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Abstract

A mathematical formulation of the Rigid Motion Perception problem is
described. The constraints on the parameters of rigid motion (i.e.. three-
dimensional velocities) obtained from image motion data (two-
dimensional projected velocities) are analyzed. A brief survey of related
work shows the lacunae in the existing body of research in this area.
Uniqueness results and computational algorithms are presented to
compute the rigid motion parameters from retinal velocities. The
approximations involved in the velocity representation are stated,
Algorithms and constraints to permit cooperative computation of
motion and shape are described.
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I. Introduction

Motion is a ubiquitous phenomenon in our exer.daN life. It is therefore

important, in the study of Computer Vision, to understand the retinal motion flux

arising both from movement of the observer, as well as the motion of

environmental objects. The stud% of the motion of rigid objects (or surfaces), in

particular, is a relevant avenue for inestigating motion perception. In general,

computing three dimensional motion from monocular two dimensional image

motion flux is an underdetermined problem, admitting an infinite number of

solutions. The assumption of rigidity makes the problem tractable (see UlIman's

paper 133] for a discussion of nonrigid motion perception). Furthermore. most of

the moing objects in our en~ironment are rigid. From a practical standpoint, the

stud. of rigid bod. motion is interesting, since it finds videspread applications in

the areas of optical navigation, tracking and recoverN of 3D structure of rigid

objects.

The motion of a bod. can be characterized b. the rate of change of the

positions of various points on its visible surface. Thus. at least instantaneousl. this

corresponds to a three dimensional velocitN field. If the body (or surface) is rigid,

then, this velocity field can be described by a vector function of the three

dimensional position coordinates and six global parameters ( see figure 1), %hich

are:

(i) The three components of the Nelocit. of an% point 0 on the bod.. These are

called the translation parameters.
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(ii) The rotational velocitN components of a coordinate frame,%%ith origin 0.

attached rigidl. to the bod.

It is a standard result from kinematics and geometry (see [71) that although the

rotational parameters are insanant with respect to the choice of the origin 0, of

the body frame, the translation parameters are dependent on the choice of 0.

When considering motion of rigid bodies. there are two cases of interest,

namel. Egopnotion and General Mfotion. Egomotion or self-motion refers to the

mo'ement of the camera or sensor in a static en'ironment. The image flux, or

opticalflow, generated due to such a motion is due to a single relatise mo'ement.

i.e. between observer and static environment. In contrast. General motion implies

that there is more than one object mosing %ith different %elocities in the observers

field of viev&. In this case the optical flo" field consists of man\ segment,

corresponding to the %arious moving surfaces. Each segment is characteried h

the translational and rotational %elocities of the associated mosing rigid surface

inducing the optical flovh. These %elocities are called the parameters of motion for

the rigid surface.

The rigid motion parameters are usually expressed with respect to a frame of

reference attached to the moving surface, which is assumed to coincide with the

observers frame of reference at the time of observation. The problem is to

determine the motion parameters corresponding to a optical flok field segment. If

the depth of the scene is unknown then it can be shon that onl. the rotation -

%hich is depth in ariant can be determined uniquel.: %hereas the three
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translation parameters can onl% be determined upto a scale factor (this is the depth

scaling effect). Thus we can determine fi.e parameters to characterize the motion

in this case.

Motion in three dimensions causes the pattern of light falling on the retina

(or any two dimensional array of photo-sensiti~e elements) to %ar\ in time in

accordance with the motion. Hence, the input (or stimulus) to any computational

process endeaouring to understand the motion, is the t~o dimensional projection

of the three dimensional motion. Since a \elocit\ fieId is a good representation for

the three dimensional motion, it is customary to choose a two dimensional %elocit%

field representation for the image or retinal motion. The latter is called optical

flo W.

The problem addressed in this paper concerns the computation of the

parameters of rigid motion and the structure of the moving surface from retinal

stimulus such as optical flo .

The optical flow field is a principal source of information about the motion.

inducing the "flow", as well as the 3D structure of the moving surface being

observed . The optical flow- comprises two parts, corresponding to the rotation and

the translation, respectivelN. of the inducing motion. The optical flow due to rigid

motion is constrained at every point b) the parameters of the motion. However,

since the parameter space has a large dimension and the constraint is nonlinear in

form, computation of the motion from optical flow (or image displacements) b.

search techniques is computation intensive.

-N&
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The optical flow field i mathematicall. separable into a translational pan and

a rotational component. It has been long recognized [12] that the motion

perception becomes simpler in the instances when the optical flow field can be

computationally separated into the translational and rotational parts. A familiar

illustration of this is the case of motion parallax observable at depth discontinuities

in the retinal field. The effect is to reduce the dimensionalit of the space of

unknowns. Unfortunatel.. thi, weems to be %erN hard to accomplish, in general.

Motion parallax is the basis IL! , in algorithm bN Laton [241. Other approaches to

the problem can be found in [o. 19]. inol~ing nonlinear least square techniques or

using local constraints in',I im: d'ati~es of the optical flow.

As stated pre~iousl.. , r.thms for rigid motion perception are difficult to

design due to tko main rev,

(1) The space of paramcue., i- " high dimensionalit. (e.g. fi\e).

(2) The Constraint equati ", thtained h, optical flow measurements are non-

linear.

There ha~e been some Ic., ci implementations of non-linear search algorithms

to interpret 3D motion fron" optical flow data [22,231. There have also been

discrete point tracking algorithn , h\ Tsai and Huang [30] and Fang and Huang

18.91 and Longuet-Higgins ji-j. in some of the latter algorithms, the nonlinear

motion equations are lineari'd in terms of s.nthetic parameters, which are

nonlinear combinations of the actual motion parameters. Tsai and Huang, and

Fang and Huang. note the e \& ,hen such algorithms fail to compute motion
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parameters.

In this paper "e examine the situations "hen the optical floh field is capable

of being interpreted in more than one \&a%. An instance of such ambiguitN is the

optical flow field due to motion of a plane [29].

A geometric anaiysis of the problem of computing 3D motion parameters

from 2D image %elocities has been done b%. Longuet-Higgins and PrazdnN [19].

The constraint equations tht thc\ derie are simple in form, but deal \kith

\elocities. To implement i n1,,tin anal.sis algonithm based on these equations.

one makes the assumption th,: the temporal grain of the obserxations is fine

enough to talk meaningfull2 ,i., the velocities or time derivatixes of both the

image and Aorld position,. Representing motion b\ %elocity parameters entails

making a first order appro,m,,tn of the temporal beha~iour associated \ith the

motion. Thus. for examp.. i! the displacement of a particle moving in one

dimensional space is A k ir A!. then - is a good approximation for the

velocity onlx when % i is smrnl cni,,ugh such that the change in %elocitx in this time

period is small.

An alternative deri'ativ' !., due to Tsai and Huang 1301. Their approach is to

analyze the relation betev c thk projected displacement %ectors in the image plane

due to an arbitrar) rigid dip.iement of a set of points in 3D. It is knovn [71 that

this type of motion can K ch.:!racteried b% a rotation about an axis passing

through the origin of the rctiL :. coordinate frame and a translation.

'.

-, . " .'. ' -'.. -. .-'.'. ". -.- " ." . -.-.-.. •.., . .. .'' ..- .. .. .. . -, . .. .> , .. . . ..*.. , , . .. . .-.'2
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The treatment in this paper assumes the 'elocit representation for rigid

motion. The assumptions underlying the work reported here are:

(i) The motion being observed, is due to a rigid surface.

(ii) The time constant (or sampling interxal) of the sensor is small enough to

make a first order approximation of the temporal behaviour due to the

motion being observed.

1.1. Reiiei of previous %ork

The computation of rigid motion parameters from image displacement %ector

fields has been studied by a number of researchers. Egomotion has been

considered in the literature b. Longuet-Higgins and Prazdn [19]. Prazdn} [22].

Wa-xman and Ullman [34] and Bruss and Horn [6]. Longuet-Higgins and Prazdn.

examine Aays of determining 3D structure and motion parameters from optical

flow. Their method depends upon accurate reconstruction of the optical flow field.

An interesting result due to them is that for non planar surfaces local anallsis of

the flow field .ields a cubic constraint inkolking the motion parameters. Prazdn%

([221) has devised a fi'e point algorithm to solve for the motion parameters from

nonlinear constraint equations. Waxman and Ullman's method depends upon

reconstruction of the optical flow field analticallN, in local neighbourhoods. Bruss

and Horn propose a least square solution to the parameter estimation problem.

Some other computational approaches attempt to segment the optical flo"

field into translator% and rotator% components. albeit approximatel. An example

is the method of Reiger and Laykton [24] %here the change of rotational flow at

"1% % ,v -,m m ", ", • . .,.m C,' , . ? P: - ' *' -P * - - m ,m m •. .-.-.--
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steep depth gradients, is treated as noise. Jain [17, 18] computes the focus of

expansion before computing the image displacements and uses the former to guide

the correspondence for finding the latter.

All the above analyses pertain to the computation of motion parameters from

optical flow, i.e. continuous or differential image motion. An alternative approach

is to consider evaluating the motion parameters and 3D structure from discrete

point correspondence. Ullman [32] shows that three %iews of four non coplanar

points is adequate to determine the structure and motion of these points under

orthographN. Tsai and Huang [30] pro~e that the motion of se~en points not k.ing

on to planes. one of which passes through the origin, nor on a cone passing

through the origin, can be uniquel% computed. from discrete displacements. Fang

-, and Huang 18.9] pro'e that structure and motion of nine points not Iying on a

second order surface passing through the origin is uniquely determined from

image displacements. \agel and \euman [21] and Roach and Aggarmal [25] ha~e

also looked at the problem of determining motion from discrete displacements.

Yet another approach to the problem of motion parameter computation has

been to restrict the motion to simplify the anaiysis. Webb and Aggarmal [35]

Hoffman and Flinchbaugh [141 and Hoffman and Bennett [15] analkze rigid

motion %ith the additional assumption of fixed axis of rotation or planarit . An

" major motivation for this type of analysis is that, it models the locomotion of man

and animals.

* *. .. .%*,. . . . . . . . . . . . . . ..... ../. .. *..*. . . .. . .
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1.2. Summary of Results reported here

It is e~ident from the re'ier of the existing bod. of work in the field of

motion perception that, although considerable work has been done, much remains

undone. Uniqueness proofs of the type derived by Tsai and Huang and Fang and

Huang do not allow us to visualize the situations when the optical flow field is

intrinsically ambiguous, admitting more than one interpretation. An anaksis of

the optical flo% field to determine cases of ambiguity %ill be a major focus of this

paper.

When the image formation geometr is modeled b, means of the parallel

projection model, the constraint equations become simplified. This is also called

Orthographic Projection model of image formation (see figure lib). The attendant

simplicit in the motion equations can be used to considerable advantage in the

preliminarN anal.sis of the motion perception problem. The folloing results are

deri ed:

1. The component of rotation about the line of sight. the ratio of the other two

components of rotational %elocit%, and the tilt function is uniquely

computable from a single optical flc,A field, for a rigid non planar surface.

2. When the surface normals for a rigid surface are know n then the motion

parameters can be computed uniquely.

The Perspective Projection model (see figure lla) is a more accurate model of

image formation by e~e or camera. For this model it is pro~ed that:

-...... " . ". ,. . .- -.- "- -- "-" - -"" . . . .. . . .. ." " • " " " "* '' " "-" ' '" '
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1. The optical flovw field. under the assumptions of rigidity can haxe at most

three interpretations.

2. The rigid motion of any surface whose depth from the nodal point of the

sensor cannot be expressed b% the rational function P(x.. ) here P, and

Q2 are rational functions of the first and second orders respecti'el. is

uniquel computable from the information in the optical flow field.

3. Tyro optical flow fields, obtained at different time instants. determine the

motion parameters uniquelx.

4. The motion parameters are uniquely determined from the optical flo, field

*when the corresponding motion involkes rotation onl\.

5. The optical flow due to planar surfaces is generally ambiguous. HoAexer this

ambiguity can be resolved either %khen the flow field is due to more than one

plane moxing together rigidly, or in the case of a single plane. if its tilt is

known.

7. It is feasible to design a cooperatike algorithm for computing both shape (e.g.

surface normals) and optical flo", under conditions of rigid motion.

2. The Geometry of Rigid Mlotion

Consider a sensor mo~ing relative to a stat scene. The co-ordinate frame

(X.Y.Z) is fixed to the sensor (see figure I). The iexking direction is along the

positi'e z-axis.



A rigid body is defined as a set of points whose relative euclidian distances

from all other points in the set are in~ariants with respect to the transformations of

rotation and translation. In addition, since we will generally deal %ith opaque

objects and hence will observe points on a surface (or a manifold) in 3 space. In

other words the 3 cartesian coordinates of of a point on a rigid bod% are not

independent. Formally.

B =(1 r

where

1.{ . point on tie surfac( ',t f }

When the body B is dAi.,ccd with respect to the frame of reference, we

obtain a new representation'

B' :

The displacement is described b.. the affine transformation

= IR\ +i (2-1) 

Any displacement of a rigid hod, can be modelled b\ the abo~e equation. which

describes a rotation about an ai.S through he origin and a translation specified b

the vector T.

If the rotation angle ; s,,,. it can be decomposed into three component

rotations about the indiidua.1 axes separately [16]. In this case R and ! are gihen

by

. . .

....- 5 *5o5

S S - - -"'
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R . 1 -u,., 1 =
R I,

Substuting for R and -r in equation (2.1) we have.

X- V - w. Y + Z + (2-2.1)

I v+ ,.:. - , + (2-2.2)

/ / -, + + I. (2-2.3)

or.

A) = t.- - W/ (2-3.2)

Ax/ -= - ,... W ,, Y (2-3.3)

there.

A\ =.i - X A} = 1"- Y" A='

We define the parameter \c,.ir a for characterizing the motion,w here

Motion perception inolkc- thc rccoer of the parameters of motion, as vell as

the structure (or shape) of thlc rno\ing object. The geometric properties of the

three dimensional surfaces and points are related to the geometr. of their image.

Thus the projective transfornation inolved in the image formation process must

be analyzed. The subsequCnt anadlsis considers both the cases of "perspective" as

. well as "orthographic" projcction.
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3. Analysis of Motion under Orthography

When the model of image formation inolkes orthographic or parallel

projection, then the mathematical formulation of the problem becomes

considerably simpler. It can be argued that this is a valid model of image

formation when viewing distant objects, or when the focal length of the camera is

large compared to the distance of the viewed surfaces, or when the viewing area is

small and centered around the line of sight - as in the case of the field of Nlie"

corresponding to the fovea in the retina.

Under orthography. the projection equation relating the position of a point in

three space P =../ to its image p = (.. ) is:

Assuming that after a short while the point moes to a position gixen b\

P = (.1 /i while its image moxes to p'=(,. ) the following relations are

obtained from equations (2.3):

=. - C = = -,' , (3.1)".

Optical flow is the time derivative of the image position vector and is denoted b\

(u.v) where

(u.A) = ~i.') = (,A. ')

Alternatively.

Jim Ax dx lim At - 1
==I- -A "=A/-.0 -=-,

I di 'iOAt di

The motion parameters are nok the translational %elocit.\, = . if and the

rotational %elocit Q= (a.y) %k here:

*~. *~*~. * , *.
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lim hm ,limA': at-0o A: a 0,- A I--*,oT,

and

' Ilim 1hm1Mlr '= rn r - ur = 0C

therefore the equations relating image and 3D motion are

aZ + - - (3.2)
= l - Z*/

These equations are exactly identical in form to those obtained under the discrete

case (assuming small rotation), ie. equation (3.1). Strlctl speaking. according to

the nomenclature adopted before, the motion parameters for the discrete case are

II.w,.w) and those for the differential case are (.I.af.-t. Hoexer. since

equations (3.1) and (3.2) are identical in form. all subsequent analysis is based on

the latter equation. Furthermore. the parameters ( it uill he evident later that onlx

the rotational parameters are of interest here), in both the differential as "ell as

' the discrete cases will be referred to b the symbols (a./3 y). The treatment of both

the cases is identical. the onlx difference being that deriati.es in the differential

anal.sis correspond to differences in the discrete case.

3.1. On the information available in the optical flo% field

Obserxe from equation (3.2) that the image displacement (or image motion

field) consists of a translational part and a rotational part. The translational

motion parameters are dependent on the origin of reference. In fact the

parameters, intrinsic to the motion are those of rotation. Thus relative to a

particular point, sax the origin (0,0). equation (3.2) becomes:

41
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U= 1 / .- (3.3)
I 2 - 'yx

where u actualI means u - 1(0.0. v is - i(0.0) and / is / -1(o.o). It should be

emphasized here that / denotes depth relative to a certain point of reference ( in

this case it is the origin ). If the structure or relative depth is not known then the

parameters (a./., are not completelk reco'erable. There is an exact analog of

equation (3.3) for the discrete case, obtainable from equation (3.1).

Proposition I When the depth function (or structure) is non planar the

follo, ing parameters are uniquely determined from the image displacement field:

(i) The rotation about the axis aligned \ith the line of sight. i.e. 'Y.

(2) The ratio of the other t'ko parameters. i.e. .'

Proof: The proof is b\ contradiction. Consider the motion of the non planar

surface /1. \hich is described b\ the parameters (a.f..-y:j. The image motion

equations (from equation (3.3) ) are:

S= /:- 34)Ll (3.4)
= - a1 / I 71-k

If possible, let there be another surface /. whose motion is characterized b\ the

parameters (,,2.)',?). such that the image motion field in both the cases is the

same. The motion equation for the second surface is:

1 -2.1 T / (3 .5 )
= - a,/, ,y2x

Furthermore. the following relations hold:

-i . . -L , -li iu "~ ~ Lt :il = " , 
"

l, ' i i I -- i. . . . .. I "
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A-Y= - Y, 0

a, a, (3.6)

From equations (3.4) and (3.5) the following relations are obtained:

- / / + 9= (3.7)

NOw since af * a,:

- arAy .t fl A ,

- afl - a.,#

But this is contrar\ to the assumption that / is non planar. Therefore:

a! a,

Again, this implies ( considering equation (3.7)) that

AY = 0 or Y Y'

This completes the proof of Proposition 1.

Proposition II. The image displacement field generated b% a planar surface

is linear in the arguements (.k..i ). In addition. the parameters a- and ,y are uniquel\

determined b the image displacement field if and onlh if ap f- q = 0. vhere (p.q)

is the gradient of the planar surface.

Proof: Consider the equation of the planar surface z{.v):

/ = ,.+ 4.' + J
If the motion of the surface is characterized by the parameters . The image

motion (or optical flok) is given b :

.... ............. .-
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The abo~e equation indicate, that for planar surfaces the optical flow is linear. It is

also true that when the optical floA is linear then the moving surface is planar.

No% considering equation (3.31 and substituting for (u. from equation (3.8) and

rearranging terms:

0= it -) 04 -* iq q - * h(9

O=I af p - - -Y) x -0 ( -ta oq 39

Since the above equations Lr, \,did for the entire image Ae ha~e:

S.3p / B(3.10.1)

131 - rY f= , - 'Y (3.10.2)

,0; " - -1 , (3.10.3)

,q = (3.10.4)

Eliminating p.q and -y from th ,

a (ILr 043 -

or

where p = -A-. The aboe q i'.II, equation has a unique solution if and onl. if:

Q;3 - a ... p (h4 5Tj). 0
Under this condition:

a- -d Lt7 =

Therefore the image motion o" planar surfaces uniquek determines the parameters

L) ifand onl\ if ,r - ji-

o q
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3.2. Summary

(1) The anal~sis under orthoraphic projection for both differential and discrete

motion are nearly identical.

(2) When the structure of the moOing object is known, the motion parameters

can be computed uniquLy', from image motion.

(3) When the structure i,: not known then the recoverable parameters are

(-2-.,Y. I. Hovke~er in thi, case. the kaluies are unique onl. vwhen the mo~ing

surface is non planar. ,r a certain condition (see proposition II ) holds.

4. Analysis of Rigid Motion for the Perspective Projection Model

Under perspective projccilon. the "image" is formed b\ "ra.s" from points in

three space (i.e. world poi:, I. I hese ra s are constrained to pass thru a nodal

point called the center of pcp..t1\it\. The imaging geometr. is shovn in figure

Ila. The nodal point is 0. %khih is also taken as the origin of the frame of

reference. An image point p - (\.. ) corresponds to the Aorld point P = (\.Y,i).

Here the focal length of' ik .iging s. stem is F. The equation of the ra, OP is

Therefore,

_- -LI (4.1)

The above projection is den,'Itd b\ .1.7i--I .'.F. Similarl\, the projecti\e

relation between another \,,rld pkint I, and its image is T. ./'---.I .1 Thus

from equation (4.1) "e hazy.
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Ax .k X* .*

Ax.-- x = 1(- - -

At= .v' -.i= - I,),

or,

r /A -XAZAX = F w * (4-2.1),
Z(Z+AZ) ,

A.1= F "/AY YA (4-2.2)
/(/+A/)

Recall that "hen the 3D rotation angles, characterizing the rigid motion, are

"small" then the 3D displacement components are given b% the relations:

-} ±.+ . -t,

A! = r-- ,. ,

Thus. substituting for A.V. A) and A/ in the equation (4.2) vke ha~e:

/(I, - - (:- . - ,X)
*0- it + ., ) - , )

or.

__-___ ___I

1 - -.2 .+ , ,7. - ,-.

similarly, ve obtain an expression for the other component of the retinal

displacement,

FI. - - + . w 2 + W"

+ +

The abo~e equations express the the retinal displacement %ector (A ..A., at an

image point P = (x.$) in terms of the parameter sector y and the "depth"

-'I ~ ...... ~ **** %%',~ . . *~*'*,I0.',* .. *.
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coordinate Z for corresponding world point p = (XY,Z). Another form of the

above equations is,

I.x xl .(- x)) F. - ,,: - -F + ''-"

Ax = _ (4-3.1)l- I X I. V, X

+ F

I. S

F--,, - , + "A.1 =F1(4-3.2)

/ V F ',(.7  d -

%khere.

Ft ft.

,>/ /

,.

\ore here that. hen the displacement is purelk translational

-"_ - . )(4-4)
, A. (_A,:- I )

This means that \,hen the rotational component of the displacement is zero, the

image displacement \ectors meet at one point (,,..,). That is to saN, the retinal

displacement field conerges to or diverges from a single point in the image plane.

This point is called the focus of contraction (FOC) or the focus of expansion

(FOE), depending on whether the translational motion is directed a\a\ from or

towards the image plane (figure III).

60 If we can measure the retinal displapcement field due to a particular motion,

then it is possible to estimate the parameters characterizing the motion. In

addition, if the temporal sampling rate of our imaging process is high - meaning

" - '. ,', - . ,.," .' ,.. '.- -- , , "v- ,.' -.. ": .-.- .. -- ,..- .- ,-, .-...- '--'- -. . ?.,-'.,., ,., .. . -. -. ,,, ... . , ., .- ...
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that the components of the displacement for a single time interval is small and the

follo ing condition holds.

-+ Wt i- WA) )f1 (A)

It is possible to derive the equations relating image motion to the motion

parameters in the differential case. This is obtained by dividing equation (4.3) b>

a small time interval, At, and taking the limit as A,--0. The image displacement

then becomes image velocity, and is called optical flow. The optical floN is

denoted by the vector (u.v) where:

U lir Ax- d.1 ir At dAt dt A t-0 dt

Similarl. the motion parameters are non the translational % elocilt I (t .l

and the rotational %elocit% = (a..y) Nhere:

and

hr 1 r 1r M. hrn '
At-0 At ,t-* -TJ ' -.11 .

Equation (2.6) now becomes:

u (x0 - x)-7- Ff8 - - a- -+ (4-5.1)

U0 - - Fa + "yx- a (4-5.2)
7 F Fwhere the 3D motion is now characterized by a translational %elocit% u.1*.1f' and

a rotational %velocit\ l.. Furthermore the FOE is nok given b\

FL( 0 )(xo.j o)( -j-. - .

.€ -'.;.'-'.'- -;; ' -'. . -;-" . 4".'-.;' ". - "; < "< ' "..? "- -< ?, "<- .'? " 4 -.- - < ,- -' ' '- -? ,L- -< .. : -. :? ,. :-If-.."-



Motion perception in~olkes the computation of the parameters of motion

from the image displacement field. The latter, becomes in the limiting case. a field

[*,. of %elocities, called optical flow. The relation that optical flow has with the motion

parameters, is embodied in equations (4.5). These motion equations inwoke

velocities, both in 3D as %ell as in the retina. However. in a practical vision

system, the retinal measurements that are actually made invol~e displacements

o'er a small time interxal. This means the abo'.e 'elocit\ equations, are not

strictlN applicable. Under certain conditions, the penalty paid for doing this may

not be too sesere. This happens %hen the error indroduced b. the velocity

approximation is "ithin some predetermined bounds.

There are txo separate approximations embodied in the usage of the equations

(4.5) to express the constraints on image motion due to the 3D motion parameters:

(1) The three dimensional velocity approximation - The velocit\ of a point

p = A.) ./) on a rigid body. mo% ing A ith a translational elocit% T (1I 1 -.

and a rotational %elocilt S I ay is given b\

di

Integrating the above with respect to time ve ha'e

fo0 di- (T + 0 Xp) di

Here x denotes the vector cross product. The three dimensional %elocit.

approximation implies that, for small Ai, the image displacement can be

expressed as:

.9i
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p. p

(2) The retina! velociti aprox,mation This enables us to treat retinal

displacements as retinal .elocities and is 'alid so long as i--r 1. This can also

be written as relation (A) stated pre~ious .

When both the translational %elocitv - as well as the depth function / is

multiplied by the same constant, the latter cancels out leaving the equations (4.5)

unchanged. The same applic, to the equations (4.3). This means that scaling the

translation b. a constant i . and at the same time. causing a depth dilation b\

the same factor lea~es the imig displacement field unchanged. Thus, from the

information a~ailable in thc if, av. displacement field, the translation %ector is

obtainable. onl upto a scalL,." ;

In equation (4.3) the dcp .rable / i an unknown. An equation relating

image displacement to the n', •. :v,,rameters is obtained b\ eliminating f from

equations (4.3):

a..l 7 - I ..' 1 -~ '' *-"'Ax H. - , W

or.

" - (4-6)

where

.. . . . . . . . ... . . . . . . . . .. . . . . . . . . .. * b % . . . . . .. 0*. . .,•*

%". 0



24

The above equation relates the motion parameters to the image displacements.

which are observables. This is a bilinear equation in the unknown motion

parameters. A similar relation is obtained for the differential motion case, b

eliminating - from equation (4.5):z

14 - (I/i - - a - j- i-} - (X0 X(4-'7)
- C - / a - -y -a . * fit)

In the above analysis, the relations between image motion and 3D motion has

,. been deried b% assuming gncnr.I displacement of a rigid constellation of points in

space. This relation is gi\en h, equation (4-5). From this. b. taking the limiting

case. for infinitesimal displvmc:,nt, the "continuous" or differential motion case is

obtained. The latter relation cin also be obtained directl from the kinematic

equations of rigid motion ( ,ecc Appendix I or [19] for details ).

4.1. The Information availabk in the image displacement field

The foregoing analysis illustrates the dependence of the optical flow field on

the motion parameters. In other "ords 3D motion constrains image motion. The

magnitude of the translation parameter vector cannot be computed from the

optical flow field. The rigid motion parameters observable from monocular retinal

optical flow measurements are gi en by the parameter vector a

No%. \e examine the moion equations to see whether the displacement field
a:
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uniquely determines j.

The question to be answered, before attempting the design of algorithms to

compute the motion parameters from optical flow is whether such computation is

feasible. This means that given an optical flow field, when can we say that it could

be produced by a unique set of motion parameters. The following theorem

answers this question, by giving a sufficient condition for uniqueness.

Theorem I: The optical flow field is uniquely determined by the rigid motion

parameters when the moving surface cannot be expressed as a rational function of

the form Pll.j w. here P, and Q2 are polynomials of the first and second orders

respectively. and (.k ..,) are image coordinates.

Proof: Let a rigid surface /', moving %kith translational and rotational %elocities

t"..i") and a'.#'4 respectiielk. generate the optical flo%& field (u., given b%

7< (4-8)

where the translation parameter 'ector is (t ,1.i and the rotational velocit% is

Assume that there is another surface z(xy) moving with a different set of motion

parameters but giving rise to the same optical flow field wu. or

,f -" -TX X , _.
u~~ ~ =F , y-a--+# (4-9)

, ' ) t _Fa + -yx -a2I- + ^-kje= e r -t

where the 3D motion is nob due to a translational elocitb (L.i,. and a

; ;~~>. >*2',- . *-* i,-",. .,-.,.. ,.4., .. ..]:.:,;-':,:,'-.;-;,'',;.:-:-;I
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rotational velocity (a,.fy).

Since u - u' = o and t- . :o e'er.where in the image. we have from equations

(4.8) and (4.9):

L- x' - 14x + FA/3A xvA X (4-101)
/ 7' A T =o

-' " " FAa - xVy- VAa - -LAfl 0 (4-10.2)

vhere. Aa = a - a'. Af= -8'. and A = -y - -y.

Considering the above set of equations and soling for the 'ariable Z' vke ha\e:

(assuming the focal length F to be unit)

=P1. A-3)

%khere

I':1.A.A) = i_'"-L " ) -+- x(1I "'- l~'t') i( "l'" - /_'|" (4.]11)

and.

Q= (Af - Aa_')- x-(A ait I- A-/3W 1 (4.12)
* - xJ(AaI'- Aflt AI. /3i - A-'1 )* -t '(al -A i.1

- The abo~e implies that the surface / that originall. generated the optical flo

must be a rational function of the form - to permit ambiguous interpretation of

its rigid motion. This is contrar to the the statement of the theorem. This pro~es

the theorem.

Corollary I: When the motion of a surface is purelY rotational, the optical flo" field

is uniquely determined by the motion.

." • . ° + • + . , . . - . . . . . . . . . . . • ° . . • .. . . . ... . .. '4 •. \
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Proof: In equation (4.10) making the substitutions u"= = i"= 0 we get:

U - +&" ).,&-y- . Ia  0

Z T =

FAa F0

Now, eliminating Z from the above equations and setting focal length 'F" to units.

we obtain:

(A# V+ Aat' ) - x (Aall'+ A YL) - y(A#f*+' Ay-iV)
- (A a V+A#L) .t Ai Ay4") ± )2A(Aat+ -Y A'i) 0

From the above equation Ae haxe a set of six equations:

AaL A#f = 0

Afll* + A-y, i 0
Aal" + -I t' = 0

Aa l -- A-y" 0
Aiit+ A Y1 = 0

The above equations imply either u = I = it = 0 or Aa = Ap A 0.

Both these conditions mean that the optical floA field due to a pure rotational

motion has a unique interpretation. This pro~es the corollarN.

Corollary I1: It is possible for a flo field generated by pure translaton motion to be

identical to one generated by another flow field due to both translation and rotation.

In other words convergence of the flow vectors directly onto a point on the image

plane does not imply purely translatory motion.

The truth of the above corollary will be demonstrated by a numerical example.

* Consider two flow fields generated by different surfaces undergoing different

motions:

In the first case the motion is due to a planar surface gien by the equation
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1 5

2 6

The motion is rigid and is specified b)

• 7 35(xo = - ,yo ---. a 5., = 3.Y 0)

Assume the translation in depth to be unity. Then, from equation (4.8) ve ha'e.

1 5
u=(x - I- & ))- 3+5x -3x

3 35 35 1
U = - -t - X - A4 12- 6 2

35 139 35 5

12 36 6 2V 6

In the second case the motion is due to the planar surface given b. the equation

35

and the motion is specified b% the parameter 'ector

S
- ,.. O Z.a 0. 0.' - 0)

The optical flo k field in both the examples are identical.

The question of multiple interpretations of the same floA field, has recei'ed

some attention in the literature. The foregoing example illustrates the fact that

motion of planes can be potentially open to more than one interpretation. It is

known ( see [27-29,341) that the motion of planes have dual interpretations.

Uniqueness of interpretation for planes requires three viewks of four points, or tMo

views of seven points which uniquely define two planes neither of which pass

through the origin. In another studN Fang and Huang [9] shoAed that nine points

not iing on a second order surface passing through the origin can be used to

° .° . , m a- , . V .. . . . ... • ° , • . , •. . , ° ,. . a -° . o . . . . . N l, • ., -°
..*.,. * .*.*-*.... .. ... ' ,"- .,"€ - .. " •. . . .. , ..... . . p. .•• € . . ; ..- -
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determine the motion paramcters uniquely. Another significant theoretical result is

due to Longuet-Higgins [20]. and I sai and Huang [301. where eight points are used

to solve for the motion parameters from a set of linear equations. The important

question as yet unanswered arc. under %hat conditions the optical floA field is

inherently ambiguous and. what is the degree of the ambiguit. possible in optical

floA fields. The following ana!,sis ansaers these questions.

Theorem I1. Under the as 4,:' ,: o .rigidit). an optica!flovi field is amenable to at

most three interpretations.

Proof: Theorem I sho%ks th,, " ,ptical floA field is enough to determine the rigid

motion parameters unique1l t> ms,,ot surfaces. It vas seen ho\%ever that in case of

certain rational functions th11rc i , potential ambiguit\ in the interpretation of

motion. These are the rati,, inctions belonging to the class R' . and A ritten i

/ - (4.13)

Planar surfaces belong to t'- class of surfaes. It has been mentioned

preiously that planar sUrf'JLL', ,.i hae at most tvko interpretations. \,hen a

surface is non planar, to ha\L rnLltlple interpretations of its motion, it must be of

the type given by equation 4.13) with the added propert. that there is no

common factor betvween the n imcrator and the denominator.

Let such a surface be undi -,o'ri rigid motion u.v.w.a.f.,). Let there be another

motion (U'. .lV.a - Aa.fl - -A that produces an identical flowk field. Then

from equation (4.11) xe ha\.
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- ak

I u IV bA (4.14)
;J Ui = c

where k is some constant factor. Since bN definition of the class R21 at least one of

a, b and c must be non zero. therefore 4,*O. This is because if k Is zero then

from the above set of three equations A~e get the result that the translations L4.i .K

and w(U. . i are identical upto a scale factor. Hence by Lemma I of Appendix 1,

the motion is not ambigUOL'N.

Multiplying the first equ~ttion h\ u. the second b> i. and the third bN M and

adding the three equations %v'c hal~e

-h-c )k = 0

This means that the motion n l\ he ambiguous wkhen

0, (4. 15)

Similarly it can be shov~n th.,:

I-hi -CH = 0 (4.16)

Again comparing the envt1 of the rational function %kith equation (4.121).

and combining the constant ~:ithe translation parameter~L. .1) A

A/3 I -a 1 (4.187)

All It'+ AYV (4.19)

AaI - I#U = - g (4.20)

A3I+Ay ", h (4.21)

A(U+AyllI= (4.22)

From equations (4.17). (4.2 1) TInd (4.24) %ke get:
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2au= q (4.23)

2aJB = r (4.24)

= S (4.25)

where q=d±i-h. r-d-i-h. s=-d + i+h. Substituting from the above

equations into equations (4.18). (4.19) and (4.20):

qV? + rU'2 + 2g't" = 0 (4.26)

rlV2 - sl + 2011' 0 (4.27)

qL'2 sli' -P 2eL't = 0 (4.28)

Equations (4.26), (4.27) and (4.28), together with equation (4.16) can admit no

more than t~o solutions. This is because at least one of (q . must be

nonzero. Therefore, since there can be at the most tko spurious solutions (recall

that the veridical solution corresponds to k = 0) the implication is that:

4hen the optical flow field has more than one interpretation, the number of

globally consistent solutions for the motion parameters can be at most three.

This completes the proof of the theorem.

It will be shown that there exist surfaces %khose rigid motion induces optical

flow that is compatible vith three distinct interpretations. This fact explains \h%

Longuet-Higgins and Prazdn. [19] noted, that from local optical flow constraints

and their derivatives three interpretations of the motion are possible since the

constraint equations were cubic.

An example of 2D motion field With three distinct rigid motion interpretations:

--V. .- 'a. ~ * *
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The equation of the moving surface is

1
gx

the motion parameters are (', ,O,a,#.y) the expression for optical flok is therefore

u = Cgx) - x 1 
2 + 1-.1

v = 'gx a(v + 1) +fl-D + "yx

Alternative interpretation 1:

X- C[ X"-= -f-(W - Vl" " 1)J

Ahere the motion parameters are (u.O.O.a.3 + g'.f). The optical floA field is given

b

U;= t['. - I . ' 1.X - ax.1 + (fP gI'f(. -- 1)- W.

:= - + a + ) (l gl -L 7

Alternative interpretation 11:

7 P + 1)]

The motion parameters are (0.1 .0.a - g.,.'y). The optical fiok field is

U =- (a- g,)_. -/3( k- 1-Y.

v .[F'x3 - - 1(1- (a - gU I- ) +8.: -y

It is easil % erified that u = uI= u, and, =

Theorem I states that under certain cases the optical flow field ma not

indicate the motion parameters uniquel,. The next theorem shows how

unambiguous determination of the motion parameters can be achie'ed from

optical flow data.

iW

:" "" "" "',''.'',', ",,',~ k'',''.'.. . . . .. .." "
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Theorem III: Given the optical flow values at three non collinear retinal locations.

where the temporal derivative (or time difference) of the flow is nonzero, the motion

parameters are uniqueli determined

Proof: The essential fact on vhich the proof is based is that the rotational

component of optical flok is not dependent on time. Thus if during a short

observation penod the parameters of motion remain fixed then the temporal

denative of the flo, is only dependent upon the change in the translational

segment of the flo,. Although the folloing proof uses temporal derikati'es.

differences also lead to the same result.

Differentiating equation (4.8) &ith respect to time we hae,

a/ (4.29a)
-" at /- at
_1$

- - (4.29b)

.No %%e assume that 0. Furthermore. the case where the translational

motion Is in the frontal plane Is easil dealt with and kill not be considered an.

further. From the abo~e equations %ke ha~e,

a-- (x - x (4.30)
al

The abo~e equation provides a linear constraint for locating the FOE. It is

therefore exident that %%e can determine the FOE uniquel. if Ae ha~e tvo such

constraint lines that are independent. This is guaranteed %%hen Ae ha~e three

. . . .. . . . . . . .. . .
..r .. ." . ,. . -.. ..,..,,-.. -.-. ,,, .. -, , \,: , ,, " " , ", l " 'L' , A LI .-. -I -AAi i I
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retinal locations where the temporal derivatives of the flow are non zero. Once the

FOE is determined, the rotational %elocity can also be uniquel computed. (Note

that, instead of temporal derivatives, differences can also lead to the same result.)

Another way of resolving the ambiguity in the optical flow is by using shape

information. There is a strong relationship between the parameters of motion, the

optical flow field and the structure of a moxing surface. The following propositions

makes this concept clear.

Proposition 1. When the parameters (i.e. xo.jo.a. 3 .y ) describing the motion of a

rigid surface are known then the structure of the surface is unique.! determined from

the optical flow field.

Proof: The proof is e'ident from equation (4.5). \otc that e can obtain the

depth function upto a constant dilation factor W. In other \ords the ratio of

depths at any t\o image points can be computed.

Proposition I1. When the structure of a surjbcc is knov r7 then the parameters

describing its rigid motion are unique/y obtained from the opticalflov generated bJ

the motion.

Proof: See Appendix 11.

Even the partial specification of shape can lead to a correct perception of

rigid motion. A illustration of the fact that shape information can disambiguate

between alternative motion interpretations comes from the next theorem.

k/ . . . . . .. - -
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Theorem IV: The motion ol'a planar surface whose direction of translation does not

, lie in the plane of its surbat normal and the line of sight, can be interpreted

correctly from the optical flovi generated when the tilt of the plane is known.

Proof: Let the equation of the planar surface be

d
=1 - p - q

where (pq) is the oientation of the depth plane and "d" is the distance from the

origin along the z axis (e.g n. of sight ). Substituting the abo%e into equation

(4.5) and observing that L tan ignore multiplication of the translational

parameters b% a constant (,.
1 ,, d ) since %ke can compute the former upto a

scale factor an%,va\. %e hazy

- _ ) .' 4 .- U -q ( 4.31)

where the unknowns { a arL g1'cn h\

"." , * B =  " 4.32.1)

Ip, j = (4.32.2)

Lq (4.32.3)

I a = ,(4-.32.4)

IVp + =15 (4.32.5)

I - a 16 (4.32.6)

-Y- VP 1, (4.32.7)

q It = Is (4.32.8)

Note that (4.32) are linear h,,,,,, cneous equations in eight unknowns. Thus if "e

can solve for the svnthct'1 ,,.'r,-,,cters . } b. making measurements at four

, . 2z;",' :. ;.;; ::::' -" _.'" ; > ' ""' ;''': ;;:;-';:"2 ": "
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suitable points, and in add,;u,,: can measure the tilt of the depth plane.i.e.

L=- (4.33)
q

Then from (4-32.7) and (4-32.8) and (4-33) we ha~e:

- T ' = I- + -ri (4.34.1)

From (4-32.2), (4-32.3) and (4-33) ve have •

-- 1= - -1 (4.34.2)

Therefore. since T- 1;tO %c hjc c:

-, -- (4.34.3.1)

H T(C- - T, (4.34.3.2)

Now If i t, is (i.e. t o ) ... h.,c from (4-32.8) and (4-32.3):

: U /' -
- . - A (4.34.4)

other ise if - 0 (i.e. r : " hae from equations (4-32.7) and (4-32..):

- - ~ -k (4-.34.4)
., I -

(if both p and q are zero thcv th - parameters are easil\ sol~ed for

No%%, from (4-34.4), (4-32.6) and (4-32.1) Ae ha~e:

, a. -= 1 - ki6  (4.34.5)

Also from (4-32.5) and (4-32.4, Ac have:

'ra + P = 15 - T14 (4.34.6)

Therefore, since r # k. from the assumption made in the statement of the

theorem, then equations (4-,4. 5 ,rid (4-34.6) are independent, and Vhe have:
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S. (1 - k' 6 )- (11- r14 ) (4.34.-7]1
k -T

, ,- 714)- -1- ki) (4.34.7.2)

Now U and V can be determined from equations (4-32.6) and (4-32.1). Thus we

have determined the motion parameters uniquely from the optical flowk and tilt

information.

At this point it may be mentioned in passing that it is possible to obtain the

motion parameters uniquel. from the optical flok generated b tvko planes moving

together rigidly. In this case the optical flowk is locally second order. If the eight

synthetic parameters are noA measured at two different regions of the flow field

then

-A- Al

UA - €  = A,' .

d

(4.35)

-'Ad = AI-,

V'A 1+ A1 =

d

where the two planes invoked in the motion are given b -and >
d'

= , + ~The A operator in front of any quantit. denotes the difference

of the corresponding parameters for the tvo planes, e.g. ap L - IL
d d'"

~~~~~~~~~~~~~~~~~.. .. -.-..-........ ..... ....... ... .... .... .......-...- .-..-.... .... .. '. ...- .-.... ? .. '- "=
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The above equations imply that %khen at least one of, Ap or Aq or A-I is non zero

d

the translational parameters are uniquely determined. Hence in such a case the

rigid motion parameters are determined uniquely from the optical flow- field (see

Appendix 1). Therefore

When two planes, neither of which pass through the origin, move rigidly

together. their motion is uniquely determinable from the opical floti field

generated

4.2. Summary and Discussions

The analysis presented here leads to considerable insight into the 3D motion

interpretation problem. Preious results (e.g. [9, 30]) b Huang and his colleagues

presented sufficr'n conditions for uniqueness of three dimensional motion

interpretation, since. the% vkere concerned %kith specific algorithms. The \xork.

reported here. deals with necessar. conditions for unique interpretation of 3D

motion from the optical flo\% field.

While the surface denoted b. equation (4.13) does mean second order

surfaces containing the nodal point of the camera, it is certainl true that all such

surfaces do not admit ambiguous interpretations of their 3D motions. Multiple

interpretations require, in addition, that the the constraints given b (4.16), (4.26),

(4.27) and (4.28) all be satisfied.

Thus consider, an algorithm, such as PrazdnN's [22], where nonlinear (and

independent) flow constraints at fi%e retinal locations are used to obtain a 3D

" !
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motion interpretation. It is now possible to answer the question as to whether the

solution obtained is the on]\ one possible. Since nok a set of motion parameters

is known, from equation (4.5) the relative depth -- can be obtained at the fi'e

retinal locations. The latter, when substituted into equation (4.13). generates fixe

linear equations in the surface parameters a.b.c.d.c.f.g.h.,. These together vith

the four constraints (4.16), (4.26), (4.27) and (4.28) constitute nine linear

homogeneous equations in the nine surface parameters. Therefore uniqueness of

interpretation is possible if the determinant of the above s\stem is zero. Which in

turn implies, that all the surface parameters must be zero. This makes it

impossible to construct any other interpretation from measurements at the fixe

retinal locations, guaranteeing that the solution obtained is the only one possible.

5. Computational Techniques for obtaining the Rigid lotion Parameters

The main diffiCultN in computing the 3D Rigid Motion parameters is that the

equation constraining the image motion to the 3D motion is nonlinear. Another

complication arises from the high dimensiondlit of the parameter space. If it

were possible to separate the component of the image displacement due to

translation from that due to roation we could have efficient algorithms for the

computation of the 3D motion.

The constraint equations de eloped by Longuet-Higgins and Prazdn [191 are

used b, Bruss and Horn [6] to arrive at the parameter set that minimizes the

square of the errror betveen the measured optical flow and the flow computed

I . _ ... . • •• ..
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from the parameter constraint. In general such a technique Nkill give rise to a

system of non-linear equations from Ahich the parameters must be computed

using some suitable iteration scheme. Longuet-Higgins and Prazdny mention the

possibility of using motion parallax to simplify the computation of the global

motion parameters. Lawton and Rieger [241 uses a similar idea to factor out the

rotational component of the optical flow at depth discontinuities or regions "here

the depth gradient is large. This method is not reliable since it hinges upon the

abilitN to compute floA %ectors reasonably accurately at discontinuities. Since

almost all algorithms, to date, for computing optical flow face problems at regions

where the field is sharply discontinuous.

5.1. Computing Rigid Motion Parameters From Optical Flo%

Attempts at segmenting the parameter space of rigid motion into translational

and rotational components can be termed marginall\ successful, at best. A simple

%a. to estimate the motion parameters from the bilinear floA constraint equation

(2.10) is by means of the hough transform technique [2.51. There are tvko

problems that are immediately apparent, namel., the nonlinearit. of the

constraint, and the large dimension ( e.g. five) of the parameter space. Another

method is to linearize the constraint equation by vriting (2.10) as a linear equation

in eight parameters. Obviousl\ these eight parameters are each functions of the

values of the five actual parameters. This implies that linear least square methods

are not applicable here. since the eight synthetic parameters are not independent

of one another. Finall. it is sho\&n that the information in the %ariation in the

.]
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optical flow field.i.e. the spatio temporal derivatives of the flowk field facilitate the

computation of the motion parameters.

5.2. The Analysis of General Motion

Here the situation is complicated by the fact that we have to determine

several sets of parameters, corresponding to the se'eral bodies in motion. This

problem, is obviously, quite hard and is still open. It has been studied in restricted

domains by Fennema & Thompr on [11] The Hough transform technique proposed

earlier in this paper still vorks. The only difference is that we have to look for

multiple peaks in the parameter space after houghing. These then would. of

course, correspond to the pir.tmeter set of the .arious bodies in motion %kith

respect to the sensor.

Methods inolving thL t.itl derivatives of the optical flo" can again be

applied. There is no kno%n t:c, h Ique for obtaining the optical flov, in all t. pes of

imaging situations. Also thc w,,mputed fio\& field is nois., to sa. the least. This

difficulty is compounded Ahcr-. ve consider the case where se\eral bodies are in

motion with respect to the sensor. Thus obtaining spatial derivatives of the flok

may not be practically possibli. uer large portions of the image frame.

Recently a way of determining motion parameters from 3D flo% has been

suggested [3]. This method iV amenable to adaptation to the general motion case. It

is not clear as to how diffiL1, ii to compute the 3D flow in this case. How e~er.

it can be shown that in c.t, It depth map can be obtained (by some stereo

matching technique), the 31) m.,p can be calculated.
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5.3. Algorithms for motion perception

Computer algorithms for determinig the parameters of rigid motion %kill nov,

be discussed in the light of the %arious ideas put forth in earlier sections. The

treatment will consider both orthographic and perspective projections, as well as

differential and discrete motions. In some of the cases the steps of the algorithms

will be described with a fair amount of detail. In others details %ill be omitted.

particularly when the algorithm in question has a structure which is similar to one

already described. In all of th algorithms the Hough Transform technique (see [2]

for details) is used to compute the desired global parameters from sets of

constraint equations obtained at different image (or retinal) locations. It should be

noted that least square error minimization techniques are also applicable in most

cases.

For the sake of simpl,.i i motion of a single rigid body is considered. Jo

extend the followIng methd- t, the motion of seeral moing bodies. either the

image motion field has t,, ht. ,cemented. or. when hough transform is used.

multiple modes have to be detcctcd in the parameter "%oting" distribution.

Recall that for the case of differential motion, optical fiot is denoted b. (u .

the translation parameter,, ( .. ltcit\) by U..1) or (c= and the

rotational parameters b, (it p

...................................................
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5.4. Differential motion under Orthography

This case has been analyzed b. Hoffman, Sugihara preiousl.% [13.261.

Hoffman's shows that motion parameters are not uniquely determinable from local

analysis of optical flo,. However, this is not the case for global analysis

techniques. It has been previously shown that, for non planar surfaces, global

analysis will give rise to unambiguous results. Sugihara computed structure from

two optical flow frames. Another interesting result was obtained b Aloimonos [1

%here it is shown when absolute depth can be recovered under pure rotation

under orthography when shape is knotn. Under orthograph. the translational

part of the optical flow field is constant and hence the translational parameters arc

not computable. Hence motion parameters here, alwa.s refer to the rotational

%elocit% parameters (afl..y).

The relevant equations are

A - T,(5.1)
A - :

where the A s.mbol denotes that the follovding quantit. is a difference obtained

from measurements made at tvo different retinal locations. The relation betveen

the surface gradients and the optical flow derivatives are:

au g-a (5.2.1)
ax ax

a - a- (5.2.2)

a = a - (5.2.3)

, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . .,V . ............. .- "' ''"'-:.".-'-"-""-""--,-;.::::- ,:; : ;', ,5.S.: ,:::-;-".:-:-".": ". -. ,::-4: . .. , ,- ., -. ; -. , .,,, i a i ' i
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-~a (5.2.4)
a.3  a)

Algorithm I: Moilon paramelers from image motion and 51ructure information.

The simplest instance is when the structure of the moving object is known. In the

discrete case the relative depth function, /( .yk values are enough to compute

the parameters a,,.. uniquely from the linear equation (5.1). For the differential
a/ a/

case structure or shape can be represented b the surface normals (-- --- . If the

surface normals are knon e~er\,Ahere. then \&e can integrate the surface normals

to obtain the depth upto a constant additike term. In other words A/( is

computable. In this case measurement of optical at three non collinear points is

enough to compute the rotational parameters. Howener, if the surface normals are

onlk known at sparse locations, but the optical flo\ field is locally known at these

locations then vAe can use equation (5.2) for computing the rotation parameters. In

this case \he are relking on the fact that the first deri\aties of the flow% can be

reliabl. computed. This is possible when, in the neighbourhood of' the points of

interest, the optical flow %alues ha~e been measured at enough locations so as to

alloy, analytic reconstruction of the optical floA function. Finally note that. if the

motion parameters are known then the structure can be obtained from the image

motion for both the discrete and the differential cases. The steps in the algorithm

are:

1. Set up a three dimensional accumulator arra. for the rotation parameters:

h Ia.,.y]:=O.

• 1.
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2. For exery point in the image Ahere optical flow and surface normals are

known, select the constraint equation (5.1) if the estimated measurement error

in the surface normal function is less than that estimated for the optical flov,

function: otherwise select equation (5.2).

For all values of (a.?.y):

If (a./3y) satisfies the constraint equation selected

h [a,/3.yj:= h [a.f3.yl 1 I

3. Obtain the maximum value in the accumulator arra.. The corresponding

indices are the desired %alues for the rotation parameters.

Algorithm II: Votion parameters and structurefrom image motion. When the

structure is not known then, considering the differential case and eliminating

(--.-- ) from equations (5.2)

, ( 3.1)

- , (5.3.2)
TV-] a a.1

Similarly, eliminating AZ from equation (5.1):

u - YX + JAY.) +- = 0 (5.4)

where =

It is easy to obtain quadratic equations in either y or - from the equations (5.3).

This means that in general, at e~erN image location, from the measurement of the

spatial derivatives of the optical floA at most tvko sets of %alues of the parameters

"" "-' .. " , ' , . , ,*../ . . .. ,, -... ,, ,, ,- , - .. , , .•. - ,.-: ' - , S; i . ,
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may be obtained. However, if some global assimilation technique, like the

hough transform ( see [2] ) is used. then. as shown pre'iousN, if the mo~ing

surface is non planar, only one set of parameters %ill be globalb consistent. An

exactly similar method, but using differences of image displacements, can be

devised for the discrete case starting from equation (5.4).

5.5. Differential motion under Perspective

The relation between the optical flo%& and the motion parameters is gixen b. the

equation:

1- - fl - ' - 1)- y
1 / -(5.5)-

1" - 1t'

From the abo~e Ae obtain. b\ eliminating/

1 - a x* % 1): ! ) - -/' - . (5.6)

*~ -a(w-1 -- k3 y

Observe from the right hand side of the aboe equation, that its Nalue is

unchanged Ahen the translational parameters are multiplied b some constant.

Hence vwe can determine the translational parameters on1N upto a scale factor. If

we assume that w # 0 then the previous equation can be written as:

u + axi -p(x + 1 , . A 0 .
- A

v + a(}2 + 1)-#x t yx )(.7

If R = 0 then (5.6) reduces to:

_ aV.1 - +__ _ 1+ -_._ _ (5.8)
1 a(. 1 flil * t VA

Equations (5.6), (5.7) and (5.8) are bilinear in the translation and the rotation
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parameters. This nonlinearit% makes it difficult to combine constraints from

different image locations to compute the motion parameters. To summarize, the

problems with computation of motion parameters are:

1. The constraint equations are nonlinear.
,J.

2. The parameter space is of high (e.g. fi~e) dimensionality.

Algorithm III: Hougi: tratsform in 5D parameter space. This t.pe of

algorithm can be easil. realicd h simple parallel neuronal hardvAare (see [10]).

The parameters that are to hc determined are the polar angles (or direction

cosines) representing the dirc,tions of translation and rotation, and the magnitude

of the rotation %ector. Thi.. rcpresentation for the rigid motion parameters is

conenient since the paran>. u ,LJhspaces representing directions in space become

eas. to quantize b5 mean, ,ui geodesic tessalation of the gaussian sphere. The

steps in the algorithm are

1. Select a coarseness scaic t.,r the parameter subspaces. For instance, ho" man\

distinct directions in sp.,,. the range of values estimated for the rotation

magnitude and the sampling interval in this range. Initialize the parameter

"ufits belonging to the hough transform space (this is the five dimensional

accumulator array ,%bcrt' Tb, "%otes" for even- parameter vector is tallied).

2. For all retinal locationm -,k hcrc optical flow has been measured do step 3:

3. For all possible paranic,,cr alues (i.e. values of the parameter quintuple)

admitted in step 1. do-
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(i) If the direction of the translational %elocit. is not parallel to the

image plane select equation (5.7) else select equation (5.8).

(ii) If the parameter %alues satisfy the chosen constraint equationIote for the corresponding parameter vector.

4. Find the parameter quintuple that has received the maximum number of

votes.

5. Restrict the parameter spLice to a neighbourhood of the selected parameter

quintuple. Repeat the .tcp , from 2 to 4 after choosing a finer parameter space

quantization.

6. If the error due to the pjritmeter quanization is acceptable then stop and

return the parameter ,', . ,mputied. Otherwise repeat step 5.

Some Remarks:

(i) The space and time rCkLt!rdJ b\ the algorithm is reduced b% perlodically

examining the pararneicr .cCimulator units and purging those that ha'e

collected onl. a fek "\.,t-<' compared to the top contenders. This is

possible, since it is asSurned that the noise in the optical flok data is

uniforml) distributed in retinal space.

. (ii) The confidence of the wi,,,ip,)Utcd parameter quintuple is the ratio of the %otes

it received to the ma\ImurM otes possible.

(iii) If in step 4 instead of a clztr V inner. a number of contenders are found then

step 5 might ha~e to h. rcpc.ted for each of these for finer resolutions. Then

i)',
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the %%inner is the parameter quintuple that comes thru with the highest

confidence.

(iv) If it is estimated that p% of the optical flow values is corrupted b noise, then

the acceptable confidence of the result is (100- p)% with a tolerance of, sa\

Algorithm 1, performs \,ell Ahen the quantization of the parameter space is

not "too coarse". This is mainly due to the nonlinearit of the constraint equation

used. This problem can be alleviated b\ linearizing the constraint equation.

Although in this case the price vke pa. is that the dimensionalit\ of the parameter

space increases. In the following discussion it is assumed that the not all the

translational \elocit\ components are zero. This is a valid assumption since it has

been shovn in a pre ious section that the motion parameters for pure rotational

motion are uniquel. detectable.

From equation (5.6) \ke ha~e:

(u - -xiM it'- u1 - x(al YLt - .(/f l .i )- .T1ai -X ( t (5.9)
+ x2(pl, t yW')± .2(aL' + yWj')

Now we state and prove a lemma regarding the feasibilit. of computing the

motion parameters using the constraint given above.

Lea I: The optical flow components can be expressed as an implicit polyntomtial

equation f(u.t.x.. :p,.i = I.. . 8) = 0 involving the image coordinates (x.j) and eight

linearly Independent parameters p, unless the depth function is a rational

function where P1 and Q, are polynomials of first and second order-sfunctionQl. 20: i
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respectively.

Proof: Equation (5.9) is homogeneous in the motion parameters. Assume that

the parameter W* * 0 (The case where w = 0 but either U or V * 0 can be worked

out in an analogous manner). Dividing the above equation b\ W Nields:

(t -U ) P1I - pP 4 -P 5. + P6X + P- -j - =0 (5.10)

where

P : I -X (5 .11a )

O 3o(5.1 lI )

.03 = a 0 AI n (5.11c)

P = a -r. (5.11d)

= , Y (5.11e)

r =  - # .:,(5.1103

P = y - a.A (5.11g)

r, = 1 3  -a (5.1Ih!

The parameters p,*s are linearly dependent iff

k:t - ku k, - Ak4. ko .- k,.k - - 1 (5.12)

where the k.js are constants not all of Ahich are zero. Let the optical flow be due

to a rigid surface Z mo'ing with %elocity (F. F, In this case:

S-xW . (x;+ 10-7
= L f- ±f( 2 1-(5.13)

50% -~ 2 + 1) + jAx + TX

Assume that the parameters p. are linearly dependent. This implies that in

equation (5.12) there must be at least one k. that is not equal to zero. How'e~er, if

both k, and k, are zero, then. all the k.'s must be zero. Hence. if the parameters

.. .. , . . .. . . . . . . .. . . - .. . .. . . . --. , .. -. -. - , " .. . . -. . .. - " , -. " , " - . .. ; . ". -. " . ." . .i . ' . ..-.2 , i . -
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p. are linearl> dependent, then at least one of k, and k, must be nonzero.

Substituting for u and ' in equation (5.12) from equation (5.13) Ae obujin:

k, xl a-XvY o11--
*. k1 ( / - a.n, i- f 1)- ., )- A,( ; - , ) i

+ k - .4x - An + Abk + k - k, = 0

Since both A,, and A, are not zero, %k e oh oin 7 as a rational function of the form

P J(x 11Q2(x.-)" This pro~es the lemma.

Lem a II: The five parameler of rigid motion are be unique/I determined by ti'h

parameters p..

Algorithm IV: Equation (5.10) is the basis of a hough transform scheme to

recover the motion parameters. The advantage of this scheme is that the constraint

equation is linear in the "s~nthetic" parameters -. Once these parameters are

computed the fi~e rigid motion parameters are uniquel. determined.

Algorithm V: Differentiating equation (5.10) "ith respect to the retinal space

coordinates we ha~e two independent equations:

(yu - - XH,) p-t' - P2U, - P I+ 2p6X - Ps = 0 (5.14)

(U + YU, - xv-) + P11, - P2U, - p5 + 2p7 - p8x = 0 (5.15)

The paramterers in equations (5.14) and (5.15) are linearly independent when the

depth function is not of the form given in lemma I. Selecting five suitable points

we obtain two alternative sets of simultaneous equations in five unknowns. These

can then be solked for the fi'e motion parameters. Note. ho\,%e~er, that \&hen

p; 0= 0 then then equation (5.14) alone cannot be used for the computation.

o° o ,1 ," '. %°. o'%°,'* '°% °. , ,,, ) % "o % ' °= ..' '.',, '°''°)' '-' " '-" ." °" -' , ,' -, ° , " ' ° "-
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This is because the parameters (P1.P2.P4,P6,P8) cannot then be used to solke for the

five motion parameters. A similar restriction holds for equation (5.15) when

P2== YO 0.

Algorithm VI: It has been shown that when two optical flo' fields obtained at

two different time instants is a~ailable then the motion parameters are uniquely

determined from measurements at three non collinear points on the retina. The

assumption here is that the motion parameters are stable during the measurement

period. This can be used as a basis for the motion estimation algorithm.

Algorithm VII: Mlotion parameters from structure and optical flow.

When the structure of the moing surface is known. its motion is

unambiguous. This method also reduces the dimensionalit. of the parameter

space b. isolating the rotational parameters. T~o alternative constraint equations

can be used here. In the first form spatial deri\aties of the optical flo k function

are needed. This implies local anal\tic reconstruction of the flok function. In the

alternative form of the constraint depth ratios are needed. implying reliable ( and

dense) measurement of surface normals.

From eq. (5.5) the expressions for the spatial derivatives of the optical flow %u.)

are obtained as:

*I'It' a,'
U,( = - A (- 'i-- - a. 2b (5.16.1)

- to - ka - (5.16.2)
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2 ax

,, -= -0 0 - 4 al )--"-'-J 2B i + f 5.1 .3
-' 1 )-+Yz2 a) 2 - (5.16.4)

H' and(,K 1!

Substituting (xo- x)--Z and -c in the above equations from equation (5.5)

we get:

u, - .= - u - a.. -l 1(x?+ 1)- N.)4

- - - .. - a.1 +j3 (5.17.1)

U, - - a (.-# - 1)- Y.1)P- a k - (5.17.2)

,, =(- i- - - f.v. - y. )4 ' y. + " (5.17.3)

al al
where 4=-7--andp- /

Thus at e'er\ image locationt i .., a set of three linear independent equations

in~olking the rotation parArnctkrs can be obtained. The functions 4x... and

p(x..) are computable from thu surface orientation %alues -L . and I see

Appendix I1).

SWhen it is not possibL. to, neasure deriaties of the optical flov, but the

ratio of depths at an t~o imagc locations can be estimated, an alternative linear

. constraint equation can bc dcri\ed involing on the rotation parameters.

, Consider two image points h : and (x2 -.Y2) with depths :1 and :2 respectiel\.

The optical flow values at these points are (uj,v1) and (ui,). The motion

parameters are '.v. .a.p3 - Using equation (5.5) %e ha~e the follow&ing

equations
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U 1:.- U-,: = (x, X1)K'+: -+ a _k +/ V V I+ 1)- Y ) 7-:( - a . /3(. + .)- ,)

11:1 - v2: 2 = ( 2 - 1) + ::( - a l. . ) xl v + yxI) - :2( - aU 1) + x t yx)

Eliminating W from the abo% e equations we have

i 12 a 120 + rI2y - s12 = 0 (5.18)

where

'- -- X' + -- x2 1 '2 - - + x')

+ X I - X + .1- 2)

S" Ui( - U 4.(~ 1 ± + I2 ±)2.V

; m12~= ') :~t - .I - --
+ 

-- x- -L 2'U - .)- . I- )1- .

i

If the surface normal %aluI L:rc ailable ever where in a region enclosing to

image points, then the dt riti . -. (corresponding to those locations) can be

estimated (of course, mat:~l. it is possible to compute this ratio if the

surface normal %alues arc kn ,, n along a path from the one image location to the

other). Consequently, each pi of image points gies rise to a linear constraint in

the rotation parameters. Thus b\ a suitable choice of three pairs of image points

we can uniquely solve for the. rotation parameters and subsequently the translation

parameters (-L-.--) (see Appcndi\ 1).

The novel feature of th, aboe algorithm is that it can combine shape and

motion information under tk,, ditlerrent conditions:

,'.'.,',' ' '.'€:", " "€ .... ', .',".... ".€;."."-,. .,'."- "'"..", ":~." -.- .. -" "."*-, -,,,--
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(1) In the first case the optical flow field has been measured suffficientl "densely

to enable local reconstruction of the flow field. This enables the first order

spatial derivatives of the flow field to be estimated. Then at all retinal points

where the surface normals are known, we can locally solve for the rotation

parameters by means of a set of three linear constraint equations.

(2) Alternatively, if the flow measurements are not dense, but the shape

measurements allow reconstruction of the depth function (upto a constant

scale factor), then again locally we obtain linear constraints in the rotation

parameters (e.g. equation (5.18)).

- This means that in any image neighbourhood, full reconstruction of either shape

or 2D motion, helps to recover both structure and motion. The schematic diagram

of the algorithm is given in figure IV.

Remarks:

(i) Note the similarity between algonthms I and VII. In both. the local anl.tic

reconstructability of either the optical flox function or the surface normal

function, determines the selection of the constraint equation that is to be

used.

(ii) From equations (5.17), 4' and p can be eliminated to obtain a cubic

polynomial equation in the three rotation parameters. Thus if the optical flok

and its first spatial derivatives are measured we can use the cubic constraint to

estimate the rotation parameters b the hough transform technique. So,

• 4 .- . - ,, • ., "." ." •."." ' ".- .", . * . • *,-"-'-. .". . '""""'''' . . .-'' .- ' S.'- . -' ' " *" % . ' . " )2



although the nonlinearit remains, the dimension of the parameter space is

reduced, which reduces the size of the search space.

5.6. Discrete motion under orthography

This case is of interest to researchers in the field of Visual Cognitive

Modeling [31]. The reason for this, is that psychological experiments b UlIman

(32] to explain human capabilities in the perception of structure from motion.

agree more % ith the orthographic projection (actuall% an extension of orthograph\.

termed polar parallel projection (32]) than with the perspecti% e projection models.

For the case of biological motion a plethora of proposals have been put

forward by sexeral researchers in the area, and man. potentiall\ powerful

algorithms ha~e been proposed [14] [15].. [4] [35],. The research reported here.

howe~er does not co'er this case of motion analysis.

5.7. Discrete motion under Perspectihe

This is the most in'ol~ed among all the motion types. To simplif\ the

analysis, Ullman [311 assumed the rotation axis to be along the z axis. The

constraint he obtained was an equation of the fourth degree in the sine of the

rotation angle. Another simplification is due to Fang and Huang, whose "small

rotation" assumption makes their analysis similar to the differential case. The

most extensive work done in this particular area is due to Tsai and Huang [30].

Their work is innovative and based on elegant mathematical formalisms. Howe'er

a general unambiguous solution to the motion perception problem in case of

-S - .-- .5 .5

-:5
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discrete perspective is still unavailable.

6. Conclusion

The problem of interpretation of a moving retinal image has been studied, for

both "short range" and "long range" motion. Our findings, indicate that motion

information available in optical flow ( differential case) is less than that in the

discrete displacements field (long range motion).

We saw that three temporally contiguous image frames contain enough

information to uniquel recover 3-D mc ion and structure under perspectie

projection. Since the optical flot field (two temporall. proximal frames) is, in

general, ambiguous. two frames can recover structure "hen the moing surface

satisfies the conditions of Theorem I.

We proved that structure and 3-D motion parameters are equivalent - the one

constrains the other uniquely - and both problems ( determination of structure and

3-D motion parameters from retinal displacements) are better tackled this ka.\.

We believe that our Aork forms an important extension to Ullman's and Huang's

theories, and, in conjunction with interpretation schemes for recovering structure

in the case of biological motion (using the planarity assumption), constitutes a

significant advance towards the solution of the problem of Motion Perception.
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APPENDIX I

Uniqueness of Motion Parameters computed from Optical
flow under Perspective Projection

Consider a point P in space whose coordinates are (A. Y.Z) with respect to a

fixed inertial frame XYZ. The image of this point is p = (x.y) whose coordinates

are given with respect to a xy frame located on the image plane. The relation

between the Aorld point P and the image point p is gi'en by

FA' F)( t)= (-7-." (i)
z* z

%vhere [- is the focal length of the imaging system. This is assumed to be unit\ in

the following analysis.

\ow if a rigid surface moses %ith a translational velocity = 1.i.Jt) and a

*: rotational %elocit. U= , 3 ,). Then. from kinematics. the three dimensional

%elocit. of an\ point on the surface can be written as

"s d.\ d) d/
" ~t Jt"d ) i: * x ( .A .) .J ) 0 0i

whee isth tie ~anbl d 11 deoeifco poutwhere "t" is the time ariable and Yx denotes vector product.

In differential motion case the image motion or optical flo, is denoted b\

(.) = dL d-d "). Differentiating equation (1) and substituting from equation (2) \Xe
di di

ha'e the following relations

u - / -a. + ,0 . + 1)- yt (1i1.a)

1%i

,., ' ,.,,, ..... .,,2, '.,':': ". "- ."-L .,% .... .- ,..._.55 :-"'- .. '5.' :.',.'.,'-'-'-,'% ", -. : '.'v:, '. " -'..'.-',-. .. . -,.
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- II
z___ -

Of1-./x ii.b)

Eliminating the unkno% n depth viriable fromn the abo e ke get

aL -a - I-+ I' 0%

I -, at + fll.: 1 Y 7X V '- )-ji

The above equation describc the constraint imposed b. the measured value of

optical flow (u,,. at an image point (x.)), on the six motion parameters

Proposition I. Giver th rotation parameters the translation parameters can

be uniquely determined from th ,ptical flow field

Proof: First we define the funtiion ,. \ where.

a( p 0 k.- fkt - .I

Now we analse the follokirw, ca,,Cs:

Case 1: IftI = constant then from equation (i\) we hae it o. In this case "e can

only obtain the ratio T fro, the. optical flo field.

Case 2. If constant then t.'r, are two image points \here [ is different. In

which case we can solve the resultant set of tvo linear equations, obtained from

(iv), to get x0 = - and j-,

Proposition II GiA(n t translation parameters the rotation parameters can

be uniquely determined from optica,'fio i.

Proof: Here the values of and . are knonn. The expression for optical flo

is.
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Uh -)9)-aX.1+3x 2 +1)-

= . -4- a(y 2 + )+ # x + -x

Where (a,.) are the rotation parameters and r = is the reciprocal of the

scaled depth function. If possible let there be another surface moving with the

same translation but different rotation parameters, but generating the same otical

flow. Thus we have,

u= c - A)i' - a' 1) '(x 2 t )-

S )'- a'( +'x) + T' x

Now from the aboxe sets of equations by subtracting appropriately we get,

0 h - - ')- AaxI + A#(x-s + I) - A-yi (%.a)

0 (V I IH (T )- AaU- 1-s+ A/3xj - A-yx (% b)

where Aa = a - a', A3 = i3 - f lr-d A- = y - y'. Eliminating ( - cp') from the abo'%e

we ha~e.

(Aav,' A/fi Aa) (A-yo-0 A#)+ (0- .. - Aa)+- i(A-0 A3) (A/3y± AY)

+ i cAa -- A -- Aaj 0) = 0 i

Since the above equation is %alid e'eryvhere in the image,

Aaxo+A/3 = AaYo- +A/xo =0
A*Xo + Aa = 0+ A o = 0

A-y0 + Af = Aaxo + A = 0

From the above we obtain.

Aa= ( A# =O Ay=O

This means that a = a', ,# = 3 and y =y' and therefore, the rotation parameters are

%I
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uniquely determined when the translation parameters are known.

Proposition III If the structure of a Rigidly moving surface is known, then the

parameters describing its motion is uniquely determined

Proof: Knowing structure means that we have the depth values available upto

some scale factor. Thus in equation (iii) the value 'Z* is no longer an unknown.

The unknown scale factor is lumped with the translation parameters. No"

proceeding in a manner analogous to the previous proof we ha~e,

(At' - xAIi)= Aax.1 - AMx2t 1)-- AY ('ii.a)

I(AV -> AIV) =AaO + )-A) - AYx (ii.b)7

Eliminating I we ha~e.
7

+ A2(AA + A#-%V)- (AyA' AaAI - x(AaA[ -+- AA)

Since the above equation must be valid all over the image plane. the follovino

relations hold:

AaAU-" AfA = 0 AaA I" -Ay ,A = 0 Aflt' - A-yAI = 0

AaAI" + AAA U = 0 ARIAI + AYA 1 = 0 AaA U + A-yAW1 = 0

From eqn. (vii) and the above relations %ke have.

AL' = AV = AW Aa = A= A-Y= 0

Therefore, once the structure is known for a rigidly moving surface, its translation

( upto a scale factor ) and its rotation is determined uniquely from the optical flo

generated by the motion.
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APPENDIX II

Representations of surface orientation and their properties

In computer vision, the terms surface orientation map and shape are

sometimes used interchangably. The following is an attempt to explain the basis

of this usage. The cases of Perspective as well as Orthographic projections are

considered. Shape information obtainable from a surface orientation map in

image coordinates is also explored.

Representations for surface orientation

A direction in three space is specified by two independent parameters.

A. (Latitude. Longitude): The coordinates are denoted b% 0O.q. Ahere

0<8<n 0 < 4<n.

B. Coordinates on the gaussian (or unit radius) sphere. If the coordinates are

(1.,,1.2) then ;+ m2 - n = 1.

C. (slant , tilt): Slant is the tangent of ther latitude angle (or tanO ) while tilt is

the longitude angle. The symbolic notation is (osr).

D. (Gradient): If the depth is expressed in the form Z = fi(Y), then it is the

level surface F(X. Y.Z) = 0, where

F(XY.Z) =f(X, Y)- 7
T g i o i - ) gives the orientation of the surface (inThe gradient of I-(.)., i.e. ( - . 1) g--in

the direction of increasing /I. ). The gradient notation is %4ritten as (.,).



68

where (p.q) af . -f

Relationship among the surface normal representations:

V/p2 + q'= tano = a

-- =tanp = tanT
P

(l.m.n) = g = /p2  -+ 1
gg g

Shape under Perspective Projection

In the case of perspective projection the relation between a world point (A.Y.Z)

and its projection (..j) in the image plane is gi'en b,

(x.v)-- Z " I-V (i)

where F is the focal length of the imaging system.

The surface is represented in the world frame by the functional form /( .)). It is

assumed that the surface can also be represented (at least Iocall. ) b\ the function

:(..v) in image coordinates. Here the relation between the surface normals
az az

E. ) corresponding to an image point (.) and the partial derivatives of

z(x.y) are saught.

A. Relationship between surface gradients in image and world coordinate& Now a

small displacement (6x.Sy) in the image plane corresponds to a displacement

(sx.Y.8Z) in the world frame, along the surface Z(X.)'). From equation (i) we

get the relation

- -., ~ ~ ~ ~~ ~ ~~~~~~~~~~-.. .. *... -.. ' .%"." ." .",% " ,.- .. "''--" " . "•. " . -* " "= '" Av'q
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(- + +, (ii.a)
F

6F -0'(i.b)

Furthermore the following identity holds

Z(X + SX, . + 6 Y) = z(x + ax . + 6)') (iii)
Using the Taylor series expansion of the above

Z(X + 8X Y + 8Y)= Z(K.Y)+ S- -- + S aZ + (higher order lerms) (iv.a)
a z a_ )

:(x + Sx . + SY)= 7(xj)+ 6x- + 6Y- + (higher order terms) (i .b)* ax -a.1

Neglecting the higher order terms in equation (i%) and substituting for 6K and 6Y

from equation (ii) in equation (i%.a)

Z A J X Y SY)-Z /(A'. Y)=6Z 1 z / = ) al 1
F ax F -

or

87Wr- xs,- az ai (,)
ax a Y 6 ax av

Recall now that

Z(K + 8A'. Y + 6 Y.- (A. Y) (x + .k .. i SJ)- z(x,)

Therefore combining equations (iii), (i') and (v)

z az z az= a +. a:-

F a az 1 + 8, az az aY ax a. (vi)
F-x-j a x a-

Since ax and 8) are independent of each other we have

7a7
a .- =Uz- L (vii.a)a.x a7 aj: x'-T, - T -
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azxa: = a)
= a;' az 6ii.b)

F -T - -- T

B. What Shape means Consider the shape information available from the field of

surface normals indexed b% the image coordinates. Making the appropriate

substitutions from equations (.i i) in equation (iv.b) we have:

az az
-( +6 ~- .+ 6 1  a )

Z(x.j) a - a z }"

ax a1. a. YT
Thus the following statement can be made:

Under perspective projection, when the field of surface normals is available.

indexed by image coordinaie. then the image centered depth function can be

computed upto a dilation ftiacor.

Lenma I. If the surface 7 i, represented b% an algebraic function /I.) and

furthermore if the function :, denotes the same surface in terms of the image

coordinates y then the tilt tinction -.lx..v is gi'en b.

az a:
aX ax
al ~

Proof: Since Z(X.Y) is an alvebraic function, b definition it can be expressed

implicitly by the polynomial equation F(X. Y.Z) = 0. We can write F(.) as

I,w

,r . C,,k X, ,4 = 0 Wiii)
LO

where the ck's are real constnts and L. M, N are finite positive integers. B. using

4P

4

'4

'4. ** ?k+ - . .. *. -. . * .J* 4.4 . ... *t -m"
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the implicit function theorem v e get

a Fz F,
az -
ax Fz

where Fx.Fy.Fz denote the partial derivative of F(.) with respect to x. Y and 7.

Therefore we have from equation (viii):

I V4 NI I I jc,, A' I )--lz k

T 0 =Ik=O

":~ I )- ., (ik

.z1 i=Ok=O

Observe now that we can obtain an implicit representation for the depth in terms

of the image coordinatesc%.. ) from equation (viii) b substituting for X and Y in

accordance with x and i (where the focal length is assumed to be 1).

Thus ,we obtain the represcnt,tion ,,(.%.z) = 0 or

Again by the implicit function theorem we have

az (_II I A

* - - - - ,k XL.Vat 0. ("1 ;-

ax 1.=lJ Ok = "

or

I V Na: IV I jX j k X'P' - Z  ' -
" at .=Oy=lk=Oa: / V N (1'ji)k-a k T. I I iCjkX '

,= I =Ok =0

Consider nov., equation (ix) and substitute x = xz and =:
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L .A! .\

8- =(xii)

,=1J=Ok=O

But the right hand sides of the equations (xi) and (xii) are identical. This means,

az az
a) al

az az
T ax

which concludes the proof of the lemma.

Shape under Orthographic Projection:

Under orthography the image coordinates of a point are equal to the

corresponding three dimensional coordinates. or

( .) I= ..Y)

Thus

ra.x/ax a/xax

Nov observe from equation (i.a) that Ahen the surface normals are kno'An at an

image point (x.,.). then the depth difference betwkeen this point and neighbouring

image points are kno,%n:

Z(A' + 6A' .Y + BY) - Z(X.)') = BA*z + 6'La (higher order terms)

Thus we can state the following:

When a map of surface normals is available under orthography, the depth function

can be computed upto a constant additive term.

] ,y***.,, *-.**. .. . . . . . . . ..- .*.



x ----- PRP = a

PR

0. Q

0 Z PQand R are three points on

the rigid body. XYZ is the
reference frame. The body
centered frame is at R. The
motion of R is given by the

Ytranslational velocity:
T = ( U , V , W )
The rotational velocity:

The representation chosen 0 = ( a , B , y )
assumes the body origin to The velocity of P is
coincide with the origin of the ( T + Q x )
reference frame. Thus R is a
logical extension of the body.

Representation of Rigid Motion

Figure I.

d
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The Perspective Projection Model

x

00 Z

'.

Y The image Plane

The image p = (x, y) of the world point P = (XY,Z) is
projected by the ray OP. The focal length of the system is
F. The equation of the image plane is:

Z =F
The relation between image and world coordinates is:

x = FXZ and y = FY1

Figure Ila.

............................................... .•%.....-..,



i The Orthographic Projection Model

X

P

p
qp - 10

0 0' z

Y The image Plane

The image p = (x, y) of the world point P = (X,Y,Z) is
projected by a ray parallel to the line of sight (Z axis)
The relations are

x = X and y = Y

Note that all depth information is lost

Figure II b.



Direction of translation

The structure of the translational flow field

rigure Ill



select window in image
wt

surface normals Which optical flow

Use pairs of optical Use spatial derivatives
flow values and the of the flow and surface
reconstructed depth normals to solve for the
values (upto a scale rotational parameters
factor) to derive linear from local linear
constraints on the constraints
rotational parameters

Coooe-ative algorithm for the
comrpotation of rigid motion
parameters from optical flow and
saoE nformation. (Algorithm Vii)

Figure IV
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