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Abstract

A

The problem of estimating the parameters of a non-Gaussian
autoregressive process is addressed. Departure of the driving noise
from Gaussianity is shown to have the potential of improving tke
accuracy of the estimation of the parameters. While the standard linear
prediction techniques are computationally efficient, they show a
substantial loss of efficiency when applied to non—-Gaussian processes.
A maximum likelihood estimator is proposed for more precise estimation
of the parameters of these processes coupled with a realistic non-
Gaussian model for the driving noise. The performance is compared to
that of the linear prediction estimator and as expected the maximum
likelihood estimator displays a marked improvement.
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I. Introduction

Estimation of the parameters of a time series model has been a
widely addressed problem., Rational transfer function or time series
models are the most popular of these.[1] Autoregressive (AR) models are
used more often than the moving average and autoregressive moving
average models because of the inherent mathematical simplicity.[2] When

the driving noise is Gaussian, the maximum likelihood estimator (MLE)

! is easily found for the AR model under reasonable assumptions.[3]

Although the Gaussian model for the driving noise is appropriate
for a wide variety of problems, in some applications it is not. The
noise encountered in underwater detection problems is often
characterized by the presence of sharp spikes due to ice break-up and
offshore drilling.[4]1.[5] Spikes are also common in the atmospheric
noise encountered in low frequency communication systems.[sl The
Gaussian model is not flexible enough to incorporate these high-
amplitude events mainly because of the sharp roll-off of the

probability density function (PDF).

el gr=—ar—

A variety of alternative models have been proposed. A PDF that is
appropriate for a non-Gaussian process with “heavy tails” is the

Gaussian mixture model

f(u) = (I-B)En(u) + ¢eEy(u) , 0 Ce <1 (1)




wvhere Ep(y) and Ey(u) are Gaussian PDF's with parameters [pB,cE] and

[HI-“i] tespectively.[7] Subscripts B and I are used to denote

background and interference, respectively., Assuming ai » cﬁ, one can

allow for a wide range of amplitudes and frequencies of occurence of

spikes by appropriately choosing 0} and e, the mixture parameter.

Once the driving process is characterized, the AR model can

describe a large set of correlation patterns with only a few number of

parameters, Most of the natural noise—channels, such as the soil and

the sea-water, are low-pass in nature and the processes at their output

tend to be weil-suited for an AR model.[8], (9]

Physically motivated as the Gaussian mixture model is, it does

not enjoy the mathematical simplicity associated with a Gaussian

model. [10] For example, the least squares estimator of the AR

parameters is no lomger a close approximation to the MLE for reasomnably

large data records. This leads to the problem of finding a good metlod

to estimate the parameters that characterize a mixed-Gaussian AP

process. Maximum likelibood estimation is the most widely considered

approach for all mixture—density estimation p*oblems.[7]

This paper addresses the problem of maximum 1likelihood A

estimation of the parameters of an AR process driven by white noisc

with a mixed-Gaussian PDF given by (1), As a preliminary step, we
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Assume pup and puy to be zero and cﬁ and ci to be known but & unknown.

T

The paper is organized as follows, Section II describes the
Cramer~Rao bounds for the parameters of a mixed-Gaussian AR process and

attempts to interpret them. Section III points out the imefficiency of

L g

least squares estimation by relying on theoretical and experimental

results . Section IV formulates the MLE for this problem while section
A V discusses its performance. Section VI summarizes the results and

discusses possible applications of the MLE approach.

II. Cramer—Rao Bounds

: The approximate Cramer—-Rao bound for the unbiased estimator of
the 1location parameter or mean p, driving noise variance and
autoregressive filter parameters is known for a finmite variance p-th

! order AR process

i) +u (2)

[ ]
fi
h =4
t
M
»

i (amyT

if u, has a symmetric PDF f with variance o 2and ar are the

autoregressive filter parameters. The Fisher information matrix fox the

parameter vector 8 = [ , 3T o? )T, assuming that { Xy, x2, ... xy } are

observed, is given by
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which may be shown to be npproximatelylll]'[lzl

- p 2 _ ' T ' q
(1 jil IJ) 1f| Qp I 1]
I = - e ————— -——r—
| Ip= (N-p) o I—Ifc I_Q (3)
_____ ._.......T._'__
; 0 0 12
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where a = [a; a, ... ap]T
- 9 ’
| If-E{l-a-Elnf(u)]}
: 1 3 2
] I°,=_[E{[nﬂlnf(u)]}-1]

4o4

Qp is a pxl vector of zeroes and C is the pxp covariance matiix of tlLe
time series, This result is asymptotic (true for large data records)
because the contribution of the first p samples has been ignoned.llz]

No results are available for finite data records,

It is of interest to explicitly determine Ig and I;? for a

Gaussian distribution, In this case

inf(u) = - ;- in(2n) - lIno - _12. o’
20
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o m

3 =-38
R- lnf(u) = 0_3

If =E { [T:'lnf(u) ]z}= —%E [o'] = —: (4)
o

o
2 .

1.,=-2]E {.[ -n2 ]‘} -1 ] -1 [ 36 -1 ] - 1 (5)

o 40t s’ 40 at 26

Substitution of (4) and (5) into (3) produce the well known results fou

the CR bounds for Gaussian AR processes.[13] These results will be

useful later.

Returning to the general non-Gaussian case, we are interested in

u is assumed to be known

determining the CR bounds for a and o¢® only.

and equal to zero. The block-diagonal nature of Jg makes it possible to

invert it by inverting each block. Therefore, the covariance matrix of

an unbiased estimator 3 of a is bounded by

g—x g—x
Cov(d) 2 2 = 1 n (6)
I | N-p o’If N-p

while the matrix inequality means that the difference of the right and
left side matrices is positive semidefinite. C, is the "normalized”
covariance matrix obtained by dividing C by o> so that C, depends oniy
on the AR filter parameters, It can be noted from (4) that in the
Gaussian case czIf is unity and the CR bound for a becomes 6>C ' (N-p)

(3]

= gn—‘/(N—p) in accordance with known results,

l‘ \“'. -...' ,- LN . SRS » » - (..’;.(\ el .’_..._;‘_, '_.;’.;._‘:..‘-‘-_(.:‘ “."...,.",.:"'.\’.“_. ‘g X

I e R T W 5 a1 e TR IR RN - s ot Ty d - 3'a Qe ain Sl 4 %e e die 4o af



For a fixed variance 62 the factor I¢ is smallest and hence the

AR filter parameters are most difficult to estimate in the Gaussian

case. This can be shown easily from the Cauchy Schwartz inequality

s £ () 1s 2 £ (u) ] :
If"‘":{[""("fuﬂ]}‘?‘[“]2 B | Spey o I
’ 2
= I_:if{%;-u f(u) du
© 2
= I;“ £'(u) u du
@ 2
= | [ r@ - [28 £ ac] I_Q |
2
= |osw |2 - j_: £(u) du
= l 0-1 lz
= 1
1
Hence I£ 2 — (7

Note that equaiity holds for a Gaussian distribution, as shown in (4).
For any other symmetzic distzibution with variance o2, I is iargex
than this minimum vaiue, In fact the Gaussian PDF 1s the unique PDF
satisfying the equality. To show this consider zero mean zandcnm
variables A and B where A = f'(u)/f(u) and B = u. Then if (7) hoids

with equality

E(A*)E(B%) = [ E(AB) ]?



This implies that

E(A%)

E(AB)

where ¢ is some comnstant.

Therefore E(A*) = cE(AB) = c¢’E(B*)

E(A%) + c*E(B®) - 2¢E(AB) = 0

E(A® - 2¢AB + c¢*B*) = 0

E(A- c¢cB)* =0

/2 (A-cB)?* £(u) du = 0.

f(u) and (A - ¢B)? are both non-negative over the whoie range of
integration., Since we aie only interested in A and B for those values
of u which have non-zero probabiiity, (A - ¢B)? has to be

identically zero over the whole domain of f.

Therefore

This equality impiies
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£’ (u)

= cu, —o (g (@
f(u)

Integrating both sides yields

1nf(u) = cu®/2 +ink (where K 1s some constant)

ie, f(u) = Kexp(cu?/2),

This is a8 normai dist: but:ion with mean O and variance -1/c.

(7) allows us to compare the CR bounds for 3, as givem by (6), for

any symmetxic PDF of the driving noise to that for the Gaussian driving

noise. An obvious implication of (7) is that it is possibie to estimate

the AR parameters more precisely in the non-Gaussian case than in the

Gaussian case. In summary,

A -1
A Cov (a) 2 1 .-—l— Qn in the non-Gaussian case
c If N-p
and Cov (g) > L g;l in the Gaussian case (8)
Y N"p
I; has anothe: interpretation. It is the Fisher information for '

the estimator of the mean or the location parameter of a univaiiate

AV a4 &

) PDF. This may be observed by setting aj=0. j=1,2,...p in the (1,1)

element of 16 as given in (3) and not:ng that the factor (MN-p) 1s due

it B A
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to accumulation of information from (N-p) samples, ignoring the
contribution of the first p samples, The result also holds for tle mean
of AR processes except for a multiplying constant. This meanc that
given two AR processes having identical power spectral demsities but
different PDF's of driving noise with equal va:iances, it wii: be
easier to estimate the AR filter parameters of that process for wkich
estimation of the mean is easier, For the specific case of a zero mean
Gaussian mixture model described in (1)

o’ = (1-e)op + eo] (9)

2 2
og and o7 are assumed to be known, If can be computed :in this case es

follows:
Let  Fg(u) = 1°¢  exp [ -u’/26° ] (10a)
2 B
2no
B
and  F(u) = & exp [ -u'/20. ] (10b)
2 I
2no
I
Then f(u) = FB(u) - FI(u)
£ (w) = ~u [ F(u)/o. F (u)/c. ]
u u gw)/og = [(2)/e;
= -u [ GB(u) - GI(u) ]
wheze GB(u) = FB(u)/c; and GI(u) = FI(u)/c; (11)
. - 2
L. I o [f (u)]ld ) lu(GB(u)+GI(u))J i 1)
£ —» T f(w) " ¢ -
-o F_(u)+ F_(u)
B I
e S T




This integral can be evaluated using standard numericai techniques.

d'If can be thought of as an index of non-Gaussianity where positive
departures from 1 indicate a higher degree of non-Gaussianity as far as
the estimation of the AR filter parameters is concerned. Figure 1 plots
log(a®Ig) vs. e for op = 1 , 6] = 1000 and 6 = 1 , of = 100, For ¢ = 0
and ¢ = 1 the distribution degenerates to a Gaussian one with variance

] cs and c;, respectively. In both these cases log(czlf) = 0. The piot '
shows how much improvement can be expected in the precisemess of the

estimation of AR filter parameters for different values of e. Fo:

example, for ¢ = 0.1, aa = 1 and u; = 1600, the covariance mat.ix is

scaled down from the Gaussian case by a factor of about 100. Ve wii:. be

Primariiy interested im values of ¢ ¢ 0.2.

The CR bound on variance can also be computed numerically. Firom

(3) it is evident that

A 1
2
Vazr(c?) 2 TN:ETT:z
@® 3 2 '
= 1 u [£'(u)] _ .
where qu — l G du 1 J .
40 —® '
For the Gaussian mixture model this becomes ‘
4 + 2
1 © g [ Gg(u) GI(u)] )
Igr == Fow + F e o0 1 (13
4c* - B ) Ol

i
using not.tioms of (10) and (11), The integral can be evaluated !
numezricaliy. f
12 R
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Figures 2 and 3 show two typical non-Gaussian autoregxressive t:ime
series along with the driving noise time serxries. They provide some
insight as to why it should be possibie to estimate the AR parametcrs
more precisely in the non—Gaussian case., The Gaussian mixtuse model is
characterized by the presence of large spikes in the driving noise t:ime
series ( Figures 2a, 3a ), due to the high variance Gaussian component,
The spikes act as impulses to the input of the AR fiite: and resuit in
"ringing” at the output ( Figures 2b, 3b ). This ringing 1is actualiy
the impulse response of the filter which tempoiarily dominates the iow
variance component at the output., It is probably these .impulse
iesponses tbat <carry additionai information about the f::tex

parameters,

Least Squares Techniques

The usval AR parameter est:mation techniques (eg, Autocor:ze:at.om,
Covariance, Forward-backward etc.)lz] do not enjoy the piopesty of
asymptotic efficiency in the non—-Gaussian case., Aithough they aie st:i:

computationally efficient, they perform much poorer than the MLE,

Two typical AR(4) processeslz] have been chosen fo:r compute:
simulations. The parameters are given in Tabie I. o is assumed to be

unity for both processes, Process I is broadband while process II is

13
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narrowband. 50 Forward-backward spectral estimates have been plotted
for these two processes in Figure 4. The sample means and sample
variances of a and 6* have been listed and compared against the CR
bounds in Table II.( The performance of the MLE will be described in
section IV.) The resunlts are based on 500 experiments with 1000 data
samples in each. °§ and ci are equal to 1 and 100 respectively. Also
the mixture parameter is e = 0.1. The AR process was generated by
passing a white mixed-Gaussian process through a filter, allowing
sufficient time for the tramsients to decay. The white process was
generated by randomly selecting from two mutually independent white
Gaussian processes with PDF’s Ep(u) and Ey(u) (having variances a; and
oi respectively) on the basis of a series of Bermoulli trials with
probability of success e&. Thus a random variable can be expected to
come from population I for (1-e) fraction of times and from population
II for ¢ fraction of times so that the overall distribution is as given

in (1).

The CR bounds for the Gaussian case (see (8) ) have also been
listed in table II. As expected, the bound for the AR parameters in the
Gaussian case is much higher than those in the non—Gaussian case. It is
interesting to note that the performance of the Forward-backward
estimator approaches the Gaussian CR bound. This confirms the well
known result that the 1least squares estimates are asymptotically

Gaussian with mean equal to the true parameters and covariance matrix

equal to the Gaussian CR bound.lls] Bowever, as will be shown in in




- e e

section V, the MLE attains the true CR bound, better by a factor of 10

in accordance with Figure 1b.

Clearly, the Forward-backward estimator, which is typical of all
least squares methods, can not take advantage of the presence of the
"contaminating” process. The performance of the covariance method was
found to be about the same. (The exact results for the covariance
method has not been reported here.) This confirmation of the expected
inefficiency of the least squares techniqnes[lzl'[14] calls for the use
of a more efficient method which will be able to exploit the reductionm
in the CR bounds. One such method is the MLE which is discussed in the

next section.

IV. Maximum Likelihood Estimation

In this section a Newton-Raphson search algorithm is proposed for
the (p+1)-dimensjonal maximization of the conditional 1likelihood
function. The 1likelihood function is given by the joint PDF of the
observed AR process which can be obtained from the joint PDF of the
driving noise as follows. An AR(p) time series is linearly related to

the driving noise time series

P
w = jzo'Jx“'j (14)

where the identification 80 = 1 has been made. This is just another way
15
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of writing (2), which makes it possible to determine the conditional
likelihood function of [ x5 x5 ... xy\ 1T in terms of the joint

distribution f of u = [ Up+1 Up+2 +e- UN ]T. The transformation is

. - - - - p
: "ptl ) 1 “pl 2je1%5%p+1-
u [ a X P
+2 1 . +2 * . .X.a ,
P . : P 2j=2 i p+2-]
. - ip R . N x'a
» . 0 '. . pop
f ' 0...0a ... ' 0
AT | o L T VI ]
- _ i,
) A

The Jacobian of the transformation from [ Xp+y Xp+2 -e- XN ] to u is

3 just A, The determinant of the Jacobian is unity so that the joint PDF
. fof [ 5,1 xpep +.. xN ] given x3, x5, ... xp is
N
X f(xp+1.xp+2....xN| xp,xp_l, .o xl) = f( u(x) ) = w!: f(un(§))
. n=p-+1
R 3 . 2 . .
N N l (1-e) [ u ] 3 v J J
- f(u) = T f(u)= T exp | ~ * exp | - —
n=p+1 n n=p+l J2noB 26; 2noI ¢ 20;

Then f(x _,x
p+1

; N | (1-e) l 1 )»J
- =T exp | - 2a.x _
n=p+1 ‘lznoB’ 26 (, =03 ®

; A Newton-Raphson iteration step for 6 = | gT o?1T is

p¥2’ e | xp'xp—l' eee xl)

1 /p 3’
expl— (Ea.x_)]l
20 j=0 387

3
1 -

>
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-1
0,41 = 0, - B G (15)
where G = B;nf G;nf L G;nf alnf ]T (16)
L ll 82 .P do
r 1
3’ 1nt 3’1nf  3’1nt
— ... -
601 Galaap aalao
and H = | 5301 3’1nt 3 Inf an
—_ ... = -
aapaal a.p 3;986
3’1nt 3’1nt  8’int
ds’da d0%da ac"
3 1 P J

Appendix A gives a detailed derivation of the entries of G and EH.
Although the expansions are complicated, they exhibit some structure.
This would allow partly comcurremt computation of the gradiemt and
hessian entries in each step of Newton—Raphson iterations., The
estimates from the Forward-backward method can serve as initial

estimates.

For large data records the Hessian, evaluated at the true values
of the parameters, approaches the negative of the Fisher infoimation
matrix by the law of ia)ge numbets.[lsl The Fisher information matrix
1s known to be positive definite, Therefore the negative of the Hessian
will be positive definite when the paramete: vector 1s close to its
true value, Since the MLE is consistent, the maximum of the likeltihood
function is expected to occur citose to the tiue vaiue of the paiamete:
vector, Hence the Hessian will be negative definite in the neighborhood

17
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of the maximum of the likelihood function, implying that the function
is convex in that region, This property of the Hessian can be utilized
to avoid the matrix inversion required by (15) in the following way.

Rewriting (15) as

(-§)§i+1 = (-, + 6 (18)
it is possible to compute the right hand side from 8;. Thus (18) is a
set of 1linear equations which <can be solved by a Cholesky

decomposition.

The first and second order derivatives should be scaled by 1/N in
order to avoid the possibility of the terms growing unmanageably large.
The motivation for scaling down the terms is best understood by
considering the case of optimization over a single parameter assuming
the other parameters to be known. The Fisher information, which is a
diagonal element of Iy as given by (3), increases as N increases. B (a
scalar in this case) also increases accordingly, being of the order of
the Fisher information in magnitude, and has to be scaled down.
Multidimensional optimization would be even more difficult witbout

scaling.

A difficulty in obtaining convergence of the Newton-Raphson

iteration is the apparent weak dependence of the 1likelihood function

upon o’ (or equivalently, e). A transformation has been successfully




used to circumvent this difficulty. Appendix B addresses this problem

in detail.

While the theoretical proof of convexity of the 1likelihood
function for finite data records is not available, the simulations seen
to support this, The results of the simulations are discussed in the

following section.

V. Computer Simulations of the Performance of the MLE

The 1least squares estimates obtained by the Forward-backward
method were chosen as initial iterates for the Newton-Raphson iteration
required to find the MLE. An error criterion was defined and the
iteration was considered to bave converged if the criterion was
satisfied. A maximum of 100 iterations was allowed. The error criterion

was

p+l 0.— 9:
3 -J——%- < R
j=1 o’

J

where 0} is the ith iterate for the jth element of 6. R can be chosen
on the basis of on—line experience about the percentage of realizations

that converge for a given value of R. R=10"" seemed to work well in the

cases reported here. A transformation on ¢ (described in Appendix B)

e T e e e
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was used to enhance convergence, as was mentioned in section IV,

Typically the iterations converged in 4-6 steps and less than 1% of
them failed to comnverge. The results to be described do not reflect

the experiments resulting in failure to convergence.

50 realizations of the MLE spectral estimator for the two typical
AR(4) vrocesses described in section III have been plotted in Figure 5.
While it shows only moderate imorovement upon the Forward-backward
estimates vnlotted in Figure 4, it should be noted that Figure 5a has
less crossovers than Figure 4a. This suggests that the variability of
o’ might be the major factor behind scattering the plots apart, an
explanation confirmed by Figures 6 and 7 which compare the two methods

with the estimate of the variance replaced by the trume variance. They

indicate a considerable improvement for the MLE while the Forward-

backward estimates improve only slightly.

Table III compares the sample mean and sample variance of the MLE
estimators based on 500 exveriments to the CR bound. The number of data
voints in each exveriment is 1000, The maximum likelihood estimators
indeed appear to be efficient excent for the estimator of variance

which displays a wuch higher variability than the CR bound.

Estimating 6’ in this case is equivalent to estimating e, which
renresents the fraction of times the high variance Gaussian component

sppears in the observed data, It is comprehensible that for small e
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this estimation will suffer from the difficulties associated with
determining the nrobabilities of rare events. Very large data records
will be necessary to have a reasonably good estimate. Aovarently,
N=1000 was not large enough in this case. However it should be
mentioned that the difficulty in estimating the driving noise power may
not be important in some avnolications., For example, in some detection

problems it is possible to make hypothesis tests invariant to c’.lls]

Although convergence was not a major oroblem for N=1000, shorter
data records did exhibit more sensitivity to initial comnditions. The
reason is attributed to the possible non—quadratic nature of the log
likelihood function which makes convergence of the Newton-Raphson

iteration more difficult,

VI. Summary

The Cramer-Rao bound for the estimators of the parameters of
non—Gaussian AR ovprocesses was observed to be less than that for
Gaussian AR processes., The performance of the nopular least squares or
linear prediction techniques however only achieve the Gaussian CR
bound. The MLE technique, although computationally intensive comnared
to standard 1linear oprediction aporoaches, yields more accurate
estimates for non-Gaussian AR oprocesses., Simulation resunlts indicate
that the MLE is asymntotically efficient. It apopears to be a viable
approach for parameter and spectral estimation of non-Gaussian AR

vrocesses and may also be applicable to linear ovrediction of time
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series and detection of signals in noise. Futore work will address

means to reduce the computational burden of the MLE. Also, the

extension of this work to the case of unknown ratio of background and

interfering noise powers will be studied.
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APPENDIX A

Computation of Gradient and Hessian in Newton—Raphson iterations

From section IV, the aporoximate (conditional) log 1likelihood

function can be written as

N [ (1-g) [ 1 ? a}
Inf= 3 1In exp | - ——| 2 a.x _
a=p+1 42176; 2c;(j=0 i'n j)

: [ 1 : z]]
+ — exp | - — | 2 a.x _
2ﬂa; 20; <j=0 j'n j)

o

From (13), w = 5 ajxn_j (A-1a)
j=0
1 i 1 2
Let EB(n ) = exp - —a (A-1b)
n 210 203 n
B " B -
1 I 1 N
E.(a) = exDp -—a (A-1c¢)
I'n 210 20z n
I - I -
FB(un) = (l—e)EB(nn) (A-14)
FI(nn) = eEI(un) (A-1e)
N
Then Inf = 3 1nl FB(un) + FI(nn)] (A-2)
n=p+1
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3
dlnf N T.'j[ Fglu )+ FI(nn)]

Hence = 3
aaj n=n+1 FB(nn)+ FI(un)
1 1
- FB(un) Y FI(un)
N o c du
- 5 B I a n
n
n=p+1 FB(un) + FI(nn) a.j
3 2
dinf N FB(un)/o'B + FI(un)/aI
ie, = - 3 nnxn-j (A-3)
aaj n=p+1 Fn(un) + Fl(un)
. 3 _ (1ental 3 _ 3 3_ 3
Noting 1 (1 a)cB + oy o + e(aI oB)
de 1
it follows that ; reaiaer —
c o; ~ op
dlnf 1 dlnft 1 N -E (e )+ E (n)
e - . 5§ 2 I (A-4)
do o % de %371 n=p+1 FB(nn)+FI(nn)
FB(un)+ Fl(nn) FB(un) FI(nn)
a 2 2 3 )
d Inf N °p o5 N d op oy
=-2 xn—kxn—j - unxn-k N
aaka.j n=p+1 FB(un)+ FI(nn) n=p+1 aak FB(nn)+ FI(nn)
Y 3
Let FB(un)/cB + FI(un)/aI = T(nn)
FB(un) + FI(nn) = B(un)
9T(u ) F,(a ) u  odn F.(u ) u dn
n - B'n __n n + I'™n __n n
s ° 3 3 ° 3
aak o B OB 8nk GI OI auk

3 2
= -uwx . [Fglu)/aop + Fi(u )/ol
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3B(u ) L aun u
; = FB(u) - +FI(un) -—7 -2
% °8 °1
= - [ Fo(a_ ) e + F (u_)/o>]
T T %%k BB T 1'%
aT(u ) BB(un)
—3 T(“n) _ B(nn) a'k - T(nn) a'k
3
9 x B(un) B(un)
ux F(u)F(u) F(un ) F_(u)
ok [F(n)+F(n)][ = | - 2, 1
Blw)) | °1 °s 1
o nTak FB(un)FI(nn)+ FB(nn)FI(un)_ . Fg(u )F (u )
) 4 4 3 2
Bl | ‘8 °1 78°1
1/0'; - llo‘;
=B (%)Fr ) | F )+ F(a)
3’ 1nt
Therefore
aaka.j
FB(nn)+ F (u )
3
== g e SN S ’s [—- 1 FBES :;::I:“n: .| (A-5)
n=u+1uju F(u)+F(u) [FBun Iun]
a*1ing 1 ) N =-E,(u )+ E (o)
= _ Z B n I n
361, (a; - a;)’ de L n=p+l FB(“n)+ Fl(un)
- 3
. 9 Inf . 1 l; [EB(nn) EI(nn)J Aet)
ac” (a; - c;)z a=p+1 FB(un)+ FI(“n)
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Fp(u ) Fi(u )]s

+
3 3 3
J Inf 1 N J o o
= Y Py 2 -nnxn_j — B I
3o anj %1 %p n=p+1 de FB(nn)+ FI(un)
E (u ) E (un)
. S5 | [ Fatep sy ]
- I
a;-al n-p+1 "-i"n [ F (u )+ F (u )]
F (u ) F (u )
EEB(n )=~ E (n )
u
+
[ FB(un)+ FI(un)]z
FRETY 4 N 1 Eglu ) B (u )
It follows that = 3 x ~i% i3 3 (A-7)
9o aaj n=p+1 °* 91%n EFB(un)+FI(un) ]

Equations (A-3) to (A-7) completely determine the gradient

vector and the Hessian matrix, L S El(“n)' Ez(un). Fl(un) and Fz(nn)

need to be computed only once for every n in each iteration and can be

used to find all the first and second derivatives,
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APPENDIX B

Use of transformation on o

Exveriments show a rather weak dependence of the log likelihood
function on o” (or equivalently ). This problem can cause the (p+1)-
dimensional ontimization not to converge. A possible solution is to use
some transformation n = g(s) such that n increases slowly with e. If a
vproper transformation is chosen 1nf will, hopefully, show a distinct
veak when optimized over n. The intuitive idea behind this technique is
to incresse the sensitivity of the function to the variable over which
it is to be optimized. Since g is an increasing function of e, the
optimum value of n will correspond to a unique value of e¢. An exammle

of such a transformation is

n = e"

an r

where r is a small fraction, This implies that — = i=s
de £

and for any function Q of ¢

2Q 9Q a1-t

_ = — 2 (B-1)

] de r

a’a  1-rf[ ,» 1-r 3Q -r

T = L [ 3 ? E e — L -0 & ]
an T de T de r
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1-2r 9Q ? Q
=2 (1-r) — + ¢ — (B-2)
r de de

(B-1) and (B-2) could be used to modify (A-4), (A-6) and (A-7)

for optimization over n.

Experimentally, r=0.,1 seemed to work for a wide range of =.
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Table 1

: Parameters of the AR

processes nsed for simulation:

Process .1 12 03 14 poles
_ ~ 0.7exp[§2n(0.12)]
1 1,352 1.338 0.662 0.240 0.7exn[§27(0.21)]
_ _ 0.98exn[j2n(0.11)]
11 2.760 3.809 2.654 0.924 0.98exv[§27(0.14)]
31
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Table I1I Performance of the Forward-Backward Estimators
True Sample Sample Cramer Rao *Gaussian”
value mean variance bound C R bound

a, | -1.352 | -1.3482 | 1.0197x107" | 1.0491x10"* | 9.4618x10""
2, | 1.338 | 1.3326 2.3822x10 0 | 2.5961x10 " | 2.3414x10"°
Process | a, | -0.662 | -0.6591 2.3531x10 ° | 2.5961x10"* | 2.3414x10"°
I s, 0.240 0.2382 | 9.6246x107° | 1.0491x107* | 9.4618x10°*

a2 | 10,900 | 10.8315 | 2,.7778 0.3149 0.2386
2, | -2.760 | -2.7567 1.6569:10_: 1.6278x10 ° | 1.4681x10 *
., 3.809 3.8001 8.3418:10-‘ 8.0163x10 ° | 7.2300x10 °
Process | a, | -2.654 | -2.6447 | 8.4388x10 8.0163x10 ° | 7.2300x10 '
I1 ., 0.924 0.9197 | 1.7083x10 1.6278x10 ° | 1.4681x10™ "

o2 | 10.900 | 10.8315 { 2.7713 0.3149 0.2386
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Table III : Performance of the Maximum Likelihood Estimstors
True Sample Sample Cramer Rao "Gaussian”
value mean variance bound C R bound
a, | -1.352 | -1.3527 1.0219x10 * | 1.0491x10 * | 9.4618x10""
., 1.338 | 1.3391 | 2.4619x10°* | 2.5961x10"° | 2.3414x10°"'
Process | a, | -0.662 | -0.6629 2.4253x10 * | 2.5961x10 * | 2.3414x10°
1 s, | 0.240 | o0.2404 1.0352x10 * | 1.0491x10 * | 9.4618x10 *
o3 | 10,900 | 10.8544 | 1.2061 0.3149 0.2386
2, | -2.760 | -2.7597 1.7588x10 ° | 1.6278x10 ° | 1.4681x10 °
s, | 3.809 | 3.8081 9.0671x10 ° | 8.0163x10"° | 7.2300x10""
Process | a, | -2.654 | -2.6531 9.1796x10 ° | 8.0163x10 ° | 7.2300x10*
II s, | 0.924 | o0.9236 1.8545x10 ° | 1.6278x10 ' | 1.4681x10 °
o3 | 10,900 | 10.8454 | 1.1990 0.3149 0.2386
33
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