.0 4 2.5 4 2.5 -....
18 10.0 7 6.5 5 4.5
21 11.0 9 8.0 7 6.5 .....

Ri 166.0 92.5 53.5 \ 'i'd

308. An example of a two-way ANOVA by ranks for a randomized

block design can be based on the data in Table 30. Soluble reactive

phosphorus (SRP) concentrations were measured in four replicate samples

from each of four stations sampled in June, July, and August. In this

143 -'.:'"; A
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example, stations are the blocks and months represent the treatment P

populations.

309. Note that the ranking process is applied within each block

(station) and separately for each block. Once the ranks are assigned,

the rank sums can be calculated by summing the ranks within each

treatment-population (month). The rank sums are I

June R 166.0 A.OL

July R2  92.5 -P

August R 53.5

Also, for this example,

=* -I. * .

t-3

310. The null hypothesis to be tested is:

H :SRP concentration is the same for June, July and August
0

with the alternative hypothesis

H A:SRP concentration is not the same for June, July and August

311. The calculated x statistic isr
%* _==..--
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X 12 (166.0) 2 + (92.5)2 + (53.5)21 0

12r6) 2 +
(4)(3)(4)[(4)(3) + 11

(166.0 + 92.5 + 53.5)2

X r 2,496.0 1389745 129734401

2 - (0.00481)(6,526.5) = 31.39
r

2
The critical value of x with DF = 2 and a - 0.05 is 5,991 so the

null hypothesis can be rejected.

312. Nonparametric or Spearman's correlation is simple and ".'-

direct. This method of correlation is useful when the bivariate data

are not normally distributed. To perform a rank correlation, simply

rank separately the x and y data and compute the correlation coefficient
as shown for a simple linear correlation using the ranks rather than the

raw data.

313. The data in Table 31 can be used for an example of rank cor-

relation. Assume that these flow and concentration data were taken at

the major inflow to a reservoir and then ranked in ascending order. To

calculate the Spearman rank correlation coefficient rs , it is first

necessary to compute

2 2 2
xR N XR (EXR) I

, .1•* .r*- "2 2 2 A.e
Ey E - (EYR) /n

x ZXRYR - (EXR) MYR)/n....

where

XR = rank of the X value

YR = rank of the Y value

n - number of bivariate pairs
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Daa Table 31
Daafor Rank Correlation .

FlowRnk ___R Concentration Rank (Y R)

77.10 10 99 10%
8.00 5 13 1

21.70 7 47 8
37.70 9 41 7
17.70 6 86 0 *

4.30 4 33 4
2.47 3 35 5
2.44 2 19 2
2.23 1 26 3
26.70 8 40 6 do00L

E XR - 55.0 EYR 55.0

2 385.0 EY2 =385.0

Xi R

~~rY= 364.0

2 2
NOTE: EXR Z Y and EXR Z only because there were no ties in

either the ranks of X or the ranks of Y

* In the example,

E xR385.0 (55)2 =10 82.5

2 2 .*

Ey 385.0 -(55) /10 =82.5 . ~
R&A~

Ex RYR = 364.0 - (55) (55)/10 - 61.5

The rank correlation coefficient is calculated as

2* 2

E R EYR
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and for the example %

6 1 .5 -.--
= 8= 0 745

314. To determine the significance of the rank correlation, a

t test is used in the same manner as was used for the simple linear

correlation coefficient. --- '

Multivariate Data Analysis ...

315. Many studies of reservoir water quality involve multiple

variables, multiple samples, and/or multiple water bodies. In those "-""-"'-

situations, statistical studies will be both univariate (and involve

methods described elsewhere in this manual) and multivariate. The

multivariate methods described below can be used to greatly enhance the %

limnologist's understanding of water quality relationships in and among

reservoirs. Equally important, computer programs (like SAS) with multi- e.

variate methods are available that may be used as easily as are their

univariate counterparts. As with the application of all statistical E .

methods, however, the use of multivariate methods must occur with con- "

sideration of the assumptions behind their inferential use. - .

Issues that can be addressed

with multivariate analysis '-

316. The types of research questions that can be examined with.--

multivariate statistical methods can be conveniently grouped into a

relatively few categories. For the methods discussed herein, these

categories are:

a. Characterization of the strength of a relationship .
between and/or among variables (multiple and canonical .
correlation).

b. Classification of variables or observations (cluster
analysis). .

c. Examination of structure within a system (principal V
component and factor analysis).
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d. Development of predictive relationships for assignment P 4

to predefined groups (discriminant analysis). G&.-'

Each of these tasks or functions for multivariate methods is described

briefly below.

317. The "strength" of a bivariate relationship is often conve-

niently expressed in terms of a simple correlation coefficient. Multi-"*
U tj

variate analogs to the simple correlation coefficient exist for two - -

situations. First, multiple correlation is used to describe the degree

of relationship between a single dependent variable and a combination of

two or more independent variables. This is the situation that occurs in A
multiple regression, and therefore the multiple correlation coefficient

is a useful indicator of the goodness of fit of the multiple regression

model. In truth, the multiple correlation coefficient is just a simple

correlation coefficient with a new variable created that is a function -.

of two or more original variables. The second multivariate analog for %

simple correlation is canonical correlation. In effect, this describes
%

the situation with linear combinations of multiple dependent and

multiple independent variables. Thus, the canonical correlation coeffi- -.

cient may be used to describe the strength of a relationship between a

linear combination of nutrient variables and a linear combination of

biomass-related variables. The linear combinations are defined by the

canonical correlation procedure in order to maximize the degree of cor---''

relation between these two sets of variables.

318. The multivariate procedure called cluster analysis may be %

used to take "objects" and group them into categories that are based on

the relative similarity of the objects as expressed in a set of pre-

specified variables. For example, with trophic state data (on several

variables) for a number of reservoirs, the limnologist can use cluster

analysis to create groups of reservoirs (based on these trophic state

variables) that may then be labeled as specific trophic state categories

(e.g., oligotrophic, eutrophic, etc.). Alternatively, the objects may

be sampling stations within a reservoir, and cluster analysis may be

used to group the stations according to similarity in sampling results. .

In that manner, cluster analysis may be used to identify redundant%

148 - *'-:,

III

... . . .. .. . .. .. . .. .. . . .. . . . .. .. ... .. . . .. ... . . .. ... .. .. .. ... .. .. . . . .. .. .. ... . . .. .. . .. . . . .



stations if sampling effort is to be reduced. I"

319. It is not uncommon that data acquired on multiple variables

actually represent one or only a few fundamental characteristics. For

example, multiple nutrient and biomass data can all be considered to

represent the single concept trophic state. The companion procedures, "- %

principal components and factor analysis, can be used to extract this .\.?

simple structure (if it exists at all) from a multivariate data set. In

other words, these procedures may be used to define a linear function of

the variables which represents the "common element" in the data. For "

this example, the univariate composite that results might be called a

trophic state index.

320. Cluster analysis, as noted above, is used to create group-

ings of observations on the basis of the similarity of observations as

represented by a set of multivariate data. No groups were defined a -.- '

priori. Discriminant analysis, on the other hand, is based on

predefined groups of observations. With group membership established

beforehand, discriminant analysis can be employed to define a linear

function of independent variables that may be used to predict group :-.'

membership for a new observation. For example, reservoirs could be

preassigned to trophic state classes on the basis of existing biomass

and water clarity data. Discriminant analysis may then be used to " "-

develop a linear model, perhaps based on nutrient loading data from .... .

these reservoirs, that can be applied to predict the trophic state of a % %%

previously unclassified reservoir (from the nutrient loading estimates). 0

Important assumptions for

multivariate statistical inference

321. There are certain assumptions, and in a more general sense,

certain conditions, that should be met or at least considered when

applying multivariate methods. This requirement is not different from .-'--.

similar requirements for univariate statistical analysis. In fact, the -. , .

specific conditions or assumptions that are important are essentially

the same as those noted to be of concern in previous sections devoted to

nonmultivariate statistical methods. For additional information on this

topic, Tabachnick and Fidell (1983) is recommended.
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322. A "condition" of a data set (that is not an assumption as

such, but can affect most of the assumptions discussed below) concerns

outliers or influential data points. As noted in Part III concerning

descriptive statistics, observations that are far removed from the bulk

of the data points (outliers) can have a major effect on the value of

commonly calculated statistics, such as the mean, standard deviation,

and variance. Since these statistics are often used in multivariate

procedures, outliers can affect the results of multivariate analysis.

One approach (Gnanadesikan 1977) is to use robust analogs of the mean

and variance; however, this will affect inferential statements (e.g.,

significance tests) and it is not clear what adjustments need to be made

to employ statistical tests with the robust statistics. A better

* approach may be to carefully screen the data and apply a transformation

* if necessary. In essence, the methods recommended in Parts II and III

may be used to do this screening. This can be undertaken for each

variable individually, and in most cases this will serve to identify all ,.I
multivariate outliers.

323. Collectively, the key assumptions for the multivariate Vi

methods concern normality, independence of observations, constant

variance (homoscedasticity), and linearity. It is important to realize *45

that the assumptions do not hold for all methods nor do they necessarily

hold for all applications of the same method. Further, it is likely

that even when the assumptions are necessary, mild violations of an

assumption (with the possible exception of the independence assumption) N.,

are of little consequence.

324. The assumption of normality is of concern when hypothesis

tests, significance levels, or confidence intervals are determined

because these procedures require normality. Although the assumption may

refer to multivariate normality, it is often adequate to simply assess

the normality assumption on each variable individually and apply normal-

izing transformations where necessary. While univariate normality does

not guarantee multivariate normality, it will probably be adequate for

most applications.
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325. Independence of observations is an important assumption

whenever statistical tests that are a function of sample size are

applied. The problem occurs because lack of independence means that the

effective sample size (based on the amount of nonredundant information

in the data set) is less than the actual sample size. Therefore, to

properly conduct statistical tests with dependent observations, an

effective sample size should be calculated for use in testing proce-

dures. Alternatively, some observations could be eliminated from the
data set such that the remaining observations are independent. For ..

example, if the data set consisted of weekly dependent observations, but

it was determined that biweekly observations were independent, then one

simple (but perhaps inefficient) solution is to eliminate every other

observation and conduct statistical tests on biweekly data. Of all the

assumptions listed above, the independence assumption is most critical

on the basis of the consequences of violation.

326. The assumptions of linearity and homogeneity of variance at

times are necessary for statistical tests (statistical inference) and

more commonly are important as "conditions" that affect interpretation .* .:

in descriptive use of multivariate methods. When one or both of these

conditions is a problem, the result is that the correlation matrix (or

covariance matrix) for the multiple variables does not correctly or

adequately represent relationships. For example, if a relationship % 46

between two variables is nonlinear, but the multivariate analysis is run

for a linear model between the variables (i.e., a linearizing transfor-

mation was not applied beforehand), then the result will not reflect the

true (nonlinear) relationship. This in turn can affect the conclusions

drawn by the investigator. It is a good idea, therefore, to examine the

data in univariate and bivariate plots (see Part II) to check for lin-

earity and homoscedasticity. Corrections (e.g., a linearizing or vari-

ance stabilizing transformation) made on the basis of univariate and

bivariate examination of the data should usually satisfy the multi-

variate assumptions and conditions. %-v
1. '.P.

327. Characterization of relationship strength: canonical cor-

relation. As noted above, the strength of a multivariate relationship
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can be assessed using either multiple or canonical correlation. Since N.

multiple correlation is almost always associated with multiple regres-

sion, the reader interested in multiple correlation is referred to the

section on regression analysis. The discussion in this section focuses

on canonical correlation; useful references on this topic include ,. . ,

Tabachnick and Fidell (1983) and Green (1978).

328. Canonical correlation is used to identify and estimate a

linear function (called a canonical variate) of one set of variables

that is maximally correlated with a linear function of a second set of

variables. Additional canonical variates, which are uncorrelated with

the first set, may also be identified. The procedure results in infor-

mation that is primarily descriptive in nature, and thus it has been .

used less frequently than have other multivariate methods that facili-

tate hypothesis testing and/or prediction. -

329. Generally of interest to those who apply canonical correla-

tion is the extent of relationship between two set of descriptors (or . . *..

variables) for objects (e.g., reservoirs) under study. For example, one

may be interested in the relationship (if any exists) between reservoir ' '.. ..

water chemistry and cell counts for dominant algal species to see if

certain conditions (e.g., low inorganic nitrogen concentration) favor

(covary with) blue-green dominance. The canonical correlation between a

set of water chemistry variables (nutrients, etc.) and a set of vari- ..

ables indicating cell counts for major algal species in a multireservoir

study could be quite helpful.

330. Canonical correlation may also be used to see how many
"common elements" are contained within two sets of variables. For

example, canonical correlation may be applied to a set of reservoir

water chemistry variables and a set of reservoir geomorphology and

hydrology variables. From this analysis, the first canonical variate .-.. -.

might represent trophic state as determined from the canonical weights

or coefficients, which in that case might be highest for nutrients in

the first set of variables and for depth in the second set of variables. ,..' -W

In addition, the second canonical variate could represent reservoirs "'...**-

located primarily in the southern United States with the largest
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canonical weights on variables such as conductivity, alkalinity, and

reservoir volume.

331. When two or more pairs of canonical variates are identified,

the investigator can express the relative importance of each canonical

variate pair on the basis of the percent overlapping variance (equal to

the squared canonical correlation coefficient) between the two sets of

original variables. For the hypothetical example discussed above, it

may be found that the first canonical variate pair represents 60 percent

overlapping variance and the second canonical variate pair has 15 per-

cent overlap. This information helps the investigator understand the

extent of commonality within a set of variables. In addition, one can

calculate the percent variance explained by a canonical variate within

each of the two sets of original variables. For example, in the pre- .

vious hypothetical example, the investigator may find that the first

canonical variate explains 70 percent of the variance in the nutrient

variables and 30 percent of the variance in the hydrology-geomorphology ..

variables. . ,I.

332. When canonical correlation is used in hypothesis testing or

to justify statements of statistical significance, an assumption of

multivariate normality is necessary. As noted in the previous section,

this is often adequately satisfied by creating data distributions that • . .

are approximately univariate normal. Most applications of canonical ,,'

correlation are descriptive; in that case, multivariate normality is

desirable but not necessary. Descriptive applications can yield mis-

leading information, however, if the data distributions are highly

skewed or exhibit outliers. It is wise, therefore, to use transforma-

tions if necessary to create roughly symmetric univariate data distri-

butions, and to carefully examine the validity of any outlying data

points. If outliers cannot be removed from the data set on the basis of
substantive reasons, then it is recommended that two analyses be run--

one with the outliers and one with the outliers excluded. Both analyses

could be reported so the reader could directly relate inclusion/

exclusion of the outliers to the canonical correlations.
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333. Finally, canonical correlation depends upon linear relation-

ships at two points in the analysis. First, the variables within each

of the two groups of data are combined in linear canonical variates.

Therefore, the data should be transformed if necessary so that a linear ,- r

model is appropriate. Second, since the analysis is based on the simple . .

(product-moment) correlation coefficient, bivariate correlation coeffi-

cients should reflect the actual linear relationships in the data.

Again, transformations may be necessary to achieve this. For example, ... _-

if the relationship between Secchi disk depth and all other nutrient-

related variables exhibits a hyperbolic pattern, and the inverse of

Secchi disk depth straightens (linearizes) the relationship, then the

inverse of Secchi disk depth should be used in the canonical correlation

analysis. .... "

334. Canonical correlation - example. This example and some of .

the other examples presented in this section on multivariate analysis

are based on a data set from Walker (1981). The data, presented in

Table 32, concern water chemistry in 43 Corps of Engineers reservoirs.

335. The data set consists of seven variables. Three of the

variables (pH, alkalinity, and conductivity) relate to acidity and

dissolved salts. Four of the variables (total phosphorus, total nitro-

gen, Secchi disk depth, and chlorophyll a) are related to trophic state.

For most of the studies, all variables but pH are log-transformed to -

create distributions that are closer to univariate normal than are the

distributions of the untransformed variables.

336. Given the uses of canonical correlation and the composition

of the sample data set, it seems appropriate to use canonical correla- ,. _

tion to examine the relationship between a linear function of the

acidity-salinity variables and a linear function of the trophic state

variables. This was done using the SAS CANCORR procedure. Some of the P

major features of the SAS output are summarized below.

337. For this example, the PROC CANCORR statement simply identi-

fied the data set and labeled one set of variables (the acidity-salinity

variables) as "VAR" and the other set (the trophic state variables) as e -

"WITH" as required in the procedure. Table 33 presents a portion of the

154;" " '

,*% "*%



1 , . .

Table 32

Multivariate Reservoir Data

Total Total Secchi
Conduc- Alkalin- Phospho- Nitro- Disk Chloro- e

Reser- tivity ity rus gen Depth phyll a %

voir pH umhos/cm mg/I Pg/i ug/I m Og/k

1 7.11 74 11 10.7 941 3.49 4.9

2 8.06 273 105 96.5 1,724 1.20 18.0

3 7.48 503 33 50.0 677 1.09 8.1

4 6.74 795 20 24.2 1,152 1.23 2.6--
5 6.69 816 25 40.1 1,409 1.20 4.0

6 8.48 652 294 277.0 1,739 0.75 41.3 t.J6

7 7.92 422 79 58.8 1,428 0.86 14.6

8 8.00 208 53 59.8 1,042 0.93 26.8

9 7.57 138 23 20.9 735 2.18 3.7

10 8.25 294 48 41.3 945 0.96 16.4

11 7.56 559 72 167.2 2,887 0.28 10.9

12 8.25 397 134 127.0 1,765 0.44 67.1

13 8.11 493 158 102.5 3,106 0.40 10.8

14 7.97 429 134 186.6 3,204 0.46 26.1
15 8.24 323 128 40.4 950 1.10 22.8
16 7.40 1,350 42 10.6 523 2.24 5.6

17 7.10 307 10 12.8 858 3.53 6.2 .
18 8.02 1,849 178 103.9 3,070 0.67 15.8 .-.'2,

19 7.37 572 30 31.1 763 1.64 7.2

20 8.07 835 81 44.2 838 1.19 8.4

21 7.67 644 73 124.8 750 0.69 13.3

22 7.56 626 38 15.6 477 1.72 3.8

23 8.04 1,001 119 45.1 569 1.77 10.0

24 7.89 573 52 57.8 629 0.76 8.9

25 7.65 815 62 10.2 443 4.32 3.6

26 8.03 1,512 133 84.4 2,091 0.56 17.4

27 8.04 1,676 164 69.3 4,352 0.98 17.1

28 7.68 1,136 63 71.1 1,211 0.72 23.5
29 7.64 116 47 30.7 547 2.14 3.9

30 8.34 198 127 15.9 527 3.96 4.0

31 8.22 203 98 29.4 636 2.27 9.1
32 8.16 392 176 221.1 1,858 0.19 9.5

33 7.81 399 81 90.0 854 0.45 4.4 . "

34 8.08 1,520 129 211.7 1,287 0.37 27.0 .,.-

35 8.09 163 75 37.7 837 1.64 6.6

36 6.37 61 22 96.9 686 0.58 5.1

37 8.17 342 109 131.0 854 0.63 17.4

38 8.06 1,345 156 68.1 1,193 0.34 16.0

39 8.36 785 203 94.5 1,169 0.85 18.9

40 8.20 351 144 45.2 1,526 0.47 8.4

41 8.41 528 201 125.3 1,033 0.61 27.8

42 8.17 675 175 72.9 460 2.32 7.4

43 7.21 23 17 13.0 247 2.49 2.4

-,,,. ." . . . .
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SAS output: the canonical correlations, the approximate standard error,
the F statistic, the Pr > F. q

338. Since there are three variables in the smaller of our two

groups (the VAR group), three canonical correlations are estimated 0

(rows 1, 2, and 3 in the upper entry of Table 33). Each canonical

variable is uncorrelated with all other canonical variables except its

corresponding canonical variate from the opposite data set. The first

pair of canonical variables (represented by row 1) is constructed so

that it maximizes the correlation between a linear combination of the

VAR variables with a linear combination of the WITH variables. The .'

second pair of canonical variables is also constructed to maximize this

correlation, except that it must also be uncorrelated with the first

pair of canonical variates. This continues until all canonical variates

are estimated.

339. In Table 33, the canonical correlations are given for the

three pairs of canonical variates.. Note that the first two correlations

are reasonably high. Recall that the interpretation of the canonical

correlation coefficient squared is the percent overlapping variance.

Thus, for the first pair of canonical variates, there is about 54 per-

cent overlapping variance (0.7332). This means that 54 percent of the

variance in the first VAR canonical variate is explained by the first ".p.1
WITH canonical variate. If these canonical variables are in turn highly

correlated with the original variables (this is examined below), then

the first canonical variate may describe a high level of commonality

between the two sets of variables.

340. The approximate standard errors for the first two canonical

correlations are relatively small in comparison to the magnitude of

these correlations. This suggests that the correlations may be sig-, *"..-%

nificantly different from zero. Confirmation of this point is given in

the F statistic and the probability level for the F statistic which

shows significance at >0.01 level. In these tests, the F statistic is

determined for the canonical correlation in its row as well as for all .. ..

lower canonical correlations simultaneously. Thus, the F statistic in

row 2 represents the simultaneous tests of canonical correlation
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Table 33 %

Canonical Correlation Analysis

Canonical Canonical Approximate Degrees of

Variate Correlation Standard Error F Statistic Freedom Pr > F

1 0.733 0.071 5.336 12 0.000

2 0.618 0.095 4.202 6 0.001

3 0.317 0.139 2.118 2 0.134

Multivariate Test Statistics and F Approximations - .. ..

Statistic Value F Degrees of Freedom Pr > F . -*=. .*--

Wilks' lamda 0.237 5.767 12 < 0.001

Pillai's trace 1.100 5.502 12 < 0.001 .

Hottelling-Lawley trace 1.978 5.715 12 < 0.001

Roy's greatest root 1.161 11.034 4 < 0.001

coefficients two and three. The interpretation of these tests is that

only the first two canonical correlation coefficients are significant at

the 0.01 level.

341. The next grouping of the output in Table 33 presents four ei e%

statistics used to evaluate the significance of the canonical correla-

tions as a set. While each statistic is slightly different from the

others, they all test this feature of overall significance. Pillai's .

trace may be the most robust of the four (Tabachnick and Fidell 1983),

but since Wilks' lambda is by far the most commonly reported of the % .

four, it is the one we discuss here. Since tables for the four statis-

tics are uncommon, each statistic is evaluated for significance using an

F statistic approximation (F tables are far more common).

342. Wilks' lambda is defined as

ni 15 (CC)21
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where

II = product operator . 4

CC canonical correlation

343. Since Wilks' lambda is the product of one minus the canoni- ". -lo.

cal correlations squared, it will be low when the canonical correlations

are high. Based on the F approximation, Wilks' lambda indicates a set

of highly significant canonical correlations for this sample data set.

344. Table 34 presents raw and standardized coefficients for the

canonical variables. The raw canonical coefficients are used directly .

with the original (mostly log-transformed) variables, whereas the . .?

standardized canonical coefficients were estimated for variables that

were normalized (i.e., subtract the mean and divide by the standard

deviation). These coefficients are used to write the linear canonical

variates for each set of variables. For example, using the raw canoni-

cal coefficients in Table 34, the first canonical variates are:

. pp # .

V1 -1.478(pH) + 4.402 [log(ALK)] - 0.268 [log(COND)]

W1 = 2.822 [log(TP)] + 0.546 [log(TN)]

+ 0.706 [log(SECCHI)] + 0.030 [log(CHLa)]

Table 34

Canonical Coefficients

Canonical Variable Canonical Variable
Variable VI V2 V3 Variable W1 W2 W3

Raw Canonical Coefficients

pH -1.478 3.846 -0.225 Log(TP) 2.822 -2.250 -3.427
Log(ALK) 4.402 -3.947 -1.318 Log(TN) 0.546 -0.986 4.015
Log(COND) -0.268 1.003 2.769 Log(SECCHI) 0.706 0.180 -1.956

Log (CHLa) 0.030 4.313 0.239 " .-

Standardized Canonical Coefficients , 4 v*% '.% .'
pH -0.719 1.871 -0.110 Log(TP) 1.088 -0.867 -1.321
Log(ALK) 1.599 -1.433 -0.479 Log(TN) 0.146 -0.264 -1.076
Log(COND) -0.108 0.404 1.117 Log(SECCHI) 0.232 0.059 -0.643 MN .

Log(CHLa) 0.010 1.463 0.081 ,,, -
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345. For interpretation purposes, however, the standardized
canonical coefficients are often most useful as they provide a relative

measure of the importance of each variable in determining the canonical

variates. For this example, we can see that alkalinity (log(ALK), with

standardized canonical coefficient - 1.599) is the most important deter-

minant of V1, followed by pH (-0.719); conductivity (log(COND),

with -0.108) is least important. For WI, phosphorus concentration

(log(TP), with 1.088) is by far the most important variable. Thus, the *.

first canonical variable is, to a great extent, describing a relation-

ship between alkalinity and phosphorus that is not shared with the other

variables (except perhaps pH).

346. Table 35 presents correlations between the original seven r -

variables and each of the canonical variables. Note that, except for

sign differences, the correlations in Table 35 often (but not always)

convey the same information as do the standardized canonical coeffi-

cients in Table 34. Their relationship is somewhat analogous to the

relationship between simple correlation coefficients and multiple

regression coefficients.

Table 35

Correlations Between the Original Variables and Their -'' 

Canonical Variables

Canonical Variable
Variable Vi V2 V3 '.-_ .

pH 0.616 0.758 -0.215
Log(ALK) 0.934 0.356 -0.039 ...-,,
Log(COND) 0.461 0.227 0.858 '--

Canonical Variable
W1 W2 W3

Log(TP) 0.990 -0.035 -0.039
Log(TN) 0.685 -0.009 0.711
Log(SECCHI) -0.793 0.139 -0.270 , '.

Log(CHLa) 0.742 0.656 0.116

i..,L, ,
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347. Another interesting statistic is the proportion of var-
ance (pv) in the original variables that is explained by the corre- 8"Y-'."

sponding canonical variate. This is easily calculated by summing the V

appropriate squared correlation coefficients from Table 35 and dividing

by the number of original variables. Thus: ,, ,

K 2
pv= (ric) /(K)

1 cv

.o.' .-..

where

r = correlation between original variable i and canonical
variable cv

K = number of original variables .

348. Using the correlations in Table 35, the proportion of the

variance in the acidity-salinity variables that is explained by VI is:

2. . . .pv = [(0.6155) + (0.9335) + 0.4605) 1/3
pv -0.487 ."..

349. Thus about 49 percent of the variance in the acidity-

salinity variables is explained by the first canonical variate (VI). . './.,

350. It is also interesting to determine what proportion of the .

variance in one set of original variables is explained by the other

canonical variate. This is called "redundance" (rd), and we can cal- .. '...

culate it from:

rd = (pv) (CC) 2

g .;, ., ..¢.
where pv is the proportion of variance (determined above) and CC is . .

the canonical correlation coefficient. For example, the redundancy for

W1 and the acidity-salinity variables is:

2 :L
rd - (0.4897)(0.733)2

rd - 0.262 '. / _

160 .-..
.- - ...-

a, .a



351. This means that about 26 percent of the variance in the .. '*(

acidity-salinity variables is explained by the opposite canonical vani- ,_''

able (WI). Thus, W1 is a relatively poor predictor of the acidity-

salinity variables. The redundancy for the trophic state variables and -'_,

%~ i

canonical variate Vi is 0.353, indicating that Vi is slightly better . . .
as a predictor of "opposite" original variables (than is W1 ). These

low redundancies are not surprising, confirming our original belief that

there is vot a strong relationship between trophic state and and

acid ity-sal inity. ..r -:

352. Cluster analysis. Cluster analysis is a classificationV1isslghl ,-tr-

method that may be used to group or identify similar objects. These

objects may be reservoirs, sampling sites (or dates) within a reservoir,
or water quality variables (e.g., nitrogen, chlorophyll, alkalinity,ha

etc.) measured in one or more water bodies. The criterion of similarity and-. .. .

may be defined in several ways; in most applications, however, it is

based on either the correlation coefficient or the Euclidean distance"_

(which is a function of the sum of squared differences between attri-

butes). Before discussing clustering criteria, though, let us first

consider the types of problems that might be fruitfully studied using

cluster analysis. For additional information on cluster analysis, Davis

(1973) or Green (1978) may be consulted. K.. .

353. In summarizing water quality studies among reservoirs, it is

often informative to classify the water bodies according to various

criteria. Using cluster analysis, the investigator could classify the

reservoirs according to their similarities on any group of variables

desired. For example, trophic state classification would occur if the

analysis is confined to accepted trophic state variables. Or, reservoir

similarities in general could be identified when all water quality

variables are included in the cluster analysis.

354. Within a single water body, an ongoing sampling program may

be designed to gather data at specific points in space and time. Given

limited resources for sampling, the scientist may want to know something

about the redundancy in the sampling program. In specific terms, he may

want to know how much information is lost if one or more sampling
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stations or dates are discontinued. When a cluster analysis is per- P%

formed on the sampling stations and/or dates (in consideration of serial

or spatial correlation), the analyst obtains a measure of similarity (or

redundancy) among stations/dates. In conjunction with other statistical

analyses, the cluster analysis may be used to aid the decision on sam- ,

pling effort reduction.

355. We might be interested in the covariation or similarity

among variables in a data set containing measurements on several vari-

ables. These data could be taken within one or more water bodies. For

example, we might want to know if quantitative information on cultural

activities in the watersheds of reservoirs is related to (covaries with)

any of the measured water quality variables. Alternatively, we might ..-.

want a single statistical "picture" of the similarities among the var- .- ...", o

ables that we have measured. Cluster analysis, with an accompanying

dendogram for display, can be used to do these analyses.

356. Three methods of clustering are available for the investi- . .
",.; , ." .

gator using the latest version of SAS. Since these algorithms are typi-

cal of those that are used in other statistical computing packages as

well, we will focus our discussion on these three methods.

357. Clustering of cases using SAS is accomplished in a hierar- .

chical manner. At the beginning, all cases are assumed to belong to

separate clusters, and at each step cases (or groups of cases) are :. -

clustered together according to one of the three clustering criteria.

The three clustering criteria, or methods, are the centroid method,

Ward's method, and average linkage according to squared Euclidean

distances.

358. Centroid cluster analysis is based on the distance, or

similarity, between the centroid (or mean) of each cluster. (Remember ,

that at the start of the cluster analysis, each case is considered a ,...,.',

separate cluster. By case, of course, we mean one row in the data

matrix, which could be one lake, or one sampling station, if the study

involves a cross section of lakes or of sampling stations.) According

to this criterion, at each step the cases or clusters separated by the
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smallest Euclidean distance are joined together. The Euclidean distance

is defined as:

2 0.5
d =(xi - .ij (Xik Xk)

for the distance between points i and j for the kth  variable.

Euclidean distance may be calculated for variables in the original ._

metric or for standardized variables; standardization is discussed later

in this section. Note that correlation between variables is not - *

considered in Euclidean distance.

359. Ward's method is based on the within-clusters sum-of-squared

deviations (from the cluster mean). At each step the union of all pairs • '
• -

V..

of clusters is considered. For the candidate cluster being considered, .

the sum of squared deviations of the cases from the cluster mean is

(calculated here for the kth variable): -

n 2
SSD 1 (x- x)

360. At each step, the new cluster formed is the candidate .' "i

cluster that has the smallest sum-of-squared deviations.

361. In the average linkage or group average method, distance is

defined as the average squared Euclidean distance between pairs of

observations in a cluster. At each step, this distance is determined

for a pair of cases consisting of one pair from each cluster. The two

clusters that are joined together are those with a minimum value for

this distance measure. ,' -.. . -.

362. Among the three hierarchical clustering methods available

with SAS, Ward's method and the average linkage method have been found

to be two of the best approaches. The centroid method might be favored -..

in certain situations because it is more robust (than the other two

methods) to outliers (since it is based on the cluster mean, and not on

%
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a single case). It is also to be noted that Ward's method has a ten-

dency to result in clusters with roughly equal numbers of cases, while .1,

the average linkage method tends to yield clusters with approximately

the same variance. It is not possible to unambiguously rank the three

methods and identify the best clustering criterion for all situations.

Therefore, it is recommended that the investigator choose one of the

three methods to use on most problems and become familiar (through

experience) with that method. For problems where the final clustering

of cases has important implications, the investigator would be wise to

apply all three methods and select clusters on the basis of the combined
results.

363. Prior to beginning a cluster analysis, the investigator must
decide if the analysis is to be undertaken with standardized variables.

To standardize a data set, each observation is replaced by the deviation

of the observation from the mean, divided by the standard deviation.

Use of standardized variables has the effect of removing the influence

of the units of measurement from the results of the analysis. For

example, using unstandardized variables, the variance for a data set , ,
6

measured in micrograms per litre will be much higher (10 higher) than

the variance for the same data expressed in milligrams per litre. Thus,

if one variable in a multivariate data set is expressed in micrograms

per litre and all other variables are expressed in milligrams per litre, ."

the former variable is going to excessively dominate the variance- ,'

covariance matrix. This in turn will affect the results of all proce-

dures, like cluster analysis, that are based on the variance-covariance

matrix. Alternatively, if variables are standardized prior to analysis,

the results of multivariate analyses are effectively based on the corre-

lation matrix. The standardized variables are unitless, so any linear

change in units will not affect the results.

364. While in most cases standardization is to be recommended, , -

there are situations where standardization will adversely affect an

analysis. For example, within-cluster differences can be reduced by

standardization. In those situations, if the within-cluster variance

were known, standardization should be based on that term. Thus, it is
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recommended that unstandardized variables be used if all variances are

if approximately the same magnitude; otherwise, the variables should be

standardized prior to analysis.

365. Although some investigators have attempted to use formal

statistical tests on the results of a cluster analysis, this practice is

in general not recommended. The major difficulty is that the data would

be asked to both form the clusters and test their significance. Ideally

one would want the data groupings specified beforehand; otherwise, the

degrees of freedom for statistical testing are affected by using the .

data to specify the hypothesis (the clusters).

366. If no formal statistical inference is to be undertaken with

the results of a cluster analysis, then there are no formal assumptions

to be invoked prior to the analysis. However, it is good practice (as .

noted in the introductory section) to work with data that are symmetri-

cally distributed with no obvious outliers. Transformations (selected

from inspection of univariate and bivariate plots) to achieve this

symmetry are recommended for use as needed. J

367. Cluster analysis - example. This example, like the previous '.

one, is based on the data set from Walker (1981) representing water

chemistry in 43 Corps of Engineers reservoirs. Here, using the SAS ..".

CLUSTER procedure, we group the lakes in clusters on the basis of simi- %**.* %

larity in log total phosphorus concentration, log total nitrogen con- ""

centration, log Secchi disk depth, and log chlorophyll a concentration.

Ward's method was used for clustering. .'.0

368. Table 36 contains some of the optional output from the SAS

procedure. The biomodality statistic indicates the possibility of two

or more distinct clusters in the frequency distribution; a value of

0.555 or greater is evidence of this situation. None of the biomodality

statistics in Table 36 is that large, suggesting that there is more

likely a continuum of change in the variables as opposed to abrupt

changes. The eigenvalue statistics, particularly the proportion (of

variance "explained" by each eigenvector), indicate the dimensionality

of the data. When a high proportion of the variance is represented by

one eigenvalue, this means that there is substantial correlation among %
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Table 36

Cluster Analysis :
Variable Bimodality

Log(TP) 0.421

Log(TN) 0.346

Log(Secchi) 0.382

Log(CHL a) 0.382

Eigenvalues of the Correlation Matrix

Proportion Cumulative Proportion
Eigenvalue of Variance of Variance

3.004 0.751 0.751

0.456 0.114 0.865 .

0.422 0.106 0.971

0.118 0.029 1.000 .1. j,

Number of Clusters Cubic Clustering Criterion

1 0.000

2 -0.468 -..

3 -1.548 .'e%

4 -1.420

5 -1.710

6 -1.523

7 -1.500

8 -1.457

9 -1.574

10 -1.577 .-

the variables. For this example, the first eigenvalue represents

75 percent of the variance in the data. This is high, and it suggests, . .

not surprisingly, that the four variables are correlated. For our
%
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purposes in this cluster analysis, it means that the clusters created

will primarily represent the characteristic that all four variables have J -

in common, which might be called "trophic state."

369. The last section of Table 36 presents the cubic clustering

criterion (CCC). This is probably the best available indicator of the

number of clusters that represent the groupings within the data set. A

local peak value of CCC identifies a "number of clusters" that may

define an acceptable grouping of the data. For our example, notice that

there are local peaks for 2, 4, and 8 clusters. On the basis of CCC,

these could be the final candidates for appropriate data groups on the

basis of the four variables.

370. To aid in the selection of clusters from among the

identified final candidates, a tree diagram should be developed. The

tree diagram, or dendrogram, is shown in Figure 23 for our example.

Similar observations or clusters (as defined by CCC in this case) are

joined first (near the bottom). The higher the point of joining, the

less similar are the members of a cluster. SAS output not shown in this

manual presents various similarity or distance measures that are recom- -

puted each time a new cluster is formed in this hierarchical procedure.

371. Visual inspection of Figure 23 clearly shows the two- and .

four-cluster options, but only through scrutiny is the eight-cluster

option identified. Further, since the clustering variables all

represent trophic state, we might select the four-cluster option as best

representing these data (producing four trophic states). To see this,

we look at the range of values in the four clusters for some of the 2-

trophic state variables. Numbering the clusters 1 through 4 on the

basis of left-to-right position on Figure 23:
3a. Total phosphorus concentration (mg/m)

Cluster 1: 10.2-30.7

Cluster 2: 24.2-72.9

Cluster 3: 40.4-131.0

Cluster 4: 69.3-277.0 .
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b. Chlorophyll a concentration (mg/rn3)

Cluster 1: 2.4-6.2

Cluster 2: 2.6-10.0

Cluster 3: 4.4-27.8

Cluster 4: 9.5-67.1

372. While there is some overlap among the clusters, it should be

apparent from the phosphorus and chlorophyll levels that we have suc-

ceeded in grouping the lakes into four trophic states. It should be , " '

realized that the overlap is less serious when all variables are con-

sidered simultaneously (e.g., some lakes with low chlorophyll a also

have low Secchi disk depths due to nonalgal turbidity); this, of course,

is a reason for use of a multivariate (as opposed to univariate)

analysis.

373. The user of SAS CLUSTER will note that several optional mea-

sures of similarity or distance may be computed. These statistics are

beyond the scope of this manual; however, information on these measures
may be obtained either from the references on multivariate analysis

identified above, from Everitt (1974), or from Hand (1981).

374. Examination of structure: principal components and factor

analysis. Principal components analysis (PCA) and factor analysis (FA)

are used to create a relatively small number of new variables (called

"factors") from a larger number of original variables. With PCA, these

factors are estimated as simple linear functions of the original vari-

ables; each factor is orthogonal (at right angles in a graphical sense)

to all other factors. The practical use of these factors may be based .
on the belief that the observed variables in fact represent only a small -

number of underlying characteristics, with the relationships or com-

monality among the observed variables expressed in the covariance or

correlation matrix. Thus, by using the observed variable correlations

to create a few common factors, the investigator may, for example,

increase his understanding of the underlying structural relationships

among reservoir water quality variables.

375. One problem that PCA is particularly well suited to address

is the estimation of a trophic state index. It is well accepted that
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trophic state (a subjective concept) is a function of nutrient concen-

trations, biomass levels, water clarity, etc. Since there is no uni-

versally accepted, objective way to create a trophic state index from

these variables, it may be reasonable to use a mathematical procedure

(PCA) to extract the common element from these variables and call this 
:46

common element a measure of trophic state. PCA can thus be used to

define a linear function of the trophic state-related original var-

iables. This function will be the linear function that "explains" a

maximum (i.e., more than any other linear function) of the variance

contained in the original data set. Since this "first principal com- .' -

ponent" describes (through the linear function) the common element in

the trophic state data, it is reasonable to assume that the first prin- .

cipal component is a good trophic state index. Further, since the first

principal component maximizes the explained variance, it is the best

trophic state index defined in this manner. .. .e.

376. Another advantage of the use of PCA to define a trophic

state index is that the principal component is also the linear function . -

of the original variables that creates a maximum spread among the obser-

vations. Thus, if the investigator wants to distinguish reservoirs on a

trophic state basis, the first principal component is the linear func-

tion that separates the cases (e.g., reservoirs) as much as possible.

This facilitates the ranking of reservoirs according to trophic state.

377. PCA and FA can also be used to define the number and type of

underlying factors within a data set. For example, a large cross--" '--

sectional reservoir water quality data set may contain data on phospho- , ...' -

rus, nitrogen, chlorophyll, Secchi depth, alkalinity, pH, conductivity,

calcium, magnesium, sodium, aluminum, chloride, sulfate, and silicon.

It is likely that this multivariable, or multidimensional, data set

actually reflects a much smaller number of true structural factors or ",.-.

dimensions. For example, the trophic state variables may all reflect

one underlying dimension: trophic state. Correspondingly, many of the

cations and anions may covary (have high bivariate correlation coeffi-

cients), and thus represent another underlying dimension. These two
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dimensions, or factors, could be estimated as linear functions of the

original variables using PCA and FA.

378. It may be of interest to the investigator to compare data

sets from two groups of reservoirs (e.g., those in the southeastern

United States versus those in the Southwest) to see if the underlying

structural relationships among variables are different. This could be

done using PCA and FA. For each separate data set, the factors could be

estimated. Then the comparison between the two regions would proceed

through a comparison of the functional forms of the factors. Specifi-

cally, the investigator asks: are the individual factors (from each of

the separate data sets) composed of the same combinations of variables

with approximately the same weights (coefficients)? This question could

be answered in an informal manner through simple inspection of the

factors, or it could be answered with a formal hypothesis test.

379. Even though PCA and FA can be used to formally test hypothe-

ses, most applications of these methods are exploratory. In fact, con-

firmatory FA involves enough additional complexity that it will be

ignored in this presentation. Thus, it is assumed here that all appli-.

cations of PCA and FA are exploratory.

380. While the applications of PCA and FA considered herein are

strictly exploratory, it is still a good idea to work with data distri-

butions that are "well behaved." This means that, if possible, data

distributions should be approximately symmetric without outlying or

influential points. Ideally, data for a single variable should be "-" '"-"

approximately normal, and data for any pair of variables should be

bivariate normal. While this is not strictly required, approximate

normality will lead, in the long run, to inferences that correctly

represent the data. Of course, transformation should be considered if . .-. -.

it is determined that it will result in a more desirable distribution of

data.

381. PCA and FA may be conducted from either the correlation

matrix or the covariance matrix. As noted above when this option was

discussed for other procedures, there are problems of scale with the

covariance matrix. Specifically, the magnitude of the covariance will
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change as the units of measurement change. Thus, unless the investi-

gator is working with variables that all have approximately the same -_'-dP

magnitude, it is recommended that PCA and FA be based on the correlation €u,

matrix. 
,

382. The analysis usually begins with PCA. Principal components .

analysis is used to reexpress the original variables in a set of

orthogonal factors. Each factor is a linear function of one or more of

the original variables. PCA is a mathematical procedure; it is used to . .,

maximize the variance in the original data explained by each factor.

Thus, the first principal component is the linear function that explains

the maximum variance in the original data. The second principal compo-

nent is orthogonal to the first component, while explaining the maximum

of the remaining variance unexplained by the first component. This con-

"' tinues until all the variance in the original data is explained by the

orthogonal components.

383. Principal components analysis is usually conducted to reduce

the dimensionality in a data set, or in other words to reexpress the .t .

information contained in several variables into a smaller number of .

factors or components. Thus, it is common to retain only a few factors,

as PCA is effective only if much of the original variance is explained

in a relatively few factors. In addition, PCA is generally effective

only if each component has a substantive (i.e., limnological) interpre- -..

tation. In one of the examples mentioned above, for example, it was

desired that one of the components have a trophic state interpretation

and the other component represent cations and anions. Sometimes an

obvious substantive interpretation of PCA occurs; when it does 
not, "

however, factor analysis can be used to redefine the factors slightly so

that interpretation is enhanced. -
384. The interpretation of the factors is based on the composi- -

tion of the factors. The factors are linear functions of one or more of .

the original variables; thus, the relative contribution of these orig-

inal variables to each factor is the basis for interpretation. This , A
contribution is measured by the coefficient, or weight, for each vari- ..,4

able in the linear function. For example, in the example mentioned-*
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above, if the first principal component is composed of most of the orig-

inal variables, but only those related to trophic state have high coef-

ficients, it is reasonable to interpret this component as having a

trophic state interpretation. A cation-anion interpretation for the

second component would be appropriate if the second component was N

weighted heavily on the original cation-anion variables.

385. It is possible that PCA will not result in easily interpre-

table components, particularly since PCA is an optimizing routine that

is ignorant of any need for interpretation. Factor analysis may then be

used as it allows the investigator to reorient the components (now

called factors) so that interpretation is facilitated. In a graphical

sense, the components form orthogonal axes (axes at right angles to each

other). Factor analysis involves rotation of these axes, and this

changes the relative weight each of the original variables has for a ->

particular factor. Thus, factor analysis is performed to create a new

set of factors (axes) for which a logical grouping of original variables ..

has the highest weights. This will then allow a substantive interpreta-

tion for the new factors.

386. The rotation or creation of new axes in factor analysis does

not have to involve strictly orthogonal axes. Oblique, or nonorthog- I

onal, rotation can be undertaken; this results in factors that are cor-

related (orthogonal PCA and FA result in uncorrelated factors). Oblique

rotation is considered if it is believed that the underlying structure

involves factors that are correlated. The assumption, of course, in

orthogonal PCA and FA is that the underlying structure involves strictly
uncorrelated factors.

387. If the interpretation resulting from PCA is unsatisfactory,

and axis rotation using FA seems necessary, then it is recommended that""

the investigator try several of the available rotation algorithms avail- " '-

able through programs like SAS. Experience with factor analysis rota-

tion for a particular type of data set is clearly an asset. The example

presented below may help to explain concepts that are still confusing. .

388. Principal components and factor analysis - example. The SAS

procedure, FACTOR, was used on the seven-variable Walker data set. One
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of the attractive features of this program is that the SAS documentation

is relatively good; this is fortunate because the great number of avail- %

able options means, in effect, that many of them cannot be dealt with in

this example. The procedures that are illustrated below, however, are %

the most commonly used methods. '6N %

389. In this example, we begin with PCA and then apply varimax

rotation. Principal components analysis is the most commonly used

method for creation of the initial orthogonal components or factors from %

the original variables. On occasion, one of the factor extraction pro-
%

cedures available is SAS, such as principal factors (PF) extraction, m .
might be used. In brief, PCA works with all of the variance in the
original data, both common variance and unique variance. PF, on the"" ':'

other hand, works only with common variance. Thus, to obtain a general

summary of the data, PCA is the preferred choice. Tabachnick and Fidell

(1983) provide a clear explanation of the differences between the ini-

tial component and factor extraction options. . .

390. All seven variables in the Walker data set are log-
transformed and used in this analysis. The variables are: pH, con- - ..

ductivity, alkalinity, phosphorus concentration, nitrogen concentration,

Secchi disk depth, and chlorophyll a.
391. Table 37 contains a summary of the PCA. For PCA, the com- ".:''

munality referred to in Table 37 is always one; for PF, the communality -

will lie between zero and one, and represents the common variance among

variables. The eigenvalues in Table 37 indicate the amount of variance

in the original seven variables that is explained, or represented, by

each of the orthogonal (perpendicular) components. For this example, we ..

see that the first principal component explains 59.82 percent of the

variance, and the first three components explain 86.99 percent of the

variance. This suggests that the variability in the original seven

variables might be reasonably summarized in perhaps three orthogonal

components.
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Table 37 ,-.'4 " ..

Principal Components and Factor Analysis: Eigenvalues

Factor
_________ 1 2 3 4 5 6 7

Eigenvalue 4.188 1.098 0.804 0.405 0.318 0.136 0.052

Proportion
of variance 0.598 0.157 0.115 0.058 0.045 0.019 0.007

Cumulative -

proportion
of variance 0.598 0.755 0.870 0.928 0.973 0.993 1.000

392. The factor pattern matrix in Table 38 is a matrix of corre-

lation coefficients between the original seven variables and the seven

factors. For this example, note that the correlations between factor 1

and six of the seven variables are relatively high. This means that the

first factor (the first principal component) is a good summary descrip- - •

tor of essentially all of the variables (particularly phosphorus, alka-

linity, and chlorophyll). If it was our objective to create a single -

(linear) index value for each reservoir summarizing the measurements on

these variables within that reservoir, then the first factor in Table 38

is a good choice. We should then produce a matrix of standardized fac-

tor scoring coefficients. These are analogous to standardized regres-

sion coefficients. For each reservoir, to calculate the score on

factor 1, the scoring coefficient for each variable is multiplied times .'-.

the standardized (subtract the mean and divide by the standard devia-

tion) value of that variable; these terms are then summed. Thus, for a

particular reservoir:

PCA =b z
1 i %

,

where

PCA = calculated value for the first principal component

bi = factor scoring coefficient for variable i

zi = standardized value for variable i -
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Table 38

Principal Components and Factor Analysis: Factor Pattern Matrix

Factor -

Variable 1 2 3 4 5 6 7

pH 0.693 0.675 -0.136 0.048 -0.110 -0.133 0.119

Log(COND) 0.553 0.017 0.815 -0.125 0.111 -0.015 0.033

Log(ALK) 0.859 0.411 0.007 -0.146 -0.195 0.115 -0.144

Log(TP) 0.878 -0.255 -0.242 -0.199 0.084 0.220 0.104 .4

-0.430~~ -029 0.1

Log(TN) 0.741 -0.430 0.127 0.407 -0.290 0.019 0.015

Log(SECCHI) -0.790 0.464 0.173 0.273 0.026 0.236 0.036 .

Log(CHLa) 0.850 0.093 -0.127 0.293 0.404 -0.023 -0.060

393. For this example, however, our objective is to create com-

ponents or factors that can be given a water quality interpretation.

With that concern in mind, factor 1 is less attractive since it seems to . 'e

represent all of the variables. On the other hand, the factor-variable .*..

correlations in Table 38 suggest that factor 2 is primarily an indicator

of pH, and factor 3 is primarily an indicator of conductivity. Further,

factors 4 through 7 seem relatively unimportant on the basis of both the

factor-variable correlations and the eigenvalues. Thus, we request a

factor rotation retaining only the first three factors.

394. As noted above, factor rotation is often used to reorient

the factors with respect to the original variables so that substantive A

interpretation is facilitated. Varimax (orthogonal) rotation is the

most commonly used procedure, so it is used here. In essence, the

varimax procedure increases the effect of a variable on a factor for

those variables that are highly correlated with the initial components,

and decreases the effect for those variables that are not highly cor-

related with the initial components.

395. Table 39 contains the results of the varimax rotation. The

orthogonal transformation matrix in Table 39 converts the first three

principal components into the three new orthogonal factors created using
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Table 39

Principal Components and Factor Analysis: Varimax Rotation

Orthogonal Transformation Matrix

Factor 1 2 3

1 0.721 0.617 0.315 h'

2 -0.646 0.763 -0.016

3 -0.250 -0.192 0.949

Rotated Factor Pattern Matrix

Factor
Variable 1 2 3

pH 10 97 * 8 %.*

Log(COND) 18 20 95*

Log(ALK) 35 84 * 27

Log(TP) 86 * 39 5

Log (TN) 78 * 10 36%%0

Log(SECCHI) -90 * -16 -8

Log(CHLa) 58 * 62 *15

%. %

Communality Estimates

Variable-~hI%.

pH 0.954

Log (COND) 0.971
Log (ALK) 0.906
Log (TP) 0.894 S.

Log (TN) 0.750

Log(SECCHI) 0.868 .d

Log (CHLa) 0.747
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varimax. The rotated factor pattern yields the new matrix of factor-

variable correlations; the correlations are multiplied by 100, and the

highest values are marked with an asterisk for ease of interpretation.

The communalities (squared correlations) indicate how much of the

variance for each of the seven variables is shared with the other six.

Finally, standardized scoring coefficients are presented in Table 40,

permitting calculation of factor scores using the standardized variables

as shown above. i"

396. The results in Table 39 indicate that we have achieved our

objective of interpretable factors. Based on the rotated factor pattern

(the factor-variable correlations) in Table 39, the first factor is

effectively a trophic state index, describing primarily the trophic

state variables phosphorus, nitrogen, Secchi disk depth and, to a lesser

extent, chlorophyll a. The second factor is an indicator of acidity, as .......-

it is most highly correlated with pH and alkalinity (and to a lesser

extent, chlorophyll a). The third factor is an indicator of dissolved

solids or salinity, as it is largely a function of conductivity. Thus, * -

we have created three orthogonal composites of the original seven vari-

ables, and each of the three factors has a clear substantive meaning.

The standardized scoring coeffici,.nts could then be used in conjunction

with standardized variables to calculate values for these trophic state,

acidity, and salinity factors for each reservoir.

397. Predicting group membership: discriminant analysis. Dis-

criminant analysis is used to define a linear function of predictor

variables that may be employed to predict group membership for a partic- ".'
".1'

ular case (e.g., lake). The dependent variable in discriminant analysis ' '

is categorical, as it identifies group membership. Conceptually, it is

helpful to think of discriminant analysis as somewhat analogous to

regression analysis; both procedures are often employed to define a

linear relationship that may be used to predict the value of a dependent

variable. In discriminant analysis, this dependent variable is categor-

ical (e.g., trophic state), while in regression analysis the dependent -.

variable is frequently continuous (e.g., phosphorus concentration).

%,' % % %#,,,
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Table 40

Principal Components and Factor Analysis: , _ "

Standardized Scoring Coefficients

Factor

Variable 1 2 3 4

pH -0.235 0.604 -0.118

Log(COND) -0.168 -0.101 1.004

Log(ALK) -0.096 0.411 0.067

Log(TP) 0.377 0.010 -0.216

Log(TN) 0.341 -0.220 0.212

Log(SECCHI) -0.463 0.165 0.138

Log(CHLa) 0.131 0.220 -0.088 -

398. For example, discriminant analysis can be used to develop a '.',

model for the prediction of trophic state. To do this, the investigator

can use a cross-sectional data set of lakes and reservoirs, containing ,- .

data on trophic state predictor variables (nitrogen, phosphorus, water

clarity, Secchi disk depth, etc.) along with the trophic state classifi- v-.- ,

cation for each lake or reservoir. Discriminant analysis is then

employed to estimate a linear function of the predictor variables that

best classifies the lakes and reservoirs into their preassigned classes ' . ..-

(trophic states). Once this model is estimated, it may then be used .

predict the trophic state for a new lake or reservoir, on the basis of

estimates of the predictor variables. - .-

399. Of course, trophic state is not the only limnologicai clas-

sification scheme for which it would be useful to have a predictive

model. As noted in Reckhow and Chapra (1983), it might be of value to

develop a model for the prediction of oxic versus anoxic status in '."

lakes, or perhaps a model for the prediction of expected dominant algal '

type on the basis of nutrient and aquatic chemistry.

400. While the development of a predictive model is the primary

objective in most applications of discriminant analysis, other useful
.,. J. ! , , A ",
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information is generated from the application of the procedure. Use of 'N"
discriminant analysis shows the investigator which variables are most

important in the prediction of group membership. It also indicates how

effectively one can predict group membership by providing an assessment

of the proportion of misclassified cases in a data set. Finally, the

discriminant functions (or classification functions) can be used to I.. =

create a new function that provides an estimate of the probability that

a case (e.g., reservoir) belongs in one of the predefined groups. This

probability estimate is often a particularly informative way of expres- .-. ,

sing the confidence one might have in the prediction of group member-

ship. For an excellent treatment of the theory and application of

discriminant analysis, see Tabachnick and Fidell (1983).

401. For inferences and group membership predictions to be appro-

7 priate, some conditions are recommended and some statistical assumptions..-. 

*are technically required. As with all of the multivariate statistical N

methods, outliers can adversely affect the results of discriminant anal-

ysis. Therefore, it is recommended that the investigator examine histo-

grams and bivariate plots to check for outlying data points.

Transformations should be used if necessary to reduce the impact of out- I
liers. (See Parts II and III for additional guidance on the treatment

". of outliers and influential data points.)

402. The primary statistical assumptions for the application of

discriminant analysis are that the predictor variables are distributed

according to a multivariate normal distribution within each group and

that the variance-covariance matrices are constant across groups. The

normality assumption can often be effectively assessed by checking for ;.*

bivariate normality for any pair of predictor variables, while the

variance-covariance matrices can often be compared by eye as these

matrices are routinely calculated in most discriminant analysis pro-

grams. Informal checks on these assumptions are often adequate, as the

results are fairly robust to violations. This is particularly true if

the smallest group contains about 20 cases or more and there are only a

few predictor variables in the discriminant function (Tabachnick and

Fidell 1983). Transformations, of course, can be used if there is
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concern over the violation of one of these assumptions.

403. If there are more than two groups and more than two pre-

dictor variables, more than one discriminant function may be estimated.

Like principal components, each discriminant function is orthogonal to j -

all others, and the first discriminant function is the most effective

linear predictor of group membership (with additional functions being

successively less effective). Generally, only one or a few of the dis-

criminant functions are retained for the prediction of group membership.

A statistical test can be conducted to assess the ability of each of the

discriminant functions to determine group membership. .

404. Discriminant analysis - example. For this example, we look

at a cross-sectional model to be used to predict presence or absence of

fish species in a lake. The data set consists of 32 lakes in the

Adirondacks of New York State. The dependent, or classification, vari-

able is the observation of presence (1) or absence (0) of brook trout in

each lake, assessed during fish surveys. The predictor variables are pH

and aluminum concentration (log-transformed).

405. Using SAS, PROC DISCRIM was run using the option POOL-TEST;

this tests for equality of the covariance matrices. If the test results

are not significant, the pooled covariance matrix is used in the cal-

culations. SAS prints the discriminant function coefficients only when

this pooled covariance matrix is used, so this is an important option to

consider. POOL-YES causes SAS to bypass the significance test and auto-

matically use the pooled covariance matrix. ....- @* ..

406. Several optional statistics may be requested from SAS,

including correlation and covariance matrices. For this example,

Table 41 presents the within-group correlation matrix. This lists the

bivariate correlation coefficients (and their significance levels) for

all pairs of variables, calculated separately for the data within each *% e

of the predefined groups.

407. Next of interest in the SAS output is the pairwise squared

generalized distance (or Mahalanobis distance) between groups. This is

the distance between group centroids (based on the group means for each

variable) scaled by the within-groups covariance matrix. For this
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Table 41

Discriminant Analysis: Within Correlations

Fish Absent Fish Present
pH Log (AL)pH Log(AL)

pH 1.000 -0.901 1.000 -0.514

(<0.001) (0.035)

Log(AL) -0.901 1.000 -0.514 1.000

(<0.001) (0.035)

,~
Pairwise squared generalized distance 1.572

2  D2

example, this distance (D (I/J)) is estimated as 1.572. Since D is a

measure of separation between the two groups, it is of interest to test

the significance of this difference. The test is based on conversion of

D2 to an F statistic according to (Green 1978):

mC 1m(m 0 + m I - n D 2  F
n(m0 + ml)(m0 + m, - 2) (n,m0 +M -n-).

where

m0 . the number of observations in group 0 (absence)

m M the number of observations in group 1 (presence).

n - the number of predictor variables. ..

For the example (with m0 = 15 and m, M 17 ), the F statistic is 6.05.

For 2,29 degrees of freedom, the separation of the groups is significant

at better than the 0.01 level. --

408. Table 42 presents the coefficients for the linear discrimi- 4.

nant functions. They may be written as:

df M -109.082 + 26.277pH + 15.880 log(A1) *. '

df1 - -116.772 + 27.885pH + 15.618 log(A1)
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Table 42

Discriminant Analysis: Coefficients for the Linear *

Discriminant Function

Fish Absent Fish Present

Constant -109.082 -116.772 ,.%,, , ,

pH 26.277 27.885

Log(AL) 15.880 15.618

409. These functions are used to classify cases as follows. For

each case, the predictor values are substituted into the equations above

and observation-specific values for df0  and df1  are calculated. A .-. ,.

case is then classified into the group yielding the higher value for

df . For example, if lake x has pH = 4.8 and Al = 300 ig/t, then

df0 = 56.384 0... ... .

df = 55.764 )- _-, "

410. According to this criterion, lake x would be classified in -

group 0 (fish absence).

411. Table 43 presents a summary of the classification success of

the discriminant analysis model. The rows in the 2 x 2 table identify

the actual group membership for each case, and the columns identify the

predicted group membership (based on the discriminant analysis). A

perfect classifier would have nonzero entries along the upper-left-to-

lower-right diagonal and zeros in all other cells of the table. For - -
,6 N

example, in Table 43, 12 and 3 are the entries in the upper row. This

means that 12 of 15 observed group 0 lakes are classified correctly as

group 0 while 3 are classified incorrectly as group 1. A similar inter-

pretation holds for the second row. Summing along the diagonal, we see
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Table 43

Discriminant Analysis: Classification Success

Fish Fish
Absent Present Total

Fish absent 12 3 '15
80.00 20.00 100.00

Fish present 6 11 17
35.29 64.71 100.00

Total 18 14 32
56.25 43.75 100.00

that 12 + 11 23 cases are correctly classified and 32 -23 =9 cases 4-..

are incorrectly classified.

412. In Table 44 all cases are classified according to the dis- ' %

criminant function model using the generalized distance measure in an

exponential expression. The exponential equation has range zero to one,

so it is given a probabilistic interpretation. Thus, for each case, the

probability of membership in each group is calculated, and the case is -

classified into the group for which the probability is the highest.

These probabilities and classifications are presented in Table 44. .

413. The probability equation in Table 44 is cumbersome because

it is based on the generalized distance of a case from each group mean. *. _ *.,..

Fortunately, probabilities can be calculated more easily from the %

discriminant functions according to:

P(Oldf) - ql
1+-exp (df -df .

0 1 o...0

where

P(Odf) - posterior probability of group 0 classification

q0 - prior probability of group 0 classification e

ql = prior probability of group 1 classification . , "
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Table 44

Discriminant Analysis: Classification Probabilities

Probability )P~I*-

Lake Fish* Classified as: *Absent Present-

1 1 0* 0.566 0.432
2 0 1* 0.063 0.937
3 1 1 0.166 0.834
4 0 0 0.781 0.219
5 0 0 0.823 0.177
6 0 0 0.819 0.181
7 1 1 0.276 0.724
8 1 1 0.198 0.802 -

9 1 0 **0.518 0.482
10 1 0 **0.760 0.240
11 0 0 0.838 0.162 *.*

12 0 0 0.600 0.400
13 0 0 0.803 0.197
14 1 1 0.093 0.907
15 1 0 **0.688 0.312
16 0 0 0.816 0.184
17 1 0 **0.617 0.383
18 0 1 **0.269 0.731 .

19 1 0 **0.819 0.181
20 0 1 * 0.491 0.509
21 0 0 0.847 0.153
22 0 0 0.847 0.153
23 0 0 0.750 0.250
24 1 1 0.485 0.515
25 0 0 0.730 0.270 Q
26 0 0 0.675 0.325
27 1 1 0.164 0.836
28 1 1 0.128 0.872
29 1 1 0.129 0.871
30 1 1 0.119 0.881
31 1 1 0.106 0.894
32 1 1 0.152 0.848

Note:~~~' 0 ben;1 rset

Misclssifed oservtion
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414. For now, assume that the prior probabilities are equal; this

means that we have no a priori belief that a particular case belongs in -

one group or the other. In that case, ql/q0 - I . For the example

presented above (pH = 4.8; Al = 300 vg/t), the probabilities are:

P(Oldf) - 0.650

P(ldf) = 1 - P(Oldf) = 0.350

415. Thus, there is a 0.65 chance that the lake is properly clas- '../ .

sified in group 0 (fish species absent).

416. Since the equation allows for prior probabilities, we could

assign prior probabilities to each group reflecting the relative propor-

tion of the relevant population that belongs to each of the groups. For

this example, 15 of the 32 observations in the sample are in group 0

(absence) and 17 of the 32 observations are in group 1 (presence). :.

These proportions can be used as the prior probabilities. Thus,

q0 = 15/32 = 0.469

q= = 17/32 - 0.531 N,

417. Using these prior capabilities in the equation above, the new

posterior probabilities are:. ,

.. ". , 4:'o
P(Oldf,q) = 0.621

P(lIdf,q) = I - P(Oldf,q) - 0.379

418. Notice that, as should be expected, the higher prior probabil-

ity for group 1 resulted in a drop in the posterior probability for "

group zero, in comparison to the analysis when the prior probabilities "- •

were not explicitly included. Use of a prior probability can be partic- "

ularly helpful when the groups are quite different in size.
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419. In situations where the group sizes are different, the "naive" , . \

classification criterion (without consideration of predictor variables)

would assign all cases to the group with the largest number cases.

Thus, if 80 percent of all cases correctly belong in group 1, the naive

classifier would place all cases in group 1 and have an 80-percent clas-

sification success rate. This "maximum chance criterion" (Morrison

1969) is appropriate for evaluating the success of discriminant func-

tions (beyond that by chance) if one desires to maximize the proportion

of cases correctly classified. Alternatively, if the objective is to

correctly classify cases into both groups, the appropriate criterion is

based on proportional chance. This is calculated as (Morrison 1969):

p (q0 )2 + (ql) 2
pro ..

420. For our example, this is

C p (15/32)2 + (17/32)2 = 0.502
pro

whereas the maximum chance criterion is

Cmax 17/32 = 0.531

421. Since our objective in this example would probably be to clas-

sify cases correctly in both groups, the proportional chance criterion

is appropriate. According to that criterion, our model does better than ' *.

chance if it classifies more than 50 percent of the cases correctly. In

fact, for the model development data set, Table 43 indicates that 23/32

= 0.719, or about 72 percent of the cases were correctly classified by

the discriminant function model. % ...

422. It must be emphasized that the classification success of the

model should actually be evaluated using a data set that is different

from the model development data set. It is to be expected that a model

developed from a particular data set will yield an overly optimistic

classification success rate when evaluated using the model development .-
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data set. Thus, a separate data set should be used to provide an *.

unbiased estimate of the classification error rate. Alternatively, mob,

various measures of cross validation (Green 1978) may be employed to

estimate classification error.

% .% . %
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PART V: SAMPLING PROGRAM DESIGN

Introduction

423. In undertaking a study, an investigator will generally have

as his objective either the estimation of some parameter or the compari-

son of several different populations. Since sampling is the only prac-

tical method of carrying out most studies, the researcher is immediately

faced with several problems. The eventual discussion of the whole popu-

lation from a sample involves statistical inference. This means that '

the true value of the population parameter will never be known, only an

approximation or estimate of that parameter. It is necessary to obtain

these approximations as accurately and as precisely as possible.

424. Accuracy implies that an estimate of a parameter will, on e"._--.

the average, be centered on the true population parameter and will not

be shifted up or down. Estimates that have a consistent tendency to

overestimate or underestimate a population parameter are inaccurate and

are said to be "biased."

425. Precision is an indication of the reliability of an estimate

and refers to the variability between repeated measures of the same

quantity. All estimates of parameters will have some variability, but

the lower the variability, the higher the precision.

426. The major objective in sampling program design is to obtain

as accurate or unbiased an estimate as possible, and at the same time

reduce or explain as much of the variability as possible in order to

improve the precision of the estimates.

427. A major concern in the design of a sampling program deals - -

with the problem of practicality. Measuring the whole population is

impractical. The sampling scheme should provide an estimate that is as

accurate and precise as possible, even though the sample may be a very

small fraction of the whole. For instance, the objective may be to

determine the average phosphorus concentration of a reservoir. The sam-

ple may be only a few litres of the millions of cubic metres of water in

the reservoir. The number of samples would be small, but with proper ...,e
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placement and an adequate number of samples, a good estimate could still

be obtained to meet the study objectives.

428. Another concern in sampling design is cost. More samples

are better, but cost increases proportionally with the number of sam-

pling trips made, number of sites sampled, and the number of different

analyses performed. The increased number of trips produces a more pre-

cise estimate. Unfortunately, the increase in trips or analyses is not

directly proportional to the increase in precision, so that doubling the

number of sampling trips does not double the precision. The sampling

program must be designed to achieve the optimal allocation of the sam-

ples. An optimal allocation will be both practical and cost effective

by striking a balance between how many samples are needed and how many

samples are within budget. If funds are severely limited, the inves-

tigator may also be faced with a decision on the feasibility of the

study. The question is simply: "Will the results that can be obtained

with the available funds produce estimates which are sufficiently pre-

cise to meet the study objectives?"

429. The critical element in designing a sampling program is the %

understanding of variability in both the samples and the target popula-

tion. If a lake had no variability in phosphorus concentration, one

sample from the most convenient site would provide an adequate measure

for the whole lake. However, if variability exists (and it always

does), some statistical inference procedure is required.

Study Objectives %,

430. In order to ensure that the sampling scheme is adequate and

that it will provide the desired information, it is necessary to state .. ,.

the study objectives clearly. Sampling is facilitated by specifying the

narrowest possible set of objectives which will provide the desired

information. Several points that should be specified in the study

objectives are discussed below. F %

431. Target population definition is the first step, since the 06

sample must be drawn from the target population. A population, in a
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statistical sense, can be defined as the set of all possible values of

the variable of interest which might, or do, exist. The target popula-

tion is a limited subset of the population and is simply the population

about which statistical inferences are to be made. The limits of the

target population are defined by the objectives of the study. Examples

of target populations include dissolved oxygen concentrations in reser-

voir releases under different operating regimes, phytoplankton abundance

before and after some environmental change, or the average phosphorus

concentrations in a group of reservoirs. Individual measurements of the

population of interest are called observations, and the population

parameter being measured is referred to as the variable. This defini-

tion will not only describe what is to be sampled, but where and when.

All information that limits the population to be sampled should be

included.

432. The reason for limiting the target population definition is

that much of the variability which exists is not of interest. If dis-

solved oxygen concentrations in reservoir releases are to be sampled,

the investigator need not be concerned with dissolved oxygen concentra-

tions in the rivers and streams entering the reservoir, which would add

an additional source of variability. The first step then in addressing

the problem of variability is to obtain a clearly defined set of objec-

tives, which in turn includes a definition of the target population.

433. For example, suppose the objective is to sample dissolved

oxygen. All oxygen everywhere? No, obviously not. So the definition

of the target population is refined, and with each new element of the

definition the investigator derives a more homogeneous (less variable) "

target population--oxygen concentrations in reservoirs, reservoirs in

the United States, in the southeastern United States, etc. Eventually .

the target population may be reduced to a certain size or particular e

type of reservoir. Sampling may even be restricted to a particular body

of water, to particular portions of that body of water, and even to

particular depths. The definition depends entirely on the objectives of -. "

the study. .

434. When the study objective is to test for differences, it is
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not uncommon to have some specific reservoirs that are to be contrasted.

In this case, the definition of the target population is simplified.

However, if the target population calls for the comparison of two or

more types of reservoirs in a geographical area, the reservoirs chosen

should represent a random sample of all the reservoirs which fall into

each of the categories of interest.

435. The definition of the target population above has only con-

sidered the spatial limits of the study. Temporal limits must also be

defined. Should the oxygen concentration be sampled during the full

annual cycle, several annual cycles, or perhaps during only part of the

annual cycle? Again this depends on the study objectives. Is the lake

to be characterized for one annual cycle (any year), or does the study

call for estimates of variability between years? Perhaps the study

calls for an evaluation of oxygen conditions in the summer, when hypo-

limnetic anoxia is expected to occur.

436. The definition of the target population must be broad enough

to satisfy the study objectives, but the more narrow the objectives can

be made the less variability there is to be taken into consideration.

Once the target population and scope of the study have been defined, the

investigator should be able to state which variable or variables will be

measured. He should also be able to define the spatial and temporal

limits of the experiment.

437. Problem identification requires a decision on the nature of

the final goal. To begin with, do the researchers wish to estimate a

population parameter, such as reservoir phosphorus concentration, or do

they wish to test a hypothesis? These two procedures are not mutually

exclusive, so the objectives may involve both estimation and hypothesis

testing. However, one will usually be chosen as a primary objective,

since the sampling allocations may differ for the two goals. For exam-

ple, a balanced design is a desirable trait in hypothesis testing while

an estimation of a parameter may involve sample allocation which is

unbalanced but will take into consideration differing variable levels in

different areas.

438. The last step in outlining the sampling objectives is to
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define exogenous variables to be measured and/or define strata. The

purpose of including the measurement of covariables (quantitative vari-

ables) and categorical variables or strata (qualitative variables) is to

reduce variability and increase precision. For example, primary produc-

tivity is obviously dependent on incident light conditions and the

attenuation of light with depth. Therefore, in a study of primary pro-

ductivity, light is an influencing variable which should be taken into

consideration even though its measurement may not be part of the study

objectives. This exogenous variable can be used to explain part of the

variability in primary productivity, and to therefore increase the pre-

cision of the estimates.

439. Stratification, or the use of categorical variables, serves

a similar purpose (reducing variability in the estimates) in a different

manner. In stratification, the area or time frame of sampling is sub-

divided into smaller more homogeneous units which will have a small

amount of variability within the unit. For example, primary productiv-

ity varies with season. If primary productivity over an annual cycle is ,.

examined, there will be a large degree of variability. However, if each 5

of the seasons is examined individually, there will be much less vari-

ability. Therefore, summer productivity may range from 0.3 to 0.5 g

C m - 2 day- 1 , and relatively precise estimates can be obtained. Rela-

tively precise estimates of the winter productivity, which might range
fro O.1 o 01 gC -2 da-l

from 0.01 to 0.1 g C m day , may also be obtained. However, if sea-

sons are ignored, the result is a single less precise estimate ranging

from 0.01 to 0.5 g C m day . Obviously, greater precision results

from estimating the mean productivity separately within each of the

strata (seasons) than if strata are ignored. The same is true for

areas that may have different mean values of the target population.

When the areas are combined, the variability will be greater than if the

areas are separated as strata.

440. Any consideration in the sampling program which serves to

reduce, eliminate, or explain variability is desirable. There will

always be some variability which cannot be explained in terms of exo- V

genous variables. This variability is called error. "Error" is not
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used to indicate a mistake, but rather it refers to variability in the

data that is not accounted for by the sample design. Error can arise

from the effect of an unknown (and unmeasured) exogenous variable or

from the variability introduced in the measurement of a variable. This

source of unexplained variability is a natural property of the target

population, and the investigator should not hope to eliminate it, only

to reduce the unexplained variability as much as possible.

441. A careful definition of the objectives is a critical step in

conducting any study. Objectives that are too broad and poorly defined

generally result in an inefficient sampling program which may not ade-

quately meet the objectives of the study. The need for this simple, but

often ignored, step of establishing study objectives was described

above.

442. At this point the investigator has fully defined his vari-

ables of interest, both his target population and exogenous variables,

and the scope of the study. This clearly defines the sampling objec-

tives and facilitates the design of the sample placement. e

Sample Allocation

443. Once the objectives are clearly stated, sample placement

follows fairly easily. Assume for the moment that the investigator must

decide how to allocate a given number of samples, the number of which

will be referred to as "n." A discussion of how large n must be will .

follow. The discussions of statistical analyses which follow will make

one common assumption, that the sampling has been random. If the

objective is to sample the oxygen concentrations in a particular cove of

a reservoir, the analysis will assume that every drop of water in that

cove had an equal chance of being sampled. This condition is met when

the selection of a particular site does not affect the choice of the e

second and subsequent sites. Other types of sampling will be discussed

later, but for the moment, random sampling will be assumed.

444. If sampling is to be random, the individual sites and depths ,

for each sample are selected at random, usually from a random number
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table or random number generator. If the sample is to be completely

random, sampling dates may even be selected at random across the annual

cycle. However, this may not be the best sampling scheme, and it may

not address the objectives well. % %

Identification of strata

445. Strata are subdivisions of a larger population that are used

to reduce variability by working with smaller, more homogenous units of

the total target population. Strata are generally used where parameters

are to be estimated. Each stratum is treated as a separate entity.

Estimates of the population of interest are obtained for each stratum

separately, and combined for a final estimate. The advantage is that

the variances can be estimated separately, and can be added. Each of

the variances for the strata is likely to be smaller than if the popula-

tion had not been stratified.

446. After the strata to be sampled have been identified, such

that variability within the strata is more homogeneous than the whole,

the next step is to allocate a number of samples to each stratum. This

is called stratified random sampling. For instance, suppose a decision

has been made to stratify the samples into four seasons and into three

depths, with the expectation of relatively little variability within

each stratum as compared to the variability which exists between the

strata. Then if there were n - 600 samples to be allocated, one

option is to sample each of the 12 strata (three depths in 4 months)

equally. This calls for the placement of 50 samples (600/12) in each of

the strata.

447. Sampling schemes other than equal allocation are possible. '

For instance, if the volume of water at one depth is only 20 percent of

the total while the other depths contain 40 percent each, allocation of .

the number of samples to each depths may be in proportion to the volume

of that depth. This is called proportional allocation. This type of % %

allocation can also consider the variability of the strata, in addition

to its size. If one stratum is more variable than another, it can *

receive more sampling effort in proportion to its variability. This

yields a greater precision for the more variable strata, and a more f
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precise estimate overall. One additional consideration is cost. A sam-

pie allocation capable of considering cost, in addition to the factors

mentioned above, is called optimal allocation. This method considers

not only the size and variability of a stratum, but also the cost of

sampling each of the strata. In this case, the size of the sample

allocation to the strata is decreased in proportion to the inverse of

the cost of sampling the strata (i.e., strata that are less costly to

sample are allocated a greater number of samples).

448. The mathematical formulation for each of the sample alloca-

tions mentioned is discussed below. Allocation of sampling units for .

the estimation of a population can take three factors into account, the

expected size of the strata, the variance of the strata, and the cost of ,?.%..

sampling the strata. The three considerations can be expressed in a

single f~rmula, which may be simplified if particular factors are not to

be considered. The general formula is given by

10 2(2/y4 2... ..

where

s- the number of strata

i - the stratum number (i - 1, 2...s)

Ni - the size of the it h stratum

i - the stanird deviation (square root of the variance) .

of the i stratum

ci - the cost of sampling the itb stratum

n - the total number of samples to be allocated

n- the number of samples allocated to the ith stratum

449. This formula contains all of the elements in deciding opti-

mal allocation. It allows for consideration of size of the strata,

variance, and cost of sampling each stratum. It is not necessary to

include every factor. If the cost of sampling each stratum is approxi-

mately the same, all ci factors may be omitted. Also, if the vari-

ances are the same or the population sizes are the same, the factor i .
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or N may be omitted, respectively. If the three factors are the same

for each stratum, it is interesting to note that the results of the sam-

ple allocations are the same for the formula above as for a completely

random allocation done without consideration of strata. The three exam-

ples below illustrate the use of this equation under differing

conditions.

450. Assume that the epilimnion, metalimnion, and hypolimnion of

a reservoir are defined as the three strata of interest. Also assume

the strata differ in size (volume) such that the epi:meta:hypo ratio is

6:3:1, cost of sampling and variance is constant across strata, and a

total of 30 samples are to be allocated. Therefore,

N 6 - 3, n -30
N2  3 c1  c 2 =c 3 -c

N 3  i1 , a2 3 =a

and the equation becomes

ni - n [ N , r / )

(N1 + N2 + N3 ) (a/ -F )

1 2 3

and can be simplified to

ni n
n n NI + N2 + 3)

The number of samples allocated to each of the strata would be

n 30 6 18 
1 6 + 3 + I

n- 30(6 3 )u 92, = 3 6 + 3 + 1
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n =;p 30 3

n3 " 3 6 + 3 + 1) -

The advantage to this sample allocation is that it emphasizes the size

of each stratum. This allocation shifts more samples to strata of

greater size.

451. Given the three strata defined above, the variability within

strata might not be expected to be constant. Variability might be at a

minimum in the well-mixed epilimnion and increase to a maximum in the

hypolimnion. Assume that variability is not constant '.4

011

02 - 2
*.3 **.4 . 4"

04 a3

and that all other terms are as given above. The equation for sample

allocation becomes

(N 1  + N2 2 + N4

where N101 + N2o2 + N303 - 6(1) + 3(2) + 1(4) = 16. The number of ,

samples allocated to each stratum would be

30 16()I6- 11.25- 11 .11

- 30 132 1 11.25 112 16

,30 11(4)1, ~~n 3 - 3 - 7.5 --8..-l ; .

The result is that more samples are allocated to the more variable

metalimnion and hypolimnion. The advantage to this sample allocation is

that it provides the lowest possible overall variance in the final esti-

mation of the parameter for all strata combined. The allocation shifts 4
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more samples to strata which are more variable. The final variance of

each stratum is then reduced proportionally to the sample size allocated

to that stratum. The variances of other strata will increase somewhat

if the total sample size is kept constant, but the variance of the final

combined estimate will be minimized.

452. Cost of sampling might also be expected to differ among the

strata. The surface area represented by the epilimnion may be much

larger than that of the hypolimnion and, as a result, the time involved

in sampling (a cost) the epilimnion could be considerably greater than

for sampling the hypolimnion. Assume that cost is not constant e ..

cI = 2

c = 1.52

c3  % i 0

and all other terms are as given above. The equation for sample alloca-

tion becomes

n n( + +

N• aI vl'l, II N I

where

N F 1+ N 2 02 1 V./ + N 30 31~ -'c . ~

6 (1 12+ 3 (2) / /I7 5 + l(4)//il - 13.14

The number of samples allocated to each of the strata would be

[% 1
n 30 [6(1)/ 9.69 10

I . '... *

3 (2) 11. 5.n 30 131 -11.18 112 13.14
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n3 30 1(419.13 9313.14 ". : =*

The advantage to this sample allocation is that it provides the lowest

possible overall variance in the final estimation of the parameter for

all strata combined for a given investment. Conversely, for a given .,

precision, this method could also define a minimum cost. It incorpo- .

rates the above considerations but will, in addition, weight the sample

allocation to strata which are less costly to sample.

453. The investigator can obtain either a combined mean or a com-

bined total population estimate from a stratified sample. The estima-

tion of a population mean from a stratified random sample is the

weighted mean of each of the individual strata, weighted to account for ..

the number of samples in each of the strata. The total population ,

estimate is the sum of the estimates for each of the individual strata.

The estimate of the variance for the combined strata is given by the

weighted sum of the variances for the individual strata. '

Determining the Number of Samples -

454. It is possible to estimate how large a sample size is

required to achieve a particular level of precision. The objective is
to estimate some parameter to within a specified tolerance. The final '..'.'

statement of the results may be expressed as a confidence interval.

This statement is expressed in the form

P(lower limit - true population parameter 5 upper lirtt)

- confidence level

455. There is always a chance that the interval does not contain

the true value of the population parameter. For this reason the confi- "

dence level, expressed as a probability, will always be less than one,

or 100 percent. For instance, the investigator may be 95 percent sure

that the interval given contains the true population value. The width
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of the interval reflects both the level of confidence and the variabil-

ity in the population.

456. A more complete discussion of confidence intervals is pre-

sented in the section on statistical analysis. For the moment it is

only necessary that the reader understand that the objective of calcu-

lating a "required minimum sample size" is to obtain a sample size from

which a confidence interval can be calculated which will contain the

true population parameter within a specified level of tolerance.

457. The formula for calculation of sample size requirements is

simple, but obtaining good estimates of the factors contained in the

formula is often difficult. The formula is given by
. . -. . %.J

n t a2/p

where n is the sample size needed for a Farticular probability 
level

of error (or confidence) in the eventual confidence interval calcula-

tion. The value of t is given by this probability. The variance for
2 "

the population is given by a , and a desired level of precision or

tolerance is given by p . The variance factor (a 2) refers to varia-

bility in the population. It dictates that for a given level of con-

fidence and precision, more variable populations require larger samples ..

(larger values of n ). The factor p is determined by the researcher

and gives a level of precision required. For example, if the objective

is to estimate phosphorus concentration, the researcher may decide that

the estimate should be within 2 pg P/1 of the actual concentration.

That is, the estimate will be the actual concentration ±2 ug P/t. The ' "

values of t , p , and a2 used must be provided by the investigator.

Many who are not familiar with the process, or with the population to be

sampled, may be at a loss to give reasonable estimates to these values.
%, . -- . .,

458. The value t is derived from statistical theory. The

researcher must first decide the probability of error in the eventual

results of the study. There will always be some probability of error.

For example, when the research finally states that the actual concentra-

tion is 20 + 2 Ug P/t, there is always a possibility that he will be
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wrong. If he sets t to a level which corresponds to a 5-percent error

rate, he will be wrong five times in 100 estimates. If he chooses a

1-percent error level, he will be wrong only one time out of 100 esti-

mates, but he will have to take many more samples. Generally, research-

ers have chosen a 5-percent or I-percent level of error. The t values

corresponding to these levels may be initially approximated as 2 and

2.6, respectively. Actual values of t can be obtained from statisti-

cal tables when the expected sample size has been estimated.

459. The estimate of the variance a2 should be determined, if

possible, from the population to be sampled. This would require a pre-

liminary study of the population and an estimate of the variance. Vari-

ance is estimated by the formula

2 2 r 2

=sof = - X)2n- )

inf

n( sample size

[i-i x i-

where
" Xi = value of the ith observation of the target population
Svariable Ei

22
s estimate of 02, indicated as 02 ,%

n - sample size

If the estimate cannot be obtained with a preliminary sample, an approx-

imation may be obtained from published values from similar populations.

460. The estimate of precision is one of the more difficult to •

predetermine. If the investigator knows that he would like to determine

the final estimate within ±2 ug P/t, this value would be used. The %

desired precision can also be expressed as a percent of the mean. For

example, if the concentration is expected to be about 20 ug P/£, the

precision might be requested as 10 percent of this value, or 2 pg P/i.

A level of precision of this magnitude is often appropriate for field *.*.

studies. More refined laboratory studies may require a greater
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precision, while preliminary surveys or short studies whose objective is

to guide an administrative decision may require less precision.

461. The investigator should understand that the values provided

are only rough estimates. It is possible that when the final calcula-

tions are made, the tolerance is not as small as originally specified.

A similar development of the same minimum sample size estimating formula

can be made for tests of hypothesis. Again, the application of the

formula does not guarantee that detectable differences can be made at

the level originally specified. Still, the formula provides the best

estimates available.

Systematic Sampling

462. All of the sampling discussed previously was random or

stratified random. Systematic sampling is generally easier to carry out

than random sampling. In systematic sampling the first sample placement

is generally decided at random within an initial region, and subsequent

samples are taken at some constant distance or time from the first. For

example, the first sample may be randomly placed near the headwaters of

a reservoir, and subsequent samples are taken every 2 miles down the

reservoir from the previous sample. More commonly, sequential samples .' '

are taken over time. The first sample is taken in January, and addi-

tional samples are taken at 4-week intervals after the first. Although

this is a popular sampling scheme, there are several subtle problems

that can originate from its use. The eventual statistical analysis of

data will generally require an assumption of random sampling. A sys-

tematic sample may have a variance that is either greater or smaller

than a random sample.

463. Systematic sampling in an area, such as over the surface of

a reservoir, often entails sampling a grid of stations. This sampling

scheme is effective in covering the whole range of variability available

in the area, since it will often uncover heterogeneities missed in ran-

do. sampling. However, the ability of systematic sampling to cover the

range of variability also means that the variability can be greater than
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if sampling is done randomly. However, additional studies have shown

that variances resulting from systematic samples are frequently smaller

than those resulting from random sampling. Whether the variance esti-

mate is large or small depends on the distribution of the population

being sampled.

464. In either case, the assumption of random sampling required

for the eventual statistical analysis will not be met. This is particu-

larly important in hypothesis testing, and it will also affect confi-

dence interval estimates. However, this does not mean that estimates

obtained from systematic samples are necessarily biased or lack

precision.

465. The detection of the wider range of variability may be .e

desirable in preliminary studies, particularly if the objectives include

the definition of strata. Systematic sampling may be better for some

applications such as defining strata. However, once the strata are

defined, the sampling should be done at random within the strata, if

possible, in order to meet the assumptions.

Cluster Sampling ...

466. Another type of sampling design is cluster sampling, done as

either one- or two-stage sampling. This type of sampling is applicable

when the sampling unit is an identifiable group of individuals or a

cluster of observations. In this case it may be impractical to sample

all of the individuals at random, so the clusters are identified and a

sample is selected at random. Then the cluster is completely sampled

(one-stage) or subsampled (two-stage).

467. As an example, suppose that the nitrogen concentration of

first-order streams is to be sampled in a reservoir drainage basin.

There may be a hundred small first-order streams in the basin. Compil-

ing a list of all these streams for a random sample would be difficult,

and covering the whole drainage basin to provide a random sample may not

be practical. An alternative would be to identify individual river

basins entering the reservoir, which may only number a dozen, and to
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select first-order streams in two stages. First, a random sample of

river basins is selected; second, a random sample of first-order streams

is selected within each of the river basins selected for sampling. This

greatly simplifies the listing of feeder streams for sampling, since

maps for only a sample of the river basins must be searched, rather than

for all of the river basins. Field sampling is also simplified, since

trips need not be made into all of the river basins in the reservoir

drainage area.

468. The analysis of cluster samples requires the estimation of

variance at two levels, the between-cluster variability and the within-

cluster variability. The total variability is a recombination of these

two levels. The slightly more complicated calculation of the combined '

variance may be more than offset by the application of this more practi-

cal sampling scheme, and by savings in cost of sampling.

Types of Sampling Programs

469. The basic types of water quality investigations may be

placed in several categories depending on the objectives of the sampling

program. The objectives may call for parameter estimation, a test of a

hypothesis, or the development of a predictive model. The objectives

are not mutually exclusive since hypotheses about the estimated parame-

ters may be tested. However, the primary goal should be stated in the

objectives.

470. Data collected in any sampling program should ultimately be 1
qh.-."

processed by some statistical technique. Therefore, some important

aspects of statistical analysis, such as the hypotheses to be tested and

which sources of variability should be included in the analysis, are

discussed as part of the considerations of sampling. '

Parameter estimation

471. The primary objective in many programs is to document the

status of an area. This is often the objective of baseline or pilot

studies. These studies are designed to establish the normal levels of

parameters prior to impoundment of an area or some other future change.
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The eventual analysis resulting from this type of study would generally

be some parameter estimation. The variables measured would depend on

the objectives of the study. The objective may be to document particu-

lar attributes of water quality, such as pH, dissolved oxygen, turbid-

ity, or alkalinity. In this case the analysis may include only the mean

values and a measure of variability.

472. Another type of survey is the pilot study of an area, prior

to the initiation of a major study. Pilot studies may have as their

objective the estimation of parameters and the determination of their
range and variance. Another objective of pilot studies may be the

identification of strata. Stratification, previously discussed, is

simply the subdivision of an area into smaller, more uniform sections. 2- :
This is an important aspect of reducing the variability of the final

estimates produced by a study. Estimates of the costs of sampling may

also be obtained from pilot studies.

Tests of hypotheses J'

473. Another type of study objective may be the testing of some %

specific hypothesis. There are two basic approaches in this type of

study. The objective may be to test the existing water quality against

some hypothesized value, or it may be to test the equality of two or

more areas, seasons, or reservoirs. Although this type of study may be

done as a survey, many aspects of designed experiments may be used to ,-. *

improve the results.

474. A test of hypothesis may be formally represented by the :•',.

mathematical statement '- 9-

H 0j

where -meno

- mean of the sampled population

e - hypothesized value

The alternative hypothesis can be stated as

< e

206



475. Note that this set of hypotheses is one-sided, that is, the

only alternative hypothesis of interest is one where the parameter esti-

mates are below the hypothesized value. The hypothesis may also be two-

sided as in the example below.

476. Tests of hypothesis are not always made against hypothesized

values. The objective may be to test for a difference of the means

between two areas. Actually there is an hypothesized value here, even

though it is not known in advance what mean values the reservoirs will .

have. The hypothesis in this case is that the difference between the

mean values observed for the two reservoirs will be zero. The alterna-

tive is that the difference is not zero, indicating that a difference

exists.

477. These hypotheses may be represented mathematically as

H :vl I M 2  or Ho:1JI - 112 - 0

where

U M mean of the first population sampled

U2 - mean of the second population

478. In statistically testing a hypothesis, the primary hypothe-

sis (Ho) is called the "null hypothesis" because it is generally a

hypothesis of no difference. The alternative hypotheses are

H *1P V~~ or H :P -U 0

479. In this case the alternative hypothesis is two-sided since .,,

the second area may have either a larger value than the first, or a

smaller value than the first. Either case is of interest, and both

indicate that the areas are not equal. The hypothesis in this type of

example may also be one-sided. For example, the hypothesis may be that

one area has a higher dissolved oxygen concentration than some other

area. ".

480. Similar tests of hypothesis may be made to test for effects,

that is, changes due to some treatment that has been administered by the
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investigator or has occurred naturally. Here again, the hypothesis is

one of "no difference exists" against the alternative that "a difference

does exist."

Prediction

481. Predicting the value of a variable under certain conditions

is done with regression analysis. In regression analysis the objective

is generally to demonstrate or document a relationship between one

variable called the "dependent" variable and one or more variables

called the "independent" variable or variables.

482. A major difference between this type of analysis and those

discussed previously is that, in parameter estimation and hypothesis

testing, the means being estimated or tested could have been for some

particular group, class, or category, such as an area or a particular

month. Regression analysis requires the use of a quantitative variable.

At least one of the independent variables in a regression analysis will

be a quantitative variable, as opposed to a qualitative, categorical, or

group variable.

483. Examples of relationships that may be documented by regres-

sion analysis are phosphorus-chlorophyll relationships in reservoirs or

the relationship between light and primary productivity. Regression

analysis can also be used to test for relationships between some vari-

able and a gradient, or to test for trends over time. Predictions done

with regression analysis may result either from surveys or from designed

experiments.

* Sampling a spatial gradient ;

484. Analysis of a gradient such as a trend with depth or dis- "

tance calls for the measurement of the variable of interest and for

measurement of the gradient variable. In terms of material already \.

discussed, the gradient variable will be treated as a covariable to the

variable of interest. As usual, the hypothesis is that the gradient

variable will account for some additional variability of the variable of

interest.

485. The relationship between a gradient and the response

variable may be either a simple linear function or some nonlinear
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relationship. If the response of the variable of interest to the

covariable is known to be linear, or can be assumed to be linear, the

only sampling observations required are from either end of the gradient.

If the gradient is not a simple linear function, or if one of the objec-

tives is to test the relationship for linearity, the gradient should be

sampled at a number of intermediate points along its range.

486. Two aspects of analyzing a gradient should be taken into

account. First, the analysis of a response along a gradient that is not '

linear requires placing samples along the gradient. The tendency of

many investigators is to then spread all of the sample points out along

the gradient. The second aspect of analyzing a gradient is the evalua-

tion of the adequacy of the model fitted to the gradient. This will ""

require replication of the samples at numerous points along the

gradient.

487. The investigator is then faced with a decision. Is it pref-

erable to sample more points along tfe gradient with few replicates at

each point, or to sample fewer poirts with more replicates? As stated

previously, if the relatinnship is linear, then only two points need be

sampled (sampling the ext emes is preferable). Whenever the relation-

ship is known, even if it is curved, then relatively few sampling points

are needed along the gradient. The minimum number of points depends on

the relationship that is to be used. In this case, more samples may be 4

used as replicates.

488. If little is known about the relationship, or if the rela-

tionship is complex, the necessary number of points along the gradient

increases. At the same time, more replicates are required in order to

test the adequacy of the proposed model. It is better in this case to

spread as many points as possible along the gradient, but to insist on -.

some replication at the sampling points. 
.Ol

489. It is generally good practice for the placement of the ,*

points along the gradient to be approximately equidistant, but care

should be taken to randomly select points within gradient segments if

there is a danger of falling in step with some natural phenomenon. How-

ever, equidistant points are not necessarily the optimal distribution
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if, for instance, a particular section of the gradient is to be esti-

mated vith greater precision.

Sampling over time

490. When samples are taken over time, time can be considered as

an additional variable or source of variability. Time can either be

viewed as a source of variability that should be blocked into more homo-

geneous subunits (quarters, seasons, or months) or as a covariable. If

the changes in the variable of interest are expected to be small, or

stable for long periods with short periods of change, then blocking on

time may be desirable. The periods to be blocked would depend on which

periods of time are expected to be stable. If treated as a covariable,

the preceding discussion on sampling a gradient applies quite well to

sampling over time. However, two considerations should be included.

491. First, "time" is not likely to be the actual influencing e

variable. Changes over the annual cycle, for instance, occur because of

changing light intensity, temperature, etc. "Time" can only be used as

a surrogate for other variables that are either unknown or whose indi-

vidual influences on the target variable cannot be discerned.

492. The second consideration is that the relationship with time

as a covariable is likely to be complex. Over an annual cycle the rela-

tionship with most variables is unlikely to be linear (though relation-

ships may appear linear for short periods of time). Sampling over the

annual cycle, with time as a covariable, will therefore call for rela-

tively frequent samples over time, but with some replication within

sampling periods. Care should also be taken to sample randomly within
each of the sampling periods.

Frequency of sampling

493. The frequency of samples over time depends on the definition

of the target population and whether time is to be considered as strata

or a covariable. If stratified, the samples within the time strata

should be randomly allocated, and their number would reflect the desired

precision. If time is to be treated as a covariable, the annual cycle

should be subdivided into a larger number of subunits, and sample repli- '

cates randomly placed within the subunits. Monthly sampling is usually

210



adequate to detect the annual pattern of changes with time. If the

investigation requires the detection of short-lived phenomena, then more

frequent sampling may be required to obtain greater resolution.

Summary

494. There are several aspects of sampling with which the

researcher should be familiar before designing a sampling program. The

design used will depend on the objectives and on the types of variables

that must be taken into consideration. In any design, the primary

concern will be variance or variability. Whether the objective is

parameter estimation, testing of a hypothesis, or development of a pre-

dictive model, the results should have the smallest possible component

of unexplained variability. The main concern is to reduce, eliminate,

or account for sources of variability.

495. The sampling plan can reduce variability in several ways.

One way is to standardize the field sampling techniques as much as pos-

sible. Any refinement of technique that will contribute to uniformity

will aid in reducing variability.

496. Not all variability can be reduced or eliminated. In some

cases the sampling program will have to include the measurement of exo-

genous variables (variables that are not part of the study but which

contribute to the variability) in order to measure and account for

additional variability. In other cases, the parameter estimates cannot

be done separately for each area. For instance, when used for tests of

hypotheses, it is convenient to combine all Preas into one analysis in .,

order to obtain a pooled estimate of variability. Blocking provides a ..,,. .

measure of variability without "eliminating" it and allows for all data %i

to be combined into a single analysis for testing hypotheses.

497. Previous mention has been made of stratification as a method

of eliminating variability. Although there is no real difference in the

concept of a "block" or a "1stratum," there is a difference in the way in

which the two are applied. A block may be a subdivision of a larger

population, such that the variability within the individual block is

less than for the whole, which is also true of strata. Blocking is a

term generally applied to situations in which hypotheses are to be
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tested, and it is simply a convenience used to account for a fraction of

the variability (the between-block variability). The variance within

the blocks is assumed to be the same, and a pooled estimate of the

variance is obtained for the best test of the hypothesis. If the vari-

ances are not the same, efforts must be made (such as transformation) to

ensure their uniformity.

498. Other exogenous variables will also explain or remove a

certain part of the variability. For a previous example of primary

productivity, it was as important to know the light conditions as it was

to know the season. In fact, the two variables, season and light, may

be explaining the same variability in productivity. That is, the season

variability may be due to changing light, and some of the light varia-

bility is due to changing seasons. On the other hand, season may

account for some variability which is not explained by light, such as

changes in nutrient availability and species composition, so that light

may not be able to completely explain the seasonal variability. In this

example the light is a quantitative variable called a "covariable" and

season is a class variable, where each season is a "block" or category

of the class variable.

2,1
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APPENDIX A: GLOSSARY

accuracy--the nearness of a measurement to the actual value of the

variable measured.

alpha error--see Type I error.

alternative hypothesis--the hypothesis that remains tenable when
the null hypothesis is rejected.

beta error--see Type II error.

central tendency--the tendency for a majority of measurements to
lie near the middle of the range of the entire set of measurements.

descriptive statistics---a means to organize and summarize data.

frequency distribution--the distribution of the total number of
observations among a set of categories.

heterogeneity of variance--variances of different samples are not
equal; also referred to as heteroscedasticity.

homogeneity of variance--variances of different samples are equal; ".- -
also referred to as homoscedasticity. % -. e ...

inferential statistics--a means to make generalized conclusions,
based on the inference of characteristics of the population drawn from .-...

the characteristics of the sample.

level of significance--the probability level that is considered to
be too low to justify support of the hypothesis being tested.

Model I ANOVA--an analysis of variance involving fixed effects,
i.e., the levels of a factor are specifically chosen.

Model II ANOVA--an analysis of variance involving random effects,
i.e., the levels of a factor are chosen at random.

Model III ANOVA--a factorial analysis of variance that includes- a
both fixed and random effects; also referred to as a mixed model. -

nonparametric statistics--statistical methods that draw inferences
about populations but not their parameters; since these methods do not
make assumptions about the distribution of the sampled populations, they " '.'"
are also referred to as distribution-free statistics.

null hypothesis--statement of "no difference" (see Alternative
Hypothesis).

parameter--a quantity characteristic of a population (see
Statistic).

parametric statistics--statistical methods that make inferences
about a population's parameters; these methods generally assume random
sampling, a normal distribution, and homogeneity of variance.
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population--the entire collection of measurements about which one
wishes to draw conclusions; sometimes referred to as the universe or
target population.

power--the probability of rejecting the null hypothesis when it is
false and should be rejected.

precision--refers to the closeness of repeated measures of the
same quantity.

random sample--a sample in which each member of the population had
an equal and independent chance of being sampled.

robust--refers to how sensitive the validity of a given statisti-
cal test is to minor deviations from the assumptions of the best.

sample--a subset of all possible measurements of the population.

skewed distribution--a frequency distribution in which the mean
and median are not identical.

statistic-- a quantity estimated from sample data; an estimate of
a population parameter.

statistical hypothesis--a statement about a statistical population
which one seeks to accept or reject on the basis of observed data.

statistical test-a set of rules by which the decision about a
statistical hypothesis is made.,,.,',

symmetrical distribution--a frequency distribution in which the
mean and median are identical.

target population--the statistical population about which infer-
ences are to be made based on sample data (see Population).

transformation-a mathematical operation applied to sample data to
correct for a nonnormal distribution and heterogeneity of variance.

Type I error--the rejection of the null hypothesis when it is in
fact true; also called an alpha error.

Type II error--the acceptance of the null hypothesis when it is in
fact false; also called a beta error. t

variable--a characteristic that varies from one entity to another.
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