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1. Introduction. Consider an N component system, of known structure,

that is maintained by a limited number of R repairmen, i.e., R < N . The

Lo o B i

objective is to characterize dynamic maintenance policies that yield a maximum
value to a system measure of performance such as the expected discounted
system operation time and the average expected system operation time, or i

availability of the saystem. We make the following assumptionas. Each

.
component and the system as a whole can be in only two states, functioning E
or failed. The functioning and repair times for the ith component are E’
exponentially distributed random variables with known parameters g and ;. ,
Components are independent i.e., failure or repair of one has no effect on the -’
others. At most one repairman may be assigned to a failed component and it .
is possible to reassign a repairman from one failed component to another -
instantaneously. Repaired components are as good as new and failures may ‘
take place even while the system is not functioning. :.
Since the number of available repairmen is less than the number of
components, the performance of the aystem will depend on the maintenance ;
policy employed, i.e., the rule for choosing on which failed components t
repairmen are assigned to whenever the number of failed componenta is ;
greater than R . Under these assumptions optimal policies can be obtained, :
in principle, using methods from Markovian decision theory. However, the ;
computational difficulties are prohibitive due to the very large number of
possible states. Therefore, explicit solutione and approximations can provide g
valuable insight. An explicit solution has been obtained for the series system --~-*-~'-"
with N componente maintained by a single repairman in Katehakis and : by,
Derman (1984); see also Derman et al, (1978), Nash and Weber (1982) and Smith ! E
(1978). - ,
In practice many systems are composed of highly reliable components. We B . {-
—
»
. 2 Aarecieo .;
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s
have a simple model for such systems if we assume that the failure rate for
the ith component is of the form o¢ouj, 1 6 i 6 N. Thus, for small values
of p , all components are highly reliable. We obtain analytical character-
izations and derive simple recursive formulas for the determination of policies
that are optimal for small values of ¢ . These asymptotically optimal policies
can be used as good approximations to optimal policies for systems composed
of highly reliable componentas.

The first study of such a model was done in Smith (1978). We extend the
work of Smith in the following directions. i) We provide a formulation of the
problgp along the lines of Markovian decision theory. il) We treat the
multirepairmen case. iii) We note that the recursive formulas for the
determination of asymptotically optimal policies essentially constitute a Gauss
succesive approximations method for solving the general Markovian decison
problem. iv) We establish the existence of intervals of the form (0,p%) with
the property that if they contain the failure rates of all components, then the
asymptotically optimal policies under consideration are optimal, and v) in the
final section we find asypmptotically optimal policies for the series, parallel
and a system composed of parallel subsystems connected in series. For the
series system maintained by R, R a 2 , repairmen it is asymptotically
optimal to assign repairmen to failed components with the longest expected
repair times first. Thus, we show that the series system result established in

Katehakie and Derman (1984) does not hold in the case of more than one re-

pairmen.

2. Problem Formulation. Under the assumptions made, at any time the status

of all components is given by a vector x = (X],...,xN) with xj = 1or 0 if
the ith component is functioning or failed. Thus 8 = (0.1)" is the set of

all pogsible states. The structure of the system, i.e., the relation between the
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status of the components and that of the system, is given by a partition of
the state space 8 into two seta G and B of "good" and "bad" states;
where if x € G the system is functioning and if x € B the system is failed.
Alternatively, this relation can be specified by the structure function ¢
defined on S, such that ¢(x) =1 or 0 if x€ G orxe B.

It is easy to show, using well known results of Markovian decision theory,
that the only relevant decision epochs are component failure and repair
completion instants and that it suffices to consider only the class of
deterministic policies that never leave repairmen idle while there are some
failed components. A policy is called deterministic if it assigne repairmen to
failed components as a deterministic function of the state of the system only.
Let N denote this finite set of deterministic policies that never leave
repairmen idle while there are some failed components. The information
pattern used by the controller at decision epochs is the state of the system at
thogse instants. When a policy w € [ is employed the time evolution of the
astate of the system can be described by a continuous time, finite state,
irreducible, Markov chain {x™(t) =(x'1'(t)....,x§(t)). t a 0}, where x'i‘(t) = xg
if the ith component is in state x; at time t . Thus, when the initial
state of the system is x and a policy w € 1 is employed, the average
expected system operation time and the expected discounted system operation

time, for a given discount rate B8 , are defined by (1) and (2), respectively

T
(1) Ag(x) = lim % B [I Q(x"(t)) dt / x"(O) = X ] '
T 0
® n
(2) Dn(x,8) = B [Io eBte(x™(t)) dt / x"(0) = x ] :

Notice that, for me¢ 1, (x™(t) , t a0} is ergodic thus, we have



(3) A‘(x) = A(Rw) = xEG en(x) ’

where {ex(x), x € { 0,1 }¥ } is the set of ergodic probabilities of
{x™(t), t 20 }.

It will be convenient to work with the quantities Ug(x,8) which denote
the expected discounted time that the system does not function when the
initial state is x and policy ® is used. Let ¢(x) = 1 - ¢(x) then,

Un(x,8) is given by (4) below.
® - R n
(4) Un(x,B) = B []o e Bt § (x"()) dt / x"(0) = x

It is easy to see that Dg(x,8) + Ug(x,8) = 1/p ; thuse, maximizing Dg(x,8) is
equivalent to minimizing Ug(x,B) .

Let R(x) = min (R, |Co(x)|} denote the maximum number of components
that can be under repair when the system is in state =x . A deterministic
policy ®n is specified by sets of the form =w(x) = (wi(x) € Co(x), 1 € i &
R(x)} , for all states x ; where mun(x) denotes the set of components under
repair when ® is used and the system is in state =x . We assume that
components in n{(x) are ordered in a consistent way for all x in S , but
for notational simplicity we do not define this order explicitly. Thus, w;i(x)
denotes a specific failed component on which a repairman is assigned under
® when the system is in state x . Under policies in [1 , repairmen are
never left idle when there are enough failed components thus, n(x) = Co(x)
for all states x such that R > ICo(x)! . However, for states x such that
R ¢ 1Co(x)! there is a choice for n(x) , and the problem is to choose these
sets 80 as to maximize A(wn) or Dg(x.p) .

Finally, we assume that the system under consideration is coherent, i.e.,
we place the following restrictions on G and B (or equivalently, on ¢ ).

f)If x¢G and yax (le, yj2xi, 161{6N) then y € G and if

R .P.' . ~ " .
» ),
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x€B and yéx then y € B. ii) For any component i, 16 i 6 N,
there exists a state x € G such that state (04,x) € B ; where we use the
notation: (Gk.x) = (xl,....xk_l.a.xkﬂ....,x") y §20,1.

We shall use the following notation and terminology from coherent

structure theory; see Barlow and Proschan (1974). For any state x € S we

define: Co(x) = {i | x; = 0} , Cl(x) = {i| x; = 1} . Given any finite

gset C, |C| will denote the number of elements in it. A state x € B such

that y ¢ G for any y » x , y ® x, is called a cut; it corresponds to

minimal set of components which by failing cause the failure of the system.

The size of a cut x is the number of components in Co(x) .

3. Asymptotically Optimml Policies. We first consider the expected discount-

ed system operation time criterion and then, using the results obtained, we
treat the maximum availability problem.

By conditioning on the first transition out of state x we obtain that

under a deterministic policy ® the Ug(x,8)'s, x € S, are the unique

solution to the following system of linear equations

R(x)

N
- 1 <
(5) U*x) = X0 * pu(x) + B [ ¢*(x) +i§1xﬂ1(x)u1“i(x).x) + ijlujleloj,x) ]

.' R(x)
x € S, where we set A (x) = I Ap;(x) » W(x) =
i=1l J=1

N

E x5 and [Klj.l) =0.

It is known, Derman (1970), that there exists a deterministic policy n* such

that

(6) Uns(x,B) 6 Up(x,B) ¥ xe€S, ¥nazat,

Furthermore, since the state space is finite, it follows (Derman (1970) that

there exists a 80 > 0 and a deterministic policy m° such that

7 U'.(x.B) 4 U'(x.l) ¥xe¢s8S, ¥rR=2n° and ¥ B ¢ (0,80) .,

Ny~ - - n - e oy
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(8) &_1.8 B Upo(x,B) =

) eu,(x) = A(m°) , ¥xe8S.

xeB

Note that under =®° the availability of the system is equal to 1 - A(n°) .
Thus, it follows from (7) and (8) that if a policy minimizes Ug(x,B) for
small values of B , then it maximizes the availability of the system.

Weo first prove the following

Lemma 1. Forany x€ S8, f € (0,0 and we 1, there exist power series
expansions of Ug(x,B) , of the form
®

(9) Un(x,8) = £ o) (x,810"
Proof. We can write the system of equations (5) in the following form:

1 _ R(x) n
(10) *x) = m [Q(x) +i£lkui(,)alui(x).x) + pjzlujxj(ﬂoj.x) - le))]
x €S . In matrix form (10) can be written as: U= a + BU + pCU where sub-
scripts and arguments have been supressed and a, B, C are appropriately de-
fined. It is obvious that B is trisngular so that (I-B) ' exists and may
be computed in a recursive fashion. Thus, U= (I-B)-la + p(I-B)_ICU or in

more compact form:
(11) U=b(n,p) + p Q(n,8)0U
It follows from (1ll1) that for any k » 1 , we have:
k v v v k+1
(12) Un(%x,8) = b(n,p) + £ p (Q(w,p)) b(n,B) + (Q(W,B)) (Un(x,8))p
1

Now let |1Q(n,8)|| denote a norm of the matrix Q(w,p) , then (12) implies

that (9) holds for all p ¢ (0, l/}iQ(R,B)II) .
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The next corollary provides a method for computing the coefficients

U‘(tV)(x.B) recursively for increasing |Co(l)l . For notational simplicity we

(v) -
set U (1J..1) =0.

Corollary 1. Forany x€ S, B € (0,0) and ne I, the U'(‘v)(x.B)’s can

be computed recursively from equations (13), (14) below

(13a) u:°)(1.a)

11
[~

R(x)
(0) - 1 - . n(0)
(13b) U“ (x,B) = ———k“(x) rary $(x) +i§1k"i"‘)uu ((1ni(x)-")-5) ] ’

R(x)
(v+1) _ 1 (v+1)
(14) UR (x:B) - x“(x) + B [ lglk“l(x)u“ ((I“I(X)'X)'B) +
N
(v) ) ]
+J£1"J"jwn ((OJ-.x).a) Uy (x,8))],

val, xe8S.

Proof. It follows from (11) that U'(‘O) = (I - B)-la and since B is triangu-

lar, U‘(lo) can be computed recursively by U‘('o) = a+ BU‘(tO) which is (13).
Similarly, Uf"’*“ = (1 - B eu™)  thus, u‘(t""“ = au:“”"” + cu’”)  which is
(14).

Remark 1. Note that equations (13), (14) constitute a Gauss Seidel iteration
method for solving the system of linear equations (5) for a specific choice of
initial points. Thus the overall approach of determining policies that minimize
the leading coefficients is easentially equivalent to employing a so called
pre-Gauss Seidel iteration for the under consideration Markovian decision

problem, see Thomae et al.,, (1984) and references given there.

We next aim to determine the leading coefficients of the power series

(9)0

We first need to define the following quantities. Let
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a(¢) = min{!C (x) | x € B}, B.(’) = {x€B| lco(x)l = u(¢)} and

I(x) lin{lco(y)l | y$x, ye€e B} - ICo(x)I . In the terminology of cohe-

rent structure theory, m(¢) is the size of a cut state of minimal size,
B-(’) is the set of all such states and I(x) is the minimum number of com-
ponents that must fail when the system is in state x , in order to cause a

system failure. The next lemma summarizes properties of I(x) that are easily

verifiable from ite definition.

Lemma 2. For any state x the following are true.
(1) I(x) ¢ m{¢) = I(1) .

(ii) I(Oi,x) a I(x) -1, ¥ice Cl(x) .

(iii) If ¢(x) = 1 then I(x) a1l .

(iv) If ye B-(’) . ki € C (y) i1=1,2,...v and x = (lkl""’lkv”) then
I(x) = v .

We can now prove the following

Lemma 3. For any x€ S, any ne€ll and for any k = 0,1,...m(9) - 1 if
Ix) »k + 1 then U{(x,8) = 0.
Proof. By induction on k and subinduction on ICo(x)l .
i) For k=0, i.e. I(x) a1 we have:
a) if ICo(x)l = 0 then x =1 and therefore U;o)(l.s) =0 by lemma 1l ,
b) assume that the lemma holds for all x such that lCO(x)l = v . Then
(13), the induction hypothesis, and the observation that: $(x) = 0 when
I(x) » 1 and 'CO(lni' x)| = v when |Co(x)| = v + 1, imply that the lemma
holds for all x such that lCo(x)l v+ 1,
ii) Assume that the lemma is true for k = kg < m(¢) - 1 . We next show that

it holds for k = kg + 1 . Then:



,A-.-...

a) If 0, i.e.,

ICO(X)l x = 1 then (14) becomes:

ol (1) -

- J

N
tlud(u;kO’((o 1.8) - 10 1,p)) |
J=

Note now that I(Oj.l) » I(1) -1 >kg, by lemma 2 (ii) . Thus, the result

follows since by the induction hypothesis (ii) we have that:
0§ 0, 1,8) = 1 (1,8)) = 0 .

b) Assume that the lemma holds, for any x such that Ico(x)l = v,

Consider a state x such that lCo(x)l =v+1. Then

(ko+1)
Ux

I(x) » kg + 1 > kg , thus induction hypothe-

1Cy¢1 X = v

nj(x

and the induction hypothesis (b) implies that: ((l“i(x,.x).B) =0.

Notice also that I(Oj,x) a kg ,
sis (ii) implies that ué“o’(<oj.x).a) = U;ko)(x,s) = Q. Now it is easy to

complete the induction step using (14) .

A consequence of Lemmas 1 and 3 is the next

Theorem 1. For any x € S and any X € [, there exist constants U(I(x))(x 8)

in (0,®) , such that:

(15) U (x,8) = 0T (x,8)p T o 00100,

where the U;I(x))(x.ﬂ)'l can be determined recursively as follows.

i) For all states x such that I(x) =

R(x)
(0) - 1 (0

) (1 (x) 20 .8) ] :
i1

ii) For all x such that I(x) a1l ,

R(x)
I I
(17) U; (x))(x.B) = x_T;T_:_E [ E A i(x)U( (x))((lul(x).x).ﬂ) +
N (1(x)-1)
+ t ".X (U ((0.,%x),8) ]
j=1 JJ J
) 10
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Proof. Equations (16) and (17) follow from corollery 1 and lemma 3. To show
that U'(‘I(x))(x.B) » 0 for all x , notice that this is true for all x such

that I(x) = 0 . The proof can be completed by induction on I(x) using (17).

Theorem 1 shows that the order of the leading terms in the asymptotic
power series expansion of Ug(x,8) is the same for all deterministic

policies. Thus, we can formally state the following.

Proposition 1. A policy n* ¢ I maximizes the expected total discounted sy-

stem operation time for small values of p if and only if:

(18) U_g(x,8) = min{ 01 (x,8) , men}, ¥xes.

In the absence of ties (18) determine unique asymptotically optimal act-
ions for all states. Ties can be resolved by computing and minimizing higher

order coefficients subject to minimization of all lower order coefficients.

Remerk 2.  Since U{*)(1,8) =0 for k=0,1, ... , I(1) - 1, the coef-
ficients Uék)(x.s) , forall x=1, k6 I(x) -1, are the same with
those in the asymptotic power series expansion of the expected discounted time
that the system spends in failed states during the first passage time

from state x to state 1 under policy w® . Thus, since I(x) & I(1l) -1
for all x 2 1, we have the following partial characterization of asympto-
tically optimal policies. If a policy is asymptotically optimal with respect
to the expected discounted system operation time criterion then, it must
assign repairmen to failed components in such a way that the expected dis-
counted time that the system spends in failed states during the first

passage time from state x to state 1 is minimized.

i1l
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We now turn to the problem of determining w € [ to maximize the

availability of the system. We have seen that for this problem it suffices
to determine policies that minimize the leading coefficients U:V)(x.ﬂ) of
the power series (9) for small values of the discount rate B . Thus, let
V;v)(x) = :i; U(v)(x.l) , for x21 and v € I(1) -1 . Then, a policy «x
(v)

(v)

minimizes U (x,8) for small for small values of # if and only if it

minimizes V (x) . Now, using lemma 3 and theorem 1 we obtain the following

procedure for computing and minimizing the V(V)(x)'s directly.

Theorem 2. for any x€ S, x 21 and any n ¢ {1l , we have
(19) v{")() =0 for v &I -1,
and, the V:I(x))(x)’o can be determined recursively as follows.

i) For all states x such that I(x) =0,

R(x)
0 1 -

ii) For all x such that I(x) a1,

R(x)
2 v = o IO (1,

(x) m; ()Y (x),%))

(I(x)-1) ]
+ tlquJ(V" ((0 ' X))

iii) For I(x) € v « I(1) -1 ,

R(x)
(v+1) D | +1
(22) vu\l (x) = N (%) E Aui(x)v:" )((lui(x).)())

(v) v ]
+JtluJ S0, - vt |

Thus we can now formaly state the following
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Proposition 2. A policy ®n € [l maximizes the availability of the system, for

small values of ¢ if and only if :

2 v ) = minf VP, nen}, vxes,x=z1.

In the absence of ties, (23) determines a unique asymptotically optimal

policy. Ties can be resolved by considering higher order coefficients as

computed by (22).

Remark 3. Notice that when the system is in a failed state x , I(x) = 0

and the V‘(‘O)(x) as determined from equations (20) is the expected time until
the system is back in operation, in the absence of failures. Thus, we obtain
the following, intuitively expected, partial characterization of asymptotically
optimal policies. If a policy =®° maximizes the availability of the system, for
small values of 9 , then when the system is failed, ®° wmust assign
repairmen to failed components in such a way that the expected time until the

system is back in operation, in the absence of failuree, is minimized.

In the next theorem we show that asymptotically optimal policies are

strictly optimal when all failure rates are sufficiently small.

Theorem 3. Let n¥ be an asymptotically optimal policy, with respect to one
of the criteria that have been considered. Then, there exists a po > 0 such
that n* is optimal ¥ p ¢ (0,pg) -
Proof. We prove the theorem for the expected discounted operation time cri-
terion only. The proof for the maximum availability criterion is similar and
is omitted.

Recall that for any policy well and for p € (0, 1/11Q(n)Il) the
Un(x,f)’'s possess convergent power series expansions. Since, there are

finite many policies in I , it follows that the above power series represent-

13

- 'y B S A T W P VAT, WY, Yy “pe LS I % ] B ™ P AT AT LW AT n P e gt N
R U U U O A e L U T A L I v Tt i A !



2

ations of all Ug(x,p)’s are convergent for all wn € {l in the interval
(0.91) » where Py = :éﬂ { 1/701Q(m, )01} .

Now for any x € S and R Ry € M, it follows (see Rudin (1976, pp.
177)) that the difference: Uﬁl(x.B) - Uﬂz(x.l) may change sign a finite
number of times. Thus the theorem follows from Proposition 2 and the fact

that there are finite many policies in [1 and states in S .

4. Applications. In the following examples we restrict our attention to de—
termining policies which are asymptotically optimal with respect to the avail-

ability criterion.

4.1 Series and Parallel Systems. Consider first the N component series
system maintained by R repairmen. The only functioning state is state
1=(1,...,1). From Proposition 2, remark 3 we know that an asymptotically
optimal policy n* minimizes the expected time to state 1 from any initial
state x in the absence of failures. Thus for any initial state x , in the
terminology of stochastic scheduling, an asymptotically optimal policy minimi-~
zes the expected makespan for allocating Ico(x)l tasks (repairs) on R
identical processors (repairmen). For R =1 all policies in [ have the
same makespan: V,('O)(x) =f 1/Af . For R 2 it has been shown by

ieCg(x)
Bruno et al. (198l1) that an optimal policy assigns repairmen to failed
components in Co(x) according to the LEPT (Longest Expected Processing Time
First) rule. In the context of the series system an asymptotically optimal
policy assigns repairmen to the failed components with the longest expected
repair times. Notice now that this LEPT policy is optimal for sufficiently
small failure rates (Theorem 13J). It follows from this example that in the
general case the optimal policy does depend on the repair rates and therefore

the result established in Katehakis and Derman (1984) does not hold for R » 2.
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For the parallel system the only failed state is state 0 =(0,...,0) .
Furthermore, I(lj.x) = I(x) +1 for all x =21, thus it is easy to show,
using Theorem 2, that the policy which always assigns repairmen to the failed

components with the smallest repair rates is asymptotically optimal.

4.2 Parallel Subsystems Connected in Series. Consider a system that is compo—

sed of K subsystems and it is maintained by a single repairman. The ith
subsystem is composed of Ni components with the same failure rates vy o
Furthermore, we assume that all components have identical repair rates A .
Since the subsystems have identical components, it is easy to see that
the state of the system at any time can be adequately specified by a vector
2= (zl.....zx) » where z; denotes the number of functioning components in
subsystem i , z; = 0,1....Ni . The structure of the system is specified by

the sets G = {z | z; a1l ¥i}, B = {z| z; = 0 for some i} . Let

Co(z) = {i | z, = 0} , (nj,z) = (zl.....zj_l.n,zj+l.....z‘) ,n=0,1,...,N

J
and define (nj;,...,0j ,2) recursively by (0j)+0jg.8) = (nj}.(nj5,2)) .

Note that I(gz) = -in{zi , 1 =1,...,K} . Finally let nHg) = (i | z, = I(2)}
and J((nJI""' njk.z)) = min {zi , 12 jl.....jk} . Since subsystems have
identical components a policy is specified up to the subsystem on which

the repairman is assigned only. With this generalization of notation, using
Theorem 2, we obtain that the asymptotically optimal policy is given by the

following simple rule.

i) If z € G assign the repairman to system j if and only if either

I(z) = {j} or W, = max u; » i e A2)} .

ii) If z € B assign the repairman to subsystem j if and only if

"y = ain {“1 , 1€ Co(z)}.

The proof of i) essentially involves establishing by induction on n that




if J((nil..... nik.:)) ak+1 then,

~(otl) 1, TNy M) - L 3

(n) 2 .n
(24) V“O (nil.....n. ,2) =n!' L juijx x)

ik j=1

The proof of ii) is easy to complete by induction on decreasing |I(z)| .
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