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1. INTRODUCTION.

Increasingly modern systems include software that performs safety critical
functionsLZ. At present, there is a lack of concurrence on a specific
set of techniques that can be readily applied to ensure the development of
safe software. Traditional system safety* techniques for hardware are
inadequate for software safety analysis. Attempts have been made with some
success, to adapt hardware safety analysis techniques to softwareA.
Reference 2 presents brief discussions of four software safety analysis
techniques:

* software fault tree (soft tree) analysis
* software sneak circuit analysis
• nuclear safety cross-check analysis (NSCCA)
* safety analysis using Petri nets

These techniques are in various stages of development and differ in their
utility for analyzing various aspects of software safety. Petri nets, for
example, are useful for analyzing concurrency problems in parallel
processing systems6 but their theory is still under development7 .

This paper presents procedures for a variant of soft tree analysis1 ,5

called cause oriented and consequence oriented analyses.

2. DISCUSSION.

Cause and consequence oriented analyses are system safety techniques for
safety analysis of software. They are performed as follows:

A list of failure vulnerabilities is prepared. This list contains
initiating events and undesired end results. The list may be developed
from: items of special concern to members of the technical comnunity; items
solicited from designers and other testers of the logic; and items gleaned
from software trouble reports, in-depth analyses of other items, and other
sources. The list is then partitioned into two sublists - one listing
initiating events, the other listing undesired end results.

* System safety analysis is concerned with assuring that a system does

not cause hazards while seeking to achieve its mission3 . System
safety analysis also seeks to assure that a system will prevent
erroneous inputs and unanticipated events from causing hazards. A
hazard is a condition that can lead to an unplanned event or series of
events that result in death, injury, illness, or damage to or loss of
property4 . General system safety program requirements are discussed
in Reference 4.
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In cause oriented analysis, each item on the list of undesired end results
is used to begin the development of a logic tree. The development proceeds
in what might be considered a backward direction, starting with the
undesired end result and searching for a basic software fault that could
cause that undesired end result. In a similar way, each item on the list of
initiating events is used to begin a logic tree for consequence oriented
analysis. The analysis proceeds in a forward direction, starting with the
initiating event and searching for a software fault that could lead to a
hazardous situation.

Using the above process, trees are developed of both the cause oriented and
the consequence oriented type. Then a single path leading from the top of
the tree down to a single terminating branch is taken as a single situation
for study. The blocks in this path fully describe that specific situation.
The software logic is then traced in the proper order as called for by this
particular path in the logic tree. The logic tracing is performed by an
analyst using the appropriate flow charts or program design language. The
analyst observes whether or not the software logic works correctly in that
particular situation. If so, he or she goes on to the next path in the
logic tree. If not, a software fault has been found; and it is documented
in detail. Ideally, the logic tracing is performed for every situation on
each tree. In practice, resource limitations may necessitate performing the
logic tracing on only a subset of the situations.

In employing cause and consequence oriented analyses, as with any software
safety technique, checklists of safety criteria should be employed. Several
ueful safety checklists are contained in References 2 and 8.

A specific application of cause oriented and consequence oriented analyses
and more description of how to conduct these kinds of analyses are presented
in Appendix A.

3. REFERENCES.
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APPENDIX A
AN APPLICATION AND DETAILED DESCRIPTION OF

CAUSE AND CONSEQUENCE ORIENTED ANALYSES

Backaround

Computer controlled systems containing highly complex software are
being found more and more frequently in safety critical
applications. Such systems include aircraft flight control systems
(including systems capable of automatically landing large passenger
aircraft), manned spacecraft guidance systems, nuclear power plant
monitoring and control systems, air traffic control automation
systems and rapid rail vehicle control systems. These systems have
the following common characteristics:

* The software controls a physical system in real-time.

* The overall system is highly complex.

* There are many interactions between individual subsystems.

* Software errors have the potential for directly causing
life-threatening situations.

Verifying the safety of software in these systems is a significant
problem for implementors of these systems.

The discipline of system safety has become well developed. Its
techniques have been used in diverse fields to analyze the safety of
large systems. But these techniques have traditionally been used to
study physical failures of physical systems. Only within the past
few years have researchers and analysts discussed use of the
established system safety techniques for safety analysis of
software. To date, there seems to have been little effort to apply
these techniques to the software area. This paper reports on a
safety study conducted on a complex software design. The study used
adaptations of some of the traditional system safety techniques.
The paper summarizes the lessons learned from this study and
coments on the applicability of some of the techniques for safety
analysis of other safety critical software systems.

The work described in this Appendix was performed by Dr. A. L.
McFarland and Dr. Y-S Hoh. It was presented at the Sixth
International System Safety Conference held 26-30 September 1983 in
Houston, Texas. This activity was supported by the Office of
Systems Engineering Management of the Federal Aviation Adminis-
tration under Contract DTFA0l-82-C-10003. Views represent those of
the authors and are not necessarily official policy of the U. S.
Government.
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Traditional Approaches to Software Verification

In the past, when complex software was used in safety critical
applications, the software was generally verified by doing test,

is test, test and more test. Such test and verification activities
included the following:

* Desk checks using a checklist.

" Design walk-throughs in which a group of designers review

software modules one at a time.

" Unit tests.

" Simulation (possibly using Monte Carlo techniques to expose
the software to random combinations of conditions).

" Bench tests with an environment test set to provide
simulated inputs to the software when running in its host
computer.

* Live or flight tests.

Some very complex software systems verified using these approaches
have demonstrated admirable safety records. Nevertheless, these
approaches have several limitations.

Software programs of the type mentioned above are so complex, and
involve so many variables and conditions, that it is impossible to
exhaustively test every combination of inputs. To illustrate,
suppose that a real-time software system is a cyclic process which
performs the same basic tasks cycle after cycle. To be exhaustive,
it is not enough to test the system with all combinations of inputs
which it could experience on one cycle. To uncover all possible
faults, one would also have to consider all possible sequences of
one-cycle combinations of inputs. Even when using a computer to
generate test scenarios, it is generally not possible to be
exhaustive because the number of combinations of inputs is still
prohibitive. In addition, it is very difficult to build an
automatic results analyzer, which can judge whether or not a fault
has occurred from the results of such test runs. And the number of
runs to exhaustively cover the test domain makes it impractical for
a person to manually review the results.

In safety analysis of software the perspective differs somewhat from
that of most software testing. Most of the testing is to ensure
that the software meets the conditions of a requirements
specification. But in the case of safety critical software it is
implied (if not stated explicitly) that the software should handle
all conditions with which it may be confronted and should not
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permit or cause any dangerous conditions. The original requester
will not have identified every conceivable software fault or failure
mode and written specific requirements that the software must avoid
each of them. The purpose of software safety verification is to
identify hazardous software faults, when it is not known in advance
what their nature is or even whether they exist.

Manually creating test scenarios is a very demanding task which
requires the test planner to have great imagination. Traditional
test strategies depend upon testing at the extremes of the ranges of
input variables, testing to insure that every branch has been taken
at least once, testing to ensure that each statement has been
executed at least once, and the like. These approaches will reveal
many software faults; but others will not be found. One actually
has to imagine the nature of the error in advance, to be able to
create a test scenario which will reveal the presence of some of
these less-obvious faults.

Building an environment test set for a large real-time system which
has many different inputs can be a very expensive and challenging
task. Achieving time synchronization between the test set and the
subject system can be difficult. So also can be the task of
maintaining coherency between all of the inputs which must be
simulated by the test set. In many cases, just the volume of inputs
that must be generated makes it difficult for the test set to keep
up with real time. Many of the features of a system which might be
tested require special provisions, within the test set. Because
there may be so many of these special provisions, and because they
may be so difficult to implement, many of them may not be
incorporated. The test set may include random generators for some
variables, but even randomizing the variables that are simulated
will not always compensate for failing to exercise some of the
features of the subject system. Thus, the environment test set is
unable to generate enough conditions to reveal all software faults.

Live or flight tests can be very valuable in identifying unforeseen
software errors; but these suffer from the major limitations that
they are very expensive and time consuming. Generally, live tests
are resource constrained so that only a limited number of tests can
be conducted. Many of the safety-critical situations that the
system might experience may be too hazardous for live tests. Such
might be the case for certain types of tests involving nuclear power
plants. In other cases it may not be feasible to conduct flight
tests in advance of full operation. The NASA space shuttle, which
was manned for the first launch, was an example. In live tests it
may be difficult to control the test scenario to achieve
pre-specified conditions.

Each of the test approaches discussed above has limitations; even
when all are used for verification of a particular system, they will

A-3



probably not reveal all latent faults. The major difficulty is that
practically all of these methods require the test planner to imagine
the software fault beforehand so that he can create a test scenario
which will have a chance of revealing that error. Certainly, Monte
Carlo approaches or live testing will reveal some new software
errors by accident; but many will still remain hidden. The history
of software testing is full of statements like the following by
software testers when an error is discovered after implementation.
"I never thought about building a test for that kind of condition."

What is needed is an approach to help the test planner or software
verifier identify potential failure modes. This is the role that
system safety techniques can play in verification of software in
safety-critical applications. These techniques can help the analyst
identify unforeseen faults through organized approaches. These

i techniques, by approaching software verification from different
perspectives, have the potential for finding software faults not
revealed by other methods. These techniques would enhance, but not
replace, the usual methods of software verification.

An Aircraft Collision Avoidance System Coordination Logic

During the period 1978-1980, the Federal Aviation Administration
(FMA) had under development two aircraft collision avoidance systems
- an airborne system and a ground-based system. The airborne system
was a sophisticated, self-contained system, intended for use on
large aircraft. The system could determine positions of neighboring
aircraft by sending out interrogations and listening to replies from
the aircraft. It tracked the positions as a function of time to
determine velocities. By projecting the neighboring aircraft ahead
in time, the system could tell when another aircraft was a potential
collision threat. When such a situation was observed, the system
would display an instruction to the pilot for avoiding the other
aircraft. The instruction was "Climb", "Descend", "Don't Climb",
"Don't Descen~d" or another similar instruction. If the other
aircraft also carried the airborne collision avoidance system, the
two airborne systems would coordinate the resolutions so that the
two pilots would receive complementary instructions (e.g., one would
receive "Climb", the other "Descend").

The ground-based system worked in conjunction with a ground radar.
The aircraft within coverage of the radar were tracked, potential
collisions were detected, and resolution actions were calculated
through algorithms existing in the ground radar's computer. When
avoidance maneuvers were required, the ground sent them to the
appropriate aircraft by a digital data link which was an integral
part of the radar's design. These ground instructions could be
received and displayed by a rather simple avionics device which
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could be carried by small, privately-owned aircraft. The airborne
collision avoidance system was also able to receive instructions
from the ground radar.

The FMA established requirements for a coordination'scheme which
would determine whether the airborne system or the ground system
should have responsibility in any given situation and would ensure
compatibility of instructions given to all aircraft in a conflict.
Preliminary and refined designs for such a coordination scheme are
documented in References 1 and 2.

Figure 1 illustrates the scope of the coordination logic. There are
three types of avionics of concern:

* Airborne collision avoidance system. This system can
observe other aircraft carrying any of the three types of
avionics and can generate instructions for its own pilot.
It can also receive instructions from the ground collision
avoidance system.

* New avionics that are able to receive instructions from the
ground collision avoidance system and display them to its
own pilot. These avionics are also able to report, either
to an airborne collision avoidance system or to a ground
collision avoidance system, what instructions are currently
being displayed to its own pilot.

* Today's avionics. This is a simple transponder which
responds to interrogations with replies which indicate own
aircraft's identity and altitude. An aircraft that carries
these avionics is not able to receive instructions, but is
able to be observed by either the airborne or the ground
collision avoidance system.

The radars supporting the ground collision avoidance system have
limitations in their coverage of the airspace. There is a maximu
useful range and they cannot provide coverage below the line of
sight as established by the local horizon. The radars provide
overlapping coverage in much of the airspace.

The coordination logic has the following capabilities:

* It will assign one and only one system (the airborne system
or one of the ground systems) to be responsible for each
conflict between two aircraft.

* It will handle conflicts involving any number of aircraft
simultaneously.

1 "Report of the FAA Task Force on Aircraft Separation
Assurance", Federal Aviation Administration, Report No.
FMA-EM-78-19, Vols. I, II, III, January 1979.

2 "Active BCAS Detailed Collision Avoidance Algorithms", The
MITRE Corporation, McLean, Virginia, MTR-80W286, October 1980.
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* It will handle conflicts involving any combination of

avionics equipage.

* It will handle coordination between adjacent ground sites
with overlapping coverage.

0 It will coordinate between two aircraft each having the
airborne collision avoidance system, when both are outside
ground radar coverage.

* It will ensure continuity of instructions when one or bothI aircraft transition into or out of radar coverage,
resulting in a transfer of responsibility from the airborne

system to a ground system or vice versa.

The basic principle of the coordination logic is this. The systemIresponsible for resolving a new two-aircraft conflict will first
learn of all instructions currently being displayed to the pilot in
each aircraft. It will then pick instructions for the new conflict
consistent with the constraints represented by the pre-existing
instructions. Air-to-air and air-to-ground data exchanges are used
to carry out this process. The process is also supported by
appropriate protocols and read/write semaphores.

The coordination logic that resulted was rather complex. The
coordination logic contained within the airborne collision avoidance
system consisted of approximately 40 pages of detailed flow charts.
The logic for the simple avionics device that receives instructions
from the ground consisted of 5 pages of detailed flow charts.
Verifying the coordination logic was difficult because of the many
combinations of variables. Each aircraft could have one of three
types of avionics equipage and each aircraft could initially be
outside of radar coverage or in the radar coverage of one or more
radars. There were many events that could happen during the course
of a conflict. Each airborne collision avoidance system and ground
system could detect the beginning or the end of a conflict. An
aircraft could transition into or out of radar coverage. An
airborne system or a ground system could fail to establish
communications on any given attempt. Other events were also
possible. The number of different sequences with which all of these
events could possibly occur was extremely large.

The FAA desired to conduct a comprehensive verification of the
coordination logic for the following reasons.

* The overall logic is rather complex. It is a distributed
logic which deals with real-time processing in an interrupt
environment.

A-6
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* A fault in the coordination logic could preclude the
collision avoidance systems from preventing a midair
collision. Other types of faults could possibly generate
erroneous instructions that could cause a hazardous
situation when one would not have existed without the
collision avoidance systems. Thus, the safety of the
software design was of concern.

* Correcting a software fault after implementation would be
very difficult. The avionics would potentially exist in
thousands of aircraft.

* The aircraft owners and operators were skeptical about the
safety of the coordination logic.

The FAA initiated several activities directed toward verification of
the coordination logic:

* A discrete event simulation which exercised actual coding
of the coordination logic. Some of the variables in this
simulation were varied over all possible values. Others
had values selected randomly. Approximately 1000 scenarios
were tested. This is reported in Reference 3.

" Monte Carlo testing of the entire logic of the airborne
collision avoidance system. The main interest in this
simulation was in testing the resolution capability of the
instructions generated. But in the process, the most
conmmon paths of the coordination logic were tested
thousands of times.

* Limited flight tests of the coordination logic were
conducted on the complete hardware when flown in two
aircraft.

0 An analytical safety study of the coordination logic was
conducted using adaptations of some of the traditional
system safety techniques. This study is the subject of the
following section.

After these studies had been completed, the FAA changed the course
of its aircraft collision avoidance program. A decision was made
not to implement the ground collision avoidance system and some
changes were made to the airborne collision avoidance system. The
coordination logic currently used to ensure compatibility between
two airborne collision avoidance systems has been carried
essentially unchanged from the previous logic. It has benefited

from the verifir ,tion study reported below.

S "Discrete L ent Simulation of the Resolution Advisory
Register", The MITRE Corporation, McLean, Virginia, MTR-82W27,
May 1982.
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A Case Study

The authors were assigned the task of conducting a safety study of
the coordination logic. From prior familiarity with system safety
studies, it seemed that adaptation of some of the system safety
techniques to this task could be productive. At the time the study
was begun, the authors did not know whether techniques such as fault
tree analysis or event tree analysis had previously been applied to
the study of software. The approach used was refined as the study
proceeded. The final approach is described below.

A single Analyst with rather extensive applications programming
experience was assigned to the task. The task took approximately
eight months to complete. The analyst had no part in the design of
the coordination logic and had no familiarity with it prior to
beginning this project. Neither did he have prior experience
conducting system safety analyses.

The analyst first acquired background in the traditional system
safety techniques and consulted with several professionals who had
experience in this field. He then spent approximately one month
becoming thoroughly familiar with the coordination design. This
design was presented at the detailed flow chart level and was
accompanied by a reasonable amount of explanatory text.

The next step was to prepare a list of failure vulnerabilities.
This step is comparable to determining the top level events in
traditional fault tree analysis. The difference is that both top
level events and initiating events were originally placed on this
list. Items of special concern to members of the technical coimmunity
were included. Additional items were solicited from designers and
other testers of the logic. The collection of software trouble

* reports from the development of the coordination logic was consulted
to learn what types of errors had been made previously in this
area. This suggested several more items for the list. Other new
items were added as a result of trains of thought established while
conducting in-depth analyses for initial items on the list.

The initial process of generating the list was more or less one of
brainstorming. Any hazy area of concern was listed. In the
beginning, there was no interest in characterizing the exact nature
of the failure vulnerability; the major goal was to collect a varied
list of potential trouble areas. Then the definitions of items on
the list of failure vulnerabilities were sharpened and the
boundaries between different related areas were made clearer. The
list was then partitioned into two lists - one a list of undesired
end results, the other a list of initiating events.

As is coon in system safety studies, two types of analyses were
conducted - cause oriented analyses and consequence oriented
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analyses. Figure 2 shows the relationship between the two and
provides an example of each. In cause oriented analysis, each item
on the list of undesired end results is used to begin the
development of a logic tree. The development proceeds in what might
be considered a backward direction, starting with the undesired end
result and searching for a basic software fault that could cause
that undesired end result. In a similar way, each item on the list
of initiating events is used to begin a logic tree for consequence
oriented analysis. the analysis proceeds in a forward direction
looking at a series of consequences of the initiating event, all the
while searching for a software fault that could lead to a hazardous
situation.

Figure 3 shows the list of failure vulnerabilities analyzed in this
study. It should be remembered that these were hypothesized faults,
not actual faults found in the coordination logic. Most of these
were eventually found not to be faults. No claim is made that this
list is exhaustive. It was not intended that the study be
exhaustive; it was a goal, however, to cover as many types of events
as possible. In presenting these results to several audiences, it
has been found that members of the audience have suggested
additional items for the list. Most of these suggestions were found
to have been included as lower level branches in a tree drawn for
one of the items already on the list. Those that were new were
added to the list. These suggestions were valuable for extending
the coverage of the study.

A tree of either the cause oriented or the consequence oriented type
was developed as deeply as possible. Then, a single path leading
from th.- top of the tree down to a single terminating branch was
taken as a single situation for study. All of the blocks in this
path fully describe that specific situation. The analyst would theai
trace his way through the coordination logic using all of the
required flow charts in the proper order as called for by this
particular path in the logic tree. (The authors have called this
process "finger tracing".) He would observe whether or not the
logic worked correctly in that particular situation. If so, he
would go on to the next path in the logic tree. If not, he had
found a software fault and he would document this fault in detail.

The authors did not attempt to use probabilities in this analysis.
The purpose of this analysis was to find as many unrecognized
software errors as possible. When errors were found, they were
corrected. The goal in the design and verification process was to
achieve a state where there were no known software errors
outstanding. Probabilistic analysis was not relevant to the
objectives of this study. The authors feel that the use of
probabilities would not be successful in any software verification
effort of this type. This type of analysis has nothing to
contribute toward estimating probabilities of encountering software
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errors or estimating the number of remaining software errors in a
given program.

To assist in these analyses, a checklist was tailored specifically
for this project. Checklists from a number of other sources
(particularly Reference 4) were consulted in creating this tailored
one. The checklist was also enhanced and refined as the study
proceeded. The checklist was used in two ways. It was used to
suggest additional causes or consequences Jthat would feed into a
particular block in a tree. That is, when one is looking at a
particular block and is determining whether the tree can be branched
out to one level deeper, the checklist can suggest new causes
leading to that block. The second use of the checklist is to help
the analyst think of situations which might lead to a fault as he is
"finger tracing" the logic through the flow charts. When he has;
completed a flow chart, he can quickly review the checklist to see
if any of the items mentioned there would create a fault in that
flow chart with the specific situation just analyzed. The checklist
used in this study is shown in Figure 4.

An example of a cause oriented logic tree is presented in Figure 5.
This is part of the tree from the undesired end event "Two
Instructions With Incompatible Senses Displayed to Pilot at the Same
Time". The left hand path through this tree represents a major
fault that was discovered through use of consequence oriented
analysis. The situation represented by this path is that a "Climb"
and a "Descend" have simultaneously been displayed to the pilot of
an aircraft carrying the airborne collision avoidance system. The
aircraft is simultaneously in conflict with two other aircraft and
the airborne system has generated a "Climb" against one threat and a
"Descend" against the other. Normally, the logic tests any
potential new instruction for compatibility with existing
instructions before displaying it. If an incompatibility exists it
will modify both the new and the existing instruction to yield an
allowable instruction such as "Don't Climb and Don't Descend" (i.e.,
maintain level flight). In the logic tree it was hypothesized that
there was an error in the compatibility subroutine. Using the
conditions as described in this situation, the analyst traced the
logic flow through the appropriate flow charts. He used the
checklist to help search for a software fault that could generate
the conditions described in the logic tree. He found such a fault,
which had not been discovered in any of the other types of testing
conducted on the coordination logic.

The reader will observe that the logic tree of Figure 5 is similar
to a fault tree. The top is an undesired end event and the bottom
is a cause leading to that event. The logic tree uses "and" and
por gates. The tree differs from a fault tree, however, in that
each box in the logic tree is not a fault. In the logic tree, some

4 The Art of Software Testing, Myers, Glenford, J., Wiley, New
York, 1979.
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of the boxes describe various attributes of the encounter. In a
normal fault tree, when all of the boxes on a particular path are
listed together from top to bottom, there is generally a clear order
or sequence of faults. In the logic tree, successive levels may
simply describe different attributes of the encounter, for which
there is no real or implied order. In the logic tree, all boxes at
the same level exhaust all possible states of the attribute being
described. The authors freely admit that they have combined some
simple exhaustive enumeration techniques with the traditional fault
tree approach, in the process sacrificing some purity in the fault
tree form. But this approach seems convenient for software.

Figure 6 presents an example of a consequence oriented logic tree.
It represents a portion of the tree constructed for the initiating
event "A Threat's Airborne System Fails Abruptly During a
Conflict". In preparing Figure 6, a great deal of exhaustive
enumeration was carried out on the side. This analysis showed that,
as far as the coordination logic was concerned, all possible
relationships between the two events, "Own Detects the Beginning of
the Conflict With the Threat" and "The Threat's Airborne Collision
Avoidance System Fails" could be represented by six statements, "Own
Detects Conflict Before Failure", "Own Detects on Same Cycle as
Failure", etc. (The airborne system goes through all of its

calculations once per second. A single pass through all of the
calculations is called a cycle.) For each of these six conditions,
it was possible to observe the logic flow for one cycle of own's
system at any time with respect to the time when the threat's system

failed. It was found that all of these possibilities collapsed to
just five, which are also shown in Figure 6.

It was then possible to trace the flow of the logic in the software
flow charts for each of the paths leading to a low level branch in
the logic tree. The analyst would annotate each lower level branch
with the results of that study. The notes indicate the pages in the
flow chart document and the names for all subroutines traced and
indicate the results. For the path leading to the block reading
"Process Observed in SELADI", no fault was found. The note for the
other low level branch shows that a minor fault was found in the
subroutine, SENDINT. The surveillance subsystem of the airborne
system dropped the track for the threat several seconds earlier than
the collision avoidance subsystem. As a result, it was possible for
the collision avoidance subsystem to ask the surveillance subsystem
to try to send a message to the threat, when the surveillance
subsystem no longer had any record of that threat. The results in
the software would be undefined.

In some cases the analyst would come to a potential failure
situation which he would judge to be so improbable that he would
elect not to study it further. He would also write a note to this
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effect adjacent to that block. In other cases, there were
limitations which were known to exist in the design. They had been
accepted as tolerable; hence, they were not treated as faults.

Another type of notation was made at a low level branch when a
particular feature of the coordination logic represented a trap or
protection against the particular hypothesized fault being studied.
For example, suppose the analyst has been considering the
possibility that a data structure might become locked out
indefinitely. He comes to a place in a flow chart where a timer
unlocks the data structure after a time-out period. If he has
verified that the timer works correctly, he can make a note at the
appropriate block in the logic tree indicating that the fault is
protected by a particular time-out mechanism.

Results

Over 90 pages of detailed logic trees were constructed during this
study. As a result of this effort, 10 minor software errors were
uncovered in the coordination documentation. These were generally
cases where what the designer intended was correct; there was simply
a documentation error. In addition, there was one significant
design flaw identified. Finding this error was directly
attributable to use of cause oriented analysis. All of these errors
were corrected, and selected parts of the verification were repeated
with the result that no new errors were found.

The authors recognize that this was not an exhaustive study. They
do not claim that there are no other hidden software faults.
However, the use of cause oriented and consequence oriented analysis
in this study was satisfying. It gave the authors the feeling that
the coordination logic had been very thoroughly studied from masny
different perspectives. And it was felt that the approach used
provided a helpful structure that was more effective than an
unfocused manual checking of the logic.

The authors found that the approach used in this study had the
following positive attributes for verifying software.

C Cause oriented analysis is a powerful tool for identifying
previously unrecognized software faults. The basic concept
of hypothesizing an undesired end event and then of
developing a tree, by trying to imagine all of the ways in
which that event could come about, is quite effective.
This is because it represents a completely different point
of departure and provides a different perspective from most
traditional methods of verifying software. It helps the
verifier identify new software faults. For this reason, it
represents a very useful adjunct to other software
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* verification approaches. The deductive thought process
represented by cause oriented analysis is undoubtedly the
most significant contribution which system safety
techniques can make toward verification of software used in
safety-critical applications.

" Consequence oriented analysis is a further enhancement to
an overall software verification effort, because it
approaches the task from yet another point of view. For
this reason, it is likely to find other software errors not
found by cause oriented analysis.

" Use of a checklist for studies of this type is extremely
helpful. Reviewing other checklists or other project
software error histories in creating a tailored checklist
is a way of capitalizing on previous experience, and of
avoiding those errors that are made over and over again.

* The list of failure vulnerabilities provides a convenient
framework for studies of this type. The brainstorming
approach makes it easy to get started. The first items on
the list provide concrete situations for beginning the
logic trees. Having critics or other persons suggest items
for this list is also useful. Being able to add new items
that are triggered during the analysis of the initial items
on the list is quite helpful in extending the study. After
the study, the list is useful as a way of succinctly
conveying to an audience the scope of the study.

" The logic tree techniques show graphically the benefit of
any built-in failure protection mechanisms in the design.
They could also suggest to the software designer where
additional "brickwalling" would be useful.

* The resulting tree diagrams provide a clear record of
design limitations which are known and accepted.

* These techniques are very useful for finding faults
involving hardware and software interaction. They can be
especially useful for studying how the software responds to
various hardware failure modes.

The authors observed the following limitations of the system safety
techniques as used in this study.

* These techniques provide no guarantee that all errors will
be found.
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* It is difficult to organize the logic trees in a satisfying
way. Several iterations are required to word the blocks
correctly and to organize the levels logically.

* Preparation of the logic trees is not mechanical. It
requires a large measure of human judgment, imagination and
skill. To be effective, the process takes a long time.

* The logic trees do not easily handle complex sequences of
events. It was found, however, that these could sometimes
be handled successfully on the side through exhaustive
enumeration using tables or matrices. A reduced number of
situations could then be represented in the logic trees.

* These techniques are not useful for quantitative analysis
or for the assessment of probabilities. They offer no
solution to ttht problem of how to estimate the overall
probability of ". critical failure for an entire system

* which has physical components as well as software.

Recommendations for Verifying Other Software Systems

The authors feel t"nt a gr 'd program for evaluating safety-critical
software should uL a variety of verification techniques. Each
technique should be able to uncover software faults not found by the
others. The budget for verifying the software should be partitioned
so as to support, where feasible, design walk-throughs, unit tests,
simulation, real-time bench tests with an environment simulator,
live or flight tests, and a system safety analysis program. The
system safety program should include the following.

* A list of potential vulnerabilities.

* Cause oriented analysis.

* Consequence oriented analysis.

* A well developed and tailored checklist.

" Frequent use of exhaustive enumeration techniques wherever
feasible to generate all possible combinations of variables
or conditions. It is generally not possible to do this for
the software system as a whole, but it can be done for
local conditions at specific places in the logic trees.

* A feedback mechanism to enlarge the list of potential
vulnerabilities as the- analysis proceeds.

The authors recommend that the scope of the system safety analysis
be pared down so that the study concentrates on only the
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safety critical areas of the entire system. A good system design
for a large system would ensure that only a portion of the total
software would be safety critical and that this portion could be
largely isolated from the remainder of the software. The safety
analysis should first identify those critical areas that require
concentrated attention.

It is further recommended that the system safety analysis be
conducted relatively early in the software development cycle. It
could probably be successfully accomplished at the B-specification
or the C-specification level using either flow charts or program
design language descriptions. In any case, it should probably be
done prior to the beginning of coding because any errors found are
easier to correct at this point. The authors feel it would be
rather difficult to conduct such a study using actual source code,
because the total number of pages involved would make "finger
tracing" difficult.
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* Undesired End Results Addressed by Cause Oriented Analysis

- No Instruction Displayed to Own Pilot When Warranted Due to Coordination Failure

- Another Airborne System Runs Wild and Causes an Invalid Instruction to be Displayed to Own Pilot

- An Instruction Displayed to Own Pilot is Not Coordinated With Instruction Displayed to Other Pilot'

- No System (Airborne/Ground) Accepts Responsibility for a Given Conflict

- Two Systems Take Responsibility for a Given Conflict at the Same Time

- An Instruction Remains Displayed Indefinitely

- The Data Structure Remains Locked Indefinitely

- An Indefinite Wait Occurs While Waiting for Coordination to Complete

- Two Instructions With Incompatible Senses Displayed to Pilot at the Same Time

- One System Requests the Data Structure at Nearly the Same Time as Another and Mistakenly Thinks
the Reply was Intended for It

- Circular Deadlock Effect With Three Aircraft Simultaneously Interrogating Each Other

0 Initiating Events Addressed by Consequence Oriented Analysis

- A Threat s Airborne System Fails Abruptly During a Conflict

- Ground System Computer Fails Abruptly

- Own Airborne System Transmitter'Receiver Fails

- Threat's Airborne System Transmitter/Receiver Fails

- Position Correlation Algorithm Makes Correlation With Wrong Track

- Position Correlation Algorithm Fails to Make Correlation With Proper Track

FIGURE 3
THE FAILURE VULNERABILITIES ANALYZED IN THIS STUDY
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0 Undesirable Effects from Incoming Message Interrupt?

* Undesirable Effects of Restarting in the Middle of a Subroutine After Processing an Interrupt?

0Undesirable Effects if a Process Does Not Complete in Available Time?

9Was a Critical Variable Property Initialized?

* Possibility for an Infinite Loop?

* Are Linked Data Structures Cleaned Up When a Main Data Structure is Deleted?

*,Undesirable Effects if Track Broken and Restarted During a Conflict?

e Undesirable Effects if Intruder's Avionics Equipage Changes During a Conflict?

a Pilot Manual Control Idiot-Proof?

- Own Pilot

- Other Pilot

e Undesirable Effects if Transition into or Out of Ground Radar Coverage Occurs During a Conflict?

e Are Multi-Aircraft Effects Considered?

9 Are All Required Internal Data Structures Updated When an Update is Required?

e Is the External Data Structure Updated Appropriately?

FIGURE 4
CHECKLIST USED IN THIS STUDY
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