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Abstract

The problem of estimating the parameters of a non-Gaussian
autoregressive process is addressed. Departure of the driving noise
from Gaussianity is shown to have the potential of improving the
accuracy of the estimation of the parameters. While the standard linear
prediction techniques are computationally efficient, they show a
substantial loss of efficiency when applied to non-Gaussian processes.
A maximum likelihood estimator is proposed for more precise estimation
of the parameters of these processes coupled with a realistic non-
Gaussian model for the driving noise. The performance is compared to
that of the linear prediction estimator and as expected the maximum
likelihood estimator displays a marked improvement.
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I. Introduction

Estimation of the parameters of a time series model has been a

widely addressed problem. Rational transfer function or time series

models are the most popular of these. [I] Autoregressive (AR) models are

used more often than the moving average and autoregressive moving

average models because of the inherent mathematical simplicity.[2] When

the driving noise is Gaussian, the maximum likelihood estimator (ILE)

is easily found for the AR model under reasonable assumptions.[3]

Although the Gaussian model for the driving noise is appropriate

for a wide variety of problems, in some applications it is not. The

noise encountered in underwater detection problems is often

characterized by the presence of sharp spikes due to ice break-up and

offshore drilling.(41[ 51 Spikes are also common in the atmospheric

noise encountered in low frequency communication systems.[ 61  The

Gaussian model is not flexible enough to incorporate these high-

amplitude events mainly because of the sharp roll-off of the

probability density function (PDF).

A variety of alternative models have been proposed. A PDF that it

appropriate foi a non-Gaussian process with 'heavy tails' is the

Gaussian mixture model

f(u) = (l-s)EB(u) + eEi(u) , 0 < £ ( (1)
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where EB(u) and EI(u) are Gaussian PDF's with parameters [PB,02] and

[pl,at] respectively.[7] Subscripts B and I are used to denote

background and interference, respectively. Assuming a' >> , one can

allow for a wide range of amplitudes and frequencies of occurence of

spikes by appropriately choosing cj and e, the mixture parameter.

Once the driving process is characterized, the AR model can

describe a large set of correlation patterns with only a few number of

parameters. Most of the natural noise-channels, such as the soil and

the sea-water, are low-pass in nature and the processes at their output

tend to be weil-suited for an AR model.[8],[9]

Physically motivated as the Gaussian mixture model is, it does

not enjoy the mathematical simplicity associated with a Gaussian

model.[ 1 0] For example, the least squares estimator of the AR

parameters is no longer a close approximation to the MLE for ieasonably

large data records. This leads to the problem of finding a good methkod

to estimate the parameters that characterize a mixed-Gaussian AP

process. Maximum likelihood estimation is the most widely considered

approach for all mixture-density estimation p-oblems.
[7 ]

This paper addresses the problem of maximum likelihood

estimation of the parameters of an AR process driven by white noise

with a mixed-Gaussian PDF given by (1). As a preliminary step, we

4
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assume PB and pI to be zero and a and 01 to be known but a unknown.

The paper is organized as follows.- Section II describes the

Cramer-Rao bounds for the parameters of a mi.xed-Gaussian AR process and

attempts to interpret them. Section III points out the inefficiency of

least squares estimation by relying on theoretical and experimental

results . Section IV formulates the MLE for this problem while section

V discusses its performance. Section VI summarizes the results and

discusses possible applications of the MLE approach.

II. Cramer-Rao Bounds

The approximate Cramer-Rao bound for the unbiased estimator of

the location parameter or mean p, driving noise variance and

autoregressive filter parameters is known for a finite variance p-th

order AR process

p
x n a3 (1 f) + un  (2)

if U n has a symmetric PDF f with variance a2 and ak are the

autoregressive filter parameters. The Fisher information matrix foi the

parameter vector e = [ AT a2 aT, ssuming that ( xl, x2 ... xt I are

observed, is given by



a lnf a2inf I81 nf
ap 2 I s T l

_I = - i-.

e -E W~nf i nf 8 inf-e,,a I, aT .aa

8'Inf I 82 Inf I 82 1nf
a o 0 a2 1  a ," a T a .2 2 j

which may be shown to be approximatety[11]
'[12]

p 1(1 - I-T I
(+ i a lif O;

j=1 f I
e (N - p) - -- -(3)

0 
1-42]_

where a = [a1 a2 ... ap]T

if = E i- In f(u)

a - [ E 40 u- in f(u) -

o is a pxl vector of zeroes and C is the pxp covariance matiix of tl;e
-pC

time series. This result is asymptotic (true for large data records)

because the contribution of the fiist p samples has been ignoied. [1 21

No results are available for finite data records.

It is of interest to explicitly determine If and I. for a

Gaussian distribution. In this case

1 1

inf(u) - in(2n) - Ino - - u

2a1
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a u
Inf (u) = -

f E -. lnf(u) E [u] - (4)
4 a

2

I a=-E [- ii=[A .. 1i 1 (5) 3F
4 [ . t a 2 4 [, . a ' 4 2 

Substitution of (4) and (5) into (3) produce the well known results foL

the CR bounds for Gaussian AR processes. [1 3 3 These results will be

useful later.

Returning to the general non-Gaussian case, we are interested in

determining the CR bounds for a and o only. .1 is assumed to be known

and equal to zero. The block-diagonal nature of I() makes it possible to

invert it by inverting each block. Therefore, the covariance s.atxix of

A
an unbiased estimator I of a is bounded by

Cov (A) 'I -I - = -o~l[C~ --  (6)

while the matrix inequality means that the difference of the right and

left side matrices is positive semidefinite. Cn is the "normalized"

covariance matrix obtained by dividing C by a' so that C. depends on~y

on the AR filter parameters. It can be noted from (4) that in the

Gaussian case a If is unity and the CR bound for a becomes 02C- (N-p)

= _ /(N-p) in accordance with known results.
[31
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For a fixed variance 62 the factor If is smallest and hence the

AR filter parameters are most difficult to estimate in the Gaussian

case. This can be shown easily from the Cauchy-Schwartz inequality

= 2 u f(u) du

I f'(u) u fdu 

= j [u f(u) - _u f(t) dt] I_:

= u f(u) _ - _ f(u) du

_- I o-i I

= 1

1
Hence If 1 (7)

a

Note that equality holds for a Gaussian distribution, as shown in (4).

For any other symmetric distzibution with vaxiance o, If is large-

than this minimum value. In fact the Gaussian PDF is the unique PDF

satisfying the equality. To show this consider zero mean iandcm

variables A and B where A = f'(u)/f(u) and B = u. Then if (7) hoids

with equality

E(Az)E(B) = [ E(AB) 12

8



This implies that

E(Az) E(AB) -

E(AB) E(B2

where c is some constant.

Therefore E(A2) = cE(AB) c2E(Bz)

ieD E(A2) + c2E(B2) -2cE(AB) =0

ie. E(A2 - 2cAB + c2B 2) =0

ie, E(A - cB)2 =0

is, f._ (A - cB )2 f(u) du =0.

f (u) and (A - cB) 2 are both non-negative over the wYhole range of

integration. Since we are only interested in A and B for those values

of u~ which have non-zero probability, (A -cB) 2 has to be

identically zero over the whole domain of f.

Therefore A = cB

This equality impiies

9



f'(u) CU

= C~p-wo ( U( o
f(u)

Integrating both sides yields

lnf(u) = cuz/2 +InK (where K is some constant)

ie, f(u) = KexP(cu2 /2).

This is a normai disti bution with mean 0 and variance -1/c.

(7) allows us to compare the CR bounds for ^, as given by (6), for

any symmetric PDF of the driving noise to that for the Gaussian driving

noise. An obvious implication of (7) is that it is possibie to estimate

the AR parameters more precisely in the non-Gaussian case than in the

Gaussian case. In summary,

Coy-- a.) C in the non-Gaussian case
2If N-p n

and Coy (a) _ pI 1 Ci n the Gaussian case (8)
*N-p -

If has another interpretation. It is the Fisher information for

the estimator of the mean or the location parameter of a univalirate

PDF. This may be observed by setting aj=0, j=1,2 .... p in the (1,1)

element of Io as given in (3) and not:ng that the factor (N-p) is due

10
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to accumulation of information from (N-p) samples, ignoring the

contribution of the first p samples. The result also holds for tLe mean

of AR processes except for a multiplying constant. This mean: that

given two AR processes having identical power spectral densities but

different PDF's of driving noise with equal vaziances, it wii; be

easier to estimate the AR filter parameters of that process for wh-ch

estimation of the mean is easier. For the specific case of a zero mean

Gaussian mixture model described in (1)

o 2 = (1-e)a2 + SCF2 (9)

2

aB and al are assumed to be known. If can be computed in this ca..e as

follows:

Let F (u) = 1-e exp ( -u 2 /2o' (lOa)
B -:2B

and F (u) - . exp [ -u 2 /2o 2 ] (lOb)
I

Then f(u) F B(u) F I(u)

I U / 2 2

f (u) -u ( FB(u)/ - F (u)/a]
B B 1

= -u [ G B(u) - Gi(u) I

wheie G (u) = F (U)/U2 and G (u) F (u)/o (11)
B B B11

If f (u)] du uG(u)G(u))j du (12)

[f(u) F (u)+ F (u)

B I
11
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This integral can be evaluated using standard numericai techniques.

a If can be thought of as an index of non-Gaussianity where positive

departures from 1 indicate a higher degree of non-Gaussianity as far as

the estimation of the AR filter parameters is concerned. Figure 1 plots

log(G2 If) vs. e for a = 1 , 4 = 1000 and a' = 1 , of = 100. For a = 0

and a = 1 the distribution degenerates to a Gaussian one with variance

a and a 2 respectively. In both these cases log(a 2 If) = 0. The plot

shows how much improvement can be expected in the preciseness of the

estimation of AR filter parameters for different values of a. Fo:

example, for a = 0.1, a = 1 and 4rl = 1000, the covariance matrix is

scaled down from the Gaussian case by a factor of about 100. We wili be

primarily interested in values of e < 0.2.

The CR bound on variance can also be computed numerically. From

(3) it is evident that

A 1
Var(U 2 ) 2

where I 2 ur [f,(u) d -4y4 -CD f(u)

For the Gaussian mixture model this becomes

4 2

41 4  FB(U) d F(U) - J (13)

using not.tions of (10) and (11). The integral can be evaluated

numerically.
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Figures 2 and 3 show two typical non-Gaussian autoregressive time

series along with the driving noise time series. They provide some

insight as to why it should be possible to estimate the AR parameters

more precisely in the non-Gaussian case. The Gaussian mizture model is
.p

characterized by the presence of large spikes in the driving noise time

series ( Figures 2a, 3a ), due to the high variance Gaussian component.

4The spikes act as impulses to the input of the AR fiiteL and result in

Arringing' at the output ( Figures 2b, 3b ). This ringing is actually

the impulse response of the filter which temporarily dominates the low

variance component at the output. It is probably these impuise

responses that carry additionai information about the f;.ite:

parameters.

III. Least Squares Techniques

The usual AR parameter estimation techniques (eg, Autocorzeiation,

Covariance, Forward-backward etc.) [2 ] do not enjoy the p~ope~ty of

asymptotic efficiency in the non-Gaussian case. Although they aie stii:

computationally efficient, they perform much poorer than the MLE.

Two typical AR(4) processes [2] have been chosen for computei

simulations. The parameters are given in Table I. a is assumed to be

unity for both processes. Process I is broadband while process I: i;

13



narrowband. 50 Forward-backward spectral estimates have been plotted

for these two processes in Figure 4. The sample means and sample

variances of a and as have been listed and compared against the CR

bounds in Table II.( The performance of the MLE will be described in

section IV.) The results are based on 500 experiments with 1000 data

samples in each. aa and 02 are equal to 1 and 100 respectively. Also

the mixture parameter is a = 0.1. The AR process was generated by

passing a white mixed-Gaussian process through a filter, allowing

sufficient time for the transients to decay. The white process was

generated by randomly selecting from two mutually independent white

Gaussian processes with PDF's EB(u) and EI(u) (having variances a and

aT respectively) on the basis of a series of Bernoulli trials with

probability of success a. Thus a random variable can be expected to

come from population I for (1-a) fraction of times and from population

II for s fraction of times so that the overall distribution is as given

in (1).

The CR bounds for the Gaussian case (see (8) ) have also been

listed in table I. As expected, the bound for the AR parameters in the

Gaussian case is much higher than those in the non-Gaussian case. It is

interesting to note that the performance of the Forward-backward

estimator approaches the Gaussian CR bound. This confirms the well

known result that the least squares estimates are asymptotically

Gaussian with mean equal to the true parameters and covariance matrix

equal to the Gaussian CR bound.1 1 3 ] However, as will be shown in in

14
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section V. the RLE attains the true CR bound, better by a factor of 10

in accordance with Figure lb.

Clearly, the Forward-backward estimator, which is typical of all

least squares methods, can not take advantage of the presence of the

Wcontaminatingf process. The performance of the covariance method was

found to be about the same. (The exact results for the covariance

method has not been reported here.) This confirmation of the expected

inefficiency of the least squares techniques [12 ] ' [1 4 ] calls for the use

of a more efficient method which will be able to exploit the reduction

in the CR bounds. One such method is the LE which is discussed in the

next section.

IV. Maximum Likelihood Estimation

In this section a Newton-Raphson search algorithm is proposed for

the (p+l)-dimensional maximization of the conditional likelihood

function. The likelihood function is given by the joint PDF of the

observed AR process which can be obtained from the joint PDF of the

driving noise as follows. An AR(p) time series is linearly related to

the driving noise time series

p
u I a x (14)

n J.0 j n-j

where the identification so = 1 has been made. This is just another way

15



J W 7, W V -. = - . W: J - '. - ;

of writing (2), which makes it possible to determine the conditional

likelihood function of I x1 '2 ... XN ]T in terms of the joint

distribution f of u = [up+1 up+2 ... uN ]T. The transformation is

+1 Xp+ =lj ap+1-j
u a 1p+ 2  1 

p+ 2  2F=2j ap+2-j
•~ 0 J •

p x a

uN  0 . . .0 a . . " N J 0

The Jacobian of the transformation from [ xp+ 1 x,+2 ... xN ] to u is

just A. The determinant of the Jacobian is unity so that the joint PDF

f of L xp+1 xp+2 ... XN 3 given xl, x2 , ... xp is

N
f(xp~l. 125*, *NI xp p-1' ~ x1) = f(_u_(x) ) = T f(u (x))

n=p+ n-

N N (1u n u
f(u) = T f(u ) = [ exp I -2 t - -""

n-p+l n=p+l it 2a2 n _ 2L I

Then f(xpOX p+20 .... IN I xpxp- 1 ... x1 )

N • p-e"
exp - ajx,_. + exp - a.x Jn=P" Jn 2 0

A Newton-Rapbson iteration step fot 0 12 aT OI]T is

11



i+1 = i- H-G(15)

where G [8lnf Olnf 8lnf 8lnf JT
wher aa aa2 . . a P CF,(16)

a 82 ap a

adB 2 2 2 (7

S8lnf 8 lnf 8 lnf

8a 1  8apa 8a 1 8

a inf a lnf a lnf

a02aa a082 aa aF2

P1 P P
8 2lnf a2 1nf 8 21nf

8 G8aa 8a 8a a22

Appendix A gives a detailed derivation of the entries of G and H.

Although the expansions are complicated, they exhibit some structure.

This would allow partly concurrent computation of the gradient and

hessian entries in each step of Newton-Raphson iterations. The

estimates from the Forward-backward method can serve as initial

estimates.

For large data records the Hessian. evaluated at the true values

of the parameters, approaches the negative of the Fisher infoxmation

matrix by the law of iage numbers.E 1 6 3 The Fisher information matrix

is known to be positive definite. Therefore the negative of the Hessian

will be positive definite when the parametei vectoi is ctose to its

true value. Since the ME is consistent, the maximum of the likelihood

function is expected to occur close to the tiue vaiue of the paamete:

vector. Hence the Hessian will be negative definite in the neighborhood

17



of the maximum of the likelihood function, implying that the function

is convex in that region. This property of the Hessian can be utilized

to avoid the matrix inversion required by (15) in the following way.

Rewriting (15) as

= (-H)ei + G (18)

it is possible to compute the right hand side from 0i. Thus (18) is a

set of linear equations which can be solved by a Cholesky

decomposition.

The first and second order derivatives should be scaled by I/N in

order to avoid the possibility of the terms growing unmanageably large.

The motivation for scaling down the terms is best understood by

considering the case of optimization over a single parameter assuming

the other parameters to be known. The Fisher information, which is a

diagonal element of 10 as given by (3), increases as N increases. 9 (a

scalar in this case) also increases accordingly, being of the order of

the Fisher information in magnitude, and has to be scaled down.

Multidimensional optimization would be even more difficult without

scaling.

A difficulty in obtaining convergence of the Newton-Raphson

iteration is the apparent weak dependence of the likelihood function

2
upon a (or equivalently, a). A transformation has been successfully

18
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used to circumvent this difficulty. Appendix B addresses this problem

in detail.

While the theoretical proof of convexity of the likelihood

function for finite data records is not available, the simulations seem

to support this. The results of the simulations are discussed in the

following section.

V. Computer Simulations of the Performance of the MLE

The least squares estimates obtained by the Forward-backward

method were chosen as initial iterates for the Newton-Raphson iteration

required to find the MLE. An error criterion was defined and t! c

iteration was considered to have converged if the criterion was

satisfied. A maximum of 100 iterations was allowed. The error criterion

was

p+l i) j -I

I < R
j=l O

where 01 is the ith iterate for the jth element of e. R can be chosen

on the basis of on-line experience about the percentage of realizations

that converge for a given value of R. R=10- seemed to work well in the

cases reported here. A transformation on e (described in Appendix B)

19



was used to enhance convergence, as was mentioned in section IV.

Typically the iterations converged in 4-6 steps and less than 1% of

them failed to converge. The results to be described do not reflect

the experiments resulting in failure to convergence.

50 realizations of the MLE spectral estimator for the two typical

AR(4) processes described in section III have been plotted in Figure 5.

While it shows only moderate improvement upon the Forward-backward

estimates plotted in Figure 4, it should be noted that Figure 5a has

less crossovers than Figure 4a. This suggests that the variability of

a might be the major factor behind scattering the plots apart, an

explanation confirmed by Figures 6 and 7 which compare the two methods

with the estimate of the variance replaced by the true variance. They

indicate a considerable improvement for the MLE while the Forward-

backward estimates improve only slightly.

Table III compares the sample mean and sample variance of the MLE

estimators based on 500 experiments to the CR bound. The number of data

points in each experiment is 1000. The maximum likelihood estimators

indeed appear to be efficient except for the estimator of variance

which displays a much higher variability than the CR bound.

Estimating a2 in this case is equivalent to estimating e, which

reoresents the fraction of times the high variance Gaussian comoonent

appears in the observed data. It is comprehensible that for small e

20



this estimation will suffer from the difficulties associated with

determining the Probabilities of rare events. Very large data records

will be necessary to have a reasonably good estimate. Annarently,

N-1000 was not large enough in this case. However it should be

mentioned that the difficulty in estimating the driving noise power may

not be important in some applications. For example, in some detection

problems it is Possible to make hypothesis tests invariant to c.[15

Although convergence was not a major Problem for N=1000. shorter

data records did exhibit more sensitivity to initial conditions. The

reason is attributed to the Possible non-quadratic nature of the log

likelihood function which makes convergence of the Newton-Raphson

iteration more difficult.

VT. Summary

The Cramer-Rao bound for the estimators of the Parameters of

non-Gaussian AR Processes was observed to be less than that for

Gaussian AR Processes. The performance of the norular least squares or

linear prediction techniques however only achieve the Gaussian CR

bound. The XLE technique, although computationally intensive compared

to standard linear prediction aoroaches, yields more accurate

estimates for non-Gaussian AR nrocesses. Simulation results indicate

that the ILE is asymptotically efficient. It avnvears to be a viable

approach for parameter and spectral estimation of non-Gaussian AR

Processes and may also be applicable to linear Prediction of time

21
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series and detection of signals in noise. Future work will address

means to reduce the computational burden of the E. Also, the

extension of this work to the case of unknown ratio of background and

interfering noise vowers will be studied.

22
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APPENDIX A

Comreutation of Gradient and Hessian in Newton-Ravhson iterations

From section IV, the awproximate (conditional) loog likelihood

function can be written as

lnf = in I i- ezp - (Oaixn
j

__+I P\ 2 exp - - I a x.nJI 24I j=0 j ~/

From (13). u = ax .(A-la)

_ = n-i

Lt EI(u n)= exo -- U (A-lb)

erm(3.un Iaixo n- -u (A-ic)

I

F (U ) = (i-)EB(U ) (A-id)

Tn Fen"

F(u ) = uE (U ) (A-ic)B In In

N
Then lnf = In[ F (u n) + F (U )] (A-2)
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81sf N + F (u)J

Heane - = I j

as u=D+l FB(Un)+ FI(un)

1 1
--- FB(u) - - F (un)

2 B n 2 1 n
N aB nI an

+( F(n) +F(u) n a

Oluf N FB(u.)/aB + F,(u )/or
i-, u x fl (A-3)

anj n"n+1 FB(un) + Fl(Un)

Noting 6 (1-S)a +86 = 6 + r ( - )

as 1
it follows that - =

I2 B

1f 1 .f I N -( + ) E()
I= -_ Bn I(-4

8.j C= B -k - 6) nv+1 F+ u )+F ( u )--4)

F ( )) F FiIN) ) FIN)

2 - - 2

8a Osf NB In NF B r
I__ ___x__ - I61x -

asf N as 61 N m()+u+1 n-k nj FB (u )+ FI (u n ) n=o+1 - k F( +F~n

Let F (u )/62 + F (U )/a2 = V~u)
B n B Ir Im n

F Cux) + F IN ) =B(un)

M u d F B, u n F( u) u n

11 k a rB c kcI Or ask

u x D r F u Va + 6 an VakI

n -k B ft B I n I
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OB(u anu n

ask a~n [ as k2.J Fiu I a

z FU~~ F(n )/62 + (u)Cl
knk B ft B I1  n I

Mu ~ ) B(u)

aTVu B(n) n-sA T(u) ftcla

8. B(u )B(u )2

k (, nBu (n)4 a

____u- FB( u)FI~n F B(u) F C) I (un FB( F (u) F

L~u h i ( 4 2~ a 1

n r-F~ uF~ u F (U )FI (u n)] FC F(i

Ias k aa

-~~~~~~ I___ (Bu)I u __ _-

N (u

I I -j n-k F 1a a I F~n I f A5

n m-kB n )+ F (u n+~u 2 I( +FI(
L ni II j

2 ~ ~ C2 ) (u )()(

-n + -(U) E1 1u 1B u.
B 3 2 F -u) (A-6)

(02,+ Cua )+ 11[ J[(7nF(

a cr

- EB~n2I



+Bu F() Y

8 2lnf 1 N a 6

aCr a a a ~ n n-o+ C1 F (u )+ F (u)

j BB ' E (u) __luuB un +

1~ u B. Iu J I F (u ) F (
2 -~ InU+1

+ an [E -EI(nn)I

86 a 3 F~) F1 (n)

8l nf N 1 EB (u )E I (u uA7
It follows that - U - .(A7

n- nj [MF ( B(u)+F ( U)2

Equations (A-3) to (A-7) comoletely determine the 1tradient

vector and the Hessian matrix. un, El(u.). E2(u.). Fl(u.) and F(.

need to be commuted only once for every n in each iteration and can be

used to find all the first and second derivatives.
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APPENDIX B

Use of transformation on as

Experiments show a rather weak dependence of the log likelihood

function on o2 (or equivalently a). This problem can cause the (0+l)-

dimensional optimization not to converge. A possible solution is to use

some transformation 71 = g(s) such that I increases slowly with a. If a

proper transformation is chosen lnf will, hopefully, show a distinct

peak when optimized over 1. The intuitive idea behind this technique is

to increase the sensitivity of the function to the variable over which

it is to be optimized. Since X is an increasing function of a, the

optimum value of I will correspond to a unique value of e. An example

of such a transformation is

sr

r

where r is a small fraction. This implies that =
as a

and for any function Q of a

8Q OQ 1-r
- = -.-- (B-1)
8TI 88 r

a Q l-r SQ -r OQ 1r
£ + (1-0

V - + -8 r 1
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1-2r 8Q aS

(1-r) - + a- (B-2)
r ]Ia 8

(B-1) and (B-2) could be used to modify (A-4). (A-6) and (A-7)

for optimization over 1.

Ex erimentally, r=O.1 seemed to work for a wide range of e.
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Table I Parameters of the AR vrocesses used for simulation:

Process a 1 a 2  a a4 [poles
I -1.352 1.338 -0.662 0.240 O.7exv[j2ff(O.2)

II -2.760 3.809 -2.654 0.924 O.98exvj2ff(O.11) I
__________ ______ ______ .9Sexv[j2ff(O.l4)]
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Table II Performance of the Forward-Backward Estimators

True Samile Samole Cramer Rao 'Gaussian"
value mean variance bound C R bound

a -1.352 -1.3482 1.0197x10-* 1.0491x10- 4  9.4618x10-
4

a2 1.338 1.3326 2.3822x10 -  2.5961z10- 4  2.3414x10-

Process a3  -0.662 -0.6591 2.3531x10-  2.5961x10- 4 2.3414x10-

I 4  0.240 0.2382 9.6246x10 -  1.0491x10-  9.4618X10 - 4

__ _ 10.900 10.8315 2.7778 0.3149 0.2386

a1 -2.760 -2.7567 1.6569X10 -  1.6278x10-  1.4681x10-

a2 3.809 3.8001 8.3418x10- 8.0163xl0 -  7.2300x10-
4

Process a 3  -2.654 -2.6447 8.4388x10- 8.0163x10-S 7.2300X10-4

II a 4  0.924 0.9197 1.7083x10- 1.6278xI0 -  1.468Ix10 -
4

C 10.900 10.8315 2.7713 0.3149 0.2386
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Table III :Performance of the Maximum Likelihood Estimators

True sample Sample Cramer Rao 'Gaussian'
_____ value mean variance bound C R bound

a1 -1.352 -1.3527 1.02 19X10-4 1.0491zX10'4 9.461 SX10'4

a2 1.338 1.3391 2.4619z10'4 2.5961xl10' 2.3414x10's

1Process a3 -0.662 -0.6629 2.4253x10-4 2.596lx 10-4 2.3414x10'o

I 0.240 0.2404 1.0352x 10-4 1.0491xl10' 9.4618xl10'

_____ 2 10.900 10.8544 1.2061 -50.3149 0.2386 1-

a1 -2.760 -2.7597 1.7588x1O5  l.6278xlO~ 1.4681z10

a2 3.809 3.8081 9.O67lxlO~ 8.0163x10O 7.2300~10O

Process a3 -2.654 -2.6531 9.1796rl0-s 8.0l63xl0- 7.2300xlO0'

aI4 0.924 0.9236 1.8545xl10' 1.6278xl10' 1.4681i 0-4

S10.900 10.8454 1.1990 0.3149 0.2386
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Figure 2. Mixed-Gaussian time series at the input and output of an AR filter
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Figure 5 (b). Maximum likelihood PSD estimates of process II
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