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INVERSE PERSPECTIVE OF A ROAD

FROM A SINGLE IMAGE
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ABSTRACT

A method is presented for reconstructing the geometry of a road from a sin-
gle image of the road. This problem has an infinity of solutions unless restrictive
hypotheses about geometric characteristics of this road are assumed. The road is
modeled as a space ribbon defined by a spine (centerline) and generators which
are horizontal line segments cutting the spine at their midpoint at a normal an-
gle. Properties of two neighboring generators of such a ribbon are examined, and
it is found that if a generator is known, a neighbor is completely defined if one of
its ends is known. The proposed method uses this property to reconstruct the
visible part of the world road, by iteratively finding a series of generators. For
validation of this method, a road making an S on a hill or in a valley is defined
analytically and graphically, and its perspective image is obtained; from this im-
age, algorithms to be tested reconstruct a ribbon which is compared to the origi-
nal world model by superposition, in top view and sida view. The proposed
method is tested against a simple method which assumes that the ground is flat
("flat earth assumption"), and against another method which uses vanishing
points.

The support of the Defense Advanced Research Projects Agency and the U.S. Army Engineering Topographic Labora-
tories under Contract DACA76-84-C-0004 (DARPA Order 5096) is greatfully acknowledged.



1. Introduction

In a vehicle able to follow a road without human intervention, one of the tasks to perform is the

construction of a world model of the road from the images given by the vehicle's sensors [1, 2].

Sensors being currently tested for this task are:

- A single camera capturing images of the scene.

- A pair of cameras for stereo triangulation between two images of the scene.

- A laser ranger giving range data by measuring the phase lag between transmitted and reflected

pulses of a laser beam scanning the scene.

We will not discuss the relative strengths and weaknesses of these techniques here, but will

simply remark that a camera will most probably be present in the final designs of autonomous

navigation systems, in association with another camera and/or a laser ranger. An autonomous

system will apply a multiple-expert strategy, obtaining its clues from several groups of

algorithms, each group processing specifically filtered pieces of the total information received by

the different sensors. One of these experts could focus on the information obtained by a single

camera. In this paper we present a method which such an expert system could invoke to build

geometric models of the world, in a limited world of roads and highways.

Papers such as [1], [3], [4] also consider the problem of road inverse perspective, and the

methods proposed there are based on finding pairs of line segments which are images of parallel

segments in the scene. For such pairs, the direction from the focal point of the camera to the

vanishing point of the pair gives the direction of the parallel segments in space (Figure 1).
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Figure I

Furthermore, the intersections of these parallel segments with the segments processed at the

previous iteration can be found as the projections of the corresponding image intersections onto the

plane of the previous segments. These parallel segments are then fully defined in space.

This type of procedure relies on the assumption that points which are intersections of the edges

with a plane normal to the centerline ("opposite points") are points at which the tangents to the

edges are parallel. It also assumes that the line segments found by image processing around the

images of these points are images of parallel line segments ("opposite segments"). One problem

with this method is that the test for opposite points and opposite segments can be applied only in

3-D. Thus, checking whether two segments in the image are images of opposite segments in space

would require knowing the 3-D structure of the world road that we are trying to calculate.

A second problem, which occurs in images of road turns, is that the set of line segments found

by image processing to approximate the images of the edges of the road is a discontinuous

representation of continuous curves, and it is probable that none of the possible pairs formed by

picking a segment on each edge is the image of a pair of parallel segments. If Figure 2 shows the

correct inverse perspective world segments of the segments in an image (no pair of parallel

segments can be found), then a method assuming that parallel pairs of world segments can be
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found will give the wrong inverse perspective segments and an erroneous world road.

Figure 2

In this case a pair of parallel world segments built from any pair of image segments will diverge

from the real road.

A third problem is that a road reconstructed using parallel pairs of edge segments is developable

because it is a chain of planar patches. Such a model is acceptable for flat roads or straight roads

on a changing slope, but not when a turn occurs on a slope. In such combinations of turn and

slope, the premise that, for opposite points, tangents to the road edges are parallel - the very basis

for the vanishing point methods - is wrong. In such cases, road patches made from opposite

segments are warped, and trying to model them with planar patches gives a reconstructed road

which does not match the real-world road.
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This last point is illustrated in Figure 3. A road climbs a constant slope, and takes a turn while

its centerline stays in the plane of the slope. For a real world road, a section of the hill would look

like the top right drawing.

The only possible developable road taking a turn on a constant slope is a planar road which stays

on the surface of the hill, and takes an unrealistic bank equal to the slope of the hill (bottom

drawing). The image of such a road would be much wider after the turn than the image of a

non-developable road (top); therefore an inverse perspective program using the top perspective

view and reconstructing the road with planar patches will not find a road on the slope of the hill.

From the narrowing of the road after the turn in the top perspective view of the figure, such a

program will assume that the road after the turn is much further away than it actually is.

The previous comments have shown the importance of a geometric model of road ribbons

flexible enough to represent the situations encountered in the real world. The following section

summarizes the proposed modeling scheme.
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2. Summary of the world road modeling scheme

In the inverse perspective algorithm presented in this paper, the world road ribbon is defined by

a spine and a sweeping line segment which slides along the spine at its centerpoint, while remaining

normal to this spine. Furthermore, the generating segment is assumed to remain horizontal. This

road model was originally suggested by Ozawa and Rozenfeld in [5].

This definition of the road ribbon is continuous. In practice, however, only a discrete number of

neighboring cross-segments are computed, and we discuss in Sections 3 and 4 the geometric

properties of two successive cross-segments in a space road ribbon. In the proposed algorithm, the

calculation of a new cross-segment is iterative, requiring knowledge of the previous cross-segment.

The geometric relations between two successive cross-segments are used to deduce the new

cross-segment. These are summarized in the four following characteristics describing a new

cross-segment:

1. The new cross-segment is normal to the road centerline. In a discrete representation of nearby

cross-segments, this can be expressed by saying that the average direction between the previous

cross-segment direction and the new cross-segment direction is normal to the vector joining the

midpoints of these two segments.

2. The new cross-segment has the same length as the previous one.

3. The new cross-segment is horizontal.

4. The images of the ends of the new cross-segment are on the images of the road edges.

These four constraints usually yield more than one possible new cross-segment. Among these,

the cross-segment which gives the minimum change of road slope is chosen.

Sections 3 and 4 show that the first two constraints constrain a pair of neighboring

cross-segments to form a warped isosceles trapezoid. In Section 5, details of the calculation are
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given for combining this warped isosceles trapezoid approximation with constraints 3 and 4 and

finding a new horizontal cross-segment from the knowledge of the road image and a previous

cross-segment. Section 6 completes the description of this road reconstruction algorithm by

presenting a method to obtain an initial cross-segment. Section 7 applies this algorithm to the

perspective image of a road defined analytically which makes an S on a hill or in a valley. The

results are compared to the reconstructions obtained by a method that assumes that the ground is

flat, and by another method that tries to find images of parallel segments in the perspective image.

3. Geometry of a road of constant width

3.1.Planar road

The only reason for first considering a planar road is to introduce the concepts which will be

applied to a non-planar road. The properties of a space ribbon will of course remain appropriate for

modeling a planar road.

Consider a planar road of constant width (Figure 4). It has a ribbon shape which can be

generated in the followi" way:

a. A planar spine defines the trajectory of the road in the plane.

b. A line segment of constant length has its midpoint on the spine, and is required to stay normal to

the spine as it moves along the spine. The ribbon generated by this process is a Brooks ribbon of

constant width [6].

Such a ribbon makes a reasonable model of a planar road of constant width:

1. The sides of the road are the loci of the end points of the generating segment.

2. The spine is the centerline of the road.

3. The constant length of the generators (cross segments) is the road width. The end points of a

cross-segment are opposite points of the road.
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The coordinates of a point L moving on the spine can be expressed as functions of the curvilinear

abscissa s. The spine is then defined by the coordinates xL(s) and yL(s) of the vector function

OL(s), or, omitting the origin 0, L(s). (We use bold face for points, vectors and vector functions,

and plain face for scalars). The unit vector tangent to the spine at the abscissa s1 is the derivative

dL/ ds for the value s1 . If AB is the cross-segment at this point, we can express the fact that AB is

normal to the spine by the equation

ABodL/ds=O for s=s 1  (1)

Instead of dealing with an infinity of contiguous cross-segments, we can capture the general

form of the road ribbon from a discrete set of closely spaced cross-segments, in the same way as a

railroad can be defined by its ties.

This discrete approximation is more useful for iterative computation purposes than a continuous

representation; therefore we will examine some of its properties.

Consider two successive cross-segments AB and A'B', and their midpoints L and L' (Figures 4,



5). We are looking for a discrete equivalent of the property that cross-segments are normal to the

centerline. An appropriate approximation is

1/2 (AB + A'B') • LL' = 0 (2)

Indeed, if we knew the curvilinear s, and s' 1 for L and L', we would write the previous equation

as

1/2 (AB + A'B') • (L'- L) / (s'1 - sl) = 0 (3)

and this equation tends to equation (1) when the point L' tends toward the point L, which supports

our choice of equation (2) in the discrete approximation of the road (Other choices which do not

give symmetrical roles to AB and A'B', or use more than two cross-segments, are possible). This

equation simply states that the average direction of the road, LL', is normal to the average

direction (AB + A'B') / 2 of the two cross-segments AB and A'B' located at L and L'.

B'i/

$1

/A

Figure 5
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Consider the line segment IJ joining the midpoints I and J of the line segments AA' and BB'.

The vector IJ is equal to (AB + A'B')/2:

(AB + A'B')/2 = 1/2(AI + IJ + JB + All + IJ + JB') = IJ (4)

Thus equation (2) also states that IJ is normal to LL'.

Consider the line segment joining A and A', and the angles between AB and AA' and between

A'B' and AA'. The cosines of these angles are obtained from the dot products AB.AA' and

A'B'"A'A:

AB • AA' -A'B' • A'A = AA' "(AB + A'B')

= (AL + LL' + L'A') • ( AB + A'B')

Since LL' • ( AB + A'B') = 0 and AL = AB/2 and L'A' -- AB/2, this simplifies to

AB • AA' - A'B' • A'A - 1/2(AB - A'B') - ( AB + A'B')

AB • AA' - A'B' A'A = 1/2 (AB 2 - A'B 2 )

AB.AA'- A'B.A'A =0 (5)

Thus the angles (AB, AA') and (A'B', A'A) are equal, and the quadrilateral ABB'A' is a planar

isosceles trapezoid. Therefore the line segment U is normal to AA' and BB' (and LL', as already

found). We will find this property to be conserved in the case of a non-planar road, despite the fact

that in that case AA', LL', and BB' are not generally coplanar.

3.2. Non-planar road

In the analytic representation of a non-planar road, we shall retain the modeling by a ribbon such

as a Brooks-type ribbon; a spine will define the meandering up and down and sideways of the

road, while a generating line segment of constant length will give some flesh to that spine by

sweeping along the spine. The sliding point of the generating segment is its midpoint, and the

segment is restricted to be normal to the spine at this sliding point. For a spine in space, however,
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this last restriction only constrains the segment to be in a plane normal to the spine at the sliding

point, and does not define a unique ribbon: the generating segments could take any angles within

these normal planes (Figure 6). The intersection of the normal plane with a horizontal plane can be

used as a reference for measuring these angles. This reference line is therefore both horizontal and

normal to the spine. The angle of the generating segment with this horizontal line in the normal

plane is called the bank or superelevation of the road. Its role in real-world roads is to eliminate

rain water from the road, and to give a favorable horizontal road reaction component on vehicles in

turns. The tangent of the bank is ordinarily 3 %, and at most 10 % [5].

bank horizontal line

Figure 6

Let us assume first that some rule is used to define a unique bank for each generating segment as

function of the local characteristics of the spine, and that a unique ribbon is therefore generated for

any given spine, in which the generating segments are normal to the spine at their midpoints. In a

development identical to that followed for a planar road, a sliding point L on the spine can be

defined as a vectorial function L(s) of a curvilinear abscissa s. The cross-segment AB, whose

midpoint is L, is normal to the spine in L. This is expressed by equation (1):

AB o d L/ds =0 (1)



If we now want to define the space road ribbon by a discrete number of generating segments,

the same approximation as for the planar road applies for two nearby generating segments AB and

A'B' (Figure 7):

1/2 (AB + AB') LL' = 0 (2)

We showed that for a planar road this relation constrains the four points A, B, B', A' to define a

trapezoid. In the case of a space road, the segments AB and A'B' are most likely to be

non-coplanar due to combinations of slope and turns, even if the bank is assumed to be constant or

null. Consider for instance the ribbon generated by the edges of the steps in a spiral stair case. The

spine is a cylindrical helicoid. All the generating step edges are horizontal (zero bank), but two

consecutive step edges AB and A'B' are non-coplanar, because the line segment BB' on the inside

of the turn is much more vertical than the segment AA' on the outside of the turn; the quadrilaterals

formed by two consecutive step edges are warped. A similar situation occurs when a change of

altitude occurs in a road turn. In other words, such a ribbon is not a developable surface, and

efforts to model it with non-triangular planar patches would be a waste of time.

B

K

L A'
1I

A

Figure 7

Let us examine some geometrical properties of a warped quadrilateral ABB'A' of two nearby
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generating segments AB and A'B'.

The angles (AB,AA') and (A'A,A'B') are found to be equal, using the previous development (5)

to show that the quantity AB.AA' - A'B'*A'A is null. The angles (BA,BB') and (B'B,B'A')

can also be shown to be equal in a similar way. Thus we will call the quadrilateral ABB'A' a

warped isosceles trapezoid. Note that such a figure is not obtained by folding a planar isosceles

trapezoid along one of its diagonals, since this procedure would decrease the values of the two

angles at the diagonal, while leaving the other two angles the same, and the angle equalities would

be lost. Instead, fold a parallelogram ABA'B' along one diagonal, for instance AA' (Figure 8).

Warped trapezoid ABB'A': B
From triangle ABA',
complete parallelogram ABA'B', B'
then rotate triangle AA'B'
around AA' A'

B A

Figure 8

The maximum folding gives a planar isosceles trapezoid ABB'A' (the order of the points A' and B'

is reversed because we now see the back half of the parallelogram). For all incomplete foldings,

ABB'A' is a warped isosceles trapezoid (including the starting parallelogram itself).

The midpoints of AB and A'B' are L and L' (Figure 7). Calling I and J the midpoints of AA'

and BB', K the midpoint of IJ and K' the midpoint of LL', one can find four expressions for KK'

and add them to show that K and K' are confounded. Therefore, in a'warped isosceles trapezoid,

I, J, L, L', and K are coplanar (we will not use this property in this paper).

We determine that U is normal to LL' by the same equalities leading to equation (4) used in the

planar case.

Next we want to show that U is also normal to AA' and BB', even though AA', BB', and LL'

13



are not parallel in the general case:

AA' • IJ = (AL + LL' + L'A') • IJ

AA' -IJ = (AL + L'A') * IJ since IJ is normal to LL'

AA' * IJ = (AL - A'L') (AL + A'L') from eq.(4) for U.

AA' -IJ = AL 2- A'L' 2 = 0 (6)

4. Warped isosceles trapezoids in zero-bank space ribbons

In the following, we will assume the bank of all cross-segments to be null (Figure 9).

Incorporating a non-zero bank in the geometric modeling of the road would be possible, but it does

not seem that rigid rules are used for bank in road construction, in part because an optimal bank in a

turn depends not only on turn radius, but also on the expected speeds of the vehicles.

B'

L 'A

Figure 9
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With the hypothesis of zero bank for a ribbon defined by a continuum of generating segments,

for any given point L of the road spine, the generating segment is at the intersection of the plane

normal to the spine at this point L, and of the horizontal plane through this point. An equivalent

statement, using vectors only, is more useful for computations. We define a vertical vector V. The

tangent unit vector to the spine at L is dL/ds (using the same definitions and notations as for the

planar horizontal road). The direction of a generating segment at L for the zero bank space road is

then given by the cross product V x d Lids.

In the case of a definition of the ribbon from discrete cross-segments, such as AB and A'B',

equation (4) implies that if AB and A'B' are horizontal, then IJ is horizontal too:

V*IJ= 1/2V.(AB+A'B')=0 (7)

Therefore U is normal to both V arJ AA', so that its direction is given by the cross product

VxAA'.

Its length is also known: since IJ is normal to AN and BB' (equation 6), I and J are the projections

of A and B on the line in the direction just found going through I; thus the length of U is defined by

the dot product of AB by the unit vector in that direction.

This unit vector is (V x AA')/(( V x AA') 2)1t2. Therefore the expression for IJ is

IJ = [(AB • (V x AA')/(V x AA') 2] (V x AA') (8)

where the part in brackets is a scalar resulting from the calculation of the length of IJ and the

normalization of (V x AA'); the last parenthesis is the vector (V x AA') which gives the direction

of U.

Now that U is known, B' is uniquely defined from AB, A', and IJ, by equation (4), which

gives

B'= A'- AB + 2 [(AB • (V x AA')/(V x AA') 2] (V x AA') (9)

This relation uniquely defines the end B' of a cross-segment A'B' when the end A' is given and a

neighboring cross-segment AB is known. It will allow us to find A'B' from AB in the following

section.
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5. Inverse perspective zero-bank algorithm

The processing of the persective image of the road is assumed to output two ordered lists of

points, one for each side of the road image (for details on image processing procedures, see [7],

[8]). These are inputs to the algorithm. The output of the algorithm is an ordered list of

neighboring cross-segments of the world road.

Since the algorithm reconstructs a world road cross-segment from a previously calculated

cross-segment, an initial cross-segment is needed to start the iteration. Methods for obtaining the

initial cross-segment are discussed in the next section. We assume for now that such a

cross-segment has been found, and we are going to look at one intermediate step of the iteration.

The two edges of the road image are used in a different way in the search for a new

cross-segment:

- From one edge of the road image, we pick a point, and we say that this point is the image of one

end of our yet unknown cross-segment; this end is somewhere on the line between the camera focal

point and the chosen image point.

- From the other side of the road image we consider the segments joining consecutive points of the

road side image. The image of the other end of the world road cross-segment must belong to one of

these image segments: we constrain this end to belong to one of the planar sectors defined by the

focal point and the image segments.
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The inverse perspective of an image point a' of one road image edge (Figure 10) is the line Oa'

(0 is the focal point). The inverse perspective of a segment ef of the other road image edge is the

planar facet between the lines Oe and Of, and the inverse perspective of the whole edge is the

polyhedral cone defined from the facets corresponding to each segment. One end, A', of the road

cross-segment AB' belongs to the line Oa'; the other end, B', has to belong to the polyhedral

cone.

If A' belongs to line Oa', vector A' can be expressed as a function of a single parameter n:

A' = m a' (10)

The previous section showed that vector B' is defined as a function of A' by

B'= A'- AB + 2 [(AB (V x AA')/(V x AA') 2] (V x AA') (9)

Here A and B are the end points of the previous cross-segments and have known coordinates, and

V is the unit vertical vector. Thus B' is a function of a single parameter, m, and the locus of the

17



point B' is a space curve. Among the points of this curve, the points which are acceptable as

possible ends of the new cross-segment are the points whose images are on the road edge image.

An acceptable point B' is an intersection of the space curve locus and one of the planar facets

defined by the segments of the edge image and the camera focal point. We do not need to calculate

this locus; we need only to calculate the parameter m corresponding to these intersections. This can

be done as follows:

If B' belongs to a planar facet such as defined by the image segment ef, we can write that the

vector B' is normal to the normal to a normal n to this plane:

n=exf, B'*n=0, (1)

We must specify that B' is not only in the plane, but on the limited sector between the lines Oe

and Of, and in front of the camera. These two conditions are expressed by

(B'xe)-(B'xf)<0, (B'*e)>0 (12)

When both sides of equation (9) are multiplied by n (dot product), a scalar equation is obtained,

and the left end side is 0, since B'. n = 0 (eq. 11).

Replacing A' by ma', a cubic equation in the parameter m is obtained:

a3 m 3 +a 2 m 2 +a 1 m+a 0 =0 (13)

and the four coefficients are found to be

a3 =(a'*n)(Vxa') 2

a2 =-2(a ' o n)((Vxa').(VxA)) - (AB-n)(Vxa') 2

+ 2 ( n • (V x a'))( AB • (V x a'))

a1 = (a' .n) (V xA) 2+ 2 (AB • n) ((V xa'). (V xA))

-2(n•(Vxa'))(AB•(VxA)) -2(n•(VxA))(AB•(Vxa'))

a0 =(AB n)(VxA) 2 +2(nl(V,.A))(AB.(VxA)) (14)
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The real roots (one or three) of the equation are easily obtained analytically. These values of m

define the possible positions of the point A' on line Oa' (from condition (10)) such that B' satisfies

condition (9) and condition (11). Once A' is found, B' is uniquely determined by (9). For the

pair(s) (A'B') given by the root(s) m of (14), only the pair(s) for which B' satisfies (12) is (are)

valid. If more than one point B' satisfies this criterion (12), only the point B' such that the

corresponding road direction has the minimum reasonable slope difference with respect to the

previous road direction is kept.

These conditions reduce to one or none the number of acceptable solutions for A'B' for the

image segment ef being considered. If no acceptable solution is found with the image segment ef,

the next image segment, fg, is used. Only a small number of such image segments (2 to 4) usually

need to be considered. If, after a limited number of segments are examined, no solution is found,

this may be due to the fact that the inverse perspective of a road image with polygonal sides cannot

have a smooth constant width. The length of A'B' is increased by a small percentage, and the

search process is started again with the same segments.

6. Acquisition of an initial cross-segment

Since the process described above is iterative and uses a previously calculated cross-segment, an

initial cross-segment is needed to start the algorithm for each new image frame. This initial

cross-segment can be calculated from a "flat earth assumption". In most autonomous systems, the

position of the camera is known with respect to the road patch above which it operates; this initial

road patch is assumed to be planar, and the equation of its plane can be calculated in the camera

coordinate system as a function of the camera height and tilt (it is invariant to camera pan). With the

proper camera tilt and camera field of view, the line segments of the image road edges at the bottom

of the image correspond to world road edges which are close to the camera, and belong to this

plane. These world segments are obtained by projecting the bottom image segments of the left and
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right road edge image on this plane (Figure 11).

N'

qM

Figure 11

MM' and NN' are the two world segments corresponding to the lowest image segments of the

image. Their midpoints are P and Q. One of the ends of the initial cross-segment is taken to be one

of these two midpoints, here Q, and its direction is the normal to the corresponding edge segment,

NN', in the ground plane. If MM' and NN' are found to be parallel (within acceptable limits), the

other end of the initial cross-segment is taken to be the intersection R of this normal with the other

edge segment, MM'. If the two edge segments are not parallel, as can happen in a turn (Figure

11), a kind of center of curvature C of the turn is found as the intersection of the normals to the

midpoints of the two segments, and the width w of the road is calculated as the difference between

CQ and CP. Then the endpoint R of the initial cross-segment is taken at a distance w from its

endpoint Q.
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7. Experimental evaluation of the proposed zero-bank algorithm

For experimental evaluation of the proposed method, a world road is given analytically. The

centerline describes an "S" on a hill or in a valley, and the road surface is defined by horizontal

cross-segments cutting the centerline at their midpoints. The analytic expressions for the edges are

derived from the following specifications:

The road centerline projects on the horizontal plane as a straight part of length 0.5 units,

followed by a 90 degree right turn with radius 1, then a 90 degree left turn with radius 1. The road

centerline is on a hill or in a valley described by one period, trough to trough or peak to peak, of a

sinusoidal cylinder. The road edges are deduced from the centerline by taking distances of 0.2 units

on each sides of horizontal normals to the centerline curve. The slope starts at the beginning of the

road(straight part) and changes sign when the road is at 90 degrees from its starting direction. On

Figures 12 to 16, a top view (center) and a side view (right) of this road in orthogonal projection

are drawn on the right.

Five slope configurations were tested:

a. Horizontal road.

b. Hill height 0.1.

c. Hill height 0.2.

d. Valley depression 0.1.

e. Valley depression 0.2.

The slope changes can be seen on the side view of the road, at the extreme right of Figures 12 to

16.

The perspective image of this road is computed, assuming that the image plane is vertical, and

that the focal point is at a height 1, at a horizontal distance 0.2 from the start of the road. It is
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shown on the left of Figures 12 to 16.

The algorithm was run on this perspective image, and the world road that the algorithm

reconstructed is shown in top view and side view for comparison with the actual road. For

debugging purposes, the images of the inverse perspectives of the cross-segments are also shown

on the road image (their end points must be on the road edge images).

Three algorithms were tested:

- The flat earth assumption algorithm

- A vanishing point method

- The proposed zero-bank road algorithm

The flat earth assumption algorithm is the simplest. The camera is assumed to look at a flat

world. In the case of a camera on a vehicle, the plane of the world is an extension of the planar

patch supporting the vehicle at the time of image acquisition, and is calculated from the camera

height and tilt. The central projection of the edges of the road image on this plane is assumed to

give the edges of the world road.

A vanishing point method was briefly described in [1]. In the introduction, we described how

such a method can construct two parallel segments in space from two image segments (Figurel),

and we mentioned that one of the problems was the choice of segments in the persective image

which are images of opposite segments (segments containing opposite points of the road). The

implementation tested here was based on [1] and on discussions with Eli Liang. It uses the world

segments calculated at the previous iteration step to deduce the positions of the images of opposite

segments at the new step. At an intermediate iteration step, once two parallel world segments are

found, a plane normal to these segments is calculated so that it goes through the far end of one

segment and cuts the other segment. The end of one segment and the intersection of the normal

plane with the other are assumed to form a pair of opposite points, and the segments in the image

22



which follow the images of these two points are assumed to be images of parallel segments and are

used in the next iteration step. This approximation therefore takes opposite points where they can

be calculated (from the road element just calculated) and assumes that the segments coming just

after the images of these opposite points on the perspective image are images of parallel segments.

As discussed in the next section, this approximation is not very satisfactory.

8. Qualitative evaluation of the results

The flat earth assumption algorithm performs better than the proposed method on flat ground

(Figure 12). For hill or valley configurations (Figures 13 to 16), the proposed zero-bank road

algorithm gives a much more correct inverse perspective of the road than the other two algorithms.

The drawings also show how far from the truth the flat earth assumption can be as soon as there are

some slope changes in front of the camera.

The vanishing point method attempts to construct a developable ribbon. As a result it

underestimates the first turn. Further down the road, the catastrophic deterioration of its

reconstruction is due to the added errors from the approximation for finding the images of parallel

segments.

9. Concluding remarks

Modeling roads as Brooks ribbons in space with horizontal generators of constant length, we

have shown that two neighboring generators form approximately a warped isosceles trapezoid. It

follows that when one generator is known, the next generator can be recovered completely if one of

its ends is given. On the basis of this observation, we proposed an iterative algorithm for

reconstructing the a world road from its perspective image. At an intermediate step of the iteration,

a previous generator is known, and a point on one road edge image is chosen as the image of one
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end of the next generator. This end has only one degree of freedom along the line inverse

perspective of its image. From our previous observation, the other end also has only one degree of

freedom. Therefore its locus is an arc and depends on one parameter. We calculate the parameters

such that this other end has its image in the image of the other edge of the road, as solutions of

cubic equations. When more than one solution occurs, we pick the appropriate generator on the

basis of minimal change of slope of the resulting road.

We tested this algorithm on a road image synthesized from an analytic description of a road

describing a "S" , on a hill and in a valley. With this algorithm the results of the reconstruction are

much closer to the original road than with two other algorithms chosen for comparison, an

algorithm based on a flat earth assumption, and an algorithm based on vanishing points. In the

introduction, we summarized the limitations of vanishing point methods for road inverse

perspective.

Our next goal is to test this algorithm on images of real roads and to check whether in natural

conditions warped isosceles trapezoids perform better than planar patches.
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