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~ \ Abstract
\,
A mathematical formulation of the Rigid Motion Perception problem is
described. The constraints on the parameters of rigid motion (i.e.. three-
dimensional velocities) obtained from image motion data (two-
dimensional projected velocities) are analyzed. A briefsurvey of related
work shows the lacunae in the existing body of research in this area.

. Uniqueness results and computational algorithms are presented to
compute the rigid motion parameters from retinal velocities. The
approximations involved in the velocity representation are stated.
Algorithms and constraints to permit cooperative computation of
motion and shape are described.
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ABSTRACT (Continued)

involved in the velocity representation are stated. Algorithms and constraints
to permit cooperative computation of motion and shape are described.
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1. Introduction

Motion is a ubiquitous phenomenon in our evervday life. It is therefore
important, in the study of Computer Vision, to understand the retinal motion flux
arising both from movement of the observer, as well as the motion of
environmental objects. The study of the motion of nigid objects (or surfaces), in
particular, is a relevant avenue for investigating motion perception. In general,
computing three dimensional motion from monocular two dimensional image
motion flux is an underdetermined problem, admitting an infinite number of
solutions. The assumption of rigidity makes the problem tractable (see Ullman’s
paper [33] for a discussion of nonrigid motion perception). Furthermore. most of
the moving objects in our environment are rigid. From a practical standpoint. the
study of ngid body motion is interesting. since it finds widespread applications in
the areas of optical navigation. tracking and recovery of 3D structure of nigid
objects.

The motion of a body can be characterized by the rate of change of the
positions of various points on its visible surface. Thus. at least instantaneously. this
corresponds to a three dimensional velocity field. If the body (or surface) is rigid,
then, this velocity field can be described by a vector function of the three
dimensional position coordinates and six global parameters ( see figure [). which
are:

(i) The three components of the velocity of any point O on the body. These are

called the translation parameters.




(i) The rotational velocity components of a coordinate frame,with origin O.

attached ngidly to the body.

It is a standard result from kinematics and geometry (see [7]) that although the
rotational parameters are invariant with respect to the choice of the origin O. of

the body frame, the translation parameters are dependent on the choice of O.

When considering motion of rigid bodies. there are two cases of interest,
namely, £gomotion and General Motion. Egomotion or self-motion refers to the
movement of the camera or sensor in a static environment. The image flux, or
optical flow, generated due to such a motion is due to a single relative movement,
1.e. between observer and static environment. In contrast. General motion implies
that there is more than one object moving with different velocities in the observers
field of view. In this case the optical flow field consists of many segments
corresponding to the various moving surfaces. Each segment 1s charactenized by
the translational and rotational velocities of the associated moving rigid surface
inducing the optical flow. These velocities are called the parameters ot motion for

the ngid surface.

The rigid motion parameters are usually expressed with respect to a frame of
reference attached to the moving surface, which is assumed to coincide with the
observers frame of reference at the time of observation. The problem is to
determine the motion parameters corresponding to a optical flow field segment. If
the depth of the scene is unknown then it can be shown that only the rotation -

which is depth invariant - can be determined uniquelyv: whereas the three




WP W e W e

P el e e

LA s 84K,

Wty oy A

]

PPl

Seln e,

o

translation parameters can only be determined upto a scale factor (this is the depth
scaling effect). Thus we can determine five parameters to characterize the mation

in this case.

Motion in three dimensions causes the pattern of light falling on the retina
(or any two dimensional array of photo-sensitive elements) to vary in time in
accordance with the motion. Hence, the input (or sumulus) to any computational
process endeavouring to understand the motion. is the two dimensional projection
of the three dimensional motion. Since a velocity field 1s 4 good representation for
the three dimensional motion, it is customary to choose a two dimensional velocity
field representation for the image or retinal motion. The latter is called oprical
Sflow.

The problem addressed in this paper concerns the computation of the

paramelers of rigid motion and the structure of the moving surface from retinal

stimulus such as optical flow.

The optical flow field is a principal source of information about the motion.
inducing the "flow"”. as well as the 3D structure of the moving surface being
observed . The optical flow comprises two parts, corresponding to the rotation and
the translation, respectively. of the inducing motion. The optical flow due tc ngid
motion is constrained at every point by the parameters of the motion. However,
since the parameter space has a large dimension and the constraint is nonlinear in
form, computation of the motion from optical flow (or image displacements) by

search techniques is computation intensisve.
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The optical flow field 1» mathemaucally separable into a translational part and
a rotatonal component. [t has been long recognized [12] that the motion
perception becomes simpler in the instances when the optical flon field can be

computationally separated into the translational and rotational parts. A familiar

o THERR% % WY RS «®a” o o e

. illustration of this is the casce of motion parallax observable at depth discontinuities
E in the retinal field. The effect is to reduce the dimensionality of the space of
. unknowns. Unfortunately. this scems 1o be very hard to accomplish. in general.
_CE Motion parallax is the basis for an algorithm by Lawton [24]. Other approaches to

2 4

the problem can be found in [6.19]. involving nonlinear least square techniques or

using local constraints involving derivatives of the optical flow,

As stated previously. uloorithms for ngid motion perception are difficult

design due to two main reas -
(1) The space of paramcters 1~ o high dimensionality (e.g. five).

(2) The Constraint equaticns ohtaned by optical low measurements are non-

linear.

There have been some clever implementations of non-linear search algorithms
to interpret 3D motion from opucal flow data [22,23). There have also been
discrete point tracking algorithms by Tsai and Huang [30] and Fang and Huang
[8.9) and Longuet-Higgins {2v] in some of the latter algorithms. the nonlinear
motion equations are lincarized in terms of synthetic parameters, which are
nonlinear combinations of the uctual motion parameters. Tsai and Huang, and

Fang and Huang. note the cases when such algonthms fail to compute motion
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parameters.

In this paper we examince the situations when the optical flow field is capable
of being interpreted in more thun one way. An instance of such ambiguity is the

optical flow field due to motion of a plane [29].

A geometric analysis of the problem of computing 3D motion parameters
from 2D image velocities hus been done by Longuet-Higgins and Prazdny [19).
The constraint equations thut theyv derive are simple in form, but deal with
velocities. To implement & mouon analysis algorithm based on these equations,
one makes the assumption thut the temporal grain of the observations is fine
enough to talk meuaningfull. ubout the velocities or time derivatives of both the
image and world positions. Kepresenting motion by velocity parameters entails
making a first order approvimuation of the temporal behaviour associated with the

motion. Thus. for examp'c. 1t the displacement of a particle moving in one

dimensional space is Ay 1n umc Ar. then %% is a good approximation for the

velocity only when A; is smuli ¢nough such that the change in velocity in this time

period is small.

An alternative derivation 's due to Tsai and Huang [30). Their approach is to
analyze the relation betweer the projected displacement vectors in the image plane
due to an arbitrary rigid displacement of a set of points in 3D. It is known (7] that

this type of motion can bc churacterized by a rotation about an axis passing

through the origin of the reference coordinate frame and a translation.




The treatment in this paper assumes the velocity representation for rigid

motion. The assumptions underlyving the work reported here are:
(i) The motion being observed. is due to a rigid surface. .

(1)) The time constant (or sampling interval) of the sensor is small enough to

make a first order approximation of the temporal behaviour due to the :
motion being observed.
1.1. Review of previous work

The computation of rigid motion parameters from image displacement vector

fields has been studied by a number of researchers. Egomotion huas been

considered in the literature by Longuet-Higgins and Prazdny [19]. Prazdny [22].
Waxman and Ullman [34] and Bruss and Hom [6]. Longuet-Higgins and Prazdn
examine ways of determining 3D structure and motion parameters from optcaul
flow. Their method depends upon accurate reconstruction of the optical flow field.

An interesting result due to them is that for non planar surfaces local analvsis of -
the flow field vields a cubic constraint involving the motion parameters. Prazdns
([22]) has devised a five point algorithm to solve for the motion parameters from

nonlinear constraint equations. Waxman and Ullman's method depends upon

reconstruction of the optical flow field analytically, in local neighbourhoods. Bruss

|

and Horn propose a least square solution to the parameter estimation problem.

e

Some other computational approaches attempt to segment the optical flow

field into translatory and rotatory components, albeit appronimately. An example

is the method of Reiger and Lawton [24] where the change of rotational flow at

\.I.--l“.n ) . ..—




steep depth gradients, is treated as noise. Jain [17,18] computes the focus of
expansion before computing the image displacements and uses the former to guide

the correspondence for finding the latter.

All the above analyses pertain to the computation of motion parameters from
optical flow, i.e. continuous or differential image motion. An alternative approach
1S 1o consider evaluating the motion parameters and 3D structure from discrete
point correspondence. Ullman [32] shows that three views of four non coplanar
points 1s adequate to determine the structure and motion of these points under
orthography. Tsai and Huang [30] prove that the motion of seven points not lving
on two planes. one of which passes through the origin. nor on 4 cone passing

through the ongin. can be uniquely computed. from discrete displacements. Fang

and Huang [&.9] prove that structure and motion of nine points not Iving on a

second order surface passing through the origin is uniquely determined from
image displacements. Nagel and Neuman [21] and Roach and Aggarwal [25] have

also looked at the problem of determining motion from discrete displacements.

Yet another approach to the problem of motion parameter computation has
been to restrict the motion to simplify the analysis. Webb and Aggarwal [35]
Hoffman and Flinchbaugh [14] and Hoffman and Bennett [15] analyvze rigid
motion with the additional assumption of fixed axis of rotation or planarity. An
major motivation for this type of analysis is that, it models the locomotion of man

and animals.
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1.2. Summary of Results reported here

lt 1s evident from the review of the existing body of work in the field of
motion perception that. although considerable work has been done. much remains
undone. Uniqueness proofs of the type derived by Tsai and Huang and Fang and
Huang do not allow us to visualize the situations when the optical flow field is
intrinsically ambiguous, admitting more than one interpretation. An analysis of
the optical flow field to determine cases of ambiguity will be a major focus of this

paper.

When the image formation geometry is modeled by means of the parallel
projection model. the constraint equations become simplified. This is also called
Orthographic Projection model of image formation (see figure I11b). The attendant
simplicity in the motion equations can be used to considerable advantage in the

preliminary analysis of the motion perception problem. The following results are

denved:

1. The component of rotation about the line of sight. the ratio of the other two
components of rotational velocity, and the tilt function is uniquely

computable from a single optical flcs field. for a rigid non planar surface.

2. When the surface normals for a rigid surface are known then the motion

parameters can be computed uniquely.

The Perspective Projection model (see figure 1la) is a more accurate model of

image formation by eye or camera. For this model it is proved that;
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1.  The optical flow field. under the assumptions of rigidity can have at most

three interpretations.

2. The rigid motion of any surface whose depth from the nodal point of the

. . Pix.y)
sensor cannot be expressed by the rational function Q—l(—”—) where P, and
N NI \
)
N Q. are rational functions of the first and second orders respectively. is
’ uniquely computable from the information in the optical flow field.
y 3. Two optical flow fields, obtained at different time instants. determine the
motion parameters uniquely.
4. The motion parameters are untquely determined from the optical flow field
when the corresponding motion involves rotation only.
” 5. The optical flow due to planar surfaces is generally ambiguous. However this
ambiguity can be resolved either when the flow field is due to more than one
: plane moving together ngidly. or in the case of a single plane. if its tilt 1s
A known.
2
7. It is feasible to design a cooperative algorithm for computing both shape (e.g.
2 surface normals) and optical flow, under conditions of rigid motion.
: 2. The Geometry of Rigid Motion
f Consider a sensor moving relative to a stat  scene. The co-ordinate frame
4
. (X.Y.Z) is fixed to the sensor (see figure 1). The viewing direction is along the

positive z-axis.

Faat il B LN AR
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A rigid body is defined as u set of points whose relative euclidian distances
from all other points in the set are invariants with respect to the transformations of

rotation and translation. In addition, since we will generally deal with opaque

e i g = g

objects and hence will observe points on a surface (or a manifold) in 3 space. In
d other words the 3 cartesian coordinates of of a point on a ngid body are not

independent. Formally.

B=1(n.t)
where

@ = N Y. /N point on the surface of B

“(Y.Y./)y=0 :
When the body B 1s dispisced with respect to the frame of reference. we
; obtain a new representation

B =(a.1)
The displacement is described b, the affine transformation

.
X' = [RIN+ 1 (2-1) g

Any displacement of a ngid hody can be modelled by the above equation. which
describes a rotation about an avis through the origin and a translation specified by
the vector T. o
If the rotation anglc is> siiail. it can be decomposed into three component “
b
rotations about the individual aves separately [16]. In this case R and T are given .

by




¥ 1 —_ \
w-oow, 1
R=ju 1 W, T= N
.. W W, 1 I:
! Substuting for R and 7 in equation (2.1) we have,
Y =V-wlY+wZ+iy (2-2.1)
v Vbt +wdX-w 2+t (2-2.2)
: / =/ -wX+w Y+ (2-2.3)
or.
. AV = —w. Y+ 0/ (2-3.1)
' Ay =1 vl -/ (2-3.2)
A= - X+ ) (2-3.3)
‘» where.
1
Al = U -\ AY =1V -Y% Al =/ -7/
We define the parameter veotor a for charactenizing the motion,where
)
B Y A STRIA TR
!
) Motion perception involves the recovery of the parameters of motion, as well as
) the structure (or shape) of the moving object. The geometric properties of the
) three dimensional surfaces and points are related to the geometry of their image.
X Thus the projective transformuation involved in the image formation process must
be analyzed. The subsequent anulyvsis considers both the cases of "perspective” as
well as "orthographic” projections.
d
+
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3. Analysis of Motion under Orthography

When the model of image formation involves orthographic or parallel
projection. then the mathematical formulation of the problem becomes
considerably simpler. It can be argued that this is a valid model of image
formation when viewing distant objects, or when the focal length of the camera is
large compared to the distance of the viewed surfaces, or when the viewing area is
small and centered around the line of sight - as in the case of the field of view

corresponding to the fovea in the retina.

Under orthography . the projection equation relating the position of 4 point in
three space P = (X.}./) 10 its image p = (1 3) IS!
(x )= 1)

Assuming that after a short while the point moves to a position given by

P =Y.} ./ while its image moves to p =(x3) the following relations are

obtained from equations (2.3):

Arv= v —av=zAV = -w. Y +w/

Av =1y -1 =AY =1+« -/ (3.1

Optical flow is the time derivative of the image position vector and is denoted by

(u.v) where
(uv)=(xy)=(X.7)
Alternatively,
Ar—=0A;r 4 Ar—=0A; ~ &

The motion parameters are now the translational velocity V= (.1 H) and the

rotational velocity @ = (a.8.y) where:
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4 % lim hm L . lim !:

T Ar—=07%; b= ai—07; W= ai=07;
and
N _ lim @ g= Jm @ _ hm w.
a= A1—=073; = Ar—07; Y= Ar—07,

therefore the equations relating image and 3D motion are

u=U~+B/-y
Lo (3.2)

These equations are exactly identical in form to those obtained under the discrete

Danf It et

1"

\

case (assuming small rotation), 1.e. equation (3.1). Stnctly speaking. according to
the nomenclature adopted before. the motion parameters for the discrete case are
(1,.1,.w,.«..«) and those for the differental case are (&1 .a8.y). However. since
equations (3.1) and (3.2) are identical in form. all subsequent analysis is based on
the latter equation. Furthermore. the parameters ( it will be evident later that only
the rotational parameters are of interest here), in both the differential as well as
the discrete cases will be referred to by the symbols (a8 y). The treatment of both
- the cases is identical. the only difference being that dervatives in the differential

. analysis correspond to differences in the discrete case.

3.1. On the information available in the optical flow field

. Observe from equation (3.2) that the image displacement (or image motion
field) consists of a translational part and a rotational part. The translational

motion parameters are dependent on the orgin of reference. In fact the

parameters, intrinsic to the motion are those of rotation. Thus relative to a

particular point, say the origin (0.0). equation (3.2) becomes:

¢
)
4
9
4
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u=8/ -y
v=—-a/ + yx

where » actually means « - «(0.0), v 1S+ - v(0.0) and 7 is / - 70.0. It should be

(3.3)

emphasized here that / denotes depth relative 10 a certain point of reference ( in
this case it 1s the origin ). [f the structure or relative depth is not known then the
parameters (a.f.y) are not completely recoverable. There is an exact analog of

equation (3.3) for the discrete case. obtainable from equation (3.1).

Proposition I When the depth function (or structure) is non planar the

following parameters are uniquely determined {rom the image displacement field:

(1) The rotation about the axis aligned with the line of sight. 1.c. y.

(2) The ratio of the other two parameters. Le.

B‘ .

Proof: The proof is by contradiction. Consider the motion of the non planar
surface 7,. which is described by the parameters (a;.8.y:). The image motion

equations (from equation (3.3) ) are:

u=87-vn
vE sy g

(RES)
If possible, let there be another surface 7/, whose motion is characterized by the
parameters (a,.f8:.y2). such that the image motion field in both the cases is the

same. The motion equation for the second surface is:

u=pr/r-y»
vE-a/yt X

Furthermore, the following relations hold:
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by=yi-v2*0
a . (3.6)

B: B
From equations (3.4) and (3.5) the following relations are obtained:

B:Zy- B/, - Ay =0
‘a3/3+ 01/1*-A7,x =0
Now since a;if8: # aof; -

- aAy ) + BBy
af: - a:f:
But this is contrary to the assumption that /. is non plunar. Therefore:

/]:

a as

i

B~ B
Again, this imphes ( considering equation (3.7) ) that

Ay=0 or  wmi=m
This completes the proof of Proposition 1.

Proposition  II. The image displacement field gencrated by a planar surface

is linear in the arguements (a1 ). In addition. the parameters £ and y are uniqueh

B

determined by the image displacement field if and only if ap + B¢ = 0. where (p.4)

is the gradient of the planar surface.
Proof: Consider the equation of the planar surface Z(x.v):

Z=px+qp +d
If the motion of the surface is characterized by the parameters (a.8.3). The image
motion (or optical flow) is given by: X

Bipr+ @)=
=@+ @+ ya

=
it

,
|
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The above equation indicates that for planar surfaces the optical flow 1s linear. 1t is

also true that when the opucual flow is lincar then the moving surface 1s planar.

Now considering equation (3.3} und substituting for (».1) from equation (3.8) and

rearranging terms:

=B - Broe ~ (BT -Bg-Y~ N

. - - (3.9)
O=t(-ay~ap~yY-ylx+{-aqg +aygh
Since the above equations arc valid for the entire image we have:
Br = BF (3.10.1)
By~ v=Bg-¥ (3.10.2)
aj —y=ar -y (3.10.3)
vy = ag (3.10.9)
Eliminating p.q and y from the o»
It ST a(ﬁﬂﬁ): (B7 - ajf)
or
g wBg-ar-agj=o0
where p = £, The above quadratic equation has a unique solution if and only if:

5
Bi- a;r - daBpg=(B7~+apy=0

Under this condition:

a_a =3 L_L

Therefore the image motion o planar surfaces uniquely determines the parameters

a P .
(& yeyifand only ifap - 5. -
BYq Vibap -




. Summary

The analysis under orthographic projection for both differential and discrete

motion are nearly identical.

When the structure of the moving object is known, the motion parameters

can be computed uniquely from image motion.

When the structure is not known then the recoverable parameters are

(%.7.5). However in this cuse. the values are unique only when the moving

surface i1s non planar. or 4 certain condition (see proposition 11 ) holds.

4. Analysis of Rigid Motion for the Perspective Projection Model

Under perspective projection. the "image™ 1s formed by "rays” from points in
three space (1.e. world points 1. These rays are constrained to pass thru a nodal
point called the center of perspectivity. The imaging geometry is shown in figure
I[la. The nodal point is O. which 1s also taken as the origin of the frame of
reference. An image point p - (\.3) corresponds to the world point P = (X.Y.7Z).

Here the focal length of the imuaging system is F. The equation of the ray OP 1s :

Therefore,

. FY
= (4.1)
The above projection is dencted by (XY Z)=(xy . F). Similarly, the projective

relation between another world peint P and its image 1S (XY /)= F) Thus

from equation (4.1) we havc.
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Ax T TTA7) (4-2.hH
L 7AY-YAZ 5

Recall that when the 3D rotation angles, characterizing the rigid motion, are

“small” then the 3D displacement components are given by the relations:

AY

L-w. )+ /
AY =1 +w.V - ./
A =1 ~w N ~w,)

Thus. substituting for AY, A} and A/ in the equation (4.2) we have:

L_/(l, rw/ e N - Y e V-0 X))
/- i+ e - )

X =

or.,

.

U X
hr, -~ vv/Z+te -w) - w,—= + w, —
/ /
3

F
similarly, we obtain an expression for the other component of the retinal

Av s

: \
|+ =+ 0w, = - w
/ CF

displacement,

b

. . | 3 X
b, -2 v/7 - Fa, + w,x = Wit e

Ay = d
l+£—+wl-u'—‘
7 YF i

The above equations express the the retinal displacement vector (A:.Ay) at an

image point P = (1)) in terms of the parameter vector 3 and the "depth” N
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coordinate Z for corresponding world point p = (X.Y.Z). Another form of the

above equations is,

( ) F X
g X)) W, Wy T oW, + w, —
Ax = p 4 + p i d (4-3.1)
\ X N X
1+/+w‘f_w‘l 1+7+U‘F_w‘F
Qo= V)= - Fa,+ w-x — w, ‘+w.i
Ay = 4 -+ F ! (4'3 2)
1*-£-v'mi—¢.:i L+ = + @, w, -
/7 tF F 7/ F ' F
where
AL
(x ) (77
Note here that. when the displacement is purely translational
Ay Gg-) )
Ax T (x, - a) (4-4)

This means that when the rotational component of the displacement is zero. the
image displacement vectors meet at one point (vga,). That is to say. the retinal
displacement field converges to or diverges from a single point in the image plane.
This point is called the focus of contraction (FOC) or the focus of expansion
(FOE). depending on whether the translational motion is directed away from or

towards the image plane (figure II1).

If we can measure the retinal displapcement field due to a particular motion.

then it is possible to estimate the parameters characterizing the motion. In

addition, if the temporal sampling rate of our imaging process is high - meaning
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that the components of the displacement for a single time interval is small and the

following condition holds.

I v
— + “"l'— -

Vi L €1 (A)

F~“F
It i1s possible to denve the equations relating image motion to the motion
parameters in the differential case. This is obtained by dividing equation (4.3) by
a small time interval, A¢, and taking the limit as A:—0. The image displacement

then becomes image velocity, and is called oprical flow. The optical flow is

denoted by the vector (u.v) where:

lim Al _ dx im 4y _ &

“ZAar—0a; T @ "TAI—-0AT T
Similarly the motion parameters are now the translational velocity 1= (.1 i)

and the rotational velocity Q = (a.B.y) where:

(= im I jo= hm L oo hmo L
Ar—04y Ar—=04, T Ar—0 4y,
and
- hm %« B = hm &. _ hm «-
®= Ar—07; Ar—07y, YT Ar—=0Ty,

Equation (2.6) now becomes:

u=(xo—x)%+FB—y)‘—a%+ﬂ‘—;; (4-5.1)
V= 0o- )% - Fatyx-ato 4 gl (4-5.2)

where the 3D motion is now characterized by a transiational velocity (£} .1#') and

a rotational velocity (aBy). Furthermore the FOE is now given by

(xg)o) = (=—.—).




Motion perception involves the computation of the parameters of motion
from the image displacement field. The latter, becomes in the limiting case. a field
of velocities, called optical flow. The relation that optical flow has with the motion
parameters, is embodied in equations (4.5). These motion equations involve
velocities, both in 3D as well as in the retina. However. in a practical vision
system, the retinal measurements that are actually made involve displacements
over a small ume interval. This means the above welocity equations, are not
strictly applicable. Under certain conditions. the penalty paid for doing this may
not be too severe. This happens when the error indroduced by the velocity

approximation is within some predetermined bounds.

There are two separate approvimations embodied in the usage of the equations

(4.5) 1o express the constraints on image motion due to the 3D motion parameters:

(1) The three dimensional velocity approximation - The velocitv of a point
p=t(X.Y./)yon angid body. moving with a translational velocity T = (.17 41,

and a rotational velocity © = (a.B.y) 1s given by

iﬂ: s
5 T+ Q\p

Integrating the above with respect to time we have

;Y At
ap 4= )«
fo o dl—f0 T+QX p)yd

Here X denotes the vector cross product. The three dimensional velocity
approximation imphes that, for small A/, the image displacement can be

expressed as:
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Ap = AV AY A/ S TAI+(QAN Y p
(2) The retinal velocitn approximaiion - This enables us 10 treat retinal

displacements as retina! velocities and is valid so long as A—//-( 1. This can also

be written as relation (A) stated previously.

When both the translutionadl velocity T as well as the depth function / is
multiplied by the same constant. the latter cancels out leaving the equations (4.5)
unchanged. The same apphos to the equations (4.3). This means that scaling the
translation by a constant factor. und at the same ume. causing a depth dilation by
the same factor leaves the imuge displacement field unchanged. Thus. from the
information available in the mmuage displacement field. the translation vector is
obtainable. only upto a scalc fac o

In equation (4.3) the depth wunable 7 15 an unknown.  An equation relating
image displacement to the o @ ¢ parameters 15 obtained by eliminating —’/~ from

equations (4.3):

\ T . L) X
A.r(]ﬂ-wl-l——a.-ll LA »' u"—w(T-u‘T) B e — 1~ AL
: v — 0 — An
A.\(l*w‘-;—__—w_T‘) I /u,*w_.x—w,"T-rw_-%) v )
or,
w. g wa -« kA vo- v - Avx

W g w. g owal + Ayz to- v — Ay (4-6)

where
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P:= 1 Ay~ u §:= FP 4 xAx + x°
P = Fo= A0 =0 ®s= xAy + x

The above equation relates the motion parameters to the image displacements.
which are observables. This is a bilinear equation in the unknown motion

parameters. A similar relation is obtained for the differential motion case, by

eliminating % from equation (4.5):

u—(lﬁ—*{_\—ai’j‘.—*ﬁﬁ) o
I‘ f o Xo— ¥ (4-7)

\-(~/a*yx—a%+ﬁ%) romd

in the above analysis, the relations between image motion and 3D motion has
been denived by assuming gencral displacement of a rigid constellation of points in
space. This relation i1s given by cquation (4-5). From this. by taking the limiting
case. for infinitesimal displucement, the “continuous™ or differential motion case is
obtained. The latter relation cun also be obtained directly from the kinematic

equations of rigid motion (¢ sce Appendix | or [19] for details ).

4.1. The Information available in the image displacement field

The foregoing analysts illustrates the dependence of the optical flow field on
the motion parameters. In other words 3D motion constrains image motion. The
magnitude of the translation parameter vector cannot be computed from the
optical flow field. The rigid motion parameters observable from monocular retinal
optical flow measurements are given by the parameter vector @

J=(x 0.)'0.&)‘.0},.&‘:)

Now, we examine the mouon cequations to see whether the displacement field
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uniquely determines a.

The question to be answered, before attempting the design of algorithms to
compute the motion parameters from optical flow is whether such computation is
feasible. This means that given an optical flow field, when can we say that it could
¥ be produced by a unique set of motion parameters. The following theorem

answers this question, by giving a sufficient condition for uniqueness.

. Theorem I: The optical flow field is uniquely determined by the rigid motion

- parameters when the moving surface cannot be expressed as a rational function of

Py

the form
f Usx.y)

. where P, and Q. are polynomials of the first and second orders
- respectively, and (. .y ) are image coordinates.

a Proof: Let a nigid surface 7', moving with translational and rotational velocities

(U7 17y and (a' B'.y)) respectively. generate the optical flow field (u.v) given by

Lo —./',“” +FB -y - a'% + BlT
; b : (4:8)
e \=—_',‘—--la'*yx—a"—+ﬁl—'\‘

7/ I !
. where the translation parameter vector is (L .} ".#") and the rotational velocity 1s

(@’ B.Y)
\ Assume that there is another surface Z(x.») moving with a different set of motion

parameters but giving rise to the same optical flow field (u.v). or

S L +FB—yy—a%+ﬂ-7—f

. ==
! V= =y
/

where the 3D motion is now due to a translational velocity (L.} . W) and a

. (4-9)
- Fa+yx-a%+[j‘“l—~“
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rotational velocity (a.8.y).

Since v -« =0 and v - v = 0 everywhere in the image. we have from equations

(4.8) and (4.9):

U-xW_ U~ xW" Ao X¥a X )
Vi S + FAB - yAy - Aa+ AR =0 (4-10.1)
e Y N (ol XV ap 109
> VE FAa + xAy 3 Aa + FAB—O (4-10.2)

Whefe. Aa = a- Gl. AB = ﬁ - B,_ and AY =y~ -Y

Considering the above set of equations and solving for the variable /' we have:

(assuming the focal length F to be unity )

/= P"(\‘..\)
Qj(.l._\)
where
Paxa)y=(Ul = U1y + x(PB = ')+ WU - U (1.11)
and.

Q.= (A} + Aal) - x(Aal ~ Ayl - viABH - Ayl (1.12)
- (Aal + ABL )Y+ X (AR = AyH )+ 1 (Aal - Ayl e

The above implies that the surface / that originally generated the optical flon

. . P, . : . .
must be a rational function of the form o to permit ambiguous interpretation of

its rigid motion. This is contrary to the the statement of the theorem. This proves

the theorem.

Corollary I: When the motion of a surface is purely rotational, the optical flow field

is uniquely determined by the motion.
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4 Proof: In equation (4.10) making the substitutions ("' = I = W' = 0 we get:

U-xi ' Xy X .o

N Vi + FAB - vAy FAa+ FAB-O

A

" V- . _ X ag =
! Vi FAa + xAy FAa+ FAB—O

N Now, eliminating Z from the above equations and setting focal length 'F’ to unity.
N
N we obtain:

(ABV + Aal’) - x(Aal + AyU)~ v(ABH + AY})

, - xy(Aal + ABU )+ X (AR + AyW)+ 3%Aal + AyW)=0

:lj From the above equation we have a set of six equations:

i Aal + AB1 =0
Aal + ABL =0
- ARV + AyW =0
Iy Aal + AyH =0
+ Aal ~ Ayl =0

‘ ABW + Ayl =10
. The above equations imply either t'= 1 = H = 00r Aa= A8 = Ay =0.

“~
N Both these conditions mean that the optical flow field due to a pure rotational
L
~ . ) ) . ,

motion has a unique interpretation. This proves the corollary.

X
N Corollary I1: /1 is possible for a flow field generated by pure translaton motion 1o be
<
> identical to one generated by another flow field due 10 both translation and rotation.
3 In other words convergence of the flow vectors directly onto a point on the image

» plane does not imply purely translatory motion.

i The truth of the above corollary will be demonstrated by a numerical example.
: Consider two flow fields generated by different surfaces undergoing different
. motions:

] In the first case the motion is due to a planar surface given by the equation :

[}

)
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The motion is ngid and is specified by

35
6
Assume the translation in depth to be unity. Then, from equation (4.8) we have.

(xg= - a=58=3y=0

Jo =

ta|-4

7 1 S .
u=(x - 5)(1 - 7x+—6—))— 3+5x = 3x-

o .3 .3 3 ol
U= TR e M T3 TS
S N A I S

YT 3% T T IY TR

In the second case the motion is due to the planar surface given by the equation :

/:-S\ ——6-)?1

and the motion is specified by the parameter vector

(ig= ~ -l—__\C:

%.a:().ﬂ:O.y:O) .

The optical flow field in both the examples are identical.

The question of multiple interpretations of the same flow field. has receinved :
some attention in the literature. The foregoing example illustrates the fact that s
motion of planes can be potentially open to more than one interpretation. It is
known ( see [27-29.34]) that the motion of planes have dual interpretations.

Uniqueness of interpretation for planes requires three views of four points. or two
views of seven points which uniquely define two planes neither of which pass

through the origin. In another study Fang and Huang [9] showed that nine points

not lving on a second order surface passing through the origin can be used to
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determine the motion paramcters uniquely. Another significant theoretical result is
due to Longuet-Higgins [20]. und Tsai and Huang [30]. where eight points are used
to solve for the motion parumeters from a set of linear equations. The important
question as yet unanswered arc. under what conditions the optical flow field is
inherently ambiguous and. whut 1s the degree of the ambiguity possible in optical

flow fields. The following anu!isis answers these questions.

Theorem II. Under the assiur:iion: of rigidiny. an optical flow field is amenable 1o at

most three interpretations.

Proof: Theorem | shows thut the optical flow field is enough to determine the ngid
motion parameters uniquels for niost surfaces. It was seen however that in case of
certain rational functions there 1 potential ambigumity in the interpretation of

motion. These are the raticns’ tunctions belonging to the class R<. and wntten as

TR

/

— (4.13)
SRR AR S LT /B T

Planar surfaces belong to th¢ abhove class of surfuces. [t has been menuoned
previously that planar surtucos «en have at most two interpretations. When a
surface is non planar, to have muluple interpretations of its motion, it must be of

the type given by equation (4.13) with the added property that there is no
common factor between the numerator and the denominator.
Let such a surface be underaoing ngid motion (u.v.w.a.B.y). Let there be another

motion (.} W .a+ AafB - Af+ - Ay that produces an identical flow field. Then

from equation (4.11) we huve
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M- Iw = ak
I'w - uld = bk 4.19)
ub = Uy =ck

where k is some constant factor. Since by definition of the class R} at least one of
a, b and ¢ must be non zero. therefore £#0. This is because if k is zero then
from the above set of three equations we get the result that the translations (u.1 .w)
and (L.} W) are identical upto a scale factor. Hence by Lemma | of Appendix I,

the motion is not ambiguous.

Multiplying the first equation by ., the second by . and the third by » and
adding the three equations we have

(o~ b ~cmyrk=0

This means that the motion cun only be ambiguous when

= hi v =0 415
Similarly 1t can be shown tha:

i e s N || (4.16)

Again comparng the denonvinaior of the rational function with equation (4.12).

and combining the constant - « % the translation parameter L .3 W );

ABY - Aal = 4.17)
da + AyU=-¢ (4.18)
ABW + Ayb == f (4.19)
dad + ABU = -¢ (4.20)
ABE + AyW = h (4.21)
dal + AyW = (1.22)

From equations (4.17). (4.21) und (4.24) we get:

..........

LR
-



Aal’ =g (4.23)
0BV =1 (4.24)
AyW =5 (4.25)

where g=d+i-h. r=d-1+h s=-d+ i+ h. Subsututing from the above

equations into equations (4.18). (4.19) and (4.20):

g+l 2l =0 (4.26)
Y sE7 4 200 =0 (4.27)
qU >+ sB+ 2el’ W =0 (4.2%)

Equations (4.26), (4.27) and (4.28), together with equation (4.16) can admit no
more than two solutions. This is because at least one of (y.r.s.e.f.g) must be
nonzero. Therefore, since there can be at the most two spurious solutions (recall

that the vendical solution corresponds to 4 = ). the implication is that:
When the optical flow field has more than one interpretation, the number of
globally consistent solutions for the motion parameters can be at most three.

This completes the proof of the theorem.

It will be shown that there exist surfaces whose ngid motion induces optical
flow that is compatible with three distinct interpretations. This fact explains why
Longuet-Higgins and Prazdny [19] noted. that from /Jocal optical flow constraints
and their derivatives three interpretations of the motion are possible since the

constraint equations were cubic.

An example of 2D motion field with three distinct rigid motion interpretations:
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The equation of the moving surface is

1

&xy

the motion parameters are ({”.}" 0.a.8.y) the expression for optical flow is therefore

u=Ugxy —axy + Bx"+ Iyy
v= g - a(yi+ D+ B+ yx

Alternative interpretation I.

R TR T,
5 = L.[l 0=+ )

where the motion parameters are ({.0.0.a.8 + gt".y). The optical flow field 1s given

by

u, = L'-f—'.ll'x_r e D max + (B gt + D -y
= —a(t+ D (B gl g+ oy
Alternative interpretation 11

I S TR L.
7 = ‘.['.r_\ U+ 1)

The motion parameters are (0.} 0.a - ¢{” B.y). The optical flow field is

us=-(a- gl ~B(\3* Iy
va = l'—%[l'x_\ —U0 s Dl=a~gl =11+ Bay + ya

It is easily verified that u = uy = wrand v = 1, = v,

Theorem | states that under certain cases the optical flow field may not
indicate the motion parameters uniquely. The next theorem shows how
unambiguous determination of the motion parameters can be achieved from

optical flow data.
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Theorem 111: Given the optical flow values at three non collinear retinal locations,
where the temporal derivative (or 1ime difference) of the flow is nonzero, the motion

paramelters are uniquely determined.

’ -m Ei“ COE AL . SN "

Proof: The essential fact on which the proof is based is that the rotational

component of opucal flow 1s not dependent on time. Thus if dunng a shor
observation penod the parameters of motion remain fixed then the temporal
dernvative of the flow 1s onhv dependent upon the change in the translational
segment of the flow. Although the following proof uses temporal derivatives.

differences also lead to the same result.

Differentiauing equation (4.8) with respect to time we have,

Qu o (- ez 29;
5 - (v .r)/: T (4.29a)
T iy 72 ,
Tl Ga= 3= Y (4.29b)
as
gt

Now we assume that —r Furthermore. the case where the translational

motion 1s in the frontal plane 1s easily dealt with and will not be considered any

further. From the above equations we have,

kN

ar _ Qo- )

W (xo=x) (4.30)
dt

The above equation provides a linear constraint for locating the FOE. It is
therefore evident that we can determine the FOE uniquely if we have two such

constraint lines that are independent. This is guaranteed when we have three

A L A e e
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retinal locations where the temporal derivatives of the flow are non zero. Once the
FOE is determined, the rotational velocity can also be uniquely computed. (Note

that, instead of temporal derivatives, differences can also lead to the same result.)

Another way of resolving the ambiguity in the optical flow is by using shape
information. There is a strong relationship between the parameters of motion, the
optical flow field and the structure of a moving surface. The following propositions

makes this concept clear.

Proposition 1. When the parameters (i.e. xy30a.B.y ) describing the motion of a
rigid surface are known then the structure of the surface is uniquely determined from

the optical flow field.

Proof: The proof is evident from equation (4.3). Note that we cun obtain the
depth function upto a constant dilation factor W. In other words the rato of

depths at any two image points can be computed.

Proposition 1I. When the structure of a surface is knowr then the parameiers
describing its rigid motion are uniquely obtained from the optical flow generated by

the motion.

Proof: See Appendix Il.

Even the partial specification of shape can lead to a correct perception of
rigid motion. A iHustration of the fact that shape information can disambiguate

between alternative motion interpretations comes from the next theorem.
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Theorem IV: The motion of u planar surface whose direction of translation does not
lie in the plane of its surface normal and the line of sight, can be interpreted

correctly from the optical flow generated. when the tilt of the plane is known.

Proof:. Let the equation of the planar surface be

4
1 -px - @
where (p.q) s the orientation of the depth plane and 'd’ is the distance from the

origin along the z axis (c.g. hne of sight ). Substituting the above into equation
(4.5) and observing that we cun ignore muluplicauon of the translational

parameters by a constant (such us d ) since we can compute the former upto a

scale factor anyway, we have

O :‘ N 5’_"‘_"""‘ ) j“‘f : (431)
where the unknowns { a } arc given by
U ~B=. (4.32.1)
Up~ W=, (4.32.2)
Uy+y=is (4.32.3)
Wy -a=l, (4-.32.4)
Wp+ B =l (4.32.5)
bV -a=l (4.32.6)
y - bp=i- (4.32.7)
by ~ W =g (4.32.8)

Note that (4.32) are linear hom.zeneous equations in eight unknowns. Thus if we

can solve for the syatheric rorameters {0} by making measurements at four




suitable points. and in additior: can measure the tilr of the depth plane.i.e.

F

£ =7

q
Then from (4-32.7) and (4-32.8) and (4-33) we have:

y~1H = [-+ 1l (4.34.1)
From (4-32.2), (4-32.3) and (4-33) we have :

‘T“Y- ”: T[}_ /2 (434.2)
Therefore. since =~ = 120 we huve:
- Tl )+ ‘1’:1;

. (4.34.3.1)

e
T+

TR A G L AL (4.343.0)

T~ 1

Now if o= [ (1e g = 0)w. have from (4-32.8) and (4-32.3):

i - Y -
:'5— 5%

k (4.34.4)

otherwise if /- # 0 (1.e. p = v ) w¢ have from equations (4-32.7) and (4-32.2):

’ ' 4= l‘
L (434.4)
: y -~ I-

(if both p and q are zero then the parameters are easily solved for )

Now from (4-34.4), (4-32.6) und (4-32.1) we have:

ha+ B=1-kig (4.34.95)
Also from (4-32.5) and (4-32.4) we have:

ra+ B=ls— 1l (4.34.6)
Therefore, since r = . from the assumption made in the statement of the

theorem, then equations (4-34 31 und (4-34.6) are independent. and we have:
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. 1= kig)= (le = 713)

\ a= oM T LT T (4.347.1)
' k-1

::': B: k([s“T/;)—T(l— k}o) (4'34'7'2)
- -

. Now U and V can be determined from equations (4-32.6) and (4-32.1). Thus we

A

have determined the motion parameters uniquely from the optical flow and tilt

information.

At this point it may be mentioned in passing that it 1s possible to obtain the
motion parameters uniquely from the optical flow generated by two planes moving
together rigidlv. In this case the optical flow is locally second order. [f the eight
synthetic parameters are now measured at two different regions of the flow field

then

(4.35)

. 1
lA%+uAE=Au

4
px + gy + 1

where the two planes involved in the motion are given by : = and

4
px+qgy+ 1’

- =

The A operator in front of any quantity denotes the difference

of the corresponding parameters for the two planes, e.g. Ap = 5 - 5—

« memmmy m s 2 S S s RS AT A
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The above equations imply that when at least one of, Ap or Ag or A‘lj IS non zero

the translational parameters are uniquely determined. Hence in such a case the
rigid motion parameters are determined uniquely from the optical flow field (see

Appendix 1). Therefore

> When two planes, neither of which pass through the origin, move rigidly
together, their motion is uniquelv determinable from the opical flow field

: generated.

4.2. Summary and Discussions

LY

The analysis presented here leads 10 considerable insight into the 3D motion
) . interpretation problem. Previous results (e.g. [9.30]) by Huang and his colleagues
presented suffic »nt conditions for uniqueness of three dimensional motion
interpretation. since. they were concerned with specific algorithms. The work.
reported here. deals with necessary conditions for unique interpretation of 3D

motion from the optical flow field.

While the surface denoted by equation (4.13) does mean second order

L Y

surfaces containing the nodal point of the camera, it is certainly true that all such

L N g

surfaces do not admit ambiguous interpretations of their 3D motions. Multiple
interpretations require, in addition, that the the constraints given by (4.16). (4.26),

(4.27) and (4.28) all be satisfied.

Thus consider. an algorithm, such as Prazdny's [22]. where nonlinear (and

-

independent) flow constraints at five retinal locations are used to obtain a 3D

...................................
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7
x motion interpretation. It is now possible to answer the question as to whether the

solution obtained is the only one possible. Since now a set of motion parameters

.

. is known, from equation (4.5) the relative depth % can be obuained at the five

)

retinal locations. The latter, when substituted into equation (4.13). generates five
linear equations in the surface parameters v.b.c.d.c.f g.k... These together with
the four constraints (4.16). (4.26), (4.27) and (4.28) constitute nine linear
homogeneous equations in the nine surface parameters. Therefore uniqueness of
interpretation is possible if the determinant of the above system is zero. Which 1n
turn implies. that all the surface parameters must be zero. This makes it
impossible to construct any other interpretation from measurements at the five

retinal locations, guaranteeing that the solution obtained is the only one possible.

8. Computational Techniques for obtaining the Rigid Motion Parameters

The main difficulty in computing the 3D Rigid Motion parameters is that the
equation constraining the image motion to the 3D motion is nonlinear. Another
complication arises from the high dimensionality of the parameter space. [t 1t
were possible to separate the component of the image displacement due to
translation from that due to roation we could have efficient algorithms for the

computation of the 3D motion.

The constraint equations developed by Longuet-Higgins and Prazdny [19] are
used by Bruss and Horn [6] to arrive at the parameter set that minimizes the

square of the errror between the measured optical flow and the flow computed
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from the parameter constraint. In general such a technique will give rise to a
system of non-linear equations from which the parameters must be computed
using some suitable iteration scheme. Longuet-Higgins and Prazdny mention the
possibility of using motion parallax to simplify the computation of the global
motion parameters. Lawton and Rieger [24] uses a similar idea to factor out the
rotational component of the optical flow at depth discontinuities or regions where
the depth gradient is large. This method is not reliable since it hinges upon the
ability to compute flow vectors reasonably accurately at discontinuities. Since
almost all algorithms, to date, for computing optical flow face problems at regions

where the ficld is sharply discontinuous.

5.1. Computing Rigid Motion Parameters From Optical Flow

Attempts at segmenting the parameter space of rigid motion into translational
and rotational components can be termed marginally successful. at best. A simple
way to estimate the motion parameters from the bilinear flow constraint equation
(2.10) is by means of the hough transform technique [2.5]. There are two
problems that are immediately apparent, namely, the nonlinearity of the
constraint, and the large dimension ( e.g. five) of the parameter space. Another
method is to linearize the constraint equation by writing (2.10) as a linear equation
in eight parameters. Obviously these eight parameters are each functions of the
values of the five actual parameters. This implies that linear least square methods

are not applicable here. since the eight syatheric parameters are not independent

of one another. Finally it is shown that the information in the vanation in the




41

optical flow field.i.e. the spatio temporal derivatives of the flow field facilitate the

computation of the motion parameters.

5.2. The Analysis of General Motion

Here the situation is complicated by the fact that we have to determine
several sets of parameters. corresponding to the several bodies in motion. This
probiem, is obviously, quite hard and is still open. It has been studied in restricted
domains by Fennema & Thompson [11] The Hough transform technique proposed
earlier in this paper still works. The only difference is that we have to look for
multiple peaks in the parameter space after houghing. These then would. of
course, correspond to the purameter set of the various bodies in motion with

respect to the sensor.

Methods involving the spatial derivatives of the optical flow can again be
applied. There is no known techinique for obtaining the optical flow in all types of
imaging situations. Also the computed flow field is noisy. to say the least. This
difficulty is compounded when we consider the case where several bodies are in
motion with respect to the sensor. Thus obtaining spatial derivatives of the flow

may not be practically possiblc over large portions of the image frame.

Recently a way of determining motion parameters from 3D flow has been
suggested [3]. This method is armenable to adaptation to the general motion case. It
is not clear as to how difficult 1t 1» 10 compute the 3D flow in this case. However.
it can be shown that in cusc « depth map can be obtained (by some stereo

matching technique). the 31D mup can be calculated.

.......
.................
......
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5.3. Algorithms for motion perception

Computer algorithms for determinig the parameters of rigid motion will now
be discussed in the light of the various ideas put forth in earlier sections. The
treatment will consider both orthographic and perspective projections. as well as
differential and discrete motions. In some of the cases the steps of the algorithms | .
will be described with a fair amount of detail. In others details will be omitted.
particularly when the algorithm in question has a structure which is similar to one
already described. In all of the algorithms the Hough Transform technique (see [2]
for details) is used to compute the desired global parameters from sets of
constraint equations obtained ut different image (or retinal) locations. It should be
noted that least square error minimizaton techniques are also applicable in most

cascs.

For the sake of simpiiciie the mounon of a single ngid body s considered. To
extend the following meth.ds to0 the motion of several moving bodies. either the
image motion field has t» be segmented. or. when hough transform s used.

multiple modes have to be detected in the parameter “voting” distribution.

Recall that for the case of differential motion, optical flow 1s denoted by (. ).

the translation parameters (vclocity) by (U VW) or (x = %,\0: —:‘—_) and the

rotational parameters by (a f5 ) K

PO W I
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5.4. Differential motion under Orthography

This case has been analyzed by Hoffman, Sugihara previously [13.26].
Hoffman's shows that motion parameters are not uniquely determinable from local
analysis of optical flow. However, this is not the case for global analysis
techniques. It has been previously shown that, for non planar surfaces, global
analysis will give rise to unambiguous results. Sugihara computed structure from
two optical flow frames. Another interesting result was obtained by Aloimonos [1]
where it is shown when absolute depth can be recovered under pure rotation
under orthography when shape 1s known. Under orthography the translational
part of the optical flow field is constant and hence the translational parameters arc

not computable. Hence motion parameters here, always refer to the rotational
velocity parameters (a.f.y).
The relevant equations are

Au = BA: - YA

Av = - ald: + yA:
where the A symbol denotes that the following quantity is a difference obtained

(5.1

It

from measurements made at two different retinal locations. The relation between

the surface gradients and the optical flow derivatives are:

2 p¥ (5.2.1)
2.2, (5.2.2)

L
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L (5.2.49)
Algorithm 1: Motion parameters from image motion and structure information.
The simplest instance is when the structure of the moving object is known. In the
discrete case the relative depth function, AZ(x.v), values are enough to compute
the parameters (a.8.y) uniquely from the linear equation (5.1). For the differential

case structure or shape can be represented by the surface normals (2L 92,y the

dv O

surface normals are known everywhere, then we can integrate the surface normals
to obtain the depth upto a constant additive term. In other words A/¢vy) s
computable. In this case measurement of optical at three non collinear points is
enough to compute the rotational parameters. However, if the surface normals are
only known at sparse Jocations, but the optical flow field is locally known at these
locations then we can use equation (5.2) for computing the rotation parameters. In
this case we are relyving on the fact that the first derivatives of the flow can be
reliably computed. This is possible when. in the neighbourhood of the points of
interest, the optical flow values have been measured at enough locations so as 1o
allow analytic reconstruction of the optical flow function. Finally note that. if the
motion parameters are known then the structure can be obtained from the image
motion for both the discrete and the differential cases. The steps in the algorithm

are.

1. Set up a three dimensional accumulator array for the rotation parameters:

hla.B.y]:=0.
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2. For every point in the image where optical flow and surface normals are

known, select the constraint equation (5.1) if the estimated measurement error

K in the surface normal function is less than that estimated for the optical flow
function; otherwise select equation (5.2).

For all values of (a.B.y):
If (a.8.y) satisfies the constraint equation selected
hla.B.yl:=hla.B.y] + | )
3. Obtain the maximum value in the accumulator arrav. The corresponding

indices are the desired values for the rotation parameters.

AMgorithm II: Motion parameters and structure from image motion. When the

structure is not known then. considering the differential case and eliminating

- (97 27, from equations (5.2) :
X dx
o . _odu 5
I T +y (3.3.1)
Qu __ B o _ 33
ey a Y (2.3.2)
Similarly, eliminating A7 from equation (5.1):
pu -~ yx +pyy +1 =0 (5.4) .
where p= £.
® B i
It is easy to obtain quadratic equations in either y or % from the equations (5.3).

This means that in general, at every image location. from the measurement of the

spatial derivatives of the optical low at most two sets of values of the parameters K




(%.7.%) may be obtained. However, if some global assimilation technique, like the

. hough transform ( see (2] ) is used. then. as shown previously, if the moving
surface is non planar, only one set of parameters will be globally consistent. An
exactly similar method. but using differences of image displacements. can be

devised for the discrete case starting from equation (3.4).

5.5. Differential motion under Perspective

. The relation between the optical flow and the motion parameters is given by the
A equation:

N u= Lo axy + B(x = = y3

. / -z
- RESTE (3.9)
., \=—/—'l—a(_\3*l)*ﬂp\+7_x‘

From the above we obtain. by eliminating /:

u+a\_\‘-4§4x?*1)‘][} - ('_-"u; (56)
veaty = 1) = Bay - oy b-a

Observe from the right hand side of the above equation, that its value 1s

a'a s 0 2 AN

¢ unchanged when the translational parameters are multiplied by some constant.
4

Hence we can determine the translational parameters only upto a scale factor, If
: we assume that ¥ = 0 then the previous equation can be written as:

. u+ax - B+ 1+ y _ Yo~ x (5.7)
A v+ a i+ 1) = Bxy + yx Yo~ ) '

A If # =0 then (5.6) reduces to:

: u+avy - Blx + 1)+ yi _U (5.8)
’ vt al T+ D= B+ yx b '

‘ Equations (5.6), (5.7) and (5.8) are bilinear in the translation and the rotation
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A
> parameters. This nonlinearity makes 1t difficult to combine constraints from
N different image locations to compute the motion parameters. To summarize, the
(] . . .
. problems with computation of motion parameters are:
1.  The constraint equations are nonlinear.
L
4
-. . . « B
- 2. The parameter space is of high (e.g. five) dimensionality.
o
- Algorithm 111:  Hough transform in 5D parameter space. This type of
- algorithm can be easily reahised by simple parallel neuronal hardware (see [10]).
.
The parameters that are to be determined are the polar angles (or direction
T
1 cosines) representing the directions of translation and rotation, and the magnitude
P
L’ of the rotation vector. This representation for the rigid motion  parameters i1s
: convenient since the paramcict subspaces representing directions in space become
easy to quantize by means such us geodesic tessalation of the gaussian sphere. The
' steps in the algorithm are’
-
N 1. Select a coarseness scale tor the parameter subspaces. For instance. how many
S
> distinct directions in space. the range of values estimated for the rotation
magnitude and the sampling interval in this range. Initalize the parameter
: uinits belonging to the hough transform space (this is the five dimensional
accumulator array where the "votes” for every parameter vector is tallied).
N 2. For all retinal locations where optical flow has been measured do step 3:
~
\ - . .
i 3. For all possible paramcier values (i.e. values of the parameter quintuple)
5 admitted in step 1. do:

»
). e
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(i) If the direction of the translational velocity 1s not parallel to the
image plane select equation (5.7) else select equation (5.8).
(ii) If the parameter values satisfy the chosen constraint equation

vote for the corresponding parameter vector.

4. Find the parameter quintuple that has received the maximum number of

votes.

5. Restrict the parameter spuce 10 a neighbourhood of the selected parameter
quintuple. Repeat the steps from 2 1o 4 after choosing a finer parameter space

quantization.

6. If the error due to the puarumeter quanization s acceptable then stop and

return the parameter vuuvs computed. Otherwise repeat step 5.

Some Remarks:

(1) The space and time reguired by the algorithm is reduced by periodically
examining the parameier accumulator units and purging those that have
collected only a few "votes” compared to the top contenders. This 1s
possible, since it is assumed that the noise in the optical flow data is

uniformly distributed in retinal space.

(i1) The confidence of the coniputed parameter quintuple is the ratio of the votes

it received to the maximum votes possible.

(11) If in step 4 instead of u ¢leur winner, a number of contenders are found then

step 5 might have to be repeated for each of these for finer resolutions. Then
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the winner i1s the parameter quintuple that comes thru with the highest

confidence.

(iv) If it is estimated that p% of the optical flow values is corrupted by noise, then
the acceptable confidence of the result is (100 - p)% with a tolerance of, sa\

10%.

Algorithm I, performs well when the quantization of the parameter space is
not "too coarse”. This is mainly due to the nonlinearity of the constraint equation
used. This problem can be alleviated by linearizing the constraint equation.
Although in this case the price we pay Is that the dimensionality of the parameter
space increases. In the following discussion it i1s assumed that the not all the
translational velocity components are zero. This 1s a valid assumption since it has
been shown in a previous section that the motion parameters for pure rotational
motion are uniquely detectable.

From equation (5.6) we have:
Qu =) = U= ulb = xtal ~ yU) = v(BHW » vyl - ntal - L)

+ xYBV + YWY+ 3 Hal + yH)
Now we state and prove a lemma regarding the feasibility of computing the

(5.9)

motion parameters using the constraint given above.

Lemma I: The optical flow components can be expressed as an implicit polynomial
equation Fu. .x.y:p. = 1..8)=0 involving the image coordinates (x.y) and eight

1inearly 1independent  parameters p, unless the depth funciion is a rational

Pixy)
OAx.y)

Sfunction . where P, and Q. are polvnomials of first and second orders
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respectively.

Proof: Equation (5.9) is homogeneous in the motion parameters. Assume that
the parameter W' = 0 (The case where W = 0 but either U or V' # 0 can be worked

out in an analogous manner). Dividing the above equation by W yields:

(U = XV)+ Py = Pali + Py— PaX — Psh + PeX° + p-1” =~ pgay = 0 (5.10)
where

P = Xp (311w

P2= 30 (3.11b)

py= axg* Big (3.11c)

pi=a=~ yx, (3.11d)

Ps=B~ 1o (S11e)

pr=y+ B (5.11D

p-=yTax; (3.11g)

pe=Br o~ ay, (5.11h)

The parameters p s are linearly dependent iff
kv~ kou+ ki~ kgn — ko = kot = AT — ko =0 (5.12)
where the & 's are constants not all of which are zero. Let the optical flow be due
to a rigid surface Z moving with velocity (.7 .# .a..y). In this case:
u= —22 — @+ Bxi+ -7y
— (3.13)
v= —20 gt )+ B+ yx
Assume that the parameters p are linearly dependent. This implies that in

equation (5.12) there must be at least one & that is not equal to zero. However. if

both &, and &, are zero, then. all the & 's must be zero. Hence. if the parameters

g ey e
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p. are linearly dependent. then at least one of 4. and 4. must be nonzero.

Substituting for 'u” and v in equation (5.12) from equation (5.13) we obtuin:

- = ) — lv_\li
- a RO ok — 2
ax + Blx )= Yy ) X %

U - xi
/

+ky=hax — kg + kex + kv = gy = 0

ki —(—!(.\?*])‘B,r,\*?x)

Since both 4, and 4, are not zero. we ob un Z as a rational function of the form

P)(X \)

— > . This proves the lemma.
Qix.y) P

Lemma 11: The five parameters of rigid motion are be uniquely determined by the

paramelers p..

Algorithm IV: Equation (35.10) 1s the basis of 4 hough transform scheme to
recover the motion parameters. The advantage of this scheme is that the constraint
equation is linear in the "synthetic” parameters p. Once these parameters are

computed the five rigid motion parameters are umquely determined.

Algorithm V: Differentiating equation (3.10) with respect to the retinal space

coordinates we have two independent equations:

|
o

(5.19)

Que = v = Xv )+ pivy = pauty ~ pat 2pex = pgy =

(U + yu, = xv,\)+ p1v, = palt, — ps+ 2pay — pgx

0 (5.15)
The paramterers in equations (5.14) and (5.15) are linearly independent when the

depth function is not of the form given in lemma |. Selecting five suitable points
we obtain two alternative sets of simultaneous equations in five unknowns. These
can then be solved for the five motion parameters. Note. however, that when

p; = xo= 0 then then equation (3.14) alone cannot be used for the computation.

‘.
;oo
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This is because the parameters (p,.p.pa.pe.pg) cannot then be used to solve for the
five motion parameters. A similar restriction holds for equation (5.15) when

pr=yve=0.

L e e b

Algorithm VI: It has been shown that when two optical flow fields obtained at
two different time instants is available then the motion parameters are uniquely

determined from measurements at three non collinear points on the retina. The

‘
5 assumption here is that the motion parameters are stable during the measurement
: period. This can be used as a basis for the motion estimation algorithm.
. Algorithm VII: Motion parameters from structure and optical flow.
When the structure of the moving surface is known. its motion s

Y unambiguous. This method also reduces the dimensionality of the parameter
G

space by isolating the rotational parameters. Two alternative constraint equations
; can be used here. In the first form spatial derivatives of the optical flow function
' are needed. This implies local analvtic reconstruction of the flow function. In the
| alternative form of the constraint depth ratios are needed. implying reliable ( and
dense) measurement of surface normals. '
: From eq. (5.5) the expressions for the spatial derivatives of the optical flow (u.v)
X are obtained as:
: u, = —%—(.xo-.\)—};%%—a,\ﬂ*mr (5.16.1)
u, = —(.l()“l)%%"a\ -y (5.16.2)
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N L V4 +
L= o= .‘)23 FT By +y (5.16.3)
N L N L - VA SR N
v, = > Gog ")23 % day + B (5.16.4)

Substituting (xg - x)% and (- )% in the above equations from equation (5.5)

we get:

Uy -, = - u=-ax + Bxl+ -y

~h=at -~ - B - yap-ar + B (5.17.1)
U, = (- - an < BT+ D= yip-ar -y (5.17.2)
vu=(- - ain - D+ Bxy + yaw+ By + vy (5.17.3)
2z as
where § = —@/—‘— and p = i/‘~

Thus at every image location (v .v). a set of three linear independent equations

involving the rotation purameters can be obtained. The functions y(x.) and

p(x.v) are computable from the surface orientation values -g—([ and % I, (see

Appendix ).

When it 1s not possible (o measure derivatives of the optical flow, but the
ratio of depths at any two image locations can be estimated. an alternative linear
constraint equation can bc derived involving only the rotation parameters.
Consider two image points (x;.1;) and (x,y,) with depths :1 and :2 respectively.
The optical flow values at these points are (uy.vy) and (u;1»). The motion

parameters are (U'.}).HW.apBy) Using equation (5.5) we have the following

equations
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Uiz - uat = (= xpW + si-aap g+ B+ D) = y3) - s = axn B+ 1= )

ViZp— ¥ = (= YD)+ St —a T D Bxp + yxp) - I - alvy + D+ By yas)

Eliminating W from the abo\e equations we have

fna~mpB+rpy+s12=0 (5.18)
where

-

> 52
= xpp2= X0y = X = xa+ —S(xpwpr- xpl - xt x)
21

4

- o2 .
MpPP= XqXavy— Al = V= o+ —(xya— Xy =+ )
)

N N ) - N
FaS XjNa T AT S a4 == Xt = T XX+ L))
|

)
sy = Ul =~ v b — X)) = ualy s = o)+ vl = agy)
<1

If the surface normal valuc ure available everywhere in a region enclosing two

image points. then the depih rano. == (corresponding to those locations) can be

estimated (of course, muthematieally. it is possible to compute this ratio if the

surface normal values are known along a path from the one image location to the

other). Consequently, each puir of image points gives rise to a linear constraint in

the rotation parameters. Thus by « suitable choice of three pairs of image points

we can uniquely solve for the rotation parameters and subsequently the translation
v

parameters (—u—..%) (see Appendin 1),

The novel feature of the above algorithm is that it can combine shape and

motion information under two differrent conditions:

A ama

AU CREL e



.............
......

n
th

In the first case the optical flow field has been measured suffficiently "densely’
to enable local reconstruction of the flow field. This enables the first order
spatial derivatives of the flow field to be estimated. Then at all retinal points
where the surface normals are known, we can locally solve for the rotation

parameters by means of a set of three linear constraint equations.

(2) Alternatively, if the flow measurements are not dense, but the shape
measurements allow reconstruction of the depth function (upto a constant
scale factor), then again locally we obtain linear constraints in the rotation

parameters (e.g. equation (5.18)).

This means that in any image neighbourhood. full reconstruction of either shape
or 2D motion, helps to recover both structure and motion. The schematic diagram

of the algorithm is given in figure IV,

Remarks:

(1) Note the similanty between algorithms | and VII. In both. the local anlyvtic
reconstructability of either the optical flow function or the surface normal
function, determines the selection of the constraint equation that is to be

used.

(i) From equations (5.17), ¢ and p can be eliminated to obtain a cubic
q

polynomial equation in the three rotation parameters. Thus if the optical flow

and its first spatial derivatives are measured we can use the cubic constraint to

estimate the rotation parameters by the hough transform technique. So.
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although the nonlinearity remains. the dimension of the parameter space is

reduced, which reduces the size of the search space.

5.6. Discrete motion under orthography

This case is of interest to researchers in the field of Visual Cognitive
Modeling [31]. The reason for this, is that psychological experiments by Ullman
[32] to explain human capabilities in the perception of structure from motion.
agree more with the orthographic projection (actually an extension of orthography.

termed polar parallel projection [32]) than with the perspective projection models.

For the case of biological motion a plethora of proposals have been put
forward by several researchers in the area. and many potentially powerful
algorithms have been proposed [14] [15].. [4] [35].. The research reported here.

however does not cover this case of motion analysis.

5.7. Discrete motion under Perspective

This i1s the most involved among all the motion types. To simplifs the
analysis, Ullman [31] assumed the rotation axis to be along the z axis. The
constraint he obtained was an equation of the fourth degree in the sine of the
rotation angle. Another simplification is due to Fang and Huang, whose "small
rotation” assumption makes their analysis similar to the differential case. The
most extensive work done in this particular area is due to Tsai and Huang [30].
Their work is innovative and based on elegant mathematical formalisms. However

a general unambiguous solution to the motion perception problem in case of

.- o
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discrete perspective is still unavailable.

6. Conclusion

The problem of interpretation of a moving retinal image has been studied, for
both “short range"” and "long range” motion. Our findings, indicate that motion
information available in optical flow ( differential case) is less than that in the

discrete displacements field (long range motion).

We saw that three temporally contiguous image frames contain enough
information to uniquely recover 3-D mc ion and structure under perspective
projection. Since the optical flow field (two temporally proximal frames) is, in
general, ambiguous. two frames can recover structure when the moving surface

satisfies the conditions of Theorem |.

We proved that structure and 3-D motion parameters are equivalent - the one
constrains the other uniquely - and both problems ( determination of structure and

3-D motion parameters from retinal displacements) are better tackled this way.

We believe that our work forms an important extension to Ullman's and Huang's
theories, and, in conjunction with interpretation schemes for recovering structure
in the case of biological motion (using the planarity assumption), constitutes a

significant advance towards the solution of the problem of Motion Perception.
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APPENDIX |

Uniqueness of Motion Parameters computed from Optical
flow under Perspective Projection

Consider a point P in space whose coordinates are (X.}.Z) with respect to a
fixed inertial frame XYZ. The image of this point is p = (x.») whose coordinates
are given with respect to a xy frame located on the image plane. The relation

between the world point P and the image point p is given by

(x._tb(%.—f%) (1)
where 'Fis the focal length of the imaging system. This is assumed to be unity in

the following analysis.
Now 1f a nigid surface moves with a translational velocity 15 =« .1 1) and a
rotational velocity Q = (a.8.y). Then. from kinematics. the three dimensional

velocity of any point on the surface can be written as

(== — )=, + Qx(Y. Y./ (n)

where 't is the time variable and 'x* denotes vector product.

In differential motion case the image motion or optical flow is denoted by

(uv)= (—d'l 4

L Differentiating equation (1) and substituting from equation (2) we

have the following relations

u= (;/"IL— av + BixT+ N~y (111.a)
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1= Ak ali”+ 1)+ Bx1 -y (iii.b)

Eliminating the unknown depth vanable from the above we get

u~au =B+ Dy _ U - xi .
- = — - (1v)
v alis+ 1 = By - yx b- i
The above equation describes the constraint imposed by the measured value of
optical flow (u.v), at an image point (x.»), on the six motion parameters

(U.V.W.apB.y)

Proposition 1.  Giver the rotation parameters the translation parameters can

be uniquely determined from the opiical flow field
Proof: First we define the tuncuon pay) where,

w = axn = B G Dy
~ati + - B - ya

i

()

Now we analyse the following cuses:
Case I: If y = constanr then from equation (iv) we have = 0. In this case we cun

only obtain the ratio —i— from the optical flow field.

Case 2: If u # constant then there are two image points where pois different. In

which case we can solve the resultant set of two linear equations, obtained from

. ! l
(iv). 10 get xo= = and ye =

Proposition II. Given the translation parameters the rotation parameters can

be uniquely determined from: optica! flow.

Proof: Here the values of + und .. are known. The expression for optical flow

1s.
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U=(1,— Xl —axy + B(x2+ -y
F=0 =g - a+ D+ Bxy + ya

Where (a.f.y) are the rotation parameters and ¢ = % is the reciprocal of the

scaled depth function. If possible let there be another surface moving with the

same translation but different rotation parameters, but generating the same otical

flow. Thus we have,

u=-- g —axg + B+ -y
vE0 -0 - a0t DB+ y'x
Now from the above sets of equations by subtracting appropriately we get,
0=(x--1xg - ¢)— Aax) + AB(x*+ 1)~ Ayy (v.a)

0=0c-10g - ¢)- Aax* = 1)+ ABxy + Ayx (v.b)
where Aa=a-a'. AB=p- f and Ay =y - y. Eliminating (¢ - ¢') from the above

we have.

(Aaxg~ ARy i - Ay« Aa)— y(Ayig+ AB) + x“(AByvo + Ay)

+ 1 ar - Ay) - x3(ABxg+ Aarg)=0 (V)
Since the above equation is valid everywhere in the image.

Aaxg+ ABy =10 Aayo+ ABxg=10
Ayxg+ Aa =10 AByo+ Ay=10
Ayyg+ AB =1 Aaxp+ Ay =0

From the above we obtain.

Aa=1 AB=0 Ay=10
This means that a = o', 8 = 8 and y = y' and therefore, the rotation parameters are
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uniquely determined when the translation parameters are known.

Proposition  II1 [fthe structure of a Rigidly moving surface is known, then the
parameters describing its motion is uniquely determined.

Proof: Knowing structure means that we have the depth values available upto
some scale factor. Thus in equation (iii) the value 'Z" is no longer an unknown.
The unknown scale factor is lumped with the translation parameters. Now

proceeding in a manner analogous to the previous proof we have,

1

-r/—(Al' ~ xAHW)= Aaxy - AB(x" + 1)+ Ay) (vira)
-,17(Al‘ -vAW)= Aa(h’ + 1) - ABx) - Ayx (vitb)
Eliminating % we have.
(AaAl + ABAL) — xtAYAU +~ AaA Ny - y(ABA + AyAl)

+ XUAYAW + ABAL) ~ vHAYAH + AaAl ) - vi(Aadl + ABAL)

Since the above equation must be valid all over the image plane. the following
relations hold:

AaAl + ABAY =0 AaAM + AyALU =0 ABAW + AyAl =0

Aald}l + ABAL =0 ABAL + AyAH =0 AaAl + AyAW =0
From eqn. (vii) and the above relations we have.

AU =AV =AW =Aa=AB=Ay=0

Therefore, once the structure is known for a rigidly moving surface, its translation
( upto a scale factor ) and its rotation is determined uniquely from the optical flow

generated by the motion.
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APPENDIX 11

Representations of surface orientation and their properties

In computer vision, the terms surface orientation map and shape are
sometimes used interchangably. The following is an attempt to explain the basis
of this usage. The cases of Perspective as well as Orthographic projections are
considered. Shape information obtainable from a surface orientation map in

image coordinates is also explored.

Representations for surface orientation

A direction in three space is specified by two independent parameters.

A. (Lautude. Longitude): The coordinates are denoted by (6.¢) where

0<f<n . 0<Lqgn.

B. Coordinates on the gaussian (or unit radius) sphere. If the coordinates are

tmnythen 2+ mi+n=1.

C. (slant, tilt): Slant is the tangent of ther latitude angle (or tand ) while tilt is

the longitude angle. The symbolic notation is (e.7).

D. (Gradient): If the depth is expressed in the form Z = s(X.Y), then it is the

level surface F(X.Y.Z)= 0, where

FX.Y.2)= f(X.Y)- 2

or of

The gradient of F¢) . i.e. (3T 3T

-1) gives the orientation of the surface ( in

the direction of increasing F¢) ). The gradient notation is written as (p.q).

.................
......
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_(90f of
where (p.q) = (ax a))

Relationship among the surface normal representations:

Vpl+gi=wnb=g0

= tang = tanr

g=vpi+gi+l

—

(1.m.n)=(£-q
g 8

Shape under Perspective Projection
In the case of perspective projection the relation between a world point (X.Y.7)

and its projection (x.y) in the image plane is given by

(X)) = (—=.—) (1)

where F is the focal length of the imaging system.
The surface is represented in the world frame by the functional form Z¢1.y). Itis
assumed that the surface can also be represented (at least locally) by the function

z(x.y) in image coordinates. Here the relation between the surface normals

(gi g{) corresponding to an image point (x.y) and the partial derivatives of

z(x.y) are saught.

A. Relationship between surface gradients in image and world coordinates. Now a
small displacement (§x.8y) in the image plane corresponds to a displacement
(6X.8Y.8Z) in the world frame, along the surface Z(x.¥). From equation (i) we

get the relation
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BX = 8x7 ;‘xé‘l (ii.a)
F sy = 812+ v8Z (ii.b)
. F
»
Furthermore the following identity holds
Z(X+8X . Y +8Y)=z(x+8x .y + 8)) (111)
Using the Taylor series expansion of the above
A 37 _ «v3Z . .
ZIX+8X .Y+ 8Y)=Z(X.V)+ 8XH + 8)57 + (higher order terms) (i1v.a)
' Sx+8x .y +8)y)=7(xy)+ 8x—aa% + 8,\‘%% + (higher order terms) (1v.b)
Neglecting the higher order terms in equation (iv) and substituting for X and 8 ¥
y from equation (i) in equation (iv.a)
: SN 8% T 8Y)- 2 Y1572 L 132 Lisi s 702
ZIXY +8Y Y+ 8Y)-Z(X. V=487 = F(cS.r/ + '(8/)8,\’ + F(S}/ + ~u’)‘/)a).
or
) ST VAN VAN VN
: 87(F - x v _‘a).)— [8"3_" /8"8—)_‘ (V)
i Recall now that
ZIX+8X Y +48)-Z(X.Y)=c(x+8x.) +83)- 2(x)
Therefore combining equations (iii). (iv) and (v)
g V4 V4 VA 97z _ , 0z KH
a7 _azax "¥ T az_az av et % (vi)
, ax Y X dF
g Since 6x and &) are independent of each other we have
) ,37
" /-
\ 9: _ ox
: ax - I _ XQZ_ R —al (\”a)
: ar ay
4
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Z_
o: Y ‘e
. a7 a7 (vii.b)
F=x3% ~ v

B. What Shape means Consider the shape information available from the field of
surface normals indexed by the image coordinates. Making the appropriate

substitutions from equations (+ii) in equation (iv.b) we have:

2z 27
2x +8x . y+ 81, 0X aY
Zayy 8Tz oz ¥ ez oz
X oX Y T 9X o)

Thus the following statement can be made:

Under perspective projeciion. when the field of surface normals is available.
N indexed by image coordinates, then the image centered depth function can be

computed upto a dilation facior.

-~ Lemma 1. If the surface 7 1~ represented by an algebraic function 7(x.y) and
furthermore if the function :«. 1) denotes the same surface in terms of the image

coordinates (x ), then the /s function r(x.y) is given by

[V B
p= 9 _ Ox
7 "2
Y d)

Proof: Since Z(X.Y) is an ulgebraic function, by definition it can be expressed |
implicitly by the polynomia! equation F(X.Y.Z)=0. We can write F(:) as

MN

i
SS SeuX'¥'75=0 (viii)
-0

where the ¢,,'s are real constunts und L. M, N\ are finite positive integers. By using
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the implicit function theorem we get

as _ 5

o0y k2 _ Ky
aZ Fy Fy
oX TF,

where Fy.Fy.F; denote the partial derivative of F(:) with respect to X.}¥ and 7.

Therefore we have from equation (viii):

I M

zzz )',:—121(

c=0=1k=0 .
TE TN (1x)

EZZ o Akl VA

Observe now that we can obtain an implicit representation for the depth in terms

of the image coordinates (x.)) from equation (viii) by substituting for X and Y in

accordance with x = % and : = % (where the focal length is assumed to be 1).

Thus we obtain the representatiion (x.y.z)= 0 or

AREER
ZZZM‘-”“‘O (\)
Again by the implicit function theorem we have
( ! M AN
8 _ L ) SIS jexiyitizieh
L S T U
. -G T L M N
i _ L ('\ 222 CkX‘—l\j i~k
X U 1=1;=0k=0
or
!
& 533 gty A
8y _ =0,=1k=0 .
- T M ¥ (x1)
E. zzzlcuer 1),/ YRS T3
=1=0k=0
Consider now, equation (ix) and substitute x = xz and ) =
T G D T L L R 4 R O O A L G R G A L SRRy

D
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97 > 3 ieuxty izl
oY .
7 7 TR (xii)

L M A
222
_ a=0y=1k=0
Ly 11/1~/~k1
: X "y
! o BRI
! But the right hand sides of the equations (xi) and (xii) are identical. This means,
! 2 22
' = 0F _ 9y
VAT
S ox Oox
L which concludes the proof of the lemma.
- Shape under Orthographic  Projection:
X Under orthography the image coordinates of a point are equal to the
)
corresponding three dimensional coordinates. or
Y
K- (xa)=(X.Y)
Thus
(32 82, 37 37,
8 A 8\ oY oY
Now observe from equation (iv.a) that when the surface normals are known at an
o
. image point (x.;). then the depth difference between this point and neighbouring
image points are known:
3 Z(X+ 8X ¥ + 8Y) - ZX.¥) = 8X2L + 6Y2L + (higher order terms)

" Thus we can state the following:

When a map of surface normals is available under orthography, the depth function

can be computed upto a constant additive term.
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P Q and R are three points on
the rigid body. XYZ is the
reference frame. The body
centered frame i1s atR. The
motion of Ris given by the

Y translational velocity:
T=(U0U, Vv, W)
The rotational velocity:

The representation chosen Q=(a, 8, v)
assumes the body ongin to The velocity of P is
coincide with the origin of the (T+ Q@ x o)

reference frame. Thus R isa
logical extension of the body.

Representation of Rigid Motion i

Figure i.




. b A By

A R

Sesd,

’X

The Perspective Projection Model 1!

p

Y The image Plane

The image p = (x,y)of the world pointP = (X,Y,2) s
projected by theray OP. The focal fength of the system s
‘F'. The equation of the image plane is:
Z=F
The relation between image and world coordinates is:
x=FX/Z and y=FY7Z

Figure Il a.




: The Orthographic Projection Model |

» X<

P
N @ -—

X p

Cl

X —p

" 0 ' V4

’ Y The image Plane

iy )

r The image p = (x,y) of theworld pointP = (X,Y,2) s

projected by a ray parallel to the line of sight (Z axis)
The relations are

x = X and y=Y

Note that all depth information 1s lost

. Figure Il b. l
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The structure of the translational flow field
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select window in image

surface normals

Which

s measured
more

accurately ?

optical flow

[ Use pairs of optical Use spatial derivatives
flow vaiues and the : of the flow and surface
reconstructed depth : normals to solve for the
values (upto a scale rotational parameters
factor) to derive linear from local linear
constraints on the f constraints

rotational parameters

' Cooperative algorithm for the
‘computation ot rigid motion ,
‘parameters from optical flowand |
i1shape .nformation. (Algornthm Vii)

Figure IV
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