
SECURITY CLASSIICATION O THIS PAGE (ORION NMIe -. .... .

REPORT DOCUMENTATOI4 PAGE .............. PO
€ 6R E P O R T IU B GOV' ACCESSION NO, I ReCIPIONTS CATALOG HUNGE.

TITLE Wd &"toe) S. Type or REPORT a Paimon COVERE€ ,~. TITLE (usE &.e S T PE O n~geePJo € v n~ r

0 Deterministic Methods of Seismic Source 9/30/83 - 10/1/84

Identification S. PERPORMING ORo. REPORT NUMSER

r% T. AUTHOR(s) 11. CONTRACT OR GRANT NUMSER(&)

Charles B. Archambeau F49620-83-C-0009

9 PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK
CRAREA A WORN UNIT NUMBERSCIRES I

University of Colorado
Boulder, CO 80309 ll -

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency November 1984
1400 Wilson Blvd. It. PUUER OfPAGES

Arlington, VA 22209 )s&/-

14. MONITORING AGENCY NAME 6 AOORESS(II dlflermt from Controllng Office) It. SECURIV CI1ASS. (*I de repoo)

Air Force Office of Scientific Research
Boiling Air Force Base unclassified
Washington, DC 20332 ISa. EC"S$IFICATION/DOWNGRADING

SCH EDULE

IS. DISTRIBUTION STATEMENT (of tale Report)

Vieftibut~m Unlimited - .-

17. DISTRIBUTION STATEMENT (of the ab strc t en tred In Block 20, If different from Report) DTIC
& ELECTE

IS. SUPPLEMENTARY NOTES 

:

D
19. KEY WORDS (Continue on reverese ide f neceewpr, and Identily by block nambor)

Discrimination, signal analysis, elastodynamics, wave propagation

) 20. ABSTRACT (Continue on reverse side ii neceseary md identify by block number)

(over)
LJ

- ,-SECURITY CLASSIIlCATION OF THIS PAGt (Wlhen Data Entered)

aM
C.1 t i '"

FOR ~~ C1 ,A . ~.



~i i

Research on Deterministic Methods of Seismic Source Identification

Summary of Semi-Annual Technical Report for
October 1, 1982 - Sept. 30, 1984

The objectives of the research conducted during the 2 year contract
were to: (1 Develop and test methods of discrimination in the regional
and teleseismic distance range using physical source parameter discriminants,
-(2)' Pursue theoretical and observational studies of seismic sources; (3" TV~
develop methods of theoretical seismogram synthesis in the near, regional and
teleseismic distance ranges for structure and source definition; (4 Ze-
develop and apply advanced signal processing/analysis methods for discrimi-
nation and explosion yields estimation studies and; (5Y teo pursue near field
studies of explosions and earthquakes for detailed source definition.

In this report we describe specific research results pertaining to:
,(1) The theoretical basis for automatic seismic signal detection and analysis,
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predictions of both body and surface waves in the frequency range from
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Research on Deterministic Methods of Seismic Source Identification

Summary of Semi-Annual Technical Report for
October 1, 1982 - Sept. 30, 1984

The objectives of the research conducted during the 2 year contract were to: (1) Develop

and test methods of discrimination in the regional and teleseismic distance range using physical

source parameter discriminants, (2) Pursue theoretical and observational studies of seismic

sources; (3) To develop methods of theoretical seismogram synthesis in the near, regional and

teleseismic distance ranges for structure and source definition; (4) To develop and apply

advanced signal processing/analysis methods for discrimination and explosion yield estimation

studies and; (5) to pursue near field studies of explosions and earthquakes for detailed source

definition.

In this report we describe specific research results pertaining to: (1) The theoretical basis

for automatic seismic signal detection and analysis, and (2) Analytical methods for the represen-

tation of seismic radiation fields in uniformly layered elastic/anelastic media. This modal

method provides predictions of both body and surface waves in the frequency range from 0 to

about 15 HZ at near and regional distances from seismic sources. This latter exposition is

intended to be comprehensive and integrates new and old results and methods. The modal

representation method for seismic radiation fields is being employed to describe radiation fields

for the prediction of earthquake and explosion radiation fields and has been used to evaluate a

variety of detection and discrimination methods.

Previous annual and semi-annual reports have described applications of the QHD signal

analysis methods and the seismic synthesis methods to source discrimination problems. In par-

ticular, these earlier reports have described research results from the observational studies

related to discrimination, wherein computer programs employing the theoretical results

described here are used to analyze the data and provide the basis of interpretation of the data

for regional discrimination and yield estimation.



Part I - Methods of Seismic Signal Detection

and Analysis Based on Quasi-Harmonic

Decomposition (QHD)
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1. INTRODUCTION

Any time series can, of course, be decomposed into Fourier or harmonic

components, and in this case the outcome is that we determine the amplitude

and relative phase of each harmonic component occuring within the time win-

dow chosen for such a decomposition. We do not, however, know anything about

uAen the energy, associated with a particular frequency. may be arriving within

this time window. That is. we have no time resolution within the window. If we

attempt to sub-divide the time window and perform a Fourier analysis of these

subsets of the time series in order to obtain a higher degree of time resolution

then, of course, truncation effects begin to severely contaminate the amplitude

spectral estimates.

It is. however. well known that information about the time of energy arrival

(i.e.. the group time) can be retained if one is prepared to accept a certain

amount of uncertainty in the frequency value to be associated with the spectral

amplitude (or energy magnitude) and phase estimate (e.g., HeJ.ttrom. 1960). In

particular, simple narrow band filtering of the time series, x(t). at a set of filter

center frequencies fk. can be used to generate an associated set of quasi-

harmonic time series, y (t ;jf), having properties such that the spectral ampli-

tudes and phases of pulses making up the original time series can be estimated,

along with the iime at which each pulse spectral component has arrived within

the time window. That is, the spectral character and arrival time of each fre-

quency component of the individual "signal" or "noise" pulses, making up the

original time series. may be estimated.

The price to be paid for this simultaneous estimate of both frequency con-

tent and (energy) arrival time is an uncertainty in the precise time and fre-

quency to be assigned to the spectral components of each pulse or transient

making up the original time series. Thus if Af is the bandwidth of one

* ;A
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particular narrow band filter at its half power point, then the uncertainty in

the estimate of the energy arrival time is related to Af by an "uncertainty prin-

ciple" in the f arm

where At is the uncertainty (variance) in the estimate of the energy or group

arrival time and AW = 21rAf. (e.g. If a Gaussian narrow band filter is employed.

then the uncertainty product is a minimum, so that ic At = 1/ 2. For all

other filters ZZ At > 1/ 2.)

In the context of this "quasi-harmonic decomposition" of the time series by

narrow band filtering, we may think of Fourier decomposition as the limiting

case, in which the narrow band filters that are convolved with the time series

have zero bandwidth. Thus Fourier decomposition corresponds to the case

Ae.i = 0 in (1), and in this limiting case. At becomes unbounded. This simply

means that we obtain precise frequency information and no information about

energy arrival time, within the time window chosen for analysis.

The possibility of time resolution as well as frequency resolution in analyz-

ing a time series, however, allows "instantaneous" measures of the spectral

character of the series, that is measurements of time varying phase and spec-

tral amplitude as well as measurements of derived quantities such as the

"instantaneous frequency", corresponding to the time derivative of the time

varying phase. These quantities have been discussed extensively in the itera-

ture (e.g. Helstrom. 1960) and are meaningful when defined for quasi-harmonic

time series. Thus, our objective here is to show how decomposition of a broad-

band time series into a set of quasi-harmonic time series, by Gaussian narrow

See Denny and Chin (1976). for example. for a more precise definition of the quantities

and At appearing in (1).
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band filtering. can be optimally accomplished so as to allow appropriately accu-

rate measurements of time varying phase, amplitude and frequency for each

quasi-harmonic component to be made. We will then show how this derived set

of time dependent variables may be used to detect "desired signals". with

prescribed physical properties, in the presence of "undesired signals" or

"noise". Specifically we will show how a variety of "signal sensitive" filters can be

defined to isolate, for example, signals with particualr dispersive properties

(dispersion filters), wave number and frequency characteristics ( a-k filters)

and polarization or particle motion characteristics (polarization filters).

Further, we can use these instantaneous variables to define another class of

"filters" designed to separate interfering (time overlapping) signals, with these

latter interference detection filters being based on the variance of the instan-

taneous frequency variable and the splitting (jump discontinuities) in the

dispersion characteristics of a multiple pulse signaL

The joint use of all such filters proves to be a very powerful "matched

fiit r" for the isolation or decomposition of complex, multiple pulse, time series.

In addition to signal detection however, the decomposition of the time series

into quasi-harmonic components and the generation of time varying spectral

variables allows the whole time series to be analyzed in considerable detail. In

particular signal spectra, with noise corrections, can be obtained along with

frequency dependent signal dispersion, polarization and wave number vector

direction and magnitude. These are essentially all the signal properties that we

need to (or can) know in order to interpret the time series in some physical

context. In this regard, we will show how deterministic, as well as probablistic

noise corrections, may be applied to isolated signal data, and how this

corrected signal data may be used to make physical inferences regarding the

origins of the signals. To do this we need to consider a specific kind or type of
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time series, in order to not only relate it to its physical origins, but also in

order to define the kinds of "signals" to be detected.

Thus. while the general signal analysis methods discussed may be applied

to any type of time series regardless of its origins, we will focus on seismic wave

generated time series since, aside from being familiar to us. they are particu-

larly interesting in view of their uses (e.g. seismic methods for resource

exploration, event identification for underground nuclear event detection.

planetary structure investigations, earthquake prediction studies) and since

they are particularly rich in structure (a vector wave field, at least two intrinsic

wave propagation velocities, and a variety of guided wave possibilities in plane-

tary structures leading to complexities in signal dispersion, polarization and

wave number vector direction and magnitude). In the application of QHD

methods to the seismic data discussed in this study, we will consider examples

of automated signal detection and analysis that relate directly to event identifi-

cation and earth structure determinations.

Numerous previous studies have addressed the analysis of seismic data

using related multiple narrow band filtering techniques. In particular, in an

early study. Alexander (1963) used multiple band pass filtering to determine

the group velocity dispersion of seismic surface waves, from which elastic velo-

city structure in the earth was inferred. Archambeau St cd (1985). Archambeau

and Flinn (1965) and Archambeau, Flinn and Lambert (1968) used multiple nar-

row band filtering to determine the dispersion and spectral properties of both

body and surface waves for earth structure and source studies. Dziewonski,

Block and Landisman (1969) applied multiple filtering extensively to give

seismic surface wave dispersion measurements, and studied the resolution of

the method using synthetic seismograms. Dziewonski. Mills and Block (1972)

investigated the effect of preprocessing strongly dispersed surface wave signals



with a matched filter in the time domain, followed by narrow-band filtering, and

showed that this procedure, which they termed a residual dispersion measure-

ment, was superior to the direct measurement of the total dispersion. Several

later studies, for example by Inston. Marshall and Blamay (1971). Cara (1973)

and Denny and Chin (1976). have also considered schemes for optimization of

the multiple filtering method in order to achieve greater accuracy and resolu-

tion in seismic surface wave dispersion measurements.

Most of this work has focused on signal dispersion measurements, most

commonly for low mode order seismic surface waves. In the present study we

will generate signal dispersion results in a manner similar to that used in these

earlier studies, but with an optimization approach that invokes matched filter-

ing, when required, along with filter bandwidth variations with frequency. We

will then go a step further and specify dispersion filters whose function is to

isolate signals with particular dispersion (or residual dispersion) characteris-

tics. In doing this we will also adjoin to the dispersion filter, other filters, whose

function is to simultaneously search for other required signal properties, in

particular polarization and wave vector directional properties.

I. In regard to seismic polarization filters, or particle motion detectors, early

work focused on time domain analysis without the explicit use of special multi-

ple narrow band filtering. Examples of such filters are those discussed by

Shimhoni and Smith (1964) and Mins and Sax (1965). Flinn (1965) used time

domain particle motion measurements to perform both polarization and direc-

tional, or wave number vector, filtering. Archambeau and Flinn (1965) defined

polarization filters in the spectral domain for seismic body and surface wave

detection and analysis. In later work. Archambeau. Flinn and Lambert (1969)

applied these polarization filters as a means of isolating multiple body wave

arrivals for study of the earth's upper mantle structure. Body wave isolation
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and enhancement, with suppression of surface wave noise by polarization tech-

niques. has been subsequently used by a number of investigators, for example

by Montalbetti and Kanasewich (1970). who used an extension of the time

domain approach described by Flinn (1965); and by Lewis and Meyer (1968). who

employed the frequency domain approach. On the other hand, Simons (1968)

applied frequency domain polarization filtering, using a moving window FFT. to

detect and enhance seismic surface waves. (These earlier polarization filtering

methods, and their applications, are summarized in more detail by Kanasewich

(1975).) Further, both Flinn (1965) and Simons (1968) considered directionality

filters using the amplitude of the ground motion recorded on the three spatial

components defining the vector wave field at a single three component seismic

station. This filtering amounts to "vector wave number filtering" at a single

point, since the wave number vector describes the normal direction to the wave U

front and, for a prescribed wave type, the recorded components of ground

motion can be used to determine the orientation of this vector. Thus, only cer-

tain desired wave number vector orientations are accepted by such a direc-

tionality filter.

In the present, study we will combine polarization filtering with wave

number vector filtering. Polarization filters can be defined in terms of the

instantaneous phase variable generated by quasi-harmonic decomposition

(QHD) of the individual vector components of a seismic wave. In this case the

phase difference between two spatial components of the wave field serves to

define the polarization. Thus we can obtain a frequency dependent, time-

varying measure of the polarization of the seismic wave signals and noise mak-

ing up the time series. Similarily, we can define vector wave number directions

in terms of the time varying amplitude components, taken at the group arrival

times; where we obtain the spectral information at the group arrival times and

* :.



define directionality that is both frequency and time dependent. Compared to

previous time domain methods, this approach has the advantage of defining a

polarization filter, and wave number vector filter, for each filter center fre-

quency, so that frequency dependent polarization and directionality filtering

can be performed. In addition, greater time resolution can be achieved by the

QHD method than is possible by the previously used spectral methods, and trun-

cation effects arising from moving spectral windows, are entirely avoided.

Further. we can combine dispersion measurements with polarization and direc-

tionality measurements in one single operation, with the QHD procedure gen-

erating all the required information. Then optimization of the filter design for

any one of the measurements, for example for accuracy in signal dispersion

measurements, ensures that the filter design is also optimal for all the other

measurements, such as for time varying amplitude, phase, polarization, etc.

Most important, however, is the fact that we may associate a set of signals (or

noise) related variables, such as spectral amplitude, phase, polarization and

instantaneous frequency, with each measured group arrival time, which itself

corresponds to the time at which seismic wave energy, at (or near) the filter

center frequency, arrives at the sensor. This generation of time connected

functions of frequency, which may be associated one to one with signal (or

noise) pulses in the time series, provides us with the opportunity of performing

a series of joit filtering operations. These filtering operations are both time

varying and frequency dependent in general, and may be linear or non-linear,

but are. in any case, used to extract desired signals along with estimates of

their spectral properties. In the next section we will consider the appropriate

seismic signal definitions so as to establish a physical context in which these

filtering operations can be defined, implemented, and applied.

*Z .



i. SEISMIC SIGNAL DEFINITIONS

In the previous discussion we indicated that "joint filtering" operations are

to be considered. What is meant is that a number of criteria, based on known

physical characteristics of the various types of seismic signals, will be used

together, to detect, or search for, signals of a desired type. This is a matched

filter concept with signals detected on the basis of correlations with specified

signal properties. However, our application of the matched filtering approach

will be quite different than the usual linear filtering method, which involves

generation of what amounts to a cross-correlation of the specified signal wave

form with a time series, and selection of correlation peaks above a threshold as

signal detections. Instead, we will define only general "robust" characteristics

of the signal types of interest, rather than attempt to specify details of wave

forms or spectra, and then use quasi-harmonic decomposition methods to (con-

tinuously) monitor the time series for the signal characteristics of interest.

Detections of "desired signals" would then be obtained at those time intervals

during which the time series exhibited all (or most of) the characteristics of the

specified signal type. Obviously how closely and in what sense the time series is

to match the discrete set of specific signal properties must also be precisely

defined -- and this will be considered in detail in a later section. At this point

our task is to specify signal definitions, and then to devise the filter analysis

proceedures which will provide data for detections. Once a desired signal form

is detected, the filter output data can also provide details of the signal spectra.

timing and so on.

The signal characteristis that will be used as criteria for detection and iso-

lation of seismic signals are those invariant properties that are usually used to

define the various seismic body and surface wave types. Specifically we have;

i2 ' r *j* ., " . .."--~--
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(A) Seismic body wave pulses characterized by:

(1) Minimal dispersion: such that each frequency component of the
signal pulse has nearly the same group and phase velocity.

(2) Linear polarization; with compressional body waves (P waves) hav-
ing particle motion in the direction of the wave number vector
and normal to the wave front; and with shear waves (SV and SH)
having particle motion in directions perpendicular to the wave
number vector, in the plane tangent to the wave front.

(3) Pulse-like amplitude spectrum; where the amplitude spectrum
has broad band width and is a slowly varying function of fre-
quency.

(4) Minimal variation i wave number orientation; with nearly con-
stant direction (azimuth and emergence angles) of the wave
number vector as a function of frequency.

(5) Jear vertical wave vector directions; so that the apparent emer-
gence angle is relatively low and the apparent phase velocity is
large.

(B) Seismic surface waves, characterized by:

(1) Srong dispersion; such that the group velocity generally
increases with decreasing frequency, due to the generally
increasing elastic velocities with depth in the earth.

(2) Elliptical polarization (Rtyle ig type surface oaves) or
transverse linear polarization (Love type surface waves): with
fundamental mode Rayleigh waves usually being retrograde ellipt-
ically polarized.* so that the particle motion is in elliptical orbits.
with the onset of motion along the wave number axis in the oppo-
site direction from the wave number vector. Higher mode Rayleigh
waves may be either retrograde or prograde elliptically polarized,
the latter with elliptical particle motion initiating in the same
direction as the wave number vector.

For all Rayleigh modes, the eccentricity of the particle orbits -- or
the ellipticity of the polarization -- are functions of frequency.
having a variation which is similar in form to that for the wave
group velocity.

(3) Peaked amplitude spectrum: so that the time domain signal asso-
ciated with a particular surface wave mode Is usually well
dispersed and extended in time, with at least several cycles of

*Fundanental mode Rayleigh waves can, in e'tain structures. within particular frequency
bands, also be prograde elliptlcally polayised.

_ *J. . * *
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motion present. Thus surface waves typically tend to be narrower
in band width than body waves and appear to "ring" in the time
domain.

(4) Moderate variztion in "wuave number azimuth oriuatation with fre-
quency; with higher modes showing more variability than funda-
mental mode surface waves, these variations being principally
associated with lateral variations in the near surface velocity
structure within the earth.

(5) Horizontal wave number vectfor directions; so that phase velocities
are low compared to those for body waves.

These characteristics are the major fixed properties of seismic "phases"

and so are the most important criteria for phase detection and identification.

The signal properties are, out of necessity, rather broadly defined but, as we

will show, they are sufficient to provide the basis for automated

detection/identification of signals in a high noise background. Specifically, the

approach is to specify, as precisely as possible, what type of signal is to be

detected in terms of wave type (body wave; Rayleigh wave, etc.) and the dis-

tance and azimuth range for the originating event, so that signals with the

appropriate dispersion, polarization, wave number vector orientation and spec-

tral properties can be isolated. The first filtering process to be applied is simply

one designed to conrtinuously generate, as functions of time, the required fre-

quency dependent dispersion, polarization, apparent wave vector and spectral

information; with the detection operation then being a selection process.

wherein one picks out the signals having desired properties. It is our purpose to

make this selection process an objective, computer controlled, operation.

Naturally the details of this process can be quite involved and will depend, at

least in part, on the nature of the noise background. It is therefore necessary

to also consider the character of the expected noise, or undesired signal, in

order to effectively design signal isolation procedures.

ILA& . L
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m. NOISE DEFINITIONS: SEISMIC

In most applications it is desirable to be able to detect and isolate particu-

lar types of signals from seismic sources within certain prescribed distance

ranges and azimuth sectors. For example, it is often most important to be able

to detect compessional (P) waves from sources at teleseismic distances, occur-

ing within some azimuth sector, and to reject signals from nearby microearth-

quakes as well as teleseismic signals from events outside the azimuth sector of

interest. Further, it is important to be able to reject all background seismic

noise due to more or less randomly distributed sources, such as are associated

with atmospheric pressure fluctuations, ocean surf, and cultural effects.

Clearly undesired signals from isolated seismic sources outside the distance

and/or azimuth range of interest may only differ from the signals of interest in

wave number vector orientation, or, if near the receiver, in high frequency con-

tent. On the other hand. characeristics of the background seismic noise, while

obviously having wave characteristics that are similar to those previously

enumerated for "signals", do have details of spectral and modal structure that

are quite distinctive. These properties provide the basis for filtering operations

which can distinguish between most signals of interest and background noise.

The noise characteristics can be described as follows:

(1) General spectral properties and modal composMioia: The average back-
ground noise spectrum, obtained from long time noise samples, is
strongly peaked in the period range from 6 to 8 seconds, with a secon-
dary peak of much lower level near 0.3 seconds. Other secondary low
level maxima may occur at very long periods, but roughly speaking,
the noise at lower frequencies decreases from the peak at 6 - 8
seconds, rapidly at first, then much more slowly. At high frequencies,
f>10 Hz, the noise is mostly wind generated and originates locally, with
very high levels possible. Essentially all the low frequency noise,
including that associated with the sharp spectral peaks at 6 - 8
seconds corresponds to fundamental mode Rayleigh type surface
waves, with minor contributions from higher modes and from Love
type surface waves. The noise peak near 0.3 seconds corresponds
mainly to higher mode Rayleigh waves, with most of the noise peaks
being composed of a superposition of many higher modes and

,°X N
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therefore having body wave-like characteristics. Thus at these higher
frequencies. and particularly near the 0.3 sec. spectral peak, the noise
is predominantly higher mode Rayleigh type surface waves, with some
body waves contributing as well.

(2) Spatial and temporal variability in noise spectral levels. invarwnce of
mode composition: The overall level of the noise spectrum is dependent
on proximity to noise sources, such as ocean boundaries, and is also
quite variable with time. However, the modal compostion of the noise is
effectively constant, even though the overall mode excitation level
may be quite variable. (This implies that all the surface wave modes,
fundamental and higher, are excited by a typical noise source and
that most of the fundamental mode excitation is at 8 to 8 sec. and
most higher mode excitiation is near 0.3 sec.)

(3) Pulse-like time domain composition of high frequency background
woise: Analysis of the detailed time domain structure of the back-
ground noise, for example by narrow band filtering, indicates that.
especially in the intermediate to high frequency range, the noise can
be described as a superposition of discrete noise "pulses" consisting of
a few cycles of motion. In view of the normally random space-time dis-
tribution of sources, a noise time series is therefore composed of a
random time sequence of "bursts" or pulses, with each pulse having a
mode characteristic of the type previously described. Each pulse is
therefore actually a coherent signal propagating as a surface wave or
occasionally as a body wave.

The essential differences, between the noise and the signals we wish to

detect, are that the body wave signals will be undispersed, linearly polarized

pulses with wave number vectors that are oriented within a narrow spatial

"cone" and with associated high values of apparent phase velocity. On the other

hand. surface wave noise has. for the most part. moderate to strong dispersion.

is elliptically polarized, has narrow band width compared to the signals, and has

relatively low apparent phase velocity. Thus filtering, designed to exploit the

differences in dispersion, polarization, frequency content and wave number

characteristics, will be effective in isolating body wave signals. Further, that

part of the noise field having body wave characteristics will have random wave

number vector orientations and can be eliminated, in part, by wave number

filtering.

On the other hand, surface wave signals of interest are typically of broader

.-.

- ..
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band width than the surface wave noise, which is strongly peaked in the 6 - 8

see. period range, and so ordinary frequency filtering can be used to reduce

the surface wave noise without appreciable loss of signal power. The noise also

has random wave number vector orientation characteristics, and both vector

wave number filters and matched filters can. therefore, be used to select sur-

face wave signals from particular spatial directions.

IV. ANALYTICAL REPRESENTA7IONS FOR SEISMIC SIGNALS AND NOISE

The signals and the time series we are dealing with are associated with vec-

tor wave fields and so are themselves vector quantities. We will, in general, deal

with one spatial component of the field at a time and will suppress component

indices when the treatment applies equally to all signal components. We will

only be explicit as to vector components when it is necesary to combine them,

as is the case, for example, when defining single receiver polarization or wave

number filters.

Modal Representation of Pulse-Like Signals and Noise

Any component of an observed seismic displacement time series, x(t). can

be expressed as sum of "signals", in the form

z(t) - S .a(t) = Ref+w &,(w)etdf (1)
S, S

where Re denotes the real part of the Fourier integral Here, since x(t) and

,(t) are real. then with the Fourier transform of S,(t) denoted by &(w), we

have &(-w) = X(o), where 3 is the complex conjugate of 3 . Sinilarily,

(--w). = z (N). where z(o) is the Fourier transform of x(t).

The sum In (1) Is over "signals" &(t) which may. in fact, be noise pulses

W.
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depending on how we choose to define what we call a signal. At this point we can

simply call an energy pulse in the time series a signal of some sort. This is con-

sistent with our previous descriptions of seismic signals and noise, where both

were described as having specific wave type properties. We can, as we will

demonstrate below, represent each "pulse" S.(t) as a superposition of modes,

whether it is noise or signal and whether it corresponds to a body or surface

wave. If Sa happens to correspond to a body wave. then its representation is a

superposition of many higher modes. If it is a surface wave, then, of course, it is

'represented by just one mode. In any case the "signals" all have the general

form of propagating vector fields and, in the mode representation form. are

given in the frequency domain by-

(w) A:' (rc) exp( -i [A' r + 941'(w.)] (2)

where the sum over m is a sum over modes and r is the earth's radial coordi-

nate. Here 1C is the complex wave number for the nA mode of the vi signal.

The phase o' can be called the initial phase for the mia mode term of the nth

signal, and is associated with the phase delay at the source. The function A: is

source and medium dependent, but because of its strong dependence on the

source of the signal, will be called a mode excitation function. The mode excita-

tion function for the nlt signal. A, may of course be zero (or negligible) for all

except one mode index value, so that the (infinite) sum over m can be degen-

erate. For body waves this is not the case however and, for a given body wave

signal, many of the A: functions will be of comparable magnitude.

The detailed nature of body wave modal structure is illustrated by the

mode curves of Figure (1) and (2), from Harvey (1980). Seismograms generated

from the excitation of these modes by a theoretical earthquake source are

shown in Figure (3).
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Figure 1. A section of the modal phase velocity versus frequency
curves for the velocity-density structure in the
Southern California region, just east of the San
Andreas fault zone and south of Los Angeles (structure
after Kanamori and Hadley, 1978). The prominent
flattening of the higher mode curves near 4.6 km/sec,
again in the range around 6.2 to 6.5 3cm/sec and near
8.0 km/soc produce# respectively, So P and P body
wave arrivals when the modes are a umuea. as si~own in
Figure 3.
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Numerous body wave pulses are generated by the superposition of these

modes, but each seismic body phase is associated with a large number of higher

modes all having a flat segment in their phase velocity dispersion curves at

nearly the same phase velocity value. This is illustrated in Figure 1 by the flat

dispersion in the modes near the phase velocity of 8 km/sec. (This corresponds

to P. the crust-mantle boundary refracted wave which is the first arrival on

the theoretical seismogram shown in Figure 3.) When the phase velocity is con-

stant, as it is on the flat parts of the dispersion curves in Figure 1, then the

phase and group (energy) velocities are equal, and both constant. Figure 2

shows the more complex group velocity curves, where their constant group

velocity near 8 km/sec. is, nevertheless, also evident. Thus, for the superposed

modes, the flat sections of the phase velocity curves will contribute, in sum. to a

pulse like seismic phase, with all frequency components arriving at nearly the

same time (ie., with nearly constant group velocity). Because mode excitation at

a given frequency is inversely proportional to the derivative of the group velo-

city with respect to frequency, then when the group velocity is nearly constant,

as it is along the flat parts of the dispersion curves, its derivative is small and

the excitation of the mode will be high. Since there are many modes with the

same locally constant group and phase velocities, then not only will they all sum

to give an undispersed pulse, but each mode will have relatively larger excita-

tion in this (narrow) group velocity range than it does at either higher or lower

values of group velocity, where the dispersion curves are steep. Thus, one can

expect a well defined pulse, with larger amplitude than that of the more

dispersed energy arriving just before and after it in time.

This description constitutes a modal representation of a classical body

wave. In the other extreme, the theoretical seismograms in Figure (3) show late

arriving energy corresponding to the single fundamental mode Rayleigh wave,
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so that for the representation of this signal, only a single mode is involved.

Much of the seismic energy propagation must, however, be described as

intermediate between a classical body wave, composed of a very large number

of higher modes with near constant phase and group velocities, and ordinary

fundamental mode surface waves. An example of this is the P. wave energy,

arriving in the group velocity range from around 6.2 to 5.0 km/sec in the syn-

thetic seismograms shown in Figure 3. The origins of this large amplitude, time

distributed arrival are higher mode contributions, associated with the relatively

slight mode curve flattening in the phase velocity range from about 7 to 9

km/sec. In this case there is no extremely well defined coincidence of flat sec-

tions in the mode curves at a constant phase and group velocity (giving a well

defined body wave that can be approximated by a ray) but instead one finds a

less pronounced flattening which occurs over a range of phase and group velo-

cities. In this case the engergy transmission cannot be viewed very simply in

terms of rays, as are classical body phases, but must be viewed as either a large

number of higher modes, contributing over a group and phase velocity range or

as a large number of rays with steep angles of incidence (high phase velocities)

representing multiple reflections and refractions distributed in arrival time

over a relatively long time interval.

Mode Groups as Isolated Signals

A modal description is a formal analytical representation that will be used

here to provide a mathematically complete representation of the entire seismic

wave field. We will, when appropriate however, make use of the special features

of the modal superposition when dealing with body wave signals. Now, for such a

representation, we can combine (1) and (2) to obtain:

i eL"
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x~t W Re f A:~ (r.W~e xp -i 11C r -c.,t + p(f)lc1 (3)

or

z(t) = Re f+" (rr, Owl d (4)
nIm

with

DP (r.u) A (r.c,) exp{- [JiCI r + VC(w)]= A' (r.m)e - . (re ) (5-a)

where ,' is the phase factor for Dr. Thus. from previous definitions, every

"signal" S,(t) is represented by a sum of modal contributions Dr such that

n(r.,) =L (rW.) (5-b)
31

Here. as elsewhere, m is restricted to a set of integers (/,) appropriate to the

ftth signal Precisely how we chose to define the signals S.(t) will determine

which modes, and which phase or group velocity segments of the modes, contri-

bute to a given signal.

The wave number fC is conveniently represented in terms of a phase velo-

city C' for the m!- mode of the n - signal. so that

*q(C W/ cr(W) (6)

In this representation of an observed seismic time series we will use a rela-

tion like (3) to describe the entire time series and to represent a superposition

of "signals" from many sources, including sources which produce "signals" that

are not of interest, as well as signals from some particular source which are of

interest. Thus (3). and equivalent mode sums. represent a multiple source

superposition, with the sum over n representing a sum over different source

signals as well as a sum over different signals from the same source. In this case

only a few signals from the series are important, while all other terms in the
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sum over n are viewed as noise relative to the signals to be isolated. Our objec-

tive is to devise systematic methods that may be used to pick out of this series

those terms that satisfy prescribed conditions, such as those for body waves of

a particular type from a source in a particular distance-azimuth range.

V. GAUSSIAN NARROW BAND IMLTERING OF SE,.MMC TIME SEJUES

The essential tool to be used to isolate desired signals from the seismic

time series will be the quasi-harmonic decomposition of the time series. This

decomposition provides time varying spectral information such that particular

characteristics of the sought for signals can be measured and used to automat-

ically select, or filter out. the appropriate signals.

Narrow Band Filter Combs

In order to decompose the time series we will use a "comb". or set, of ultra

narrow band Gaussian filters, with center frequencies fA. k=1.2 ...... N. The

transfer function of a Gaussian filter is defined to be:

Gh (oxt) a ~ -'~) 7

where wk = 21rf: is the angular center frequency of the filter, and a is a

parameter determining the bandwidth of the filter. The impulse response of the

filter is given by

where F - 1 denotes the inverse Fourier Transform operator. We therefore have.

after evaluating the integral:

as the impulse response. Hence this is a simple sinusoid modulated by an

vm .. '
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exponential function of time. in both time directions from t = 0. Thus this filter

is phaseless and when applied to filter a signal, it will introduce no phase shift

and will "ring" in both the positive and negative time directions. Clearly this

modulation can be controlled by the choice of a. (Although not explicitly indi-

cated, a can be chosed to be a function of L for the set of filters (Gk).)

A useful means of specifying the filter bandwidth is by use of the filter

quality factor, or Q. which is defined to be the ratio J't/ Aft. with Aft equal to

half the bandwidth at the half power point of the filter. To express the parame-

ters a in terms of the filter Q. we observe first that the power at w = ok is given

by:

IGzF1r= [ at ci =wk

so that the half power points, at w = wk ±Aok. are such that

14 Ic(0a ± Awka)I1 = [ in]
Evaluating explicitly the expression for Gk. at t = q,±6. gives the condition

that:

In terms of the half bandwidth Auk. we have for a:

a = (9-a)

Using the definition for the filter Q. then:

[ M2][ (9-b)

Thus the set of Gaussian filters have the form

G6 --L- exp -J (10-a)

S* or

e= exp -b)

M1' -, ..
"- "  " . -- " ".

j~~~~~a~~~TA_ -It 4.*-4-% *2* .
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where

In2 Aw l:
#?a - an~' wk f t

Analytical Forns of Gaussian Filter Responses

for Isolated Signals

If we apply any one of the Gaussian filters to a signal S,(t). then the out-

put of the filter can be denoted as & (t;wt). and is given by the inverse Fourier

transform of the product of the signal transform with the filter transfer func-

tion. that is:

= 1Ref (w) t(w-wk;Q)e'"td

Here we have written out the functional dependence of the filter on the differ-

ence v - w&, and on the parameter Qj. explicitly. In order to evaluate this

integral we introduce a change of variable such that

so we get

and then consider the expansion of the signal spectrum () about the fre-

quency w = wk. that is about the point &X = 0.

We observe that we have from (5):

3, ( F) = , A' (r)e " t- )

with the sum running over the modes. Thus, for any signal S, we can expand A'

and *' individually about v = wk. and obtain:

.AC
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We will see that if the bandwidth of the filters is narrow enough, then only small

values of f.' contribute to 3(twO) and the expansion for 35. resulting from the

expansions in (12). will converge rapidly.

In order to simplify the notation somewhat, we note that the mode sum

over m commutes with the integral over o' in (11.). Thus the filter, in effect,

acts on each mode independently and the total output is just the sum of the

individually filtered modes. For this reason we will temporarily suppress the

mode index m and the mode sum. since the manipulations and integral evalua-

tion are independent of which mode is being considered. In this case we can. for

example, write

(r~! (.0k) d d '

as a notational convenience in the second expansion in (12.)

We observe from (5.) that (with the index m suppressed):

1(v.oi) N a r + 1,60

Therefore.

Since the group velocity Q.() is given by

a= dirm (13)

then

.Ii(r.i k d"I! +* iV)(O IZ (14)
dd1[Vfi

.......... ~~~~ . .- II 111
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$~(v )P -rk (i + t(Wk~ W= + 9P a

where C (w) is the phase velocity evaluated at c--- k.

Introducing group and phase delay times, f. and t. defined by

t,(,k() + 4

(15)
tiln)(WO r + o, i

v. _______k

for the vil& signal (with the mode index again suppressed) and then using the

expansions of (12) in the integral relation (II) for the filter output (f:c).

gives:

S(f;cjh) = Re ~ u i

A)(r.ok) f(to')' e t -~u)

where

POO ! IP- 1 to|)u ;
pug) A I I 1.n

To evaluate the integrals in this expansion for NX we can express the factor

exp |-iP(w)I in a power series in w and use the integral relation:

Lf(t)" S-"' d = e4 --V 0

to give (16) in series form.

Z
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The exponential expansion required has the form

muz

where the first few coefficients @, are:

- [ +j") d,3 j.

414 2 r - tt r I &
I ____ __ _____ I ", '1

.L~f :) a dtja d dc') + d~to 5 d)LL

dii 21' ) t') L

Thus, the filtered output in (16) can be expressed as:

X , f i + 2 G.i,°e [

or. combining the two summations, as:

9,(t;, 1) = Re -!- a .,€,-)

f to'ex {J exp it t'(t - tjRt))dwJ(7
. *1 . r ,,O .+ t"Xl ,Y:~ -°'YN- J
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with

&()(~p)= Aja)(r0 &j) ; J0(c& = AMrrk

pIn 1.0

Now using the integral relation previously quoted, we get, after grouping

terms in order by powers of Auk:

+ 2 ()(.J)+ t(f - tj")) B,(')(r.k)] )aof

+ 4 [ 3B,()(r.wak) + 3i(t - tj'I)) A 3)(r.w,) - (t - tp())2 B,.)(rw.) Apt)k

Here. in terms of the fundamental signal parameters, the coefficients B.P) are:

BnP)(r.wa) = gl)(r~tj)

B.(*)=r.t! A~JO)(r.a)k) - 1- A10')(r-, I: dtp1
2 2 ci +k

(3)(r. + !-A dt(r I

B. ((r(r~a) = -i - 3A.)(ne.) tP11

-AO)r L . id -

* *o
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" 'I ,',r I 1 1"'
+ 8gI)(r'c.+) 4 .

+ djup'

where the superscript index on the signal amplitude An denotes the order of

derivative with respect to angular frequency, that is:

AO)(r.dA.(r.

This expression for the filtered signal is formally exact, under the tacit assump-

tion that the expansions of the signal amplitude and phase functions are con-

vergent. Such convergence is. however, assured for a physically realizable sig-

nal.

There are a number of important features in equation (18.) that deserve

comment. First of all, the result is similar to the impulse response of the filter

itself, in that it consists of a sinusoid, namely e'*('-J")), modulated by a decay-

ing exponential in time - that is modulated by

In addition, however, the result contains a second complex valued modulation

function, involving the signal spectrum and frequency derivatives of the spec-

trum, plus frequency derivatives of the group delay, fje). all evaluated at the

filter center frequency wi, This function therefore carries information con-

cerning the signal spectrum and its dispersive characteristics, whereas the

pure sinusoid carrier involves only the phase delay of the signal and the Gaus-

sian exponential modulation depends only on the group delay of the signal.

Further. this function has the form of a power series in Ak. so that for Awk

small it can be approximated by the first few terms. It is therefore useful to

•,..
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write the filtered ugnal result in the form

I y° -)
( = (M.)Rol A4, (t-t";hc,) ,-' (it )) (19)

where

M, (t -t(');&0 c) Aw(° + I AO) - t(j + 2ig')(t -tp))J Cr

+ 1/2 -js
o ) + -) ] - '

- ei4) dt p )) + 4 34d') + jt2 ) + o) d (tt)

.. 4fg.LJ) -~)dJn) (tak k

+ o(Ac4) (20)

with

* E(4p),/3 . 2 =-

Thus, the modulation function A& is a relatively simple power series in Awt with

coefficients which are polynomials in the time difference (t -to(")). It is also

useful to express Af. in polar form, in which case we can write the filter output

as:

I MaI 8 Cos[&& (t t; )2-wtI)) -,] (19a)

with

An[ JO) A _j 2&")-

+ + 2g0Z
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A~I - a.'T do)1 dI j L+2 All A t (n+ 20ja)

tan-l ~~ ~ An' tn4 + (,& l
1 1

I In- I W -2 (t -ti,( (20b)

Here. in expressing these last results, we have assumed A 0 .) e O.

iLzmiting Forms of the Quasi-Harmnic Piltered Signal. ,

An important property of the modulation function is that

iUm .(t-t"):&.a) = i4.O) (r.,) (21)
a i.

lim 3, (t&*) Re 1 .)r:.A (22)

so tbat. as the filter b-ndwith approaches zero. we obtain a pure sinusoid V-th

amplitude and phase equal to the Fourier amplitude and phase. This of course

is not unexpected. since this limit must correspond to the operation of ordinary

Fourier analysis. Nevertheless this shows that we may approach the limit of

Fourier spectral analysis if Awk is made small and we will of course wish to

obtain good spectral estimates of the signal by narrow band filtering, as well as

accurate group arrival time estimates, by choosing Awr small. In this regard

however, the limiting case given in (22.) shows that we can obtain exact spectral

estimates by narrow band filtering when Az -#O. corresponding to Fourier

decomposition, but no estimate of the group arrivaL time.

We observe however. from (20.). that when t =tj) for the nib signal, then

most of the terms in the expression vanish, and:
.A
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+~~ ~ 410 t-) TJC.Lk + O(Aw) (23)

with the final terms being, at most, of order Aw4 and involving products of high

order derivatives of A, and t (") with respect to frequency. Therefore when Awk

is such that

4 - J< (24)

then we can expand 7 in powers of this small factor, which gives

* Awl rd,(n)

(25)

for the 7 factors appearing in the function M.. These factors can be written in

polar form as

-4

7 - I  - = ' ' (26-a)

(26-b)

where

= tan-1 l [ tgdfj U)
We see that as long as the condition (24) holds, then the factors y-' and 7f

appearing in M. can be approximated as simple phase shifts. In this situation.

the value of M, at t =tj%) is. from (23):

Afn(o;j =40)a 2 Of + a##- A) +-J

Consequently the narrow band Gaussian filtered signal N. at t =tJ ), has the

S"- form

,
.- ," -,-- .-- -v ."."-,.- ;,.+'.5;.-':'.', :.: , ..:,.2.'.:€I.;''. "
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(t)CA)SW R . 1 +4
2 R72 ~,O

(27)
for gAo);9O at =f,. Comparing this to (22). the limiting case of the Fourier

decomposition for which &cjt is zero. we now observe that we get a very similar

result at t =tn(') when Acj, is finite, so long as:

e Il. j <<1(1) -ITdLC-)J-,Ic~
((8)

In this case we note that the phase factor 0. in (27) can be neglected

since,

O< It, = tant 2P ,I<1

by the first inequality in (28). Further when the second inequality in (28) also

holds, the complex armplitude factors in (27) can be neglected relative to unity.

Thus we can clearly approximate the limiting case in which the amplitude of the

filtered output is equal to the Fourier amplitude at the center frequency of the

filter when Ac,, is finite, if we measure the amplitue of the filtered time series at

t =4) . the group arrival time. Similarily the phase of the filtered time series at

t =tJ") is. to a good approximation, equal to (t(n)-f~ft)) which is the Fourier

phase of the nib signal at the frequency w.

.!V2
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Filter Design and Signal Conditioning Requirements

In view of the previous limiting case results, we observe that the objective

of narrow-band filtering, which is to decompose a complex tne series into a

series of nearly harmonic components that simultaneously retain accurate sig-

nal energy arrival time and Fourier amplitude and phase information for each

signal, can be achieved provided the filter design and signal characteristics are

such that the Q of each filter simultaneously satisfies the conditions

>> digj") I "e>IL d,,~

(29)

>> [4()o:)/2nO(jt 12('

where Q, and wt are the quality factor and center frequency for the k04 filter.

For the filter design criteria to be met, the expected signals within the time

series should be minimally dispersed and have smooth amplitude spectra. Body

wave signal pulses intrinsically have such characteristics, while other seismic

"phases" require preprocessing of the time series to render them of the

required form. Specifically. preprocessing with a matched filter, which is the

approximate inverse of the expected signal. within the bandwidth to be covered

by the set of narrow band filters, is required.

An acceptable design of the narrow band filter set is achieved using:

where T". is a constant such that:

,r > max 1K-,--) ) 1. iAn()(p)/ 2A40 )(wk~)

In this case the bandwidth. &.,t. is constant for all the filters of the set. since

-, -'4

p ,
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from the definition of the filter Q we have

Hence. T& is a Lime like parameter which is a measure of the ring time of the

narrow band filters. (ie. The amplitude of the impulse response of each filter is

decreased by I/e. from its peak at t=tJ"). when t=t'±Tb. ) In addition, the

resolution time, Atk. for any time measurement from a filter output is con-

strained by the "uncertainty principal", having the form: AWk Artk _.. for all k.

Here Awl; is again, the filter bandwidth and c is some constant independent of

the filter index k. Consequently the uncertainty in measuring the time at which

a filter output has a maximum is proportional to Tb.in particular:

Atk Z vr

Since we cannot precisely define r .other than to say that it is greater than

zero and at most of order 1, then we cannot say much more than that At,

increases or decreases directly with -rb. itb the choice of the filter set Q fac-

tors as indicated above however, then every filter of the set has the same

theoretical resolution, as well as bandwidth. That is, Atk and fih are both con-

stant for all k and directly or inversely proportional. respectively, to T&.

Jlter Output For a 'tme Series of Superposed

Pulse-Like Signals and Noise

When the narrow band filter design meets the conditions specified by (29).

then the filter output, for a input series of signals %- (t). has the form:

Y(t;u;) - t ) L Re Mm(t -t (");Ac)e-4" ue&uh(4 -PI)}

(30)
where, from (20).

I'.. _o

., -. . ; ,....,. . , .. -, - . ..-. . -.-. , ,.. - ...., - a- - - - . - - %*-- - - - - - ;--., ,.-
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Mp(t ); ) k Ow_ ) + i ) [t )f A + O ti4] (31)

Here the mode sum over m has been restored to the expressions for complete-

ness. The mode index m takes on values from sets (,) . which are determined

by the signal index n. ( ie. Different sets of modes are summed for different sig-

nals.) The function Y(t:; t) is introduced to denote the kh narrow band filter

output of a time series consisting of a sum of signals of pulse-like form.

The results expressed in (30) and (31) therefore apply to signals of pulse

form. that is minimally dispersed and spectrally smooth. In general the time

series is composed of signals of this type. plus noise, the latter being all "sig-

nals" not of this form. Thus. in general, we have a time series x(t) which is a sum

of signals S(t) and noise N(t) . where the noise is indexed to indicate that it

too is composed of a series of discrete wave packets (typically overlapping in

time) which are usually dispersed and/or have "non-smooth" spectral ampli-

tude character. Nevertheless the noise can be represented by modes, however

these modes are not excited by the single source responsible for the signals.

but rather by a more or less random distribution of sources scattered in space

and time. Thus we write the basic time series as:

x(t) = s,1 (t) + ENI(t)
'I I

and the output of the 04 narrow band Gaussian filter as

X(t;Cjk) = E (t;&) + NI (t;.,) (32)
'II

where the first sum on the right side is Y(t;wk). as given in (30) - (31), and the

second sum representing the filtered noise, can be denoted Z(t ;). From the

previous general analysis it is quite evident that Z(t;w,) can be expressed in

the same general form as is Y(t ;c. ). that is as

ZY;cW*) a EMAt;W) Re 40tt,')
_1i
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( Here. however. the modulation function J. now has a complex form. given for-

mally by equation (20). which cannot in general be reduced to the simple form

of (31). since the various frequency derivatives of the group time and spectral

amplitudes for the noise generally do not conform to the smoothness properties

required. Further the group and phase times, t9 and t. . are generally different

for each mode contributing to a particular noise packet or wave group. Hence

these times are explicitly indexed by both I the "wave packet" index, and m the

index for the modes associated with that wave packet.

We note however, that both the group time tJ") and the phase time ta") , for

the n signal pulse appearing in Y(t ;rj). are nearly constant and equal to each

other. In particular, each mode that contibutes to a given signal pulse will have

values of ts and t, that are constant over the frequency range for which the

mode has significant excitation. Since each contributing mode will have essen-

tially the same values of t, and t. for a particular signal pulse, then, for seismic

body wave signals, t. and tp are mode independent, and so are not indexed by m

in (30) - (31). The same observations hold for wave types that are not pulse-like

initially, but that have been rendered pulse-like and undispersed by matched

filtering. In this case.the dispersed modes of interest have been mapped, by the

filtering, into nearly undispersed pulse-like arrivals.

Consequently, for such signals we can formally carry out the sum over

modes indicated in (30). taking account of the fact that the exponential terms

do not depend on m for seismic body waves and/or matched filtered signals.

and rewrite the results in the simpler form:

Y(t;u&.) N R 0(4

with

- - -.- "- -
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An t -g("; Ak v AJ) (l, (t-f -))+ -LAO) (L))J (35)

Here the amplitude factors Ak)(w.*). representing the plh order frequency

derivatives of the amplitude spectrum of the nth signal pulse, correspond to

sums over only the modes contributng to the n - signal. That is:

* (36)

where m is restricted to the mode index set (1,) that corresponds to the nth

signal. (We do not. a-priori, know what mode set does in fact belong to a partic-

*ular signal, but it is sufficient for the present to know that such finite sets

exist. At a given frequency it is typical that only one or two modes contribute to

a particular body wave phase - as illlustrated in Figure 1. Thus, the sum in (36)

is generally over only one or two mode indices. m. at a fixed frequency W.)

The principal use of the narrow band filtering output is to provide meas-

urements of signal group arrival time ( t. values) and the amplitudes and phase

of the signals at these times. Thus the essential feature of the output from a

set of narrow band filters is the behaviour of the filter output at, or near, the

energy or group arrival times tg. At a group time of a particular signal, say the

j signal, a properly designed filter with center frequency wt has an output:

+ Re (o1 )( - 4 -L');&W*)e 4P le tm1 (eIO)..P( ..... (3?)
L.M

where Am in the final sum is the modulation function for the noise, and has the

form given by (20).

The first term in this expression is just equal to the Fourier component of

S7A
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the jA signal at u, , while the second term is a sum over all other (ntj ) pulse

like signals, and the final term is the sum over all the noise arrivals. The latter

two terms can be viewed as interference terms relative to the jIA signal, whose

properties ( eg. spectrum) are to be estimated. Clearly, because of the Gaus-

sian exponential factor contained in both these terms, the sums will be small

relative to the first term if

ItJ') -tJ) (38)

In this case

XOtPI;. 0 IV r lA,)(wk)."WA(V-')

and we get an uncontaminated result for the jl signal. If on the other hand,

the time separation between this signal and other signals and noise is not very

large, then some of the terms in the two series may contribute significantly to

the value of X at i = tou ) . However, measurements of X at a signal group

arrival time can bC corrected for such "contamination" to give an estimate of

the Fourier component of the signals, and equation (37) can be used as the

basis for this correction. The details will be considered in a later section.

VI. MEASURE3M OF FILER OUTPUT CHARACTERISTICS USING ASSOCIATED
FILTER FUNCTIONS: ENVELOPE. INSTANTANEOUS PHASE AND FREQUENCY FUNCTIONS

In order to obtain signal spectrum and dispersion estimates from the nar-

row band filtering operations, it is convenient to define a set of "associated"

filter functions, derived from the analytical forms obtained for the filter output.

which permit simple computer controlled determinations of signal and noise

group arrival times and amplitude spectra. Clearly the most important task.

considering the emphasis placed on measuring the filter output at group times

tc. is to be able to determine the t. values for all signal and noise arrivals

within the time series. We will therefore first consider the filter envelope

. -
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function, from which we can obtain estimates of the tg values.

The Quadrature Signal

As a preliminary, it is necessary to define the "quadrature signal", which

can be formed from the original time series spectrum, as

R(w)) = -4 syn (ci) X(o) (39)

where sgn (o) denotes the algebraic sign of w .and X(o) is the Fourier spectrum

of the original time series, while 2(o ) denotes the spectrum of the quadrature

time series. In the time domain, :'(t ) is the HUbert transform of z (t). The pro-

perty of x which is useful here is that its Fourier components are shifted in

phase by --f/2, as is easily seen from (39). This is the origin of its designation

as the "quadrature signal".

How, for any time series, z (t):

z(t) = _) 4 d

However, since z(t) is real, then X(w) must have the property that

X(-w) = X(w), where X*() is the complex conjugate of X(&w). Thus. with

X(W) = JX(.a) Je4*(u),

then it follows from this property that:

z ) 10 ()cs r (Odu = -LRef.'Jk(w) JG'4( t4}'do~ (40)

Similarily the quadrature time function (t), with spectrum given in (39),

Is represented by:

.~6+did - -4.
2-(f) ~f *1()Idc, do iJl() i +X(-w)e a dm

But again, since X(-fw) =Ow) we have
.. '-0* ,.o*6 ** ~ *

p p!
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OFf

or

X f~J ()csj + #-ir/2Jdr., "Reioj (41)

(Comparison of this Fourier expansion for £-(t) with that for z(t) now explictly

shows that z(t) has Fourier components that are shifted in phase. from those

for z (t). by a factor of -- t/2.)

The Complex or Analytic Signal

The quadrature signal can be used. together with the original signal, to

define what is usually termed the complex or analytic signal. A complex signal

representation provides the basis for the definition of instantaneous phase and

frequency functions, as well as an envelope function. Specifically, we define the

complex signal. z,(t). as:

z(t) =z(t) +i (t) (42)

and from this definition it follows immediately, from the representations (40)

and (41) for z(t) and (t), that

Clearly. z,(t) is a complex valued function of time, rather than being real as are

z(f1) and (t). and, in particular, can be written in the forms

where

(45). .tan-i j-g0-1
_: -. l (1) J
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Thus. zx(t). can be written in polar form. since it is complex. and can easily be

computed using (43). which is simply the transform of z(t) over only the posi-

tive frequencies. Further. it follows from these definitions that

r (t) =Re[ zc(t)}= kc(t)Icos,4)(t)J

(46)

i~trn .(t) k(t )Isinl[0,(tI

Thus. an arbitrary time series, that may not have sinusoid form. can neverthe-

less be expressed in this "sinusoid form" through the use of its quadrature

function.

In analogy with the ordinary frequency of a sinusoid, the phase factor,

#, (t). appearing in (44) - (46). can be expressed in terms of some fixed fre-

quency. say r. and a frequency modulation function. +(t). through the defini-

tion:

*(t) w oat +f 0 *(r)d r (47)

Thus. the time derivitaive of 0. corresponds to a frequency. in particular the

instantaneous frequency D(t). and we have from (47)

0(t)t)dot)= ut = +, ,(t) (48)

in terms of the "carrier" frequency w0 and frequency modulation function *(t).

From the definiton of 9f (t) in (45) we also have

Envelope. Instantaneous Phase and Frequency FuncUons

For Quasi-Harmonic Time Series

For a quasi-harmonic time series the amplitude and phase functions in (45)
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are usefully defined as the envelope and instantaneous phase of the quasi-

harmonic time series. That is. with zh(t:wk) denoting the quasi-harmonic time

series, the envelope and instantaneous phase are defined

A,(t;t)=a k: (t;1k )I = Vot (t ;.k + iTt(t W?)
(50)

Xk~~t~taV~:(~w:)= tan-I:;:

where kI and go are the amplitude and phase of the complex signal formed,

using (43). from the Gaussian filtered time series z(t). Similarily the instan-

taneous frequency associated with each quasi-harmonic time series zt(t;(k) is

Od nx(t; ,)- z =* /E (51)

For a time series consisting of pulse-like signals, then we have:

%**

where, from (20)

S.tc=) R Is 1 t'j ( 4b As(t -fVR);A&). a 4W (52)

-4 with the phase time variable, defined in (15). having the form

r =#+,Wk) (53)

and with the modulation function, given by (20). having the form

A (t -LP);c.h 1 [A40) + U41){ 1 ±'jI' (f + R))J"'0' + 0(Ar'4)J
*1 2W 2-N 2p7,) A
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(54)

Here the factor y is such that:

rhot dtjp) :7-1 d- - toj e 2

where
,1  1

-id& d r

as shown in (24)-(28). Now we can express M, in polar form as

An = IM. I e [' ' '  (,55)

where

k'I A A 1 OAj (4-]

(56)

= tan'- I[ .jt 4")) +

and rewrite a as:

. (.,. 4 Cos= -i'- -tt) + -Lft !Lr (57)

Similarly, the quadrature signal has the form

.

E.:I"I' 1I -±-(" 4Ju I '-a'n ht) -- 1 (SB)

- a& ." 'g-, , .- : ;,;.''; ; '; ,::. ,** .* <. - ' -... .-.* .. .. **/..? . .:.'
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All these expressions are accurate up to terms of order A&c. We observe, how-

ever, that the phase of M., as expressed by #. above, is only meaningful when f

is near tJR), that is when It-t jI <I. It is also true that the higher order terms

in I AI involve (t -tf)). and these terms become large as t-tj") becomes large.

Thus while the Gaussian exponential factors in S, and S,, produce a rapid con-

vergence of these functions to zero when t -f(") is large, it is nevertheless clear

that the analytical expressions for these functions, involving truncated power

series in (t tO')), are only accurate for t near t( "}

We now observe that the envelope function. Ek(tf;jk). for the whole filtered

time series, can be related analytically to envelope functions for the individual

"signals". In particular, (see also equation ():

E: (t ; ) •a" ( " ) = E E')(tw;.k ) lt
)  (59-a)

with

F400(t ;wk) IS I- (59-b)

and

X*a)(t~w&) n tan' [1 (59-c)

where .I : is the modulus of the "complex signal" associated with the filtered

signal pulse 3. and p is the phase.

Now from (57) and (58) we have.

=-*(t; ) 4o(+- )4 (60)

where

.-. ,.-o % % * * * o . . . .... . .- *r".. Oo *,. o
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M.,). a R[j]M : Mj') = Im[MJ

Therefore, with all terms to order A.ol retained in M,. and assuming 4()c)O.

gO)( ,r) a - (1 +61)+62(ft-t 11/))] (61)

where

.A2() A4 11(26 H1 I+IA 42)
) 4 (:0)1[ L2 fl

(62)

It is evident from (81) that the envelope functions are, nearly, simple Gaus-

sian exponentials with a constant coefficient equal to the spectral amplitude of

the signal at , = ct. The departure from this simple form involves modulation by

the square root of a polynomial function of (t _tj)), where in the case when M,

is truncated after terms of order &uf/2P. this polynominal is of second order.

For pulse-like signals conforming with our criteria of smoothness, that is with

]4°'(t.)1 I JJ(wk) I > J&() >..
i [.o, > > ') I >

d0 to a d , jt '*

and for narrow-band filters designed according to the criteria of (28) or (29),

then

16SI < 1611 << 1

and the effect of this extra modulation term is small.

The instantaneous phase for a single pulse is, from the definitions in (59)

and the relations (57) and (58),

'.:S-f;

, i ;, +,.. -. * S, S + '- 5... S\,55'+-+q*5,' "* '-5 5 ,,",% *;,' 'Si* ','+ .+** *5", ** ,'' .""+ .*. *,** +
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xi) = tan-' = t-tP) + t - (63)

with t),, and #, defined previously. This result is. of course, accurate when

t is close to tjti). the group arrival time for the nth signal pulse. When t is. in

fact, equal to 4"). then the phase factor *.n is negligible, as can be seen from

(56). Since x" ) is a calculable function of time. then (63) can be used to com-

pute the phase time 0(); given that the group time can be otherwise deter-

mined (see the next section) and the phase factor # is either entirely negligi-

ble, which is usually the case, or has been estimated from the variation of the
measured t (") versus frequency. In this case. t ( ") can be used to obtain a

phase velocity estimate, as a function of frequency, using its definition given in

(15). In addition, the instantaneous phase, when measured for three com-

ponents of the displacement, can be used to determine the polarization of the

wave field as a function of frequency. In all cases, the functions derived are

valid approximations to the true variable, such as phase velocity and polariza-

tion. only at the times very near the group times. f., for the signal in question.

The instantaneous frequency for the nath signal pulse (41). is. from (51):

o")a(t.:wc.k)- - - -- S'g [V + V] (64)

The time derivatives appearing here are. using (57) and (58):

= ft, ) +W 11 & - [ l' (t - tr(") s. + o (Augt)

(65)

-1 j - - [ '(t - t," + o(A4)

Forming the relation for al" ) therefore gives, from (64):

tie,"
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+P(~ra 401)4 + (68)

where the terms involving the time factor (t - tj()), appearing in the relations

of (65). cancel out.

From (66) it is apparent that, to first order the instantaneous frequency

function is constant and equal to the center frequency of the Gaussian filter

used. However. accounting for terms of second order in the filter bandwidth

Awk., produces the interesting result that the constant frequency value is

shifted somewhat and in a manner proportional to the first frequency derivative

of the amplitude spectrum of the signal. More specifically, when the ratio of

the first frequency derivative of the spectrum to the spectral amplitude itself

(Le.. AO/A1o)) becomes relatively large, as would occur in the vicinity of a

sharp spectral minimum, then this term can become quite significant in size

and result in a large deviation from the filter center frequency, wk. In particu-

lar this second order term should give a double spike similar to a derivative of a

delta function centered at the spectral minimum of the signal. Such behavior

is, in fact, observed to occur, as is noted in the examples of later sections.

Relationships between.Envelope Function Maxima and

Signal Group Arrival Thnes

The most important and useful feature of the envelope function is the fact

that its maxima occur at. or more accurately near. the times f =tJ"). This allows

the group arrival times to be estimated for each frequency w. Further at these

times the amplitude of the envelope will be near A,°)(00 )

To show this explicitly and to obtain quantitative results, consider the loca-

tion of the envelope function maxima at f =tL") as given by

~I p = o
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( We have, using (61) and (62):

d QN) tl t 8.be62 /= A ()g • (t40) ~t- 1(1+61)+62(t-to())I

Thus maxima occur at:

)  t( =1.2....N. (67)

with amplitudes given by

= ,o)(c,,) 1+ 24(o) ( #JJ (66)

when E"(*) is represented by (58). That is, when terms of order [A4/ 2p]2 are

negligible in the modulation function Mt,, as in (54), then envelope maxima are

predicted to occur at precisely the tJP) group times. Further the envelope

amplitude, at its maxima, gives a measure of the signal Fourier spectrum at

each frequency wt. Note that the maxima times do not explicitly depend on the

condition that polynomial coefficients 61 and 62 be small - although for a trun-

cated Polynomia to be a valid approximation for M, it is necessary that this be

so. Clearly at some stage the "roughness" in the amplitude and group arrival

time as functions of frequency must result in a shift of the maxima away from

the t(* ) values.

In fact. it is not difficult to obtain estimates of the shift in the envelope

maxima due to non-negligible effects of dispersion and amplitude spectra

roughness ( as measured by the frequency derivatives of the signal amplitude

spectra and group arrival times). This is simply achieved by including the next

higher order terms for the representation of M,, ) and Mi{e). in the expression

(57). for the envelope function. In particular, we have:

1Q(")(0&) [(Mj'))' + (U 1 )']"g. 4 (69-a)

with

*. .
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aJ1  I + as(t -tif)) + a,(t -t."')?M

(B9-b)

=W U4 + a.(t -to("))

where.

4,) jAi1Ja=A.J) 1IZ L+ AM Aw A,)L +A )dtP) 2;I

a= AJ)FW o- -yijr

as + 61(tO) Qp") =u Is

=t =, AaO 2 a4 a

Nw tms ofe oderivtv dQ&4 n retained hsofiintrs ar:e fj.wefn

maxma f *(" a te tjI gie y h erso
'60' +tp II 1'f)-'~t)

60 (A') tIft +3a
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(70)

4' = (A,°o' + * " 4 -]- tU- I" iJ
Thus the maxima of the envelope function are at times t given by:

t r) = te) + 6fl4) (71)

where

{t [ ~)Jd~t(R)J A0 {1d[[) A12)- (1) Afai

(72)

It is sufficient, for "well designed" narrow-band Gaussian filters operating on

pulse-like signals, to retain only terms of order &,i in dt4'), so that in this case,

+ A (1) dji ) d ~jn
94") = ,,,.tr-m jt- A. + 3 t -. (O- + o(,,,D (73a)

The form of &Z1 5) is such that the shifts in the envelope function maxima away

from tj") values are saall for pulse-like signals, for which:

to d ti d&3p

I P> ,k > I d>

[440)(q.)j1> jAjP)(rj,)JI> IA')(wa) I > ...

if the filter design criteria of (28) or (29) are satisfied. If the signals in question

do not conform to the spectral smoothness criteria above, then other design

criteria based on the reduction of dt"') to a small number ( relative to 4n)),

would be required. In either case. equation (72) or (73) can be used to (itera-

Stively) correct the estimates of tlJ). using measured t4J) values and first order

estimates of the various derivatives appearing in these equations.
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Since it is t.L") that is measurable, then clearly it is the amplitude of the

envelope function at t =t40) that can provide the consistently measured esti-

mate of the spectra amplitude of the signal. This peak value for 4"') at t =t4) Ls,

from (69) and subsequent relations.

F*"(m";jt wA()fk + A2)ol (",,4)

when carried to terms of order h4. Comparison with the results for E l ) at

t tj"), given by equation (65). shows that we get the same value for the

envelope maxima at d"') when terms of order Ac.l are neglibible. Thus the small

shift in time of the envelope peak from the group arrival time of the signal does

not significantly change the envelope amplitude value, since differences in the

envelope amplitudes at t "') and t ") + 4) are of order awl.

The value of L(") measured at tj" ) . will be very nearly equal to A.)(wt) -

the Fourier spectral amplitude of the signal at ct - when the design criteria of

(28) or (29) are met - since the second term in (74) will be much less than

unity. We can therefore estimate the signal spectrum using

as a good first approximation, and then obtain first and second derivative esti-

mates from differencing the AA° ) values obtained at the set of filter center fre-

quencies (w). These derivative estimates can then be used to obtain a higher

order iterative estimate of A.M). employing (74). This procedure can. of course,

also be used to get higher order estimates of the tjw) values, using (73) and (74)

together.
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CHAPTER I

INTRODUCTION

Historically, normal mode theory has been restricted in its appli-

cations to low frequency bandwidths; namely to low frequency spherical

earth normal modes and to Rayleigh and Love surface waves for flat layered

structures. In this dissertation I will show how spectral solutions of the elas-

tic wave equation can be used to compute complete, high frequency syn-

thetic seismograms for flat, plane layered, and laterally homogeneous struc-

tural models in an efficient manner. The method which I developed is most

useful for computing synthetic seismograms in the zero to ten Hertz fre-

quency range and for source-receiver distances of 10 to 1000 km. I have also

been able to successfully apply the method to exploration geophysics prob-

lems with frequency bandwidths of 100 Hertz and source-receiver distances

of several kin. By making a simple modification to the structural model I

am able to use this method to compute the P and S body waves, in addition

to the surface waves, using only normal modes with real eigenwavenumbers.

I am thus able to approximate a complete solution of the elastic wave equa-

tion with a mode sum which makes this approach much more efficient than

existing complete solution methods which are based upon direct numerical

integration such as the reflectivity method.

A variety of approachs have been used to synthesize the P and S

body waves for laterally homogeneous structures, and all of these approachs

start with a doubly transformed version of the elastic wave equation which

remove the derivatives of time and the horizontal space coordinates. The



-50-

Part HI - A Spectral Method for Computing
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methods differ by the solution of the transformed wave equation which is

used and by the way in which the two inverse transform integrals are

evaluated. The asymptotic methods evaluate either one or both of these

integrals analytically by approximating the integrand function with suitable

asymptotic expansions, and the resulting solution is a decomposition of the

complete solution in terms of rays. These ray theories work well for syn-

thesizing particular phases, but they can be cumbersome to use when trying

to compute the complete solution, especially in certain distance ranges. For

very near field distances (zero to ten kin) and at teleseismic distances

(greater than 1000 kin) and for sources at typical earthquake depths, the

elastic energy is propagating in a fundamentally vertical direction in the

crust. This means that the scattering off of the large discontinuities in the P

and S wave velocities that can occur in the crust and at the Mohorovicic

discontinuity (Moho) can be represented by a relatively small number of ray

paths, and so the major applications of ray theory have been in these dis-

tance ranges. In the 10 to 1000 km distance range however the crust acts

as a waveguide and most of the elastic energy is contained within this

waveguide and propagates in a fundamentally horizontal direction. In this

distance range,' when using a detailed crust and upper mantle model, ray

theories require the a priori specification of a very large number of ray

paths to synthesize the complete solution for the P and S body waves (a

typical example of this is' the P. coda which is seen in the western United

States).

Another category of seismogram synthesis techniques which have

been used over the past fifteen years are the complete solution methods and

these methods all differ from the ray theoretical methods by the solution of

the doubly transformed elastic wave equation which is used. The complete

" . .. - .' .- ..-. .- * • ' , ... - . .. . * .. .... *'** *'* * . '. .. ~. ... . ... ,-*.- .--.
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solution methods, as the name implies, use a complete solution of the dou-

bly transformed elastic wave equation by allowing for all possible P and S

wave propagation throughout the structural model and by treating this as a

boundary value problem. When one uses a complete solution method it is

only necessary to specify the structural model and frequency bandwidth to

compute synthetic seismograms and these synthetics contain an infinity of

rays. In contrast, ray theoretical methods require the user to specify ray

paths and, based upon these specified ray paths, an incomplete solution is

obtained. It is the use of this incomplete solution, in addition to certain

other approximations which are usually made, that causes the ray theoreti-

cal methods to be much more efficient than complete solution methods and

it is primarily this efficiency that has made ray theoretical methods so

popular.

The complete solution methods are themselves broken down into

two general categories which I refer to as the reflectivity method and the

spectral method and these methods differ in the way in which the two

inverse transform integrals are evaluated. I am using the reflectivity method

to refer to all methods which compute both integrals in a direct numerical

manner although the original reflectivity method, as developed by Fuchs

and Muller (1971), is rather restrictive in terms of the horizontal phase

velocity range over which it works. Owing to recent developments (Kind

(1978), Kennett and Kerry (1979), Kennett (1980), Cormier (1980),

Bouchon (1981)) the reflectivity method can now be used to compute com-

plete seismic codas for arbitrary frequency bandwidths and source depths

and for vertically inhomogeneous structural models. If the reflectivity

method were also efficient, then the problem of computing complete syn-

thetic seismograms for flat, laterally homogeneous earth models could be

~ ~ .~ %% %% . % .S%%~']
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considered to be solved however the reflectivity methods are very computa-

tionally expensive and this expense is proportional to the product of the fre-

quency bandwidth and the maximum source-receiver distance. In fact the

computational expense is so high that it limits the use of these methods to

low frequency bandwidths for cases where the complete seismic coda is com-

puted.

One obvious way of increasing the efficiency of complete solution

methods is to analytically evaluate at least one of the inverse transform

integrals as is done by most ray theoretical methods. Unfortunately the

complexity of the complete solution integrand function, for generally com-

plex structural models, frustrates efforts to apply the types of techniques

which are used by ray theoretical methods to eliminate the numerical

evaluation of the inverse transform integrals. There is one straightforward

method however which we can always use to evaluate at least part of one of

the inverse transform integrals analytically and this method makes use of

the residue theorem. We can extend the integration path in the complex

plane into a closed contour and then evaluate the original integral in terms

of a sum of residues which are caused by the poles of the integrand function

which are contained within the contour of integration. These poles

correspond to flat earth normal modes and for structural models which have

totally reflective top and bottom boundaries, one of the inverse integral

transforms can be expressed as an infinite sum of normal modes. The cases

of most interest in seismology are for structural models which have a free

top boundary and an infinite homogeneous half space on the bottom and for

these situations one of the inverse integral transforms can be expressed as a

finite sum of normal modes along with branch cut integrals which come

about due to the semi-infinite nature of the structural model.
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I refer collectively to methods which use the residue theorem to

evaluate one of the inverse transform integrals as the spectral method.

Although this method has not been as popular as the reflectivity method for

computing complete synthetic seismograms, it has undergone parallel

developments and improvements with the reflectivity method. The first uses

of the spectral method actually predate the reflectivity method since the

spectral method is the basis behind the computation of synthetic, flat earth,

Rayleigh and Love fundamental surface waves however, among the earliest

uses of the spectral method for computing a substantial portion of the com-

plete seismic coda, are those of Knopoff, et. al. (1973), Nakanishi, et. al.

(1977), and Mantovani, et. al. (1977) who used a sum of SH normal modes

to compute synthetic SH seismograms. More recently Swanger and Boore

(1978) computed both SH and P-SV synthetic seismograms for near field

strong motion studies using a normal mode sum. All of these uses of the

spectral method had one thing in common which was that a small number

of normal modes was included in the mode sum and this resulted in rather

incomplete solutions to the elastic wave equation.

One fundamental difficulty, which had a large effect on both the

development of the complete solution methods and their ranges of applica-

bility, was a numerical instability which seened to be inherent in the com-

plete solution form of the P-SV integrand function. This numerical instabil-

ity was always associated with the presence of inhomogeneous or evanescent

waves within the elastic medium which exist at horizontal phase velocities

that are less than the local P or S wave velocity. This problem was first

recognized by Dorman, et. al. (1960) when the complete matrix solution for-

malism of Thomson (1950) and Haskell (1953) was applied to the problem

of computing Rayleigh dispersion curves using an early digital computer.

4
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Although the numerical problem was circumvented for the computation of

the fundamental Rayleigh dispersion curve by the use of structural layer

reduction, it wasn't until Knopoff (1964) applied Laplace's development by

minors to the problem of computing the Rayleigh characteristic function

that the numerical problem was formally addressed in an analytical manner.

Knopofrs work was the seed for an area of research which was followed by

Dunkin (1965), Watson (1970) and most recently by Abo-Zena (1979) and

all of this research was aimed at streamlining Knopofis original method and

understanding why it worked as well as it did. The method completely

solved the numerical instability problem, as related to computing the Ray-

leigh characteristic function and thus the Rayleigh dispersion curves, for all

frequency bandwidths and structural models.

Although Knopoffs method works quite well for computing the

Rayleigh characteristic function it does not address the problem of numeri-

cal instabilities which are present in the computation of the depth depen-

dent stress and displacement eigenfunctions. Because of this it has not been

possible to use the spectral method to compute P-SV synthetic seismograms

for buried sources and at high frequencies when using the Knopoff modified

version of the ;rhomson-Haskell matrix formalism. Thus we can see that

there are actually two numerical instability problems which must be solved

in order to use the spectral method to compute P-SV synthetic seismograms

for arbitrary sources and frequencies, and my research has focused on

extending Knopoffs method to solve the eigenfunction numerical problem.

The same numerical difficulties that plagued the spectral method

were encountered with the reflectivity method. The original method as

given by Fuchs and Muller was based directly on the original Thomson-

Haskell matrix method and they avoided the numerical problems by

• , -r. # " % ., . .. - . , . . . . .
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limiting the range of phase velocities to those for which there were no

evanescent waves within the structure. This narrowed the range of applica-

bility of the reflectivity method until Kind (1978) applied Knopo/fs method

to remove the numerical instabilities. Kind also reformulated the integrand

function in a manner which he claimed eliminated the numerical instabili-

ties associated with buried sources. A completely different and novel

approach was taken by Kennett, et. a]. (1978), Kennett and Kerry (1979)

and Kennett (1980) -to solve the numerical problems of the reflectivity

method which was not an extension of Knopoffs original work. They

showed how the doubly transformed complete solution of the elastic wave

equation could be expressed in terms of a set of generalized reflection and

transmission functions. They then showed how all growing exponential

solutions could be eliminated in this ray-like representation of the complete

solution and this eliminated the numerical instabilities for all source depths.

The most recent developments of the spectral method have

focused on solving the numerical problems for arbitrary frequencies, source

depths, and structural models and extending the completeness of the spec-

tral solutions. All of the earlier uses of the spectral method used only a

small number of normal modes and thus produced rather incomplete solu-

tions. Harvey (1981) and Kerry (1981) were the first researchers to use all

of the normal modes with real eigenwavenumbers and I refer to spectral

synthetic seismograms produced in this manner as locked mode synthetics.

The branch cut integral contributions are ignored when using the locked

mode method which gives the most complete spectral solution possible

without using numerical integration or without locating poles off of the real

wavenumber axis. At about the same time Wang and Herrmann (1980)

developed a truly complete spectral solution by including both a numerical
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integration of the branch cuts along with all of the locked mode residues.

As with the reflectivity method, the development of numerically

stable algorithms to use in the spectral method has followed two paths.

Kerry (1981) directly applied the methods developed by Kennett, et. al.

which reformulated the frequency-wavenumber solution of the elastic wave

equation in terms of generalized reflection and transmission functions. I

chose to extend Knopoff's method, which operates directly with the

Thomson-Haskell matrix formalism and uses stress and displacement func-

tions to describe the elastic propagation, and the numerical algorithms

which I developed constitute a substantial portion of my research. Kerry's

locked mode method comes the closest to my own both in terms of the basic

way in which it works and its range of applicability and I will be comparing

these two methods throughout this dissertation.

The research which I will be describing in the following chapters

has as its basic objective the development of an optimally fast, accurate and

complete spectral method for computing P-SV synthetic seismograms for

flat, plane layered, laterally homogeneous structural models. An equally

important criterion which I placed on the method is that it work for the

widest possible' range of frequency bandwidths and structural models. I

adopted this last criterion to cover problems such as high frequency P. and

S. wave propagation in oceanic structural models with liquid and near-

liquid layers and very high frequency near surface wave propagation in

structural models which have numerous strong low velocity zones for prob-

lems in earthquake hazards engineering and geophysical exploration.

Since eigensolutions of the elastic wave equation can be thought

of as providing optimal sampling in the wavenumber domain, spectral

methods should be able to provide the most efficient way to compute

*N% -
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complete synthetic seismograms. I feel that one of the fundamental reasons

that the spectral has not seen the popularity of the reflectivity method has

been the lack of an efficient and reliable normal mode searching algorithm.

A substantial portion of my research has been devoted to developing a truly

fast, accurate and completely reliable mode searching algorithm in order to

realize the potential efficiency of the spectral method. Also, in order to

maximize the efficiency, it was desirable to compute nearly complete syn-

thetic seismograms without making numerical evaluations of the branch cut

integrals. For normal structural models locked mode synthetic seismograms

will not contain any P wave arrivals since they are typically part of the

branch cut integral contribution however, by making a simple modification

to the structural model, one can significantly extend the phase velocity

range which will be represented in the locked mode synthetic seismograms

while simultaneously insuring that a certain time window within the syn-

thetic seismograms will be uncontaminated by the structural modification.

* When the locked method is applied to such modified structural models, I

refer to this as the locked mode approximation which produces nearly com-

plete synthetic seismograms while only using normal modes with real

eigenwavenumbers.

In chapter two I review the basic theory for computing flat earth

normal modes and the resulting displacements. Most of this draws upon

previously published work however I will present a complete and consistent

derivation starting with the elastic wave equation and ending with the spec-

tral solution for flat, plane layered, isotropic and laterally homogeneous

models. During this derivation I will indicate the departure points of the

various seismogram synthesis methods and I will also point out the sources

of the numerical instabilities. The final solution which I derive will be

-"' "" "' -"" "":' ' _ _._ """ii'.,."" "" - "" " " '"" "" " " "'""" " " """
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expressed in terms of proper and improper eigenfunctions representing

respectively the discrete normal modes and the continuous branch cut

integrals.

In chapter three I will address the numerical instabilities which

are inherent in the Thomson-Haskell matrix formulation and I will present

two methods which overcome these instabilities. I start by reviewing

Knopoffs method, along with the later work which was based upon it, and I

give the derivation of a numerically stable computation of the Rayleigh

characteristic function. I then describe a simple method for stabilizing the

depth dependent stress and displacement eigenfunctions which works quite

well for completely elastic structural models with monotonically increasing

velocities with depth except for no more than one weak low velocity zone.

The locked mode method when using this algorithm is functionally

equivalent to the method developed by Kerry and I discuss the restrictions

which these methods have in common. I then proceed to derive a much

more robust method of computing numerically stable eigenfunctions which

has virtually no restrictions. This method works for oceanic models as well

as for complex elastic models with multiple strong low velocity zones and at

arbitrary frequency bandwidths. I finally show numerical examples of depth

dependent eigenfunctions using the two methods for several different struc-

tural models.

In chapter four I describe the numerical algorithms and computer

programs which I developed to implement the computation of locked mode

synthetic seismograms from a starting structural model to the final, three

component time traces at specified receiver locations. The first step in this

process is the normal mode searching algorithm which locates the Rayleigh

and Love dispersion curves and I go into considerable detail to describe the

Y ' , :,s , , *, . ,**,'.¢ ., , '.. . d . . .- , . ,,,., .. _. __



algorithm which I developed. The next step involves the computation of

certain partial derivatives which are necessary for eigenfunction normaliza-

tion and which I use in a first order perturbation approximation to account

for the effects of frequency dependent anelastic attenuation in the structural

model. I give analytic expressions for these derivatives and I show how the

first order attenuation approximation can be computed and applied in a fast

manner which does not require the use of complex arithmetic. In the next

section I describe the actual computer programs which I wrote and the user

interface with these programs. I discuss practical matters such as the algo-

rithms which require the use of double precision arithmetic, the amount of

core memory required by each program, the approximate run times of the

programs, and the structure and size of the intermediate data files which

link the programs together. I then formally present the locked mode approx-

imation and show when the approximation breaks down. In this section I

also show synthetic seismograms produced by the locked mode approxima-

tion and how spurious arrivals caused by the approximation can be con-

trolled. Finally I show comparisons of synthetic seismograms produced by

the locked mode approximation with synthetics for the same structural

models which were generated using other complete solution methods.

Chapter five is devoted to showing examples of synthetic seismo-

grams produced by the locked mode approximation for a variety of fre-

quency bandwidths, structural models and source-receiver distances. In the

first part of the chapter I show a number of examples which illustrate the

characteristics of elastic wave propagation which can be seen when using a

complete solution method. I then show an example in which theoretical

seismograms using the locked mode approximation are compared to real

observed data. This example involves modelling an underground nuclear
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explosion which took place in northern New Mexico and for which receivers

recorded seismograms in the 10 to 100 km distance range and the 0 to 10

Hertz frequency range. This is a well constrained example since both the

source and the structure were known and since the structure was closely

approximated by a flat layered half space.

In chapter six I conclude the dissertation by summarizing the

relative advantages and disadvantages of the locked mode approximation

when compared to other seismogram synthesis techniques. The possibility of

future extensions of my research are discussed which would extend the

range of applicability of the methods which I have developed while main-

taining the efficiency.

4.



CHAPTER II

THE FUNDAMENTALS OF NORMAL MODE THEORY

FOR FLAT LAYERED STRUCTURES

Although the development of the theoretical basis for elastic wave

propagation can be traced all the way back to Lord Rayleigh's time, the

first occurrence of the complete solution of the elastic wave equation in

cylindrical coordinates and for flat, plane layered, isotropic and laterally

homogeneous elastic media is given by Sezawa (1931). He uses a

transformed version of the elastic wave equation which eliminates all deriva-

tives except for the depth derivatives and thus he reduces the problem of

solving the elastic wave equation to one of solving several ordinary differen-

tial equations and evaluating inverse integral transforms. The form of the

solution which Sezawa presents is identical to that used by all modern day

seismologists who work in cylindrical coordinates.

Sezawa did not give solutions for the depth dependent ordinary

differential equations for arbitrary vertical velocity distributions and the

next major development was aimed at solving these equations. Thomson

(1950) derived a solution for the depth dependent differential equations

which was expressed in terms of recursive matrix multiplications.

Thomson's method applied to elastic structures which were composed of

planar, isotropic and completely homogeneous layers which were welded

together along their top and bottom surfaces. Although each layer had to be

homogeneous there was no restriction on the number of different layers that

were welded together or on the thinness of each layer and so, in the limit of

2~
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an infinite number of infinitesimally thin layers, Thomson's method pro-

vided complete solutions of the depth dependent differential equations for

arbitrary vertical velocity profiles. Haskell (1953) embraced Thomson's

approach and basically streamlined it and applied it to produce numerical

computations of the fundamental Rayleigh dispersion curve for several sim-

ple structural models. The Thomson-Haskell matrix method has provided a

formalism for obtaining complete solutions of the elastic wave equation and,

as with Sezawa's work, this has become one of the basic tenets of a large

branch of subsequent research.

It wasn't until digital computers became generally available that

the next major developments in the theory of seismic wave propagation in

cylindrical coordinates took place. In the early sixties a number of research-

er applied the Thomson-Haskell matrix method to write computer pro-

grams for locating Rayleigh dispersion curves (e.g. Dorman, et. al. (1960),

Press, et. al. (1961)). Numerical instabilities in the Thomson-Haskell

method were discovered at this time however these instabilities occurred at

frequencies which were above the range of interest of the researchers. Har-

krider (1964) made the next major contribution by showing how to compute

time domain synthetic seismograms for Rayleigh and Love surface waves

and for arbitrary point sources at arbitrary depths. This research was based

directly on the Thomson-Haskell matrix method and it suffered an addi-

tional numerical instability associated with the source depth.

In the following chapter I give a condensed yet complete sum-

mary of linear elastic wave theory for flat, plane layered, laterally homo-

geneous structures. This treatment will draw primarily from the work of

Harkrider (1964) and Ben-Menahem and Singh (1972 and 1981) who show

how a complete solution of the elastic wave equation can be expressed in

tLis
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terms of vector cylindrical harmonics, but in order to preserve continuity, I

will use my own notation and layering conventions. I will show how normal

mode solutions are derived from the general solutions of the elastic wave

equation and to what extent these solutions are related to other types of

solutions such as ray theoretical and reflectivity solutions. I will also point

out both accuracy and efficiency problems which come up in the numerical

implementation of the theory. These problems will be addressed in detail in

subsequent chapters and constitute the major portion of my research.

2.1 Basic Assumptions

In order to obtain tractable solutions of the elastic wave equation

it is necessary to make a number of assumptions. Most of the assumptions

I have made fall in this category and are absolutely necessary in order to

solve the problem at all. I have however made a few additional assump-

tions which were made primarily to narrow the range of the problem and I

will outline the necessary steps which must be taken to remove these

assumptions.

The first assumption is that of a linearized elastic wave equation.

This is widely'used and accepted by seismologists and is justified by the

small amplitudes of differential strains that are produced globally by most

seismic disturbances. The exception to this is in the near vicinity of a large,

non-linear seismic source such as an earthquake or a nuclear explosion.

Even in these cases we can consider the elastic wave field to be linear

beyond some volume which encloses the non-linear source region and

represent the source by an equivalent linear point source (e.g. Bache and

Harkrider (1976)). In this case our solution will be invalid within the non-

linear region but will be valid outside that region.

II
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The second assumption is an earth structure which is laterally

homogeneous. This is the most restrictive assumption and considering the

attention that seismogram synthesis for laterally homogeneous structures

has received in the past, some justification is deserved at this point. I justi-

fied the laterally homogeneous assumption based upon the following three

premises:

1. A starting point for the solution of certain laterally inhomogene-

ous problems is an accurate, efficient and complete solution to the

laterally homogeneous problem.

2. Although much work has been directed towards the laterally

homogeneous problem, an accurate efficient and complete solution

is yet to be realized.

3. Spectral solutions of the elastic wave equation promise the most

efficient solution to the problem, at least when compared to the

methods used presently.

The second premise can be justified by a quick review of existing methods

for synthesizing seismograms for laterally homogeneous structures. These

methods fall into two general categories: ray theoretical methods and com-

plete solutions Inethods. Ray theoretical methods, although efficient and

accurate, do not, in general, provide complete solutions (Hartzell and Helm-

berger (1982)). The complete solution methods are all closely related to the

original reflectivity method (Fuchs and Muller, (1972)) and suffer from

being rather inefficient. This is due to the direct numerical integration

approach used by all of these methods to compute the inverse Hankel

transform. Discrete spectral representations of the solution, however, allow

for the inverse Hankel transform to be evaluated analytically in terms of a

residue sum which, in addition to avoiding the accuracy problems associated

, ' ,, ',, ,,, ,, -, . .. ,, .-- . '. '. .. . ;'..-. . ' -. . . - .. . . .. " .". v -...-. . . . - ,. - . . .. S, % o .
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with direct numerical integration, also provides a more efficient solution as I

will show later.

The third assumption is the flat earth approximation. This is not

at all restrictive and can be easily justified for several reasons. First of all,

as will be shown later, the major applicability of the spectral method will be

for near field problems where the flat earth approximation is quite good on

its own. If the source receiver distances become large, a flattening correc-

tion can be applied to the vertical structural dependence which will give

very good solutions out to teleseismic distances. It should be pointed out

that all ray theoretical solutions end up making the flat earth approxima-

tion implicitly by using the Poisson sum formula to convert discrete sum

solutions in terms of spherical wave functions to continuous integral solu-

tions in terms of cylindrical or Cartesian wave functions.

The fourth assumption is that the earth structure will be made

up of homogeneous layers connected by flat plane interfaces. At first this

may appear to be a restrictive assumption, but we can represent any arbi-

trary depth dependence for some finite wave length by specifying a large

number of suitably thin layers. The question, then, is whether it is more

efficient and accurate to use a large number of homogeneous layers or a

smaller number of inhomogeneous layers and I will address this question in

more detail in a later section.

The fifth assumption is that the earth structure will be isotropic.

This restriction can be reduced to that of lateral isotropy without any fun-

damental change in the analytical development of the solution although

with the expense of significantly increased algebraic complexity.
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The sixth assumption is that the source of seismic energy will be

a spatial point source. Once again this is not a restrictive assumption since

any distributed source can be represented as either an equivalent point

source or a linear superposition of a large number of point sources placed

along the boundary of the distributed source.

2.2 Differential Equations, Coordinate Systems, and Boundary

Conditions

The most general representation of the linearized elastic wave

equation in Cartesian coordinates is:

+ j +  Pui (2.2.1)

where aij is the space and time dependent stress tensor, fj is the space and

time dependent applied body forces, p is the space dependent density and u1

is the space and time dependent displacement vector. Integer indices range

from one to three with the implied summation convention. Partial differen-

tiation is indicated by, j = a,/dxj and-= a2iat2.

The stress tensor is related to the displacements through the con-

stitutive tensor, C ij k 1:

ij = CijkI Uk." (2.2.2)

Using the first law of thermodynamics and assuming adiabatic elastic defor-

mations, one can show:

Cijkl = Cklij (2.2.3)

and since the stress and strain tensors are symmetric,

Cijk) = Cjib) = Cijk = Cjilk. (2.2.4)

Equations (2.2.3) and (2.2.4) reduce the number of independent components
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in C111 to 21 and this is the number of elastic constitutive parameters

which must be specified for a general anisotropic material. Since we have

assumed a linearized elastic wave equation, each of these parameters depend

only on the spatial coordinates and not on the displacement or any of its

derivatives. Also, since we assumed a laterally homogeneous structure, the

elastic constitutive parameters (along with the density) will only be depen-

dent on one spatial coordinate, x3.

If we assume lateral isotropy about the x3 axis, the number of

independent elastic constitutive parameters reduces from 21 to 5 and follow-

ing the notation of Takeuchi and Saito (1972) we represent these parame-

ters with the coefficients A, C, F, L and N in expression (2.2.2).

a = A(u 1j + u2,2) - 2Nu 2,2 + FU3 3  (2.2.5)

v22 = A(u, + u2 .) - 2Nuj*1 + Fu3,3

0 = F(u1,j + u2 2) + Cu3,3

a = L(u 2,3 + u32) = a 3 2

031 = L(u3,1 + U1.3) = 0'13

012 N(ul,2 + u2,1) = 921

For the case of a completely isotropic material,

A = C= A +2,L= N =p,F= A (2.2.6)

where A and p are the Lame elastic parameters and we can rewrite equation

(2.2.2) in the following familiar form:

Aij 6ijuk, k + P(u -* u!, ) (2.2.7)

Typically the elastic parameters are redefined in terms of the P and S wave
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velocities in a homogeneous isotropic material

o = I+A ±- /p 0= v1,o (2.2.8)

For the cue of a laterally isotropic material we can also define the elastic

parameters in terms of horizontal and vertical propagating P and S wave

velocities.

(2.2.9)

and we are left over with a fifth coefficient, F.

The constitutive relations (2.2.5) and (2.2.7) along with the elas-

tic parameters allow us to model either a full elastic material or an acoustic,

liquid material by setting P = 0. We can also model an anelastic material

by allowing the elastic moduli to have non-zero imaginary components and

this will be addressed in more detail in a later chapter.

In order to easily represent the radiation field from point sources

and to match boundary conditions at horizontal layer interfaces, the coordi-

nates will be changed from Cartesian to a cylindrical coordinate system and

all of the following analytical developments will be done in cylindrical coor-

dinates. The cylindrical coordinate system is shown in Figure 2-1 along

with layer numbering conventions. At a later point in the theoretical

development the assumption of a layered structure will be made and since I

will be writing solutions of the wave equation in each individual layer and

then matching boundary conditions throughout the stack, I employ both a

global coordinate system and a set of local coordinates, each relative to an

individual layer. The origin of the global coordinate system will be at the

free surface with the positive z-axis pointing down. The origin of a local

* a.
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GLOBAL COORDINATE
REE SYSTEM ORIGIN T h(= 0
SURFACE LAE I = 0

LAYER 1
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Figure 2-1. These are the coordinate systems and layer numbering conven-
tions which are used in the theoretical development.
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coordinate system will be at the top of the layer, with the radial and azimu-

thal coordinates being the same for all of the coordinate systems.

I distinguish between the global and local vertical coordinates by

using an unsubscripted or unsuperscripted z for the global coordinate and a

superscripted 5(P) for local coordinates where p is the layer index. The

depth of the bottom of the ptb layer in global coordinates is z = h(P) whereas

the thickness of the ptb layer is C(P), (C(P) = h(p -h(P- 1)). This dual

representation is used for all of the functions of z as well. Whenever a func-

tion of z appears without a layer superscript it is understood that the argu-

ment will be in global coordinates and whenever a layer superscript does

appear, then the argument of the function will be in local coordinates.

Thus for some function, f(z)

f(Z) I + , (2.2.10)

By making the flat earth and laterally homogeneous assumptions, the elastic

moduli and density will be dependent only on the z coordinate and the

lateral isotropy assumption will imply isotropy about the z-axis.

The boundary conditions will be specified either in terms of dis-

placements and tractions, or in terms of wave field functions (radiation con-

dition). The displacements are denoted by u,(r,9.z:t), ue(r,09,z;t), u(r,ez;t),

and the tractions across a horizontal plane are T,(r,O.z;t), T#(r,8,z;t), and

Tg(r,S,z;t). The boundary conditions are as follows:

1. A traction-free surface will exist at the top of the structure (z = 0),

Tr(r,O,0;t) = To(r,O,0;t)= (2.2.11)

= T,(r,O,O;t) = 0 for all r,*,t.

2. Either a radiation condition will exist for a semi-infinite bottom layer,

no sources at z = oc , (2.2.12)

. -

* . -
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or a plate boundary condition will exist for the underside of the bottom

layer at z = H which can be specified in several ways; either

Tr(r,#,H;t) = T#(r,O,H;t) - T,(r,*,H;t) - 0 for all r,#,t, (2.2.13)

or

u,(r,#,H;t) = u#(r,O,H;t) = u.(r,O,H;t) 0 for all r,*,t, (2.2.14)

or

T,(r,9,H;t) = To(r,*,H;t) = u,(r,O,H;t) = 0 for all r,O,t . (2.2.15)

The mixed boundary condition given by (2.2.15) insures no conversion

of P to S energy at the plate bottom or vice versa.

3. Tractions and displacements will be continuous along the z-axis for all

r,e, and t as long as the elastic moduli are continuous except at the

source location.

4. For a horizontal interface at z = h where the elastic moduli change

discontinuously, the boundary conditions will be specified according to

the type of discontinuity. For a solid-solid discontinuity,

Tr(r,f,h*;t) = TT(r,,h-;t) ,

T#(r,O,h*;t) fT(r,=,h-;t),

T,(r,#,hh;t) = T.(r,8,h-;t), (2.2.16)

uT(r,*,h';t) = Ur(r,$,h-;t),

u#(r,$,hb;t) = u*(r,6,h-;t),

and u,(r,*,h-;t) = u.(r,O,h-;t),

for all rO, and t, where h* is just below the interface and h- is just

above the interface.
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For a solid-liquid and liquid-liquid discontinuity

T,(r,*,h*;t) - Tg(r,#,h;t) = 0,

Tr(r,*,b-;t) = Tp(r,,b-;t) 0,

T,(r,f,h ;t) = T,(r,O,h-;t), (2.2.17)

u(r,*,h';t) = u(r,6,h-;t),

for all r,#, and t.

2.3 Separable Solutions of the Elastic Wave Equation in Cylindri-

cal Coordinates

The elastic wave equation (2.2.1), can be written in cylindrical

coordinates as follows:

pi = pfr+ +(-r ar) e + (2.3.1)

r ar r CIO+
+ ' -r

pU = pf + ± - (ref) + s .. ,± ,
,ur &r 8 ---

Likewise, the constitutive equations (2.2.5) can also be written in

cylindrical coordinates for the case of lateral isotropy.

= A - + (A-2N) IU-10 + - u, + F 2 (2.3.2)a . (r a r 3 8z
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(A - 2N)7- + A -+ + iat
8r '10r C r Oz

va: F"1" +F -L +- Ur +C 8z
a= (r 8 r CIS

8U I u

.= a~ -,L+ 2 U , -r + r n ,J233

Nr lu I ua" + ' a +  aU.

a rr = 'AX + 2,u) ZZ--L + Ax Iu + I-_U + !U

cle.=  r r" +  a & 1 (2.3.3

a*#~~~{. (+2u)LU 2U0Au,, 1  +au

°'"= 8: +"8r -- '

u 1 1 Bur

8 Lu .. U 9  11

ar r r CIOas



26

where once again A and p are functions only of z.

Equations (2.3.2) or (2.3.3) could be substituted back into equa-

tions (2.3.1) to eliminate the stress variables and produce a system of three

coupled, second order, partial differential equations in the three displace-

ment unknowns, u., u, and u.. The next step, normally, would be to define

three potential functions of the displacements in order to decouple the sys-

tern of equations (2.3.1). The P wave dilatational potential and the SV and

SH wave shear potential functions will only decouple equations (2.3.1) when

the structure is completely homogeneous and, in the case of an arbitrarily

inhomogeneous material, the representation of equations (2.3.1) in terms of

the potential functions would be completely coupled. Ben-Menahem and

Singh (1981) have shown, however, how separable solutions of the elastic

wave equation in cylindrical coordinates for the case of an arbitrary verti-

cally inhomogeneous structure can be represented in terms of vector cylindr-

ical harmonics. When these separable functions are substituted into equa-

tions (2.3.1), the t, r and 0 dependence are eliminated and we are left with

a set of coupled ordinary differential equations (ODE) in the depth variable,

Z.

I will thus assume the following solutions for the displacements,

u (u,,u#,u,).

e" (u(=kmz P•~r - (2.3.4)

+ u3 (w,k,m,z) Bk'(r,*) + uc(w,k,mz) Ci (rf)J

where w is the constant angular frequency,

k is the constant horizontal wavenumber,

m is the constant integer azimuthal order,

V. AL *1 'A
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and P, B and C are the vector cylindrical harmonics and are given by

i= z''(r,f) - ., Y '(rf)

PB'r,() 
( 

a.3.a
B~"r,) -(. (kr) + r &*I~. Y,.(rD) (2.3.5)

c '(,,O) a e, a Y'(ef ,
k kr 89O (k r)Jh '

where er, •* and e, are unit vectors in the r, 9 and z directions and Yh(r,*)

, is the scalar horizontal wavefunction and is

=Y(rP) = J.(kr) e n. (2.3.6)

J.(kr) is the integer order Bessel function of the first kind.

In order to satisfy the boundary conditions it will be necessary to

compute the tractions across the z=constant plane as well as the displace-

ments. Separable solutions for the tractions in terms of vector cylindrical

harmonics will also be used.

ei"" (TP(w,k,m,z) P m(r,*) + (2.3.7)

+ TB(w,k,m,z) B'm(r,f) + Tc(w,kmz) Ci,(r,*))

where T = (T,,T#,T) and

Tr= n

T,= eu .

Finally, I will represent the body forces, pf = (pf1, pf#, pf.), in the same

manner as the displacements and tractions.

LM*1
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Pf - eIb (fP(Wk,,z) P"(r,,) + (2.3.8)

+ f(wkmz) Bkj(r,.) + fc(w,kms) Ck(r*))

If we substitute equations (2.3.4), (2.3.7), and (2.3.8) into equa-

tions (2.3.1) and (2.3.2) and use relations (2.3.5) and (2.3.6) along with

various properties of integer order Bessel functions, the t, r and 0 depen-

dences can be factored out leaving a system of six coupled ordinary differen-

tial equations of z, in the dependent variables up, u3 , uc , Tp, T3, and Tc.

The resulting z-dependent ODEs can be written as follows:

o kCc 0 0 0
Up 1 Up

u-k0 0 1 0 0 u'

d TP W2 0 0 k 0 0 Tp

0 k2IA- -L2 W--._ 0 0 0
UC j UC

I Tc
0 0 0 0 0 .

0 0 0 0 (k 2N-o,,W2 P) 0

0

0
fp
fB (2.3.9)

0

fc

Once gain the elastic moduli A, C, L, N, and F are arbitrary functions of z

and at this point we have made no approximations or assumptions other

than linearity, laterally homogeneous structure and laterally isotropic struc-

ture.
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Because of the separable form of the solutions expressed by equa-

tions (2.3.4) and (2.3.7), equations (2.3.7) must hold at a fixed w, k and m

for all t, r and 0. Thus the boundary conditions expressed by equations

(2.2.11) through (2.2.17) will be insured by applying them to the depth

dependent spectral functions in equations (2.3.9).

2.4 Solutions of the Depth Dependent ODEs: The Propagator

Matrix

We can write equations (2.3.9) in a more convenient form as fol-

lows:

d {y(z)) I U(z)] by(,)) - {w(z)}, (2.4.1)
dz

where (y(z)} is the six component displacement-stress vector, and is given

by

yl(z) up

y2(z) UB
Y(Z) ITp

y4(Z) TB (2.4.2)

ys(z) uc
Y6(z) Tc

{w(z)} is the six component forcing function vector and for a time and space

distribution of simple body forces is given by

w1(z) o0
w2(z) 0

W3(z) fP

w4(2) =f 
(2.4.3)

wS() 0

WG(Z ,-'

Le.



30

and [U(z)] is a six by six matrix whose element are functions only of w,k

and depth dependent elastic moduli.

It is obvious from equations (2.3.9) that we can partition equa-

tions (2.4.1) as follows,

d {ay(z)) I3U()l {y(z)) - {jw(z)), (2.4.4)

dz

and

d ( () iLU(Z)] {y(z)} - {Lw(z)), (2.4.5)
dz

Where

Y1(z) w,(z)

Y2(z) w2(z)
{Py(a)) 1Y3(2) '(RW(Z)) W3(2)

Y,(z) 1(1)

kF I0 U ~ 0 --
C2 02ayp avp

-k 0 0 1#V2p
fRU(Z)I= -wp 0 0 k (2.4.6)

o p- j 0 k

and

(LY)) yS(Z)j .Lw(z))- WSW)

(2.4.7)

,LU(Z)- (k2,6,p - 2p) ]
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and where the R subscript denotes Rayleigh or P-SV wave motion, the L

subscript denotes Love or SH wave motion, and the elastic moduli A, C, L

and N have been replaced by the P and S wave vertical and horizontal velo-

cities, ov, Ov, &H, and P from equations (2.2.9). We can easily determine

IU] and ILU] for a completely isotropic structure by setting Ova = ,

fv = #H = 6and F= A.

Consider the homogeneous or unforced part of equation (2.4.1),

namely,

7. y) = [U] (y). 248

Gilbert and Backus (1966) studied solutions to this equation and popular-

ized and generalized the propagator matrix method which was farst

employed by Thomson (1950) and Haskell (1953) for the case of a plane

homogeneous layered structure. In order to solve (2.4.8) the matrizant of

[U] is defined as follows,

Z

[A(z,z0)] = II + f[u(rl)] d - (2.4.9)

+ [IUO U( 2)I dfdC, +

where [I] is the unit matrix. Differentiating the matrizant with respect to z

gives,

dg

z IA(z,so)] = fU(z)] + JU(z)] f[U( I)i d~1 +
T0

or

__- rA(Z, 0)1-- [U(s)] IA(z,z0)1 . (2.4.10)
dz
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If we post multiply (2.4.10) by (y(s0)) we arrive at,

d I(z|so)] {.Y('o)) = ju{a)] [A(3s,)] {Y(Z0))}, (2.4.11)
di

and comparing this to equation (2.4.8) it follows that,

{y(z)) = JA(z,zo)] {y(2 0)). (2.4.12)

When we include the forcing function vector {w), equation (2.4.12) becomes

{y(z)) = [A(z,zo)] {y(zo)} - IA(z,)] {w(C)) d - (2.4.13)

The matrizant of [UI given by equation (2.4.9) allows us to pro-

pagate the solution for {y} from some initial depth, z0, to some other depth,

z, and thus the matrizant is usually called the propagator matrix. One

obvious property of the propagator matrix which must be true in order for

relation (2.4.12) to be valid is that,

IA(z,z)] = 11]. (2.4.14)

Another important property of the propagator matrix is that it is only

dependent on w, k, z, and the depth dependent elastic moduli, and is

independent of r, 9 and the azimuthal order m. The major difficulty, then

in determining spectral solutions of the elastic wave equation for a laterally

homogeneous structure, is in computing the propagator matrix.

Consider the {y) vector at three depths, z0, zI, and z2, such that

Z2 > z, > zo. From equation (2.4.13),

91

{y(zl)) = A(zl,zo)] {Y(z0))- f [A(z.:,) {w(f)} dr

and

{y(z 2)) - IA(z 21,z)] {y(z 3))- IA(z2)] {w(f)} df
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or

{y(Z2)) = [A(x2,&,)] JA(zszo)J (Y(so))

- IA(s 2,s1 )] I [A(zl,r)] {w(f)} d"

- f IA(zz,f)] {w()) dr ,

but since

= !A(z1,z0)) {y(bo)} - f JA(z 2, )] {w(r)) dr ,

IA(22 ,ZO)] = IA(Z2,zJ] IA(z,zo)]. (2.4.15)

Equation (2.4.15) expresses an important property of the propagator matrix

which is especially useful when dealing with layered structures. The depth

restriction, Z2 > z, > z0, is actually not necessary and as a corollary to

(2.4.15),

[A(zO,zO) = [1l -
tA(zO,z)] A(zl,zo)l

or

IA(zO,zi)I = IA(zl,zo)]-' (2.4.16)

Thus the upward propagator matrix between two depths is the inverse of

the downward propagator matrix between the same two depths.

For the case of a general heterogeneous structure with depth,

equation (2.4.9) cannot be. solved analytically and the only method

presently available is that of numerical integration. In practice equation

(2.4.1) is integrated with respect to z so that,

{y(Z)) = {Y('o)) + U( )] {y(r) dr - {w(r)) dr
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(2.4.17)

The six by six propagator matrix can be determined by ignoring the forcing

function contribution in (2.4.17) and then numerically integrating U(z)]

(y(z)) six times with each element of the starting value of {y(zo)) set con-

secutively to unity, the other elements being zero. The resulting six values

of the vector {y(z)) will constitute the six columns of IA(z,zo)]. It should be

pointed out at this time that all solutions of the depth dependent ODEs for

an arbitrary heterogeneous medium are in fact approximations to the exact

solution. Thus we should evaluate candidate approximations according to

accuracy, efficiency and ease of implementation.

One candidate approximation which is very popular and rela-

tively easy to implement is to assume the structure is made up of a number

of plane layers, each layer being completely homogeneous. It is obvious

that any arbitrary depth dependence can be approximated by a large

number of sufficiently thin homogeneous layers welded together. The

approximation would then break down at wavelengths less than or equal to

the individual layer thicknesses, and the approximation could be made arbi-

trarily accurate by decreasing the layer thicknesses.

In order to see why the homogeneous layered structure approxi-

mation is easy to implement let us first consider the case of a completely

homogeneous structure. In this case [U] is independent of z and can be

taken outside of the integrals in (2.4.9) which then gives

III+ ( - O)J I _ Z Zo)2iu]I]+ -
IA(z,zo)] = II] + (z - zo)[jU +T+

= exp((z - zo)Iu) (2.2.18)

We can apply Sylvester's formula (Hildebrand (1952)) to compute any func-
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tion of a matrix in terms of the eigenvalues of that matrix.

, II (IUI - An.il])
fIU])= E f(Ak) M,-(..9

1i (Ak - An) (..

where [U] is a square n x n matrix with distinct eigenvalues, Al, i = 1,2,..,n

We now have an explicit analytical solution for the propagator matrix in

terms of the eigenvalues of (z - zo)[U]. From equations (2.4.18) and (2.4.19)

a- we can see right away that the solutions for the propagator matrix will be

exponential functions in z which is what we might have expected for a

homogeneous structure. It is the exact solution for the propagator matrix

given by (2.4.19) along with the simple functional dependence with depth

that makes the homogeneous layered approximation easy to implement,

relatively efficient and arbitrarily accurate. As for as I can determine, there

is no other structural approximation for which an exact analytical solution

for the propagator matrix can be obtained.

The eigenvalues of (z - zo)[U] for SH waves are easy to compute

and from equation (2.4.7) are

= --- (2 - 20) kV - .)./2

~.2 ~ 2 11/2

A 2  (- Z- ) IH 2 2 (2.4.20)

The Love wave propagator matrix can now be expressed as follows for a

solid laterally isotropic homogeneous material.

ILA(z,zo)] = exp [(z- ZO) ILU]

= exp(A1 ) (CLUI A2!l) (2.4.21)
(Al A 2 )
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exp(A2) (LUI - AIli")
(A,1- A2)

[1A(Zz0 )J - LU] -L uinh (i(S - ) LA')

+ 11) cosh(i(Z - s0) LIV)

ILA(Zzo)] =LU] I2 sin(Z - ZO) LV)

+ COS ((Z - ZO) L (2.4.22)

where LV is the Love wave vertical wavenumber and is given by,

L i H' k-2 _W 1 (2.4.23)

I have chosen the vertical wavenumber by analogy with the horizontal

wavenumber so that when L, is real, propagating solutions occur in the z-

direction and when L' is imaginary, inhomogeneous or evanescent solutions

exist. The propagator matrix, however, remains real for all real values of W,

k, fH, $v and p. Also, even though LV is a dual valued function due to the

square root, the propagator matrix itself is single valued. This is because

both values of L1, are included in the propagator matrix which can be more

easily seen in equation (2.4.21) where A, = + i(z - so) L , and

A2  - i(z - o)Ly'

Consider the transformation matrix, (B], which diagonalizes (U).

A, 0 01

1B1j UIIB] = j A2 IA] (2.4.24)

0 0 As

A 6- A" -maim t"' ¥ '' ' ,,I : ", ' I..V ,-'V - . -, .',-,, '\,.; '. ;..-.% '',. ''. """ '
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Obviously, the diagonalized versic of [UJ will consist of diagonal elements

equal to the eigenvalues of [U) and the columns of (BI will be equal to the n

eigenvectors of [U]. Let us use [B] to transform the stress-displacement vec-

tor, (y), alSo.

{v) - [B]- ty),

or

(y) - [B] {} (2.4.25)

Substituting into equation (2.4.8) and assuming a completely homogeneous

material,

[BI -. (v) = [U][B](v),
dz

d
d (v)- [BI - ' U][B]{v),

or

d {v)= JAI {v). (2.4.26)

defining the propagator matrix for the transformed vector, (v}, as [V(z,z 0)]

and applying Sylvester's formula we get,

W Iv(z,zo)] {M(z)}, (2.4.27)

IV(zz0)' exp((z - zo)[A])

exp((z - z0)A1)

exp((Z - Z0)A2) 0

Iv(zzo)] = o (2.4.28)

exp((t - zo)A,)

I.
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This transformed version of the stress-displacement vector has

been used extensively by Kennett, Kerry and Woodhouse (1978) and Ken-

nett and Kerry (1979) who show how complete, numerically stable solutions

to the elastic wave equation for plane homogeneous layered structures can

be expressed in terms of a generalized ray expansion. They refer to the vec-

tor, {v), as the wave or wavefield vector and its elements are decoupled

from each other in a homogeneous material due to the diagonal form of the

wavefield propagator matrix, IVi. The six elements of {v} are, in fact, the

w:, k and z dependent factors in the P, SV and SH potential functions for

upward and downward propagating waves. Thus the elements of the wave-

field vector are the w, k and z dependent complex amplitudes of P, SV and

SH rays travelling either upward or downward through the homogeneous

material. The matrix [B], then, transforms the z-dependent solutions from

a ray representation to a stress-displacement representation. Using IBI we

can easily relate the stress-displacement propagator matrix directly to the

wave field propagator matrix.

[A(z,so)] = [BI (V(z,zo)] [B,-' (2.4.29)

The .B] matrix also proves useful in computing reflection and

transmission coefficients across layer interfaces. Because of the usefulness of

[B], I will compute the P-SV propagator matrix using (2.4.29) instead of

Sylvester's formula. The first step is to compute the eigenvalues of laUl

given by equation (2.4.6). This reduces to solving for the roots of the fol-

lowing characteristic equation: k i
R A4 + A2 RUe R& + - _1 WO +'M + (2.4.30)

+R &J + k2
3 2(j1 2)).
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where RA is an eigenvalue of [RU), and

Sv ,- ,V ,,9 - a ,' -(2.4.31)

VV j9

~vp

,,,2 kQ - k2 ,V 2 k - k.

RA'. and a' are P and S wave vertical wavenumbers and when they are

real, the z-dependent solutions are propagating and when they are ima-

ginary, the z-dependent solutions are evanescent as with Ll,. For a com-

pletely isotropic material,

fl = 1, C - 0,

and we can write equation (2.4.30) as follows:

IA4 + RA (t. + RL',) + R&'aR0 = 0, (2.4.32)

which can be factored as,

(RA 2 + Ri'.?) (R.A2 + R112)) -

so that

RA 2 RV!e (2.4.33)
or

RA2 = - 0i

This then gives the following four solutions for RA which corresponds to

upward and downward travelling P and SV waves.

RAt - + is,. - + i " aA. (2.4.34)

A2 - - iS. - - -

RA3 - + is'1 - + hAVq + +A

Si. ....
. .
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ftA4 l - ip , - iN T-7 - RAO

We can certainly obtain an explicit algebraic solution for 0 2 even for the

anisotropic case, however, the form of the solution will generally be compli-

cated. For the isotropic case the roots LA2, are always real and distinct for

real w, k, a, 0 and p and as long as a * P. For the anisotropic case the

roots, IA2, may be either real or complex depending on the sign of the

discriminant of equation (2.4.30). As long as q is close to one and f is close

to zero (weak anisotropy) we would expect the roots to remain real and dis-

tinct and the resulting wave motion would correspond approximately to P

and SV type wave motion. There will be values of vi and f, however, for

which the roots, RA2, will be complex, but since the coefficients in equation

(2.4.30) are always real, complex values of RA2 will occur as complex conju-

gate pairs.

In order to compute 6B] we need to compute the eigenvectors of

,Il'. We will compose flUI from the four eigenvectors of JftUJ as follows:

IB] = [Rb)l I {1b)2 I b)3 j {tb),] , (2.4.35)

where tb} is a column vector with four components equal to the i' eigen-

vector of [RU1, and

[IRUI - R.A!I1]] = (0) J = 1,2,3,4 . (2.4.36)

The normalization of the eigenvectors is arbitrary and so we will chose the

first component in each eigenvector to be unity so that

RBI = RB12 = RB13 = RB14 = 1. Solving for the remaining components of the

eigenvectors in (2.4.36) we get

RB1i= I (2.4.37)

""i +' ' " "" ' #" J "' '" ""'° -"" 
' '

,r'' 
+

",, '. " ." '. J"" " .. ".+," , "J "P ' . ,' ."", . ,,,..". " • " , " . "
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-i I ___PuV

A l i - - 2

whee i = 1 22#+ 1 n -i-,3,4

61 *V#V2P ObP

Since ~ ~ k~ 2, + -t ',2k ndj =- , VFcnse ht

R! BN e,. - l

B =2tB(A 
2 A3= tB 1 ,abe k iF 4

RBC 2 + Ri3 2

where6i= ±vis oF t 11 , anda u 1,2,3,4.

Since RA 2  FLA, and RA4 - - A3, we can see that,

At - RB2 iR24 =- as B23  (2.4.38)

RB32 - ItS1 , RB34 = - RU

RB 42 3 B4 1 , RB 44 '0 RB43

We can obviously compute LaB]' and from equation (2.4.29) obtain an

explicit solution for the stress-displacement propagator matrix for the aniso-

tropic case.

At this point I am going to assumne a completely isotropic struc-

ture. This assumption is being made primarily to simplify the form of the

solutions for (B] and (A] which will result in a computationally efficient

algorithm, however, there is no fundamental reason why the anisotropic

case cannot be handled in the same manner as the isotropic case. I am also

going to redefine the stress-displacement vector, {y}, as,

•y,(z)

(jY(z) = y3(z)/k ' (2.4.39)

y,(.)/k
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and

I"() I
jyG(Z)/kJ

Similarly, I redefine the forcing function vector, {w), as

I

W2() (W-(Z)

{xw(y)) = W3(2)/k ,{IW(Z)) = {w6(z)/k• (2.4.46)

W4()/k

I will drop the overbar in the following development in order to simplify the

notation. From the definition of the matrix, JIB], and assuming an isotropic

homogeneous structure we arrive at

i .i. 1 1

1 1 iOp -i#p

2 pc2 00. -pc2 .y-0. Pc2(7-1) pc2(-i-

where we have changed the normalization from that defined by (2.4.37)

and,

c = ._ is the horizontal phase velocity, (2.4.42)
k

€o = // - I, VI =  V - I are the cotangents of the incidence

angles for plane propagating P and S waves,

and - - 2( 9/c) 2.

Note that ,. = kO. and vp = k0p and that by redefining the stress-

displacement vector with equation (2.4.39) we. have eliminated W depen-

dence from IRB]. We can easily compute [IB - ' from (2.4.41)

I

p - # , i. V-~
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i#*pc PC21#O

611 1
2 - 2i#

2B- T1f. (2.4.43)
io' PC~i#p PC2

b1)1 1 - -1

ioO PC2i#* PC2

Using equations (2.4.2B), (2.4.34), (2.4.41), (2.4.43), and (2.4.29) we can

solve for the Rayleigh wave stress-displacement propagator matrix for a

solid material.

1A11(z,zo) 1 P-) cos(IF.) + -rcos(Dq) (2.4.44)

RA, 2(zz 0 ) =- y~snD - (3ifl. sin(O,)

RAl(,O -i sin (f.) + -- sin(Gp)

RA,4(z-.j. --L (Op).
PC 2  PC2

RA 2 ,(z,zo) b -- 1) sin(f 0 ) - P7#g0sin(ef)

atA22(z,s) I P cos(*,) - (,I-I) cos(*Op)

tA23(z,zo) = RA 1 4(z,zo)

=;-2 sin(*0 ) TC2.sn( 1

RA31(ZZo) PC - b _C 1)2 sin($.) - pc2I ##sin(Dp@)
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IA3(&Ao) - pct (7- ) cos(9.) - pc'-y(- 1) cos(Uo)

1tA3(z,zg) - IaA11(z,z0)

aA4(szzo) - - 1A21(zso)

RA4,(Zzo) = - 1A32(Z.Zo)

RA42(zIZ0) PC It p 2 ,0#sin(#.) - PC 2(- )2 i()

RA43(,ZIO) = - R1(~o

RA44(z) w RA22(z,ZO)

where

9, = (z - zO) V. = (z - z0) k4., (2.4.45)

and

i = (z - so) ap = (a - 'o) k ,,

Once again, as with the SH case, we can see that although #,, a,0 and 9s

are dual valued, the elements of the propagator matrix are all single valued.

In order to compute the propagator matrix for a liquid or acous-

tic layer let us renormalize the last two columns in , B] with I/(i#,) and

then let 8 --- 0. We can see from (2.4.41) that the last two columns and the

last row of [RB] will go to zero and the 4 x 4 [RB] matrix will be singular

and non-invertible. For an acoustic layer only the upward and downward

P-wave solutions will exist and so we need to partition out a 2 x 2 non-

singular matrix from the 4 x 4 [6B] matrix in order to determine a solution

for the acoustic propagator matrix. We define the acoustic [B) matrix as

follows.
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=) LAB! ,l'(,)J (2.4.46)

where

[ABI -,P - Oj". (2.4.47)

We should note that the second and third rows of JRBJ are linearly depen-

dent for i 0 and so for an acoustic layer,

y() - -pc 2 Y2(Z) • (2.4.48)

We can invert LAB] to get

- I (/p 2.4.49)

and obtain the 2 x 2 acoustic propagator matrix.{' y(z)l / I ('°~)

y1() " lAA(z,zo)] lys(,)) (2.4.50)

LA(z,zo)j = -p2,i,(f. ) _ PCos(p.) (2.4.51)

0.

We can also rewrite (2.4.51) in terms of a 4 x 4 matrix using equation

(2.4.48).

cos(.) -,.sin(f.) 0 0

sin(O.)
-cos(D.) 0 0

IAA(z,zO)] = 2 (2.4.52)
0.i# -pc 2cos(9*) 0 0

0.0 0 001



46

We have already dealt with the Love wave propagator matrix,

but we will write down the solutions for [LB], 6B]', and [LA(s"%)] for the

case of an isotropic homogeneous material.

ILBI - 9'i' _p9I) (2.4.53)

[LBI-= J , (2.4.54)

cos(P) sin()

LA(zzO)I = 
1  o,fsin(O#) :os( .1 (2.4.55)

Equations (2.4.44), (2.4.55), and (2.4.52) give the stress-

displacement propagator matrices for P-SV, SH, and acoustic materials

which are completely homogeneous and isotropic. In order to compute pro-

pagator matrices for a homogeneous layered structure we need to apply the

layer interface boundary conditions given by equations (2.2.16) and (2.2.17).

(0)
First we start by defining the layer propagator matrix, ja 1, which relates

the stress-displacement vector at some point within the ptb homogeneous

layer to the stress-displacement vector at the top of the layer.

* {y(P)(=(())) =a (y(P )(o)j, (2.4.56)

(p)

ja ((P))] = IA(z,h(P-1))], (2.4.57)

where f() = z - h(P-n, 0 <f < eP),

and ), (P) and b(") are shown in figure 1.

When r(P) C(P) then the layer propagator matrix will relate the stress-

p
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displacement vector at the bottom of a layer to the vector at the top of the

layer.

For a solid material we can now start at any layer interface, p,

and propagate the stress-displacement vector to any other interface, q,

(where p < q) by applying the welded interface boundary conditions

expressed by equations (2.2.16) and by repeating equation (2.4.56) and in

doing so we define the interlayer propagator matrix, [A(q'P)J,

{h(q))) = [A (qp) (y(b(P))) . (2.4.58)

The interlayer propagator matrix is,

q (q+p+1-1)

[A(rP) I ~ a (~qPi)J(2.4.59)

For a solid-liquid, liquid-solid, or liquid-liquid interface, the situation is a

little more complicated and I will cover these cases in the next section.

Equations (2.4.44), (2.4.52), (2.4.55), (2.4.57), and (2.4.59) give

the ezact solution for the stress-displacement propagator matrix in a verti-

cally heterogeneous material made up of plane homogeneous layers. Thus

the approximation made here is in the representation of the structural

model and not. in the solution itself. As I stated previously, candidate

approximations for the propagator matrix in an arbitrarily heterogeneous

material with depth must be compared on the basis of accuracy, efficiency

and ease of implementation. The plane homogeneous layered approxima-

tion is exact for the structural model it represents and can be made arbi-

trarily accurate to represent any structural model in a straightforward and

physically interpretable manner. Also this approximation is relatively effi-

cient and easy to implement due to the simple algebraic-trigonometric form

of the solution.
5,,
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I was able to compare the homogeneous layered approximation

directly with the full wave theory or Langer approximation which has been

used extensively by Paul Richards and was modified by Vernon Cormier

(1980) to compute the stress-displacement propagator matrix in a layered

structure in which the layer elastic moduli vary linearly with depth. The

Langer approximation ran about ten to twenty times slower than the homo-

geneous layered approximation on a per layer basis. Also the Langer

approximation is an approximation of the solution and not in the represen-

tation of the structure and it breaks down when velocity gradients within a

layer become large. When this happens the structure must be broken up

into thin layers as with the homogeneous layered approximation.

2.5 Integral and Spectral Representations for the Solution of the

Elastic Wave Equation

Equation (2.3.4) represents a solution of the elastic wave equation

for all t, r, 9, and z in terms of the constant parameters w, k and m. The

final solution will be some appropriate linear combination of solutions of

form (2.3.4) spanning the range of the parameters w, k, and m, and this

appropriate combination will be determined by the source vector,

{w(W,k,m,z)}, in equation (2.4.13). In order to determine the source vector

we first define the following transforms:

F(f(t)) = f f(t) e-" ' dt, - co < c % + 00 (2.5.1)

SF-'(f(w)) f f(w) e+w d, (2.5.2)

where F(') is the integral Fourier transform and F- (-) is the inverse

integral Fou .r transform,

r
" g' ' , .>5 ' >' .k'. ,: , ,.,. ,,:. ,. "' .-,-...,, -' ,' -.:-."- .' ,- - , %',- --,-.o..,.. _%,', L%,
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G (f()) Q 4jf(D) - " d, m, -o, ,-1,0,1,"

G-(fr(m)) -- E ((m) e

where G () is the discrete Fourier transform G-(.) is the inverse discrete

Fourier transform,

H (f(r)) f f(r) Jm(kr)rdr, (2.5.5)

0 4 k < +00, m - -0,---,-1,0,I,-- ,+oo

H -(f(k,m)) = f(k,m) Jm(kr)kdk, (2.5.6)

H(') is the Hankel transform and H-'(') is the inverse Hankel transform.

Note that these transforms are normalized so that,

F-'(F(f(t))) = (t),

G-(G (,(*)))= ,(),

H- (H (f(r) = f(r) , for all m.

Ben-Menahem and Singh (1981) show how any vector, x(r,P), can

be expanded in terms of vector cylindrical harmonics

x(rO)= E . fkdk [xp(k,m) P'(r,*) +

xe(k,m) B'(r,) + xCCk'(r,)], (2.5.7)

where using the vector cylindrical harmonic orthogonality relations,
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xp(kM) - rdr d* X(r,f)" P_'(r,,), (2.5.8)

XB(km) - rdr d* x(r,D)" Bm (re),

XC(k,m) = rdr f dO x(r,*) "Ck' (rO),

and * denotes complex conjugate. We can express the body force vector,

pf(w,r,Uz), as (2.5.7) and thus the displacement vector u(w,r,D,z), as

u(w,r,9,z) = kdk[up(wkm'z) Pkm(r'*) + (2.5.9)

+ uE(w,k,m,z) B'(r,G) + UC(w,km,-) Ckm(re)]

In order to obtain the time domain solution, we apply the inverse integral

Fourier transform to u(w).

* +00

u(t,r,,) = _f dw e" u(w,r,O,z) (2.5.10)
u~t'r*'z) -00

The actual values of the stress-displacement vector, {y} and thus

the values of U, uB and uC will be functions of fp. fB and fC in equation

(2.3.8) and using (2.5.8) these are,

a0 2W

fp(w,k,m,z) = 4 rdr 4 di pf(w,r,*,z) -P' (r,) , (2.5.11)

00 2w

fB(W,k,m,z) = 4 rdr 4 d* pf(w,r,O,z) B (ri), ,

fC(W,k,,,z) - rdr dD ,Cr,,,)• (r, ),
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where

4.e

pf(w,rAzD) f dw e-" pf~t,r,Z).
-0

Equations (2.5.11) allow us to express any space and time distribution of

body forces in terms of frequency and depth dependent vector cylindrical

harmonics. Using equations (2.4.3) and (2.4.13) along with the expressions

for the propagator matrix and the boundary conditions at the top and the

bottom of the structure, we can compute the stress-displacement vector at

any depth. Finally, with equations (2.4.2), (2.5.9) and (2.5.10) we can com-

pute the displacement vector, u, for all space and time.

At this point I will make the following assumption regarding the

source vector, {w}.

{(Wk,mz)) - 6( -,.) {E(w,kn)) (2.5.12)

I am thus restricting the source to a horizontal plane at depth a.. We can

see from equation (2.4.13) that if z< 2< 20 , or if z.< so < z , or if

a > 2> z0 , or if z> z0 > z (i.e. z., is not between z and zo), then the

integral in (2.4.13) will be zero. On the other hand, if z < z, < Z0, or

z0 < % < z, then

fy(z)) = [A(z,s0 )l {y(s 0 )) - IA(i,i,)] (E), (2.5.13)

3< 2 < z0 o r 20< 21< 2.

The vector function (E} is called the source jump vector since it causes a

discontinuous jump in the stress-displacement vector. Notice that this

"jump" condition only exists when the source is restricted to a horizontal

plane (or a point) and that for a spatially distributed source in depth, the

I P).
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stress-displacement vector will remain continuous everywhere.

The problem of computing the stress-displacement vector for a

given source at depth a, has now been reduced to a linear algebra problem.

For a completely solid material we can relate the stress-displacement vector

at the top interface to the stress-displacement vector at the bottom inter-

face as follows:

(y(0)} - IA(0,,,)] {(,;zs)}, (2.1.4)

I {y(H))}- [A(H,z.)] {(t +")},

{(.,9)} = {y(z.))- {E),

where z.- is immediately above the source,

and so+ is immediately below the source,

and 0 = T is the depth of the top boundary,

and H B is the depth of the bottom boundary.

We now need to apply boundary conditions at the top and bottom of the

structure. These boundary conditions can be expressed in terms of zeroing

out some linear combinations of the stress-displacement vector and so we

define the [E] matrices as,

!TE] {y(0)} {(y, (2.(.-5)

[BE] (y(H)) {0},

where the superscript T denotes the top interface and B denotes the bottom

interface.
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The two [El matrices will, in general, not be square and may have

different dimensions. For a solid structure both ITE and IBE] will have six

columns and the sum of the number of rows for both matrices will be six.

)The number of rows for each matrix will be equal to the number of boun-

dary conditions at that interface and in practice there will be three boun-

dary conditions at each of the top and bottom interfaces. The [EI matrices

are given below for the various boundary conditions expressed by equations

(2.2.11) through (2.2.15).

1. A traction free surface,

JEJ 0 00 1 001 (2.5.16)

10 0 0 0 11

2. A rigid surface,

I 000001

(EJ 0 1: 0 0 0 1 (2.5.17)

3. Zero shear tractions and zero vertical displacement,

IE] = 00100w (2.5.18)
10000J

4. No upward propagating P or S wave radiation (Sommerfield radiation

condition for a bottom half space). In order to do this we must first

transform the stress-displacement vector to the wavefield vector using

the transformation matrix, [B]- . We then pick out the first, third and

fifth rows of [B] - to give for a solid half space,

'' " ,- . v .. = ""* ,' """" """"" ' " """_" . -"". . .' ,,..." """""/ ' ' , -",-", ,, . ..'- " " ' ' '- " ,,, '- -" ,,"o .:".. ' ., -"
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tEl- IIA .. J. - 1 0 0 1,(2.5.19)
2 Pc2 i# C

0 - 0 0 0 1 1

where the elastic moduli are those of the half space,

s. No downward propagating P or S wave radiation (Sommerfeld radia-

tion condition for a top half space). In this case we pick out the

second, fourth, and sixth rows of IBf'l.

i~e PC2 PC i# a

IEJ = -1 1 y (Y1) - 0 .(2.5.20)
2i pOc~i,00 PC2

0 0 0 0 1

As with the propagator matrix, it is obvious that we can partition the

[El matrix into a 2 x 4IRE] matrix and a 1 x 2 ILE] matrix.

From equations (2.5.14) and (2.5.15) we arrive at,

ITE] IA(o,z.) { (2.)) = 0) (2.5.21)

[BE] IA(Hzs)] {(251) ( 0),

IBEJ JA(H,z,)j fygs) _ IBf] [A(H,z.)] (E). (2.5.22)

we now define the [DJ matrices as follows,

[TD(z)J ITE] IA(0,z)l , (2.5.23)

IBD(s)] - BE] fA(Hz)] , (2.5.24)
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so that

ITD(s)] (y(s)) - (0) ,x < so, (2.5.25)

and

lBD(z)) {y(s)) - (0),z >s ., (2.5.26)

Equations (2.5.25) and (2.5.26) are important relations and will constitute

the basis for numerically stable computations of the stress-displacement vec-

tor. We can now specify the stress-displacement vector immediately above

the source as,

ITD(s,)] y(z-)) - (0), (2.5.27)

IBD(zdl {y(z-)) - IBD(zo)] {E).

This gives us six equations in the six unknowns, {y(z,")), so we can solve for

{y(z,-)). We can then compute the stress-displacement vector at any other

depth by using the propagator matrix

4 0)
ID(z,)] (y(z,)}- , (2.5.28)

[B(25)] E)},

(y(,)) IA(z,,)] {y(z)) ,z < ,,, (2.5.29)

(y(z)) - IA(z,z)] ((Y(,6)) - (E)) 'z > ,, (2.5.30)

where ID(z,)] is a six by six matrix composed of ITD(z,)] and PD(zs)] as,

[TD(z,)}

ID(s,)] ------ - (2.5.31)
IBD(%.)]
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Once again JD(z,)] can be partitioned into a four by four Rayleigh matrix

and a two by two Love matrix.

So far, in order to compute the various IDJ matrices, we have

assumed solid-solid welded interfaces and this approach must be modified

somewhat to handle acoustic layers. Of course, Love waves will be com-

pletely blocked at a solid-liquid interface and so we will only need to

address the P-SV problem. Let us first consider the case of the P-SV

stress-displacement vector being propagated upward through a solid to

liquid interface. In this case we will denote the stress-displacement vector

in the solid material immediately below the interface as {Ry) and the

stress-displacement vector in the liquid material immediately above the

interface as (Ay). From equations (2.2.17), the boundary conditions at the

interface require the following:

Ry I  AyI  
(2.5.32)

RyS = Ay$

Ry4 0,

Ay4 0.

In this case the shear displacement will generally be discontinuous. Within

the solid layer there are generally four linearly independent components of

the stress-displacement vector with a four column (and usually two rows)

[IBD] matrix. Within the liquid layer there are two linearly independent

components of the stress-displacement vector with a two column (and usu-

ally one row) BDI matrix. The problem then is to apply the boundary con-

ditions given by equations (2.5.32) to determine the elements of JBDI from

? *.~ i *,.i , * .... ...... d. ' i mlil. "-., - ', , - , . .' ,-,*.'-.'..,., ., . :. *-
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the elements of [D) at the interface. This is a straightforward problem

and the results are as follows:

BD . BD BD BD BD (..3
A i R 11R 22 R 12 R 21' (25.3

AD2  R 13 RD2 2 RD12 R 23

where

0 -IBJ( Ay) =IBD, BD 2  (2.5.34)

For the case of the stress-displacement vector being propagated upward

through a liquid to solid interface, the same boundary conditions apply and

the resulting [,BD] matrix is as follows:

B~DJ BD, (2.5.35)

RD13 A 2 ,

BD =
R 24

BD .. BD BD BD BDUI
R 12 R 14 'R 21 R 22 R23

The results for downward propagating ITD] matrices are identical.

Given the stress-displacement vector, we can write the integral

equations for the displacement vector given by (2.5.9) as Rayleigh and Love

wave components.

(2.5.36)

ftu(wr,,3 -y,(~km~~z ~ Jm(kr) -mI~r em kdk2wr ~ r *(kr
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1 im

2r E , Y 3 (Wkmz;z5 ) Jm(kr) ep kdk

and

(2.5.37)

L( ) =f y5(Wkrmz;zS) Jm(kr) m j m' kdk

+r -- Y(wk'rz;z,) - .rm Jm(kr) + jm+l(kr) em' kdk

LU,(,,rOz) = 0,

where Y1, Y2 and ys come from equations (2.5.28), (2.5.29) and (2.5.30).

Equations (2.5.36) and (2.5.37) are the basis for the various

numerical integration approaches which I refer to collectively as the reflec-

tivity method. First popularized by Fuchs and Muller (1971) this direct

integration method has been modified and expanded by Kind (1978), Ken-

nett and Kerry (1979), who eliminated certain numerical instabilities, Cor-

mier (1980), who applied the Langer approximation to model inhomogene-

ous layers and deformed the contour of integration to avoid singularities in

the integrand function and Bouchon (1981), who established a spatial sam-

pling theorem with respect to the Hankel transforms and applied this

theorem in a discrete wavenumber method for evaluating the wavenumber

integrals. All of the reflectivity methods have in common the direct numer-

ical integration of the wavenumber (or slowness) integrals in equations

(2.5.36) and (2.5.37).



59

Another approach for evaluating the wavenumber integrals is to

deform the contour of integration in the complex wavenumber plane so as

to encircle the singularities of the integrand function and then apply the

residue theorem. The integrals given by equations (2.5.36) and (2.5.37) are

not amenable to this since the Bessel functions blow up as I k I -, o, how-

ever, Lapwood (1949) and more recently Hudson (1969) have shown how

the Bessel functions can be changed to Hankel functions of the second kind

by extending the contour of integration to -oo.

f(kin ) kdk f f(k,m)H{)(kr) kdk (2.5.38)

where f(k,n) = (-1)' f(-k,n),

and H ( 2) is the integer order Hankel function of the second kind.

The Hankel functions go to zero as Ik -k cc and Im(k) < 0, so

the contour of integration can be closed by including a semicircular arc at

infinity in the lower half of the complex wavenumber plane. We now need

to consider the locations and characteristics of the singularities of the

integrand functions.

The singularities of the Hankel functions are well known and so

we turn our attention to the singularities of the stress-displacement vector,

{y), as a function of complex wavenumber. First of all we will address the

question of when (y} is a multivalued function of wavenumber with atten-

dant branch points and branch cuts. The only multivalued functions to

appear in the propagator matrices or boundary condition ([EJ) matrices are

the dual valued vertical wavenumber functions, &,, and Y. (as 0. and

In the case of the propagator matrices, these functions always appear either

as arguments of even functions (e.g. cos((z - zO)j,.)) or in products or quo-

L~2~Q~r~i
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tients (e.g. V. sin((z - t 0)v), sin((& - s 0)/&, 0) such that the result is

single valued, and thus the propagator matrices are single valued. The

boundary condition matrices, ITE] and IBE], however, may be either single

valued or multivalued depending on the type of boundary condition.

For conditions where all incident seismic energy is reflected for all

wavenumbers (equations (2.5.16), (2.5.17), and (2.5.18)), the [El matrix is

single valued and if both [TEl and [BE] are determined by one of these con-

ditions then we will refer to this as the plate problem. For the plate prob-

lem the various [D] matrices will also be single valued, as can be seen from

equations (2.5.23), (2.5.24) and (2.5.31) and since the source jump vector,

{f}, is always single valued, the stress-displacement vector will also be sin-

gle valued as can be seen from equations (2.5.28) to (2.5.30). Thus the con-

tour of integration can encircle the lower half of the complex wavenumber

plane without being required to detour around any branch cuts or branch

points.

The case of most interest in seismology is what we will refer to as

the half space problem, that is, a reflectivity boundary condition at the top

and a radiation boundary condition at the bottom of the structure. The

free surface boundary condition will be applied at the top of the structure

and thus ITEI will be single valued and given by equation (2.5.16). The

radiation condition given by equation (2.5.19) will specify the boundary

condition matrix at the bottom IBE], but in this case the matrix will be four

valued for P-SV waves due to the & and v, functions (in the form of 0.

and 0,), and two valued for SH waves due to v. (q). We can see then

that the P-SV stress-displacement vector will be four valued with two

branch points at ,= 0 Pnd v= 0 and two branch cuts emanating from

I,
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these branch points and the SH stress-displacement vector will be two

valued with one branch point at v# = 0 and one associated branch cut. The

contour of integration must be deformed around these branch cuts and

branch points in order to stay on an analytic path and the resulting branch

cut integral contributions are well known and physically attributable to the

energy which "leaks" away into the bottom half space (Gilbert (1964)). We

have been somewhat remiss in this analysis since v, and &,g are functions of

k2 and so for every branch point at +k there is another at -k. Conse-

quently, there are actually four branch points and branch cuts for the P-SV

case and two branch points and branch cuts for the SH case, however since

the integration contour circles only half of the complex wavenumber plane,

only two branch cut integrals will occur for the P-SV case and one for the

SH case. As we will see this symmetry will also be characteristic of the

poles of {y} as well as the branch points and branch cuts.

The remaining singularities of the stress-displacement vector are

the Rayleigh and Love poles which occur at values of w and k for which the

ID] matrix in equation (2.5.28) is singular. For a fixed frequency these

poles will occur at discrete wavenumbers, however in the (wk) space these

poles form continuous functions of wa and k which are commonly called

dispersion curves. Thus, in order to locate the poles, we can either fix fre-

quency and look for discrete poles as a function of wavenumber (or phase

velocity, slowness, etc.), or fix wavenumber and look for discrete poles as a

function of frequency. Whenever the ID] matrix is singular, we can write

equation (2.5.28) as follows:

[D(K (n,w),z,)] {E (n,(,0))} = {0), (2.5.39)

where K (n,w) is the nth value of wavenumber which at frequency w for

P ..
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(2.5.39) is true given {E (zs)) # (0). Note that equations (2.5.39) and

(2.5.28) are identical if (y} - {E) and if {E} - {0). Thus the {E) vector is

the stress-displacement vector for the unforced vibration problem, or in

other words, {E (ni,w,z)) is the depth dependence of the nth flat earth normal

mode at frequency w.

Kazi (1976) shows how (2.5.39) can be written as an eigenvalue

problem for SH waves and defines a Love wave operator whose eigenvalues

are LK 2(nw) and eigenfunctions are {LE(n,wz)) The definition of a Ray-

leigh wave operator is not so straightforward because of the P-SV coupling,

however, we can still compute Rayleigh wave eigenvalues and eigenfunc-

tions by searching out the singular values of IRD(w,k)]. In order to do this

we will first propagate the eigenfunctions from the source depth to the sur-

face so that,

ID(K (n,w),0)] {E (n,w,0)) = f), (2.5.40)

where

ITE(K/ (nw))]

[D(K (n,),.)] -------- (2.5.41)

D (BD(K (n,w),O)]

Note that since the (E) vector is a particular type of stress-displacement

vector, it has most of the properties of the stress-displacement vector and,

in particular, it can be computed at different depths by applying the correct

propagator matrix. One property of {E) which is not true of (y), however,

is that {E) is continuous ever)where with depth and does not suffer a

discontinuity at the source depth. In fact, from equation (2.5.39) we can

see that the eigenvalues and eigenfunctions are completely independent of

any source characteristics since z. in that equation can be replaced by any
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other depth we chose (as in equation (2.5.40)) which of course is what we

would expect for normal mode solutions. It is this decoupling of structural

wave propagation characteristics, as manifested by its spectra or normal

modes, from the source and receiver characteristics that makes the normal

mode method an efficient solution of the elastic wave equation.

Returning to (2.5.40) we now need to compute the determinant of

[D] which we will refer to as the characteristic function

RtA.(w,k) = det(lRD(w,k,0)]) , (2.5.42)

LA( = det([LD(w,kO)]).

Assuming a free surface boundary condition we can write the !D) matrices

as follows:

0 0 1 0

0 0 0 1
IRD(w,k,O)I BD (0) BD(9) BD (0) BD (O) (2.5.43)

R 11 R iz R A R1
BD (0) 22(0 B D(o) BD(
R 21 R

and

0 !
ILD(w,kO)] B (0) BD o (2.5.44)

We can easily solve for the characteristic functions which are as follows:

,k)= BD 1 (W,k,0) BD 2(,k,0) (2.5.45)

- BD1 2(wk,0) RD21(w,k,0) ,

,k) - BDI(w,k,0) (2.5.46)

The characteristic functions are scalar functions of w and k and implicitly
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define the eigenvalues by,

RA(w,RK (nw)) - 0, (2.5.47)

and

Ll&(wLK (n w)) 0.

The normalization of the eigenfunctions is arbitrary and so we

will assume a vertical .displacement and SH shear displacement of unity at

the free surface. We can solve for the remaining non-zero eigenfunction, the

P-SV radial shear displacement in terms of the [D] matrix elements so that

RE (n,'WO) - 1 (2.5.48)

RE:(nlw,O) = - (KD(wRK (n,w),0) BD24 ( ,RK (nw),0)

- JDl(W,RK (n),O) VBD K,RK (nw),O))

BD K(n,.,),0O) BD K(n,.),0)

- I DI4 (w,RK (n.w),0) BD 2 (wRK (n,w),0))

RE3(n, ,O) = 0

RE 4 (n,w,O) - 0

LEl(nwO) = 1 (2.5.49)

LE2(n,w,0) - 0

With the surface values of the eigenfunctions defined, we can compute the

eigenfunctions at any other depth simply by using the appropriate propaga-

tor matrices.

.Mile&'~
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In order to use the normal modes we must say something about

where the modes will be located. As with the branch points, for every

eigenvalue at +k there will be one at -k due to the fact that the [Dj matrix

elements are functions of k2 (or equivalently c2). In general, for all of the

Riemann sheets there will be both pure real and complex eigenwavenumbers

(the exception to this are SH and acoustic plate problems for which the

eigenwavenumbers are always either purely real or purely imaginary). The

complex poles will be easy to deal with since we will include the residues of

those complex poles which are within the contour of integration, however

the poles on the real wavenumber axis cause a problem since the integration

contour goes directly through those poles, and we cannot know off hand

whether or not to include their residue contributions.

We could compute the principle values for these poles, but there

is a simpler way to deal with this problem. Basically, we will apply a per-

turbation to the frequency, wi, such that the poles move off of the real

wavenumber axis and can be easily identified as being within or outside of

the contour of integration. We can allow the frequency to have a small,

constant imaginary component as long as Im(w) < 0 in order to insure that

the Fourier transform remains analytic. For each pole on the real

wavenumber axis for real frequency, we can compute the group velocity, U,

as the slope of the dispersion curve in the w, k space, or,

U(n,w) - dwl/dk JRK (n,w)" (2.5.50)

A small change in w, 6w, will thus cause a small change in RK (n,wi), 6K,

such that,

6K - 64U (2.5.51)
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So for poles on the positive real wavenumber axis, if the group velocity is

positive then a small negative imaginary perturbation of frequency will

move the poles into the fourth quadrant where they would be within the

integration contour, and if the group velocity is negative then the frequency

perturbation will move the poles into the first quadrant where they will be

outside of the integration contour. However, for every pole at +k there will

be one at -k and it is easy to show that a pole at +k with group velocity U

will have a companion pole at -k with group velocity -U. So the companion

poles to those on the positive real wavenumber axis with positive group

velocities will have negative group velocities and will move into the second

quadrant where they will be outside of the contour of integration. The

companion poles to those on the positive real wavenumber axis with nega-

tive group velocities will have positive group velocities and will move into

the third quadrant where they will be within the contour of integration.

The net result is that all poles with positive real wavenumbers and positive

group velocity will contribute their residues to the wavenumber integral and

those poles with positive real wavenumbers and negative group velocity will

contribute with their companion poles at -k. The wavenumber integration

contour in the- complex wavenumber plane along with the branch points,

branch cuts and poles are shown in figure 2-2 for the general P-SV half

space problem. We can see from figure 2-2 that

f ~R] + R - 21r i residues, (2.5.52)
_'0o

where the arcs at infinity do not contribute and the sum of residues are

those within the integration contour, r.

* - % - . -. . .*. - ' . . . 'L
,

F 1. - -. / ' - . , !. -$ , ,_t2 '.j . .- ,- , . . ,% ..
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in k

* Rayleigh Poles

* Branch Points

~ Branch Cuts

W-- Contour of
Integration

Rek

Figure 2-2. Wavenumber integration contour for a complex frequency with
a small, negative imaginary component.
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We now turn our attention to the evaluation of the residues.

Returning to equation (2.5.28), we can write the solution for the stress-

displacement vector at the top of the structure as we did with the eigen-

functions

V(o)] {y(O)) -.. ----------- (2.5.53)

{rBD(o)] [A(Oz,)i {s)J

Once gain we assume a free surface so that ID(0)i is given by equations

(2.5.43) and (2.5.44). Substituting these relations in (2.5.53) it follows that,

{ RYi( 0 ) - B 1 D(0)] IRA(Oz,)i { ) (2.5.54)

RY2( 0) J A _ BA[-D21 O 1D 1 (O) R

Ry3(0 ) - RY4(0) - 0,

and

LYJ(0 ) _ -. '_. ILBD(0 ) ILA(O,z.)] fLE) (2.5.55)
L

LY2( 0 ) = 0.
We can see that the two by two minors of the two by four P-SV

IRBDI matrix appear repeatedly throughout the analytical development of

the eigenvalues, eigenfunctions and the stress-displacement vector. In order

to save writing we will define the four by four anti-symmetric minor matrix.

[M], as,

Mij(w,kgz) = RD1 i(w,kJz) RD2j(w,k,i) (2.5.56)

- RDlj(w,k-) RD 2i(',k,z)

Obviously,

I 9
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MN(wAkX) -- Mi(wAks),

M11 - M = M3 3  M44 - 0.

We will also have two versions of the minor matrix, IB(M and [TM

corresponding to lID] and ITDI. The minor matrix can now be used to

simplify the solution to equation (2.5.54) as follows,

RYJ(O) I 1 Mo2(O) 0 - oM23 (0) - M24(0 1 IRA(0,xs)] (RE).

IRY2(o) RA 0:~ B 12(O) DM(O) BM(o)

(2.5.57)

We can also see from equation (2.5.45) that,

Ra& _ BM12(0). (2.5.58)

The P-SV radial displacement eigenfunction at the surface, given by equa-

tion (2.5.48), can be written as follows

RE 2(n,)wO)
RR(n,l)O = RE2 (n,W,0) = (..

-=

Bm M 4 (iK (nw),O)

bMIS(w,RK (nw),0)

Bms(PRK (nw),O)

where Re(nw) is the Rayleigh wave surface ellipticity for the nth mode at

frequency w.

Poles of equation (2.5.52) will occur whenever RA = 0 which

implicitly defines the eigenwavenumbers. We can simplify equation (2.5.57)

further when k is an eigenwavenumber and express it in terms of the
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eigenfunctions, but first we must state two general properties.

Mt3( ) - - M24(wlkz) (2.5.60)

This is true for all w, k and z. It is obviously true for the boundary condi-

tions given by equations (2.5.16) through (2.5.20) at the top and bottom of

the structure, and, with much tedious algebraic manipulation, it can be

shown to be true at all depths. The second property allows one to relate

the elements of a P-SV propagator matrix which propagates the stress-

displacement vector upward between two depths to the elements of the

downward propagator matrix.

RA 33(zOz) RA 43(0,s ) - RA13(z0,z) - RA 2 3(z0 ,s)

RA 34(O,) RA 44(20,z) - RA 14(, 01 ) - RA 24(b0,)

IRA(z,zO)] _ RA 3 l(b0,) - RA 4 1(bO,) RAIl(z z ) RA 2 1(Z0,)

- RA32 (,0,) - RA42(,0,) RA, 2 (2,0,) RAZ2(b,0,)
(2.5.61)

This can be shown by using the relations that exist among the elements of

the P-SV layer propagator matrix (equations (2.4.44)) and then reversing

the order of layer multiplications. Equation (2.5.6) is a general property of

the propagator matrix; it is true for all w, k, z, and z0 and it is true even for

an arbitrarily inhomogeneous structure with depth. We now define the

numerator vector in (2.5.57) as

Ryl(zO)J = -A 1RN 2(z) (2.5.62)

Using equations (2.5.58), (2.5.59), and (2.5.60) we can solve for [NJ

evaluated at an eigenwavenumber as,
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(2.5.63)

Using (2.5.61) this can be expressed as follows,

RN( 0} k=n (m) (2.5.64)

' I - RAsl(s.,O) - RA 41l(.,O) RA Il(zs 0 ) RA:l(zs,0)]
AVJI2S(R I-I32(2,0) - R 42 (h.,o) R 12 (go5 0) RA:22z,

(RE) km-1 K (anw)

RN2() k=RK (nw) it, i1 k-RK(n,w)

We can write the Rayleigh wave eigenfunctions at the source depth as

RAll(NI, ) RA12(Zs,0)'

RA 21(zso) RA 2 2(z$,O) I ( 156

{RE (3,1,)) A ( l53,o) R 32(s,o) k R (n,)1R ( (2.5.6 )

RA41(1,o) RA42(,, o) K

If we redefine a new vector for the source jump vector as,

IRES RE4 -RE -RE2 , (2.5.66)

and using (2.5.65) we can write (2.5.64) as

.. % •''' 't'\~V%~~ .~~.v
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R 1

RN( (2.5.67)N., ((..)T
RS3

RN 4 ) ku.RKaa?

, - BM23 () kRK(nw) ((REnw)]RE(nwz,)) ){,E(n~wo)

where we have expanded {RN ) to four P-SV components. Finally, we can

write the numerator vector at any other depth by applying the propagator

matrix so that,

(RN()) = (2.5.68)

= _ BM23 (o)1 k=R ,.IIRr,(n,w)] (RE (n,w,z.)) )(E(~~)

We can also define a numerator vector for Love waves and without repeat-

ing the detailed derivation one can show that,

I
(LN(z)} k-pL" (k,,,) (2.5.69)

-- - B(Lo)E,,., (.,w) (L.n,,E {LE (,,,,)} ){LE(,,,.)}

where

IL(n,w)] = ILE2 - LEJi (2.5.70)
k -LKin)

and

Ly(z)) = {LN(:)). (2.5.71)
{LY -)).. .A,
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We may now evaluate the wavenumber integrals given by equa.

tions (2.5.36) and (2.5.37) in terms of branch cut integrals and residue con-

tributions. Using equations (2.5.38), (2.5.52), (2.5.58), (2.5.68), (2.5.69) and

(2.5.71) we can write the frequency dependent displacements at a receiver

location (r1 , O, st) due to a source confined to a horizontal plane at depth z.

as follows,

1 RU(wrr,FrZr) = - Ra' R01 (2.5.72)

-r E (RA (n,w) 1RE(n,w,m)I (RE (nw,%,)) R4 (nwMr9r~)

and

LU(u,rrrzr) = -Ll (2.5.73)

- i m (LA (nw) [LZ(nwA)] (LE (n,w,z*)) L (niDwmr,,Or9zr))

where the A's are scalar amplitude factors and are,

k BM3 O

RA (n, ) - ,R43/k (2.5.74)RaR A/a)k h RK (n,)

and

L k BLD2 (0)  (2.5.75)
-
A n) aLA/ak k-LK (nw)

RA and La are defined by equations (2.5.45) and (2.5.46), IRLI and ILE are

defined by equations (2.5.66) and (2.5.70), and R# and Lf are defined as

follows,

'II .%' * -l**-. ~ Ni.' Z ~ ~ ~ z~z
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R $ (ha ,mIr,.r,.) - E L (n.,w,) JP(D,.aI 3,o,) (2.5.76)

+ RE2(niz) )(n"""'rr)'

L# (w,m,rr,r,,z,) = LE i(ntWr) 1(n,i,m,rrDr) , (2.5.77)

where P, I and I are modified vector cylindrical harmonics and are,

'(n,w,mn,rrr = (42) (kr) i Km 25.8

d s M I1RK(w)2.78

~(nwmr9H ( i42) (kr) m
r e (kr) " k-K (nw), r-r (2.5.79)

+ *. ) (4(;r 1 ) aemiI o ~(~w,'~

and

A (H,$1H 2) (kr,) 8 i

Bin( 2) (krr) ae1 mo (2.5.80)

S-(kr) eimor
5( r k LK (a), r-r r

2.6 The Branch Cut Integral Contributions

Finally we turn our attention to the branch cut integrals RI,

Rpl, and Ljl Let us first consider the Rayleigh wave branch cut integrals

as shown in figure 2-2. In order to facilitate the evaluation of the branch

~cut integrals we define the following complex valued functions of the real

positive scalar variable q.

* .s -. '*,- - -tdl - -
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RoK (,w) - P-wave branch cut, (2.6.1)

R K (qw) - S-wave branch cut,

where

RoK (0,w) - P-wave branch point,

RPK (0,w) S-wave branch point,

and 0 <, 9 < oo.

We will also denote wavenumber values immediately to the right and left of

the branch cuts as viewed in figure 2-2 with + and - superscripts. We can

now write the branch cut integrals as follows,

0

Rol = f f(Rk +(9,)) R.o d (2.6.2)
o

+ I f(ok-(qw)) RK' dq

and similarly for the R.I, where

Rk '-

and f(k) is the wavenumber integrand function. We can combine the two

integrals in (2.6.2) to obtain the following

Rol (f(R.'(1,w))- f(R* -,4) Re" 'dv. (2.6.3)
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The P and S-wave branch cuts defime discontinuities in the bot-

tom half space vertical wavenumbers, Y (N) and &, N } so that as one crosses

the P-wave branch cut, -. (NI and as one crosses the S-wave

branch cut, 4 N ) -, - , 4 N). The only factors in the wavenumber integrand

functions which will be discontinuous across the branch cuts will be the ele-

ments of the stress-displacement vector, and so in order to evaluate (2.5.29)

we need to compute the stress-displacement difference function across the

branch cut which we define as follows,

{6y(,z)) = {y+(',z)) - y-(1,z)}, (2.6.4)

where

{y'(11,2)} = (Ry(kz))k
Ik - RK (l)

and

{y-(*,z)} = {Ry(kz))
k - R -()

For Rayleigh waves, we can use equation (2.5.57) to compute (Ry') and

{Ry-) at the surface. Remembering that the propagator matrix and source

jump vector are both single valued functions, we can compute the stress-

displact :ment branch cut jump at the surface as,

t r _ ,BM1(O) 61 B1(0)
6Y(17,0) 0 0 61B 6' 4() I( M12 (o) BM2(O)

BMY () O(]00(O) IRA(0,)J {R}.

T'- ,I . ' '.,' %{,R-,.1, o)}/. 0-.-.-. 0.. _. .( .2 o -I . ..... o I. . _. .. ..
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(2.6.6)

where f(-) defines the jump across the branch cut as with (2.6.4), so

JMO BMda+ift BMa -i(t

From equation (2.5.60) it is easy to show that

I M(O) I . '1 N ) (2.6.6)N1BM2(0) BM 2(01°

We can see that equation (2.6.5) resembles equation (2.5.63)

which expresses the solution of the stress-displacement vector in terms of

the discrete spectra of the Rayleigh wave operator. In order to derive a

similar solution for the branch cut integrals, we need to determine the

improper eigenfunctions which will constitute the continuous spectra of the

Rayleigh wave operator. We will do this by first considering the stress-

displacement vector {RX) which obeys the radiation condition in the bottom

half space, but not necessarily the free surface boundary condition. In com-

puting the {RX) vector we will also assume no -sources so that from equation

(2.5.26) we can write the following.

BD, BD,2I.,- BD. B°l.Dl(="RD11 RD2 JRXI R [Iis R 14I RXSIBD21 RBD2j 1ft2 J -IDu BDU~ RX4  (2.6.7)

Equation (2.6.7) will hold at all depths and so we will evaluate RX2 and RX2

at the surface where, using the ID] matrix minors we arrive at,

RXI(O- B M23(O) - BM24(0) R30 268
RX2J N o) 1 (o)) (0) (2-.8)

. d ° ; . . ; | : <- : * :* . * * * * ,* * *r . . s . .. ... . , . . .. . . , , .
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Of course, equation (2.6.8) is only true if BM 12(0) * 0. We will now assume

that RXs(0) - 0 so that we can solve for RxI(O) and tx2 (O) in terms of

RX4(0). We will also evaluate these at RK +() and RK -(q) so that,

Rx1+(
°) -M 1 (O) RX(0), (2.6.9)

BM *(o)

RX2(o) - - -)

and similarly for tXI'O) and Rx2(O). We will specify that,

RX4(o) - RX4-(o), (2.6.10)

so that,

B1 (0(- ) BM ((2)

RX BM +(0) D -M0 )

and

I'm vo) Bm,-{o)
RX2+(O) 14 -2 R O

BM_+.__.BM -( )

We can now define the stress-displacement vector IRE) as follows,

{ORX) (RX+) - (Ix-)

6RXIM(O RXJ (0)) - {RXI (0)) (..2

so that

1

REt1 (0) RX2+(o) - R2-(O)

t2(o) 1n~O (0RX110) -oX 0

RE3 (o) 0

1 E 4(0)0
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R'

where

B M 24o ) (2 .6 .13 )

i - - ____°)

BMI(O )

Following the same procedure except setting RX4(0) RX4(0) - 0 we can

show that

BM13(O)

R BI _ 12(0) (2.6.14)

12(o)

Equations (2.6.13) and (2.6.14) along with (2.6.6) allow us to

express equation (2.5.5) in the following manner.

IRYI(0)1  (BM(O) R10 '1
RY2(0)I' B I -21 IRA(O '.)]IRE).

Si1(o) 1 10 R' R'

We can now repeat the derivation of equations (2.5.63) through (2.5.68) to

show the following.

(2.6.16)

. { 5 y") - [~, (o1J~(Eh1I~.) (Eu#~)



where

IR ,1- IRE3 RE4 -RE, -RES) (2.6.17)

and

{Ri (' w J) -IA(zO)] -R ~ {~('WO)). (2.6.18)

In order to clean up the notation, we have dropped the a and #9subscripts

denoting P and S-wave branch cuts throughout the developments but it is

* understood that there will be two versions of (2.6.15) corresponding to the

two branch cut integrals, Rol and R01 Following a similar analysis for the

Love waves we can express the stress-displacement vector jump across the

Love wave branch cut as follows.

(2.6.19)

where

[L(t,)1=[LE2 -LEI] K( (2.6.20)

(LE(i7,wz)) =ILA(ZO)] kLE(~?,WNO)) (2.6.21)

and

{0}
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