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ABSTRACT

- We consider the dynamic repair allocation problem for a general

multi-component system that is maintained by a limited number of repairmen.

Component functioning and repair times are assumed to be exponentially

distributed with parameters that may depend on the component but not on

repairmen. At most one repairman may be assigned to a failed component.

The objective is to determine repair allocation policies that maximize a measure

of performance for the system such as the expected discounted system opera-

tion time or the availability of the system. We consider systems composed of

highly reliable i.e., small failure rates, components and study asymptotic

techniques for the determination of optimal policies. In the final section we

find asypmptoticaly optimal policies for the series, parallel and a system
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1. Introduction. Consider an N component system, of known structure,

that in maintained by a limited number of R repairmen, i.e., R X N .The

objective is to characterize dynamic maintenance policies that yield a maximum

value to a system measure of performance such as the expected discounted

system operation time and the average expected system operation time, or

availability of the system. We make the following assumptions. Each

component and the system as a whole can be in only two states, functioning

or failed. The functioning and repair times for the ith component are

exponentially distributed random variables with known parameters gi and Xi

Components are independent i.e., failure or repair of one has no effect on the

others. At most one repairman may be assigned to a failed component and it

is possible to reassign a repairman from one failed component to another

instantaneously. Repaired components are as good as new and failures may

take place even while the system is not functioning.

Since the number of available repairmen is less than the number of

components, the performance of the system will depend on the maintenance

policy employed, i.e., the rule for choosing on which failed components

repairmen are assigned to whenever the number of failed components is

greater than R .Under these assumptions optimal policies can be obtained,

in principle, using methods from Markovian decision theory. However, the

computational difficulties are prohibitive due to the very large number of

possible states. Therefore, explicit solution. and approximations can provide

valuable insight. An explicit solution has been obtained for the series system

with N component. maintained by a single repairman in Katehakis and

Derman (1984); see also Derman et &L (1978), Nash and Weber (1982) and Smith

(1978).

In practice many systems are composed of highly reliabl, components. We
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have a simple model for such systems if we assume that the failure rate for

the ith component is of the form ppi , I ' i d N . Thus, for small values

of p , all components are highly reliable. We obtain analytical character-

izations and derive simple recursive formulas for the determination of policies

that are optimal for small values of p . These asymptotically optimal policies

can be used as good approximations to optimal policies for systems composed

of highly reliable components.

The first study of such a model was done in Smith (1978). We extend the

work of Smith in the following directions. i) We provide a formulation of the

problem along the lines of Markovian decision theory. ii) We treat the

multirepairmen case. i/i) We note that the recursive formulas for the

determination of asymptotically optimal policies essentially constitute a Gauss

succesive approximations method for solving the general Markovian decison

problem. iv) We establish the existence of intervals of the form (O,p*) with

the property that if they contain the failure rates of all components, then the

asymptotically optimal policies under consideration are optimal, and v) in the

final section we find asypmptotically optimal policies for the series, parallel

and a system composed of parallel subsystems connected in series. For the

series system maintained by R , 6 2 , repairmen it is asymptotically

optimal to assign repairmen to failed components with the longest expected

repair times first. Thus, we show that the series system result established in

Katehakis and Derman (1984) does not hold in the case of more than one re-

pairmen.

2. Problem Formulation. Under the assumptions made, at any time the status

of all components is given by a vector z = (xl,...,xN) with xi = I or 0 if

the ith component is functioning or failed. Thus S = (0.1)N is the set of

all possible states. The structure of the system, i.e., the relation between the

3



status of the components and that of the system, in given by a partition of

the state space S into two sets G and B of "good" and "bad" states;

where if z e G the system is functioning and if z e B the system is failed.

Alternatively, this relation can be specified by the structure function

defined on 5 , such that #(x) = I or 0 if z e G or z e B .

It is easy to show, using well known results of Markovian decision theory,

that the only relevant decision epochs are component failure and repair

completion instants and that it suffices to consider only the class of

deterministic policies that never leave repairmen idle while there are some

failed components. A policy is called deterministic if it assigns repairmen to

failed components as a deterministic function of the state of the system only.

Let I denote this finite set of deterministic policies that never leave

repairmen idle while there are some failed components. The information

pattern used by the controller at decision epochs is the state of the system at

those instants. When a policy it [ 1 is employed the time evolution of the

state of the system can be described by a continuous time, finite state,

irreducible, Markov chain {xR(t) =(xR(t),...,xW(t)), t & 0}, where x(t) = x

if the ith component is in state xi at time t . Thus, when the initial

state of the system is z and a policy it e H is employed, the average

expected system operation time and the expected discounted system operation

time, for a given discount rate , are defined by (1) and (2), respectively

lT
(1) Ait(x) = ln 1 1 *(x Mt) dt / X'(0) =xJ

(2) Dit(x,0) = iJ e-ot(ittM) dt / c'i(0) X

Notice that, for w cA , R xit(t) , t a } is ergodic thus, we have

4



(3) %(x) =(w) e(x)
xSG OWN

where (ej(x), x c ( 0.1 ) N I is the set of ergodic probabilities of

(x'(t), t b 0 ).

It will be convenient to work with the quantities U.,(x,P) which denote

the expected discounted time that the system does not function when the

initial state is x and policy it is used. Let i(x) I - 9(x) then.

Uw(x,$) is given by (4) below.

(4) ult(xR) = I1 e7Pt j (x3 (t)) dt / X'(0) = xJ

It is easy to see that Dj(,) + U,(x,) = 1/0 ; thus, maximizing Df(x,A) is

equivalent to minimizing U(xj& ) .

Let R(=) min (R, I CO(x)I) denote the maximum number of components

that can be under repair when the system is in state x . A deterministic

policy it is specified by sets of the form w(x) = (wj(z) E CO(z), I d i '

R(W)} , for all states z ; where n(x) denotes the set of components under

repair when i is used and the system is in state x . We assume that

components in t(x) are ordered in a consistent way for all x in S , but

for notational simplicity we do not define this order explicitly. Thus, ti (z)

denotes a specific failed component on which a repairman is assigned under

it when the system is in state x . Under policies in N1 , repairmen are

never left idle when there are enough failed components thus, n(1) = CO(z)

for all states x such that R ) ICo(x)I • However, for states z such that

R ( IC04(1) there is a choice for t(z) , and the problem is to choose these

sets so as to maximize A(u) or D(zj& )

Finally, we assume that the system under consideration is coherent, i.e.,

we place the following restrictions on 0 and B (or equivalently, on 9

i) If iO and y z (i.e., yibxi, I iKN) then yaG andif
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ze B and y'z then Y €B. H) Foranycomponent i, 1 'i'N,

there exists a state z f G such that state (Oi,z) e B ; where we use the

notation: (6kX) = (X1...,oXkl,6,Xk+1...,XN) , 6 = 0, 1 .

We shall use the following notation and terminology from coherent

structure theory; see Barlow and Proschan (1974). For any state x e S we

define: C0 (x) = (i I xi = 0} , C1 (X) = (i I xi = 1) . Given any finite

set C , ICI will denote the number of elements in it. A state z e B such

that y e G for any y a x , y 0 z, is called a cut; it corresponds to

minimal set of components which by failing cause the failure of the system.

The size of a cut x is the number of components in C0 (X) .

3. Asmvptotically Optimal Policies. We first consider the expected discount-

ed system operation time criterion and then, using the results obtained, we

treat the maximum availability problem.

By conditioning on the first transition out of state x we obtain that

under a deterministic policy it the UR(x,P)'s , z c S , are the unique

solution to the following system of linear equations

(51~)PLX r~x + ) ii(x)L lwi(x),X) + p £ ix.&(0.,x)?() ~R(x) N1(5) 1Xx) = (X) + PP(X) 
+  VI + i~xtl()X +~ J E PJ Kix

i=1 j=1J

R(x) N
x e S, where we set X (x) ZiXwi(X) , P(x) = PE i X and lI:) = 0.

It is known, Derman (1970), that there exists a deterministic policy R* such

that

(6) URS(x,P) ' U1(xI) V x C S, V R it

Furthermore, since the state space is finite, it follows (Derman (1970) that

there exists a $0 ) 0 and a deterministic policy nw such that

(7) U1O(x,O) d U,(X.,) V X s, Vi wa w and V 0 £ (0,M)

6
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and

(8) MS UMo(X,A) e,o(X) = A(x*) , x S.
xBs

Note that under iO the availability of the system is equal to I - i(,o)

Thus, it follows from (7) and (8) that if a policy minimizes UR(x,D) for

small values of S , then it maximizes the availability of the system.

We first prove the following

Lemma 1. For any x e S , s (0,e) and R e , there exist power series

expansions of UR(x,B) , of the form

(9) UR(x,5) = E (x,5)P
0

Proof. We can write the system of equations (S) in the following form:

(10) Ox) 1 [#(x) + Xwi(X) 6(lui(x),x) + P .x.(1.Ojx) - ax))i=l j=l

x e S . In matrix form (10) can be written as: U= a + BU+ pCU where sub-

scripts and arguments have been supressed and a, 8, C are appropriately de-

fined. It is obvious that B is triangular so that (I-B)- 1 exists and may

be computed in a recursive fashion. Thus, V] (I-B)-a + p(I-B)-I C( or in

more compact form:

(11) U= b(w,5) + p Q(w,A)U

It follows from (11) that for any k b 1 ,we have:

(12) Ux(x,) = b(w.S) + E p (Q(w.A))vb(R,) + (Q(w.A))v(Uw(x,))Pk+l
Ip(

Now let IIQ(RJ)II denote a norm of the matrix Q(MO) , then (12) implies

that (9) holds for all p (0, 1/I Q~w,5)ll)

'7I
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The next corollary provides a method for computing the coefficients

(V) (x,A) recursively for increasing ICO(I)I . For notational simplicity wo

set u ,v)(l Il) Z 0

Corollary 1. For any x e S, A e (0,w) and w c Nl, the U(v) (x,A)'s can
it

be computed recursively from equations (13), (14) below

(13a) U(O)(1,A) = 0X

(0) 1 R(x) (0)1(13b) u(i)(x,lA) = I + (x) + E Xi(x)Uw ((lRi(x),X) )

(V* I x + ~ x (V
i--I

(14) U ' (xl) X_._. + A (X)U( ((lVxi(,x) ,) +if,,,,(x), + 1 W1 X

N (v) ]
+ E P ~X.(U )((O ,x) O) - U (Z,0))

* v,0, x S.

Proof. It follows from (11) that ( 0 )  (1- B)-1 a and since B is triangu-

lar, O ) can be computed recursively by ,(0) = a + BU(0 ) which is (13).
II

Similarly, U( V+ l ) = (I - thus, U( V+ l )  BU( V+ l + CUM') which is

(14).

Remark 1. Note that equations (13), (14) co3nstitute a Gauss Seidel iteration

method for solving the system of linear equations (5) for a specific choice of

initial points. Thus the overall approach of determining policies that minimize

the leading coefficients is essentially equivalent to employing a so called

pre-Gauss Seidel iteration for the under consideration Markovian decision

problem, see Thomas et al., (1984) and references given there.

We next aim to determine the leading coefficients of the power series

(9).

We first need to define the following quantities. Let

S
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a(#) z min(IC (x) I x C B}, B = (x c B I ICo(x)l = m(#)} and

I(x) = min{ICo(y)l I y x , y c B} - ICo(x)l In the terminology of cohe-

rent structure theory, m(#) is the size of a cut state of minimal size,

B is the set of all such states and I(x) is the minimum number of com-

ponents that must fail when the system is in state x , in order to cause a

system failure. The next lemma summarizes properties of I(x) that are easily

verifiable from its definition.

Dams 2. For any state x the following are true.

(i) I(x) A a(#) = I(l)

(ii) I(Oi,x) I I(x) - 1 , V i C C I (x)

(iii) If +(x) I then I(x) h I

(iv) If y C B() , i c C (y) i=1,2,...v and x = (lkl,...,tkv y) then

I(x) = v

We can now prove the following

Lena 3. For any x g S , any n f 1 and for any k Ol,...m(#) - I if

I(x) a k + 1 then u(k)(x,A) = 01!

Proof. By induction on k and subinduction on IC0 (X)l

i) For k = 0 , i.e. I(x) & I we have:

a) if ICo(x)l = 0 then x = 1 and therefore U(0)(l,$) = 0 by lemma 1

b) assume that the lema holds for all x such that IC0 (x)I = v Then

(13), the induction hypothesis, and the observation that: i(x) = 0 when

I(x) 6 1 and ICo(l%, x)I = v when IC0 (x)l = v + 1 , imply that the lemma

holds for all x such that IC0 (x)l = V + 1.

ii) Assume that the lemma is true for k = ko a(#) - I . We next show that

it holds for k ko + I. Then:

9
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a) If IC0(x) = 0 , i.e., x = 1 then (14) becomes:

u(kO+l)( NNO) [ N

U= EI P(u kO)((0,I),A) - u kO)(l,))Rj=l J  N W

Note now that I(Oj,1) b I(1) - 1 x ko , by lema 2 (ii) . Thus, the result

follows since by the induction hypothesis (ii) we have that:

U(O)((O-,l),0) = uko)(1,)) = 0
1! %

b) Assume that the lema holds, for any x such that IC0(x) v

Consider a state x such that ICO(x)I = v + I . Then ICo(lWi(x),X)| = V

and the induction hypothesis (b) implies that: Uk ((lwcx),X),s = 0

Notice also that I(Oj,x) h , I(x) • ko + 1 I ko , thus induction hypothe-

sis (ii) implies that ok0)((o,x),) (k0)(x,) = 0 . Now it is easy to

complete the induction step using (14)

A consequence of Lemas 1 and 3 is the next

Theorem 1. For any x f S and any i f N1, there exist constants U Mx))(x,O)

in (0,D) , such that:

(15) U (x,5) = u (I(x)) (x) + )

where the can be determined recursively as follows.

i) For all states x such that I(x) = 0 ,

(16) I (x) ) + A #(x) + Rx (x)unO)((l.i(x),X),p)1
i~l

ii) For all x such that I(x) a 1

(Ix)I R(x) .(I(x)),
(17) LJ(I(x)) (x'D) = k (x) + 0 R(X) 'M( (lt )

N* ..x(UI(x)-l)(( ]~.
+ I x (IU ((OjxlO)

10



Proof. Equations (16) and (17) follow from corollary 1 and lemma 3. To show

that % (I(x))(x,) 1 0 for all x , notice that this is true for all x such

that I(x) = 0 . The proof can be completed by induction on I(x) using (17).

Theorem 1 shows that the order of the leading terms in the asymptotic

power series expansion of U,(x,$) is the sane for all deterministic

policies. Thus, we can formally state the following.

Proposition 1. A policy 0s e [ maximizes the expected total discounted sy-

stem operation time for small values of p if and only if:

LT,.(x~~p) (x) ,1

(18) UWs(xP)= sin{ U ix))(,) . V f a V X C S .

In the absence of ties (18) determine unique asymptotically optimal act-

ions for all states. Ties can be resolved by computing and minimizing higher

order coefficients subject to minimization of all lower order coefficients.

Remark 2. Since U (k) (1,4) = 0 for k 0, 1, I(I) - 1 the coef-

ficients U~k)(x,O), for all x a 1 , k IN(x) - 1, are the same with

those in the asymptotic power series expansion of the expected discounted time

that the system spends in failed states during the first passage time

from state x to state 1 under policy it . Thus, since I(x) d I(1) - I

for all x a 1 , we have the following partial characterization of asympto-

tically optimal policies. If a policy is asymptotically optimal with respect

to the expected discounted system operation time criterion then, it must

assign repairmen to failed components in such a way that the expected dis-

* counted time that the system spends in failed states during the first

passage time from state x to state I is minimized.

11



We now turn to the problem of determining x f. [1 to maximize the

availability of the system. We have seen that for this problem it suffices

to determine policies that minimize the leading coefficients U5 ()x,P) of

the power series (9) for sm=ll values of the discount rate *Thus, let

V(V(X)= lia U)(xB) , for x 9 1 and v 4 1(1) - 1 . Then, a policy w

minimizes % "(x, A) for small for small values of A if and only if it

minimizes V ~(x) .Now, using lema 3 and theorem I we obtain the following

procedure for computing and minimizing the V)(x)'s directly.

Theorem 2. for any x eS , x :l and any w cfl ,we have

(19) VCV(x) =0 for v A INx) -1

and, the V(I(x)) Wx's can be determined recursively as follows.
W

i) For all states x such that I(x) = 0

(0 (0)~ 1 R( R) (0

ii) for all x such that I(N) 6 1,

(21) v(Mx)) Cx ...... R ( ) M(Ix))(( X,)

(x).V(~~)(O

iii) For 1(x) d v '1(l) - 1

(22) V(v.4.) I R(x) V(~l ((1ji, x)
V1 (X) (x) L 1 (x)1 R ~

N (vVy
+ I PJxJ (V ((Oilx)) -V( (X))j

Thus we can now formaly state the following

12



Propoitiao 2. A policy x e N maximizes the availability of the system, for

small values of p if and only if

(23) V(I(x))(x) = min( V(IX)X it e al V X C S , X 1

In the absence of ties, (23) determines a unique asymptotically optimal

policy. Ties can be resolved by considering higher order coefficients as

computed by (22).

RMrk 3. Notice that when the system is in a failed state x , I(x) = 0

and the v(O)(x) a determined from equations (20) is the expectedmtime until

the system is back in operation, in the absence of failures. Thus, we obtain

the following, intuitively expected, partial characterization of asymptotically

optimal policies. If a policy wO maximizes the availability of the system, for

small values of p , then when the system is failed, RO must assign

repairmen to failed components in such a way that the expected time until the

system is back in operation, in the absence of failures, is minimized.

In the next theorem we show that asymptotically optimal policies are

strictly optimal when all failure rates are sufficiently small.

Theorem 3. Let u$ be an asymptotically optimal policy, with respect to one

of the criteria that have been considered. Then, there exists a PO 1 0 such

that 0 is optimal V p C (0,P0 ) .

Proof. We prove the theorem for the expected discounted operation time cri-

terion only. The proof for the maximm availability criterion is similar and

is omitted.

- Recall that for any policy it e H and for p e (0, l/IIQ(R)II) the

UN(x,$)'s possess convergent power series expansions. Since, there are

finite many policies in Nl , it follows that the above power series represent-

13



ations of all U,(,)'s are convergent for all w s N in the interval

(O,p1) , where P1 = niR ( I /1IQ(wB)ii}

Nowfor any x e S and % ' 2 e , it follows (see Rudin (1976, pp.

177)) that the difference: U'Kl(x,) - UW2 (x,) may change sign a finite

number of times. Thus the theoren follows from Proposition 2 and the fact

that there are finite many policies in N and states in S •

4. Applications. In the following examples we restrict our attention to de-

termining policies which are asymptotically optimal with respect to the avail-

ability criterion.

4.1 Series and Parallel Syste. Consider first the N component series

system maintained by R repairmen. The only functioning state is state

1 (1,...,). From Proposition 2, remark 3 we know that an asymptotically

optimal policy n* minimizes the expected time to state 1 from any initial

state x in the absence of failures. Thus for any initial state x , in the

terminology of stochastic scheduling, an asymptotically optimal policy minimi-

zes the expected makespan for allocating ICo(X) tasks (repairs) on R

identical processors (repairmen). For R 1 all policies in 1 have the

same makespan: V~gO)(x) l/ki . For R • 2 it has been shown by
iECo(x)

Bruno et al. (1981) that an optimal policy assigns repairmen to failed

components in Co(X) according to the [HPT (Longest Expected Processing Time

First) rule. In the context of the series system an asymptotically optimal

policy assigns repairmen to the failed components with the longest expected

repair times. Notice now that this LEPT policy is optimal for sufficiently

small failure rates (Theorem 3). It follows from this example that in the

general case the optimal policy does depend on the repair rates and therefore

the result established in Katehakis and Derman (1984) does not hold for R b 2.
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for the parallel system the only failed state is state 0 =(O,...,0)

Furthermore, I(lj,x) = I(x) + I for all x 3 1 , thus it is easy to show,

using Theorem 2, that the policy which always assigns repairmen to the failed

components with the smallest repair rates is asymptotically optimal.

4.2 Parallel Subsystem Connected in Series. Consider a system that is compo-

sed of K subsystems and it is maintained by a single repairman. The ith

subsystem is composed of Ni components with the same failure rates V "

Furthermore, we assume that all components have identical repair rates A.

Since the subsystem have identical components, it is easy to see that

the state of the system at any time can be adequately specified by a vector

z = (Zl,...,z ) , where zi denotes the number of functioning components in

subsystem i , z i = 091,...N i . The structure of the system is specified by

the sets G (3=z Iz.b 1 V i} B =z I Z. 0 for some i} Let

C0 (z) = {i I zi 0} , (nZ) (Z ...,zj-1 n,zj+l,...,z K ) , n 0,1,...,Nj,

and define (njl,...,nk'Z) recursively by (njlnj2 ,z) = (njl,(nj2 ,z)) .

Note that I(z) = .in(zi , i =1,...,K} . finally let 1(z) = (i I zi = I(z)}

and J((njl,..., njkz)) = sin (zi , i jl...,jk} . Since subsystems have

identical components a policy is specified up to the subsystem on which

the repairman is assigned only. With this generalization of notation, using

Theorem 2, we obtain that the asymptotically optimal policy is given by the

following simple rule.

i) If a c 0 assign the repairman to system j if and only if either

(z) = (j) or pj m x ( i, , i e Az)) .

ii) If z c S assign the repairman to subsystem j if and only if

zj Z min (Pi * i 4 C0 (z)).

The proof of i) essentially involves establishing by induction on n that

i5



I'

if J((n. ,. n ik,)) 6 k + I then,

(24) vn )(n il ...,n. z) = n! I J.X n = i,...,I((N ,...,Ng))
i= 1 j

The proof of ii) is easy to complete by induction on decreasing IJ(z)•
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