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CHAPTER 1

INTRODUCTION TO FLYING QUALITIES
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1.1 TERMINOLOGY

% Flying Qualities is that discipline in the aercnautical sciences that is
concerned with basic aircraft stability and pilot~-in-the-loop controllability.
W 1 the advent of sophisticated flight control systems, vectored thrust;
forward~swept wings, and negative static margins, the concept of flying
qualities takes on added dimensions.
In aeronautical literature there are three terms bandied about which are
Nﬂ generally considered synonymous. ‘These terms are “flying qualities,*”
“stability and control,” and “handling qualities.® Strictly speaking, they
are synonymcus, el».—l'}"’f An early publication by Phillips in 1949 defines flying
qualities of an aircraft as those stability and control characteristics that
have an important bearing on the safety of flight and on the pilots’
impressions o the ease of flying an aircraft in steady flight and in
maneuvers (1.2}, Strangely enough, the current document specifying military
‘flying qualities requirements, MIL-F-8785C, Flying Qualities of Piloted Air-
i’ - planes, does not explicitly define the temm “flying qualities," -ﬁut“"}_he
specification's stated purpose of application is ., «to_ assure flying
qualities that provide adeguate mission performance and flight safety
regardless of design implementation or flight control system mechanizatior <
33 Successful enscution of the military mission then is the key to flying
quality adequacy. A definition of flying qualities which can be agreed upon
by both the USAF and the US Navy is: “*Flying qualities are those stability
and contral characteristics which influence the ease of safely flying an
aircraft during steady and maneuvering flight in the execution of the total
! mission”, (dvdhn g
The academic treatment of “"stability and control" is usually limited to
the interaction of the aerodynamic controls with the external forces and
maments on the aircraft. Etkin defines “stability® as °...the tendency or
lack of it, of an aizfplane to fly straight with wings level® and “control" as
“...steering an airplane on an arbitrary flightpath" (1.5). This academic
treatment sametines excludes the forces falt and, especially, exerted on the
cockpit controls by the pilot. "Handling qualities" is the term generally
(k used to define this aspect of the problem, “Handling qualities" are defined
~ by Cooper and Harper as "...those qualities or characteristics of an aircraft




that govern the ease and precision with which a pilot is able to perform the
tasks required in support of an aircraft role" (1.1, 1.6). Handling qualities
are definitely pilot-in-the~loop characteristics which affect mission
accamplishment,

Figure 1.1 shows that the terms "stability" and "control" do not include
the pilot-in-the-loop or man/machine interface concepts suggested by the term
"handling qualities.” In the terminology relationship shown in Figure 1.1,
the pilot is considered to be in the "handling qualities" block.

FLYING QUALITIES

NANDLING
STABILTY CONTROL QuALITIZS

o Cacitin
et

OPEN LOOP FQ MIL 8783C “LEVELS"

CLOSED LOOP
1 ¥G PILOT RATING
1 apaQuI
HANDLING GUALITIES OPERATIONAL
DURING TR \CKING NANDLING
1 PILOT RATING:
ACCEPTABILITY OF “PILOT CONTROLLED"
VEHICLE GIVEN SPECIFIC TASK AND
ENVIRONMENT (QUALITATIVE) oarase
REGUIREMENTS
LEVEL:
ACCEPTABILITY OF “YVEMICLE PARAMETERS” )
(FORCES, RATES, ETC) FORA STATED # LEVELS SOMETIMES USED TO Ly
MISBION CATEGORY (QUANTITATIVE) SPECIFY CLOSED LOCYHQ .

FIGURE 1.1, FLYING QUALITIES BREAKDOWN




Stability and control parameters are generally derived fram "open loop"
testing, that is, from testing where an aircraft executes specific maneuvers
under the control of an assumed "ideal programmed controller” or exhibits free
response resulting from a more or less "mechanical" pilot input, The
quantitative results are thus independent of .pilot evaluation. Many
parameters derived in this fashion such as damping and frequency of aircraft
oscillation are assigned a “"Level" of acceptability as defined by the contents
of Reference 1.3, MIL~F-8785C. The intent is to ensure adequate flying
qualities for the design mission of an aircraft. Other parameters such as
aircraft stability and control derivatives are obtained using parameter
identification techniques such as the Modified Maximum Likelihood Estimator
(MMLE). These flight test determined derivatives are used as analysis tools
for flying quality optimization which occurs during develogmental flight
testing (1.7).

Handling qualities, on the other hand, are generally determined by
performing specifically defined operationally oriented tasks where pilot
evalvations of both system task accovplishment and workload are crucial.
Pilot ratings defined by the Cooper-Harper Pilot Rating Scale (Figure 1.2) are
frequently the results in this “"closed loop" type of testing, although a few
tasks (such as landing) are assigned a “level" by MIL-F-8785C. Handling
qualities are currently evaluated at the AFFIC using precise pilot-in-the-loop
tracking tasks. Two of these test methods are known as Handling Qualities
During Tracking (HQPT) and Systems Identification Fram Tracking (SIFT) (1.6,
1.8, 1.9).

1.3
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To camplicate matters, sametimes “closed loop" tasks are required to
gather stability and control data. An example is maneuvering stick rorce
gradient, which requires stabilizing on aim airspeed at high load factor.
This is a "closed loop" task for the pilot, particularly if the aircratc has a
low level of stability., Because of such camplications amd interactio:s
between “"stability," “control,* and "handling qualities," the terr "flying
qualities" is considered the more inclusive texm and is customarily used at
the AFFIC to the maximmm extent possible (1.1). Unfortunately, current Air
Force Flight Dynamics Laboratory practice is to use the tems “flying
qualities” and "handling qualities” synonymously without defining either one
(1.3).

1.2 PHILOSOPHY OF FLYING QUALITIES TESTING

The flying qualities of a particular aircraft cannot be assessed unless
the total mission of the aircraft and the multitude of individual tasks
associated with that mission are defined. The mission is initially defined
when the concept for a new aircraft is developed; however, missions can be
completely changed during the service life of an aircraft. D. the formulation
of a test and evaluation program for any aircraft, tiw missicn must be defined
and clearly understood by all test pilot and £iight test engineer members of
the test team (1.4). ‘

The individual tasks associated with the accamplishment cof a total
mission must also be determined before the test and evaluation program can be
plamed. Although individual task: may be further subdivided, a military
mission will normmally require the pilot (crew) to perfurm the following tasks:

1. Preflight and ground operations
2. Takeoff and Climbs

3. Navigation

4. Mission Maneuvering/Bmployment
S. Approach and landing

6. Postflight and Ground Operation

1.5
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The tasks for which the "best" levels of flying qualities are required are the
essential or critical tasks required by the total mission. For a fighter or
attack aircraft performing air-to-air or air-to-ground maneuvers (and training
for those maneuvers), the greatest emphasis must be placed on the flying
qualities exhibited while performing these critical tasks. For a bamber or
tanker aircraft, low level terrain following, or air-to-air refueling mignt be
critical maneuvers. These tasks vary with aircraft mission. In any case,
adequate flying qualities must be provided so that takeoff, approach, and
landing maneuvers can be consistently accamplished safely and precisely (1.4).

The primary reason for conducting flying quality investigations then is
to determine if the pilot-aircraft cambination can safely and precisely
perform the wvarious tasks and maneuvers required by the total aircraft
mission. This determination can often be made by a purely qualitative
approach; however, this is usually only part of the camplete test program.
Quantitative flight testing must also be perfommed to:

1. Substantiate pilot qualitative opinion,

2. Document aircraft characteristics which particularly enhance or
degrade same flying quality.

3. Provide data for ocomparing aircraft characteristics and for
improving aircraft and simulator design criteria.

4. Provide baseline data for future expansion in terms of flight or
center of gravity envelopes or change in aircraft mission.

5. Determine compliance or noncarpliance with flying qualities

guarantees, appropriate military specifications, and federal
airworthiness reqgulations, as applicable,

A balance between gualitative and cjtmtitative testing is narmally achieved in
any flying quality flight test evaluation program (1.4).

1.3 FLYING QUALITY REQUIREMENTS

In Decarber 1907, the United States Army Signal Corps issued Signal Corps
Specification 486 for proawwement of a heavier-than-air flying machine. The
specification stated, "During this trial flight of one hour it must be steered
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in all directions without difficulty and at all times be under perfect control
ard equilibrium.” This was clearly a flight demonstration requirement (1.10).
The Air Force Lightweight Fighter Request for Proposal in 1972, in addressing
stability and comtrol, specified only that the aircraft should have no
handling qualities deficiencies which would degrade. the accomplishment of its
air superiority mission (1.11, 1.12}). In response, the contractor predicted
that the handling qualities of the prototype would "...pemmit the pilot to
maneuver with complete abandon" (1.12, 1,13). The requirements placed on the
Wright Flyer and the Lightweight Fighter comtractor's flying quality
predictions were remarkably similar. From these examples, one might assume
that the art or science of specifying flying quality requirements has not
progressed since 1907.

In the late 1930's, flying quality requirements appeared in a single but
all encampassing statement appearing in the Army Air Corps designers handbook:
“The stability and control characteristics should be satisfactory" (1.10).

In 1940, the MNational Advisory Committee for Aeronautics (NACA) con-
centrated on a sophisticated program to correlate aircraft stability and
control characteristics with pilots' opinions on the aircraft's flying
qualities. They determined parameters that could be measured in=flight which
could be used to quantitatively define the flying qualities of aircraft. The
NACA also started accumlating data on the flying qualities of existing
aircraft to use in developing design requirements (1.14).

Probably the first effort to set down an actual specification for flying
qualities was performed by Warner for the airlines during the Douglas DC-4
develogment (1.14). During world War II, research branches of both the Army
Air Corps and Navy became imwvolved in flying quality development and started
to build their own capabilities in this area. An important study headed by
Gilruth, published in 1943, was the culmination of all ¢of this work up to that
time (1.15). This study was supplemented by additional stability and control
tests cunducted at Wright Field under the auspioes of Rerkins (1.16). Shortly
thereafter, the first set of Air Corps requirements was issued as a result of
joint effort between the Ammy Air Corps, the Navy, and NACA. At the same
time, the Navy issued a similar specification. These specifications were
superseded and revised in 1945 (1.10, 1.17). PRerkins also published a manual
which presented methods for conducting flight tests and reducing data to

1.7




demonstrate compliance with the stability and contrel specification. This
marmal, published in 1945, is remarkably similar to, and is the forerunner of,
the present USAF Test Pilot School Flying Qualities Flight Test Handbock
(1.16). .
Progress in the develomment of military flying_quality specifications is
well documented in References 1.10 and 1.18. Work on MIL~F-8785 was started
in 1366 and first published in August 1969 as MII~F-8785B(ASG). It was
revised in 1974 and again in 1980 when it was republished as MIL-F- 8785C.
The Backgroamd Information and User Guide for MII~F-8785B(ASG) (1.18) explains
the concept and arguments upon which the current requirements were bused.
Data reduction techniques recammended to determine military specification
compliance are essentially those presently in use at the USAF Test Pilot
School. The Sciool was actively imvolved in the development of
MI1~F-8785B(ASG), and was first used by students evaluating their data group
aircraft (T-33A, T-38A, and B-57) against specification requirements.
MIL-F-8785C was first used by Class 81-A evaluating the KC-135, T-38, F-4, and
A-7 aircraft,

The School also participated in development of MII~F-83300 which places
flying quality requirements on piloted V/STQL aircraft (1.19). Reference 1,20
is a companion background document for this specification. No effort was made
to evaluate the School's H-13 helicopters against specification requirements
(1.21).

Formal discussions of aircraft flying qualities almost always revolve
about the formal military document MIL-F-8785C. As mentjoned earlier, this
specification focuses almost entirely on open loop vehicle characteristics in
attenpting to ensure that piloted flight tasks can be performed with
sufficient ease and precision; that is, the aircraft has satisfactory handling
qualities. This approach is quite different from that used to specify the
acceptability of automatic flight control systems, wheru desired closed loop
performance and reliability are specified. This occurs despite the fact that
most flying quality deficiencies appear anly when the pilot is in the loop
acting as a high-gain feedback element (1.22).

This task-related nature of handling qualities is now popularly
recognized. However, for modern flight control systems conoepts, it is not
quite so clear just what the critical pilot tasks will be; therefore, a
prablem exists in developing design criteria for fly-by-wire and higher arder
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control systems. A cowplicating factor is the changing nature of air warfare
tactics as a result of the changing threat, improving avionics capability, and
the increasing functional integration of hardware and aircraft subsystems
(1.23).

Military flying quality specifications have been failures as
"requirements." That is, they have not recently -(at least since 1970) been
used as procurement campliance documents. The search for an alternative
approach to the specification of aircraft flying qualities has been going on
for some time, The difficulty is in developing a physically sound approach
which is acceptable to the military services and to those contractcrs who must
design to stated requirements (1.23). 'The current attempt to define an
approach is an Air Force Flight Dynamics Laboratory funded effort by Systems
Technology Incorporated to develop a military standard for flying qualities to
replace the present MIL~F-8785C.

It is generally true that developing engineering specifications or
standards for samething so elusive as handling qualities is an art Yorm;
however, there is no basis for believing that Cocper-Harper ratings—-properly
obtained--are not adequate measures of handling qualities. Pilot opinion
rating is the only acceptable, available method for handling qualities
quantification., In fact, in current literature pilot opinion rating is
considered to be synorymous with handling qualities evaluation (1.22, 1.23).

1.4 CONCEPTS OF STABILITY AND CONTROL

In order to exhibit satisfactory flying qualities, an aircraft must be
hoth stable and controllable, The optimm “blend" depends on the total
mission of the aircraft., A certain stability is necessary if the aircraft is
to be easily controlled by a human pilot. However, too much stability can
severely degrade the pilot's ability to perform maneuvering tasks. The
optimm blend of stability and control should be the aircraft designer's goal.
Flying qualities greatly enhunce the ability of the pilot to perfomm the
intended mission when the optimm blend is attained (1.4).
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1.4.1 Stability
An aircraft is a dynamic system, i.e., it is a body in motion under the

influence of forces and moments producing or changing that motion. In order
to investigate aircraft motion, it.is first necessary to establish that it
can be brought into a condition of equilibrium, i.e., a condition of balance
between opposing forces and moments, Then the stability characteristics can
be determined. The aircraft is statically stable if restoring forces and
moments tend to restore it to equilibrium when disturbed. Thus, static
stability characteristics must be investigated from equilibrium flight
conditions, in which all forces and maments are in balance. The direct
in-flight measurement of same static stability parameters is not feasible in
many instances. Therefore, the flight test team must be content with
measuring parameters which only give indications of static stability.
However, these indications are usually adequate to establish the mission
effectiveness of the aircraft conclusively and are more meaningful to the
pilot than the numerical value of stability derivatives (1.4).

The pilot makes changes fram cne equilibrium flight condition to ancther
through one or more of the aircraft modes of motion., These changes are
initiated by exciting the modes by the pilot and terminated by suppressing the
modes by the pilot. This describes the classic pilot-in-the-loop flight task.
These modes of motion may also be excited by extermal perturbations, The
study of the characteristics of these modes of motion is the study of dynamic
stability. Dynamic stability may be classically defined as the time history
of the aircraft as it eventually regains equilibrium flight conditions after
being disturbed, Dynamic stability characteristics are measured during
nonaquilibrium flight conditions when the forces and maments acting on the
aircraft are not in balance (1.4).

Static and dynamic stability determine the pilot's ability to control the
aircraft, While static instability about any axis is generally undesirable,
excessively strang static stability about any axis degrades controllability to
an unacceptable degree. For some pilot tasks, neutral static stability may
actually be desirable because of increased controllability which results.
OGbviously, the optimm level of static stability depends on the aircraft
mission (1.4).
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The modes of motion of the aircraft determine its dynamic stability
characteristics. The most important characteristics are the frequency,
danping, and time constant of the motion. Frequency is defined as the "number
of cycles per unit time" and is a measure of the "quickness" of the motion.
Damping is a progressive diminishing of amplitude and is a measure of the
subsidence of the motion. Damping of the aircraft modes of motion has a
profound effect on flying qualities. If it is too low, the aircraft motion is
too easily excited by inadvertent pilot inputs or by atmospheric turbulence.
If it is too high, the aircraft motion following a control input is slow to
develop, and the pilot may describe the aircraft as “sluggish.* The aircraft
mission again determines the optimum dynamic stability characteristics.
However, the pilo: desires same damping of aircraft modes of motion. The time
constant of the moticn is a measure of the overalli quickness with which an
aircraft, once disturbed from eguilibrium, returns to the eguilibrium
condition (1.4).

Static and dynamic stability prevent unintentional excursions into
dangercus flight regimes (with regard to aircraft strength) of dynamic
mressure, normal acceleration, and sideforce., ¢he stable aircraft is
resistant to deviations in angle of attack, sidaslip, and bank angle without
action by the pilot. These characteristics not only improve flight safaty,
but allow the pilot to perform maneuvering tasks with smoothness, precision,
ané a minimm of effort (1.4).

1.4.2 OQontrol

Controllability is the capability of the aircraft to perform any
manewvering Sequired in  total mission accanplishment at the pilot's
command. The aircraft characteristics should be such that these maneuvers can
be performed precisely and simply with minimm pilot effort (1.4).

1.5 AIRCRAFT CONTROL SYSTEMS

The aircraft flight contxrol system consists of all the mechanical,

electrical, and hydraulic eleaments which convert cockpit control inputs
into aerodynamic contral surface deflections, or action of other control
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devices which in turn change the orientation of the vehicle. The flight
coatrol system together with the pcwerplant control system enables the pilot
to "fly" his aircraft, that is, to place it at any desired flight condition
within its capability.

The powerplant control system acts as a thrust metering device, while the
£light cantrol system varies the maments about the aircraft center of gravity.
Through these contral systems, the pilot varies the velocity, nommal
acceleration, sideslip, roll rate, and other paraneteis within the aircraft's
envelope., How easily and effectively he accarplishes his task is a measure of
the suitability of his coatrol systems. An aircraft with exceptional
performance characteristics is virtuvally worthless if it is not equipped with
at least an acoceptable flight control system. Since the pilot-control system
acts on an aircraft with specific static and dynamic stability properties, it
follows that the characteristics of the closed-loop system must be
satisfactory.

The control system must meet two conditions if the pilot is to be given
suitable command cver his aircraft.

1. It must be capzble of actuating the contxol surface.

2. It must provide the pilot with a “"feel" that bears a
satisfactory velationship to the aircraft's reaction,

There are amercus aircraft control systers designs. However, these
systems m¥y be rather simply classified. Asrodynamic controls can be broken
down into “reversible” and “irreveisible" systems. These systems can be
sinple mechanical controls in which the pilot supplies all of the force
required to move the control surface. This type system is called “reversible®
simce all of the foroes required to overcors the hinge miuents at the control
surface are transmitted to the cockpit controls. ‘The system may have a
mechanical, hdraulic, or scme othar type of boosting device, whicn supplies
sane specific proportion of the control force. Systems of this nature are
called “boosted contral systems." However, they are still oonsidered
"reversible.® Evern though the force required of the pilot is less than the
control surface hinge moments, the force required is proportional to these
wcments, In other words, the pilot fumishes a fracticn of the force required
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to overcame the hinge maments tiwcughout the aircraft's envelope. The control
system is said to be "irreversible" if the nilot actuates a hydraulic or
electronic device which in turn moves the control surface. In this system,
the aerodynamic hinge moments at the control surface are no longer transmitted
to the ocontrol wheel or stick. ‘ Withovt artificial feel devices, the pilot
would feel only the force required to actuate the valves or sensing devices of
his powered control system. Because of this, artificial feel is added which
appraximates the feel that the pilot senses with the "reversible" systen.

A thorough knowledge of the aircraft control system is necessary before a
flying quality evaluation can be planned and executed. The flying qualities
test team must be intimately familiar with the control system of the test
aircraft. 1Is the system reversible or irreversible; what type of control
surfaces does it have; is a stability augmentation system incorpcrated, if
so, how does it work; is an autopilot included, if so how does it work; are
there interconnects between control surfaces (e.g., rudder deflection limited
with landing g2ar up or ailerons limited when the aircraft axceeds a certain
airspeed); and what malfunctions effect flying qualities? Total understanding
of the test aircraft is necessary in order to get the most information cut of
& limited flight test progrcam (1.1).

Aircraft control systews will be checked against several paragraphs of
MII~F-8785C here at the USAF Test Pilot School during student evaluaticn of
data group aircraft.

1.6 3SUMMARY

An aircraft's flying qualities evaluation incorporates all aspects of the
aircraft's stability and control characteristics, control system design, and
pilot-in-the-loop handling qualities. The interaction of all these elements
determines the ability of a pilot/aircraft/flight control combinaticn to
safely and successfully accamplish a missian,
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1.7 USAF TEST PIIOT SCHOOL CURRICULUM APPROACH

1. PReview the mechanical tools, vectors, matrices, and differential
equations required for flying quality analysis.

2. Develop the aircraft equations of motion.

3. Examine static longitudinal and lateral-directional aircraft charac-
teristics and steady state maneuvers.

4, Analyze the aircraft longitudinal and lateral-directional dynamics N
\1 mcedes of motion,

5. Study specialized flying quality topics such as stall/post-
stall/spin and departure, engine-out, and qualitative and
operational aircraft evaluations.

6. Discuss advanced flying quality topics. These include the using
systems identification techniques for closed loop handling qualities
evaluations and extracting stability derivatives from flight test
data. Discuss effects of higher order control systems on aircraft
flying qualities.
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CHAPTER 2
VECTCRS AND MATRICES
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2.1 INTRODUCTION

This chapter studies the algebra and calculus of vectors and matrices, as
specifically applied to the USAF Test Pilot School curriculum. The course is
a prerequisite for courses in Bquations of Motion, Dynamics, Linear Control
Systems, Flight Control Systems, and Inertial Naviéation Systems. The course
deals only with applied mathematics; therefore, the theoretical scope of the
subject is limited. | ’ '

The text begins with the definition of determinants as a prerequisite to
the remainder of the text. Vector analysis follows with rigid body kinematics
introduced as an application. The last section deals with matrices.

2.2 DETERMINANTS

A determinant is a function which associates a number (real, imaginary,
or vector) with every square array (n colums and n rows) of numbers, The
determinant is denoted by vertical bars on either side of the array of
nmbers. Thus, if A is an (n x n) array of nunbers where i designates rows
and j designates columns, the determinant of A is written

all alz - - * aln
41 22 * ¢+ * 3y
IAl = Iaijl = . . + o s @

L] . * * » .

anl anz...am

2.2.1 First Minors and Cofactors

When the elements of the 1P row and J™ colum are removed from a
(n x n) square array, the determinant of the remaining (n=1) x (n-1) square
arrayiscanedaﬂrstminoroanndisdmotedbyuij. It is also called
themixmofaﬁ. The signed minor, with the sign detemined by the sum of
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the row and column, is called the cofactor of aij and is denoted by

N
Aij {-1) Mij
| Example:
a1 412 313
£ |al = Jag4l =[ay ) 33
a31 232 433
then,
_ 422 323 - P %13
Mil i a M32 a a
3432 33}, 21 23
Also, 2, = 0wy = e My e Ay, = (13 My, = (1) My

2.2.2 Determinant Expansion
The determinant is equal to the sum of the products of the elements of
any singie row or colum and their respective cofactars; i.e.,

,th
[A] = ailAil + aiZAiz + .. 4 ainAin =§1 aiinj' for any single i~ row.
or
a, A .+ l\z-b...+.341\\,l )ﬁal\.,foranysinglejth
1571 T %250 njh T & 5
column,

2.2.2.1 Fxpanding a 2 x 2 Detemminant. Expanding a 2 x 2 determinant about

the first row is the easiest, The sign of the cofactor of an element can be
determined quickly by chserving that the sums of the subscripts alternate from
even to odd when advancing across rows or down columms, meaning the signs

¥
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alternate also., For exanple,

a a
if IAl = 11 12
)] 822

the signs of the associated cofactors alternate as shown,

-+~ -

- +

By deleting the row and column of 4170 we find its cofactor is just the
element a

22 {actually (+1) x a22] for a 2 x 2 array, and likewise the cofactor

for a;, is (-a21) [or (1) x a21]. The sum of these two products gives us the
expansion or value of the determinant,

Al = a, Mi¥ap by =2 a,,+a, (Fay) = ayy a5, - ay, ay

This simple example has been shown for clarity. Actual calculation of a

2 x 2 determinant is easy if we just remember it as the subtraction of the
cross multiplication of the elements. For example,

(+) (=)
8 3

IR] = ' X‘ = (8)(5)~(3) (6) = 22
6 5

2.2,2.2 Expanding a 3 x 3 Determinant.

Al = Iaijl * |3 82 373
431 32 333
2.3
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Expanding |A| about the first row gives
Al = ay Ay + AR, +oaa, s

a2 33 a1 a3 a1 22|

3y (+1) +a,, (-1) +a, 5 (+1)

=y) 433 831 433 . a3 432

i

311 (By; 333 = 855 33)) — 3y, (ay) a33 — 855 83)) + a5 (35 835 = 3y, 3))

Expanding and grouping like signs,
411 32 333 ¥ 35 353831 t 3133 33

"8y3 955 837 T 813 833 333 7 813 31 333

Close inspection of the last equation shows a _quicker method for 3 x 3
determinants using diagonal multiplication. If the first two colums are

appended to the determinant, six sets of diagonals are used to find the six ;
terms above. The signs are determined by the direction of the diagonal as
shown in the illustration.
(+ (+)
an
A = 621>
a, s
(=)t (
For example,
(+ )2 (+)
Al « 3\,—‘—'
"
(=) (=)
= {2)(5) (3 + (=1) (4) (1) + (6) (3)(=2) = (6)(S) (1) = (2)(4)(-2) = (-1)(3)(3)
« 30+ {~4) + (-36) - 30~ (~16) ~ (~9) = -40 + 25 = =15 &
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The quicker methods of calculating determinants are useful for the two
simple cases here. The row expansion method will be more useful for
calcvlating vector cross products. The use of determinants for solving sets
of linear equations will be discussed later in this chapter in the matrix
section. Determinants will also be used in solving sets of linear
differential equations in Chapter 3, Differential Equations.

While the general tool for evaluating determinants by hand calculation is
simple, for determinants of greater size the calculaticns are lengthy. A
5 x 5 determivant would contain 120 terms of 5 factors each. Evelusting
larger determinants is an ideal task for the camputer, and standard programs
are available for this task.

2.3 VECTOR AND SCALAR DEFINITIONS

In general, a vector can be defined as ar ordered set of "n" quantities
such as <dys 8y 3y ...y @2 In TPS, vector analysis will be limited to
two-and three-dimensicnal space. Twus, xi + yJ and xI + yJ + zk are
representations of vectors in each space, while xI, yJ, and zk are referred
to as cumponents of the vectar.

Physically, a vector is an entity such as force, wvelocity, or
acceleration, which possesses both magnitude and direction. This is the usual
approach in applied physics and engineering, and the results can be directly
applisad to courses here at the School,

Almost any physical discussion will involve, in addition to vectors,
entities such as volume, mass, and work, which possess conly magnitude and are
knoin as gscalars. To distinguish vectors fram scalars, a vector quantity will
be indicatad by putting a line above the synbol; thus F, v, and a will be used
to represent force, velocity, and acceleratian, respectively.

The magnitude of vector F is indicated by enclosing the symbol for the
vector between absolute value bars, |F|. Graphically, a scalar quantity can
be adequately represented by a mark on a fixed scale. 1o repregent a vector
quantity requires a directed line segnent whose direction ig the same as the
direction of the vector and whose measured length is equal to the magnitude of

the vector.
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The direction of a vector is determined by a single argle in. two
dimensions and two angles in three dimensions, angles whose cosines are called
direction cosines. This text will not deal directly with direction cosines,
so no exanmple is necessary,

2.3.1 Vector Equality

Two vectors whose magnitude and direction are equal are said to be equal.
If two vectors have the same length but the opposite d:lrection, either is the
negative of the other. This is true even when graphically'two vectors are not
physically drawn fram the same starting point.

A vector that may be drawn from any starting point is called a free
vector. However, when applied in a problem, the position of a vector may be
important., For instance, in Figure 2.1, the distance of the line of
application of a force from the center of gravity of a rigid body is critical
if calailating moments, although the actual point of application along the
line isn't critical,

M, = |Fld
M, = Fd

LINE OF ACTION

FIGURE 2.1. MOMENT CALCULATION'

For other applications, the point of action as well as the line of action
must be fixed. Such a vector is usually referred to as bound. The velocity
of the satellite in the orbital mechanics problem shown in Figure 2.2 is an
example of a pound vector.

v
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FIGURE 2.2. EXAMPLE OF A BOUND VECTOR

2.3.2 Vector Addition

Graphically, the sum of two vectors A and B is defined by the familiar
parallelogram law; i.e., if A and B are drawn fram the same point or origin,
and if the parallelogram having & and B as adjacent sides is constructed, then
, the sum & + B can be defined as the vector represented by the diagonal of
T‘ * ’ this parallelogram which passes through the camnon origin of A and B, Vectors
¥ can also be added by drawing them "nose-to-tail.” See Figure 2.3.

OR

»|
+
wi

FIGURE 2.3. ADDITION OF VECIORS




Graphically from Figure 2.3, it is evident that vector addition is
commtative and associative, respectively,

3+D = B+A and A+ (B+0C) = (A+B) +C

2.3.3 Vector Subtraction
Vector subtraction is defined as the difference of two vectors A and B,

——

A~B = &+ (-B),
where
(-1 (B) = (-B)
and is defined as a vector with the same magnitude but opposite direction.

See Figure 2.4. This introduces the necessity for vector-scalar multipli~
cation.

FIGURE 2.4. VECTOR SUBTRACTION

2.3.4 Vector-inalar Multiplication

The produit of a wector and a scalar foliows algebraic rules. The
product of a scalar m and a vector R is the vector mA, whse length is the
product of the shsolute value of m and magnitude of A, ard whose direction is
the same as the direction of A, if & is positive, and opposite . to it. ifm is
negative, N
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2.32.5 Unit and Zero Vectors

Regardless of its direction, a vector whose length is one (unity) is

called a unit wector.

If 3 is a vector with magnitude other than zero, then

unit vector & is defined as 3/|3|, where i is a unit vector having the same
direction ag a and magnitude of one.
vector are also the cosines of the angles necessary to define the direction.
Unit vectors in the body axis coordinate system will retain the bar symbol;
i.e., I, Tand k.

The zero vector has zerc magnitude and in this text has any direction.
It is notationally coxrect to designate the zero vector with a bar, 0.

2.4 LAWS OF VECTCR - SCALAR ALGEBRA

It happens that the camonents of a unit

If X, B, and € are vectors and m and n are scalars, then

Conmutative Multiplication
Associative Multiplication
Distributive
Distributive

“oga laws involve multlplication of a wvector by one or more scalars,
Products of vectors will be defined latar, _

Yese laws, along with the wector addition laws alyeady introduced,
enable vector <quations to be treated the same way as ordinary scalar

e b

ifA+B =

»i
]
o
'
wi

1. mA = Bm
& 2. W) =
L+
3. m+n A
4. m(R+B)
algebraic equations. ¥For exarple,
then by algeixa
A
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2.4,1 Vectors in Cdordinate Systems
The right-handed rectangular coordinate system is used vnless otherwise

stated. Such a system derives its name from the fact that a right threaded
screw rotated through 90° in the direction from the positive x-axis to the
positive y-axis will advance in the positive z direction, as shown in Figure
2.5, @oractically, curl the fingers of the right hand in a direction from the
positive x-axis to the positive y-axis, and the thumb will point in the

positive z-axis direction.

FIGURE 2.5. RIGHT-HANDED COORDINATE SYS'[EM

An inportant set of unit vectors are those having the directions of the
positive x, y, and z axes of a three-dimensiconal rectangular coordinate system
and are denoted 1, ;j-, and E, respectively, as shown in Figure 2.5.

Any vector in three dimensions can be represented with initial point at
the origin of a rectangular coordinate system as shown in Fiqure 2.6. The
perpendicular projection of the vector on the axes gives the vector's
cawonents on the axes, Multiplying the scalar magnitude of the projection by
the approjriate unit vector in the direction of the axis gives a camponent
vector of the original vector. Note that suming the cawponent vectors
graphically gives the original vector as a resultant.

”
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FIGURE 2.6. COMPONENTS OF A VECTOR

In Figure 2.6 the component vectors are Al-i', A23, and A3'}€. The sur or
resultant of the camponents gives a new notation for a vector in terms of its
canpenents.

X=AII+A3§+A3§

After noticing that the coordinates of the end-point of a vector A whose tail
is at the origin are equal to the components of the vector itsgelf (Al 2 X,
A.‘. =y, andA3 = z), the vector may be moure easily written as

-

A= oxi o+ y3 + 2k

The vector fram the origin to a point {n a coordinate system is called a
position vector, so the vector notation above is aiso the pesition vectar for
the point P. The same definitions for notation, cawponents, and position hold
for a two~dimensional system with the third component aliminated.

The mymitude is easily caliulated as,

I »
A =y "12“%2”‘32 or A =\/xz vyt e 22




An arbitrary vector fram initial point P(x;. ¥y, zl) and terminal point

Q(xz, Yor zz) such as shown in Figure 2.7 can be represented in terms of unit
vectors, also.

z P(x1, y1y 21)

-

_ PQ

/)’Q(xz, ya, 22 )

FIGURE 2.7. ARBITRARY VECTCOR REPRESENTATION
First write the position vectors for the two points P and Q.
£ o= xityj+ ZIE
Iy = I yJ ek

Then using addition,

Q = T, =% = gy -x)1+ty, - yl)a' + (z, = 20k

2.12
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2.,4.2 Dot Product

In addition to the product of a scalar and a vector, twoc other types of
products are defined in wvector analysis. The first of these is the dot, or
scalar product, denoted by a dot between the two vectors. The dot product is
an operation between two wectors, and results in a scalar (thus the name
scalar product). - Analytically, it is calculated by adding the products of
like camponents. This is, if

A = ali+a2j+a3k
B = bli+b2j+b3k

A'B = a; by +a, b, + a;b,
which is a real nuber or scalar,
Geametrically, it is equal to the product of the magnitudes of two
vectors and the cosine of the angle between them (the angle is measured in the

plane formed by the two vectors, if they had the same origin). The dot
product is written

oo

A8 = |A] |B} cos ®
Example
(21 = 13 + 4K (=1 + 37 + 5k} = {2 (=1) + (=1 (3) + ()} (5) = 15
The magnitudes are

Yi+1+16 = 4.6

Yi+os+25 = 5.9

Therefore, solving for
Cos 0 = 15/ (4.6) (5.9) = 15/27.1 = 0.553

0 = 56.1°

2.13
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Some interesting applications of the dot product are the gecmetric
implications. For instance, the geometric, scalar projection of cne vector on

another is shown on Figure 2.8.

0 P |

k
e
¥

- B

[Klcos e

FIGURE 2.8. GEOMETRIC PROJECTION OF VECTORS

Using trigoncmetry, the projection of A on B is seen to be equal to |A| cos o.
A quick method to calculate such a projection without knowing the angle is to
calculate the dot product and divide by the magnitude of the vector projected
on to, That is, the projection of A on to B is equal to & - B/|B| = |Alcos o.

Several particular dot products are worth mentioning., If one of the
vectors is a unit vector, the dot product becams

e

1.8 » {1 Bloos® = (1) |8 s 0 = |B] cos o,

which is the projection of B on 1 or more importantly the component of B in
the direction of 1. Also note the dot product of a vector with itself is just
equal to the magnitude squared, since the angle is zero and cos 6 = 1, More
useful is the sitvation where two non-zero vectors are perpendicular
(orthogenal) . The dot product is zero because the cosine of 90 degrees is
zero. Thus, for non-zero vectors the dot produwt may be a test of
orthogonality. Buanples of these properties using standard unit vectors are

I‘;s-jitga-,:' = ]

e

Wt




2.4.3 Dot Prcduct Laws
If A, B, and C are vectors and m is scalar, then

1. A+*B =B & Cammutative Product
2. A+ (B+C) = A-B+A-C Pistributive Product
3. m@-B)=(m)+: B = A - (mB) Associative Product

2.4.4 Cross Product

The third type of product involving vector operations is the cross, or
vector product, denoted by placing an "X" between two vectors. By definition
the cross product is an operation between two vectors which results in another
vector (thus, vector product). 2Again both analytic and geametric definitions
are given.

Analytically, the cross product is calculated for three-dimensional
vectors {(without using memory) by a top row expansion of a determinant.

1 J X
AXB = a1 a2 a3
b, b, by
a a a a -
I b 1T eenl) B¢ |2 2 3
b, by by by by b,

= (@, by ~ a, bz)I + lay by - a b3)3'+ (a, b, = a, b))k

For example,
I +47+5R x 3T +T+6k) =
i J k
2 4 5
3 1 6

= [(49)(6)-(5) (1)) - ((2)(6)=(3) (5})F + ((2) (1)~(3) (4) )k
=191 + 33 - 10K
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The gecmetrical definition has to be approached carefully because it must
be remembered that the geametrical definition is not a vector. The magnitude
{a scalar) of the cross product is ejual to the product of the two magnitudes
and the sine of the angle between the two vectors. Thus

AxB| = |A |8 sino

wWhile the magnitude is determined as above, the direction of the resultant
cross product vector is always orthogonal to the plane of the crossed vectors.
The sense is such that when the fingers of the right hand are curled fram the
first wvector to the second, through the smaller of the angles between the
vectars, the thumb points in the direction of the cross product as shown in
Figure 2.9. Note the importance in the order of writing A X B since
AXB=BXA That AXB=-BXAis easily seen using the right-hand rule.

1 T=-AxB

T

FIGURE 2.9. GEQMETRIC DEFINITION OF THE CROSS PRODUCT

The cross product vector U can be represented as

-

U = AXB = [A| |B| sino u

where U is a unit vector in the direction of U, which is perpendicular to the
plane oontaining A and 8.

Sane: practical applications of the abowve definitions using the sine of
zero and 90° are shown for unit vectors of a rectangular coardinate system.

2.16
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and its direction becames tangential to the trajectory. The As/At portion
gives the magnitude of the derivative which should be noted as the speed of
the particle or a change of distance per time. In sumary, the first
derivative of a vector function is tangential to the trajectory and has a
magnitude that is the speed of the particle.

Using differentiation law four to take the derivative of the wvector
written in the form of magnitude times a unit vector, .

T(t) = r(t)T, as follows,
df(t) _ dlx® ® _ dri) » af
& - 3t - rrrt) g

note that the linear velocity using this form of a vector has two camponents,
the first is the rate of change of the scalar function with direction the same
as the original vector itself. The second camponent is the scalar function
itself with the rate of change of the unit vector as its direction. We know
ithat the unit vector doesn't change magnitude, but it may change direction
giving a non-zero derivative. In the development of the derivative earlier,
this was overlooked since the rate of change of the 1, J, and k vectors that
are fixed in a coordinate system do not change direction or magnitude.

2.6 REFERENCE SYSTEMS

Linear velocity and acceleration have meaning only if expressed (or
implied) in reference to another point and only if relative to a particular
frame of reference. In this text for discussions of single reference systems,
the linear velocity and acceleration will always be relative to the origin of
the reference frame in which the problem is given and will be denoted by
single letters, V and a. If there are two reference systems in the problem,
the notation will be changed to read

VasB

which means the velocity of point or reference A relative to reference B. To
take a time derivative of a vector relative to reference system “A,* the
notation will be

2.20
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2.5 LINEAR VELOCITY AND ACCELERATION

The time derivative of a position vector relative to same reference
system is the linear velocity. Note in particular that the velocity of a
‘particle ig a vector that has a direction and a magnitude. The magnitude of
the velocity is referred to as speed. The second derivative is the linear
acceleration.

Graphically, the derivative of a vector is illustrated as shown in Figure
2.10.

8 [~ 4s

PATH OF PARTICLE, P
p

FIGURE 2.10. ILLUSTRATION QF THE DERIVATIVE QGF A POSITION VECTOR

The difference between position vectors r(t + at) and rit) is the
mumerator of the definition of the derivative. 'The arc length of the
trajectory for some At is 4s. If we neglect the division by At and are
concernad only with direction of the derivative, the difference of the two
vectors ig just Ar which would have the direction as shown in Figure 2.10.
The derivative for a vector rit) can be expanded by multiplying by the
quantity 4s/As = 1, as follows,

dr lm ar _ lim Ar a8 _ lm ar s
dt " ate Tt at+) A&t 3s At+0 B8 BE

but as at+0, |4F| = s, therefore lim Af/is = St, since its magnitude ic one
At+0

2.19
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and its direction becames tangential to the trajectory. The 4s/At portion
gives the magnitude of the derivative which should be noted as the speed of
the particle or a change of distance per time. In summary, the first
derivative of a wvector function is tangential to the trajectory and has a
magnitude that is the speed of the particle.
Using differentiation law four to take the derivative of the vector
written in the form of magnitude times a unit vector,
F(t) = r(t)?, as follows, '

dr(t) _ dr(t) T _ dr®) & af
&® - " s ¢ Ta Trri g

note that the linear velccity using this fomm of a vector has two camponents,
the first is the rate of change of the scalar function with direction the same
as the original vector itself, The second camonent is the scalar function

tself with the rate of change of the unit vector as its direction. We know
rthat the unit vector doesn't change magnitude, but it may change direction
giving a non-zero derivative. In the developrent of the derivative earlier,
this was overlooked since the rate of change of the I, J, and k vectors that
are fixed in a coordinate system do not change direction or magnitude.

2.6 REFERENCE SYSTEMS

Linear velocity and acceleration have meaning only if expressed (or
implied) in reference to another point and only if relstive to a particular
frame of reference., In this text for discussions of single reference systems,
the linear velocity and acceleration will always be relative to the origin of
the reference frame in which the problem is given and will be denoted by
single letters, V and 3. If there are two reference systems in the problem,
the notation will be changed to read

<}

A/B

which means tlie velocity of point or reference A relative to reference B. To
take a time derivative of a vector relative to reference system “A," the
notation will be

2.20
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iX1 = 3%X3 = kxk = 0 (note the zero vector has any direction)
ixj = k and 7xk = 1 and kXTI = j and
FX1 =-k and kX3 =-1 and i Xk =-§

These cross products are used often, and an easy'way to remember them is to
use the aid

L)
N

where the cross product in the positive direction fram 1 to j gives a positive
k, and to reverse the direction gives a negative answer.

2_.4.5 Cross Product Laws

Ifi, g,amlEarevectorsandmisascalar,tlm

- e

l. AXB = -BXA Anti-Camutative Product
2. AX@B+C) =AXB+AXC Distributive Product
3. mAXE = (mh XB 22X (B) Associative Product

2.4.6 Vector Differentiation

The following treatment of wector differentiation has notatioa consistent
witit later courses and has been highly specialized for the USAF Test Pilot
School curriculum, The scalar definition of the time derivative of a scalar
finction of the variable t is defined as,

dft) _ lm [ £(t +at) - £{t) )
dt At+0 At

2.17
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Before proceeding, a vector functiou is defined as

F(t) = fx(t)i + fy(t‘)j + fz(t)k,

where £, £, and f, are scalar functions of time and 1, 3, and K are unit
vectors parallel to the x, y, and z axes, respectively. A wvector function is
a vector that changes magnitule and dirvection as a function of time and is
referred to as & position vector. It gives the pésition of a particle in
space at time t. The trace of the end points of the position vector gives the
trajectory of the particle. The time derivative of a vector function with
respect to some reference frame is defined as,

dF(t) _ lim [F(t+at) -Flt) ]
"""'dt A0 At
df(t) _ df(t) _ df (t) A af
F it I Teegie
SRS KRS AT :

where the lack of a function variable indicates the function has the same
variavle as the differentiation wariable, and the dot denotes tine
differentiation.

2.4.7 Vector Differentiation Laws
For vector functions A(t) and B(t), and scalar function €(t)

+ g% Distributive Derjvative

d(a + B!
2. ﬂf‘—g—ﬂ X g% + %‘% -B Do. Product Derivative
{A X 5)
a

1.

3. %’% + g% XB Cross Product Derivative
4 L0 B o= £ d“ +3E8F  scalar, veotor Product
Derivative
”
b
2.18
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There should be less confusion in mltiple reference system problems con-
cerning which reference frame the derivative is taker by using this notation.
By introducing the concept of multiple reference systems, it is
appropriate to discuss the chain rule. For two reference systems, the chain
mle is simply stated. For point A in reference system B, which in turn is in
arother reference system C, the velocity of A relative to C is equal to

v = ¥

A/C as v Y

Wwhile calculating derivatives when given the time function of the
trajectory is seemingly simple, at times the derivativaes may be difficult.
Also, if the function is not known, the measurements available to detsymine
the trajectory imay be in tems of translational or rotational parameters which
don't always lend themselves directly to a time functicn. Anothsr metiod of
determining velocities and acceleraticns will be determined uslg puke
translation and rotation. Simplification will consist of very spocific
problems with comvenient alignment of reference systemis at specific instances
in time, So it will appear that the time element has dissppemed in the
following analysis since the vectors will be constants at the instant we
cbserve them,

2.7 DIFFERENTIATICN OF A VECTOR IN A RIGID WY

The two basic motions, translatiom and zotation, will be applied w a
rigid body shich is assumed not to bend or iwist (every point in the body
remaing an equidistance from all othersji. It will became inportant to
datermine not oidy the velocity and acceléeration of a point in a rigid body,
but also that of & vector which lies in a rigid body.

2.7.1 Translation

If a body moves so that all the particles hawe the same velocity
relative tO some reference at any instant of time, the body is said

2.21
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to be in pure translation. A vector in pure translation changss neither its
magnitude nor direction while translating, so its {irst derivative would be
zero. An example would be a vector from the center of gravity to the wingtip
of an airplane in straight and level, unaccelerated flight with respect to a
reference system attached to the earth's surface. From the ground it changes
neither magnitwde nor direction, although every point on the aircraft is
traveling at the same welocity. See Figure 2.11.

/'di

PIGURE 2,11, TRANSLATION AND ROTATION QF VECTORS IN RIGID BODIES

2.7.2 Roration

If a bady moves so that the particles along sowe line in the body have a
s2ro velociiy relative to sore reference, the body is said to be in pare
rotation relative to this referenta. The line of staticrary particles shown
in Figure 2.11 ie called the axis of rotation. A free vector that dascribes
the rotation iz called the angular velocity, o, and has direction determired
by the axis of rotation, using the right-harnd rule to determine the sense.
The chain rule as descriked for linear wvelocity applies to the angular
velocity, as does a definition of its magnitude being anqular speed. The
first derivative of the angular velocity is the angular acveleration.

It can be proven that the linear velocity V of any point in a rigid body

described by position vectar ¥ whose ~:yin is along the axis of rotation can
be writtan
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¥ =V = WXF (2.2)

Note the conventions using the right-hand rule apply, and V is perpendicular
to the plane of ¥ and .

The pure rotation of one reference system with respect to another would
require a transformation of unit wvectors from one system to another, unless
the reference systems were conveniently aligned at the instant in question.
Such transformations are considered beyond the scope .of this course.

Equation 2.2 can be generalized to include any vector in a rigid body
with pure rotation. Refer to Figure 2.12.

FIGURE 2.12. DIFFERENTIATION OF A FIXED VECTCR

let P be a wvector fixed anywhere in the rotating rigid bcdy shown in
Figure 2.12, The prohbler is o find the time rate of change of the vector.
Two position vectors, i"l and 'r'z, from the origin to the end points of the
vector p are drawn. From wvector addition

T +p = r,
or solving

P = 5n™h
Differentiating

P = %




From Equation 2.2,
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SO
P = erz-mX 1°

Since the cross product is distributive, this equation becames
P = TX @, ~F) = TXP. (2.3)

Therefore, the derivative of any fixed vector in a purely rotating rigid body
is represented by the cross product of the angular velocity of the rotating
body and the fixed vector.

2.7.3 Cowbination of Translation and Rotation in One Refererce System

It is possible to combine the two types of velocity. An important point
to notice here is that the velocities and accelerations ars arrived at
directly without the use of position vectors.

RIGID BODY

REFERENCE
D

FIGURE 2.13. RIGID BODY IN TRANSLATION AND ROTATION
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The velocity of point a in reference system D, Figure 2.13, will be
calculated. The rigid body has a pure angular velocity, w, and a pure
translation, v, in reference frame D. The requested velocity is just the sum,

V=V

rotation * Vtranslation
vrotation is equal to w X p. Vtranslation is given as v, so

V= uXp+v.

When working in one reference system, the acceleration may be calculated
by taking the derivative of the velocity.

€1
>
ol
+
el
=
ol
+
<i-

- A&V _ d(a X p) & _
Rl Bl ad -

Here, the p is equal to » X p as was shown in Bquation 2.3 and v is the
translational acceleration 3., The angular acceleration ¥ will not receive any
special notation in this text.

8o, the acceleration in a single reference system can be written

A = uX(@WXpP) +aXp+a.

2.7.4 Vector Derivatives in Different Reference Systems

The more general problem of relative motion between a point and a
reference system that is itself roving relative to another reference system
will be approached. More than one reference system is often used in order to
simplify the analysis of general problems, As a first step, it is necessary
to examine the proceaure of differentiation with respect to time in the
presance of two references moving relative to each other.

A raferer e system is a non-deformable system and may be considered a
rigid body. So, the work done so far applies here. Figure 2.14 gives the
vectors used in the following analysis.
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FIGURE 2.14, MOTION WITH TWO REFERENCE SYSTEMS

The prablem above shows point p with position vector i:'p /B moving with
respect to the reference B, and the origin of B with position wvector Iy Jct
moving with respect to reference system C. The reference system B alsc has an
anqular velocity with respect to C of BB /c+ The goal of the following
development will be to find the time rate of change of the position vector in
the B frome as seen fram the C frame or notationally

Ca

—&t *p/B

It is very important to realize that this is not the same as the velocity of
the point as seen from the C frame., Rather it is the rate of change of a
position vector in one frame as seen fram ancther frame. So the derivative
sought is not x'zp e+ This velocity would be obtained by using the chain rule
as given in Bquation 2.1.

A representative exanple is the motion of a point on an aircraft with a
body axis system at the center of gravity and the aircraft moving along some
path relative to the ground. The second reference system is attached to the
ground. It will be assumed in this analysis that the two reference systems
have the same unit vectors. Careful attention will be given to circumstances
resulting fram axes that may not be conveniently aligned during the analysis.
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Beginning with the position vector in the frame B,

Differentiating this vector with respect to time relative to the C reference
frame presents a prablem since the unit vectors of the B system are rotating as
seen in the C system,

S0, the derivative must be done in two parts usz:.ng the fourth law given
earlier,

But the unit vector's derivatives can be written as vector in a single
reference system with derivatives as seen in Bquation 2.3. Thus,

r o, om oxi+y]+zk+xd+y]+ak
= ﬁ+§'j'+'z§+x(ﬁa/cxf) *ylige X ) + 2@, xR
= E+_w}§+é}?+&8/cx (xi) +;B/Cx (yf) +EB/CX (z}:)
= H+§§+2E+ZB/CX(£+y§+zE)
The first three terms are recognized as the velocity of p in the B system and

the next term is the cross produwct of the angular wlocity of the B system
with respect to the C system and the position vector in the B system.

C
d - 3 - - - - -
“F'pe = YpBtUscXTpm = Vot Xy 24
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This equation may be generalized to any vector in one reference system

relative to another, This is a very important relationship and will be used

in Chapter 4, in the derivation of the aircraft equations of motion.

The acceleration of a particle at point p would be handled using the
definition of acceleration.

C

- _ d - ,
Aore = “atVprc (2.3)
Note Equation 2.5 does not address Cs -
—atvp/B

Hopefully, the velocity would be written in a simple form allowing simple
differentiation to obtain the acceleration., If not, a simple exchange of
notation with Equation 2.4 would be necessary.

COMMENT The material presented thus far is sufficient to enable solution of
any linear or angular velocity or acceleration in a kinematics
problem. However, another analysis follows which may clarify
multi-reference prablems and will provide definition of same terms
that will be of value in later courses.

2.7.4.1 Transport Velocity. In this analysis of motion relative to two
reference systems, a different approach is taken to the problem. Figure 2.14

is expanded as shown in Figure 2.15 to include the positioh vector directly
fran reference C to the point p.

2.28
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FIGURE 2.15. TWO REFERENCE SYSTEM VECTOKS

Thus

Yoic = Tpm * Taic,
and '

_ . C c Cy

v = T = S5 d &

p/C p/C atfp/c © “dtFpsB 'at B/C
where the first term is Equation 2.4 and the second is "J-B /e Substituting
these terms,

Vp/c = rp/c = VP/B + /0 X rp/B + VB/C (2.6)
or

Yore = Vo8 * Vpre
where

Vore = Byc X Tpm * Vasc

This term is called the transport velocity. The interpretation of
transport velocity defined in this equaticn is such that V /B is still the
velocity ofprelativetoBandvpmisthevelocityinc that p would have,
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if p were fixed in B. Note this is Jjust the sum of the translation and
rotation of frame B relative to frame C if the point p is considered fixed.
2.7.4.2 Special Acceleration. By taking the derivative of the velocity, as
in Equation 2.5, and applying the distributive law to the cross product,

Cd_ Cd" Cd- Cd" Cd"

A = “a&pic = “Etp/s T Tats/c X Tps tUs/c X &@Tpm t dt'B/C
Now, substituting with the notation for acceleration where possible,

C . C
Bore = ~atlpss ¥ Ussc X Tp t Us/c X —afp/B * Pric

The two remaining terms with derivative notation should be recognized as
applications of Equation 2.4. So, substituting

Aore = Vosm ¥ vpsc ¥ Vpm) * /e ¥ Tpm t s X Vpsm ¥ s X Tpm! T Apsc

Expanding and noting
Ve/B = “p/m
Bojc = Aorm + Ysc X Vors * dasc X Tp/p t Unsc X Vprs t vpsc X (e X Tl t

s sc

Rearranging and combining the two like terms

Ap/c = Ap/B + AB/C + Up /e X rp/B + sz/C X vp/B + wg/c X ("’B/C X rp/B) (2.7)
Of the five terms remaining in the acceleration equation, the last two
have descriptive names,

258 e X Vp /p 18 called the Coriolis acceleration, and

“B/c X (‘“B/C X rp/B) is called the Centripetal acceleration.

The temms in Bquation 2.7 that ave independent of the motion of p
relative to frame B are called the transport acceleration. These temms

2.30
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provide the acceleration in frame C of a point that is fixed at p at the
instant in question. Notationally, the transport acceleration is

Anc = Ppjc * ¥gic ¥ Tp * Upc ¥ (e X Tppp)

These concepts are difficult to realize until a few problems are
attempted.
2.7.4.3 Exanple Two Reference System Problem. The angular velocity of the

I&,| = 10 RAD/SEC
|3,| = 5 RAD/SEC

W =W =0

a, REFERENCE B
>y

REFERENCEC

FIGURE 2.16. TWO REFERENCE SYSTEM PROBLEM

arm ap relative to the disk in Figure 2,16 is 10 rad/sec, shown vectorally in
the diagram as wyr while the angular velocity of the disk relative to the
oroamd is 5 rad/sec, shown vectorally as wy. The angular accelerations are
zero. Reference I} is attached to the platform, while frame C is fixed to the
ground, three feet below the disk. At the instant in question, the arm ap is
in the vertical position, and thie reference axes directians coincide, although

displaced.

2.31




Find the velocity and acceleration of point p relative to the fixed
reference frame C,
Using Equation 2.6

Vp/C = p/C = Vp/B+mB/er_p/B+V

M e

Vg /c = '6, since the B frame is only rotating relative

we know the last term,
to C.

Upje = Wy = Sk rad/sec and rp/B = 3k feet, by cbservation

This leaves V

/B which involves angular velocity 51 = -102, relative to B.

Vp/B = ml)(rp/B = {=10i X 3k) = (-30)(~-3) = 30j ft/sec

Substituting all the parts into Equation 2.6

‘-’p/c = 303 +SkX3k+0 = 305 +15(k X kI = 30i ft/sec

For the acceleration, the general expression is Bquation 2.7

-

Morc = Aorm * PBprc * Usc X Tpm * 2epyc X Vpsp * dnc X lugsc X Tpyp)

The only unknown terms are ;;B/C = 0 and %/B' The latter is a centripetal
acceleration due to the rotation of the arm. The centripetal acceleration may
be arrived at in several different ways,

B - > - - :

Mo = dtVpm = Fel XTpp) = @y Xrypte Xrgp
= 04w X (o) XEp) = (-10D) X (303)

= -300k ft/secz
Substituting this value and the others already calculated

Ayjc = =300k + 0+ 0 X 3k + 2(sk X 30§) + 5k X (5k X 3k) = =300i - 300k
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While working problems where there is a choice of axes, be careful to
choose so that as many parameters as possible are equal to zero, and most
importantly so that the axes are aligned at the instant in question. Also,
whether a reference system is fixed in a body or not will have profound
effects cn the velocities as seen fram that origin. Try to place yourself at
the origin of a system and visualize the velocity and acceleration seen to
help avoid confusion. Also check your answers to see if they are logical,
both in magnitude and direction. The right-hand rule is essential.

When working with large systems, with many variables it becames necessary
to develop a shorthand method of writing systems of equations. The
development of matrix algebra is the solution.

2.8 MATRICES

An m x n matrix is a rectangular array of quantities arranged in m rows
and n colums. When there is no possibility of confusion, matrices are often
representad by single capital letters. More camonly, however, they are
represented by displaying the quantities between hrackets; thus,

(311 8y ¢ ¢+ ]

m

A = [A] = Hai.

- %um (aij‘]m‘“ 31 3¢ - ¢ 8y

. .

R
Note that ‘aij refers to the element in the ith row and jth colum of (A].

Thus, is the element in the second row and third column. Matrices having
a3

)

-l

¢ « + o
*. & o &
¢« ® 9 =

- only ane column (or one row) are called column (or row) vectors. The matrix

{X] below is a column vector, and the matrix (Y] is a row vector,
"% ]

Xl = | % ] = ly; ¥+« .yl
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A matrix, unlike the determinant, is not assigned any "value"; it is
simply an array of quantities, Matrices may be considered as single algebraic
entities and cavbined (added, subtracted, multiplied) in a manner similar to
the cambination of ordinary nunbers., It is necessary, howevei, to observe
specialized algebraic rules for cambining matrices. These rules are samewhat
more camplicated than for "ordinary" algebra. 'The effort required to learn
the rules of matrix algebra is well justified, however, by the simplification
and organization which matrices hring to problems in linear algebra.

2,8.1 Matrix Bquality

Two matrices [A] = [aij] and [B] = [bij} are equal if and only if they
are identical; i.e., if and only if they contain the sare number of rows and
the same number of columns, and a;; = bi' for all values of i and j. Thus,

J !
the statement
4 22 3| ¢ 4 3
a5 a5, .« 853 1 0 19

2.8.2 Matrix Addition

Two matrices having the same number Of rowe and the same nuwber of
colums are defined as being coiformable for addition and may be added by
adding corresponding elements; i.e.,
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fay, a5, .o [By1 by ee+ 1 Tamtbun datbp ]
a5 etc. | + b21 etc.| = ay; + bz'1 etc.
L N L : d L .
Thus
2 -1 2 0 4 -1
3 21 + 1 4 = 4 6
0 -5 -3 5 -3 0

2.8.3 Matrix Muitiplication by a Scalar

A scalar is a single nuwer (it may be thought of as 1 x 1 matrix), A
matrix of any shape may be multiplied by a scalar by multiplying each element
of the matrix by the scalar. That is:

- - -
ay a0 kan ""12 . 4 e
kfaA] = k aj = kan
For example,
2 -1 6 -3
3 =
l_3 0 9 0

2.8.4 Matrix Multiplication

Matrix multiplication can be defined for any two matrices when the number
of columns of the first is aqual to the number of rows of the second matrix.
This can be stated mathematically as:
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o K K oA

(B]

X J

(a] = [c]

ixj

where

Multiplication is not defined for other matrices.
Bguation 2.8 demonstrates the product of two, 2 x 2 matrices,

(A) {8} = (0]
&2 22 2
511 P by by 11 12
3 a9, b, b,y 1 2
or using the definition of multiplication, &
a5y a1t by 811 Byp a4y, by ayy by, +oapy by
- (2.8)
3y | |Py Py 850 by * ay, by Ay by +oa,, by,
1 This situation is sufficiently general to point the way to an orderly

multiplicaticn process for matrices of any order.
In the indicated product,

(A)

it
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and the right-hand factor as a bundle of column vectors,
[

by b,y
{(B] =
Pl [Pz
Then,
ad '1 r 1 r -
[ay4 a4l b4 by 4 11 C12
X . o= (209)
lay) ap,] byy by, ) °22J
and by comparison with Bquation 2.8
fa;; 25l rbn] (a7, a3l [Pg5]
| faj; 3l |Pyp Ppp| |21 ] [ Bypj | (2:20)
- 3 b
la; apl by by fay; 3yl [byy | [ay ay,l[ by,
| P21 b22
L ~ -

where, by definition,

P~ -

(a); &l byl = Fu bj; + %2b#]
| P21

-

- -

[a;7 ] fby,| = [?11 b, -+ ay, bbg]

LbzzJ

etc.

A camparison of Bquations 2.9 and 2,10 shows that if the rows of [A] and

. the colums of ([B] are treated as wvectors, then Cij in the product

@ {C] = [A] [B] is the dot produwt of the ith row of [A] and the jth column of
[(B]. This rule holds for matrices of any size, i.e.,
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cij = [ail aiz ses ain] bij

b

o

Matrix multiplication is therefore a "row-on-coluwm" process:

[ail blj +a;, bj2 +ooea +ag, bnj]

s
Y ¢

jth coiumn ijth element
7 T
1}
I
ith row| X = F=--- g -
/ ————— -
|1
il
|
{
r * o 'T
} B3 20 |1l 2 [2
! i}
-1 0]
: 3 2 1 2 -1 4 [1] 1 4 [2
; \l -1 41 |=1 0 = -1 oJ
. {
: 0 : i
;4{ o 2 [1] o 2 [2
\. 1‘ ,_-'1 LOA
(1 6
= -5 -2
-2 0
e

The indicated product [A] [B] can be carried out only if [A] and [B] are
conformable; that is, for conformability in multiplication, the number of
colums in [A] must equal the number of rows in [B].

expression

2.38
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a5y ay, big bys
a 892 b,y )
b3y bsy

is meaningless (as an attempt to carry cut the multiplication will show)
because the number of colums in [A] is two and the number of rows in [B] is
three., A convznient rule is this: if [A] is an m x n matrix (m rows, n
colurms) and [B] is an n X p matrix, then [C] = (Al [B] is an m x p matrix.
That is,

[A) (B] = [C]

mn U nxp Xp

Matrix algebra differs significantly from "ordinary" algebra in that
multiplication is not commutative. In general, that is,

[al (B] = (8] (]

For example, if

p -
2 1
(a] =
0 2
L -
Pl —3‘1
(B] =
2 0]
then
F4 "'6 '
(a] (B] =
4 0
r -
2 =5
(B] (A] =
4 2]

iﬁ- ki S .

lr'?‘{i‘}f’

ST

L g

St

b,

P

Ry N
T

-~

F2ty
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Because multiplication is non-cammtative, care must be taken in describing
the product

[Cl = [a] [B]

to say that [a] "prenultiplies" [B], or, equivaleni:ly, that [B] "post-
multiplies" [a].

2.8.5 The Identity Matrix

The identity (or unit) matrix [I] occupies the same position in matrix
algebra that the number one does in ordinary algebra. That is, for any matrix
(a],

(1] (a] = ([a] (1] = (&)
The identity [I] is a square matrix consisting of ones on the

principal (*“%—-—a.) diagonal and zeros everywhere else; i.e.,

1 0 0...0]
0 1 0...0

L]
o
(=]
=
L]

L]
L3
o

(1]

Os o »
o
o
-
.
.
-

The order (the number of rows and colums) of au identity matrix depends
entirely on the requirement of conformability with adjacent matrices. For

example, if

2,40
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(al

(1] A =

a] (11 = 1

3]
1-
O-
0 =
1]

Thus, the "left" identity for [A] is 2 x 2 and the "right" identity for

)

2.8.6 The Transposed Matrix

(A] is 3 x 3; however, they both leave [A] unaltered,

The transpose of (A], labeled (A) T, s formed by interchanging the rows

and colums of (A]. That is,

* » o o

e o o o

[a), ay

32 222

L] . . .

The jth row vector bacames the jth column vector,

example,

2.41
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1]
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2.8.7 The Inverse Matrix
Matrix multiplication has been defined; it is natural to inquire next if
there is some way to divide matrices, There is not, properly speaking, a
division operation in matrix algebra; however, an equivalent result is
cbtained through the use of the inverse matrix. : )3
In ordinary algebra, every number & (except zero) has a mltiplicative |
inverse, a 1 defined as follows: A quantity a~ 1 is the inverse of a if

a « a°" = a*+ a =1

In the same way, the matrix u\]"1 is called the inverse matrix of [A) if

i
| a mt o= mta - om

The symbol 1/a is normally used to signify a"]‘. Since ordinary
multiplication is commutative,

- —

[ (a) » ) = ) - (/4 ~ 5 ¢ a

3 for any mumber b. The use of the division symbol (+) in this instance is
) useful and unarbiguous. In matrix algebra, however, multiplication is not
camutative. Therefore,
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a e = 3 @t

and the expression

(B8] + ([A]

camot be used since it may have either of the (unequal) meanings in the
previous equation. Instead of saying "divide [B] by [A]," onhe must say either
"oiemiltiply (B] by (A]™™" or "postmiltiply (B] by (A]™l." The results, in
general, are different,

2.8.8 Singular Matrices
Matrices which camnot be imverted are called singular, For inversion to
be possible, a matrix must possess a determinant not equal to zero., Tor

. example, the matrix

£/~

2 1
3 0
4 5

is singular because it is not square, and a determinan® cannot be camputed.

The matrix
2 1
4 2

| is singular because ita determinant vanishes,
C Matrices which do possexs an inverse are called nonsingular,

R i AT
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2,9 SOLUTION OF LINEAR SYSTEMS

Consider the set of equations

1% f At X =Y
G ¥t an% t

+ a, X =y
Znn 2; (2.11)

.

* L . L 4 * .
.
.

N
That is,

]

Al X} (¥l

Asguming tnat the inverse of {A] has been computed, both sides of this
equation may be premultiplied by [A) -1 giving

-1

Wl o o= !y

Fram the definition of the inverse matrix,

1w o=
fram which, £inally,
o o= 7w

. ™as, ths system of Equation 2'.11my!:esolvedﬁarx1, Xyr o o« K by
computing 4x inverse of {A].

2.9.1 Computing the Inverse
There is a straightforvard four step method for carputing the inverse of
a given matrix (Al: '

Step 1. Compute the determinant of [A]. This determinant is written as
{Al. If the detarminant is zerc or does not exist, the matrix
(A} is defined as singular and an inverse cannct be found.
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Step 2. Transpose matrix [A]l. The resulting matrix is written [A]T.

Step 3. Replace each element aij of the transposed matrix by its co-
factor Aij’ This resulting matrix is defined as the adjoint of
matrix [A] and is written: Adj [A].

Step 4. Divide the adjoint matrix by the scalar value of the determi-
nant of [A] which was ccmputed in Step 1. The resulting matrix
is the inverse and is written: [A]™ .°

This procedure can be summarized as follows: To calculate the inverse of
{A] calculate the Adjoint of (Al and divide by the determinant of [A] or

1 -1 A A
mt - M

Example: Find [A]™Y, if

L)
~
]
ot

[Al] = 3(«5 «2) =2(~1 + 0) + 0{2 ~ 0)
[A] = «21+24+0 = 19

fhe determinart has the value -19; therefire an inverse can be computed.

Step 2. Transpose [A]

¥ wte |2 s




I

Step 3: Replace each element aj of [A]T by its cofactor Aij to deter- i
mine the adjoint matrix. Note that signs alternate fram a posi- ‘

tive A, !

- -
5 2 2 2 2 5
1 -1 0 -1 0 1

-7 2 2
1 0 3 0 3 1

aj (] = - - = |1 =3 =3
1 -1 0 -1 0 1

2 -6 13
1 0 3 0 31
5 2 2 2 2 5

Step 4: Divide by the scalar value of the determinant of [A] which was

camputed as ~-19 in Step 1. g
=7 2 2
LA R 0
2 -6 13
2.9.2 Prodwct Check
Fram the definition of the inverse matrix
Wt w o=
'misfactmaybeusedtodedcacmtedimrs&mthecasejust
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1 2 =2 3 2 0
A lm =L |1 -3 -3 1 5 1
19
2 -6 13 0 2 -1
-19 0 0
4 o L .
0 0 -19
1 0 o]
at A = 0 1 0
0o 0 1]

A"t w o=

Since the product does come out to be the identity matrix, the
camputation was correct.,

2.9.3 Exaple Linear System Solution
Given the following set of simultanecus equations, solve for Xy0 Xy and

KB.
W v -2 my

-x1+x2 +Qx3 = yz (2.12)
R T MR &

This set of equations can be written as

Al xX] = (¥)

x o= 7w

Thus, the system of Bguations 2.12 can be solved for the values of x
xz.wxsbyompum\gﬁ\ehmrseaf (al.

il

2.47
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] x] = (V]

3 2 -2 Xy 7y
-1 1 4 Xy =1y,

2 -3 4 Xq Yy

Step 1: Coampute the determinant of [A]. Expending about the first row

Al = 3 (4 +12) =2 (-4 ~8) -2 (3 - 2)
IA] = 48+ 24-2 = 70

Step 2: Trangpose [A]

i
™y
&
r-9

L

cofactor
BE 2 -3 2 1]
PR 2 4 2 4
| -2 3 2 3 -]
M) [A] =]~ : -
PR 2 4 2 4
-1 2 3 2 3 -1
|1 -3 2 -3 2 1
16 -2 10
My Al ~ |12 16 -10
1 13 5




Step 4: Divide by the scalar value of the determinant of [A] which was
computed as 70 in Step 1.

16 -2 10
-1 _ 1 _
B = = |12 16 =10
1 13 5
Product Check
m™m o=
) )
16 -2 10 3 2 =2
-1 1 '
A7 m = o (12 16 ~10 -1 1 4
| 1 13 5 2 -3 4
( 70 0 0
. a1t @) = %5 0 70 0 (2.13)
L 0 0 70 |
r -1 = i 1
(Al [a] = 1 0 0
0 1 0
L 0 0 1 j

Since the product in Bquation 2.13 is the identity matrix, the
" computation is correct. The values of : 2y xz, and X, can now be found for any

Y0 Yor and ¥y by premultiplying (Y] by [A}

x = (A"t

o | Xy 16 -2 10 Y1
Q Xy 70 12 16 10 Y,
: o Lx3 1 13 5 Y4

| 2.45




For example, if y; = 1, yo

13, andy3 = 8

i %) 16 -2 10 1
= 1 _
51 = 75 12 16 10 13
* Xq L1 13 5 8
d X, = 35 (16-26+80 = 20 =1
X, = 35 (12+208-80) = 730 =2
X, = 35 (1+169 +40) = 20 =3
J 45
Y Solution of sets of simultaneons emuations using matrix algebra i
technicues has wide appl’. + 7 in a variety of engineering problems.
1
i
: »
5
|
2,50 ! _
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2.2 Find a unit vector in the direction of

2.3 Are the following two vectors equal?

.

A A +3-%

|

B 41 + 63 - 2k

‘ 2.4 The following forces measured in pounds act on a body

e
fl

he F 21 + 37 - sk

oo 1|
u

=51 + 3 + 3k

125 + 4k

w3
fl

&l

4f - 35 - %

Find the resultant force vector and the magnitude of the resultant force
vector,

2.5 If » 3 -3 -4k

Of ot >

.

i

w2
+
-
[ & =
t

&




_..:iAk

2.6 The sosition vectors of points P and Q are given by

F]o= 21+37-%
£, = 41 - 33 +2

Determine the vector from P to Q (PQ) and find its magnitude.

2.7 PFind A * B using A and B from Problem 2.5.

21 +33 -k
41 + 65 - %k

2.8 CGiven

Bl >
1t

a. FindA *B
b. Find the angle between A and B.

2.9 Evaluate
FEI-35+%k =
213) GLi+k =
2,10 If A = 31-7-4
B = -21+43-3%
Find A X B-

2.11 Determine the value of "a" so that A and B below are perpendicular.

A= Zi+aj+k
B = 41 -2 - 0%

2,12 Determine a unit vector perpendicular tc the plare of A and B below.

A= 2-6)-3k
B = 41+35-%
2.13 If
A= 2-37-%
B =1+43-2
Find
AXB
FxAa
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|
r

\T

{
and
(A + B) X (& - B) (the quick way using vector

algebra).
2.14 Evaluate

a. 23 % (3@1 - 4k
b. (G+2) xk

2.15 The aircraft shown below is flying around the flagpole in a steady state
turn at a true velocity of 600 ft/sec. The turn radius is 6,000 ft.
What is turn rate u expressed in unit vectors (I, J, k) of the XYz system
shown?

. g=45°

REAR
VIEW

2.16 For the same aircraft and conditiors as Problem 2.15, what is turn rate
expressed in unit vectors {, 3-, k) of the Xyz system shown?

2.17 Given
r = 31 - 6t + 6k

Find'x"withremcttothea:ds systanxyzvhichlns'f, 'j.,'lzas its unit
vectors. Is T a velocity?

Y
e
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2.18 If the xyz system in Problem 2.17 is rotata.ng at 31 + 23 -k rad/sec with
respect to another system XYZ, find T with respect to X¥i. 1Is T the
velocity of the point whose radius vector is ¥ with respect to XYZ? what
system is the answer of this problem referred to?

2.19 A flywheel starts from rest and accelerates counterclockwise at a
constant 3 rad/secz. " After six seconds the point P on the rim of the
wheel has reached the position shown in the sketéh. What is the velocity
of point P with respect to the fixed XYZ system shown?

SFT "f”’,f"P

OUT OF
PAPER

2,20 If o= 3t -t]
B = -6ti + tk

Find d (A+B)/Gt relative to the system having 1, j, and k as its unit
vectors. Is the answer a wvector?

2.54
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2,21 A small body of mass m slides on a rod which is a chord of a circular
wheel as shown below. The wheel rotates about its center with a
clockwise wvelocity 4 rad/sec and a clockwise angular acceleration of 5
rad/sec?, The body m has a constant velocity on the rod of 6 ft/sec to
the right. Relative to the fivxed axis system XY shown below, find the
absolute velocity and acceleration of m when at the position shown.
Hint: Let xy system rotate with the disk as shown.

4k
5k

EpE|
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2.22 A small boy holding an ice cream cone in his left hand is standing on the
- edge of a carousel. The carousel is rotating at 1 rad/sec counterclock-

wise. As the boy starts walking toward the center of the wheel, what is
the velocity and acceleration wector of the ice cream cone relative to
the ground XY? _ | ‘
Hint: Iet xy be attached to the edge of the carousel.

Boy's velocity = 2 ft/sec toward center
Boy's acceleration = 1 ft:/sec2 toward center
Carousel's acceleration = 1 rad/sec?® counterclockwise.

2.23 Solve the following equations forxl, Xy, axﬂx3byuseoftmumme
matrix,

n+x =2
2+ 2 = 1
-xl+x2+2x3 = 3
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2.24 For a ~ i let

| 2 1] (4 3 2
(a] = (B] =
l : 3 2 ] _-l 1 0
[2 1] [ 4 ]
[cl = 3 [D] = ,
W L -J L J
le [ Y,
X} = {Y}] = Y,
| %2 | 3
Copute
% a. (] -
i b. [A] (8]
e.  (la] (B]) (¥]
d. [A) ((B] (%))
e. [a] [C]
£ (€] (A)
9. W
4 h. X7 (Al X))
. ;T
2 -1 1 |
;{ 225 1 W = o 1 21, Find (a)?
1 0 1 ;
2.26 Find x, y, and 2
“4X - 3y - 32 = )
X+2 = ]
@ &X+d4y+32 = ]
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2.27 Read the question and circle the correct answer, True (T) or False (F):

T

2 123 13 43

3 v 3 3 3

F

M M m

"

Moo 4y g vm

A vector is a quantity whose direction and sense are fixed, but
whose magnitude is unspecified.

A scalar is a quantity with magnitude only.
The magnitude of a unit vector is one.
Zero vectars have any direction necessary.

A free vector can be moved along its -line of action, but not
parallel to itself,

Free vectors may be rotated without change.

A 3 x 2 matrix can pre~mltiply a 2 x 4 matrix and the result
will be & 3 x 4 matrix.

A 3 x 2 matrix can post-nultiply a 2 x 4 matrix and the result
will be a 3 x 4 matrix.

Maltiplying a matrix by a scalar is the same as multiplying its
determinant by the same scalar,

Identity matrices are always square,
1 0 0
0 1 0 =
0 0 1
Both matrices in the preceding question are identity matrices.
Singular matrices can be inverted.
The determinant of a non-singular matrix is zero.
Inverting a matrix is a straightforward process.
A Bl 3 &
AN
By B, B
The determinant of any smatrix can be calculated.

The value of a determinant depends upon which row or colum it
was expanded about,

Velocity is the time rate of change of a velocity vector.

2.58
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Acceleration is the time rate of change of a velocity vector.

F  Acceleration has to be expressed in (referred to) unit vectors
of an inertisl reference system.
T F  Bodies moving with pure translation only do not rotate.
T F  Reference systems are considered to be non-deformable rigid
bodies,
T F [A] [B] = (B] [A], if the two matrices are conformable for
multiplication on the left hand side of the equation.
T F |V = |-V
T F |8 = |y
T F The magnitude of A/|A| is equal to B/|B]
T P 2(3R = 8A
T F 1,3, and k are orthogonal.
? F |pQ| is the distance between points P and Q.
T F A*B = B¢+AR
T F If A B is zero and neither A nor B are zero, then A and B
mist be parallel,
T F .1 «1
T F AXB = BXA
T F AXD = A B +A B+ A By
2,28 Define:
Detarminant
Vector
Scalar
Free vector
Bound vector
Velocity wector of a particle
Unit vector
Zaro vector
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Parallel wectors
Position vector
Matrix

Square Matrix

Column Vector

Fow Vector

~f Matrix Equality
Matrix Conformability
Matrix non-cammtativity
Identity Matrix
Transposed Matrix

Singular Matrix

4

1

T 2.29 Find the W's velocity and acceleration vectors:
y

. g §p2

2,30 Find a unit vector parallel to
A ow 2A-3j+6k

2.31 what is the magnitude of the following vector?
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2.32 Is the axis shown a "right- " axis system?

2.33 Given the follawing position vector, find the acceleration at time t = 0.

T = 6631 ~ 3t + 6eX

o 2.34 Add the following wectors

ot

= 3%
= 4k
= 1/2§

O W ¥

2,35 Find A + B and the angle it makes with the x axis.

y
—

2.61
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2.36 What is the angle between the two vectcrs given below?

A= 2 -7k
B = 5i+2j-6k

2.37
2
it |af = 7,
Bl = 8,
and both vectors
He inthey -z
) y plane, find
AxEB
x
2.38 Given
R o= 61~2+k
B e iek
Find
Ax8

2.39 The anpular velncity of a rotating rigid body about an axis of rotatiaon
is given by © = 41 + 27 + k. Find the lincar velocity of the Point P on

tliebodyﬂmeponiﬁmvectﬁrrelaﬁvewapom:mtheaxisot'

mwuona.si-23+2\.

2.62
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2.40 The T-38 shown is in a right continuous roll at 2 rad/sec while traveling
at 480 ft/sec. Find the velucity of the wingtip light with respect to
the axis shown.

X ~ %;D ___j_;fzé"r
5 ﬁ ;J a

XY AXIS IS INERTIAL
(l.e. FIXED)

2.41 The particle, P, ie following a path described by : x = 6t2, y=t+1,

z = t3. Find the velonit: and acceleration of P, with respect to the

axis shown.

P w
8

242 IfA=31-3+ 2% and B=-i + 3§ -k, find

a. |&] £. AXB

b, |[B] g. Unit vector, 8, parallel to A

c. A+B h. &2

@ |+ B i. 8.8

e. A°'B

2;6-‘,’




2.43 'the shaft is rotating counterclockwise around the cone in the X2 plane at
5 rad/sec and accelerating at 3 rad/sec®. The wheel is rotating as shown
at 200 rad/sec and decelerating at 50 rad/secz. Find the velocity of
point P with respect to reference system C at the instant shown. Hint:
Let x be fixed in the shaft, and xz ard X2 planes remain coplanar.

Y y
Cp= -
C 2= - i
. _ i X,z
/ P A /
1.8F7
‘ RADIUS
4 z
7 B/ ik
2.44 If [A] = 1 -2 3 and (B] = 1 -1
P 1 0 0 3
2 I
Find: (A) [B] and (B] {A}
2,4513f (A] = 2 - and {B] = 1
0 1 3

Find [A] {B] and {B] (A}
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2.46 3 6 -1 3T
+ =
0 2 2 0_
2.47 1 3] 1 o]
+(3) =
L-l 2 ] L 2 1‘
2.48°  If [ x 1 4 y-z
2 y+z | 2 5
Find X, y, and z,
2.49 If 2 -4
= k
-a 2a
m k'
2.50 Conpute the imverse of
2 -1
-3 2
2,51 Compute the inverse of
3 2 1
1 5 4
6 4 2
2.52 Canpute the inverse of
2 4 )
-1 0 2
)| 1 1
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' 2.53 For what value of y is this matrix singular?
1 3 Y
2 0 -1
1 1 -y

2.54 Find the determinant of

[6 0 o o o0 o]
'-T 8 x 0 0 0 0
12 10 3 0 o0 0
1 -1 6 x! 0o o0
0 0 2 3 1 0
(0 0 0o 0o 0 4

SV

2.55 If [A] = 2 4 1
-1 0 2
101 1
Find [a]%
2.56 If

X+2y+3z2 = a,
4::4-5y~0»62-=a2
7x+8y+92~33

Find x.y.m\dzﬁ:ranyvamaofal, az,andaa.
Find x,y,axxdz,\annalul,azuz,mzda3-3.

2 g T

5 E
R SR T

2.56

(Iock for the easy way;
great bar game
question.)
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2.57 The mechanism shown below vibrates about its equilibrium position, E. At
the instant shown block A has a velocity of 5 ft/sec to the right and is
decelerating at 4 ft/sec? to the left. The bob B in its counterclockwise
motion maintains a constant angular velocity |®| of 5 rad/sec. Calculate
the velocity and acceleration of the bob relative to the given XY system
at the instant shown. Hint: ILet the xy axis be fixed to the block A.

M
!
|

NN

\\\é\\\\
A\ L
‘}‘b
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2,58 Capt. Marvel, US Army, is performing a loop with an angular velocity |G|
of 1 rad/sec in his Buey Cobra to roll in on a target. At the top of the
loop, the leading rotor blade is just parallel with the helicopter's
centerline. The rotation of the rotor || is 3 rad/sec counterclockwise
as viewed from the top of the helicopter. At this instant, what is the
velocity of the leading rotor blade tip? If Capt. Marvel were to raise
the collective and accelerate the rotor speed by 3 rad/sec?, this would
accelerate an angular velocity of his loop by 1 x"ad/secz. wWhat would the
acceleration of the leading rotor blade tip be? Hint: ILet the xyz
system be attached to the helicopter rotar path plane as shown.

radius of loop = 1,000 ft
radius of rotor path plane = 10 ft

LEADING

ROTOR TI_P-\

Hint: let the Y2 and yz planes remain coplanar.
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2.1 Yes, magnitude of V = 1

2.2 2i + 3§ -k

2.3 No, B = 2%
2.4 F, = 2-7
Fpl = V5
2.5 111 -8k VY93 ; V398

2.6 PQ = 21 - 67+ 3k
g PQ] = V&9 -

2.7 A.B = 2

28 X B = 28; ¢ = 0

2.9 -3; undefined { -3 = 0
2,10 XXB = 191 + 177 + 10K
2.11a = 3

2128 = H-F+&

213AX8 = 104437+ 1K) FxX = -20T - 37 - 115
K+B) X (K-8 = 201 -~ 65 - 22k

(,. 2.14 81 - gk; +20-3
;

2155 = 4
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2,16 @ = .07 - .07k
2,177 = 3tq - 63
218 @, = (3t2-6t+1271
Xyz 3 —_
-{t” + 24)3
-2t3 + 18t)k
in X¥Z system

2.19 nyz = -108j ft/sec

AR+ B) _ _o,.2
2.20 =520 54t

221 Vp 0 = 181+ 63; Ry = 391 - 88,53

2.22Vp)0 = 101 -3 Ko = =109 - 71

€

2.23 X, = -1/4; X, = ~1/4; Xy = 9/4

2.25 5 =3 1
2 1 4
3 - 2

2,26 x = «10; y = 2; 2z =« 1}
2,29V = 16ti; a = 167
2,308 = ;I‘--;Ekg\?

231 JA| = 2

2338 = 12k
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2U4R+B+C = 3T+ 4k + 1/2§
2352 +B = 81 +33; ¢ = 20°
2.36 ¢ = 27.6°

237AXB = -281

2383 XB = -2i-5]+2%
239V, = 61- 7 - 10k

240V = 4801 + 25k

2017 = 1267+ J+3t%; a = 19 + 6%

P 2.42a- Y4 £ =51+ 73+ 8k
- b Vi1 g (V191 - (1/V13)7 + (2/V1a)k
¢ 2A+23+k h ¢id
da 3 i -e/vV1a
e -8
2.43 Vp/c = 3003 + 7.5 - 15k
XP/C « «7050 ~ 75 - 60046.5k
2.44 7 -4 -1 -3 3
{A] [B] =

2 1 (Bl (A} =} 6 3 0




2.47 4 3

2.48x = 4; y = 3; z = 2
2.49k = =172

2.50
[l * =
32

.51 No Inwversa

2.52 2 -3 8
@Al = ..1’. 3 1 -5
1 2 4
? 253y = 1/4 b
2.54 72 ;
2.55 1 9 1
@ «{o0 -2 1

' 2 5 4

2.56 No Solution

2.57 V0 = 13.661 + 55 Ry, = -291 + 43.33

’ 2.58 V). = ~301 - 10003 - 10k; Ko = ~30{ - 9007 - 1010k
2.72







3.1 INTRODUCTION

This chapter reviews the mathematical tools and techniques required to
solve differential equations. Study of these operations is a prerequisite for
courses in aircraft flying qualities and linear ' control systems taught at the
USAF Test Pilot School. Only analysis and solution techniques which have
direct application for work at the School will be covgred.

Many systems of interest can be represented (mathematically modeled) by
linear differential equations. For exarple, the pitching motion of an
aircraft in flight displays motion similar to a mass-spring-damper system as
shown in Fiqure 3.1.

SPRING D || bAmPER
D_AgPEﬂ Cux z "

BARALILELRERVATIER L ARAR AR R 1R L RNN R AR LR RNNY

FIGURE 3.1. AIRCRAFT PITCHING MOTION

The static stability of the aireratt is similar to the spring, the mament of
inertia about the y-axis is similar to the mass, and the airflow \aecodynamic
forces) serves to damp the ailrcraft motion. Guptex ! shows that stability
derivatives can be ussd to represent the static stability and damping
tems, ‘nasedetiwtimamcmaaﬁcmq. In this chapter, M, R, and D wiil

D will be used to represent xmass, spring, and daper terms respectively.
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3.2

The following terms will be used extensively:

Differential Bguation: An equation relating two or more variables in
terms of derivatives.

Independent Variables: Variables that are not dependent on other
variables. .

De nt Variables: Variables that are dependent on other variables,
B et ia] ation the o oD e S oo,
the left-hand side of the equation that have their derivatives taken with
respect to another variable. The other variable, usually time in our

study, is the independent variable.

Solution. Any function without derivatives that satisfies a differential
equation.

Ordinary Differential Bquation. A differential equation with only one
independent variable.

Partial Differential Bguation. A differential equation with more than
one independent variable.

Order. An nt"h derivative is a derivative of order n. A differential
equation hag the order of its highast derivative,

ﬁ%e. The exponent of a differential temm. fThe degree of a
terential equation is the exponent of its highest order derivative,

Linear Differential tion. A differential equation in which the
W\M’E‘"ﬁf‘it‘s derivatives are only first degree, and the
coefficients are either constants or functions of the independent
variable,

Linear System. Any physical system that can be described which satisfies
a EI!Er'gti al equation of order n which contains n arbitrary constants.

General Solution. Any function without derivatives which satisfies a
equaticnh of order n which contains n arbitrary constants,

BASIC DIFFERENTIAL EQUATICN SCLUTION

Unfortunately, there is no gemeral method to solve all types of

differential equations. The solving of a Adifferential eguation involves
finding a mathmuatical expression without derivatives which satisfies the

3.2

&%)

L7

S




eyttt

differential equation. It is usually much easier to determine whether or not
a candidate solution to a differential equation is a solution than to
determine a likely candidate. For example, given the linear first order
differential equation '

%-x = 4§ | (3.1)

and a possible candidate solution

2

y = 3%+ a+c (3.2)

it is easy *o differentiate Bjquaticn 3.2 and substitute into Bpuation 3.1 to
see if Equation 3.2 is a solution of Equation 3.1. The derivative of Hjpation
3.21is

K o i
ax x+ 4 (3.3)

Substituting BEquation 3.3 into Bquation 3.1,

(X +4) «x =2 & . (3.43)

Therefors, Bpation 3.2 is a soluticn of Bgquation 3.1.

It is interesting that, in gemeral, solutions to linear differential
equaticns are not linear fuctions. Note that Bguation 3.2 is not an equation
of the form '

y = m+b (3.5)

which represents a straight line. As shown in Bpuation 3.2, y is a function
of x and x°. '

3.3




There are several methods in use to solve differential equations. The
methods to be discussed in this chapcter are:

1. Direct Integration
2. Separation of Variables
3. Exact Differential Integration
4, Integrating Factor
5. Special Procedures, to include Operator Techniques and Laplace
t[!ransfo;‘ms.

3.2.1 Direct Integration

Since a differential equation contains derivatives, it is sometimes
possible to obtain a solution by anti-differentiation or integration. This
process removes the derivatives and provides arbitrary constants in the
solution, For example, given

&y =

a3 X 4 (3.1)
rewriting

dy - xdx = 4dx (3.6)
integrating

J dy - dex = j4dx +C
xZ

¥ -3 = 4 +C (2.7)

or, solving for y
2
y = F-+a&x+cC (3.8)

where C is an arbitrary constant of integration.

Unfortunately, application of the direct integration process fails to
work in many cases.

3.4
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3.2.2 Separation of Variables

If direct integration fails for a first order differential equation, then
the next step is two try to separate the variables. Direct integration may
then be possible. When a differential equation can be put in the form

£ ) &x+ €, ty)dy = 0 (3.9)
where one term contains function of x and & only, and the other functions of

y and dy only, the variables are said to be separated. A solution of Eguation
3.9 can then be ubtained by direct integration

ffl (x) dx + [fz (y) & = C (3.10)

where C is an arbitrary constant. Note, that for a differential equation of
the first order there is one arbitrary constant, In general, the nurber of
arbitrary constants is equal to the oxder of the differential equation.

EXAMPLE

(y+6)dy = (x%+ 3x +4) &
ftyw;dy wf(xznxu)dxm
3.2

2 3
X A .
ety = Fermec

Not all first order emations can be seporated in this fashion.

3.2.3 Exact Differential Intecration
If direct intagration, or direct integration after separation is not
possible, then it still may be rpossible to obtain a solution if the

3'5
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differential equation is an exact differential., Associated with each suitably
differentiable function of two variables f (x,y), there is an expressicn
called its differential, namely

df = 3}-{&{+de = 0 (3.11)
that can be written as

df = M(x,y) & +N@x,y) dy = 0 (3.12)
and is exact if and only if

M _ oN |

33; = 3 (3.13)

If the differential equation is exact, then for all values of C

X Y
Mx,y) dx + Nx,y) &y = C (3.14)
a b

is a solution of the equation, where a and b are dumy variables of
integration.

EXAMPLE
Show that the equation
(2x + 3y ~2)ax + (3 -4y + L)dy = 0 (3.15)
is exact and find a general solution.
2pplying the test in Bquation 3,13

M 3 (22X + 3y - 2)

o 3y =3
W a(E-dy+l L o,

ax X




p——_ Y.

{3

Since the two partial derivatives are equal, the equation is exact., Its
solution can be found by means of Equation 3.14.

(22 + 3y - 2)&x + (3x =4y + 1)dy = C
a b

The integration is performed assuming y is a constant while integrating the
first term.

X2+ 2y - 2%) 4 (3xy - 29° + ) = C
a b

%% +3xy - 2%) - (@2 +3ay - 2a) + (3xy -~ 2y° +y) - (b -2 +h) = C

)
x“+6xy-2x-2y2+yf3ay+3xb = C+z;-‘2

-a-2'+b = ¢ (3.16)

The same result can be obtained with less algehra and probably less

"chance of error by cawparing Equation 3.15 with the differential form in
Equation 3.11.

of of
RB A =0 (3.11)
(x+3y -2 &+ (3x-dy+1dy = 0 (3.15)

Carparing these two equations,

%5:3,“.33,-230 (3.17)
and
3.7
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Since Equation 3.15 is an exact differential, then Bquations 3.17 and 3.18 can
be obtained by taking partial derivatives of the same function £f. To find t;he
unknown function £, first integrate Bquations 3.17 and 3.18 assuming that y is
constant when integrating with respect to x and that x is constant when
integrating with respect to y.

X% + Xy - x + £(y) +C (3.19)

Hh
i
]

o

fl
[

£ = 3xy-29°+y+Ex +C (3.20)
Note that if Equation 3.17 had been cbtained from BEquation 3.19, any term
that was a function of y oaly, f(y), and any constant tem, C, would have
disappeared. Similarly, obtaining Bquation 3.18 from Bquation 3.20, the f(x)
and C terms would have vanished. By a direct camparison of Equation 3.19 and
3.20 the total function f can be determined.

f o= X Fbxy -2~ +y+C = 0 (3.21)
Note that the unknown f(y) term in Bguation 3.19 is (-—2y2+y) and the unknown

f(x) term in Equation 3.20 is 2x. Redefining the constant of integration,
Equation 3.21 can be written as

rexygex-ley = g (3.16)
and was obtained earlier by integrating using dummy variables of integration.

3.2.4 Integrating Factor

When none of the above procedures or techniques work, it may still be
possible to integrate a differential equation using an integrating factor.
When same wnintegrable differential equation is multiplied by some algebraic
factor which permits it to be integrated term by term, then the algebraic
facter is called an integrating factor. Determining integrating factors for
arkitrary differential equations is beyond the scope of this course; however,
two integrating factors will be introduced in later sections of this chapter
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when developing operator techniques and Laplace transforms, These two factors
will be & and e7St,

3.3 FIRST ORDER EQUATIONS

The solution to a first order linear differential equation can be
obtained by direct integration. Consider the form

%}% = R(x) y = 0] ° : (3.22)

where R(x) is a function of x only or a constant. To solve, separate
variables

gih R(x) & = 0 (3.23)

Integrating
IgX = - IR(x) & + C' (3.24)

where

C' = IncC
Thus

my--jmmu+mc . (3.25)
or

- In(x) &

y = Ce (3.26)
If R(x) is a constant, R, then

y = co® (3.27)

Fram this result, it can be concluded that a first order linear differential
equation in the form of Bquation 3.22 can be solved by simply expressing the
solution in the form oi BEquation 3.27.

EXAMPLE
%+ y = 0 (3.28)

3.9




then the solution can be written directly as

y = Ce-z( . (3.29)
EXAMPLE
%+ x3y = 0 _ (3.30)
is in the form .
§+ R(x)y = 0 (3.22)
which has the solution
p
- | R{x)dx
y = Ce (3026)
Therefore, the solution to Equation 3.30 can be cbtained di:=ctly
{
- x3dx
y = Cea J
1 4 '
y = Ce

3.4 LINEAR DIFFERENTIAL EQUATIONS AND OPERATOR TECHNIQUES

A form of differential epation that is of particular interest

d dn-l Ay .
%%*%—1;5—%*"""‘1%’\_"0" a £(x) {(3.31)

1f the coefficient expression A, Aoyr + + » o+ # are all functions of x
aonly, then BEquation 3.31 is called a linvar diffarential equation. I€ the
coefficient expressions Ay o o o0 Ay axe ali constants, then Equation 3.31
is called a linear differentia| equation with constant coefficients.

oo i o s 1 - -
3 C gl ..
. [ S X 2

3.10




EXAMPLE

is a linear differential equation.
EXAMPLE

2 .
ay = &F
dx2+6%+9y g

is a linear differential equation with constant coefficients, Linear
differential equations with constant coefficients occur frequently in the
analysis of physical systems., Mathematicians and engineers have developed
simple and effective techniques to solve this type of equation by using either
“clagsical" or operational methods, When attempting to solve a linear
differential equation of the form

ax
it is helpful to first examine the equation
%$+%1£—:‘%+...+A1¥+4\0y - 0 (3.33)

Equation 3.33 is the same as Bquation 3.32 with the right-hand side set equal
to zerc., Equation 3,32 is known as the general equation and Bquation 3.33 as
the complementary or hamogeneous equation, Solutions of Bguation 3.33 possess
a useful property knan as superposition, which may be briefly stated as
follows: Suppose y; (x) and Y, {x) are distinct solutions of Bquation 3.33.
Then any linsar oambination of y, (x) .smiy2 (x) is also a solution of
Equaticn 3.33. A linear cambination would be Gy (x) + Gy, (x).

3.11
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EXAMPLE

92
-gx%- 5E +ey = 0
It can be verified that Y, (x) = e3x is a solutién, and that Y, (x}) = er
is another solution which is distinct fram Yy (x). Using superposition, then,
y(x) = c1e3x + czezx is also a solution. '

Bauation 3.32 may be interpreted as representing a physical system where
the left side of the equation describes the natural or designed state of the
system, and where the right side of the equation represents the input or
forcing function.

The following line of reasoning is used to find a solution to Bguation

3.32:
1. A general solution of Imuation 3.32 must contain n arbitrary
constants and must satisfy the equation.
2. The following statements are justified by experience:

‘&, It is reasonably straightforward to find a solution to the
carplementary Bgquation 3,33, omtaining n  arbitrary

constants, Such a solution will be called the transient

solution. Physically, it represents the response prasent
' system regardless off input.

b, There are varied techniques for finding the solution of a
differential egation dve to a forcing function. Such
solutions do not, in general, contain arbitrary constants,
This solution will be called the particular or steady
state solution,

3. If the transient solution which describes the response already
existing in the system is added to the msponse due to the
forcing function, it would appesar that a solution so written
wuld blend the two responses and describe the total
of the system representad by Spation 3.32. In fact, the
deﬁnition of a gqmeral golution is satisfied under such an
arragenent. This is simply an extension of the principle of

tion. The transient solution contains the oorrect

nmber of arhitrary constants, and the particular solution

© guarantees that the corbined soluticiis satisfy the general

Ezuatigmy 3.32. A general solution of Bquation 3.32 is then
given :

3.12
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y = ¥ +Yp . (3.34)
where Y is the transient solution and yp is the particular
solution.

3.4.1 Transient Solution

Equation 3.28 is a camplementary or homogenesus first order linear
differential equation with constant coefficients. A quick and simple method
of solving this equation was found. The solution was always of exponential
form; hopefully, solutions of higher arder equations of the same family take
the same form, '

%Hy = 0 (3.28)

Next, a second order differential equation with constant coefficients
will be examined to determine if the candidate solution

y = &% . (3.35)
is a solution of the equation

ay* +by' +cy = 0 (3.36)
when the prime notation indicates derivatives with respect to x, . That is,

y' = dy/dx, y* = dly/ax?

Substituting

y = &%

an’e™ + tme™ + ™ = ¢ (3.37)
ox

(am? + tm + ¢) €™ = 0. (3.38)




and, using the quadratic formula

2
m - b+ Vb - 4ac

Substituting these values into the assumed candidate solution, it is a
solution when m, and m, are defined by Equation 3.40.

X n
& 2 (3.41)

Yo = Cle + Cze

Equation 3.41 represents a transient solution since there is no forcing
function in Equation 3.36, When working numerical problems, it is not
necessary to take the dariwvutives of ™, This will be true for any order
differential equation with constant coefficients. From the foregoing, it is
seen that the method for first order camplementary equations has been extended
to higher order complementary or hamogeneous equations. Again an integration
problem has been traded for an algebra problem (solving Bquation 3.39 for
m's).
There are four possibilities for m, and m,, and each is discussed below.

3.4.1.1 Case l: Roots Real and Unequal. If my ard m, are real and unequal,
the desired form of solution is just as given by Eguation 3.41.

EXAMPLE
Given the homogenecus equation

2
ay , 4. =
dxzna% 12y 0,

rewriting in operator form where

.- g

3.14
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m2 + dm - 12)y = 0.

Solving for the values of m,

m +4m-12 = 0
gives
-4+ VI6+48 -4+8
n = 5 = 3 = -6,2

and the required transient solution is
-6x 2x

3.4.1.2. Case 2: Roots Real and FEqual. If m and m, are real and equal, an
alternate form of solution is required.

EXAMPLE
Given the homogeneous equation -
wa.dz" -4 %1 + 4 | = ( (3.42)
2 y ’ hd

rewriting in operator form
(m2 - 4m + 4)‘y = 0,
Solving for the values of m,

4+ V16 - 16

m = e

4
3 7 ® 2

orm = 2, But this gives only one value of m, and two values of m are
required to result in a solution of the form of Equation 3.41 which has two
arbitrary constants., The operator expression L

mz-&n+4+0

can also be written

m-22% = o

3. 15
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or
mM=2) m=-2) = 0
now 3 repeated polynamial factor resulting in two (repeated) roots

m = 2,2,

Writing the solution in the form of Bquation 3.41 when the rcots are repeated
does not give a solution because the two arbitrary constants can ke combined
into a single arbitrary constant as shown below.

x & _ x x
Yp = cq® +c2e = (c1 +c2) e c3e

To solve this problem one of the arbitrary constants is multiplied by x. The
solution now contains two arbitrary constants which cannot be cambined, and it
is easily werified that

Yo = clezx + czxezx
is a transient solution of Equation 3.42.

3.4.1.3 Case 3: Roots Purely Imaginary.

EXAMPLE
Given the hamogeneous equation
2
..d_x2_+y = (,
dx

resriting in operator form
w41y = o
Solving,




In most engineering work V=1 is given the symbol j. (In methematical texts
it is denoted by i.). Now,

and the solution is written

= ix =-ix
Ye c,e”” Fce (3.43)
This is a perfectly good solution from a mathematical stardpoint, but Euler's

identity can be used to put the solution in a more useable form.

ejx = CcoS X+ j sinx {2. 44)
This equation can be restated in many ways geametrically and analytically, and
can b2 verified by adding the series exponsion of cos x to the series

expangsion of j sin x. Now Bpuation 3.43 may be expressed

yt‘a ¢ (cosx#jsinx) + o, foos (~x) + 3 sin (=x))

. Y, = (& ¢ cz) co8 X + ) e, - .0 sin x (3.45)

cr without loas of genarality
Yo * c3mx+c4sinx {3.46)
An equivalent exgression to Bguation 3.46 is

| . . ]
2 2 3 CO8 K 4~ 840 % (3.47)

2,2 2. .2
63 +€.‘ '\C3 ‘i-(:‘i

If the abitrary constants cy and ¢, are related as shown in Figure 3.2,
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FIGURE 3.2. DEFINITION COF Cq AND Cy
then
c
3 = sin ¢
2 2
c3 + c4
—— 4 = COSs ¢ *
2 2
C3 + C4
and
2 2

where A and ¢ are also arbitrary constants, Eguation 3.47 beccmes
Yo = A (sin ¢ cos x + cos $ sin x)

or using a camon t¥igonometric identity
Yp = A sin (x + ¢)

Note also that Equation 3.48 could be written in the equivalent form
Yy = Acos (x - 8)

where
8 = 90° -

3.18
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To sumarize, if the roots of the operator poiynomial are purely imaginary,
they will be numerically equal but opposite in sign, and the solution will
have the form of Equation 3.46, 3.48, or 3.49.

EXAMPLE
Given the homogenecus equation

2
Sl—§+4y = 0
dx

rewriting in operator form
(m2 +4)y = 0
which gives the roots
m2 = +2j
Alternate solutions can immediately be written as

Yo ® c3coszc+‘c4sin2x

Yo = Asin (x+4¢)
whare C3s C4s R, and ¢ are arbitrary constants.
3.4.1.4 Case 4: Roots Oamplex Conjugates,
EXAMPLE

Given the hamogeneous equation

2
dy ., d -
dx2+2é+2y 0

rewriting in operator form
(m2+2m+2')y = 0
Solving gives a camplex pair of roots

m = -2+ Y4 -8

3.19




or
m = «1+3, -1-j

The solution can be written
(-1 - jix

= cle(-l + j)x

Y’t + c2e

Factoring out the exponential term gives
Ye = e X l:cleJx + cze-Jx]

or, using the results from Bquations 3.46 and 3.48, alternate solutions can
inmediately be written as

ﬁ Y, = e."x[c3 cos x + ¢, sin x] (3.50)
or

Yy = e X3 sin (x +¢) - (3.51) ‘%7

maglCatan
L ;

3.4.2 Particular Solution
The particular solution to a linear differential equation can be cbtained ;
by the method of undetermined coefficients. This method consists of assuming
a solution of the same general form as the input (forcing function), but with
undetermined constant coefficients. Substitution of this assumed solution
into the differential equation enables the coefficients to be evaluated. The
" nethod of undetermined onefficients applies when the forcing function or input
is a polynamial, or of the fomm

sin ax, cos ax, X

or carbinations of sums and products of thegse terms. The general solution to
the differential equation with constant coefficlents is then given by Equation P
3.34,
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which is the summation of the solution to the camplementary equation
(transient solution), plus the particular solution.

Consider the equation
ald + b T +oy = £ (3.52)

The particular solution which results fram a given input, f(x), can be solved
for using the method of undetermined coefficients. The methol is best
illustrated by considering examples.-

3.4.2.1 Constant Forcing Functions.
EXAMPLE

2
dy ., & -
- 4f+3y =6 (3.53)

The input is a constant (trivial polynamial), so a solution of formy_. = K

. %
is assumed.
Then
dyn 4ax
B)T- = -a,-‘- = (
ard

2

W _dk .,

&t axd
Substituting into Equation 3,53,

0=4(0) +3K = 6

yp=K=2
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Therafcre, Yo = 2 is a particular solution. The hamogeneous equation can be
solved using operator form

2
4y, 4 ¥ = .
dxz+4dx+3y 0 (3.54)

m? + dm+3)y = 0

or
m = "1 ’ -3
and the transient solution can be written as
Yo = <::1e"x + cze_sx (3.55)
The general solution of Fquation 3.53 is
y = cle-x + cze"'3x + 2 (3.56)
. ) g
transient particular’
solution (or steady state)
solution
3.4.2.2 Polvnanial Forcing Function.
EXAMPLE:
dy ., ¢ 2
—-%-+4ax1+3y=x + 2 (3.57)
dx

The form of f(x) for Muation 3.57 is a polynamial of second degree, so a

particular solution for yp of second degree is assumed:

Y, = a2 +Bx +C

3.22
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e 2

2 .
da’y

=
—de 2A

Substituting into Equation 3.57, | '

(22) +4 (Ax +B) +3 (A2 +Bx +C) = x° +2x
or

(3A) x> + (A +3B) x+ (A+4B+30) = x°+x

Equating like powers of x,
x2: A =1

A = 1/3

X: 8Q+3B = 2
3B = 2-8/3
B = =~2/9

x%: M +4B+3C = 0

i = §/9-2/3
c = 2/2
Therefore,
y, = 13 X2 = 2/9 x + 2/21

The total general solution of Equation 3.57 is given by

y = ce™+ o, e ™ + 1/3 %% - 2/9 x + 2/27 (3.58)

gince the transient solution is Bquation 3.55. As a general rule, if the
forcing function is a polynomial of degree n, assume a polyncmial solution of
degree n.




3.4.2.3 EXPONENTIAL FORCING FUNCTION.
EXAMPLE

5 :
Y, Wy - X -
dx2+4dx+3y e (3.59)

ﬂnforcirgﬁmﬂonisezxsoassmneasolutionofﬁ)sfom

2
= An
Yo

%

3

& e

2
€ e
dx

x,

Substituting into Equation 3.59,

we® + (2% +30%) = &

e® (A +8a+ 3 = e
The ocefficients on both sides of the equation must be the same. Therefore,
A +B8A+3A = ], orlSA = ], and A = 1/15. ‘The particular solution of

Buation 3.5 then is y, = 1/15 eZ. fThe transient solution is still

Bquation 3.55. A final example will illustrate a pitfall sometimes
encountered using this method.

3.2¢
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3.4.2.4 Exponential Forcing Function (special case).

EXAMPLE
fx+4éx+3y = X (3.60)
dx2 ax *
The forcing function is e %, so assume a solution of the form Yp = A,
Then
N‘ d (A x) = -paX
&
and
2
9—-5 (™) = ™
dx

Substituting into Equation 3.60,

AX+ - + 3 = ™

DU

(A-4a+3e’ a X
(0)e™* = %

) Cbviously, this is an incorrect statement, To locate the difficulty, the
procedure to solve differential equations will be reviewed.
To solve an equation of the form

m+alm+ by = %

solve the hamogeneous equation to get
m+a)m+dbly = 0
m = «a, b

Cx yt - cle-ax +cze-bx

3.25
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if Y, = 2 % is assumed for a particular solution, then

Y = YptY, = ce tce +he = (cl-_l-A')e-ax+c

[}

However, Y is the solution only when the right side 6f the equation is zero,
and will not solve the equation when there is a forcing function of the form

given., Assuming a particular solution of the form

. - ax
= Axe
Yo

will lead to a solution, then

= - -ax ~hx ~ax
y = yb + yt cle + cze + Axe

Similarly, the equation

(m+aj) m=-aj) y = sin ax
has the transient solution

Yp = clsinax-&»czcosax

Ify

£l
a
f ed
+
g
%
4
0

o = A sin ax + B ¢os ax is assumed for a particular solution, then

Yy = yt""yp © (cl-H\) sinax+(c2+b)oosax

Yy ™ cysinax +c, cos ax = y,

which, as in the previous example, does not provide a solution when there is a

forcing function of the form given.

yp = Ax sin ax + Bx cus ax
does lead to a solution

e an i o o e e e

But, assuming a solution of the form

L a
i

y = () +Ax) sinax + (o, + Bx) cos ax = Ye

3.26
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Contimuing with the solution of Bquation 3.60, a valid solution can be found
by assuming Yp = Axe *, then

(Bxe ™) = A(-xe X +e %)

i

2
d -X, _ X _ ,.=X
& (Axe ) = A(xe 2e )

Substituting into Equation 3.60,

Ape ™ - 227%) +d(xe X+ e ) + 3 me ) = &

(A=~ 42+ 3A)xe X + (-2A + dA)e X = %

(O)xe X + 227 = X

A = 1/2
Thus,

v, = (1/2)xe *

is a particular solution of BEquation 3.60, and the general solution iz given
by
y = cle'x + cze-3x +1/2 xe”*

The key to sweessful application of the method of undetermined coefficients
is to assume the proper fomm for atrialorcarﬂidate;partimﬂarsolution.
Table 3.1 summarizes the results of this discussion., When £(x) in Tahle 3.1
consists of a sum of several temms, the appropriate choice for yp is the sun
of yp expressions corresponding to these terms individually. Whenever a term
in any of the yp's listed in Table 3,1 duplicates a term already in the
complementary function, all terms in that ¥y must be multiplied by the lowest
positive integral power of x sufficient to eliminate the duplication.

3.27
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TABLE 3.1

CANDIDATE PARTICULAR SOLUTIONS

ay ¥ =
a dx2 +b i + ¢y £(x)

Forcing Assumed
Function Solution

f(x) yp
Constant:

K1 A

N —
Polynamial:
n n n-1
KX A +AX C+. .. +A X +A
g

Sine: N

Kl sin sz

> AcosK2x+Bsi.nK2x

Cosine:

K, cos K

1 2 y
Exponentials t

K K
Kl e zx Ae zx
| SRS iy

3.4.3 Solving For Constants of Integration

boundary conditions.

As discussed previously,

the number of arbitrary constants in the
solution of a linear differential equation is equal to the order of the
equation. The constants of integration can be determined by initial or
That is, to solve for the constants the physical state
(position, welocity, etc.) of the system must be known at same time,
number of initial or boundary conditions giver must equal the mmber of
constants to be solved for, Many times these conditions are given at time

J.28
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equal to zero, in which case they are called initial conditions. A system
which has zero initial condition, i.e., initial position, velocity, and
acceleration a1l equal to zero, is frequently called a quiescent system.

The arbitrary constants of the solution must be evaluated from the total
general solution, that is. the transient plus the steady state solution. The
method of evaluating the constants of integration will be illustrated with an

example,
EXAMPLE

¥+4x+13x = 3 (3.61)
where the dot notation indicates derivatives with respect to time, that is, x

= dx/dt, ¥ = dzx/dtz. The initial conditions given are x(0) = 5, and
%(0) = 8. The transient solution is given by

o+ dn+13 = 0

mo= -2+ Yi-13 = -2+133

x, = &%t (A cos 3t + B sin 3t)

t
Asgune the particular solution of the form

)&DED
§p=0

Substituting into Equation 3,61, D = 3/13 for the total genexal solution

x(t) = e %% (A cos 3t + B sin 3t) + 3,13
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To solve for A and B, the initial conditions specified above are used.
x(0) = 5 = A+3/13

or
A = 62/13

Differentiating the total general solution,

x(t) = e 2% [(3B cos 3t - 3A sin 3t} -26"2% (A cos 3t + B sin 3t)]
Substituting the second ini*ial condition
%(0) = § = 3B - 27

- 16
B 3

Therefore, the camwplete solution to Equation 3.61 with the given initial

conditiona is

x(t) = e 2t [(62/13) cos 3t + (76/13) sin 3t} + 3/13

First and second order differential equations have been discussed in some
detail, I¢ is of great importance tc note that many higher order systewms
quite naturally decampose into first and second order systems. For esample,
the study of a thixd order equation (or system) may be conducted by examining
a first and a sscond ovder system, a fourth crder gsystam apalyzed by examining
two second order eystams, etc, All thase cases are handled by solving the
characteristic eqaiion to gt a twansient solution and then obtaining the
particular solutise by any convenient method,

A few rwarks are aporopriate regarding the second order linear
differsntial equaticn with constant coefficients. Although the equation is
intaresting in its own right, it is of particular value because it ic a
mathematical model for several problems of physical interest.
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a% v b+ oy = £(x) (uathematical model) (3.62)
dx
d2x dx

M=3+ D +kKe = £(t) (describes a mass spring (3.63)
at : damper system)
a0, .dg.Q ]

L -5 + R dt + ol E(t) (describes a serias LRC (3.64)
dt electrical circuit}

Bquations 3.62, 3.63, and 3.64 are all the same mathematically, but are
expressed in different notation. Different notations or symbols are employed
to emphasize the physical parameters involved, or to force the solution to
appear in a form that is easy to interpret. In fact, the similarity of these
last two equations may suggest how one might design an electrical circuit to
similate the operation of a mechanical system,

3.5 APPLICATIONS AND STANDARD SORMS

Up to this point, differential eoguations in general and litear
differential apations with constant coefficients havs bsen copgidered,
Methods for solving first and secored order equations of the following type
have been davelopedi: - |

a§+mafm i3.45)
g, & '

AR e hbamdax » £{R) {3.686)
&t at

These two epiaticns are mathetatical models or forms, these sawe forms may be
used to dsscribe diverse phyaical systens. This seotion will concentrave on
the trahsient response of the systems under investigatien.
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3.5.1 First Order Equation

X +x = 3 (3.67)

Physically, x can represent distance or displacement, where t is used to
represent time. The transient solution can be found fram the hamogeneous

equation.
K +x = 0
(dm + 1)x = 0
m+1 = 0
m = =1/4
Thus
x, = ce -t/4

The particular solution is found by assuming
<A
ax
® = °

Substitiute

or

3.32
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The total general solution is then

X e t/t 4 3 (3.68)

The first term on the right of Bquation 3.68 represents the transient
response of the physical system described by Equation 3.67, and the second
term represents the steady state response if the transient decays. A temm
useful in describing the physical effect of a negative exponential term is
time constant which is denoted by 1. The time constant is defined by

[

i

'
=] L

Thus, Equatior 3.68 could be rewritten as

-t/

x = ce V43 (3.69)

where v = 4,

Note the followiny points:

1. The time constant is discussed only if m is negative, If m is

positive, the exponent of e is posicive, and the transient
solution will not decay.

2. Y m is negative, 7 15 positive.

4. v is the negatize mciprocal of m, so that small mmerical
values of m give large numerical values of t {and vice versa),

4, The value of  Iis the time, in seoonds, requirsd for the
displacorent to decay to l/e of its original displacement from
eqilihriue or steady value, To get a better undarstanding of
this statement, examine Bquation 3,69 :

x = o T, {3.69)

and let t = 1. Then

1 i

X = 43 =l 430

Thug, when t = 1, the exponential portion of the solution has docaysd to l/e
of its original displacement as shown in Fiqure 3.3.
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3+¢ -}-.-'-o.sea
x(t)=ce ¥4+ 3
c /
c/e |
3 b—*--

|
|
1 —
T

FIGURE 3.3. ‘EXAMPLE OF FIRST ORDER EXPONENTIAL
DECAY WITH AN ARBITRARY CONSTANT

Other measures of time are scmetimes used to describe the decay of the

exponential of a solution. 1If T, is used to dencte the time it takes for the

transient to decay to one~half its original amplitude, then

T, = 0.692 v (3.71)

1

This relatiorship can be easily shown by investignsing

-

- -at
4 cle + cz {3.72)

By definition, v = l/a. T is the value of t at which X, = 1/2 %, (0},
Solving
Rt w cle

-aT

V2x 0 = 1/2¢c, = ce 1

~aT

e b ow 172
=-in 1_/2 s au‘r1
.34




= 0,€93t

-In 1/2 _ 0.693
a

Tl a

The solution of Equation 3.67 can be campleted by specifying a boundary
condition and evaluating the arbitrary constant. let x = Datt = 0.

-t/4

L

X = Cce + 3
x(0) = 0 = c+3
¢ = =3

The complete solution for this boundary condition is

~t/4

x = =3e +3

ag shown in Figure 3.4.

b 3
1 % 2{tjo~B%" ¥+ 3
§ !
- y !
|}
|
(!
!
[ |
T, T

FIGEE 3.4. EXAMPLE (F FIRST ORIER EXPONENTIAL DECAY
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3.5.2 Second Order Equations |
Consider an equation of the form of Equation 3.66

&’

2+bdx
at

a dt—+c2x = f(t? (3.66)

As discussed earlier, the characteristic equation can be written in operator
notation as

m +bm+ec = 0 (3.39)

where roots can be represented by

b+ Vb - dac
2a

m o, = (3.40)

These quadratic roots determine the form of the transient solution. The
physical implications of solutions for various values of m will now be
discussed,

3.5.2.1 Case 1: PRoots Real and Unequal. When the roots are real amd
unequal, the tratsuent solution has the form

t t
X, = ceml +c2em2

RN (3.73)

When m, and m, are both néqative, the system decays and there will be a
time oonstant associated with each exponential as shown in Figure 3.5.
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b\ m,t

FIGURE 3.5. SECOND ORDER TRANSIENT RESPONSE
WITH REAL, UNEQUAL, NEGATIVE ROOTS

when m orm, (or both) is positive, the system will generally diverge as
shown in Figures 3.6 and 3.7.

b ¢

x
[ x, = 8™t 4 o 0 Mt
m >0 /
m <o //
m,>o0 //
-
P oa™ Sy
\\ 7 t --"'"-/ a0 ™
>l ~cpe™ - N my
AN / - o
o >~ —r >t > t

'¥
FIGURE 3.6, SBOOND ORDER TRANSIENT FIGURE 3.7. SBOOND ORDER TRANSIENT
FRESPONSE WITH ONE RESFONSE WITH REAL,
POSITIVE AD ONE NEGATIVE UNEQUAL, FOSITIVE ROOTS
REAL, UNBQUAL ROOTS
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3.5.2.2 Case 2: Roots Real and Equal, When m; = M, the transient
solution has the form

mt mt
X, = ce +czte ‘ (3.74)

When m is negative, the system will usually decay as shown in Figqure 3.8.
If m is very small, the system may initially exhibit divergence.

x, = 6,0t 4 g te Mt

m<o

FIGURE 3.8. SECOND ORDER TRANSIENT RESPONSE
WITH REAL, BQUAL, NEGATIVE ROOTS

When m is positive, the system will diverge much the same way as shown in
Figure 3.7,

3.5.2.3 Case 3: Roots Purely Imaginary. When m = + jk, the transient
solution has the fomm

X, = ¢, sinkt +c, cos kt (3.75)

or
X, = Asin (kt +¢) (3.76)

or
X, = Acos (kt + ) (3.77)
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The system executes oscillations of constant amplitude with a frequency k as
shown in Figure 3.9.

=Asin(kt+@)
\/ i |
-A

FIGURE 3.9. SEOCOND ORDER TRANSIENT RESPONSE
WITH IMAGINARY ROOTS

3.5.2.4 Case 4: Roots Cawlex Conjugates, When the roots are given by
m = k)t jk,, the form of the transient solution is

x, = it (e c0s Kt + ¢, sin kyt) (3.78)
Qor
Kt
X, = Ae 1~ sin (kzt + 4) (3.79)
or
Kt
x, = Ael” cos (kzt + 8) (3.80)

The system executes periodic oscillations contained in an emvelope given
by x = ieklt.

mnnklisnegative. the system decays or converges as shown in Figure
3.10. When k, is positive, the system diverges as shown in Figure 3.11.
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X = Aeket sin{k,t + @)
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>t

”
/,/\_ ~Aslat

FIGURE 3.10. SEOND ORDER CONVERGENT FIGURE 3.11.

TRANSIENT RESPONSE WITH
COMPLEX OONJUGATE ROOTS

/"‘"—‘— ' \
v ”*""“;i:-v

- x,-Ao"'* sin (k,t + Q)

~~ k,>o0

_“kit \\

~
\\

SECOND ORDER DIVERGENT
TRANSIENT RESPONSE WITH
COMPLEX CONJUGATE ROOTS

The discussion of transient solutions above reveals only part of the picture

presented by Fguation 3,66. The input or forcing function is still left to
consider, that is, f£{t}, In practice, a linear system that possesses a t
divergence f(without input) may be changed to a damped system by carefully

selecting or controlling the input. Conversely, a nondivergent linear system

with weak danping may be made divergent by certain types of inputs. Chapter

13, Lincar Contral Theory, will exauine these problems in detail,

3.5.3 Becond Qrder Linear Systems

Consider the physical model shown in Figure 31,12, The system consists of
an object suspendad by a spring, with a spring constant of K. The mass
representad by M may move vertically and is subject to gravity, input, and
damping, with the total viscous dasping oonstant egual to O,

1,40 - , "
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LB/FY } DISPLACEMENT x, FT

FIGURE 3.12. SECOND ORDER MASS, SPRING,

DAMPER. SYSTEM
The equation fur this system is given by

ME+Dk+Kx = £(b)

The characteristic equation in operator notation is given by

mzi'ﬁ'ﬂ'*l( w ()

The roots of this equation can be written

-

4

(3.81)

(3.82)

(3.83)

(3.84)




For simplicity, and for reasons that will be obvious later three
constants are defined

¢ = - (3.85)

the temm ¢ is called the damping ratio, and is a value which indicates the
damping strength in the system. )

o, = Vg (3.86)

wy is the undamped natural frequency of the system, This is the frequency at
which the system would oscillate if there were no danping present.

vy = Yy l-¢ (3.87)
ug is the darped frequency of the system. It is the frequency at which the

system oscillates when a damping ratio of ; is present.
Substituting the definitions of ¢ and wy into Bquation 3.84 gives

Moy = ey ki, VI- % (3.88)
With these roots, the transient solution becomes
t t
X, = claml + czem2 (3.89)

which can be written &s

-{w t
X, = e n E:3oosmn Vl-cit*c‘sinmn \/l-czt] (3.90)

or

-Lw_t
X, = Ae n sin(wn Jl-c2t+¢) (3.91)
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The solution will lie within an exponentially decreasing envelope which
has a time constant of 1/(;mn). This damped oscillation is shown in Figure
3.13. Frrom Equation 3.91 and Figqure 3.14, note that the numerical value of
damping ratio has a powerful effect on system respanse.

A
/-AQ-. g-w"t
~ - t L Tae
S n = Ae” SOnlain (0 Vi Tt +9)
t
/4"'
rd \.-“’"?Wn‘
-A¥

FICURE 3.13. SECND CRNER DAMPED OSCILIATIONS

If Bquation 3.81 is divided by M

§E+§i*§-xn%§- {3.92)

or, rewriting using N and { defined by Equations 3.8% and 3.86

Y - 3 (TR ]
£+2cun;+m§xa%‘&- (3.93)

Egoation 3.93 is a form of Equation 3,81 that is useful in analyzing the
behavior of any second order linear systam, In general, the magnitude and
sign of danping ratio determine the rasponse properties of the system. Thore
are [ive distinct cases which are given pames descriptive of the ragponse
aspociated with each case. These are:
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1. ¢ = 0, undamped

2, 0<g>1, underdamped

3. = 1, critically dampexd
4. ¢ >1, overdamped

5. £ <0, unstable.

Each case will be examined in turn, making use of Bquation 3.88, repeated
below

-)‘n,l“2 w -—Cmn + 3.4;%‘ 1 - ‘:2 {>.88)

3.5,3.1 Cagse ): [ = 0, Undamped., TFor this condition, the roots of the
characteristic eqation are

myL,2 T 2y

giving & transient sciution of the form

X, = C, cos mnt: + C, sin mﬁt {3.94)

t 1

By = Asin {ut o+ d) {3.95)

showing the system to have the transient responss of an undamped sinusoidal
oscillation with Sreguency w,. Hence, the designation of w, as the *undamped
natural frequency.” Rigure 3.9 shows an undanped system.

3.5.3,2 Case 2: 0 < ge 1.0, Undordwmed, For this caso, m is given by
Byuation 3.48.

[

® 5 . fw + i 1-¢ (3.88)
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The transient solution has the form

S—

n izt ¢) (3.96)

X, = Ae

t sin s

n
This solution shows that the system oscillates at the damped frequency, Qg
and is bounded by an exponertially decreasing emvelope with time constant
1/ (g mn). Figure 3.14 shows the effect of increasing the damping ratio fram
0.1 to 1,0.
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3.5.3.3 Case 3: ¢ 1.0, Critically Darmped. For this condition, the roots of
the characteristic equation are

m1’2 = - _ | (3.97)

which gives a transient solution of the form

_ n n
X, = cle + c.te (3.98)

This is called the critically damped case and generally will not overshoot.
t should be noted, however, that large initial values of x can cause one
overshoot. Figure 3.14 shows a response when £ = 1.0.

3.5.3.4 Case 4: ¢ > 1.0, Overdamped. 1In this case, the characteristic roots

are

m = =fw t“ -1 (3.99)

which shows that both roots are real and negative. The system will have a
transient which has an expcnential decay without sinusoidal motion., The
transient response is given by

] . [ - (cz - 1)]t -wn[ o+ \/(:2 - 1)]t
X = C,e + C.e

t ~ "1 2 (3.100)

This response can also be written as
-t/r1 -t/ T,

X, = ¢e +cze (3.101)

where T, and T, are time constants for each exponential term,
This solution is the sum of two decreasing exponentials, one with time

constant Y and the other with time constant Toe The smaller the value of T,
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the quicker the transient decays. Usually the larger the value of g, the
larger Ty is conpared to T, Figure 3.5 shows an overdamped system,

3.5.3.5 Case 5: - 1.0 < ¢ < 0, Unstable. For the first Case 5 exanple, the
roots of the characteristic equation are

m, = -Gty V- (3,102

These roots are the same as for the underdamped case, except that the
exponential term in the transient soluticn shows an exponential increase with
time,

“hupt \/ 2 . -\/ 2 ]
X, = @ ) COs u, 1-7 t+c2 sin w, 1-z"¢ (3.103)

Whenever a term appearing in the transient solution grows with time (and
especially an exponential growth), the system is generally unstable, This
reans that whenever the system is disturbed from equilibrium the disturbance
will increase with time. Figure 3.11 shows an unstable system

Cage 5: ¢ = - 1,0, Unstable. For this second Case 5 example, the
roots of tie characteristic equation are

ml'2 = o, (3.104)

and
X, = e (cl + <, t) {3.105)
This case diverges mxch the same way as shown in Figure 2.7.

m1,2 = -y + © =1 (3.99)
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The response can be written as the sum of two exponential terms

where the values of m can be dete.nnihed fram Bouation 3.99.
Five examples will illustrate some of these system response cases.

Case 5: < = 1.0, Unstable, This third Case S example is similar to
Case 4, except that the system diverges as shown in Figure 3.7,

m1,2 = =Lu *oe ¢ -1 (3.99)

The response can be written as the sum of two exponential terms

where the values of m can be determined fram Equation 3.99.
Five exanples will illustrate same of these system response cases.

EXAMPLE

Given the hamogeneous equation,

X+4x = 0
from Equation 3,93,

; = 0
and

Wy ™ 2.0
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The system is undanmped with a solution
xt+Asin (2t + ¢)
where A and ¢ are constants of integration which could be determined by
substituting boundary conditions into the total general solution.
\1 EXAMPLE

Given the homogeneous equation

.

x+).(+x = {

fram Equation 3.93,

and

{ ¢ = 0.5

Also fram Equation 3,87, the definition of damped frequency

vy = w 1-62 = (,87

- —— —

The system is underdamped with a solution

j X, = 2705 sin (0,87 t + ¢)

EXAMPLE

Given the hamogeneous equation

-

.

rtx+x = 0

el

Multiply by four to get the equation in the form of Equation 3.93.

(} X+dc+4x = 0
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and

w, = 2.0

7 = 1.0

The system is critically damped and has a solution given by

-2t 2t

X, = e+ czte-
EXAMPLE
Given the hcmcggneous equation
X+8c+4x = 0
from Bquation 3.93,
2.0

€
#

¢ = 2.0

The system is overdamped and has a solution

x, = cle-7.46t N Cze»o.s4t
EXAMPLE
Given the homogenecus equation
X-22+4 = 0
from BEquation 3.93,
w, = 2.0

and
{ = =05

Fram Bquation 3.87, the definition of damped frequency
= - 2 =
Wy Wy Vl 4 1.7

The solution is unstable (negative damping) and has the form

X, Aet sin (1.7 t + ¢)
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In sumary, the best damping ratio for a system is determined by the
intended use of the system. If a fast response is desired and the size and
nurber of overshoots is inconsequential, then a small value of damping ratic
would be desired. If it is essential that the system not overshoot and
respanse time is not too critical, a critically damped (or even an overdamped)
system could be used. The value of damping ratio of 0.7 is often referred to
as an optimm danping ratic since it gives a small ‘ov'ershoot and a relatively
quick response. The optimum damping ratio will change as the requirements of
the physical system charge.

3.6 ANALOGOUS SECOND ORCER LINEAR SYSTEMS

3.6.1 Mechanical System

The second order equation which has been examined in detail represents the
rmass-spring-damper system of Figure 3,12 and has a differential equation which
was given by

MK +Dx + K¢ = Ff(t) (3.81)
Using the definitions

(3.85) and w,

"
<}

(3.86)

Equation 3.81 was rewritten as

o . 2 - f@)
X + 2cmnx tutx % (3.93)

3.6.2 Electrical System

The second order equation can also be applied to the series LRC circuit
shown in Figure 3.15.




FIGURE 3.15. SERIES ELECTRICAL CIRCUIT

where

L inductance

R = resistance
C = capacitance
q = charge

i = current

Assume q(0) = q(0) = 0, then Kirchhoff's voltage law gives

or
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Since

1 =4
E(t) = 12j+né£;+§ | (3.106)

The following parameters can now be defined .

= \/.l_ )
w, = 7 {3.107)

r = R__ (3.108)

R
ZCNn @ 'ﬁ (3.109)

Using these parameters, BEquaticon 3.106 can be written

§+nugrolq = EHL (3.110)

3.6.3 Servanechanisms
For linear control systems work in Chapter 13, the applicable second
order equation is

Ieo + £ °o tubdy = u ei {3.111)
where
I = inertia

o]
[ ]

friction

6, = output
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Rearranging Equation 3.111

e f.
6 +-fe

0 (3.112)

u
+T60 =

Hi=
e o]

0

o

. 2
%

3 3 - 01
+2cmne +u)n0 w“ 8 (3.113)

0

where the following parameters are defined

- g .
w, = V I (3.114)

£ (3.115)

2 ul

>~
]

Thus, in general, any second order differential equation can be written in the
form

-4 - 2
X+ 2 Qu, X+ u.°x = fl {t) (3.116)

where each term has the same qualitative significance, but different physical
significance,

3.7 LAPLACE TRANSFORMS

A technique has been presented for solvims linear differential equationg
with constant coefficients, with and without inputs or forcing functions. The
method has limitations. It is suited for differential equations with inputs
of only certain fornms. Further, solution procedures require lookimgy for
special cases which require careful handling. However, these prozedurss have
the remarkable property of changing or “transforming” a problem of integration
into a problem in algebra, that is, solving a quadratic equation in the cuse
of linear second order differential equations. This is accomplished by making
an assumption involving the number e.
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Given the second order honogeneous  equation

aX +hx+xx = 0 (3.117)
The following solution is assumed
x, = &* _ (3.118)
Substituting into Equation 3.117 gives

amzemt + hnemt + cemt = 0 {3.119)
and, factoring the exponential term

™ am +m+c) = 0 (3.120)

leading to the assertion that Bquation 3.118 will produce a seclution to
Buation 3,117 if m is a root of the characteristic eguation
an’ +bm+c = 0 (3.121)

Introducing opérator notation, p = d/dt, the characteristic equation can be
written by inspection,

ap® +bp+c =0 (3.122)
Eguation 3.122 can then be solved for p to give a solution of the form

Plt Pzt
X, = ce +cze (3.123)

Of course, the great shortooming of this method is that it does not provide a
solution tc an ajuation of the form

aX + bk + ox = £(t) (3.124)
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It works only for the hamogeneous equation. Still, a solution to the equation
can be found by cbtaining a particular solution and adding it to the transient
solution of the homogeneous equation. The technique used to obtain the
particular solution, the method of undetermined coefficients, also provides a
solution by algehraic manipulation.

However, there is a technique which exchanges (transforms) the whole
differential equation, including the input and initial conditions into an

~ algebra problem. Fortunately, the method applies to linear first and second

arder equatians with constant coefficients.
In Bgpuation 3.124, x is a function of t. For emphasis, Equation 3.124
can be rewritten
ax(t) +bx(t) + x(t) = £(t) (3.125)
Miltiplying each term of BEquation 3.125 by the integrating factor gt gives

ak(t)e™ + bx(t)e™ + x(t)e™ = f£(t)et (3.126)

It is now possible that Bquation 3.126 can be integrated term by temn on both
sides of the equation to produce an algebraic expression in m. The algebralc

- expression can then be manipulatad to eventually obtain the solution of

Bquatdon 3.125.

The new integrating factor e"" should be distinguished from the previous
integrating factor used in developing the operator techniques for solving the
homogeneous eguation. In order to accomplish this, m will be replaced by -s.
The reason for the minus sign will be apparent later. In order to integrate
the temus in BEguation 3.126, limits of integration are required. In most
physical problems, events of interest take plaoe subsequent to a given
starting time which is called £t = 0. To be sure to include the duration of
all significant events, the composite of effects from time t = 0 to time ¢ = =
will be included. Bguation 3.126 now becomes

Y ) Y

-st d -st dt

ax(t) e St at + b x{t) e t + c x(t) e
0 0 0




P

= £(2) e at (3.127)

Equation 3.127 is called the laplacz transform of Equation 3.125. The
problem now is to integrate the terrs in the equation.

3.7.1 Finding the laplace Transform of a Differential Equation

The integrals of the terms of Equation 3.127 must now ke found., The
Laplace transform is defined as

x(t) e at = L (x(t)) = Xs) (3.128)

o

whare the letter L is used to signify a laplace transform. X(s) must, for the
presert, remair an unknown. (m was carried along as an unknown until the
characteristic equation evolved, at which time m was solved for explicitly.)
Since Equation 3.128 transforms x(t) into a function of the variabls, s,

then

cx(t) et ar = ¢] x(t) eStat = cxis) (3.129)

and X(s) will be carried along until such time that it can be solved for.
The transform for the second term, b x(t) is given by

bxit) etar = b| x(t) et ar (3.130)
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To solve Fquation 3.130, a useful fornmula known as integration bv parts
is used

wdv = uv - vdu (3.131)

Applying this formla to Equation 3.130, let

u = et
and
dv = x{t) &t
then
du = -se St ac
F3
v = x(t)

Substituting these values into Equation 3.131 and integrating frem t = 0 to

t = =

- - -

xt1e St dt = x(t}eSt - x(t) [—se‘gt]&t

0 0 ]
- -
Cw x(t)e St 8 x(t)e 3% a¢
6 0
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= x)e St |  + sx(s) (3.132)
0
Now
x®e®t ] = lim x@®)e ™t ~ xi®) (3.133)

and assume that the temm o7t "dominates” the temm x(t) as t + =, The raason
for using the wminus sign in the exponent should now be apparent. Thus,
lm xiele " = 0, and Exuation 3.131 becames

7 ow =
p

x()e St A& = 0§ - x(0) +sX(s) = sxis) - x(0) {3.134)

Bjuations 3,129 and 3.134 can now be abbreviated to signify laplace
transformaticns.

L (x(t)) = X{(s) {3.135})
L (=x(t)) = cXi(s) (3.136)
L (x(t)) = sXis) - x(0) {3.1371
L)) = b[sX(s) -x(O)] (3.138)

Byuation 3.138 can be extended to higher order derivatives. Such an extension
gives

L (ax(t)) = a [szx(s) - sx(0) - i(m] (3.139)
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Returning to Equation 3.127, note that the Laplace transforms of all the terms

except the forcing function have been found.

To solve this transform, the

forcing function must be specified. A few typical forcing functions will be
considered to illustrate the technique for finding Laplace transforms.

EXAMPLE
f(t) = A = constant
Then
L) =| aeSta -Es}-
4] 0
or
A
L {A) = s
EXAMPLE
f) = ¢
Then

To integrate by parts, lst

u = ¢t

dv = e'“ at
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Substituting into Equation 3.131

«© -+ «©

-st
-st -te 1 -st
te dat T + -g e dt
0 0 0
1 =~-st 1
= ) -—e = 0+
s2 82
0
or
1
Lit)] =
&

EXAMPLE

£it) = et
Then

- . ]

L{82t3 - acte®t g¢ = e(z's)tdt - §_é"§

0 0

or
2t

Le™) = o=
EXAMPLE

£(t) = sin at
e

Lisin at] =] sinat e %% at
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Integrate by parts, letting

- -1 _-st
v = r e
Substituting into Bquation 3.131
=3t
(sint) ¢ - Zlatnatile ) | 3] (cosat) et at
0 0 0
or
[ ] -
(sinat) et at = 0+2) (cosat) et at (3.143)
0 0

The expression (cos at) 5% can also be integrated by parts, letting
u = o8 at
dv = et g -

du = -a (sin at) dt

]l -st
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Giving
-st
(cos at) e'St at = —{cos a:) e ) - -3 (sin at) e-St at
0 0 0
or
(cos at) e St at = % - 21 (sin at} (3.144)

Substituting Equation 3.144 into Equation 3,143

2
; - alfl_a : - a _a
L {sin at)} = 0+-§ [‘g sL{smatl] sz ;—iL[sinatl
which “"cbviocusly” yields

a

L (sin at) = (3.145)
82 + 52

Also note that Equation 3,143 may be written as
L (sin at) = 2 L (cos at]

which yields

L (cos at) = -2-5—-5 (3.146)
§° + a

The laplace trangforms of more camplicated functions may be quite tediocus
to derive, but the procedure is similar to that above. Fortunately, it is not
necessary to derive laplace transforms each time they are needed, Extensive
tables of transforms exist in most advancad mathematics and control system
textbooks. All of the transforms needed for this courss are listad in Table
3.2 Page 3.73.

The technigque of using laplace transforms to assist in the solution of a
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differential -equation is best described by an example.
EXAMPLE
Given the differential equation
X+ ak+ x = 4t . (3.147)

with initial conditions x(0) = 1, %(0) = -4. Taking the Laplace transform
of the equatian gives

s%X(s) - sx(0) - x(0) + ¢ [sX(s) - x(0)] + 4X(s) = ———
or
[82+ds+4] X(s) + [~s + 4 - 4] = 2;"'5_'2'
Solving for Xs)
2o - Ec 2t d (3.148)

& =2 (s +2)°

In order to ocontinue with the solution, it is necessary to discuss
partial fraction expansions,

3.7.2 Partial Fractions

The method of partial fractions enables the separation of a camplicated
rational proper fraction into a smum of simpler fractions, If the fraction is
not proper (the degres of the numerator less than the degree of the
dencminator), it can be made proper by dividing the fraction and considering
the remaining expression. Given a fraction of two polynamials in the variable
s as shown in Byuation 3,148 there occur several cases:
3.7.2.1 Case 1: Distinct Linear Factors. To each linear factor such as
(u*b),ouwrrmgminuwaummmr.themmespaﬂsamngle
partial fraction of the form, A/(as + b).
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EXAMPLE

78 ~ 4 = A B c
s(s - 1)(s + 2) sts-1%ts+2 ~(3’149)

where A, B, and C are constants to be determined. |

3.7.2.2 Case 2: Repeated Linear Factors. To each linear factor, (as + b),

occurring n times in the dencminator there corresponds a set of n partial
fractions. :

EXAMPLE

2
8 -9s + 17 A B C
= - + + (3.150)

where A, B, and C are constants to be determined.

3.7.2.3 Case 3: Distinct Quadratic Factors. To each irreducible quadratic
factor, asz + bs + ¢, ocourring once in the denaminator, there corresponds a
single partial fraction of the form, (As + B)/(as® + bs + c).

EXAMPLE

32 +58+8 _ A BE4C

+
(s + 2) (8% + 1)

(3.15))

vhere A, B, and C are constants to be determined,

3.7.2.4 Case 4: Repeated Quadratic Factors. To each irreducible quadratic
factor, asz+bs+c. ocowrring n times in the dentminator, there corresponds
a set of n partial fractions,

EXANPLE

10 82 + 8 + 36 A, Bi+C, Ds+E
— S ——— -.t‘-n*- -?-td-—-m

2 ; (3.152)
s-aEt+? Bt giih teq?

where A, B, C, D, and E are cunstants to be determined.
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The "brute~force" technique for finding the constants will be illustrated

by solving BEquation 3.152, Start by finding the camon denominator on the
right side of Bquation 3.152

10s+5+36  _ As’+4)%+ (Bs+Cl(s-4)(s’+4) + (Ds + E)(s - 4)

(s - 4) (s2 + 4)2 (s - 4) (g2 + 49

(3.153)

Then the mmerators are set egqual to each other

102 +5+36 = Als2+4)2+ (Bs+C)(s2+4d)(s~4) + (Ds + E (s - 4)

(3.154)

Since Bquation 3.154 must hold for all values of s, enough values of s are
substituted into Bquation 3.154 to find the five constants,

l. let s = 4, then Bquation 3.154 becames

(10) (16) + 4 + 36 = 40GA

A = 172

2. let s = 2§, then Equation 3.154 becames
-40 + 2 + 36 = ~4D + 2je -~ Bjd = 4E
~4+2j = ~4(D+E)+2j (E-4D)

The real ard imaginary parts mst be egqual to their counterparts on the
opposite gide of the equal sign, thus

(D+E) = 1

E«4 =1
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"E =1 .
3. Now let s = 0, then Equation 3.154 becomes

3¢ = 16 - 16 (C) - 4B
and fram steps 1 and 2

A = 1/2,E = )
hence

36 = 8~ 16C - ¢4
C = «2
4. Let s = 1, then Bquation 3.154 becomes
47 = 25 (1/2) + (B = 2) (~15) -3

94 = 25-30B+60 -6

B = ~1/2

Now Equation 3.155 may be written by substituting the values of A, B, c, b,
and E into Equation 3,152

]
108" + 8 + 36 ; 1 8+ 4 1
8 ~) (s + 4)2 (' - ‘) (si + 4) 82 + 42
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Returning now to the example laplace solution of the differential equation

¥+ 4%+ dx = 42t (3.147)
The Laplace transformed equation was

2
X(s) = —S =-25+4 (3.148)

(s - 2) (s +2)°

which can now be expanded by partial fractions

sz-zs+4 A B C

s ~2(s+2° 8=2 8%2 (5,92

Taking the common denominator, and setting numerators equal
s2-28+4 = Als+ 2% +B(s+2)(s-2 +Cls - 2) (3.157)

The “brute-force” technique oould again be used to solwe for the
constants A, B, and C by substituting different values of s into Bpation
3.157. An alternate nmmthol exists for solving for the constants. Multiplying
the right side of Equation 3.157 gives

g2

2 2

~28+4 = A"+ QA9+ A +Bs“-4B+C5 -

sz-25+4 - u\+msz+m+c)s+m-4s-zc)

Now the coefficients of like powers of s on both sides of the equation must be
equal (that is, the coefficient of s° on the left side equals the coefficient
of sz on the right side, etc.). Bquating gives

82:1 = A+B
sl:e2 = aasc

8 :4 = A-4B-2C
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Solving for the constants gives
A = 1/4
B = 3/4
C = =3

Substituting the constants into Bjuation 3,156 results in the expanded right
sicde

) -
1 . 1 1
X(s) = 1/4 (s ~ 2) + 3/4 (m) -3 (m) | (3.158)

Another expansion method called the Heaviside Expansion Theorem can be used to
solve for the constants in the numerator of distinct linear factors., This
method of expansion is used extensively in Chapter 13, Linear Control Theory.
If the denaminator of an expansion term has a distinct linear factor, (s ~ a).
the constant for that factor can be found by multiplying X(s) by (s - a} and
evaluating the remainder of X(s) at & = a.

Stated mathamatically the Heaviside BExpansion Theorem is

A
8- a

- X{s) = + ...

A = (s~ a) X(s)

s = a
EAMPLE
78-4 K. B c
X(8) = SE=Tle+Hy “sts-1T 533

= - -oo- -.78“‘» - -4 =
S LI S I o -
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78 - 4 7-4
B = (s - 1)X(s) = SEFT = 1yor 1
s=1 S8+ {g.
_ - _I1s -4 e Sl4-4 _
C = lsraxle) = sEe-D ., FaE T 7

As another example, the oonstant A in the ﬁrsti:emon&xeright side of
BEquation 3.156 can be evaluated using the Heaviside Expansion Theorem.

2
8" =285 + 4 A B C
— = + + % (3.156)
s-2(+2° 5°2 8+ o5t
8% - 25 + 4 4 1
(s + 2% 1 1
5= 2 8+ 2 s =2

which is the same result cbtained earlier by equating like powers of s.

3.7.3 Finding the Inverse lLaplace Transform
Now that methods to expand the right side of X(s) have been discussed in
detail, ail that remains is to transform the expandad terms back to the time
domain. This is easily accomplished using any suitable transform table,
Returning to the laplace transformed and expanded equation in the exanple

2
1 1 (1 )\ ,
X(s) = 1/4 (-sf—:—i) + 3/4 (m) -3 (m) (3.158)

Using Table 3.2, it can be easily werified that Bquation 3.158 can be
transformed to -

x(t) = 14et +3/4edtopet {3.156)
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In sumary, the strength of the laplace transform is that it canwerts
linear differential egquations with constant coefficients into algekraic
equations in the s-damsin. All that remains to do is to take the inverse
transform of the explicit solutions to return to the time damain. Although
the applications here at the School will consider time as the independent
variable, a linear differential equation with any mdependert variable may be

solved by laplace transforms.

3.7.4 laplace Transform Properties
There are several important properties of the I.aplam transfomn wh:.ch
should be included in this discussion.

In the general case

n g
P CANE.{(3 X W SV ( %(0) *snzi*L..* +-«~3ﬁ93-) (3.160)

KCh
For quiescent systems

L 9-521‘-}}& - sﬁxts). - (3.161) -
" This result ersamea transfer functices ?,o bo writtan by ;ngp@gzan,
| _c;més the differestial equation
Regkeix v a6l | | o (3.162)

um- quiescent injtial omd..tim the Laplme transfonn cant imediately be
uxmt.en by mmia- as - :

st v as ey - A 3.6
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In most cases, reference to Table 3.2 will probably be needed to transform the
right side forcing function (input).

Another significant transform is that of an indefinite integral. In the
general case ‘

t=0

ST+ ... (3.164)

x(tyae|, _ ﬂx(t)dt
L W xa £ = X +j lt=0, 4

Sn Sn 8

Equation 3.164 allows the transformation of integro-differential equations
such as those arising in electrical engineering.

For the case where all integrals of f(t) evaluated at zero are zero
(quiescent system) the transform becames

L fff...x(t)dtn = X8 : (3.165)
: n

<
EXAMPLE
Given the differential equation
X + 4% + dx + det = ge?t (3.166)
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5 3.2

LAPTACE TRANSFORMS

X(s)

x{t)

2.

3.

4.

6.

8.

9.

10.

il.

12,

ax(s)
a[sX(s) - x(0)]
als®X(s) - x(0) - %(0)]

(which can be extended to
any necessary order)

(7. ] o

A —————

(s +a)2

nl

(ﬂ = 1' 2' »;t)
(s + a)™T

A i
GTaGIrarh

8
Ta+a)(a+b)'a'b

1 _
(8 +ajis +b)(s + c)

ax{t)
ax (t)

ax(t)

fa(e““~e"bt)

ai - (ae™t - be"bt)

cle 2t - (ac)ePt + (a-b)et

{a~b} (b-cJ (a~c)
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TABLE 3.2

LAPLACE TRANSFORMS (continued)

g

X(s) I x{t)
a \
13. 52 " aﬁ sin at ,
8
14. 32 . az cos at
az
15. 1 - cos at
s(sz + az)
a3
32 (52 + az)
2a3
17. = sin at - at cos at
2as A
18, 5 73 t sin at
(8" + a%)"
2a52 ,
19. 5 ) sin at + at ¢os at
{3° + a°)
2 2
20, 3 ’ ; 5 t ©os at
{18° + a%)
' 2 2
A. —3 (b 2- 52)9 > (azibz) cos at - cos bt
{s® + a®) {8° + b°})
2. ---—-‘3é--—-2- et pin bt
(s+a)®+b
23, 514 ™% oos bt
(8 + .a)2 + b2
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with quiescent initial conditions, the laplace transform can inmediately be
written by inspection as

X(s) 4

. :
X(s) (s +4s+4)+s s =3

The right side transform is the same as Byuation 3.163. Factoring results in

4

2 1,
X(s) ("+4s+4+3) = o (3.167)
Multiplying Equation 3.167 by s gives
Xe) (2 +4s® +4s + 1) = 25

which raises the order of the left side and acts to differentiate the right
side (i'out, .

The usefulness of the Laplace transform technique will be demonstrated by
solving several esample problems,

EXAMPLE

Solve the given eyuat.on for x(t),

y4ex o= ] (3.168)

when x(0) = 1.
By Laplace transfom: of Bquation 3 168

Lix] = 8X(e} - x(0)
L[bd = ZX(B)

Ly = 3

3.75




1

(s +2) X(s) = s+1
s+1 A B
X(s) = s(s + 2) = '§+_s+2
Solving,
A = 1/2
and

B = 1-1/2 = 1/2

Inverse Laplace transforming gives
x(t) = 1/2-1/2¢72
EXAMPLE
Given the differential equation
:'c+2?. = sint, x(0) = §

solve for x(t).
Taking the liplace transform of Bquation 3,170

sX(s) = X(0) + 2%8 = —te—

g° 4+

1
X(s) =
+le+2 B2

3.76

(3.169)

(3.170)

(3.171)
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Expanding the first term on the right side of the eguation gives

1 . M+B__C_
S +1)(s+2) st+1 5F2

Taking the common denaminator and equating nmleratbrs gives
1l = (As +B)(s+2) + C(sz'-i- 1)

Substituting values of s leads to

A = -1/5
B = 2/

cC = 1/5
and substituting back into Equation '3.171 gives

X(s) = LS8, _2/5 L5 . 5

+1 o241 B+2 842

Inverse Laplace transforming gives the solution
X(t) = =1/5c08t+2/58int +51/5e 2t
BoeLE
Given the differential equation
¥+5k+6x = 3eF x(0) = %(0) = 1

solve for x(t).
Taking the laplace transform of Bjquation 3.174

s’X(8) - &x(0) - X(0) + 58X(8) - 5x(0) + 6X(s) = v

.n

(3.172)

(3.173)

(3.174)

(3.175)




2
s + 98 + 21 (3.176)

(s +3) (% +5s+6)

X(s)

Factoring the denaminator,

2
g + 98 + 21 (3.177)

X(s) = s+ 3)(s + 2) (8 + 3)

8 + 98 + 21
X(s) = ) (3.178)
(s +3)%(s + 2)

X(s) = 5 +3 + . +?)42- + — (3.179)

Finding the cormon denaminator of Equation 3,179, and setting the resultant
h nuerator equal to the nunerator of Bquation 3,178,

82 +98+21 = AB+3)(s+2) +B(s+2) +Cls+3)°

which can be solved easily for

A = =§
] B =3
C = 7
, Now X(s) is given by
-8 3 7
X(s) = - +
8 +3 s + 3—)5' 8+ 2

‘ which can be inversa Laplace transformed to
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X(t) = -6e3t - 3te~3t 4 7672t (3.180)
EXAMPLE

Given the differential equation

- el re— ’WMM
¢

1 X+ 2+10x = 3t+6/10 (3.181)
x(0) = 3

x(0) = =27/10
solve for x(t).
laplace transforming Equation 3,181 and solving for X(s) gives

3 2
X(s) =38 _F3.38" +06s8+3 %+§_2__+

32(524-234-10) 8 8+ 28 + 10

e

(3.182)

where

X(s) = gi_§+ s +3

s 8° + 28+ 10

To make ths inverse anlace transform easier, tion 3.183 is rewritten as

c X(s) = ——‘9—*—1-’—,— (3.184)

LT % S

S8

g

(8 + 1)
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which is readily inverse transformable to
x(t) = 0.3t + 3 cos 3t (3.185)

3.8 TRANSFER FUNCTIONS

A transfer function is defined in Chapter 13, Linear Control Theory as,
*The ratio of the ocutput to the inmput exp:essedinoperatororlaplace
notation with zero initial conditions." The term “transfer function" can be
thought of as what is done to the input to produce the output. A transfer
function is essentially a mathematical model of a system and embodies all the
physical characteristics of the system. A linear system can ke completely
described by its transfer function. Consider the following quiescent system,

o +hk+ax = £(t) (3.186)
x(0) = x(0) = 0

Taking the Laplace transfomm of Egquation 3.186 results in

asX(s) + beX(s) + cX(s) = F(s) (3.187)
factoring gives
X{c) (as° + be + ¢) = F(s) (3.188)
or
X(s 1 '
- (3.189)
Fls asz +bs +¢C

Since BEquation 3.186 repregsents a system whoee input is £(t) and whose output
is x(t) the following tranasformg can be defined

X(s) = output transform

F(s) 3 input transform
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The transfer function can then be given the symbol TF and defined as

- X(s)
™ = ﬁ-s-r (3.190)

In the example represented by Equation 3.189

I 1 (3.191)
as” + bs + ¢ ’

Mote that the denominator of the transfer function is algebraically the same
as the characteristic equation appearing in the Equation 3.186. The

characteristic equation campletely defines the transient solution, and the total

solution is only altered by the effect of the particular sclution due to the

- input (or forcing function). Thus, from a physical standpoint, the transfer

function campletely characterizes a linear system.

The transfer function has sewveral properties that will be used in control
system analysis. Suppose that two systems are characterized by the
differential equations _ .

ax +bhx + cx = f£(t) (3.192)
and
dy +ey +gy = x(t) (3.193}

Fram the equations it can be seen that the first system has an input £(t), and
an output x(t). The second system has an input x(t) and an output y(t). Note
that the input to the second system is the output of the first system, Taking
the laplace transform of these two equations gives

{as® + bs + c) X(s) = Fla) (3.194)
and
(@s® + es + g) Y(8) = X(s) (3.195)
3.81
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Finding the transfer functions,

_ X{s) _ 1
'I‘Fl = ¥ - 3 (3.196)

= Us) 1 3.197
T T XOr T Trers (3.197)

‘Now, both of these systems can be represented schematically by the block
diagrams shown in Figure 3,16.

F(o) ———>| TF, [ X8)

SYSTEM 1

SYSTEM 2

FIGURE 3.16. EXAMPLE BLOCK DIAGRAM NOTATION

If it is desired to find the output y(t) of System 2 due to the input
£(t) of System 1, it is not necessary to find x(t) since the two systems can
be linked using transfer functions as shown in Figure 3.17.

X(s)

F(8) | TR, o T, Y0

H) et | TR, et Y(8)

TF, = (TFNTF,)

FIGURE 3.17. COMBINING TRANSFER FUNCTIONS
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The solution y(t) is then given by the inverse transform of ¥(s), or

Y(s) = ['1'5'3] F(s) (3.198)

or

¥(s) = [“‘"1] Emz] F(s) (3.199)

This method of solution can be logically extended to include any desired
nunber of systems,

3.9 SIMILTANECUS LINEAR DIFFERENTTAL EQUATIONS

In many physical problems the mathematical description of the system can
most comwveniently be written as simultaneous differential equations with
constant coefficients. The basic procedure for solving a system of n ordinary
differential equations in n dependent variables consists in obtaining a set of
equations fram which all but one of the dependent variables, say x, can be
eliminated. The equation resulting fram the elimination is then solved for
the variable x, Each of tha other dependaent variables is then obtained in a
similar manner.

A very effective means of handling simultanecus linear differential
equations is to take the Laplace transform of the set of equations and reduce
the problem to a set of algehraic equations that can be solved explicitly for
the dependent variable in s. This method is demonstrated below,

Given the set of equations

2
Y-c U NP - (3.200)
de T {
dzx d2 '
2~——§+x+_—-§+2y - git) (3.201)
a? T a |

where x(0) = X(0) = y(0) = §(0) = 0, £ind x(t) ad y{tj. 7Tmking the
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laplace transform of this system yields

(38% + 1) X(s) + (s® + 3) ¥(s) = F(s) (3.202)

]

(2% + 1) X(s) + {82 + 2) Y(s) G(s) (3.203)

Cramer's rule will now be used to solve this set of equations, Cramer's rule
can be stated in its simplest form as, given the equations

Pl(s) X(s) + Pz(s) Y(s) = FI(s) (3.204)
Ql(s) X(s) + Qz(s) Y(s} = ths) {3.205)
then,
3 P,
Fy Q,
X(s) = — : ‘ {3.206}
P P |

for unknown X(s), and

1
Ql ?2

Yis) = , {3.207
P P
Q Q,

for the unjowxwm Y{9j.

3.84
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The X(s) unknown in Bquations 3,202 and 3.203 can be soived for in this
fashion by applying Cramer's rule

Fls) - (f+3
Gls) (2 + 2)
X(s) = = (3.208)
(3s® + 1) (2 + 3)
(2s% + 1) 52+ 2)
It a similar mamer,
(352 + 1) F(s)
(252 + 1) Gis)
Yis) = e — (3.209)
2 2 '
(35 + 1) {s® + 3)
! ‘ wiey. 5t el

For the particolsr inputs £(t) = tand g{t) = 1,

1 -
e Az + 1)
i 2 ;
wa {§ + 23 - 3 2 -
R() e — « B E o2 (3.210)
s~ g {s" - 1)
‘ Bgandad as a ;m-tm fraction
\ : ; 3 2 .
. A B, &s+D . B ¥ ~8" + 8" = Jg +2
Xig} = Soeleoaazlig s M £ A {3.211)
s 5 sy S-1GFD e (o8 - 1)
' Solving for A, B, ete,,
: 2,3 . M2-8_ U4 _ 14
! _ Xis) = g MR s+1 s~-1 (3.212)
B : | s+l
.
i \
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which yields a solution
X(€) = -2t +3-7/%C - 1/4e" + 1/2 sin t - cos t (3.213)
A similar approach will cbtain the solution for y(t).

In the case of three simuiltaneous differential equations, the application
of Laplace transforms and use of Cramer's rule will yield the solution.

P,(S)X(s) + P, (S)¥(s) + Py(s)Z(s) = Fy(s) (3.214)
Q,(51X() + Q,(8)¥(s) + Q(s)zls) = F,ls) (3.215)
R, (s)X(s) + R,(s)¥(s) + R3(s)z(s) = Fy(s) (3.216)
where
Fl P2 P3
| R Q, 0 \
Fy & Ry
X(s) = (3.217)
1 P2 Py
Q Q, Q9
R R Ry

Yig) ard Z(s)_ will have similar forms,
3,10 ROOT PLOTS

Some insight into the response of a secand order system can be gained by
examining the roots of the differential equation describing the system on a
root plot, A root plot is a plot of the roots of the characteristic eguation
in the complex plane. Root plots are used in Chaprer 8, Dynamics, to describe
aircraft longitulinal and lateral directional modes of motion. These plots
are alsc used extensively in Chapter 13, Linear Control Treory, for linear s } :
contral system analysis. |
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X r
; It was shown earlier that a second order linear system can be put into
l' the following form:
| “ . ., 2 £(t)
i X+2gu R+uox = =g {3.93)
’ whose roots can be written as
= - 7w - -
P2 = e, *Ju, Yi-g . (3.88)
or
Py, = ~ iy, t 3y (3.218)
‘ Figure 3.18 is a plot of the two roots of Bquations 3.88 and 3.218 in the
| camplex plane.
i P2 = "ty tiu 1 - g2 (3.88)
fo " e
\ ? §z imaginary
h where the first term is plotted on the real axis and ihe second term plotted
on the imaginary (j) axis.
|
{
4
%{,« 3.87
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cos ¢

IMAGINARY (j)

>wn-\/-1—:§72—= Wy

REAL

>

N

LT
&

? —W, '\/T—"_F= —Wy

FIGURE 3.18. GENERAL ROOT PLOT IN

THE COMPLEX PLANE

Fram the right triangle relationship shown in Pigqure 3.18, it can be
easily shown that the length of the line from the origin to either point p, or

P, is equal to 0

a2+ 82 a c?
2 2
24 2
o) + G Y1-7A ¢
2. 2 2 2 2
C e+ (1= = C
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The five distinct damping cases previously discussed can be examined on
root plots through the use of Equation 3.88.

1. ¢ = 0, undamped (Figure 3.19)

P2 = ~%eptie, Vi-¢ | (3.88)
p1,2 = 0x3 “n
In
Pio N,
Re
x,=Asin{n t+d)
{ P2e -0, NEUTRALLY STABLE

FIGURE 3.19, NEUTRALLY STABLE UNDAMPED RESPONSE
2, 0 <7 <1,0, nderdamped (Figure 3.20)
. 2
pl'2 = - fe, 3w, 1~z (3.88)

P]_'z w (=) +3 (+)

(i
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gttt

)
In
Wy
Re
-—w -
a x, = Ae ™ Onlain (w t +¢)
STABLE
FIGURE 3.20. STABLE UNDERDAMPED RESPONSE
3. § = 1.0 Critically damped (Figure 3.21)
p = =-Luw +ju 1-¢2 (3.88) )
1'2 n-— n *
Pr,2 ® %
Im X
P12 Re
Y "
—{in t
x, = C,0-0,t + c,td -Nat
STABLE

FIGURE 3.21. STABLE CRITICALLY DAMPED RESPONSE
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4. ¢ > 1.0 Overdamped (Figure 3.22)

PLa = -Gu tia Vi-¢2 (3.88)
P, ™ “tutuy V,‘z"l, |
real
p1,2 = (=), (=
X
[V]
4
| -
Py P Re
° °
l t
x, = C,eP1t 1+ ¢, P2t
4 STABLE

FIGURE 3.22. STABLE OVERDAMPED RESPONSE
5. % < 0 Unstable
{ = =1,0 (Figure 3.23)

‘ = -tu tie Vi-g (3.88)
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e
Py, 2 t
x,=C,en,t+ c,teﬂnt
UNSTABLE
FIGURE 3.23. UNSTABLE RESPONSE
- 1.0 < ¢ < 0 (Figure 3.24)
-zw +ju V1-¢2 (3.88)
Nl - n
(+) + 3 4)
(+) +3 (+) /
Rs
t
x, = Aol A, tsin(w,t+0)
UNSTABLE

FIGURE 3.24 UNSTABLE RESPONSE
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{ |
T < = 1.0 Both roots positive (Figure 3.25)
o = -tu tia Vi-g? (3.88)
S
('] X
Re
o —o
P2 P \
t t
| x,=C,eP1' + C,oP2
w
L UNSTABLE

FIGURE 3.25, UNSTABLE RESPONSE

In sumary, a second order system with both roots located to the left of
’ the imaginary axis is stable. If both roots are on the imaginary axis the
gystem is neutrally stable, and if one or more roots are located to the right
of the imaginary axis the system is unstable. These conditions are shown in
Figure 3.26.

3.93
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Root plots can be used for analysis of the aircraft modes of motion,

exanple,

IMAGINARY
STABLE UNSTABLE
REAL
STABLE UNSTABLE
‘:\ NEUTRALLY
STABLE

FIGURE 3.26. ROOT LOCUS STABILITY

For

the longitudinal static statiblity of an aircraft is greatly

influenced by center of gravity (cg) position. Figure 3.27 shows how the

roots of the characteristic equation describing one of the longitudinal motion
modes charge position as the cg is moved aft. This plot is called a root locus

plot,
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IMAGINARY
e 15% MAC

e 20

2
B A28 C REAL

e @ 9

3 30 [,g 30 35

’ {25
¢ 20
115% MAC

FIGURE 3.27 EFFECT OF OG SHIFT ON LONGITUDINAL STATIC
STABILITY OF A TYPICAL AIRCRAFT

Note that as the cg is moved aft of its initial location at 15% MAC, damping
of this mode of motion (short period) increases while the frequency decreases.
Zero frequency is reached between a cg location of 28% and 30% MAC., The root
locus then splits into a pair of real roots, branches AB and AC of the locus.
These branches represent damped aperiodic (nonoscillatory) motion. The short
period mode of motion goes unstable at a og location of 35% MAC. ‘The location
of the og where this instability occurs (358 MAC in this example) is known as

the maneuver point and it is discussed in detail in Chapter 6, Maneuvering
Flight.
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PROBLEMS

Solve for y.

3.0, X = x4 4x + sin 6x

&
»
[
"

e* +sinux

3.5, (x-1)2ydx +x% (y-1dy = 0
Just find a solution. Solving for y is tough.

Test for exactness and solve if exact.
2 2 A
3.6 (Y -xdx+ (xX"-y)dy = 0

3.7, (B +3y) ax+ (x+y-1dy = 0

3.8 (2t e+ ey &x+ Y -x¥i-may = 0

3.9, Multiply Problem 3.8 by 1/y} and solve for y.

y=0.
Solve ﬁcn':yt

3.10. Sy' +6y = 0
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3.11, y'™ - 5y" - 24y' = 0
3.12, y"+12' +36y = 0
3.13. y"+4y' +13y = 0

Solve for Ye and y_ in Problems 3.14 - 3.17, then solve for the general

p
solution,
3.14. ¥+ 59 + 6y = 3¢ y(0 = 1, y(0 =6
3.15. ¥+4y+4y = cos t y(0) =%§_,9(0) = -lg_g.
v . ) 6 27
3.16, X+ dx+20x = 6t +g, x(0) = 3,x(0 = -5
: -2t
3.17. 3+ X% = ~4e ' x(3) = -0.14

3.18. Find Woe Wge So and v and describe system damping (i.e., underdamped,
overdamped, etc.) where applicable.

Frspeey = 3
319, y+47+4dy = cost

3.200 2%+ &% + 20 = eug-

3,21, 3+ 2x = - 42t
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In problems 3.22 - 3.24 find x(s), do not find the inverse transform.

3.22. WM+ %+ 6x = sin 6t, x(0) = %(0) = 0
3,23, ¥-26+5% = e sin3t, x(0) = =1, x(0) = 9
3.24. @ +3k-x = £ -tsin2t, x(0) = 3, x(0 = -2

In Problems 3.25 - 3.27, expand X(s) by partial fractions and find the
inverse transforms.

58° +295 + 36

3.25, X(s) = 5
(s +2) (8 + 438 + 3)

2% + 68 +5

(s2 +3+2) (8+1)

3.26. Xi(s) =

4 3 2

+ 78° + 278° + 51y + 27
(83 + 93) (5° + 38 + 3)

28

3,27, X(g) =

Solve the following problems by Laplace transform tschniques.
3.2, x+2x = sint, x{0) = %

¥, x(0) = x(0) = 1

3.29, X+5x+6x = 3
Solve using Laplace Transforms

3.30. x+Wm-y = 1 x(0) = y(0) = 0

3.98
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3.31. Read the question and circle the correct answer, true (T) or false (F):

T

< T B B B |

F

M W wm M

The particular solution to a second order differential equation
contains two arbitrary constants that are solved for using
initial conditions and the transient solution too.

Solutions to linear differential equations are generally
nonlinear fimctions.

Differential equation solutions are frée of derivatives.

Direct integration will give solutions to some differential
equations without the necessity of arbitrary constants,

In general, the number of arbitrary constants in the solution
of a differential equation is equal to the crder o the
differential equation.

There is no known way to determine if a differential equation
is exact.

The solution to a first order linear differential equation with
constant coefficients is always of exponential form.

The laplace variable s can be real, imaginary, or complex.

Inverse laplace transforms are used to return from the s to the
time domain,

Quisstent systoms have zero initial conditions.
First order eguation roots camnot be plotted on root plots.

A transfer function can be defined as input transfoom divided
by output transform.

“The characteristic equition campletely describes the transient

solution,

The method of urdeterminad coefficients is used to solve for
the particular soclution.

X+ 4%+ 13x = 3, is a second dogree equation.
E+at+1dx = 3, is a second ordar equation.

& + 13x = 3, is a first order equation.

It is impossible to have a linear, second degree equation.
13x = 3, is a linear equation.
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T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F
T F

13x = 3, is a differential equation.

Dampirg ratio and natural frequency have no pihysical
significance.

The time constant and time to half amplltude for a first order
system are equal.

The Laplace transform converts a differential equation from the
time domain to the s domain,

The transient response is dependent on the input.
Laplace transforms are easy to derive.

In general, it is easier to check a candidate solution to see if
it is a solution than to determine the candidate solution.

Superposition can be used for adding linear differential
equation solutions.

The method of partial fractions is used to solve for the
particular solution of a differential eguation.

The number "e" is a variable.

The Laplace transform of the characteristic eguation appears in
the denominator of the transfer function.

There is a genaral technique which can be used to solve any
linear differential equatien,

Cramer's ruls is in centimeters.

Cramer's rule is an outdated method of solving simultanecus
equations.

The transfer function campletely charactarizes a linear system,

The Heaviside Fxpansion theorem is often cited by weight
watchers,

A root plot is aamxthandmthodofpmenthn transient time
responsa,

The settiing time is a measure of damping ratio of a systewm
without regard for the damped freyuency.

Ify = f£(x), theny is the dependent and x the independent
variable,
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3.32. The following terms are important. Define and provide symbols for
those you are not sure of.

Differential Equation
Dependent Variable

Independent Variable

Ordinary Differential Equation
Partial Differentiai Equation

Wi

Bxact Differentiazl Bquation:

- Linear Differéntial Equation

- :Degree of a Differential BEquation
Qrder of a Differential Equation
General sclution

ey

" * Transient solution °
Particular solution
Steaetv-stat:e solution
. Forcing function
Input to a system (related to the diffarential equation)
Qutput of a system (related to the differential equation)
Time Constant |
Damping ratio
Damped natural frequency
Natural Fregqency
Undamped response
Underdarped response
Overdamped response
Unstable gystem response
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3.33.

Critical Damping
Linear system

laplace Transform
Inverse Laplace Transform
Unit Step

Unit Inmpulse

Ramp function
Transfer function
Pole

Zero

Root Plot

Root Locus

Rise' time

Settling Time

Peak Overshoot

Time to peak overshoot
Steady-state error

Solve the following problems.
w,, and t where appropriate.

2
A o= e
dx

B,dy._%m&___

ax 3 -
C. a-E+t)s 0

Y Y

Sketch root locus plots, and find %, W
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2
d™x dx
dt2 dt
2
F. i—",7f+-‘1,x = 0
dt
&x | o dx
G. ——2+7E+22x 0
dt

H. Giwen: Y, = 2 8in 3x + 2 cos 3x
Find A and ¢ in the expression
{. =
-(‘ . yt A sin (3}( + ¢)

The following problems are the same as D thru G with forcing functions.

2
d"x e
I. —5=S5=—+6x = 9
dtz dt
J d—z-}-‘--«tgl‘--o-«ix = ot
dtz dt
dzx
dt
dzx dx

L. +7 +22x = t
w? E

3.103




The following problems are the same as D thru G with forcing functions
and initial conditions:

2

d°x dx _ =
M. :1—2-53?4-6:( = 9 x(0) = 3/2
t
x(0) = 2
Ax, ax 2t
N. -_—2--4~a-E+4x = e x(0) = 2
dt . :
x(0) = 4
a%x '
0. -—2-+4x = sin 3t x(0) = 0
dt
x(0) = - 3/10
P in+79-'i+zzx=t x(0) = 0
* dtz dt

x(0)

]

1/22

3.34. ©Solve the following problems using laplace techniques:

2
d™x dx _ -
A ;ti'SEE”" = 9 x(0) = 3/2
x(0) = 2
Px 2t
B. ;‘-:-2--4az+4x=e 2 x(0) = 2
x(0) = 4

3.35. Given the set of equations
ax
3d—t+% = t

2%—+g§ = 1

where x(0) =y(0) = 0, find y(t) using Laplace transform methods.
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3.1 X 2 _ cos 6x

3.2, ¥y = e

33. y = 2 ¢ 2 scx+cC
336 2 X T4

3.50 y = Q{ e X

3.6. Not exact.
x4 2
3.7, f=-i-+3xy+¥—-y+c

3.8. Not exact.

2

3.9, £ = ¥ + X4+ X o ¢
Y y3

310 y, = ce™6/%

3t 8t

3Ly, = C1+Cze" +Cge

6t 6t
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3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

3.21.

3.22.

3.23.

Yp = C e 2t cos (3t + ¢)

3t 2t

-1le °F + 12¢

o]
]

-2t _ 58 -2t 3
y = e "fgte +-§-5'—

36t cos 3t + 3/10 t

9]
"

_e-2/3t + e-2t

’—"E
n
E
o

0.316

]
]

Wy # 3.0

T = 3/2

x(s) = “_%_;tJﬁi__

38 +8+6

3

— .. "8t
s+ 1" +9

xX(g8) =

- 3te

3t

4 .
cost+-§§-smt

11

8% - 28 + 5

3.106




#4

3.24.

3.25.

3.26.

3.27.

3‘28.

3.29.

3.30.

3.33.

x(s)

y{t)

y(t)

y(t)

x(t)

x(t)

x(t)

y(t)

Ay =EB+rsdiaxec

B.

C.

D.

E.

4s

6
- +12s +1
_ st &+ 4l
s +3s -1
= 272 - 373t 4 ge”

-2t -t -t

= e +e  + te

= 1+2/3sin3t+e

—6e~3t - 3pe73t

n

+

cosaf3/4t +1/2 e

5 1/5 e 2% = 1/5 cos ¢ + 2/5 sin t

= 1/4 (1 - e 2% (cos 2t - sin 2t))

L]

4

x2y+siny = C

4
x = cot/4

x(t) = Cl e:')t + Cze

3t

WAL WA N, o

— I

1/4 (-1 te=?t (cos 2t + 3 sin 2t))
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3.4.

H.

J.

K.

L.

M.

N.

P.

A,

B.

€
I

]
]

b
L}

©-
]

»
[}

X(t)

X(t)

e‘7/2t(cl cos@t + C2 sin@t) + 1/22 t -——_

4.69
3.12
0.746

2t e3t

+C + 3/2

2
clezt + Cztez +1/2 £22t

dl cos 2t + c, sin 2t - 1/5 sin 3t

484

2t

- 2%t + 203t 4 3/

2e2t + 1/2 tz eZt

3/20 sin 2t - 1/5 sin 3t

-7/2t 39 1 7
e (mcos £t+.01651n£) T a7y

= 3. 2% 4 3%t

= 2072t 4 172 ¢2 g2t

e
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x(t) = 1/2¢% - ¢

3.35. y(t) = 3t -t




§ ot

CHAPTER 4

EQUATIONS QF MOTION
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4.1 INTRODUCTION

This chapter presents aircraft equations of motion used in the Flying
Qualities phase of the USAF Test Pilot School curriculum,

The theory incorporates certain simplifying assumptions to make the main
elements of the subject clearer. The equations developed are by no means
suitable for design of modern aircraft, but the basic method of attacking the
problem is valid., With the aid of high speed computers the aircraft
designers' more rigorous theoretical calculations, modified by data obtained
from the wind tunnel, often give results which closely predict the flying
qualities of new airplanes. However, neither the theoretical nor the wind
tunnel results are infallible. Therefore, there is still a valid requirement
for the test pilot in the development cycle of new aircraft.

4.2 TERMS AND SYMBALS

There will be many terms and symbols used during the Flying Qualities
Phase. Sawe of these will be familiar, but many will be new, It will be a
great asset to be able to recall at a glance the definitions represented by
these symbols, Below is a condensed list of the terms and symbols used in
this course. '

Texrms:

Stability Derivatives - Nondimensional quantities expressing the variation
of the force or moment coefficient with a disturbance
from steady flight.

4.1




Stability Parameters - A quantity that expresses the variation of force
or moment on aircraft caused by a disturbance firom

steady flight.
pUOSc. 0 m
mu = G YT o {Change in pitching mament
Iy T caused by a change in
velocity)
L =%S§CL (Change in lift caused by a change in pitch
q q rate)

Static Stability - The initial terdency of an airplane to return to
steady state flight after a disturbance.

Dynamic Stability - The time history of an airplane's response to a
disturbance in which the aircraft ultimately returns to a
steady state flight,

Neutral Stability -

a) Static - The alrplane would have no tendency to move from its
disturbed conditicn.

b} Dvnamic - The airplane would sustain a steady oscillation caused by
a disturbance.

Static instability - A characteristic of an aircraft such that when disturbed
from steady flight, its tendency is to depart further or
diverge from the original candition of steady flight.

Dynamic Instability - Time history of an aircraft response to a disturbance
in which the aircrafi ultimately diverges.

Flight Contral Sign Convention - Any control movement or deflection that
causes a positive movement or mament (right
yaw, pitch up, right roll) on the airplane
shall be oonsidered a positive control
movesment, This sign convention does not
conform to the oconvention used by NASA and
scre reference text books. This convention
is the easiest to remember and is used at the
Flight Test Center, therefore, it will be
used in the School (Figure 4.1).

Degreas of Freodn - The nuber of paths that a phiysical system is free to
follow.

‘.2
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Symbals:
Symbol

a.c.

FIGURE 4.1. VEHICLE FINED AXIS SYSTEM
AND NOTATION

pDefinition

Aercdynamic Center: A point located o the wing chord
{approximately one quarter of the chord length back of the
leading edye Sfor subsonic f£light) about which the moment
coefficient is practically constant for all angles of attack.
Wingapan

Chordwise Frrce: The cawponest of the resultant acrodynamic
force that is parallel to the aircrafi referenca axis. (i.e.,
fuselage reference line).

4.3
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C.p.

F.,:l,}E'e,Fr

i, 3, k

Ix'I ,Iz

Ixy, Iyz, Ixz

MmN

P,Q,R

P9, X

Mean Aerodynamic Chord: The theoretical chord for a wing which

_has the same force vector as the actual wing (also MAC).

Center of Pressure: Theoretical point on the chord through
which the resultant force acts.

Drag: The camponent of the resultant aerodynamic force
parallel to the relative wind. It too must be specified
whether this applies to a camplete aircraft or to parts
thereof.

Applied force vector.

Control forces on the aileron,
tively

elevator, and rudder, respec—

Camponents of applied forces on respective body axes.

Applied moment vector.

Camponents of the applied moments on the respective body axes.
Angular momentum vector,

Camponents of the angular mamentum vector on the body axes.
Mouments of Inertia: With regpect to any given axis, the moment
of inertia is the sum of the products of the mass of each

elementary particle by the square of its distance from the
axis. It is a measure of the resistance of a body to angular

acceleration. I ----Emr2
nit vectars in the Lody axis system.

Moments of inertia about respective hody axes. I = 2 m (y2 +
22)
Products of inertia, a measure of symmetry.

Lift: The ocavponent of the resultant aerodynamic force
perpendiculay to the relative wind, Tt must be specified
whether this applies to a complete aircroft or to parts
thereof .

Aerodynamic manents abit x, y, and z wehicle axis.

Normal Force: The camponent of the resultant aerodynamic fcrce
that is perpendicular to the aircraft reference axis.

Angular rates about the x, y, and z vehicle axes, respectively.
Perturbed values of P,Q,R, respectively.
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Symbol

u,v,w
u,v,w

X,Y,2

X,y,z

<sa' 69' Gx

0,¢,0

el

4.3 OVERVIEW

Definition

Resultant Aerodynamic Force: The vector sum of the lift and
drag forces on an airfoil or airplane.

Wing area.

Component of wvelocity along the x vehicle axis at zero time
(i.e., equilibrium condition).

Camponents of velocity along the x, y, &nd z vehicle axes.
Perturbed valued of U,V,W, respectively.

Rerodynamic force camponents on respective body axes (Caution:
Also used as aces in "Moving Earth Axis System" in derivation
of Euler angle equatians,)

Axes in the body axis system.

Angle of attack.

Sideslip angle.

Deflection angle of the ailerons, elevator, and rudder,
respectively.

Thrust argle.
Buler angles: pitch, roll, and yaw, respectively.

Total angular velocity vector of an aircraft,
Dimensionless derivative with respect to time.

The purpote of this section is to derive a set of equations chat
describes the motion of an airplane. An airplane has six degrees of freedom
(i.e., it can mwve forward, sideways, and down, and it can rotate about its
axes with yaw, pitch, and roll). In order to solve for these six unknowns,
six simultaneas equations will be regquired. T derive these, the following
ralations will be used:




externally
applied force

<

externally
applied morment

START WITH NEWION'S SECOND LAW

d = ,
= V) (3 linear degrees of
dt v freedom) .
linear
maentum
d = .
= = (H) (3 rotational degrees
dt G’ " of freedam).
angular
mamentum

Six equations for the six degrees of freedom of a rigid body.

4
Bquations are valid with
respect to inertial space only.

4

OBTAIN THE 6 ATRCRAFT EQUATIONS COF MOTION

Fx
longitudinal F

 lateral- G,
Directional

= m (ﬁ + W - RV)

m (W+ BV - Q)

]

' 2 2
Q Iy - PR (Iz - Ix) + (P°-R) I

= m (V+RU - W)
i>1x+muz-1y>—(f\+m) I,
izrz+pouy-rx)+(an-£>) I,

Xz

(4.1)
(4.2)
(4.3)

(4.4)
(4.5)
(4.6)

ihe LeftgagndASide {thS) of the equation represents the applied foroes
and moments on the airplane while the Right-Hand Side (RHS) stands for the

airplane's response to these foroes and maments,

Bafore launching into the

development of these equations, it will first be necessary to cover same

basics.

4.6
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4.4 COCRDINATE SYSTEMS

There are many coordinate systems that are useful in the analysis of
vehicle motion. According to generally accepted notation, all coordinate
systems will be right-hand orthogonal.

4.4.1 Inertial Coordinate System ]
An axis system fixed in space that has no relative motion and in which
\1 Newton's laws apply (Figure 4.2).

EARTH

O

FIGURE 4.2. TRIE INERTIAL COORDINATE SYSTEM

Experience with physical cbservations determines whether a particular
reference system can properly be assumed to be an inertial frame