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1i.1 TE1R4ILOGY

SFlying Qualities is that discipline in the aeronautical sciences that is

concerned with basic aircraft stability and pilot-in-the-loop controllability.
W. the advent of sophisticated flight c,..atrol systems, vectored thrust,
forward-swept wings, and negative static margins, the concept of flying
qualities takes on added dimensions.

In aeronautical literature there are three terms bandied about which are
generally considered synonyus. These terms are ' t flying qualities,"

"stability and control," and "h&ndling qualities." Strictly speaking, they.
are synonymus. .i1I An early publication by Phillips in 1949 defines flying
qualities of an aircraft as those stability and control characteristics that
have an inportant bearing on the safety of flight and on the pilots'

imp~ressions of the ease of flying an aircraft in steady flight and in

maneuvers (1.2). ` Strangely_ enough, the current doctment specifying military

'flying qualities requiremnts, MfL~-F-8785C, Flyir Qualitieo -Pf Piloted Air-
Splae, does not explicitly define the term "flying qualities," -4)%Athe

specification's stated purpose of application is ." .to assure flying
qualities that provide adequate mission performance and flight safety
regardless of design inplementation or flight control system mecluizatio&L"z-,

~1-3• Successful eAecution of the military mission then is the key to flying
,Ulity adequacy. A definition of flying qualities which can be agreed upon
by both the USAF and the US Navy is:4Flying qualities are those stability
aod control characteristics which influence the ease of safely flying an
aircraft during steady and maneuvering flight in the execution of the total

mission" (•4, . -
The academic treatment of "stability and control" is usually limited to

the interaction of the aerodynaxdi: controls with the external forces and
mOMnts on the aircraft. Etkin defines "stability" as "...the tendency or

lack of it, of an airplane to fly straight with wings level" and "control" as
"...steerirq an aixln on an arbitrary flightpath" (1.5). This academic
treatment sw times exclues the forces felt and, especially, exrted on the
cockpit controls by the pilot. "Handling qualities" is the term generally

f1[ used to define this aspect of the problem. "Handling qualities" are defined

"by Cooper and Harper as "...those qualities or characteristics of an aircraft
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that govern the ease and precision with which a pilot is able to perform the

tasks required in support of an aircraft role" (1.1, 1.6). Handling qualities
are definitely pilot-in-the-loop characteristics which affect mission

accnmplishnent.

Figure 1.1 shows that the terms "stability" and "control" do not include
the pilot-in-the-loop or man/machine interface concepts suggested by the term

"hardling qualities." In the terminology relationship su'wn in Figure 1.1,

the pilot is considered to be in the "handlirg qualities" block.

FLYING QUALITIES

TADIL1Y CONROL It4AN UN.3

OPEN LOOP FQ MIL 8783C "LEVELS"

PG PILOT RtATIN

"j"X-j"OPIRATIONAL

UING TILCKINQnUN

PILOT RATING:

ACCEPTABILITY OF "PILOT CONTROLLED"
VEHICLE GIVEN SPECIFIC TASK AND
ENVIRONMENT (QUAUTATIVE) I "lCaw

LEVEL:

ACCEPTABILITY Of "VEHICLE PARAME1ERS"
(FAOIS, RATES, TO FOR A STATED # LEVELS SOMETIMES USED TO
MISSION CATEGORY (QUANTITATIVE) SPECIFY CLOSED LOGC H"

FIGOJ 1.1. FLYING CALIES BREAKtO-
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Stability and control parameters are generally derived from "open loop"
testing, that is, from testing where an aircraft executes specific maneuvers

under the control of an assumed "ideal programmed controller" or exhibits free

response resulting from a more or less 'machanical" pilot input. The

quantitative results are thus independent of pilot evaluation. Many

parameters derived in this fashion such as damping and frequency of aircraft

oscillation are assigned a ILevel" of acceptability as defined by the contents
of Reference 1.3, MIL-F-8785C. The intent is to ensure adequate flying

qualities for the design mission of an aircraft. Other parameters such as

aircraft stability and control derivatives are obtained using parameter

identification techniques such as the Modified Maxinun Likelihood Estimator

(MMLE). These flight test determined derivatives are used as analysis tools
for flying quality optimization which occurs during developmental flight
testing (1.7).

Handling qualities, on the other hand, are generally determined by
perftming specifically defined operationally oriented tasks where pilot

evaluations of both system task accomplishment and workload are crucial.

Pilot ratings defined by the Cooper-Harper Pilot Rating Scale (Figure 1.2) are

frequently the results in this "closed loop" type of testing, altheu4 a few
tasks (such as landing) are assigned a "Level" by MIL-F-8785C. Handling

qualities are currently evaluated at the AFFT using precise pilot-in-the-loop

tracking tasks. Two of these test methos are known as Handling Qualities
During Tracking (HQ)T) and Systes Identification From Tracking (SIM) (1.6,
1.8, 1.9).
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Tb ccuplicate matters, sometimes "closed loop" tasks are required to

gather stability and control data. An exwple is muneuvering stick iorce

gradient, which requires stabilizing on aim airspeed at high load factor.

This is a "closed loop" task for the pilot, particularly if the aircrat-c- has a

low level of stability. Because of such complications and interactias

between "stability," "oontrol," and *handling qualities," the terw "flyiang

qualities" is considered the more inclusive term and is customarily used at

the AFFMC to the maximum extent possible (1.1). Unfortunately, current Air
Force Flight Dynamics Laboratory practice is to use the tv-ms "flying

qualities" and "handling qualities" synonmously without defining either one

(1.3).

1.2 PHILWSOPHY CF FLYING (MLITIES TESTING

The flying qualities of a particular aircraft cannot be assessed unless

the total mission of the aircraft and the multitude of individual tasks

associated with that mission are defined. te mission is inatially defined

when the concept for a rwi aircraft is developed however, missions can be

coqpletely changed during the service life of an aircraft. IB the formulation

of a test and evaluation program for any aircraft, th• mission nmust be defined

and clearly understood by all test pilot and flight test engineer mswbers of

the test team (1.4).

The individual tasks associated with the aoxzmplishment of a total

mission must also be determined before the ts~st and e:valuation program can be
planned. Although individual task-. may be further subdivided, a military

mission will normally roire the p 4ot (crew) to perfr tha following tasks:

1. Preflight and gznd operatio

2. Takeoff and Cl~ift

3. Navigation

4. Mission M~rduerirag/ftploq'rrert

5. Approach and Uading

C' 6. Postflight and Ground Operation I
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The tasks for which the "best" levels of flying qualities are required are the
essential or critical tasks required by the total mission. For a fighter or
attack aircraft performing air-to-air or air-to-ground maneuvers (and tr•ining
for those maneuvers), the greatest emiasis must be placed on the flying
qualities exhibited while performing these critical tasks. For a baober or

tanker aircraft, low level terrain following, or air-to-air refueling might be
critical maneuvers. These tasks vary with aircraft mission. In any case,

adequate flying qualities mist be provided so that takeoff, approach, and
landing mamuvers can be consistently accoplished safely and precisely (1.4).

The primary reason for conducting flying quality investigations then is
to determine if the pilot-aircraft combination can safely and precisely
perform the various tasks and maneuvers required by the total aircraft
mission. This determination can often be made by a purely qualitative
aproach; however, this is usually only part of the complete test program.
Qantitative flight testing must also be perform tot

1. Subetatiat pilot qualitative opinion.

2. Dooment aircraft characteristics which particulArly enhance or
degrade sme flying quality.

3. Provide data for comparing aircraft characteristics and for
improving aircraft and aizinlator design criteria.

4. Provide baseline data for future expansion in teram of flight or
center of gravity envelopes or chne in aircraft mission.

5. Determine oompliance or nonxupliance with flying qualities
guarantees, apompriate military specificatios, and federal
aizworthiness regulations, as applicable.

A balance between qualitative and quantitative testing is nom•ally achieved in

any flying quality flight test evaluation program (1.4).

1.3 FLYIM q=TYr MwTwa

In DeOmber 1907, the Lrited States Arm Signal Corps issued Signal Corps

Specification 486 for procWuremnt of a heavier-than-air flying machine. The

specification stated, *During this trial flight of one hour it m=st be steered r

1.6



in all directions without difficulty and at all times be under perfect control
and equilibrium." This was clearly a flight demonstration requireent (1.10).
The Air Force Lightweight Fighter Request for Prc~osal in 1972, in addressing
stability and control, specified only that the aircraft should have no
handling qualities deficiencies which would degrade. the accomplishment of its
air superiority mission (1.11, 1.12). In response, the contractor predicted

that the handling qualities of the prototype would "...permit the pilot to
maneuver with complete abandon" (1.12, 1.13). The requirements placed on the
Wright Flyer and the Lightweight Fighter contractor's flying quality

predictions were remarkably similar. From these exaMples, one might assume
that the art or science of specifying flying quaity requirements has not

progressed since 1907.

In the late 1930's, flying quality requirements appeared in a single but
all encompassing statement apearing in the Army Air Corps designers handbook:

""e stability and control characteristics should be satisfacto:y' (1.10).
In 1940, the National Advisory Coamittee for MAronautics (ACA) con-

centrated on a sophisticated program to correlate aircraft stability and
control characteristics with pilots' opinions on the aircraft's flying

qualities. They determined paramters that could be measured in-flight which

could be used to quantitatively define the flying qualities of aixcraft. The
NACA also started accumulating data on the flying qualities of existing
aircraft to use in developing design requirements (1.14).

Probably the first effort to set down an actual specification for flying

qualities was perforum by I'-ner for the airlines during the Douglas DC-4
developrent (1.14). During World War II, research branches of both the Army
Air Corps and Navy became iMvlved in flying quality development and started
to build their own capabilities in this area. An important study headed by
Giliuth, published in 1943, was the culmination of all of this work up to that
time (1.15). This study wm s lemanted by additional stability and control
tests wndwted at Wright Field under the auspices of Perkins (1.16). Shortly
thereafter, the first set of Air Cozps requirewnts was L•sued as a result of
Joint effort beten the A=T Air Carps, the Navy, and WC& At the same

time, the Navy issued a similar specification. These specifications were
superseded and revised in 1945 (1.10, 1.17). Perkins also published a manual
mich presented methods for corndcting flight tests and reducing data to
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demonstrate compliance with the stability and ccntrol. specification. This

manual, published in 1945, is remarkably similar to, and is the forerunner of,

the present USAF Test Pilot School Flying Qualities Flight Test Handbook

(1.16).

Progress in the development of military flying quality specifications is

well documented in References 1.10 and 1.18. Work on MIL-F-8785 was started

in 1966 and first published in August 1969 as MIL-F-8785B(ASG). It was

revised in 1974 and again in 1980 when it was republished as MII-F- 8785C.

The Background Information and User Guide for 1MII-F-8785B(ASG) (1.18) explains

the concept and arguments upon which the current requirements were based.

Data reduction techniques reccmmended to determine military specification

coapliance are essentially those presently in use at the USAF Test Pilot

School. The School was actively involved in the development of

MIL-F-8785B(ASG), and was first used by students evaluating their data group

aircraft (T-33A, T-38A, and B-57) against specification requirements.
MIL-r-8785C was first used by Class 81-A evaluating the WC-135, T-38, F-4, and

A-7 aircraft.

The School also participated in development of MIL-F-83300 which places
flying quality requirements on piloted V/STOL aircraft (1.19). Reference 1.20

is a xzpnon background document for this specification. No effort was made

to evaluate the School's H-13 helicopters against specification reuirements
(1.21).

Forma discussions of aircraft flying qualities almost always revolve

about the formal military document MIL-F-8785C. As menticred earlier, this
specification focuses almost entirely on open loop vehicle characteristics in

atteapting to ensure that piloted flight tasks can be performed with

sufficient ease and precision; that is, the aircraft has satisfactory handling

qualities. This aproach is quite different from that used to specify the
acceptability of autmatic flight otrol systems, wheru desired closed loop

performance and reliability are specified. This occurs despite the fact that
most flying quality deficiencies appear only when the pilot is in the loop
acting as a high-gain feedback element (1.22).

This task-related nature of handling qualities is nw popularly

recogized. Horner, for modern flight control systems concepts, it is not
quite so clear just what the critical pilot tasks will be; therefore, a

problsm exists in developing design criteria for fly-by-wire and higher order



control systems. A conplicating factor is the changing nature of air warfare

tactics as a result of the changing threat, improving avionics capability, and

the increasing functional integration of hardare and aircraft subsystem

(1.23).

Military flying quality specifications have been failures as
"requirements." That is, they have not recently (at least since 1970) been

used as procurement compliance documents. The search for an alternative

approach to the specification of aircraft flying qualities has been going on

for sone time. The difficulty is in developing a physically sound approach

which is acceptable to the military services and to those contractors who must

design to stated requirements (1.23). 'he carrent atterpt to define an

approach is an Air Force Flight Dynamics Laboratory funded effort by Systems

Technology Incorporated to develop a military standard for flying qualities to

replace the present MIi-F-8785C.

It is generally true that developing engineering specifications or

standards for smnething so elusive as handling qualities is an art form;

however, there is no basis for believing that Cooper-Harper ratings-properly
, obtained-are not adequate measures of handling qualities. Pilot opinion

rating is the only acceptable, available method for handling qualities

quantification. In fact, in current literature pilot opinion rating is

considered to be synorrflas with handling qualities evaluation (1.22, 1.23).

1. *4 COCEM~IS OF STABILITY AND CC~RM~L

In order to echibit satisfactory flying qualities, an aircraft must be

.ooth stable and controllable. 1he optinum "blend" depends on the total

mission of the aircraft. A certain stability is necessary if the aircraft is

to be easily controlled by a hm~an pilot. Hkoever, too much stability can

severely degrade the pilot's ability to perform maneuvering tasks. The

optinzmn blend of stability and control should be the aircraft designer's goal.

Flying qualities greatly enhunce the ability of the pilot to perform the

intended mission en the optimum blend is attaine (1.4).
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1.4.1 Stability
An aircraft is a dynamic system, i.e., it is a body in motion under the

influence of forces and moments producing or changing that motion. In order

to investigate aircraft motion, it. is first necessary to establish that it

can be brought into a condition of equilibrium, i.e., a condition of balance

betwen opposing forces and moments. Then the stability characteristics can

be determined. The aircraft is statically stable if restoring forces and

moments tend to restore it to equilibri•m when disturbed. Thus, static

stability characteristics must be investigated from equilibrium flight

conditions, in which all forces and moments are in balance. The direct
in-flight measuremnt of some static stability parameters is not feasible in

many instances. Therefore, the flight test team must be content with

measuring parameters which only give indications of static stability.

However, these indications are usually adequate to establish the mission

effectiveness of the aircraft conclusively and are more meaningful to the

pilot than the nuerical value of stability derivatives (1.4).

The pilot makes changes from one equilibriun flight condition to another

through one or more of the aircraft oodes of motion. These changes are

initiated by exciting the modes by the pilot and terminated by suppressing the

modes by the pilot. This describes the classic pilot-in-the-loop flight task.

These modes of motion may also be excited by external, perturbations. The

study of the characteristics of these modes of motion is the study of dynamic

stability. Dynamic stability may be classically defined as the time history

of the aircraft as it eventually regains equilibrium flight conditions after

being disturbed. Dynamic stability characteristics are measured durirg

nozxuilibrium flight conditions when the forces and mwents acting on the

aircraft are not in balance (1.4).
Static and dynamic stability determine the pilot's ability to control t'e-

aircraft. WIile static instability about any axis is generally undesirable,
excessively strong static stability about any axis degrades controllability to

an unaceptable degree. Ebr scme pilot tasks, neutral static stability may

actually be desirable because of increased controllability which results.

Obviously, the optimum level of static stability depends on the aircraft

mission (1.4).
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The modes of motion of the aircraft determine its dynamic stability
characteristics. The most limprtant characteristics are the frequency,

damping, and time constant of the motion. Frequency is defined as the "numzbe
of cycles per unit time" and is a measure of the "quickness"' of the motion.

Damping is a progressive diminishin of amplitude and is a measure of the

subsidence of the motion. D&nping of the aircraft modes of motion has a
profound effect on flying qualities. If it is too low, the aircraft motion is

too easily excited by inadvertent pilot inputs or by atmospric turbulence.

If it is too high, the aircraft motion following a control input is slow to
develop, and the pilot way describe the aircraft as "sluggish.' The aircraft

mission again determines the optimum dynamic stability characteristics.

However, the pilot desires sane damping of aircraft modes of motion. The time

ocistant of the motion is a measure of the overall quickness with which an

aircraft, once disturbed from equilibriun, returns to the equilibrium

condition (1.4).
Static and dynamic stability prevent unintentional excursions into

7 dangerous flight regiwes (with regard to aircraft strength) of dynanuc

pressure, normal aoceleration, and sideforce. The stable aircraft is

resistant to deviations in angle of attack, sideslip, a&M bank angle without

action by the pilot. These characteristics not only inprme flight safety,

but allow the pilot to perform maneuvering tasks with smothness, precision,

and a minim= of offort (1.4).

1.4.2 ntrol

Oontrollability is the capability of the a&Lcraft to perfom any

manouverin mquired in total mission accamplishwrnt at the pilot's

xmnd.L Th aircraft characteristics should be such that these maneuvers can

be perftMd Meisely and sinply with miniIM pilot effort (1.4).

1.*5 AnXTF? CI¶IOL WSMS

The aircraft flight control s-ytetm consists of all the imhanical,
electrial, and hydraulic elmmts %*dch oonmert cuckpit control inputs

into aconmtrol surface deflti. s, or action of other control
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devices which in turn change the orientation of the vehicle. The flight

cxxtrol system together with the pcwxrplant control system enables the pilot

to "fly" his aircraft, that is, to place it at any desired flight condition

within its capability.

The powerplant control system acts as a thrust metering device, while the

tlight control system varies the moments about the aircraft center of gravity.

Through these control systems, the pilot varies the velocity, normal

acceleration, sideslip, roll rate, and other parametjes within the aircraft's

erwelope. How easily and effectively he accamplishes his task is a measure of

the suitability of his control systems. An aircraft with exceptional

perfor•nance characteristics is virtually worthless if it is not equipped with

ac least an acceptable flight control system. Since the pilot-control system

.qcts on an aircraft with specific static and dynamic stability properties, it

follows that the characteristics of the closed-loop system must be

satisfactory.

The control system must meet two conditions if the pilot is to be given

mutable om=and oer his aircraft.

1. It uast be capable of actuating the control surface.

2. It ,nst provide tke pilot with a *feel" that bears a
satisfactory relationship to the aircraft's reaction.

There axe ;sarous aircaft control system designs. itfver, these

syste may be rather simply classified. Aenlynwzdc controls can be broken

dcbm into "reversible" and ir=rasible" sytems. These system can be

simple mechancal controls in which the pilot suwlies all of the force

reuiixeu to mrve the control surface. This type system is called "reversible"

siDC* all of the forces repaird to ovwrcxi the hige a•imnts at the ccwtrol

surface are transmitted to the ocak*it controls. Ihe system may have a
ecwanical, hmdrai!ic, or acne other type of booting device, which mspzlies

m ~specific proportion of the control force. %ystems of this nature are

called *boosted control systems." tHmever, they are still considered

"roversible. Even though the force required of the pilot is less than the

Control onrftce hine moments, the force required is proportional to these

mments. In otlwr wards, the pilot famishes a fraction of the force required
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to overcoae the hinge narents t-iroughout the aircraft's envelope. The control
system is said to be "irreversible" if the pilot actuates a hydraulic or
electronic device which in turn moves the control surface. In this system,
the aerodynamic hinge moments at the control surface are no longer transmitted

to the concrol wheel or stick. Without artificial feel devices, the pilot
would feel only the force required to actuate the valves or sensing devices of

his powered control system. Because of this, artificial feel is added which
approximates the feel that the pilot senses with the "rerersible" system.

A thorough knowledge of the aircraft control system is necessary before a

flying quality evaluation can be planned and executed. The flying qualities
test team must be intimately familiar with the control system of the test
aircraft. Is the system reversible or irreversible; what type of control

surfaces does it have; is a stability augmentation system incorporated, if

so, how does it work; is an autopilot included, if so how does it work; are
there interconnects between control surfaces (e.g., rudder deflection limited
with landing gear up or ailerons limited when the aircraft exceeds a certain

airspeed); and what malfunctions effect flying qualities? Total undersfnding

of the test aircraft is necessary in order to get the most information out of
a limited flight test program (1.1).

Aircraft control systems will be checked against several paragraphs of
MIL-F-8785C here at the USAF Test Pilot School during student evaluation of

data group aircraft.

1.6 SWMMAMY

An aircraft's flying qualities evaluation incorporates all aspects of the

aircraft's stability and control characteristics, controi system design, and

pilot-in-the-loop handling qualities. The intecactiin of all these elements

determines the ability of a pilot/a-xcraft/flight control carbinaticn to

safely and successfully accomplish a mission.

1C
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1.7 USAF TEST P=LOT SCHOOL CURRICULLM APPROACH

i. Review the mechanical tools, vectors, matrices, and differential
equations required for flying quality analysis.

2. Develop the aircraft equations of motion.

3. Examine static longitudinal and lateral-directional aircraft charac-
teristics and steady state maneuvers.

4. Analyze the aircraft longitudinal aid lateral-directional dynamics
modes of motion.

5. Study specialized flying quality topics such as stall/post-
stall/spin and departure, engine-out, and qualitative and
operational aircraft evaluations.

6. Discuss advanced flying quality topics. These include the using
systems identification techniques for closed loop handling qualities
evaluations and extracting stability derivatives from flight test
data. Disouss effects of nigher order control systems on aircraft
flying qualities.

I * 14
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2.1 inRWDUCTICN

This chapter studies the algebra and calculus of vectors and matrices, as

specifically applied to the USAF Test Pilot School curriculum. The course is

a prerequisite for courses in Equations of Motion, Dynamics, Linear Control

Systems, Flight Control Systems, and Inertial Navigation Systems. The course

deals only with applied mathematics; therefore, the theoretical scope of the

subject is limited.

The text begins with the definition of determinants as a prerequisite to

the remainder of the text. Vector analysis follows with rigid body kinematics

introduced as an application. The last section deals with matrices.

2.2 DETER4INANTS

A determinant is a function which associates a number (real, imaginary,

or vector) with every square array (n columns and n rows) of nunters. The

determinant is denoted by vertical bars on either side of the array of

numbers. Thus, if A is an (n x n) array of numbers %here i designates rows

and j designates columns, the determinant of A is written

a11 a12 * .. an

a2 1  a 2 2 .. .an

JAI - JaijI

2.2.1 First Minors and Cofactors
When the elements of the ith row and j th column are removed from a

(n x n) square array, the deteminant of the remaining (n-i) x (n-1) square

array is called a first minor of A and is denoted by %ij. It is also called

the minor of ajj The signed minor, with the sign detenmined by the sum of

C2.
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the row and coluTn, is called the cofactor of aij and is denoted by

Aij = (-l)i+J Mij

Exwple:

a 11  a 12 a13

If JAI laijl = a2 1  a22 a23

a 31 a3 2  a3 3

then,

M - a 22  a 23M 2j l 3a3 2  a3 3  Ia 2 1  a2 3

Also, A,, = (-)1+1 M1i - (+1) M a • ad = (-1)3+2 M32  (-1) M32

2.2.2 Determinant Epansion

The determinant is equal to the sum of the products of the elements of

any single row or column and their respective cofactors; i.e.,

IAI w ailAil + ai2Ai 2 + .+ ainAin =t aijAij for any single ith row.
j=1

or

-ajAj + a2jA2j + I njAnj aijAij, for any single j

columnn.

2.2.2.1 yxPp a 2 x 2 Determinant. Eqpanding a 2 x 2 determinant about

the first row is the easiest. The sign of the cofactor of an element can be

determined quickly by observing that the suns of the subscripts alternate from

eNen to odd when advancing across rows or doam columns, meaning the signs
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alternate also. For exmple,

if JAI 121:.a a21 a22

the signs of the associated cofactors alternate as shown,

++-: +
By deleting the row and column of all, w- find its cofactor is just theelement a22 (actually (+1) x a22] for a 2 x 2 array, and likewise the cofactorfor a12 is (-a2 1) [or (-1) x a21]. The sum of these two products gives us the
expansion or value of the determinant.

A = a11 Al+ a1 2 A1 2 = a11 a 22 + a 12 (-a 2 1) 1 1  2 2 - 1 2  2 1

This simple eaxunle has been shown for clarity. Actual calculation of a2 x 2 determinant is easy if we just reMtuber it as the subtraction of the
cross MIltiplication of the elemnts. For example,

(+) H

IR= 18X 31 a (8)(5)-(3)(6) = 226 5

2.2.2.2 Dpanding a_3 x 3 Determinant.

%2~ "13IAI I a j I a2 , a,2 a23

a31  a32  a33

C2

2.3
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Expanding I A about the first row gives

JAI =ý all1 All + a12kA2 +a1 3 A1 3 =

a22 a23 a21 a 2 3  a21 a22

a (+1I) +a12 (-i) +a13 (+I)

a32 a3 3  a 31 a 33  a 3 1  a3 2

a1 1 (a2 2 a3 3 - a23 a32) - a12 (a21 a33 - a2 3 a3i) + a1 3 (a2 1 a32- a2 2 a3 1)

Expanding and grouping like signs,

a a1 1 a22 a3 3 + a1 2 a2 3 a 3 1 + a13 a21 a3 2

"-a1 3 a2 2 a3i - al a2 3 a3 2 - a12 a2 1 a3 3

Close inspecUton of the last equation shows a quicker method for 3 x 3
determinants using diagonal multiplication. If the first two columns are

appended to the determinant, six sets of diagonals are used to find the six
terms above. The signs are determined by the direction of the diagonal as

shon in the illustration.

(1 +) (+)
Sal i1 a 12 ,._..--,ral 3 1 , .. •al .''l2

A- a 1  ~''ba 2  aj a 2

31 3 31 32

Ebr example,
(+) (+) +

2 2-1-
JAI a 5"- •"Li" " 5

-2-1 3
(-) (-) (-) •

- (2) (5) (3) + (-1)(4)(1) + (6) (3) (-2) - (6) (5) (1) - (2) (4) (-2) - (-1) (3)

- 30 + (-4) + (-36) -30- (-16) - (-9) -- 40 + 25 -15
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The quicker methods of calculating determinants are useful for the two
simple cases here. The row expansion method will be more useful for

calculz.t::.ng vector cross products. The use of determinants for solving sets

of linear equations will be discussed later in this chapter in the matrix

section. Determinants will also be used in solving sets of linear

differential equations in Chapter 3, Differential Equations.

While the general tool for evaluating determinants by hand calculation is

simple, for determinants of greater size the calculations are lengthy. A

5 x 5 determinant would contain 120 terms of 5 factors each. Ev'8Ill4tinq

larger determinants is an ideal task for the coiater, and standard programs
are available for this task.

2.3 VECTOR AND SCALAR DEFIMNITCS

In general, a vector can be defined as an ordered set of "n" quantities

such as <al, a2 , a3 , ... , an>. In TPS, vector analysis will be limited to

two.-and t~hree-dimnensional space. Thus, xI + yT and xI + y3 + ziR are
representations of vectors in each space, u,'ile xA, yT, and zAt are referred

to as cjonents of the vector.

Phy~sically, a vector is an entity such as force, velocity, or

acceleration, which possesses both magnitude and direation. This is the usual

approeah in applied physics and engineering, and the results can be directly

applitA to courses hare at the School.

Almost any physical discussion will involve, in addition to vectors,

entuties such as volume, mass, and work, which possess only magnitude and are

kncagn as scalars. Th distinguish vectors fram scalars, a vector quantity will

be indicated by putting a line above the syu:ol; thus, •, and j will be used

to represent force, velocity, and acceleration, respectively.
The magnitude of vector F is indicated by enclosing the syntol for the

vector beween absolute value bars, IFI. Graphically, a scalar quantity can
be adequately represented by a mark on a fixed scale. Tb represent a vector
quatity requires a directed line segment whose direction is the saeas the
drection of the vectar and whose mamed lenth is equal to the magnitude of

c the vector.
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The direction of a vector is determined by a single angle in two

dimensions and two angles in three dimensions, angles whose cosines are called

direction cosines. This text will not deal directly with direction cosines,

so no ex0nple is necessary.

2.3.1 Vector Equality

Two vectors whose magnitude and direction are equal are said to be equal.
If two vectors have the same length but the opposite direction, either is the

negative of the other. This is true even when graphically two vectors are not

physically drawn frmn the same starting point.

A vector that may be drawn from any starting point is called a free
vector. However, when applied in a problem, the position of a vector may be

important. For instance, in Figure 2.1, the distance of the line of

application of a force from the center of gravity of a rigid body is critical

if calculatirg nmoents, although the actual point of application along the

line isn't critical.

moo . Fd

d • UNE OF ACTION

FIGJR 2.1. MC0W CATOJLMTK*,

for other applications, the point of action as well as the line of action
must be fixed. Such a vwctcr is usually referred to as bound. The velocity
of the satellite in the orbital mechanics probim shown in Figure 2.2 is an
exaspie of a bouwd vector.

2.6



ORBITAL PATH . POINT OFACTION

SATELLITE LI- NE OF ACTION

FIGURE 2.2. EXA•L OF A BOUND VETOR

2.3.2 Vector Addition
Graphically, the sun of two vectors A and B is defined by the familiar

parallelogram law; i.e., if A and * are drawn from the same point or origin,

and if the parallelogram having K and B as adjacent sides is constructed, then

the sum T + F can be defined as the vector represented by the diagonal of

this parallelogram which passes through the caumn origin of A and B. Vectors

can also be added by drawing them "nose-to-tail." See Figure 2.3.

ALSO

FIGUM, 2.3. ADrITCN UP VEWLMS
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Graphically frao Figure 2.3, it is evident that vector addition is

xcu==tative and associative, respectively,

A+B B+A and -A+ (B +C) =(A+B) +C

2.3.3 Vector Subtraction

Vector subtraction is definer as the dbfference of two vectors A and B,

where

and is defined as a vector with the same magnitude but opposite direction.

See Figure 2.4. This introduces the necessity for vector-scalar multipli-

cation.

.- B

FIGURE 2.4. VECTORI SUBTIACrMcx

2.3.4 Vector-!;calar Multipliecation

The produi-t of a vector and a scalar follows algebraic rules. The

proct of a scalar m and a xtor K is the vector ma, Qxzs length is the

prophet of the esolute value of m and magnitude of A, and whose dirnction is

the sa as the direction of A, i4 m is positive, and op it&oro it. if m is

negative.
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2.3.5 Unit and zero Vectors
Regardless of its direction, a vector whose length is one (unity) is

called a unit vector. If I is a vector with magnitude other than zero, then

unit vector ' is defined as F/I•i, where "a is a unit vector having the same

direction as 5 and magnitude of one. It happens that the components of a unit

vector are also the cosines of the angles necessary to define the direction.

Unit vectors in the body axis coordinate s1stem will retain the bar symbol;

i.e., '1, T and W.

1he zero vector has zero magritude and in this text has any direction.

It is notationally correct to designate the zero vector with a bar, •.

2.4 LAWS CF IMC7R - SCALAR ALGEBRA

If 1, 1, and U are vectors and m and n are scalars, then

i . 24 !inm Cam~tative• Multiplicýation

2. m (n (mn) A Associative Maltiplication

3. (m + n) - 4A + nX Distributive

4. m0Z+ i) -rZ + stributive

,tw is involve multiplication of a vector by one or more scalars.
Psodrts of vectors will be defined later.

'Lhw laws, along with the vector ddtion law alxeady intoduced,
enab.e wa:r exjations to be treated the saw uy as =inary wAlar

algebraic equations. Fbr exarple,

ifA+B

then by algeara
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2.4.1 Vectors in Coordinate Systems
The right-handed rectangular coordinate system is used unless otherwise

stated. Such a system derives its name from the fact tiat a right threaded

screw rotated through 900 in the direction from the positive x-axis to the

positive y-axis will advance in the positive z direction, as shown in Figure
2.5. •ractically, curl the fingers of the right hand in a direction from the

positive x-axis to the positive y-axis, and the thumb will point in the

positive z-axis direction.

FIGURE 2.5. RIGHT-HANDE COORDINATE SYS,=

An important set of unit vectors are those having the directions of the

positive x, y, and z axes of a three-dimensional rectangular coordinate system

and are denoted 1, j, and k, respectively, as shown in Figure 2.5.

Any vector in three dimensions can be represented with initial point at

the origin of a rectangular coordinate system as shown in Figure 2.6. The

perpendicular projection of the vector on the axes gives the vector's

caponents on the axes. Multiplying the scalar magnitude of the projection by

the approiriate unit vector in the direction of the axis gives a component
vector of the original vector. Note that summing the ocaponent vectors

graphically gives the original vector as a resultant.

2
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l z r-P(x, y, Z)

FISR 2.6. CO4P)ETS OF A VCTOR

In Figure 2.6 the camponent vectors are Aji, Aj, and Ahk. The sun or
resultant of the conents gives a new notation for a vector in texans of its

ccrponents.

A i = +Aj + Ak

After itoticing that the ocoxrxinates of the end-point of a vector A 1ose tail
is at the origin are equal to the coonents of the vector itself (A X,
A, - y, and A- z), the vector may be more easily written as

A =Xi + yj +7

The vector frcm the origin to a point in a coordinate system is called a

_ition vctor, so the vector notation above is also the prsition vector for
the point P. The sawx definitions for notation, ccqxnents, and position hold
ibr a tUo-dirnasional system with the third cAxvent aliwinated.

'Ie magnitixe is easily caljilated as,

A 222 or A +

ir 4t,+A ry ~ Y

2.1i
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An arbitrary vector from initial point P(xl1 Y1 , zl) and terminal point k

Q(x2 ' Y2 ' z2 ) such as shon in Figure 2.7 can be represented in terms of unit

vectors, also.

z 42,y 2, Z2)

2y

x

FIGURE 2.7. ARBITRARY VEC • RES=ATION

First write the position vectors for the two points P and Q.

rI X 1 I i + YIJ + ZIR

and

r2  + 2 + y 2 k+z2k

Thmn usiiN addition,

I + 2

or
r • 2- r 1 (x 2-x1)'I + (Y: yl1) + (z 2-z 1

2.1
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2.4.2 Dot Product
In addition to the product of a scalar and a vector, two other types of

products are defined in vector analysis. The first of these is the dot, or

scalar product, denoted by a dot between the two vectors. The dot product is

an operation between two vectors, and results Jxn a scalar (thus the name

scalar product). Analytically, it is calculated by adding the products of

like couponents. This is, if

a = a "+7a2 + a3 k

and

b ~+ b2 j +bk

then

= a b + a2 b2  + a3 b

which is a real number or scalar.

Gecmetrically, it is equal to the product of the magnitudes of two

vectors and the cosine of the angle between them (the angle is measured in the

plane formed by the two vectors, if they had the sane origin). he dot

product is witten

'B 51, ICos G

(2i- lj + 4k) - (-4+ 3j + 5k) - (2)(-1) + (-1)(3) + ())(5) 15

The maqitias are

4ý4+ 1+ 6 4.6

and

'11+9+25 , 5.9

Mrefore, solving fox

Cos 0 15 / (4.6) (5.9) 15/27.1 0.553

Cs 0 = 56.10
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Scme interesting applications of the dot ?roduct are the geometric
implications. For instance, the geometric, scalar projection of one vector on

another is shown on Figure 2.8.

A

ei

111 cos e

FIGURE 2.8. GEOMRIC PJECTION OF VECTOS

Using trigonanet/y, the projection of A on B is seen to be equal to IAI cos E.

A quick method to calculate such a projection without krnwing the angle is to

calculate the dot product and divide by the magnitude of the vector projected

on to. That is, the projection of X on to N is equal to A • B-/ I-I A Ilcos 0.

Several particular dot products are vorth mnntionxing. If one of the
vectors is a unit vector, the dot product becoms

. B Il Ie ,•Cos (1) 1 C1 cosO Cos 0,

which is the projection of 1 on i or more importantly the ccnponent of 9 in

the direction of i. Also note the dot product of a vector with itself is just

equal to the magnitue squared, since the angle is zero and cos 0 1 1. More
useful is the situation where two non-zero vectors are perpendicular

(orthogonal). The dot product is zero because the cosine of 90 degrees is
zero. Thus, for non-zero vectors the dot product may be a test of

orthogmality. Exa&ples of these properties using standard unit vectors are

i. i - j - " - 1

and _ - _ 0
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2.4.3 Dot Prcduct Laws
If A, B, and C are vectors and m is scalar, then

1. A B = B . A cuiutative Product

2. A. (B+B ) = A. B+A.C DistributiveProduct

3. m(A- B) = (mA). B = A (nB) Associative Product

2.4.4 Cross Product

The third type of product involving vector operations is the cross, or
vector product, denoted by placing an "X" between two vectors. By definition
the cross product is an operation between two vectors which results in another

vector (thus, vector product). Again both analytic and geanetric definitions
are given.

Analytically, the cross product is calculated for three-dinensional

vectors (witinut using memry) by a top row expansion of a determinant.

A XB= a1 a2 a3

b 1 b 2 b 3

a82 a8381 8r+(J)a 3 a 1  a 2
S +-1 + k

b2  b3  b1  b3  bI b2

M (a2 b 3 - a3 b2 )1 + (a3 b, - a, b3) + (a 5b2 - a 2 bl )k

Fbr example, (21 + 4T + 59) X (371÷ + +•

2 4 5

3 1 6

( ( (6)-(5) (1)1! - ((2) (6)-(3) (5))- + [ (2) (1)-(3) (4) ]

1971 + 3T - 10R
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The geometrical definition has to be approached carefully because it must

be remembered that the gecmetrical definition is not a vector. The magnitude

(a scalar) of the cross product is equal to the product of the two magnitudes

and the sine of the angle between the two vectors. Tnus

IiX i = IlI 1il sin e

Wile the magnitude is deteriined as above, the direction of the resultant

cross product vector is always orthogonal to the plane of the crossed vectors.

The sense is such that when the fingers of the right hand are curled fran the

first vector to the second, through the smaller of the angles between the

vectors, the thrmb points in the direction of the cross product as shown in

Figure 2.9. Note the inportance in the order of writing A X B since

7 X B E X k ThatA X B= -BX A is easily seen using the right-hand rule.

FI(fIS 2.9. GED AI(E C DE'INITICN OF THE CKSS PF4DEJCT

The cross produat vector 5 can be represented as

i AX - iAI jil sin 0u-

where a is a unit vector in the dIrection of u, which is perpendicular to the
plane containing A and -B.

Som. practical applications of the above definitions using the sine of

zero and 900 are shmm for unit vectors of a rectmaular coordinate system. L
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and its direction beccnes tangential to the trajectory. Uhe As/At portion
gives the magnittue of the derivative which should be noted as the speed of
the particle or a change of distance per time. In summary, the first
derivative of a vector function is tangential to the trajectory and has a
magnitude that is the speed of the particle:

Using differentiation law four to take the derivative of the vector

written in the form of magnitude times a unit vector,

i(t) = r(t)r, as follows,

d E(t) -d [r(t) r] d r(t) + r(t)dr
-t dt dt

note that the linear velocity using this form of a vector has two camponents,
the first is the rate of change of the scalar function with direction the same
as the original vector itself. The second caoponent is the scalar function
itself with the rate of change of the unit vector as its direction. We know
,that the unit vector doesn't change magnitude, but it may change direction
giving a non-zero derivative. In the develoqpment of the derivative earlier,
this was overlooked since the rate of change of the , , and vectors that
are fixed in a coordinate system do not change direction or magnitude.

2.6 EFURCE SYSTEM'

Linear velocity and acceleration have meaning only if expressed (or
implied) in reference to another point and only if relative to a particular
frame of reference. In this text for discussions of single reference systems,
the Linear velocity and acceleration will always be relative to the origin of
the reference frame in which the problem is given and will be denoted by
single letters, V and a. If there are two- reference systems in the problem,
the notattuon will be changed to read

VA/B

which means the velocity of point or reference A relative to reference B. To
take a time derivative of a vtor relative to reference system "A," the

notation will be
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2.5 LINEAR VELOCITY AND ACCELERATION

The time derivative of a position vector relative to some reference

system is the linear velocity. Note in particular that the velocity of a

'particle is a vector that has a direction and a magnitude. The magnitude of

the velocity is referred to as spe. The second derivative is the linear
acceleration.

Graphically, the derivative of a vector is illustrated as shown in Figure

2.10.

12 

PATH OF PARTICLE, 
P

FIGURE 2.10. ILUTRATION OF THE DERIVATIVE OF A POSWITION VWTC

The difference beteen position vectors r(t + At) and r t) is the

numerator of the definition of the derivative. The arc length of the

trajectory for some At is As. If we neglect the division by at and are

Smrnad only with direction of the derivative, the difference of the tb9

vectors is just Ar which would have the direction as shown in Figure 2.10.

The derivative for a vector r(t) can be expanded by nmltiplying by the

quantity As/As 1, as follows,

dr tim Ar lnm Ar As UM Ai r As
t At-0 3E At-o it As At+o &q 'AT

but aste+O, iA - As*thereore2im Ai/- tsince its magnitude i one
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and its direction becanes tangential to the trajectory. Vhe As/At portion
gives the magnitude of the derivative which should be noted as the speed of
the particle or a change of distance per time.. In sumnary, the first

derivative of a vector function is tangential to the trajectory and has a

magnitude that is the speed of the particle'

Using differentiation law four to take the derivative of the vector
written in the form of magnitude tines a unit vector,

i(t) = r(t)2, as follows,

d (t) d d MrSt) r = dr dr r
dt dt - (t r-+ r(t) dr

note that the linear velocity using this form of a vector has two components,

the first is the rate of change of the scalar function with direction the aame

as the original vector itself. The second component is the scalar function

itself with te rate of change of the unit vector as its direction. We kncw
ithat the unit vector doesn't change magnitude, but it may change direction
giving a non-zero derivative. In the develcmmnt of the derivative earlier,

this was overlooked since the rate of change of the 1, 3, and R vectors that

are fixed in a coordinate system do not change direction or magnitude.

2.6 RMR.E SYSTES

Linear velocity and acceleration have meaning only if expressed (or
implied) in reference to another point and only if relative to a particular

fram of reference. In this text for discussions of single reference systems,
the linear velocity and acceleration will always be relative to the origin of

the reference fraw in which the problem is given and will be denoted by

single letters, V and I. If there are two eferne systems in the problem,
the notation will be chmnied to read

VA/B

hich means the velocity of point or reference A relative to reference B. To
take a time erivative of a %ctor relative to reference system "A," the

notation will be
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iXi j= X = k X = 0 (note the zero vector has any direction)

1iX j kand jX k =i and k Xi = j and

SX i =-k arxl k X j = -i and iX k = -J

These cross products are used often, and an easy %y to reimber them is to

use the aid

"k j

where the cross product in the positive direction fram i to j gives a positive

k, and to re"mers the direction gives a negative answer.

2.4.5 Cross Product Laws

If A, B, and C are vectors and m is a scalar, then

1, X . -7BAx Anti-Ccumutative Product

2. AX (B + C) A X B+ AXC Distrlbutive Product

3. m (A XB) mhznAX B ;. X(00) Associative Product

2.4.6 Vector Differentiation

The folloawi$ treatment of vector differentiation has notation cosistent

with later courses and has been higly secialized for the USAF Test Pilot

School cmariculum. The sAlar definition of the time derivative of a scalar

fmftion of the ariable t is defined as,

d f(t) lir ff(t +At) -f(t)
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Before proceeding, a vector function is defined as

F(t) = fx (t)i + f ytt) j + f z(t)k,

where f, fy, and f are scalar functions of time and i, j, and E are unit

vectors parallel to the x, y, and z a~s, respectively. A vector function is
a vector that changes magnitud1e and direction as a function of time and is

referred to as a position vector. It gives the position of a particle in
space at time t. The trace of the end points of the position vector gives the
trajectory of the particle. The t.ie derivative of a vector function with

respect to sane reference frame is defined as,

d F(t) lir + F(tA+t) - F(t)
dt At÷O At

d fx (t) _ d f (t) d f z(t) df X df Y df z

i+ + f k

x

where the lack of a function variable indicates the function has the same

variable as the differentiation variable, and the dot denotes time

differentiation.

2.4.7 Vector Differentiation Laws
For vector fuwntions K(t) and •(t), and scalar function f(t)

. + ) Distritive Drivative

2. dA-B). dl+ dhD-. Prcohzct Derivative

"3 At A x B cross Proicx t Derivative

d -dB aM4. (ffit) 03] Mt) '+ B Scalar, Vector Product
Deri-ative
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There should be less confusion in multiple reference system problems con-

cerning which reference frame the derivative is taker by using this notation.

By introducing the concept of multiple reference systems, it is

appropriate to discuss the chain rule. For two reference systems, the chain

rule is su*'ply stated. For point A in reference system B, which in turn is in

at.other reference system C, the velocity of A relative to C is equal to

(2.1)VA/C m VA/B + JV/C

Vhile calculating derivatives when given the t-ire function of the

trajectory is seenily simple, at times the derivatives may be difficult.

Also, if the function is not knw. the measureamts available to deteraine

the trajectory may be in terms of translational or rottioTai parameters which

don't always lend themselves directly to a time function. Ano-her itetd of

determining velocities and accelerations will be deteftmixd us•q pure

translation and rotation. Simplification will ow-aeist ;1 Ve. sxcific

problems with convenient alignaent of reference oystes at ,•ucii instances

in time. So it will appear that the time elmenst IhAb p •d in the

following analysis ainme the vectors will be ccnetmts at the instant •

observe them.

2.7 DMUWIATICNOF A VWTM rIN A RIGrID DY

The two basic motions, tralation J an rotation, will be appliid to a

rigid body ,&ich is assmwd not to bend or ist (emery point in the body

ramains an cquidistance from all others). it will beo2ne inportant to

determine not ox-ly the velocity aul aoceleratim of a Point a rigid body,

but also that of P vector which lies in a rigid body..

2.7.1 Translation

C. If a body mmies so that all the particles hav the sate velocity

relativ to reftence at any instant of time, the body is said
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£
to be in pure translation. A vec-tor in pure translation changes neither its

magnitude nor direction while translating, so its first derivative would be

zero. An example would be a vector from the center of gravity to the wingtip

of an airplane in straight and level, unaccelerated flight with respect to a

reference system'attached to the earth's surface. From the ground it changes

neither magnitule nor direction, although every point on the aircraft is

traveling at the sawe velocity. See Figure 2.1 1.

BODY

IP 7p
SRIGID CD z

Y

FIGtRE 2.11. TR SIATTI4N AND ROTATION OF VECTS IN IR=GID BOOIES

2.7.2 Potation

If a body mums so that the particles along sae liir in the body hav a

Wro velocity relative to ame re-.erene, the body is said to be in pure

rotAtion relative to this referesm. The liii of statior-..y prticles show

in Figure 2, It Ls called tl* axis of rotation. A free vector that aascribes

the rotation is called the angular velocity, ý, and has dirmicn detalnaii

by the axis of rotation, usinig the right-hand rule to deterine the sense.

The chan rule as descibed for lirear velocity applies to the angular

velocity, as &*s a definition of its magnitude being angular speed. The

first derivative of the angular velocity is the angular acmaleration.

It can be Proven that the Unear velocity V of any point in a rigid body

described by poasition~ vector r h~ is aVn., thme axtia of~ rotation can

be written -"__:
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r = V =L'XX (2.)

Note the conventions using the right-hand rule apply, and V is perpendicular

to the plane of F and I.
The pure rotation of one reference system with respect to another would

require a transformation of unit vectors frcm one system to another, unless

the reference systems were conveniently aligned at the instant in question.

Such transformations are considered beyond the scope of this course.

Equation 2.2 can be generalized to include any vector in a rigid body

with pure rotation. Refer to Figure 2.12.

71- RIGID

f BODY
Lz

FIGURE 2.12. DIFFERMNIATION OF A FIXED VECTO

Let • be a vctor fixed anywhere in the rotating rigid bcdy shown in

Figure 2.12. The probleir is '.0 find the time rate of change of the vector.
Two position vectors, F1 and F2 1 from the origin to the end points of the

vector p are drawn. Fran vector addition

r 1 +p, r

or solving
r= 2 - 1

Differentiating
p r 2
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Frca Equation 2.2,

and

so
P. X Fx2- XFI.

Since the cross product is distributive, this equation beccmes

S= W X (2.3)

Therefore, the derivative of any fixed vector in a purely rotating rigid body

is represented by the cross product of the angular velocity of t'he rotating

body and the fixed vector.

2.7.3 Ccmbination of Translation and Rotation in One Reference System

It is possible to combine the two types of velocity. An imnortant point

to notice here is that the velocities and accelerations arri arrived at

directly without the use of position vectors.

vW
RIGID BODY

z

REFERENCE P

D

FIGURE 2,13, RIGID BODY IN TRANSIATION AND ROTATION
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The velocity of point a in reference system D, Figure 2.13, will be
calculated. The rigid body has a pure angular velocity, U, and a pure

translation, v, in reference frame D. The requested velocity is just the sum,

V = Vrotaticn + Vtranslation

Vrotation is equal to • X p. Vtranslation is given as v, so

V = -- +V.

When working in one reference system, the acceleration may be calculated

by taking the derivative of the velocity.

- dV d( X p) ~dv - -~

A + v

-- .. . .= x p.

Here, the p is equal to w X p as was shown in Equation 2.3 and v is the
translational acceleration 5. The angular aoceleration w will not receive any

special notation in this text.

So, the, acceleration in a single reference system can be written

A x = (wx) +wXp+ a.

2.7.4 Vector Derivatives in Different Reference Systems
The more general problem of relative motion between a point and a

reference system that is itself mcring relative to another reference system

will be approached. More than one reference system is often used in order to

simplify the analysis of general problems. As a first step, it is necessary
to examine the proceaure of differentiation with respect to time in the

presence of two references moving relative to each other.
A referer e system is a non-deformable system and may be considered a

rigid body. So, the work done so far applies here. Figure 2.14 gives the

vectors used in the following analysis.
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Z -TRAJECTORYp[

XX

~~REFERENCE W

FIGURE 2.14. MOT(ION WITH 'IWO R E SYStTEMS

The prcblemn above shows point p with position vector •pB oigwt
respect to the reference B, and the origin of B with position vet-eor rB/C'

moving with respect to reference system C. The reference system B also has an
angular velocity with respect to C of •/C The goal of the following

developmnent will be to find the time rate of change of the position vector in
the B fra'me as seen fram the C frame or notationally

C

-t •p/B

It is very important to realize that this is rnot the same as the velocity of
the point as seen from the C fraire. Rather it is the rate of change of a
position vector in one frame as seen frown another frame. So the derivative

y

sought is not %/C This velocity would be obtained by using the chain rule

as given in Equation 2.1I.

A representative exanple is the mnotion of a point on an aircraft with a
body axis systeii at the center of gravity and the aircraft moving along some

path relative to the ground. The second reference system is attached to the

ground. It will be assizned in th .s analysis that the two reference systems
have the same unit vectors. Careful attention will be given to circumstances

" ~resulting from axes that may not be conveniently aligned during the analysis.
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Beginning with the position vector in the frame B,

rpjB--i + yj + z
p/B

Differentiating this vector with respect to time relative to the C reference
frame presents a prcblem since the unit vectors of the B system are rotating as

seen in the C system.

So, the derivative must be done in two parts using the fourth law given
earlier.

C d. . . _ .
dtjplB = A + yj+zk + xi+ YJ+ zk

But the unit vector's derivatives can be written as vector in a single
reference system with derivatives as seen in Bquation 2.3. Thus,

i =-% x, etc.

So

Cd
dtrp/B = xi + + zk+xi+yj + zk

= xi + Y+Z"k + x(G/C x r) + Y(;/c x + z(ZcBx) X

= xi + yj + zk + /C X (Xi) + B/C X (y) + B/C X (zk)

z*y3 + ZK B/ x (xi + yj7 + z~k)

The first three terms are recognized as the velocity of p in the B system and
the rnext term is the cross product of the angular velocity of the B system
with respect to the C system and the position vector in the B system.

-7trp/B = rp/B + uB/C X rp/B = Vp/B + wB/C X rp/B (2.4)
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This equation may be generafized to any vector in one reference system
relative to another. This is a very important relationship and will be used

in Chapter 4, in the derivation of the aircraft equations of motion.
The acceleration of a particle at point p would be handled using the

definition of acceleration.

C d -
A -v (2.5)

/C d-t p/C

Note Equation 2.5 does not address Cdd _

Hopefully, the velocity would be written in a simple form allowing simple
differentiation to obtain the acceleration. If not, a simple exchange of

notation with Equation 2.4 would be necessary.

CXMENT The material presented thus far is sufficient to enable solution of
any linear or angular velocity or acceleration in a kinematics
problem. However, another analysis follows which may clarify
multi-reference problems and will provide definition of some terms
that will be of value in later courses.

2.7.4.1 Transport Velocit. In this analysis of motion relative to two
reference systems, a different approach is taken to the problem. Figure 2.14
is expanded as shcwn in Figure 2.15 to include the position vector directly
from reference C to the point p.
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REFERENCE
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y Vx
x

FIGURE 2.15. TWO REFERENCE SYSTEM VECIRS

Thus

"" p/C ' rp/B +B/C.

and
C C _ d Cd

/prp/ C ratFp=t • - p/B + 3trB/C

'ere the first term is Equation 2.4 and the second is VB/C. Substituting

these terms,

Vp/C ' rp/C Vp/B +' /C X rp/B +VB/C (2.6)

or

Vp/C - p/B Vpi'uhere

V " B/C X 7/ + vB/C

This term is called the transport ,mlocity. The interpretation of

transport velocity defined in this equaticn is such that V is still the

velocity of p relative to B and VPTC is the velocity in C that p would have,
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if p were fixed in B. Note this is just the sum of the translation and

rotation of frame B relative to frame C if the point p is considered fixed.

2.7.4.2 Special Acceleration. By taking the derivative of the velocity, as

in Equation 2.5, and applying the distributive law to the cross product,

C d. C dC dC dCd
-p - tVpV---/C : tp/c p/B I dtB/C X rp/B + wB/C X trp/B + -tVB/c

Now, substituting with the notation for acceleration where possible,

C d- - - . C d-

/ - -5tp/ + B X rp/ + OBCX -&trp/B + AB/C

2he two remaining terms with derivative notation should be recognized as

applications of Equation 2.4. So, substituting

A•,C *-V/B + %B/C X vp + w XB/ + %/CX (V PB + • BC X rp/_ ) I rp+

EqmandizM and noting

V
p/B "/

Ap/C A'/B %/ X Vp/B + %g/C X rp/. + %/C X Vp/B + %e/C X (%/C X rpIB) +

ABC

4 Tearrarging and ooxzbining the two like terms

m 2 = / + AB/C + %/C X rpB + 2%/C X Vp/B + /C X (%/c X rP/B) (2.7)

Of the five terms remaining in the acceleration equation, the last two

have descriptive names.

2%/c X VPp/ is called the Coriolis acceleration, and

WB/C X (ý%/C Xp/B) is called the Centripetal acceleration.

The terms in Equation 2.7 that aý'e independent of the motion of p

relative to frame B are called the transport acceleration. These terms
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provide the acceleration in frame C of a point that is fixed at p at the

instant in question. Notationally, the transport acceleration is

AjTC = X

These concepts are difficult to realize until a few problems are

attempted.

2.7.4.3 ExarPle Two Reference System Problem. The angular velocity of the

z. Z

(0,I1,I -10 RAD/SEC
3 - RAD/SIEC

J. .4.. i

3a, REFERENNCE

/RIEFtERENCE C

MME 2.16. * W RE E SYS=• PRMLE2.

arm ap relative to the disk in Figure 2.16 is 10 rad/sec, sham vectorally in

the diagram as wi' wbile the angular velocity of the disk relative to the

groun is 5 rad/sec, shmm vectorally as w2. The angular accelerations are
zero. Reference 1) is attached to the platform, while frame C is fixed to the

ground, three feet below the disk. At the instant in question, the anm ap is

in the vetical position, and the reference axes dixcticns coincide, although

displaced.
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Find the velocity and acceleration of point p relative to the fixed

reference frame C.
Using Equation 2.6

vp/C - rp/C -p/B + B/C X rp/B + vB/C (2.6)

w know the last term, VB/C =0, since the B frame is only rotating relative
to C.

'B/C = '2 = 5k rad/sec and rp/B -- 3k feet, by observation

This leaves Vp/B which involves angular velocity wi = -0'i, relative to B.

V p/B W 1 X rp/ (-10Oi X 3k) =(--30) (-j) =30j ft/sec

Substituting all the parts into Equation 2.6

p/C +0~k~+ 3j15(k-k 30J ft/sec

For the acceleration, the general expression is Equation 2.7

A/C %ApB + AB/C + %/C X r1 / + 'B/C X Vp/B + t%/C X (u/c X rP/B)

The only unkncun termis are AB/ - n PB The latter is a centripetal
acceleration due to the rotation of the arm. The centripetal acceleration may

be arrived at in several different ways,

- Bd d - - -
AIB - -at~p/B (wl X rp/B) W 1 X rp/B + w, X rp/B

6+ 1 + (W ( 1 X rP/B) a (-101.) X (30D)

-306k ft/sec-

Substituting this value and the others already calculated

A/3 = -3ook + 0 + 0 x A + 2 (5k x •30j) + 5k X (5k•X 3k) -300i 300k
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While working problems where there is a choice of axes, be careful to
choose so that as many parameters as possible are equal to zero, and most
importantly so that the axes are aligned at the instant in question. Also,

whether a reference system is fixed in a body or not will have profound
effects on the velocities as seen from that origin. Try to place yourself at

the origin of a system and visualize the velocity and acceleration seen to
help avoid confusion. Also check your answers to see if they are logical,

both in magnitude and direction. The right-hand rule is essential.

Mien working with large system, with many variables it becomes necessary
to develop a shorthand method of writing systems of equaticns. The

development of matrix algebra is the solution.

2.8 MATRICES

An m x n matrix is a rectangular array of quantities arranged in m rowq
and n colurns. When there is no possibility of confusion, matrices are often
represented by single capital letters. More carmenly, however, they are

represented by displaying the quantities between brackets; thus,

"a 11 a 12 " • l 5

A w A) la..i'I ' (a~4  a2 a2,.. a2 nmxn 3rm xn

a., +k i I +

NDW- that aij refers to the element in the ith rcw w4 jth colm of [Al.

Thus, a2 3 is the element in the sesond rw and third column. Matrices having

only one column (or one row) are called colnn (or row) vc*tors. The matrix

[XI below is a column vector, and the matrix (YI is a row vector.

"XI

EX] - x2  'Y] t YlY 2 " " YnI

C
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A matrix, unlike the determinant, is not assigned any "value"; it is

simply an array of quantities. Matrices may be considered as single algebraic

entities and combined (added, subtracted, multiplied) in a manner similar to

the ombination of ordinary numbers. It is necessary, however, to observe

specialized algebraic rules for combining matrices. These rules are somewhat

more complicated than for "ordinary" algebra. The effort required to learn

the rules of matrix algebra is well justified, however, by the simplification

and organization which matrices bring to problems in iinear algebra.

2.8.1 Matr__ix lity

Two matrices (A] -a-aij] and [B] = [b ij are equal if and only if they

are identical; i.e., if and only if they conrtain the sre number of rows and

the same number of columns, and a.ij bij for all values of i and j. Thus,

the statement

[a21 a"22 a '23] o 19

in equivalent to the statement

a 2

a 1 2 =4

etc.

2.8.2 Matrix Addition
Two matrices having the same number of rowv and the sawe nurbe- of

columns are defined as being conforable for addition and may be added by

adding correspmdinq elements; i.e.,
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a2 1  etc. + b2 1  etc. a21 + b2 1  etc.

L A L* ii. [i it _
Thus

2.8,3 Matrix Multiplication by a Scalar

A scalar is a single narber (it may be thought of as 1 x 1 matrix). A
matrix of any shape may be multiplied by a scalar by multiplying each element

of the matrix by the scalar. That is:

"all a1 2  k .. ka12

ktAI - k a21  ka2l

• ~L•

For mxanple,

3 r 2 -6 -3

2.8.4 Matrix biltiplication

matrix altiplication can be defined for any two matrices when the number

C of colums of the first is equal to the number of rows of the seccod matrix.

Ihis can be stated mathematically ast
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It
[A] [B] [C]

im nMj ixj

where

m
c. = • aik %

a,,, 
k= 1

Multiplication iq not defined for other matrices.

Equation 2.8 demonstrates the product of two, 2 x 2 matrices.

(A] [CI
Zx2 2x2 2x2

a b1  b1l cC
a21 a22 b21 I2 c21 22

or usirq the definition of uaitiplication,

b11  + a12 b2l a,, b12  ' '12

*2 821 [22Jb21 b22 La21 bll + 2 b21 a21 b12 + a22 b222

This situation is sufficie~ntly general to point the way to an order ly

multiplication process for matric-es of zvW orde r.

in the Nindited product,

[A) (eB [CI

the left-hand factor may be treated as a bundle of raw-wctors,

(al i [a121]

[a21 a22)12
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and the right-hand factor as a bundle of coltmm vectors,

b b

[ta21 a22]j [ 21j b22 jJ - c~21 (2.9

and by comparison with Equation 2.8

11 12

[a1 1  a2] [b~ b1 2] [a 1 1  a 1 2 ] [biil [a• a1 2 ] [ b1 2] (10

[B]

wThre, by definition,

[aa a 12  b~j b [a1  b1  12 b

[ b21 j

1a11  a12] [b:] [a1 1  b12 + a12 b22]

etc.

A caiparison of Equations 2.9 and 2.10 shs that. if the ros of [A] and
the colmns of [B] are treated as vectors, then Cij in the product( [C] [a] [B] isthedotprodutoftheithrowof [A] and the jth'co2lun of

f ~~[B]. This •1e olds for matrices of any size, i.e.,
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cij= [ail ai 2  ain] bij [ail blj + ai 2 bj 2 +""+ain bnj

b2 i

Lb.j

Matrix multiplication is therefore a "row-on-column" process:

jth column ijth element

ii

ithr• /x =
DI

II

3 1 2 [31 2]4 1  [ 3I - 2] [2'1

1-li Loj

-1(- 4]1 0

(0 2][ 2] (0 21 [2]
r1 61

S -.5 -2J

-2 0

j The indicated product [A] [B] can be carried out only if (A] and [B] are

conformable; that is, for conformability in multiplication, the number of

columns in [A] mist eual the numTber of rows in [B]. For example, the
expression
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[all a121 rlb2
a2 1  2 2  b21  22

31 b32

is meaningless (as an attempt to carry out the multiplication will show)
because tie number of columns in [A] is two and the number of rows in [B] is
three. A conwmnient rule is this: if [A] is an irr x n matrix (m rows, n
coluwns) and [B] is an n x p matrix, then [C] = (A] [B] is an m x p matrix.

That is,

[A] [B] [Cl

Mdtrix algebra differs significantly fran "ordinary" algebra in that
multiplication is not ocmnmtative. In general, that is,

( [A] [B] = [B] [Al

For example, if

[A] = 2 1
0 2]

1 -3
(B] = [2 0

then

4 -6]
(A] [B] - 14 0

2 -5
(B] [A] - [ 4 2

i:2J9



Because multiplication is non-cammutative, care must be taken in describing
the product

IC] = [A] [B]

to say that [A] "premultiplies" [B], or, equivalently, that [B] "post-
imultiplies" (A].

2.8.5 The Identity Matrix

The identity (or unit) matrix [I] occupies the same position in matrix
algebra that the number one does in ordinary algebra. That is, for any matrix

[A],

[I] [A] = [A] [I] = (A]

The identity [I] is a square matrix consisting of ones on the
principal (1-----) diagonal and zeros everywhere else; i.e.,

"1 0 0 . . . 0

0 1 0...0

[I] - 0 0 1. . .0

o 0...1

The order (the number of rows and columns) of a, identity matrix depends
entirely on the requireamut of confoniability with adjacent matrices. For
example, if
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[A] =

1 0 0..

(A]I [1 10 1 il[ 1. 0 0 1

LO 0 1j

Thus, the "left" identity for [A] is 2 x 2 and the "right" identity for

(A] is 3 x 3; however, they both leave [A] unaltered.

2.8.6 Th¶e Tranqxxed matrix
The transpose of [A], labeled [A] T, Ls fonred by interchanging the rows

and colunms of (A]. That is,

a 1 1 a 1 2  # *a~ 'I'T a 11  a21 0 0 a m

a2 1 a2 2  * * a2n a12 a22  " . am2

'I1e jth row viector beccmes the jth oolumn vector, and vice versa. Flor

6=wPle*
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[2i 5 2 3T 
1 20

_i0 35+j4 3

L3J
2.8.7 The Inverse Matrix

Matrix multiplication has been defined; it is natural to inquire next if

there is sane way to divide matrices. 7here is not, properly speaking, a

division operation in matrix algebra; hadever, an equivalent result is

obtained through the use of the inverse matrix.

in ordinary algebra, every number a (except zero) has a multiplicative

inverse, a-1 defined as follws: A quantity a is the inverse of a if

a *a - a- a-l

In the sanew y, the matrix [A]"I is called the inverse matrix of [A] if

(A] [A]A - [A1" (A] - [I]

The symbol 1/a is normally used to signify aC. Since ordinary

umaltiplication is oammnutative,

b.(1/a)• (b) - (b) • (1/a) ,- a

fr an b. T use of the division ytol (,) in this instance is

useful and imau, cguou. In matrix algebra, however, m plication is not

oCmutative. Therefore,
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(A] [B] = [B] [A]I

and the expression

(B] + [A]

cannot be used since it may have either of the (unequal) meanings in the

previous equation. Instead of saying "divide [B] by (A]," one must say either

"pjesultiply [B] by (A]- 1" or 'pcstrultiply [B] by (A]- 1 .11 The results, in
general, are different.

2.8.8 Sinuar Matrices

Matrices which cannot be inverted are called singular. For inversion to

be possible, a matrix must possess a determinant not equal to zero. For
cample, the matrix

[2 ii
is slngular because it is not square, and a detezminant cannot be oaxuted.

e matrix

N 4 2]

is sivibw bwcax its anlifrmt vwdI*".

£ MHtricu *tdch co pwa an je are called ,flg z.
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I
2. 9 SLUTION OF LINEAR SYSTEM

Consider the set of equations

a,, x, + a1 2 x 2 + " " + alnXn =Y1

a21 Xl + 22 x 2 + " " " + a2Xn = (Y2(2.11)

a nlXl + a + " 2 + a Xn = Yn

That is,

(A] (Xl = [Y]

Assuming t-at the inverse of (A] has been ca•ated, bothl sides of this

eqation may be preMultiplied by [A]-1 , giving

(Al-1 (A] [X - (A]" 1 (Y]]

Frcim the definition of the inverse matrix,

III (XI - IAlI- (Y)

ftm hich, finally,

[XI - (A]" [y)

Sa, w hf systim of Sqation 2.11 may be solved for X,, x2 , x. . by

xOMPiUt~m' i~iwrs of (A).

2.9.1 the • t verse
U*lre is a stra$*tftwud tofm step ethodx for Cacuting the invrse of

a given natrix (A):

step I. QMpzt the detemirant of [A). This determinant is written as

JAI. If the d nant is ro or dos not mcit* the matrix
W is &Iiner as irguleA aa an inverse cnmot be ft.id.
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Step 2. Transpose matrix [A]. The resulting matrix is written [A]

Step 3. Replace each element aij of the transposed matrix by its co-

factor Aij. 7his resulting matrix is defined as the adjoint of

matrix (A] and is written: Adj [A].

Step 4. Divide the adjoint matrix by the scalar value of the determi-

nant of (A] which was ccmupted in Step 1. 7he resulting matrix

is the inverse and is written: [A]-F

7his ic.dure can be sumiarized as follows: To calculate the inverse of

(A] calculate the Adjoint of (A] and divide by the determinant of [A] or

[A]' [

E=Tple: Find [A]-, if

0 2 -1.

Step 1. waputo the ete- = of []. aiquAing about the fxst raw

3 2 0

0 2 -1

JAI 3(-5 -2) -2(-1 + 0) +0(2- 0)

JAI - -21 + 2 + 0 - -19

Thet &trmirant has the value -19; therefkre an ivxrse cwa be computed.

st~ep 2. Tranvaoe [A)

0 2
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Step 3: Replace each element aij of [A]T by its cofactor A to deter-

inine the adjoint matrix. Note that signs alternate frao a posi-

tive A ll

[ 5 2 2 2! 12 5

1 - 1 0 -I 0 1 .1

1j[A] = 30 3 3

1 -0 3 0 3 1

5 2 2 21 2 5

3tep4" Divide by the scalar value of the detennhnant of (A] •%ich was

cxmputed as -19 in Step 1.

-1 2 2
(AI-1 1 1- -3-3

2A -6 134

2.9.2 Prodwt Check
Frxm the definition of the inverse matrix

(A)' EA) (I

It" fact may be used to check a ccriuted imerse. In the case just 1 16ý

cw*"ted
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-7 2 -2 3 2 0

[A) [A =, 1 -3 - 3  1

2 -6 13 L0 2 -1

-19 0 01

[A] [A] 1 - 0 -19 0

0 -19

[A) [A] = 1

(A] [A] (A

Since the prouct does ome out to be the identity matrix, the

cmcputation was oorrect.

2.9.3 lczr~e Linear Sy2tm solution
Given the following set of sin1tn~s euati'o, solve for x1 , x2 and

Ix + 2x2 -2-3 -y

"-X1 + x 2 +4x3 ( Y2 2.12)

It" set of eqaticm can be witten as

or

XXI 1 [w I (Y

C. Ths, the system of Egaticas 2.12 can be solved for the les of x

12, a 3 by oautftq the inuerse of A.
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L
(A] [XI = (Y]

-i = 1Y2
2 -3 4 x 3 Y3J

Step 1: COmpate the detexniunant of (A]. EcpcndiNg abouit the first row

IAI = 3 (4 + 12) -2 (-4 -8) -2 (3 - 2)

IAI - 48 + 24- 2 = 70

Step 2: Transpoe [A]

.A 3 -1 21

[-2 4 41

Step 3. tetermine the adjoinut matrix by replacing e&ah elamvt in [A)T by its

cofactor1 
-32 

-1 _ 1

114 4 1 -2 4 2 4

Adj JAI _1-1 2 1-_ 1 13
4 4 -2 4 2 4

-1[A 1 2 3V 2  :1 122 1
1 -3 2 3 2

j16 -2 101
•J [AI l 12 16 -10

[1 13 51



*. Step 4: Divide by the scalar value of the determinant of (A] which was

ccnputed as 70 in Step 1.

[A]) -11 16 -10

L 1 13 5

Product Check

LA]I [A] [I]

[16 -2 10 [3 2 -2

( A] 1 71 12 16 -:1 L 1 4

700

113 5 j L2 -3 4

(A] [A] = 0 70 0 (2.13)

0 70

LA]I (A] = [01 0 ]

"Since the product in Bqation 2.13 is the identity matrix, the

ccuputation is co.rect. The values of x and x can now be found far any

I Y' Y2 and Y3 by preultip'ying (Y] by (A]

(Xl (A] (Y]

16 -2 T.0 FY1
[x2  [12 16 -10 2

2x 70 L32

.1 J y9

S~2.49



For example, if y = 1, y2 = 13, andY 3 = 8

X,16 -2 101 [
1 12 16 -10 1

x-. 1 13 5j L8

1 1 70= -• ~(16- 26 +80) = - = 1

7 - 140
x = (12 + 208 - 80) -- =2

7 1 210
L (1 +169+40) 2- -3

Solution of sets of sinultaneaz eriuations using matrix algebra

tecmiques has wide appl..t n in a variety of engineering problems.

t
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C
PROBLEM

2.1 Is V +- + a a unit vector?

2.2 Find a unit vector in the direction of

A 7= 2+ 37-K

2.3 Are the following two vectors equal?

A= 2i+ 37-k-

2.4 The following forces measured in pounds act on a body

F1  21 +3j - k

F 2 = -51 + j + 3k

F4 - 41-3-32k

Find the resultant force vector and the nagnitude of the resultant force

vector.

2.5 If X.- 4-Kj-

I - -2i +4 j-3

2A- B+ 3Z

•. IX ~+ 1i + ' "
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2.6 Thie ;osition ve-tors of points P and Q are given by

r. = 2i +3j- k

f-= 4i -3j +2k

Determine the vector fram P to Q (PQ) and find its magnitude.

2.7 ViniA usigA and Bfrm Problem 2.5.

2. 8 Giv'%n Asi + 2i 3-g

a. Find- T B

b. Find the angle between A and B.

2.9 Evaluate I (2- 3j+R) =
(2i1j-) (3i +k) =

2.10 If A - - j-4k

-= -2i+ 4j- 3ik

Find A X B.

2.11 Determine the value of "a" so that A and B below are perpendicular.

S= •i+ a-j +•
47 2iý;~

2.12 Determine a unit vector perpendicular tc the plane of A and B below.

iI- 4T -3j-K
J' +T, 373- K

2.13 If

I 4i -3 2K

Find

Xxi
2x.
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and
+(A+B) X (A-B) (the quick way using vector

algebra).

2.14 Evaluate

a. 21X (3- 4K)

b. (Ci+ 2j) Xk

2.15 The aircraft shown below is flying around the flagpole in 'a steady state

turn at a true velocity of 600 ft/sec. 7he turn radius is 6,000 ft.

Wnat is turn rate w expressed in unit vectors (i, j, 3) of the XYZ system

shown?

y y

REAR
VIEW

2.16 For the same aircraft and conditions as Problem 2.15, what is turn rate

expressed in unit vectors (i, T )of the xyz system shown?

2.17 Given

r - _ 6-Gj+6k

Find r with respect to the axis system xyz vtiih has i, j, k as its unit

vectors. Is r a velocity?

2.53

2.53 ..•



2.18 If the xyz system in Problem 2.17 is rotating at 3i + 2j - k rad/sec with

respect to another system XYZ, find r with respect to X)M. Is r the

velocity of the point whose radius vector is F with respect to XYZ? Vbat

system is the answer of this problem referred to?

2.19 A flywheel starts from rest and accelerates counterclockwise at a

constant 3 rad/sec2 . After six seconds the point P on the rim of the

wheel has reached the position shown in the sketch. that is the velocity

of point P with respect to the fixed XYZ system shown?

z

OUT OF
PAPER

2.20 If A - 3t 2 T -tj
- -61 +ti

Find d (A.B)/dt relative to the system having , , and as its unit

vectors. Is the answr a vector?

2I
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2.21 A small body of mass m slides on a rod which is a chord of a circular
wheel as shown below. The %el rotates about its center with a
clockwise velocity 4 rad/sec and a clockwise angular acceleration of 5
rad/sec2 . The body m has a constant velocity on the rod of 6 ft/sec to
the right. Relative to the fl-ed axis system XY shown below, find the
absolute velocity and acceleration of m when at the position shown.
Hint: Tat xy system rotate with the disk as shown.

Y, =4 •
Sy -5•

x
(-

0 ~2.55t



I
2.22 A small boy holding an ice creanr cone in his left hand is standing on the

edge of a carousel. The carousel is rotating at 1 rad/sec counterclock-

wise. As the boy starts walking toward the center of the wheel, what is

the velocity and acceleration vector of the ice cream cone relative to
the ground XY?
Hint: let xy be attached to the edge of the carousel.

Boy's velocity = 2 ft/sec 6ard center

Boy's acceleration = 1 ft/sec2 toward center

Carousel' s acceleration = 1 rad/sec2 counterclociwise.

IY, Y

S". X

2.23 Solve the follc4ng eqpations for xl,, x2 , and x3 by use of the inverse

matrix.

X2 X3

- 2 x2 22x3  u
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2.24 For a - i let

[A] 2 1][B] [43=3 2 210

1

[C] = -JD] 4
3 2 2x Y,

2x]1= y] = Y2

Ompute

a. (cA-][A

b. [A] (B]
c. ((A] (BI) (Y]
d. [A] (IB] [YJ)
e. (A] (C]

f. CC) (A]
g. (xjT (B)
h. CXjT (JA] LXI)

i. (X] (DIT

2 -1
2.25 If 0~ o2t id(l

2.26Find x, y#and z

-4x4-+3.v- r - 1
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2.27 read the question and circle the correct ansr, True (T) or False (F):

T F A vector is a quantity whose direction and sense are fixed, but
whose manitude is unspecified.

T F A scalar is a quantity with magnitude only.

T F The magnitude of a unit vector is one.

T F Zero vectors have any direction necessary.

T F A free vector can be moved along its -line of action, but not
parallel to itself.

T F Free vectors may be rotated without change.

T F A 3 x 2 matrix can pe-multiply a 2 x 4 matrix and the result
will be a 3 x 4 matrix.

T F A 3 x 2 matrix can jt-wltiply a 2 x 4 matrix and the result
will be a 3 x 4 matr .

T F MIltiplying a matrix by a scalar is the same as multiplying its
detexmi t by the se lar.

T F Identity matrices are always square.

T F 1 E0[ 4
T F Singular matrices can be ineted.

T F • determinant of a rico-singular matrix is zero.

T F Inetn a matrix is a straightfnr process.

1 0

T F Sieu lnant of any ratrix can be caleculatd.

T F The vlee of a atmirt d upnoo-sin gcul or cols it

•m qinedaot.
T F elociy is the t oe aate of change of a vsluty rectr. I.
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T F Acceleration is the time rate of chrange of a velocity vector.

T F Acceleration has to be expressed in (referred to) unit vectors
of an inertial reference system.

T F Bodies moving with pure translation only do not rotate.

T F Reference systems are considered to be non-deformable rigid
bodies.

T F [A] [B] = (B] [A], if the two matrices are ccnformable for
multiplication on the left hand side of the equation.

T F l11 = I-vI

T F Themagnitud~eof1/ IKj is equal to B/ IE

T F 203A) - S

T F ijand iare orthogotal.

T F I is the dist ce beten points P andQ.

T F A S. B*.A

T F If A is zero and nether X ne are zero, then and
mst be parallel.

T F 1i - 1

T F iXi iXA

T F AX Al B1+ AB2 +A 3 83

2.28 Define:

Detemiinant

vecor

Scalar

Free vector

Bon vector

Velocity vtor of a particle

Zero vector
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I
Parallel vectors

Position vector

Matrix

Square Matrix

Column Vector

Row~ Vector

Matrix Equality

Matrix conformability

Matrix non-cwuutativity

Identity Matrix

Tranqposed Matrix

Singular Matrix

2.29 Find the VW's velocity and accelýeation vectors,
y

70

2.30 Fbd a unit vector parallel to

2.31 kilt is the mwmgitude of the folladinq vector?

A + 2 3+3 +6k
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2.32 Is the axis shown a "right-handed" axis system?

x

y
z

2.33 Given the folowing position vector, find the acceleration at time t 0.

r0 t- 3t~j+ 6tk

2.34 Add the following vectors

e37194K

2.35 Find A + 8 and the angle it makes iith the x axis.

y

Ax

,{;• ~ 2.61 "
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2.36 Mhat is the angle between the two vectors given below?

2.37

z

ItOW if 7,

=B 8,

and both vectors
lie in the y - z

plane, find

x 
xg

2.38 Given

FXi

2.39 %be aroular velrcity of a rotating rigid body Pbct an axiq of rota•t-i

isiven by U - 4i +2+k. +Z Fi the linear velocity of the kint P on

the b* whom positic vector relative to a point on the axis oS"
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2.40 The T-38 shown is in a right coritinuous roll at 2 rad/sec while traveling
at 480 ft/sec. Find the velocity of the wincaip light with respect to

the axis shown.

y

12.5
"X Y FEET

XY AXIS IS INERTIAL
(i.e. FIXED)

2.41 The particle, P, is following a path described by : x 6t , y = t + 1,
z = t3. Find the velocit' and acceleration of P, with respect to the

axis shown.

z

IP

TY

T

x

2.42 If X 237 - I + O and I i + 3j-kfini

a. x f. AX B
b. I g. Uniit vector, p, arallel toA

C. + h. aA
A% --

0. IA+BI i. a .8

e. A'
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2.43 rfe shaf+t is rotating co terclocwise around the cone in tDe XZ plane at

5 rad/seo and accelerating at 3 rad/sec2. The wheel is rotating as show

at 200 rad/sec and decelerating at 50 rad/sec2 . Find the velocity of
point P rith respect to reference system C at the instant shown. Hint:

Let x be fixed in the shaft, and xz and XZ planes remain ccolanar.

Y Y "

• , p , Xx

S~RADIUS

2.44 If (A] " -2 3] and (1[i =i

Find (A] [Bl and (BI JI L2

2.45 If (A) 21 and(0

ftnd fAI 'a) and [Bll JAI
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2.46 : 1 [- 3
[0 2 2 0

2.47 :1 3 4 1
1 2 2 1

2.48 if Ix 1 ] 4 y - z2 ~

Find x, y, and z.

2.49 if 2] [ -41

Find k.

2.50 comute the inverse of

2.51 Ompute the inmwse of
3 2 1

1 5 41

6 4 2

2.52 Omats the inverse of

0

2.65



2.53 For what value of y is this matrix singular?

2.54 Find the detexminant of

6 0 0 0 0 0

8 x 0 0 0 0 (I.ock for the easy way;
great bar game

12 10 3 0 0 0 question.)

1 -1 6 xi- 0 0

0 0 2 3 1 0

0 0 0 0 0 4

2.55 If (A] = [2 4. 1 ]el

Find [A] 2

2.56 If
x+2y+3z 

- a1

4x+ 5y+6z - a2

7x+y+ 9z - a3

Find x, y, and z for any value of a1, a2, and a3.
Find x, y, and z, %hen a, , a2 2, and a3- 3,.
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2.57 The mechanism shown below vibrates about its equilibrium position, E. At
the instant shown block A has a velocity of 5 ft/sec to the right and is

decelerating at 4 ft/sec2 to the left. 1he bob B in its counterclockwise
motion maintains a constant angular velocity 1I5 of 5 rad/sec. Cacu.late

the velocity and acceleration of the bob relative to the given XY system

at the instant shown. Hint: Let the xy axis be fixed to the block A.

SY Y

00
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2.58 Capt. Marvel, US Army, is perfonring a loop with an angular velocity j•]
of 1 rad/sec in his Huey Cobra to roll in on a target. At the top of the

loop, the leading rotor blade is just parallel with the helicopter's

centerline. The rotation of the rotor [ii] is 3 rad/sec counterclockwise

as viewed from the top of the helicopter. At this instant, what is the

velocity of the leading rotor blade tip? If Capt. Marvel wre to raise

the collective and accelerate the rotor speed by 3 rad/sec2, this would

accelerate an angular velocity of his loop by 1 rad/sec2 . What would the

acceleration of the leading rotor blade tip be? Hint: let the xyz

system be attached to the helicopter rotor path plane as shown.

radius of loop = 1,000 ft

radius of rotor path plane 1 10 ft

Z'z

LEADING
ROTOR TIP-\

ýy

Hint: Lat the YZ and yz planes remain ooplanar.
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2.1 Yes, magnditude of V - 1

2.2 21 + 3i-k

2.3 No, B - 2K

2.4 Fy 21- j

2.5 1 . 2- 8W; V93 V308

2.6 2Q -Zi6T+ 3Z

(A-9

2.7 A. - 2

2.8 x . 28; . 0

2.9 -3; ,Ur.fi nW . 0

2.10 XOX - 19i"+17j +1o"

2.1la -- 3

G ~2.1Z -s- +-

- -0i-j-2

2.11 3
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2.16 U = .07J - .07

2.17 f - 3t 2 - 6-j

2.18 (). = (3t 2 - 6t + 12)1

(t3 + 24)j

-_(2t3 + 18t)k
in XYZ system

2.19 -V = -108J ft/sec.xYz

2.20 d(K. B) . _54t 2dt -52

2.21 vp/C - l~i + 6j; / 391- 88.5-j

2.22 p/ " -o-3; - P/c a -loJ- 71

2.23 x1 -1/4; X2 -7/4; x3- 9/4

2.25 [E 23 1i
2 1 4

3 -1 2

2.26x a -10; y * 2; z - 11

2.29V 16ti; a - 161

2.309 +

2.31 7X - 7,

2.33 " , 12k
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(

2.34A+B +C = 3i+ 4k+1/2j

2.35 + •- i+13jX * = 20°

2.36 * = 27.60

2.37 AXB -286

2.38AXB - -2i- 5j+ 2k

2.39V p 6 - 7j- 10k

2.40 V - 4801 + 25k

2.412 - 12t!+j + 3t2i; a - 12if+ 6tk

2.42 a V14 f -5i + + e

b V11 g (3/414)i - (1/V'14)ij (2/414)ii

c 2 7+Zj+k h 4

d 3 V -1iv4

e -8

2.43 p/C - 306' + 7.51. - 15K

A/C a -7o5r - 7ý- - 60046.5-k

2.44 7 -4] -1 .-3 3*

~A 2 11 6 3[ :0
L4 -3 6j

2.45 () [j] (B) (A) cunot d

2.46 [ 2 93
I.
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2.47 [ 3]

2.48x = 4; y = 3; z 2

2.49 k = -1/2

2.50 [Al-1 =[2 3
3 2

2.51 No Inverse

2.52 -2V -3 Fi8[AI"1 1 3 1 -5

1 2 4

2.53 y 1/4

2.54 72

2.55 1 9 11i
CAI2 0 -2 1i

2 5 4

2.56 No Soluticon

2.57 13.661 P 5j; i/C -291 + 43.3'j:

2.58 Vp/C - MR- -iA/C -301±-9007J 1016k"

2.72 *1



CHAP= 3

DUFFFRB M EQ AMIONS



3.1 DUCI M

This chapter reviews the mathematical tools and techniques required to

solve differential equations. Study of these operations is a prerequisite for

courses in aircraft flying qualities and linear'control systems taught at the

USAF Test Pilot School. Only analysis and solution techniques which have

direct application for work at the School will be covered.

Many Systems of interest can be represented (mathematically modeled) by

linear differential equations. For example, the pitching motion of an

aircraft in flight displays motion similar to a mass-spring-damper system as

shown in Figure 3.1.

MASS 
K SPRING

o m pt C OO(

Com

FIG=R 3.1. A mA1T Prioum 1MTCN

The static stability of the aircraft is similar tr the spring, the mutant of

inertia about the y-axis is similar to the mass, and the airflow arokdynmic

forces) Oa to deny the aircraft motion. mPter I sh•ws that stability

derivatives can be used to represent the static stability and dawping

tem. 'Thes derivatives ame Cm. and C~. -In this chapter,, M, K? and D will
q

D will be used to reprewnt uass, spring, and da-er t respectively.
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The following teris will be used extensively:

Differential peuation: An equation relating two or more variables in
terms of derivatives.

.IxLee t Variables: Variables that are not dependent on otherr variables.

Depen!ent Variables: Variables that are dependent on other variables.
In a differential equation, the dependent variables are the variables on
the left-hand side of the equation that have their derivatives taken with
respect to another variable. The other variable, usually time in our
study, is the independent variable.

Solution. Any function without derivatives that satisfies a differential
equation.

Orpdinary Diffe4reanlation. A differential equation with only oneineenet variable.

Partial Differential . uation. A differential equation with more than
oeindependent variable,

Order. An nth derivative is a derivative of order n. A differential
equation as the order of its highest derivative.

. The exponent of a differential term. The degree of a
Mi eaitial equation is the exvnnt of its highest order derivative.

Linear Differential qtion. A differential equation in which the
eendenit variable and all its derivatives are only first degree, and the

coefficients are either constants or functions of the independent
variable.

SAny physical system that can be described which satisfies
a diffientia equation of order u which contains n arbitrary costants.

General Solution. Any function without derivatives which satisfies a
alffiMEM il-eatiOn of order n which 0otains n arbitrary constants.

3.2 BASIC U W =~rA MATImI scwrION

Unfortunately, there is no general method to solve all types of
diferent:Aal equations. TMe solving of a diffemrtial equation involves
findiN a mathmaatical exression without derivatives which satisfies the
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differential equation. It is usually much easier to determine whether or not

a candidate solution to a differential equation is a solution thlan to
detenmne a likely candidate. For manle, given the linear first order
diffu-ential equation

x 4 (3.1

and a possible candidate solution

y = x2 + C (3.2)S( .2

it is easy +o differentiate Euattion 3.2 and substitute into Buation 3.1 to

see if Euation 3.2 is a solution of SMation 3.1. The derivative of Equation

3.2 is

+ 4 (3.3)dx

Subst~ituting &Buation 3.3 into )Zuation 3.1,

(x + 4) -x • 4 (3.4)

4 4

Therefore, Eqvation 3.2 is a soluticm of Sgmation 3.1.

It is interesting that, in general, solutiom to linear differmntial

equations are not linear fwxtics. Note that Buatiom 3.2 is not an equation

of the fam

y rmx+b 0.5)

iwhich represents a straight line. As sham in Equation 3.2, y is a funtion
2of x ad x3
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A 3
There are several methods in use to solve differential equations. The

methods to be discussed in this chapcer are:

1. Direct Integration

2. Separation of Variables

3. Exact Differential Integration

4. Integrating Factor

5. Special Procedures, to include Cperator Techniques and laplace
Transforms.

3.2.1 Direct Integration

Since a differential equation contains derivatives, it is sometimes
possible to obtain a solution by anti-differentiation or integration. This
process removes the derivatives and provides arbitrary constants in the

solution. For example, given

= -x = 4 (3.1) 1dx

rewriting

dy - xdx - 4dx (3.6)

integrating

Jddy- fxdx - 4dx+C

x2

y 4x +c (C.7)

or, solving for y

y -+ 4x+C (3+ )

wtere C is an arbitrary constant of iitegration.

Unfortunately, application of the direct integration pzocess fails to

work in many cases.
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3.2.2 Separation of Variables

If edirect integration fails for a first order differential equation, then

the next step is to try to separate the variables. Direct integration my

then be possible. when a differential equation can be put in the form

Z1 (x) dx + f 2 (Y) dy = 0 (3.9)

where one term contains function of x and dx only, and the other functions of

y and dy only, the variables are said to be separated, A solution of Equation

3.9 can then be obtained by direct integration

f f (x) dx+ {f 2 (y) dy = C (3.10)

where C is an arbitrary constant. Note, that for a differential equation of

the first order there is one arbitrary constant. In general, the numer of

arbitrary constants is equal to the order of the differential equation.

EAMLE

d 2 + 3x+4

Y 6dy= Nx2 +3x +4) dx

(Y+6 6) dy N +f3x+ 4) dx+C

Y-+ Sy x + + 4x -C2

Not all first order eutions can be mejarated in this fashion.

3.2.3 R lmt Dfferentital Inteirat4,o

If dimt integration, or direct intagration after sepration is not

C posible, thn it still may be possible to abtain a solution if the
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differential equation is an exact differential. Associated with each suitably

differentiable function of two variables f (x,y), there is an expression

called its differential, namely

df - x+ = +) (3.11)

that can be written as

df M(x,y)d + N(x,y) dy = 0 (3.12i

and is exact if and only if

am = -N (3.13)ay Tx-

If the differential equation is exact, then for all values of C

M(x,y) dx N(x,y) dy = C (3.14)

is a solution of the equation, where a and b are dOminy variables of
integration.

EXAMLE

Show that the equation

(2x+3y-2)dx+ (3x-4y+1)dy = 0 (3.15)

is exact and find a general solution.

Applying the test in B~uat~ion 3.13

a m a ( 2 X + 21 -324- LŽLj 3

MN (3x - 4y + ) 3

rX ax
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Since the two partial derivatives are equal, the equation is exact. Its

solution can be found by means of Equation 3.14.

x y
12x+3y - 2)dx + (3x-4y + 1)dy = C

a b

The integration is performed assuming y is a constant while integrating the

first term.

x y
(X2 + 3xy - 2x) + (3xy - 2y2 + y) - C

a b

(x2 + 3xy - 2x) - (a2 + 3ay - 2a) + (3xy - 2y2 +y) - (3xb- 2b2 + b) = C

x2 + 6xy - 2x -2y2 +y+ 3ay+ 3xb = C + a 2 - 2a -2b 2 +b C1  (3.16)

The same result can be obtained with less algebra and probably less
"chance of error by camparing Equation 3.15 with the differential form in

Equation 3.11.

-dx + -(3.11

(2x + 3y- 2) dx + (3x- 4y + 1) dy =0 (3.15)

Caoparing these tw equations,

= 2x: 3+ - 2 = (3.17)

and

a f 3x-4y +1 0 (3.18)

3.7



Since Equation 3.15 is an exact differential, then Equations 3.17 and 3.18 can

be obtained by taking partial derivatives of the same function f. To find the

unknown function f, first integrate Equations 3.17 and 3.18 assuming that y is

constant when integrating with respect to x and that x is constant when

integrating with Iespect to y.

f = x2 + 3xy- 2x + f(y) +C = 0 (3.19)

f = 3xy-2y2 +y+ f(x)+C = 0 (3.20)

Note that if Equation 3.17 had been obtained from Equation 3.19, any term

that was a function of y only, f (y), and any constant term, C, would have

disappeared. Similarly, obtaining Equation 3.18 froma quation 3.20, the f(x)

and C term would have vanished. By a direct comparison of Equation 3.19 and

3.20 the total function f can be determined.

f x2 + 6xy- 2x- 2y 2 +y+C = 0 (3.21)

Note that the unknown f(y) term in Equation 3.19 is (-2y2 + y) and the unknown

f (x) term in Equation 3.20 is 2x. Redefining the constant of integration,

Equation 3.21 can be written as

x2 + 6xy - 2x - 2y2 + y = C1  (3.16)

and was obtained earlier by integrating using dim variables of integration.

3.2.4 Integrating Factor

When none of the above procedures or techniques work, it may still be

possible to integrate a differential equation using an integrating factor.

When some unintegrable differential equation is miltiplied by some algebraic

factor which permits it to be integrated term by term, then the algebraic

factox is called an integrating factor. Detendiing, integrating factors for

arbitrary differential equations is beyond the scope of this course; however,

tw integrating factors will be introduced in later sections of this chapter
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when developing operator techniques and laplace transforms. These two factors
will be e' and est.

3.3 FIST ORER EQUTWICNS

The solution to a first order linear differential equation can be
obtained by direct integration. Cnsider the form

S= R(x) y = 0 (3.22)

where R(x) is a function of x only or a constant. To solve, separate

variables

dX + R(x) dx = 0 (3.23)
y

Integrating J. I = -JIR(x)cbc+C' (3.24)

<f Y

where

C' = in C

Thus

ln y R - JRWx dx + in C (3.25)

or
- JRlx) dx

y - Ce (3.26)

If R(x) is a cnstant, R, then

y Ce"ORx (3.27)

From this result, it can be cxluded that a first order linear differential
equation in the f:om of Equatiom 3.22 can be solved by shiply expressing the
solution in the Bnm o. Squation 3.27.

•+2, - 0 (3.28)
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S
then the solution can be uritten directly as

y = Ce"2x (3.29)

EXWLE

•+ x3 y = 0 (3.30)

is in the form

+ +RWxy = 0 (3.22)

which has the solution
- f Rlxldx

y = Ce -x' (3.26)

Therefore, the solution to Equation 3.30 can be obtained dLt -ctly

"- 1 x4d
y = Ce

3.4 LZM DIFFERErInL E:au•c~s AN) opEJW1UI TBNX MS

A ftm of differential equation that is of particula interest

dr d n-1
+ A-1 -+ + + A, A0y f(x) (3.31)

dk x

If the coefficient expressio Ah, AO .. are al 1 functions of x
Only, then Equation 3.31 is called a linbar d&f•frential equation. If the

coefficient expressions An, . - . , ar, all Ccxntmats, then Equation 3.31

is called a lina differentir L e:wation with Oomtant Oxfficients.
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x2d 2 + 3 +xy = sinx

is a linear dif~rential equation.

d 6

is a linear differential equation with constant coefficients. Linear

differential equations with constant coefficients occur frequntly in the
analysis of physical systems. Mathematicians and engineers have developed
81mple and effective techniques to solve this type of equation by using either
"classical" or operational methods. W= attiptirq to solve a linear
differential equation of the form

Ahex+ A n + . . . + A, A + A~~y a f W), (3.32)
C

it is hapful to first examine the equation

Ahj+ Ah~~l An + + A, + AA~+ y a 0 (3.33)

Equation 3.33 is the aw as Equation 3.32 with the right-hand side set equal

to zero. Equation 3.32 is krown as the general equation and Equation 3.33 as

the I ty or IRC01sw eguation. Solutions of Equation 3.33 possess
a useful property )mn. an as •erpsition, hich may he briefly stated as
follows &q U y1 (Y ) and Y2 (x) are distint solutions of Equation 3.33.
1-en awy linemar xz ation, of y (x) and Y2  x) is also a solution of
Equation 3.33. A Lma ecar ination wld be Cl 1y (x) + C2y2 (x).

0
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S
EXAMLE

2
dx.X+ 6y= 0

It can be verified thaty1  (x) = ex is a solution, and that Y2 (x) e

is another solution which is distinct fran y1 (. Using superposition, then,
y()) = c1e3x + c2e2x is also a solution.

Equation 3.32 may be interpreted as representing a physical system where

the left side of the equation describes the natural or designed state of the
system, and where the right side of the equation represents the input or

forcing function.
The fillawing line of reasoning is used to find a solution to Equation

3.32:

1. A general solution of aquation 3.32 ist conain n arbitrary

omstants and =at satisfy the equation.

2. The following statents axe justified by perience:

a. It is reasonably straightfnrard to find a solution to the
ccmplanentary Eiuation -3.33, containing n arbitrary
constants. Such a solution will be called the transient
solution. Phyically, it represents the respnm present
VflWJiystea nvardless olg input.

b. Tbere are varied temhiques for finding the solution of a
difEtential aquation due to a forcing function. Such
solution do not, in gw~ntl, contain arbitrary constants.
'This solution will be called the pwicua or steady
state solution.

3. If the transient solution which describw the response already
existing in the system is added to the response due to the
forcing fxntion, it would aPwar that a solution so written
uozld blwnd the two responses and describe the total resne
of the system rpesmet by Equation 3.32. In fact, the
definition of a general solution is satisfied umner uch an
arranement. This is siMly an extension of the principle of
aperpo•ition. The transient solution contains the oaret
zunter of arbitrary constants, and the particular solution
guarantees that the combned solutions satisfy the general
Mluatio 3.32. A general solution of Equation 3.32 is tn M
givean by K

3.12
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y - t + yp (3.34)

where Yt is the transient solution and y is the particular
solution.

3.4.1 Transient Solution
Equation 3.28 is a ccaplementary or howgeneous first order linear

differential equation with constant coefficients. A .quick and simple method
of solving this equation was found. 7he solution was always of exponential
fOM* bopefully, solutions of higher order equations of the same family take
the same form.

a+2y = 0 (3.28)

Next, a second order differential equation with constant coefficients
will be examined to determne if the candidate solution

y = er (3.35)

is a solutimi of the equation

ay" + by' + cy - 0 (3.36)

when the prime notation indicates derivatives with respect to x. That is,

Y' dy/dx, y* - d 2y/dxc2

Substitmng

am2em' + memK+ ce[•C = C (3.37)

or

M•2 + bm + c) en" 0- . (3.38)
Since

(W2 , c 0

2 +b + .c *0 (3.39)
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S
and, using the quadratic fornmla

ml, 2 = -b _ (3.40)
2a

Substituting these values into the assumed candidate solution, it is a

solution when m1 and m2 are defined by Equation 3.40.

Yt = Cle + C2e (3.41)

Equation 3.41 represents a transient solution since there is no forcing

function in Equation 3.36. When working numerical problems, it is not
necessary to take the de-rivutives of erx. Tis will be true for any order
differential equation with constant coefficients. Fi=m the foregoing, it is

seen that the method for first order complementary equations has been extended
to higher order omplenentary or hancgeneous equations. Again an integration
problem has been t.,,ded for an algebra problem (solving Equation 3.39 for

MISmn s).
There are four possibilities for mn and m2, and each is discussed below.

3.4.1.1 Case 1: Roots Real and Ukenqal. If m, and m2 are real and urnqual,
the desired foam of solution is just as given by Equation 3.41.

EMPLE

Given the hge eou equation

•+4•-12y= 0,dx

rewriting in operator form where

2Xm 231
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(m2 + 4m- 12)y = 0.

Solving for the values of m,

m2 + 4- 12 = 0

gives

-4 + f16 ÷+48 -4 + 8
m 2 - = - - -6,2

2 2

and the required transient solution is

-6x 2xYt = c1 e + c2e

3.4.1.2. Case 2: Roots Peal and Eqal. If n andm are real and equal, an

alternate form of solution is reqmired.

ECAMI4•

Given the hawceneous equation

ziý -4 + 4y = 0, (3.42)
dx2

rewriting in operator form

(m2 -4m+ 4)'y - 0.

Solving fr the values of m,

4 + V-6 4

2 72)

or m m 2. But this gives only one value of m, and two values of m are

required to rew.lt in a solution of the form of Ouation 3.41 which has two

arbitrary constants. The operator expression

S-4m 4 4 + 0

can also be written

(m- 2)2  0

3.15



or

(m- 2) (m- 2) = 0

now a repeated polynomial factor resulting in two (repeated) roots

m = 2,2.

Writing the solution in the form of Bquation 3.41 when the roots are repeated
does not give a solution because the two arbitrary constants can be cubined
into a single arbitrary constant as shown below.

Yt jCe2x+ C2e2x = (c 1 + c 2 ) e2x = c3e2K

To solve this problem one of the arbitrary constants is multiplied by x. The
solution now contain. two arbitrary constants which cannot be carbined, -and it
is easily verified that

Yt a tler2nX + c 2xe2m

is a transient solution of Fquation 3.42.

3.4.1.3 Case 3: Roots Purely ainaxy.

EXN4)u

Given the Nmgene equation

!+y " 0,

rewiting in operator frm

m+ l)y 0.

Solving,

0+ 0'T-4

2
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In most enginring work I"T is given the symbol j. (In mathematical texts

D _ +

and the soIlution is written

Y e]x IeX (3.43)
1 2

This is a perfectly good solutionx frcon a mathematical standpoint, but baler's

identity can be used to put the solution in a more useable fonm.

e j cos x + j sin x 01.44)

I¶is equation c=n be restated in many ways geometrically and analytical),y, and

can b3 verified by adding the series expmnsion of cos x to the serxies

expansion of j sin x. Now Buation 3.43 may be mqresed

Yt . c 1 (cosx+j Jinx) +c 2  I=• (-x) +j sin (-x)]

yt - (c 1 +c 2 ) cosx + j (c - c 2 ) sinx (3.45)

or without low of generality

Yt ! c3 Cos x + C4 sin x (3.46)

An emivalent eaptession to Sumtion 3.46 is

Yt 3 + C4oDS X + "- sin X13A47)

14 the &tbitrary omatants c3 and c4 are related as shoan in Figure 3.2,
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x
c03

then

= sin ,

c32 + c42

4 = Cos

Fc.32 + c4 2

and

C32 + C42 = A

where A and € are also arbitrary constants, Equation 3.47 becctms

Yt = A (sin 0 cos x + cos ý sin x)

or using a camon t-Lgonanstric identity

Yt = A sin (x +) (3.48)

Note also that Equation 3.48 could be written in the equivalent form

where 
Yt = Acos (x- 8)

e 90°.,
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To summarize, if the roots of the operator polynomial are purely imaginary,
they will be numerically equal but opposite in sign, and the solution will
have the form of Equation 3.46, 3.48, or 3.49.

EXAMPLE

Given the homogeneous equation

d2
d-Y +4y 0

dx2

rewriting in operator form

( 2 + 4)y 0

which gives the roots

m2 = +2j

Alternate solutions can immediately he written as

Yt = C3 cos 2x • c4 sin 2X

or

yt - Asin (2x +)

whare c 3 , c 4 , A, and 0 are arbitrary constants.

3.4.1.4 Case 4: Rmxts PTIplex Conjugates.

OMLE

Given the homogeneous equation

2 d

rewriting in operator form

(M2 + 2m + 2)y 0 o
Solving gives a ocmplex pair of roots

ni -2 +
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or

m = -1 + j, -1 -j

The solution can be written

yt cle (-l + j)x + c~e(-I j)x

Factoring cut the exponential term gives

Yt = e- [cle x + c 2e-JX]

or, using the results fron Equations 3.46 and 3.48, alternate solutions can

innediately be written as

= x[ 3 cos x + c4 sin 3.50)

or

Yt = e-x sin (x + 0) (3.51)

3.4.2 Particular Solution
The particular solution to a linear differential equation can be obtained

by the method of undetermined coefficients. This method consists of assuming
a solution, of the same general fQnn as the input (forcing function), but with

undetermined constant coefficients. Substitution of this assumed solution
into the differential equation enables the coefficients to be evaluated. The

nethod of undetermined coefficients applies whet, the forcing function or input

is a polynomial, or of the form

sin ax, cos ax, eax

or Owbinations of sums and products of these terms. 7he general solution to
the differential equation with constant coefficients is then given by Equation

3.34,

Y Yt+ yp(3.34)
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which is the swmmation of the solution to the caoplementary equation

(transient solution), plus the particular solution.

Consider the equation

a d• + b - + cy f W)(3.52)

The particular solution which results fram a given input, f (x), can be solved

for using the method of undetermined coefficients. The method is best

illustrated by considering exanples.

3.4.2.1 Constant Forcing Functions.

MCAMPLE

d2 y+ 4 a+ 3y = 6 (3.53)

dx
2

The input is a constant (trivial polynamiaJ.), so a solution of form yp = K

is assumed.

Then

dy,, r
dx0

and

dx2  dx2

Substituting into Equation 3.53,

0 - 4(0) + 3K =6

yp K 2
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Therefcre, Y = 2 is a particular solution. The homogeneous equation can be

solved using operator form S+ 4 ! + 3y = 0 (3.54)

dx2

(m2 + 4m + 3)y = 0

or

m = -1, -3

and the transient solution can be written as

Yt = C1e + c2e -(3.55)

The jeneral solution of quation 3.53 is

cIe - + c2 e -3x + 2& (3.56)

transient particular'
solution (or steady state)

solution

3 4.2.2 PoLnamial Forcing Function.
EMMPLE-

d 2Y+ 4  + 3 y = 2 + 2x (3.57)

dx2

The form of f(x) for Mquation 3.57 is a polynomial of second degree, so a

partiumlar solution for yp of second degree is assmed:

yp AX2 + Bx+C

S• T h e n

dv.
.22+B
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and

dxv
c = ' 2A

Substituting into Equation 3.57,

(2A) + 4 (2Ax +B) + 3 (Ax2 + Bx + C) = x + 2x

or

(3A) x2 + (8A + 3B) x + (2A + 4B + 3C) x2 + 2x

Equating like powrs of x,

x2: 3A = 1

A = 1/3

x: 8A+3B = 2

3B = 2 - 8/3

B - 2/9

x0. 2A + 4B + 3C = 0

3C - 8/9- 2/3

C - 2/27

Threfore,

yp a 1/3x 2 - 2/9 x+ 2/27

The total general solution of Buation 3.57 is given by

y cle'x + c2e-3 ' + 1/3 x2 - 2/9 x + 2/27 (3.58)

"since the transient solution is Eqation 3.55. As a general rule, if the

forcing uriction is a polynm dal of degree n,, assm a poly-mial solution of

degree n.
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3.4.2.3 EXPCNENTIAL FOCIM FUNwION.

EXAMPLE

S4 3y(3.59)

'Me forcirM function is e2 x so assume a solution of tk* form

yp - ,2x

d (e2x )=2e2

d2  2

dx

Substituting into Equation 3.59,

4A2c + 4(2Ae2x) + 3(M2x) e 2c

e2x (4A+SA+ 3A) - e2x

The coefficients on both sides of the equation must be the same. "refore,
4A + 8A + 3A - 1, or 15A - 1, andA 1/15. The particular solution of
Equation 3.59 then is yp - 1/15 e2 . The transient solution is still

Equation 3.55. A final exuple will illustrate a pitfall suatims

enrxnmtere usiNg dts medwt
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3.4.2.4 Exponential Forcing FUnction (special case).
EXhAMLE

& + 4a+ 3y e-x (3.60)
dx 2

The forcing function is e-x, so assum a solution of the form yp= MX.

Then

d (Me) _-x

and

d 2  (Ae-X) Ae x

dx2

Substituting into Equation 3.60,

Asex + 4(-Ae-x) + 3(Ae-x) e-x

(A- 4A+ 3A)e-x e-x

(0)e'x - e-x

Cbviously, this is an incorrect statmnent. 7b locate the difficulty, the

procedure to solve dif erential equations will be reviewed.

To solve an equation of the form

(m + a) (m + b)y -ex

solve the htmrgmeous equation to get

(m+a)(mn+b)y - 0

C -c: m - -a, -b

SY t W CI e-ax + C25ebx
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If yp = 1-ax is assumed for a particular solution, then I
Y Yt + Yp = cIe'-ax + c2e-bx + Ae-ax (Cl t -ax + c -bx

= c e7-+x + ce-cx

3 2e

= yt

H v y is the solution only uhen the right side 6f the equation is zero,
and will not solve the equation when there is a forcing function of the form
given. Assuminrq a particular solution of the form

-axyp =Axe

will lead to a solution, then

-x -bx -ax -ax +c-bx
y=yp + yt = cle + c2e + Axe = (c + Ax)e +ce Yt

SiminlaUy, the equation

(m+aj) (m- aj) y = sinax

has the transient solution

Yt " Cl sin ax + c 2 cos ax

If yp - A sin ax + B oos ax is assumd for a particular solution, then

y - yt+yp - (c,+A) sinax+(c 2 +b) cosax

y n c3 sinax+c 4 cosax Yt

which, as in the previous exarple, does not provide a solution when there is a
forcizm function of the form giv%4. But, assuming a solution of the form

yp- Axsnaix+ acousax

does lead to a solution

y a (c 1 +AX) sinax + (c2 +Bx)d os ax yt
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Oontinuing with the solution of Equation 3.60, a valid solution can be found
by assuming yp = Axex, ten

d (Axe-x) _ A(_xe-X + e-X)
dx

and

d 2
S(Axe) =A(xex -2e-x)

Substituting into Equation 3.60,

A(xe-x - 2e') + 4A(-xe-x e') + 3(Axe-) = e

(A- 4A + 3A)xe-x + (-2A + 4A)e-x = e-X

(0)xe-x + 2Me = eX

and

A = 1/2

Thus,

yp = (1/2)xe-x

is a particular solution of Equation 3.60, and the general solution i3 given
by

y C c1e-X + c 2e'3X + 1/2xeX

The key to sccessful application of the nethod of undetemined coefficients
is to assme the proper form for a trial or candidate particular solution.
Table 3.1 swumarizes the results of this discussion. When f(x) in Table 3.1
consists of a sum of several terms, the approriate choice for yp is the sun
of y epressions corr to these terms individually. Whenever a term
in any of the yo's listed in Table 3.1 duplicates a term already in the

p�n fun tion, all terms in that y, must be nltiplied by the lowest
positive integral power of x sufficient to eliminate the duplication.
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TABLE 3.1
CANDIDATE PAM'ICULAR SOLUTIONS

a d2y + b -+ cy f(x)
dx 2 d

Forcing Assumed
Function Solutionf(x) y

COnstant:

K1  A

Polynanial:

nn n n-1
x1x Aoxn+ A1 x +. + *x+A

Sine:

K1 sin K2x

I A cos K2x + B sin K2x

Cosine:

K1 ICos K 2x

E~onential:

KI e Ae

3.4.3 Sol For vnstants of Pntegation
As discussed previously, the nudber of arbitrary constants in the

solution of a lirxwr differential equation is equal to the order of the

egation. The constants of integration can be detanined by initial or
boundary conditions. That is, to solve for the constants the physical state
(position, velocity, etc.) of the system must be knon at sane tixt, The

nm*ner of initial or boundary conditions given. must equal the number of
constants to be solved for. Many timas these conditions are given at time
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equal to zero, in which case they are called initial conditions. A system
which has zero initial condition, i.e., initial position, velocity, and
acceleration all equal to zero, is frequently called a quiescent system.

The arbitrary constants of the solution must be evaluated from the total

general solution, that is. the transient plus the steady state solution. The
method of evaluating the constants of integration will be illustrated with an

example.

EXAMPLE

S+ 4 k + 13x = 3 (3.61)

Qiere the dot notation indicates derivatives with respect to time, that is, :1
= dx/dt, x = d2x/dt 2 . The initial conditions given are x(O) 5, and

*(0) 2 8. The transient solution is given by

m2 + 4m+ 13 = 0

mn -2 + ,r4 --3 - -2±+J3

xt e-2t (Acos 3t + B sin 3t)

Assme the particular solution of the form

xp a D .

xdx

0

11-0

Sukstitutirn into Equation 3.61, D 3/13 for the total general solution

x(t) -e-2t (Acos 3t + H sin 3t) + 3/13
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To solve for A and B, the initial conditions specifiMd above are used.

x(0) = 5 = A+ 3/13

or

A = 62/13

Differentiating the total general solution,

*(t) = e-2t [(3B cos 3t - 3A sin 3t) -2e-2t (Aces 3t + B sin 3t)]

Substituting the second initial condition

*(0) - 8 - 3B-2A

76B -n•

Therefore, the complete solution to Equation 3.61 with the given initial
conditions is

x(t) i e- 2t 1(62/13) cos 3t + (76/13) sin 3t] + 3/13

First and se•nd order differential equations have been discussed in acre

detail. IU is of great importance to note that many higher order systens

quite naturally decmpose into first and second order systems. Tor example,

the study of a thir! order equation (or systuc may be coxducted by examining

a first and a second order system, a fourth order sytm analyzed by examining

two second orde eyasrstu,, et. All t.ese cases are handled by solving the

characteristic eczxtion to get a tranzien: solution and then obtainirg the

particular solution 1Ž, any onmvenient method.

A fnw nnarwk are appropriate regardLng the second order liear
differential equatim with oonstant coefficients. Altlg' th equation is

interesting in its oin right, it is of particular value because it it a

mat-hnatal• &I n i for several prcblms of physical intermst.
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Sa •- i��-b + (3.62)

Sd24x+ - + Kx= f(t) (describes a mass spring (3.63)
M +Ddt da r system)

Ld-Q+Rt+2 -= E(t) (describes a series LRC (3.64)
dt 2  at C electrical circuit)

Eations 3.62, 3.63, and 3.64 are all the same mathemtically, but are

expressed in different notation. Different notations or symbols are employed

to emphasize the physical parameters involved, or to force the solution to

appear in a form that is easy to interpret. In fact, the similarity of these

last twD equatioms may suggest how oe might design an electrical circat to

siuulate the Weration of a mnchn•cal systen

3.5 APP wmCAI1s AND sTflARD Emhi'

Mp to this pouxt1  diffreti'al equations in gqnera and Wiear

differential equatiOns with Constant coefficients have bmen cos3d4re&d

M.thods for solving first and ssnt oder oqutions of the £ol"-4zg type
have bwn devekped:

a a+ bx (t)3.5)

a 1 ba tft) 0(.66)

"These tw *1ti' arm ffathftical ua&*ls Or fns. Is &n forns may be

used to S -cribe diverse. ical 'sy-st . This sec.ion wifl cowentxate on

the transient reqxna of the Gystnz wider nve~stigaticii
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3.5.1 First Order Equation

EXAMPLE

4k+x = 3 (3.67)

Physically, x can represent distance or displacement, uhere t is used to

represent time. The transient solution can be found from the homogeneous

equation.

4k +x =0

(4m + 1)x = 0

4m+1 = 0

m = -1/4

Thus .
ce-t/4Xt =c

The particular solution is found by assuming

dx
Tt2 = 0

Substitute

A =3

or

p 3
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The total general solution is then

x = ce-t/ 4 + 3 (3.68)

The first term on the right of Equation 3.68 represents the transient

response of the physical system described by Equation 3.67, and the second
term represents the steady state response if the transient decays. A term

useful in describing the physical effect of a negative exponential term is

time constant whlich is denoted by T. The tine constant is defined by

m

Thus, Equation 3.68 could be rewritten as

x = cet/IT + 3 (3.69)

where t - 4.

Note the followiiq points:

1. The time co-stant is discussed only if m is negative. If m is
positive, the eoxonent of e is positive, and the transient
solution will not decay.

2. if n is negative, T is positive.

., T is the negatim• r•ciprocal of m, so that smll nwerical
values of mi give large nmrical values of z (and vice versa).

4. Tie value of T is the tibe, in secowds, requirod for t'h
displacvment to decay to lie of its original displacement frcAm
equilibrim or steady value. To get a better uw-arsetan of
thxis statement, cxane Equatimn 3.69

and lett T . Then

X Ce 1 + 3 C + 1 .3.70)

1US, when t t ., the exponmitial portion of the solution has do.yedw tO l/e

of its original displaoewnt as shon in. iiqure 3.3.
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x

3+c 0-. o-' -0.368

xl(t) - co-v4 + 3rF °
C l.

!
I

T

FIGURE 3.3. EAMPLE OF FIRST ORDER EXPONENTIAL
DECAY WITH AN ARBITRARY CCNSTANT

Other measures of time are sometimes used to describe the decay of the

expnential of a solution. If T1 is used to denote the time it takes for the

transient to decay to one-half its original amplitude, then

T 0.692 T (3.71)

This relatiowship can be easily shcwn by invwctiting

-at
XMC 1 e + C2 (3.72)

By definition, -z 1/a. T is the value of t'at which xt= 1/2 xt(0).

solvirq
x t = te'

-1T
1/2xt(O) 1/2 c C e- a

e -I/ 1/ 2

-4n 1/2 =aT1 I
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-in 1/2 0.693 _0.C93'a a

The solution of Equation 3.67 can be conpleted by spec.fying a boundary

condition and evaluating the arbitrary constant. Let x 0 at t 0.

x = ce-t/4 + 3

x(0) = 0 -- c+3

c = -3

The cmplete solution for this boundary condition is

x = -3et-/4 + 3

as sham in Figure 3.4.

/

2 - x

L

I I

T* T

FIG=S 3.4. M"LE; (W F=~ OPIMi 9 ~XAW fAY



3.5.2 Second Order Eqt~ations
Consider an equation of the form of Equation 3.66

ad+bd+cx = f(t) (3.66)
dt 2  dt

As discussed earlier, the characteristic equation can be written in operator

notation as

m 2 +bin+ c = 0 (3.39)

where roots can be represented by

-b + b2 - 4ac
'1,2 = 2a (3.40)

These quadratic roots determine the form of the *transient solution. The
physical inplications of solutions for various values of m will now be
discussed.

3.5.2.1 Case 1: .. ots Real and Un!al. Mmen the roots are real and
unequal, the trari,.Jent solution has the form

X t C eml + C 2e mt(3.73)

when mI and m2 are both negative, the system decays and there will be a
time constant aW4catesd with each expoential as shom in Figure 3.5.
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x

! m< <o

ma<o

CiMt

FIGURE 3.5. SECOD ORDER TRANSIEfT RESPONSEM PEAL, WMA, NOGATIVE FMTS

WMen or m2 (or both) is positive, the system will generally diverge as

sham in Figures 3.6 and 3.7.

K x

cto m t +%* m~t m /fx //, ' ,
m1<oj i>.m

*4o

I 3.3

FIGEWE 3.6. SBOON ORDM TRAkNWf FIGURE 3.7. SFIXXIJ ORDME TRANSIM~
~POISE WtTH ONE RESPME WrlH RENLj

IPWTVE A14D OM NWAT1VE mm~AL FOSITVE H=~r
WAL, UN= A
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3.5.2.2 Case 2: Roots Peal and Equal. When mI m2, the transient

solution has the form

xt . c1et + c2 tew (3.74)

When m is negative, the system will usually decay as shown in Figure 3.8.

If m is very small, the system may initially exhibit divergence.

x

/ m<o

mtt

FIGURE 3.8. SECCXD (IRDER TRANSIENT RESPONSE
WIM REAL, EAL, NEGTIVE FDMS

Wn m is positive, the system will diverge much the same way as shWwn in

Figure 3.7.

3.5.2.3 Case 31 Roots Purejy Lmainary. Me m - + jk, the transient

solution has the for

xt w cI sin kt + c2 cos kt (3.75)

or

xt - A sin (kt + #) (3.76)

or

Xt - ACos (kt + e) (3.77)
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The system executes oscillations of constant amplitude with a frequency k as

shown in Figure 3.9.

x

A /- xN-A*in(kt+0)

t

FIGURE 3.9. SE303 ORDER TRANSIENT REtSPNSE
WMTh IMAG R P3O=S

3.5.2.4 Case 4: Hoots Complex Conjugates. Nen the roots are given by

m = k,+ jk2, the form of the transient solution is

xt - ekit (c, cos k2 t + c 2 sin k2 t) (3.78)

or

xt - Aeklt sin (k2 t +*) (3.79)

xt a Aek 1t os (k2t + e) (3.80)

The system executes periodic oscillations oontained in aui envelope given
by x = + eklt.

Mme k1 is negative, the system decays or ommrges as shown in Figure

3.10. r k1 is positive, the system diverges as show in Figure 3.11.
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x
x|

A A e kl t X t 0

Xt Aekit In (k~t+, 00\k.. <_o A-

t t

-t,,- -- V -A .. Aktt sin (klt + 0 )
! ~1 Ski•.Aet ._Akit k.., > >o

-A

FIGURE 3.10. SEXM ORDER = FIGURE 3.11. SECOND ORMDR DIVEF4T
TRANSIM~ RESPCNSE KMT TRINSIEW RESPCtNSE WITH
CC14PLEX CNJ F40M CCLE COMI ROOTG~ aS

Tte discussion of transient soluticos above reveals only part of the picture

presented by Equation 3.66. The input or forcing function is still left to
consider, that is, f(t). In practice, a linar system that possesses a

divergence (without inpat) may be changed to a damped system by carefully
selecting or oontrolling the inpu. Cmversely, a nandivergent Linear system
with weak dauping may be made dive•Vent by certain types of inputs. Chapter
13, Linear ontrol Theory, will emixne these probles in detail.

3.*5.3 Secondi Crder I4.war yLtflw
Considar the. physical model W~om in Figure 3.12. The system consists of

an object su•sndxW by a Wpring, with a spring ownstant of K. nw mass
"represented by M nay moe verti4ally and is sub jct to gravity, input, and

daUpng, Vith the total viso=us dwping ocnstant eqal to :.
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DAMPER SPRING DAMPER

D D
2K 2

LB/FT PER SEC
LB/FT L DISPLACEMENT x, FT

MASlS, M.FT/----s

FORCE, LB
fmt

FIGURE 3.12. SEOND ORDER MASS, SPRIX,
DAMPER SYSTEM

The equation for this system is given by

ba + D +x = f (t) (3.81)

The characteristic equation in operator notation is given by

Hm2 + Din + K - 0 (3.82)

The roots of this equation can be written

2 D+ (oD - (3.83)

Ml, 2ji VD(3.84)

0-
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For simplicity, and for reasons that will be obvious later three

constants are defined

DD -(3.85)

the term c is called the damping ratio, and is a value which indicates the

damping strength in the system.

wn -- . (3.86)

Wfn is the rxiamuped natural frequency of the system. This is the frequency at

which the system would oscillate if there were no danwing present.

'd -= 'n •(3.87)

wd is the damped frequency of the system. It is the frequency at which the
system oscillates when a damping ratio of c is present.

Bubstituting the definitions of i and wn into Equation 3.84 gives

m1,2 C " wn ± Jwn C 2 (3.88)

With these roots, the transient solution benmes

mlt flm(389

Xt 0 c1e + c 2e (3.89)

which can be written as

X te -w n t C i t ( 3 9 0
e C LcM own V11 = t4 c4  siwn~I-~J.0

or
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The solution will lie within an exponentially decreasing envelope which
has a time xonstant of 1/ (4n). This damped oscillation is shown in Figure
3.13. roan Equation 3.91 and Figure 3.14, note tnat the numerical value of
damping ratio has a powerful effect on systeri response.

A

PIGURE ~ X As-3 SEtlnG,'V1- S~• APDOIat+ON
lop

-A

If Eqation 3.81 is divided by M

SDj !. Kft (3.92)
.4 M

or, rewriting using to and C defined by SquaXtims 3.8S and 3.86

+ 2 C X'+41- (3.93)n i

Hawton 3.93 is a JbrM of &qition 3.31 that is useful in analyzing tha
behavior of any eooond order 1rAmr syqstt. In genral, the magnittde and

siUg of damping ratio ltermine the resqme properties of the system. "w..ro
are Rive distinct case. 4ch are given nams descriptive of the rj•oe
asecidated with each case. These are:
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1. c 0, undatued

2. 0 < c > 1, underdazved

3. c I, critically danped

4. 4 >1, overdaned

5. c < 0, unstable.

Each case will be ecamined in turn, making use of fluation 3.88, repeated

below

.2 - wn -+ 34 {? .488)

3.5.3.1 Case r i : ci 0, Undared. Bbr this condition, the roots of the

giving a transient solution of the fcrm

x M Cl 05 t + al Sir) f t (3,94)

or

xt a A sin + .t+4) (3.95)

Sinsing Uh System to have the transient ree se &f an urZwd sinusoidal
osCiltatic with frequency wn" Hn, the dsi~itini of wn as the "S wpýd

natural freuecy.' Figure 3.9 shve an widaqzx systum.

3.5.3.2 Case2Lc.c±O<, aa. flr this caso, m is given by
iqaticz 3. 88

c(3.88)t2 +Jn-
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The transient solution has the form

xt A -ýntsiVi Ct+0(.6

This solution shows that the system, oscillates at the damped frequency, wd,
and is bounded by an exponenztially decreasing envelope with time constant

1/(• t n). Figure 3.14 shows the effect of increasinp the damping ratio frcu

0.1 to 1.0.

-~~~~r - - -3 1

7 0.4l 1L.0 It 2.0 ?I 0.5 1, 0 • •~ I.

. . .. --..-

.I I S A - . .A4--,1,. ,, -, ,. ...

-10•i .... :2 7

0 t r"oe

-"f q- -, . ' . . -, ". ..• ; -• -.

I 31 i
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3.5.3.3 Case 3: ý 1.0, Critically Datped. For this condition, the roots of
the characteristic equation are

m1, 2 = -wn (3.97)

which gives a transient solution of the form

-W t -wt
= c e + c2 te n (3.98)

This is called the critically damped case and generally will not overshoot.
It should be noted, however, that large initial values of x can cause one
overshoot. Figure 3.14 shows a response when ý = 1.0.

3.5.3.4 Case 4: • > 1.0, OverdanI2. In this case, the characteristic roots
are

= + 1 (3.99)ml, 2 -"n + •n

which shows that both roots are real and negative. The system will have a
transient which has an exponential decay without sinusoidal motion. The
transient response is given by

n ~ 1) + (t
t= cle L + c 2e (3.100)

This response can also be written as

-t/T1 -t/T 2
xt= c1e + c2e (3.101)

where T and T2 are time constants for each exponential term.
This solution is the sum of two decreasing exponentials, one with time

constant T1 and the other with time constant T 2. The smaller the value of T,

3
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the quicker the transient decays. Usually the larger the value of ý, the

larger T1 is carpared to -r 2" Figure 3.5 shows an overdamped system.

3.5.3.5 Case 5: - 1.0 < ý < 0, Unstable. For the first Case 5 exanple, the

roots of the characteristic equation are

m, = 2 wn + JW n [1 -2 (3.102)

These roots are the same as for the underda-aped case, except that the

exponential term in the transient solution shows an exponential increase with

time.

-ýw tr
xt = e C1 cos n C t + c2 sinV1 t (3.103)

Whenever a term appearLig in the transient solution grows with time (and

especially an exponential growth), the system is generally unstable. This

zeans that whenever the system is disturbed fron equilibrium the disturbance

will increase with time. Figure 3.11 shows an unstable system

Case 5: c = -1.0, Unstable. For this second Case 5 example, the

roots of tie characteristic equation are

"m,2 ='wn (3.104)

and

xt = en (c 1 + c 2 t) (3.105)

This case diverges nuch the same way as shown in Figure 3.7.

m1, 2 = - on4n V;T -- (3.99)
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II

The response can be written as the sum of two exponential terms

Smlt m2t

xt 1 Ile + c2e

where the values of m can be determined from- Euation 3.99.

Five exapples will illustrate sane of these system response cases.

Case 5: v< - 1.0, Unstable. This third Case 5 example is similar to

Case 4, except that the system diverges as shown in Figure 3.7.

ml,2F= -n _ 1 (3.99)

The response can be written as the sum of two exponential terms

mIt m2t
xt = cle + c 2 e

where the values of m can be determined from Equation 3.99.

Five exairples will illustrate some of these system response cases.

EXV4JLE

Given the hoaogeneous equation,

x+4x = 0

from Equation 3.93,

=0

and

On "2.0
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'The system is undanped with a solution

xt + A sin (2t + •)

where A and * are constants of integration which could be detennined by
substituting bI.ndaxy conditions into the total general solution.

EXAPLE

Given the homogeneous equation

x + +x 0

from Equation 3.93,

wn 1.0

and

0.5

Also from Equation 3.87, the definition of damped frequency

"•d W •n VI" - 2 ' 0.87

The system is underdanped with a solution

xt = Ae-0"St sin (0.87 t + 0)

EXAPLE

Given the hmogwm w equation

+ i+i+x 0

Multiply by four to get the equation in the form of Equation 3.93.

Then

x ++ti+ 4x =0
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I
and

n =2.0n

C= 1.0

The system is critically danped and has a solution given by

xt = cle- 2t + c2te-2t

EXAMPLE

Given the homcgeneous equation

x + 8k+4x = 0

from Bqation 3.93,

wn =2.0

and

SC 2.0

The system is overdaqped and has a solution

X =Cie-7.46t .. 54t

EXAMPLE

Given the hmgeneous equation

* = 0

from Equation 3.93,

* n = 2.0

and
= ~ -0.5

From Euation 3.87, the definition of danped frequency

wd = n " = 1.7

The solution is unstable (negative damping) and has the form

S= Aet sin (1.7t+ ) I
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In smmazry, the best damping ratio for a system is determined by the

intended use of the system. If a fast response is desired and the size and

number of overshoots is inconsequential, then a small value of damping ratic

would be desired. If it is essential that the system not overshoot and

response time is not too critical, a critically damped (or even an overdanped)

system could be used. Tte value of damping ratio of 0.7 is often referred -o
as an optimun damping ratio since it gives a small overshoot and a relatively

quick response. The optimum daqping ratio will change as the requirements of

the physical system change.

3.6 ANAILX SECOCND O•E ER LINEAR SYSTEMS

3.6.1 Mechanical System

The second order equation which has been examined in detail represents the

mass-spring-daqper system of Figure 3.12 and has a differential equation which

was given by

MG + i + Xx = f(t) (3.81)

Using the definitions

D (3.85) and w - (3.86)

Equation 3.81 vas rewritten as

2 + 2 2 t)(3.93)we +n M

3.6.2 Electrical System
The seoond order equation can also be applied to the series LRX circuit

shamn in Figure 3.15.
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+R- + L- +C-

b d

+

E(t)r

a

FIGURE 3.15. SERIES ELE'rRICAL CIJIEIT

where

L = inductance

R - resistance

C = capacitance

q - charge

i = current

Ass"zr q(O) 4(0) - 0, then Kirchhff's voltage law gives

'Vabd - 0

or

orE(t) VRa-VL-Vc 
- 0

E (t) iR - L 3U -ef t =d 0

0
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Since
idq

dt

E(t) = ( + RZ + q (3.106)

The followin parameters can no be defined.

S•n(3.107)

S R (3.108)

and

2Cwn R (3.109)

Using these parameters, Equation 3.106 can be written

q + 2cwn4+ w 2 q = ~)(3.110)

3.6.3 Servamechanisms
For linear control systems work in Chapter 13, the applicable seoxid

order equation is

f:0i (3.111)

where

I inertia

f - friction

-gain

ei nput

e0 = output
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Rearranging Equation 3.111
0+. _ + 8e0 (3.112)

or

e0"" e & •n2  2 08 (3.113)6 0 + 2 w n e0+ wn 0 = n a 313

where the following praxneters are defined

= V - if•(3.114)

-f (3.115)

Thus, in general, any second order differential equation can be written in the
form

3U22xwn ~+ wnx-ft (3.116)

where each terM, has the same qualitative significance, but different physical

significance.

3.7 LAPLACE TRANSFOR4S

A technique has been presented for solvino, linear differential equations
with constant coefficients, with and without inputs or forcing functions. The
method has limitations. It is suited for differential equations with inputs
of only certain forms. Further, solution procedures require looking for
special cases which require careful handling. om~ever, these proedures have
the remarkable property of changing or "transforming" a problem of integration

into a problem in algebra, that is, solving a quadratic equation in the case
of linear second order differential equations. Tis is accocplished 3y making
an assumption involving the nim er e.
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Given the second order Ingeneous equation

ax + b + cx = 0 (3.117)

The follwing solution is assumed

xt = e (3.118)

Substituting into Equation 3.117 gives

am 2emt+ bm i t + cemt = 0 (3.119)

and, factoring the eponential term

e (am2 + m + c) 0 (3.120)

leading to the assertion that Equation 3.118 will produce a solution to

Equation 3.117 if m is a root of the characteristic equation

am' + bn + c - 0 (3.121)

Introducing operator notation, p a dldt, the characteristic equation can be

written by inspection.

ap2 + bp+ c - 0 (3.122)

Equation 3.122 can then be solved for p to give a solution of the form

xt a- lt + cP2t (3.123)

Of ocw'-se, the great shortowdng of this method is that it does not provide a

solution to an equation of the form

= f(t) (3.124
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It works only for the hcamgeneous equation. Still, a solution to the equation

can be found by obtaining a particular solution and adding it to the transient

solution of the hcaiogeneous equation. The technique used to obtain the

particular solution, the method of undetenrdned coefficients, also provides a

solution by algebraic manipulation.

Howver, there is a technique which exchanges (transforms) the whole

differential equation, including the inpuIt and initial corditions into an

algebra problen. Fortunately, the method applies to linear first and second

order equations with constant coefficients.

In Equation 3.124, x is a function of t. For eriphasis, Equation 3.124
can be rewritten

ax(t) + bi (t) + cx(t) - f(t) (3.125)

Miltiplying each term of Equation 3.125 by the integrating factor emt gives

ax (t)t + bi(t)•e + = (t)em" - f(t) e': (3.126)

It is now possible that Squation 3.126 can be integrated term by term on both
sides of the eqcation to produce an algebraic expwresion in m. The algebraic

* expression can trhe be manipulated to eventually obtain the solution of

Squation 3.125.

Sýn* nw integrating facto- emt shoeuld be distinguished from the previous

integrating factor used in developing the operator techniques for solving the

hMVEe5W8= equation. In order to acocPlish this, m will be replaced by -s.
The reason for the minus sign will be apparent later. In order to integrate

the terms in Squation 3.126, limits of integration are required, In most
physical problems, events of interest take place subseqent to a given
starting time which is called t = 0. To be sure to include the duration of
all significant events, the amposite of effects from time t = 0 to time t =
will be included. Squation 3.126 now becms

ax(t) e-st dt +J b A(t) est dt + c x(t) e-st dt



= f(t) e-st dt (3.127)

Equation 3.127 is called the Laplace transform of Equation 3.125. The
problem now is to integrate the terms in the equation.

3.7.1 FindLng the Laplace Transform of a Differential Equation

The integrals of the terms of Equation 3.127 vust now be found. The

Laplace transform is defined as

x(t) e-St dt :.(L tMI X(s) (3.128)

0

where the letter L is used to signify a Laolace transform. X(s) rmst, for the

present, remain, an unrnawn. (m ws carried along as an unknown until the
clharacteristic equation evolved, at which time m was solved for explicitly.)

Since ESqation 3.128 transforms x(t) into a function of the variable, s,

tlen

c x(t)e-st dt cJ x(t)eQ-t dt - cX(s) (3.129)

and X(s) will be carried along until such time that it can be solved for.

"me transform for the second term, b x(t) is givn by

b i(t) e-st dt - b i(t) e-st dt (3.130)
0 0
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TO solve Equation 3.130, a useful fonmla known as integration by parts

is used

T b b b
udv = uv vdu (3.131)

Applying this fbrmmla to Equation 3.130, let

u est

and

dv i(t) dt

then

du -sc"at dt

and

V X(t)

&Wstitutins thaw values into quation 3.131 and integrating. fri t = 0 to

t m .

i(teest dt x(t)e~st 0- foX(t) d

- xlt3e-St58 + a xte-st dt
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I

= x(t)e-st + sX(s) (3.132)

0

Now

x xlt) e-s lira xltle-s • (0) (3.133)

t4
0

and assive that tha tem P st "dcaiinatess" the term x (t) as t T h. The retason

for using thi -inus sign in the exponent should now be apparent. Thus,

lira •,t 0, and Dquatkion 3.1-31 becares

x £t)e-t It - 0 - x(0) + sX(S) = wX(s) - x(0) (3.134)

Buations 3.129 and 3.134 can now be abbreviated to signify Laplace

trans f~oatians.

L WO()} X (a) (3.135)

L [(WO)] cx is) (3.136)

L (i(t)) S is) - x(0) (3.137)

L ( h(t)) = bIsX(s) - x(O)] (3.138)

Eqation 3.138 can be e:tarded to higher order derivatives. Such an extension

gies

x* (ait)) a [SX(s) _ 83 (0) -x0,. (3.139)



II

Returning to Equation 3.127, note that the Laplace transfonns of all the terms

except the forcing function have been found. To solve this transform, the

forcin, function must be specified. A few typical forcing functions will be

considered to illustrate the techniq for finding Laplace transforms.

EK LE

f(t) = A = constant
Ao Then

L (A] Ae-st dt e-St(-sdt) = e-St

4: 0

or

L (A] A (3.140)
s

EUMrLE

f(t) - t

~¶~fl

L t) l t87'at dt

To integrate by rts, lot

U = t

iv e- St dt

du dt

3.-at

3.60



Substituting into Equation 3.131

S

=d 0 = -t+st o -tL

0

or

Ltt] =Si(3.141}

M(AWLE

f(t) W e2t

'Then

LMe2t e 2tstt t e (2-s)dt a-

00

or

Me 2t) (3. 142)

f(t) sin at

LUsin at) sin at a78t dt

0
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Integrate by parts, letting

U = sinat

-st
dv= e dt

du = a (cos at) dt

v -- !e-st
s

Substituting into Buation 3.131

(sin t) e-st . -(sin .. (e. +I (cos at) e-st dt

oro

J (sin at) e~ dt 0 + (cos at) e~s dt (3.143)

Te expression (cos at) e-st can also be integrated by p•rts, letting

U - cos at

dv est dt

and
du -a (sin at) dt

V " est
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Giving

(cos at) e-st dt -(cos at) (e )st a O (sin at) e-st dt
s

f 0 0

or

(cos at) e-st dt = (-aL sin at] (3.144)6 ss

Sustituting Equation 3.144 into Equation 3.143

a+ I-Lsia) a L2 intL [sinat] =2+- [ = a2L si a) 0+ [s!• - As L (sin at)] • - L (sin at)
SLSJ S2 S7

which "obviously" yields

L (sin at)• 2 a (3.145)
~2+a

Also note that Equation 3.143 may be written as

L (sin at) - L Cos at)

which yields

s
L (coo at) - 2- .... (3.146)

SLaplace transaftm of =re cuiilicated fu Atis mnay be quite tedious
to derive, but the prw"=e is similar to that above. FOrtimately, it is not

necessary to derive Laplwe transfima each time they are ned. D~tensive
tables of transorms exist in most advanced athanatic and control systen

1. All of the trarsfam reseds for this core are lIsted in Table

3.2 Page 3.73.
2* twcnique of uin Laplace transfo to assist in the solution of a
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differential equation is best described by an example.

EXAMPLE

Given the differential equation

x + 4k + 4x = 4e2t (3.147)

with initial conditions x(O) = 1, ic(O) = -4. Taking the Laplace transform

of the equation gives

s2X(s) - sx(o) - •(o) + 4 [sX(s) - x(O)] + 4x(s) =

or

(s2 + 4s + 41 X(s) + [-s + 4 - 4] = 4

solving for Xjs) r
x(s) a 2s..+4.. (3.148)

(a - 2)(s + 2)

In order to oontinae with the solution, it is necessary to diuss

partial fraction expansions.

3.7.2 Partial Fractions

The mathd of partial fractions enables the separation of a caiplicated
rational proer fraction into a am of sipler fractions. If the fraction is

not prtper (the degree of the numrator les than the degree of the

dencinator), it can be m-de proer by dividing the fraction and xonsidering
the reaminr eupreasion. Given a fraction of two polyiIok ifn the variable
a as shmmIn Ba I uaticn 3.148 ther occr several camse

3.7.1.1 Case 1: Distinct Linear Faftors. Th eadi linear factor such as

(as + b), oiurino onc* in the dizmator, there orreqind a sipgle
tial frtion of the fd A/(as + b).
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EXM LE

7s-4A+ +
7s -A+ + C(3.149)

s(s- )(s + 2) = s s- 1 s+ 2

where A, B, and C are constants to be detendned.
3.7.2.2 Case 2: Repeated Linear Factors. To each linear factor, (as + b),

occurring n times in the denumnnator there cxrresp a set of n partial

fractions.

EXAMLE

a2 -_ 9s + 17 A + B + C (3.150)

(s-2) 2(S + 1) 5TI -s-2 )2

where A, B, and C are constants to be detrned.
3.7.2.3 Case 3: Distinct Quadratic Factors. To each irreducible quadratic

factor, as2 + bs + c, occurring one in the denattintor, there correspmids a

single partial fraction of the form, (As + B)/(as2 + bs + c).

3 2 + 5s + 8 . A +Be +.C (3.151)

(a + 2)( 2 + 1

,*xze A, B, and C are constants to be determined.
3.7.2.4 Case 4: :epeatai Quadatk. Factors. To each irreducible quadratic
factr, as2 + be + c, oocurrirg n t in the them correpones

a met of n prtial fractions.

10 a 2 + a + 36 A ,P,, C Do,+ E
10.+5+6 *A- (3.152)

(a - 4We2 + 4) 2 -4 •A •2 + (3.A54)

whbere A, 8, C# Dt ad E amore atants to be detei.6nod
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I
The "brute-force" technique for finding the ccnstants will be illustrated

by solving Equation 3.152. Start by finding the cmumn deznminator on the

right side of Equation 3.152

10 s+ s + 36 -A(s2 + 4)+ (Bs + C)(s - 4)(s2 + 4) + (Ds +E)(s - 4)
(s - 4)(s2 + 4)2 (s - 4)(s2 + 42J

(3.153)

Then the romirators are set equal to each other

10s2 + s + 36 =- ANs2 + 4) 2 + (Bs + C)(S2 + 4)(s - 4) + (Ds + E)(s - 4)

(3.154)

Since Equation 3.154 must hold for all valtus of s, enough values of s are

substituted into Equation 3.154 to find the five constants,

1. Let s - 4, then Equation 3.154 becimes

(10)(16) + 4 + 36 - 400

and

A a 1/2

2. Let a a 2j, then Equation 3.154 beoxmm

-40 + 2j + 36 - -4D 2je- 8jd 4E

4 + 2j- -4(D+E) + 2j (E-4D)

Thie real and immglnary parts mwt be e.zal to their mitxparts on the
cgoisite sideof the eTA1 sign, thus

(D+R) 1
awd

E -4D -
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or

D=o0

and

' E= 1
I 3. Now let s Os0 then Equation 3.154 becomes

36 = A- 16 (C) - 4E

and from steps 1 and 2

A = 1/2, E = 1

hence

36 8 - 16C- 4
and

C - -2

4. et s -I, then Squ-tion 3.154 boomas

47 - 25 (1/2) + (B - 2) (-15) -3

94 - 25- 30B+ 60- 6

or

B 1 -1/2

Now S~ation 3.155 may be wzitten by substitutirn the vabius of A* B, C, D,
and E into Equation 3.152

10., 6 ÷ 1/2 -1/2 3.155)

5'--1

8T +4 (e+4)
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returning now to the example Laplace solution of the differential equation

S+ 4k +4x e= 2t (3.147)

The Laplace transformed equation ws

X(s) 2 2s + 4• (3.148)

(s - 2)(s + 2)2

which can now be expanded by partial fracticns

s2 -2s + 4 A + B + C
(s 2)(s + 2)2 -2 + (s + 2)2 (3.156)

Iakiz the axmun denominator, and setting numerators equal

2 _ 2s + 4 -a A(s + 2)2 + B(s + 2)(s - 2) + C(S - 2) (3.157)

The *brute-ftrrce* technique could again be used to solve for the
constants A, B, and C by sumtituting different values of s into B*uation
3.157. An alternate methfr exists for solving for the constants. Miltiplying
the right side of 1ation 3.157 gives

a 2-_ 2s + 4 As2 +Us+4A+as 2 .4B+Cs- 2C

S2 . 2s + 4 (A +B)s 2 + (4A + C)s + (4A- 4B- 2C)

Now the cofficientz of Like poers of a on both sides of the equation must be
equal (that is, the coefficient of a2 on the left side equals the, coef ficient
of 2 on the riht side, etc.). Eating gives

,2 1 - A+B

as "-2 4A+C

8 :4 - 4A-48- 2C
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Solving for the oonstants gives

A = 1/4

B = 3/4

C -3

Substituting tk* costants into Bkuation 3.156 results in the expanded right

side

X(s) - 1/4 S 2 )+ 3/4A ( 2) -3 ( )3.158)

Another expansion method called the Heavi~iie Expansion Thotrem can be used to
solve for the onstants in the numerator of distinct linear factors. This
method of expansion is used extemsively in Chapter 13, Lbiear C0airtX Zeory.

If the dena•nator of an expansion term has a distinct linear factor, (a - a),
the o~nstant for that factor can be found by multiplying X(s) by (a - a) and
evaluating the reunder of X(s) at a - a.

Stated matematically the Umavisa e aqmEsion Theorm is

A

A (s- (a) X(s

8(9 1) a +2) 8 71"

" 03) - f M_1_

A =SX's}t 7.4

8-0( 1)(a +2) s = 20
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B-(s-1)X(S) 7s-47

C = (s+2)X(s) 7s - 4 -14-4 _3
is = -2 s(s -1). Is -2 (-2)T-3)

As another example, the cxnstant A in the first term on the right side of

Bquation 3.156 car, be evaluated using the Heaviside Expansion Theorea

. 2..... .+.4 A + B + c (3.156)

(S- 2)(s + 2)2 s -+-2 (s+ 2)"

w 2 41 2 4A ~I w a-2Xs 2 (S 4 2) i 8a 2

uhch is the sae restlt obtained earlier by ejuatinq like prs of s.

3.7.3 Fnir~gM the Inverse Lalace franform

Now that methodo to epand the right side of X(s) have been discussed in

detail, all that reins is to transform the eVxnded terms back to the time

dcmmin. Ma is easily acopUWhd Ajaing any suitable transform table,

ibturning to the Laplace traasf•rmd and expaend equation in the exazple

X(S) 114 + /4 + ) (3.158)

Using Table 3.2, it can be easily verified that Eqwtion 3.158 can be

tr~ansfod to

x(t) - 1/4 e2t + 314 e!2t - 3t e (3.159)
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In smmary, the strength of the laplace transform is that it converts

linear differential eqations with constant coefficients into algebraic

equations in the s-domain. All that remains to do is to take the inverse

transform of the explicit solutions to return to the time domain. Althoug.

the applications here at the School will consider time as the independent

variable, a linear differential equation with a independert variable may be

solve by Laplace transforms.

3.7.4 Laplace Transforr Prcýertes

There axe several important prcperties of the Laplace transfom which

should be inclued in this discussion.

In the goneral case

L4 ~ x(S) x(0) + an- +cO +~ 1 Q (3.160)

dtt n

For q•iescmnt .ystms

"{L } (a) (3.161

Thi r~~tfirZUtranfar ftitivw to be writtan by ingotixrn.

GiWM the differw*W eguatim

R+ 4 + 4x -4462' (3.162)

vith qiiboat. tidtial ODxmdtIA"' the LAPlae tMaOOM coo imavdiately be
Writtaft -yn~tm W

X(S) + 4S + 4 4- (3.163)

R37
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In most cases, reference to Table 3.2 will probably be needed to transform the

right side forcing function (input).
Another significant transform is that of an indefinite integral. In the

general case

{i'f* x~~dtn - ________ __(t __dt

x(t)dt t = 0 + + ... (3.164)s n s n s n-l

Equation 3.164 allows the transformation of integro-differential equations
such as those arising in electrical engineering.

For the case where all integrals of f (t) evaluated at zero are zero
(quiescent system) the transform beccnes

L{ff... x(t)dtn} = X(S) (3.165)

s4

EXCAMPLE

Given the differential equation

+4i+4x + Jxdt 4e 2t (3.166)

3.7)
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TABL" 3.2.
IAPIAEC TRANSFOM

X (s) x (t)

1. aX(s) ax(t)

2. a~sX(s) -x(0) ]ý x(t)

3. a[s 2X(s) - SK(o) - *(0)] ax(t)

(which can be extended to
any necessary order)

4. -
s

1 t

s2

6. n+i ,2, .)t

7. e-at7. s +----

8. 1• 2 te--at

(a + a)

9. •ni tn e-at9.n~ (n - i 2, ...
(B +

10. a0b1 (e-at e bt,(,+a)(L+bTa' b b7a -

11 B ~~a 0~ b (atS • n..(a + b): ) a+ -,

1 (b-c)eat -bt t

12 _________e (a-c)e +(&-b) e'~
T(+ a)+(a + b) (i -ýi) (a-b) (b-c) (a-c)
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TABLE 3.2
LAPLACE TRANSOM4S (ccitinued)

x(s) x(t)

13. 2 a2 sin at
s +a

14. s2 +a 2  cos at

S2+a2

15. a2  2 1 -cos at
s(s +a

3a6. Sat - sin at
S2 (.2 2)

Ia)
2a3

17. 2 sin at - at cos at

2as

19. 2 2as 2 2 2  sin at + at cos at
is +a )

S 2 a 2
20. 2 ... t cw at

( a2 G2 2
21. (s2 + 2 )(s b2) b cosat-cosbt

22. b -et sin bt

2 2
(s +a) +b

.s+.a at b

• )
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with quiescent initial conditions, the laplace transform can inediately be

witten by inspection as

X(s) (S2 + 4s + 4) + X(s) 4 4
s s- 2

The right side transform is the same as Equation 3.163. Factoring results in

X(s) (S2 + 4s + 4 +) (3.167)

Multiplying Equation 3.167 by s gives

s3 4s2 4s
x(s) (a+ +4s+1) = s--

which raises the order of the left side and acts to differentiate the right

The usefuless of the Laplace transform technique will be demonstrated by

solving several e~amuple probl.ms.

EXAMLE

Solve the given equatý,on for x(t),

.+ 2x 1 (3.168)

when x(O) - 1.
By Ualaoe transfrm of Bquation 3 168

L(x) aX (a) - x(0)

I,{2X3 - 2X(s) "

L(2x) Um s

S
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Thus

(s + 2) X(s) = 1+1

X(S) s+1 A+ B
s = S(S + 2) s +2

Solving,

A - 1/2

and

B = 1-1/2 = 1/2

X(S) = 1/2 + 1/2
s S+ 2

Inverse Laplace transtrming gives

x(t) - 1/2 - 1/2 e"2t (3.169)

~EXLE

Given the differential equation

S+ 2x - sint, x(0) - 5 (3.170)

solve for x(t).
Taking the L-iplaoe transform of Equation 3.170

1
sx(s) -x(O) + 2Xs a

and
1 5

x(a) 1 + (3.171)
(sa M)1 +2)
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Expanding the first term on the right side of the equation gives

1 + B + (3.172)

(s2 + )(s + 2) s2 + 1 s+2

Taking the caumin dnominator and equating numerators gives

1 = (As +B)(s + 2) + C(s2"+ 1)

Substituting values of s leads to

A = - 1/5

B = 2/5

C - 1/5

and substituting back into Equation 3.171 gives

X(s) - -1/5 sL + 2/5 15 + 5
8 2 + 1 77+ s+T2

Inverse Laplace transfrming gives the solution

X(t) - -1/5 cos t + 2/5 sin t + 5 1/5 e" 2t (3.173)

MLE

Given the differential equation

S+ * + 6x 3e -3t x(O) - ic(0) 1 1 (3.174)

solve fr x(t).
Tking the Laplace transform of Equation 3.174

AsXa) - m(O) - (O) + 5sX(s) - 5x(O) + 6X(e) n-a-+ (3.175)
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or2 or s2 + 9s + 21
X(S) 2 (3.176)

(s + 3) (s + 5s + 6)

Factoring the enuinator,

X(s) s2 + 9s + 21 (3.177)(s +3)(s + 2)(s + 3)

X(s) = s + 9s + 21 (3.178)
(s + 3)2(s + 2)

A + B C

X(s) - A + (.+3)2 + (3.179)(s + 3

Finding the ccmxmn sncminator of Equation 3.179, and setting the resultant

numerator equal to the numerator of Bquation 3.178.

s2 + 9s + 21 - A(s + 3)(s + 2) + B(s + 2) + C(s + 3)2

which can be solved easily for

A - -6

B - -3

C- 7

Now X (s) is given by
-6 3?i

X(S) -" S +3)+ •

2/(a + 3) +

wich can be inverse Laplace transxfmed to
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X(t) = -6-3t - 3te-3t + 7e- 2t (3.180)

EXAMPLE

3iven the differential equation

x + 2S + Ix - 3t + 6/10 (3.181)

x(0) - 3

i(0) = -27/10

solve for x(t).

Laplace transf-ming Equation 3.181 and solving for X(s) gives

x() -3s3+3.32 + 0.6s + 3 +A B_ + C + D
a 2(S2 +2s+ 10) 8 82 s2+29 + 10

where

A 0

B " 0.3

C 3

D 3

,• 'Ihms,

X(S)3+ 3 - (3.183)
( - s +++2s+10

V ~ T mm thaetk inwers Laplace transfrm esuier, Eý Laticn 3.183 is rewritten as

X(S) + .3 2 .I+.~. (3.184)
*(2 (+ 1) + 3j
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which is readily inverse transfnrmable to

x(t) = 0.3t + 3e-t cos 3t (3.185)

3.8 TRANSFR FUNIONS

A transfer function is defined in Chapter 13, Linear Control Theory as,
-The ratio of the output to the input expressed in operator or Laplace

notation with zero initial conditions." The term "transfer function" can be

thought of as what is done to the input to produce the output. A transfer

function is essentially a mathematical model of a system and embodies all the

Physical characteristics of the system. A linear system can he completely

described by its transfer function. Consider the following quiescent system.

a + + cx- f(t) (3.186)

x(0) - *(o) - 0

Taking the Lplace transfOm of Muation 3.186 results in

as 2X(s) + bsX(a) + cX(s) - F(s) (3.187)

factoring gives

X(s) (as82 + be + c) - F(s) (3.188)

or

F2. . 1 (3.189)

as +be+c

Since Equation 3.186 repreents a system whose input is f(t) and gme output

is x(t) the f1lcwing transform can be dsfived

X(s) 3 output transfor

F(s) ainpuit transform
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The transfer fimction can then be given the symboll TF and defined as

= X(s) (3.190)

In the example represented by Equation 3.189

S2 1 (3.191)as2 + h + c

Note that the deninator of the transfer function is algebraically the same
as the characteristic equation appearing in the Equation 3.186. The
characteristic equation caopletely defines the transient solution, and the total
solution is only altered by the effect of the particular solution due to the
input (or forcing function). Thus, fran a physical standpoint, the transfer
function cmpletely characterizes a linear system.

The transfer fumction has several properties that will be used in control
system analysis. Suppose that two systems are characterized by the

S differetial equations

ax + b + cx - f(t) (3.192)

and

" + ey + g, - x(t) (3.193)

Frcm the equations it can be seen that the first system has an input f(t), and
an output x(t). The secon system has an input x(t) and an output y(t). Note
that the input to the neoond slytot is the output of the first system. Taking

the Liplace transfomr of these t equations gives

(a2 + be + c) X(s) P F(s) (3.194)

And

,(d + es + g) Y(s) - X(s) (3.195)

3.8
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Finding the transfer functions,

TF X((s) =1 (3.196)
F ) =as +bs +c

= Y(s) = 1 (3.197)
ds +es+g

Now, both of these systems can be represented schematically by the block

diagrams shown in Figure 3.16.

F(s) - --- so _ --

SYSTEM I

X(Ie) I.'l TI Y(sI)

SYSTEM 2

FIGURE 3.16. !(AMPLE BLOQK DIAGRAM NDATION

If it is desired to find the output y(t) of System 2 due to the input
f(t) of Systen 1, it is not necessary to find x(t) since the two systems can

be linked using transfer functions as shown in Figure 3.17.

TP3 -(T 1 T,

S~FIGUPE 3.17. (C)MEINfl4G TRANSFER F(Th•ION

)
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The solution y (t' is then given by the inverse transform of Y (s), or

Y(S) = [TF3] F(s) (3.198)

or

Y~)= '] ~2] F~)(3.199)

This method of solution can be logically ex to clude any desired
number of systems.

3.9 SIMULTANBUS LINEAR DIFFU RqIAL EQUATIONS

In many physical problems the mathematical description of the system can
most conveniently be written as simultaneous differential equations with
constant coefficients. The basic procedure for solving a system of n ordinary
differential equations in n dependent variables consists in obtaining a set of
equations fr=m which all but one of the dependent variables, say x, can be

' "( eliminated. The equation resulting from the elimination is then solved for
the variable x. Each of the other dependent variables is then obtained in a

similar manner.
A very effective means of handling simultaneous linear differential

ations is to take the Laplace trsnsfox of the set of equations and redce
the problem to a set of algebraic equations that can be solved explicitly for
the depodent variable in s. This method is dewonstrated belw.

Given the set of equatiins

d2 c3 M 2 4 x + -4 + 3Y f •(t) (3.200)
dt dt"

~2.d X+X +2 9_s (t) (3.201)
Sdr2. d+ ,

where x(O (0) * y(O) - j)0 - O.fi x(t) aldy(t). •kingthe

3.83



Laplace transform of this system yields

(3s2 + 1) X(s) + (s2 + 3) Y(s) = F(s) (3.202)

(2s2 + 1) X(s) + (s2 + 2) Y(s) = G(s) (3.203)

Cramer 's rule will now be used to solve this set of equaticns. Cramer's rule

can be stated in its simplest form as, given the iuaiians

P1 (s) X(s) + P2 (s) Y(S) - F,(S} (5.204)

Q(S) X(s) + Y2(s) Y(S) - F2 (s) (3.205)

then,

F1  P2

F2 '02

X (8) - - (3.206) k
Pl P2

pQ2

for uWknoxm X(s) an

Pl F1

Q1 F2

Y (a) -(3,207)

P
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The X(s) unknown in Equations 3.202 and 3.203 can be solved for in this
fashin by applying (rammr's rule

2
F(s) (s2 + 3)

G(s) (s2+ 2)

X(s) , (3.208)
(3152 + 1) (S 2 + 3)

(2s2 + 1) (s 2+ 2)

La a similar nmuzer,

(Os2 + 1) F(s)

(2s2 + 1) G(S)

22

Y~s) = s .... (=- s-• 34 : ... 32 9

( ++ 2)

Ft tj* PticulAr im*ts f Q) t WAn 9(t) 11

J +3)

722

" + 2)1 3 2

x (,s)• -4__ _ _ _.t _ • (3.210)

mqwmwde an a Partwa fracton

Air ++ -! ++ +.211)
a i '+1 E-i 0s+ 1) 3s + 2 i (

•. 3lvuv fo k kb etc.

1 -. 147/4X(a) 72 a .L/4+1 s- (3.212)
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)

which yields a soluto.-o:

x(t) = -2t + 3 - 7 /let - i/4et 1/2 sin t - cos t (3.213)

A similar approach will obtain the solution for y(t).

In the case of three siml1taneous differential eqations, the application

of Laplace transforms and use of Craner's rule will yield the solution.

P1 (S)X(s) + P2 (s)Y(s) + P3 (s)Z(s) = Fl(s) (3.214)

Q1 (S)X(s) + Q2(s)Y(s) + Q3 (s)Z(s) = F2 (s) (3.215)

R 1(s)X(s) + R2 (s)Y(s) + R3 s(s)Z(s) = F3 (s) (3.216)

where

F1 P2  P3

F2  Q Q3

F3  R R3

X(S) (3.217)

P1  P2  P3

01 Q2 '03

R, R 2R

1 and Z(s) will have similar f rms.

3.10 &IYM PIOTS

Sam insight into the respone* of a second order system can be gained by
examinming the roots of the differential equation describing the system on a

root plot. A root plot is a plot of the roots of the characteristic equation
in the complex plane. Root plots are used in Chapter 8, Dynamics, to describe
aircrdft longituiinal and lateral directional nikdes of notion. These plots

are also used extensively in Chapter 13, Linear Control TAKory, for linear

control system anilysis.
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t.
It was shown earlier that a second order linear system can be put into

the following form:

~+~ %*+ 2 f (t) (3.93)x + 2 4 wn + wn~x =(.3

whose roots can be written as

P1,2 = - 2n ± wn 42 (3.88)

or

P112  = - "n ± wd (3.218)

Figure 3.18 is a plot of the two roots of Equations 3.88 and 3.218 in the
coiplex plane.

p12  +C j W 1 2 (3.88)

imaginary

where the first term is plotted on the real axis and Lhe second term plotted
on the imaginazy (j) axis.

LI,
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t)

IMAGINARY U)

-hl ANREAL

I 2-C"

I -W.41 -- 2 W

FGURE 3.18. GENEAL ROOT PrLT IN
SCOMPLE PLANE

From the right triangle r,,lationship shown in Figure 3.18, it can be
easily shown that the lerqth of the line from the origin to either point p, or

P2 is equal to wn"

A2 + B2 . C2

2 2
(c wn) + (wn C-2) C c2

)2 C2
2 n2 + W2 1 21

: 2 ,.•2 + 2. C2  2 - C2

S2 C2

c3.n
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The five distinct danping cases previously discussed can be examined on

root plots through the use of Equation 3.88.

1. • = 0, undamped (Figure 3.19)

P,2= - % Jwn V1 (3.88)

•' - 0+j~
P1,2 J -n

RE -, t
xt A sin (11,t +0)

P2,9 -n. NEUTRALLY STABLEI
FIGURE 3.19. NEMAY STABLE UNDA RESPONSE

2. 0 < c < 1.O0,tderda pec (Figure 3.20)

P1,2 ' "n jn C 2 (3.88)

P1 , 2 * (-) + j (+)
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x

X11X

ll• •dREp1  " -- •

t
i xt=Ae- on-sIn(wdt+ 0 )

STABLE

FIG=RE 3.20. STABLE UNDEtDAZD .RESINSE

3. c = 1.0 Critically damped (Figure 3.21)

P1 , 2 ' - C '-± j 'n ;2 (3.88)

Pl, 2 ' - 'n

IM x

P1,2 RE

xt - Cne-/f.t + C2t.-1nnt

STABLE

FIGURE 3.21. STABE CRITICALLY DAME) R~TCOSE

)
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4. 4 > 1.0 Overdamped (Figure 3.22)

P1,2 = - " 'n 'n C2 (3.88)

p1= - • n+•n•Pl, 2 '--% 4 n 'nV7

real

t,, ~~Pl, 2 = -) '

x

lM

P1  P2  Ri

-I t
xt -c1,0 + C2 P2t

STABLE

FIGURE 3.22. STABLE OVERDAM)D RESPONSE

5. < 0 Ustable

- - 1.0 (Figure 3.23)

*P1,2  -wnj J n V, 2 (3.88)

0 Pl,2 '
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x
F m.

___ __ __l *R. -n Fla,-

Pl , 2  t

x=c C1 f1t+C-telnt ý

UNSTABLE

FIGURE 3.23. UNSTABLE RESPONSE

- 1.0 < < 0 (Figure 3.24)

P12' ' n4 (3.88))

Pl, (+) +J (+)

P1,2  = () ± i (+)

x

'Ut
iRm

_t - Ae"nnt sin (•dt +0)

UNSTABLE

*FIGUE 3.24 UNSTABLE RESE
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S<- 1.0 Both roots positive (Figure 3.25)

pl, 2  = - n+ j-2 (3.88)

P,2= (+)' (+

I x

RE

- •----- -.-.-...

P2 P1

xt= CleP +

UNSTABLE

FIGURE 3.25. UNSTABLE RESNSE

In smmary, a second order system with both roots located to the left of
the imaginary axis is stable. If both roots are on the imaginary axis the
systen is neutrally stable, and if one or more roots are located to the right
of the imaginary axis the system is unstable. These ccnditions are shown in

Figure 3.26.
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IMAGINARY

STABLE UNSTABLE

k i REAL

STABLE UNSTABLE

NEUTRALLY
STABLE

FIGURE 3.26. R=OT IMUS STABILITY

Root plots can be used for analysis of the aircraft modes of motion. For
exaiple, the longitudinal static statiblity of an aircraft is greatly
influenced by center of gravity (cg) position. Figure 3.27 shows how the
roots of the characteristic equation describing one of the longitudinal motion
modes change position as the cg is moved aft. This plot is called a root locus
plot.

39
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C

c LOCATION
. 15% MAC IMAGINARY

*20r ~I'5

9251 A •28 C REAL
q-- • -----, __*•.• - .0 EA

35 30. 028 30 35

"*25

.20

9 15% MAC

FIGU= 3.27 TFECT OF Cr, SHI'T ON IO=TfUDINAL STATIC
STABILITY OF A TYPICAL AIRRAFT

S Note that as the og is moved aft of its initial location at 15% MAC, damping
of this nmde of motion (short period) increases while the frequency decreases.
Zero frequency is reached between a Cg location of 28% and 30% MAC. The root

locus then splits into a pair of real roots, branches AB and AC of the locus.
These branches represent damped aperiodic (nonoscillatory) motion. The short
period mode of motion goes unstable at a og location of 35% MAC. The location
of the og where this instability occurs (35% MAC in this example) is known as
the maneuver point and it is discussed in detail in Chapter 6, Maneuvering
Flight.
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Solve for y.

3.1. + 4x + sin 6x

2
3.2. = e-x+sin x

35
3.3. d-3 = x5

dx
3

3.4. y X + 3X2 0

3.5. (x -1) 2 ydx + x2 (y - 1)dy - 0

Just find a solution. Solviwg for y is tough.

Test for emptness and solve if exact.

3.6. (y2 _X) dx +  (x2 -y) dy - 0

3.7. (2x3 +3y) dc+ (3x +y- 1) dy 0 0

3.8. (2xy 4  +2xy3 + y) dx + (xy4 e -x 2y2 -3x) 4 - 0

3.9. multiply Problim 3.8 by 1/y4  and solve for y. Note this asswes that
y 0.

Solve foDr yt

3.10. 5y' + 6y o 0
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3.11. y'" - 5y" - 24y' = 0

3.12. y" + 12y' + 36y = 0

3.13. y"+ 4y' +13y = 0

Solve for y and y in Problems 3.14 - 3.17, then solve for the general
t p

solution.

3.14. y;+ 5 + 6y= 3e- 3 t y(0) = 1, (0) =6

3.1.5. *+ 4ý + 4y = cos t y(O) = 2 , 10425

3.16. 6t+ x(0) - 3, x(0) 27

3.17. 3k + 2X = -4e"2t x(3) - -0.14

3.18. Fi wn , wn •, • and T and describe syste daq•ing (i.e., underdwiped,

overdanped, etc.) where applicable.

+ 5j+ 6y - 3-3t

3.19. Y;+4 + 4y - cost

3.20. 25+4i +2O - 6t+-
. 5

3,21. 3i+ 2x

30
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In problens 3.22 - 3.24 find x(s), do not find the inverse transform.

3.22. 31 + k + 6x = sin 6t, x(O) = x(O) = 0

3.23. x- 2i+ 5x = e-t sin 3t, x(O) = -I, x(O 9

3.24. 4ý + 3k-x - 03-tsin2t, x(O) = 3, (0) - -2

In Problems 3.25 - 3.27, expand X(s) by partial fractions and find the

inverse transfn's.

3.25. X(s) 52 +29s + 36

(s + 2) (s2 + 4s + 3)

282 + 6s + 5

3.26. X(s) 2

(s + 3s+ 2) (s+ 1)

2s4 + 7s,3 + 279 2+ 510 •27
3.27. X(s) * 73 + 272+58 7

(a + 98) (a + 39 +3)

Solve the fol1cwing pmoblems by Laplace transform tedm'iqws.

3.28. + 2x - sint, x(0) - 5

3.29. +5i +6x a 3te (0) - c(o) 1

Solve using Laplae 'rransforu

3.30. A +3U-y = 1 x(0) = y(0) = 0

.+Sx+y3 .2
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3.31. Read the question and circle the correct ansr, true (T) or false (F):

T F The particular solution to a second order differential equation
contains two arbitrary constants that are solved for using
initial conditions and the transient solution too.

T F Solutions to linear differential equations are generally
nonlinear functions.

T F Differential equation solutions are frie of derivatives.

T F Direct integration will give solutions to sane differential
equations without the necessity of arbitrary constants.

T F In general, the number_ of arbitrary constants in the solution
of a differential equation is equal to the order o,- the
differential equation.

T F There is no known way to detemine if a differential equation
is exact.

T F The solution to a first order linear differential equation with
constant coefficients is always of exponential form.

T F Te Laplace variable a can be real, 3aginary, or complex.

T F Inverse Laplace transforms are used to return from the s to the

tim dmain.

T F Quiesnt systems have zero initial omnditions.

T P First order equation roots cannot be plotted on root plots.

T F A transfer function can be defined as irput transform divided
by output transform.

T F The characteristic equation cmletaly describes the transient
solution.

T F The method of ardetezmined coefficients is used to solve for
the particular solution.

T F !+4d+13x - 3, is aseondd qeeequation.

7T 1 ++4i+13x - 3, isaucomdorderequation.

"T P 4i+13X 3, is firstodr equation.

T F It is iqxssible to have a linear, seond degree eqatiCn.

T F 13x -3, is a Linear equation.
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T F 13x = 3, is a differential equation.

T F Danpirig ratio and natural frequency have no physical
significance.

T F The time constant and time to half amplitude for a first order
system are equal.

T F The Laplace transform converts a differential equation from the

time dumin to the s damain.

T F The transient response is dependent on the input.

T F Laplace transforms are easy to derive..

T F In general, it is easier to check a caxdidate solution to see if
it is a solution than to determine the candidate solution.

T F Superposition can be used for adding linear differential
equation solutions.

T F The method of partial fractions is used to solve for the
particular solution of a differential equation.

T F The number "e" is a variable.

T F The Laplace transform of the characterist-ic equation appears in
the denciinator of the transfer function.

T F TIere is a general technique which can be used to solve any
linear differential equation.

T F Cramer's ruli is in centimeters.

T F Cramer's rule is an outdated method of solving simultme&us
equations.

T F The transfer function ccmpletely characterizes a linear systbw4

T F The Heaviside Eqxanian theoren is often cited by wight
watchers.

T F A root plot is a short hand method of pyvsenting transient time
reqsa~sk,

T F The settling timn is a measure of damping ratio of a system
without regard for the daqped frequency.

T F If y - f (x), then y is the dependent and x the indepudmnt
variable.
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3.32. The following terms are inportant. Define and provide smbols for

those you are not sure of.

Differential Equation

Dependent Variable

Independent Variable

Ordinary Differential Equation

Partial Differential Equation

Exact Differential Equati.on

Linear Differential Equation

Degree of a Differential Euation

Order of a Differential Equation

General solution

A Transient solution

Particul0z solution

Stealy-state solution

Fobrcln function

Input to a system (related to the differential equation)

0utput of a system (related to the differential equatim)

Time Constant

mpving ratio
Mv ed natural f requemy

Natural Foeiamcy

-edaq d res e

- reqxmae

Overdaaps5 responee

C ustable sytem u
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Critical Damping

Linear system

Laplace Transform

Inverse Laplace Transform

Unit Step

Unit Inpulse

RaMp function

Transfer function

Pole

Zero

Root Plot

Root Locus

Rise time

Settling Tie

Peak Overshoot

Time to peak overshoot

Steady-state error

3.33. Solve the following problem. Sketch root locus plots, and find wn

wd' and -r uhere appropriate.

A. x2 +4xA. + U

B. dy
(x +co 0y)

C. £+t 3 Xc " 0

)
C.
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d2x dxD. - _5 F+6x= 0

dt2

F. d-2X-+4x = 0

dt 2

F. dx

dt2G,,Tt -+ 7 + 22x = 0

H. Given: Yt= 2 sin 3x + 2 cos 3x

Find A and * in the expression

(yt -A sin(Ox + )

7he following problem are the same as D thru G with forcing fuictions.

d2x &
:. 4-A -s +6x = 9

J t-2  dt-
dxe2t

K. ;-j 4  + 4  e

t. 2x + sin 3t
* 2x

d2x dxK..----+7 -+22x -t

dt 30
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The following problems are the same as D thru G with forcing functions

and initial conditions:

d2 x d
M. d-- 5E+ 6x = 9 x(0) = 3/2

dt2
i(0) = 2

N. dx 4 - + 4x 2t x(O) = 2
dt2

£(0) = 4

0. + 4x = sin 3t x(0) = 0
dt2

i(0) = - 3/10

P.- + 7 + 22x = t x(0) = 0
dt2

k(0) = 1/22

3.34. Solve the following problems using laplace techniques:

d2
A. - 5 +6x = 9 x(o) - 3/2

dt2 dt

;(0) = 2

2 tB. d2x- 4 dt+ 4x - x(0) = 2
dt2

k(0) = 4

3.35. Given the set of equations

."3 A -+ =t
d t It

.•.- 1

were x(0) =y(0) 0, find y(t) using Laplace transform methods.
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ANSWERS

3.1 y_ X5 +2X2 coS, 6x+C
56

3.1. y - n 6 +2C +

3.2. y e= 2 + Cl+C2

= 8 Clx2

3.3. y- +-•---***+C 2x+C 3
3363

3.4. y = _2x 3 + C

1-x
2

3.5. yet 2Cxe x

( 3.6. Not exact.

4 2
3.7. f x + 3xyf+ -y+C

3.8. Not exact.

2
3.9. f - x2eYy + + = C

y

3.10. Y CS-6/5t

3.11. Yt - C1 + C +

3.12. Yt Cle'6t + C2 t e" 6 t

3.105
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)

• ~3.13. Yt= Ce-2 t cos (3t + )

t C -3t Cots3

3.14. y = -lie3t + 12e-2t - 3e-3t

3.15. y = e- 2t 58 t-2t + 3 cos t+ 4sint

3.16. y = 3e-t cos 3t + 3/10 t

3.17. y = -e2/3t + -2t

3.18. wn = -

= 1.02

3.19. wn = 2

wd= 0

3,20. wn -- "

= 0.316

wd * 3.0

3.21. T - 3/2

6
s 2 + 36

3.22. x(s) -- ... 362382 + s + 6

3ss +81632' -s+1i

3.23. x(s) - (s+1) + 9
2
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6 4s4 s2 +42 +12+1

3.24. X(S) =S (s +4)

4s2 + 3s - 1

3.25. y(t) = 2e2t - 3e-3t + 6e-t

3.26. y(t) = e- 2t +e-t +te-t

3.27. y(t) = 1 + 2/3 sin 3t + e- 3 /2t cos. t + 1/ 2 e-3/2t sin-V3/ t

3.28. x(t) = 5 1/5 e- 2t = 1/5 cos t + 2/5 sin t

3.29. x(t) = -6e 3t - 3te-3t + 7e 2 t

3.30. x(t) = 1/4 (1 - e-2 t (cos 2t - sin 2t))

y(t) = 1/4 (-1 te (cos, 2t + 3 sin 2t))

4x3
3.33. A. y = x-+ 2/3x3 +cx+CI

B. x2y+siny - C

C. x = Ce-t4/4

D. x(t) = C1 e2 t +Ce 3t

E. 2 
I.

, d 0-
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F. 0 =0

-2n 2

wd = 2

G. wn = 4.69

=d = 3.12

= 0.746

H. A =r8

S= ir/4

I x C, e2t +C 2 e3t + 3/2

J. x = C1e 2t + C2 te 2 t + 1/2 t 2e2 t

K.x x cos 2t + C2 sin 2t - 1/5 sin 3t )
L. x e7/2t( cos _ t +C 2 sin 3t9 + 1/22 t -7

(Cl t C2 t)484

M. x : - 2e2t + 2e3t + 3/2

N. x = 2e2t + 1/2 t 2 e2t

0. x = 3 /20 sin 2t- 1/5 sin 3t

P. ~~~cos 3 .1 i

3.34. A. X(t) 3. - 2e 2t+ 2e3t

B. X(t) 2e 2 t + 1/2 t 2 e 2 t
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3.35. y(t) = 3t- t 2

x(t) = 1/2 t - t

3

(4
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CIPTER 4

EQATIONS OF MOION'I*
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(4.1 I0N

This chapter presents aircraft equations of motion used in the Flying
Qualities phase of the USAF Test Pilot School curriculum.

The theory incrporates certain simplifying assmptions t6 make the main
elements of the subject clearer. The equations developed are by no means

suitable for design of modern aircraft, but the basic method of attacking the
problem is valid. With the aid of high speed coaputers the aircraft
designers' more rigorous theoretical calculations, modified by data obtained
from the wind tunnel, often give results which closely predict the flying
qualities of new airplanes. However, neither the theoretical nor the wind
tunnel results are infallible. Therefore, there is still a valid requirumnt
for the test pilot in the development cycle of new aircraft.

4.2 ITEM AND SYMBCLS

There will be manW teris and symbols used during the Flying Qualities

Phase. Scoe of these will be familiar, but many will be new. It will be a
geat asset to be able to recall at a glance the definitions represented by
these syntols. Below is a ondensed list of the terms and swybols used in
this course.

Te=m:

Stability Derivatives - Nb=zImwsional umntities acrssing the variation
of the force or moMent ooefficient with a ist~urbance
from stey flight.

2Ua~ck

q
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Stability Parameters - A quantity that expresses the variation of force
or moment on aircraft caused by a disturbance frm
steady flight.

u= -•Sc. + -U--1  (Change in pitching nmoent
?nl'u iM0  2auI caused by a change in

velocity)

Lq = I CLe(Change in lift caused by a change in pitch
qq rate)

Static Stability - The initial tendencX of an airplane to return to
steady state flight after a disturbance.

Dynamic Stability - The time history of an airplane's response to a
disturbance in which the aircraft ultimately returns to a
steady state flight.

Neutral Stability -

a) Static - The airplane wcald have no tendency to move from its
disturbed conoition.

b) Dynamic - The airplane would sustain a steady oscillation caused by
a disturbance.

Static istability - A characteristic of an aircraft such that when disturbed
from steady flight, its tendevncy is to depart further or
diverge frui the original condition of steady flight.

Dynamic kistability - Tbie history of an aircraft reqse to a disturbance
-in which the aircrafL ultimately diverges.

Flight 03ntrol Sign Minwntion - Any control minwent or deflection that
causes a po)sitive mvemnt or nraminnt (right
yaw, pitch up, right roll) on the airplane
shall be considered a positive ccntrol
mowimnt. This sign convention does not
awfonm to the o0vention used by NASA and
a~m* reference text books. This convention
is the easiest to rerrter and is used at the
Flight Tlest Center, therefore, it will be
used in the School (Figure 4.1).

Degreft of i'zi•ta - The nmdvr of paths that a physical system is free to
follow.
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CENTE F.
OF
GRAVITY'-

F==UR 4. 1. VEHICLE Fl)z AXIS SYSIhM
AND NDrATIM

Syirbots:

a.c. Aeo ac Center: A point located w the wing chord
(a~Rocimately one quarter of the chrd length back of the
leading edge for bford• c flight) about mhich the mment
coefficient is practical1l amastant for all angles of attack.

b WinMan

C Chordviae P-rce: Ite wqxm t of the resultant aearudynmic
Sore that is parallel to the aircraft referenrvt axis. (i.e.,
fuselage reference line).

4.3
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c Mean Aerodynanic Chord: The theoretical chord for a wing which
has the same force vector as the actual wing (also MOC).

c.p. Center of Pressure: Theoretical point on the chord through
which the resultant force acts.

D Drag: The carponent of the resultant aerodynamic force
parallel to the relative wind. It too must be specified
whether this applies to a complete aircraft or to parts
thereof.

F Applied force vector.

Fa,,Fr Control forces on the aileron, elevator, and rudder, respec-
tively

F ,F ,F Ccomponents of applied forces on respective body axes.

G Applied mau-ent vector.

Gx,G y,Gz Components of the applied moments on the respective body axes.

H Angular momentun vector.

S,HH y,Hz Conmponents of the angular mmentumi vector on the body axes.

I Mments of inertia: With respect to any given axis, the moment
of inertia is the sum of the products of the mass of each
elementary particle by the square of Its distance from the
axis. It is a measure of the resistance of a body to angular
acceleration. I = E=2

i, j, k Lhit vectors in the body axis system.

IX I y 1I Moments of inertia a-bout respective body axes. I~ x m (y2 +

z2)

Ixy I yz, Ixz Products of inertia, a measure of synuetry.

L Lift: The ccrfonent of the resultant aerodynamic force
perpendicular to the relative wind. It must be specified
whether this applies to a ocuplete aircrft or to parts
thereof.

, 7 , ronamic aents aboit x, y, and z vehicle axis.

N Normal Force: The caqponent of tie revultant aerodynamic force
that is perpendicular to the aircraft reference axis.

P,Q,R Angular rates about the x, y, and z vehicle axes, respectively.

p,q,r Perturbed values of P,Q,R, respectively.
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Symbol Definition

SR Resultant Aerodynamic Fbrce: The vector sum of the lift and
drag fnrces on an airfoil or airplane.

S Wing area.

U0  Ccw nent of velocity along the x vehicle axis at zero time
(i.e., equilibrium condition).

U,V,W Components of velocity along the x,. y, And z vehicle axes.

u,v,w Perturbed valued of U,V,W, respectively.

X,Y,Z Aerodynamic force components on respective body axes (Caution:
Also used as aces in "'Moving Earth Axis System" in derivation
of &iler angle equations.)

xIy,z Axes in the body axis system.

a Angle of attack.

0 Sideslip angle.

6a'6e,6 Deflection angle of the ailerons, elevator, and rudder,

£ Thrust xvgle.

0#01W W&ler angles: pitch, roll, and yaw, respectively.

Total angular velocity vector of an aircraft.

DinEnsionless derivative with respect to time.

4.3 CWRVIZE

The purpse of this section is to derive a set of equations that

describes the notion of an airplane. An airplane has six degrees of freedom

(i.e., it can nmre forward, sideways, and down, and it can rotate about its

axes with yaw, pitch, and roll). In order to solve for these six unkn s,

six s*imltainwi equations will be required. Ib derive these, the folcwriny

relations will be used:
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START WrIH NEWION'S SCCXND LAW

F d3 d M V) (3 linear degrees of

externally linear
applied force mamentin

d
d (H (3 rotational degrees(H) -of freedom).

externally angular
applied nuont manentum

Six equations for the six degrees of freedan of a rigid body.

Equations are valid with
respect to inertial space only.

OBTAIN THE 6 AO TE MN FM C (41
FX = m (U +CW -RV) (4.1i)

Iagitudinal Fz m (W+PV- Qj) (4.2)

G m QI - PR (I - IX) + (P - R (4.3)

FY - M (V + R - ) (4.4)

lateral- PI - Ix + C (Iz - •) - ( + PQ) Iz (4.5)
Directional

G2- Ra I + PQ (I- I1) + (QR-P i) z (4.6)

ILt left-amd Side MUS) of the equation represents the applied forces

and maunts on the airplane whiile the Right-Hand Side (MRS) stmads for the

airplane'Is ze-xnse to these fores and mwmnts. Before launching into the

deveolopment of these equations, it will first be neossary to cover sane

basics.
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4.4 COGEUINATE SYSTEM

There are many coordinate systems that are useful in the analysis of

vehicle motion. According to generally accepted notation, all coordinate

systems will be right-hand orthogonal.

4.4.1 Inertial Coordinate

An axis system fixed in space that has no relative motion and in which

Newton's laws apply (Figure 4.2).

EARTH

V0

FIGURE 4.2. THE INERTIAL O0RDINAWTE SYSTEM

Experience with physical observations determines whether a particular

reference system can properly be assumed to be an inertial frame for the
application of Newton's laws to a particular problem.

Location of origin: unknown.
Approximation for saPe dynamics: the center of
the sun.

Appro imation for aircraft: the center of the
earth. (earth axis system)
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4.4.2 Earth Axis System

There are two earth axis systems, the fixed and the moving. An example

of a moving earth axis system is an inertial navigation platform. An example

of a fixed earth axis is a radar site (Figure 4.3).

X
XY PLANE IS
HORIZONTAL

MOVING
EARTH Y

AXES

Z•
X FIXED EARTH

Z AXES

FIGURE 4.3. THE EART AXIS SYSTMS

ILcation of origin:

Fixed System: arbitrary location
Moving Systemt at the vehicle cg

The Z-axis points toward the center of the earth alcr the local
gra onal vector,

The XY Plane
parallel to local horizontal.

The Orientation of the X-axis is arbitrary;
my be North or on the- init vehicle beading.

4.8



4.4.3 Vehicle Axis Systems

These coordinate systems have origins fixed to the vehicle. There are

many different types, e.g.,

Body Axis System.
Stability Axis System.
Principal Axis System.
Wind Axis System.

The body and the stability axis systems are the only two that will be used

during this course.

4.4.3.1 Body Axis System. The body axis system (Figure 4.4) is the most

general kind of axis system in which the origin and axes are fixed to a rigid

body. The use of axes fixed to the vehicle ensures that the measured rotary

inertial terms in the equations of motion are constant, to the extent that

mass can also be considered constant, and that aerodynamic forces and moments

depend only upon the relative velocity orientation angles a and a.

The body fixed axis system has another virtue; it is the natural frame of
reference for nwat vehicle-borne observations and measurements of the

vehicle's motion.

1X

FIGURE 4.4. BODY AXIS SYS2E4
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In the body axis system;

The Unit Vectors are i, j, k

The origin is at the cg

The x-z plane is in the vehicle plane of symmetry

The positive x-axis points forward along a
vehicle horizontal reference line

The positive y-axis points out the right wing

The positive z-axis points dorwnard out the
bottcm of the vehicle

4.4.3.2 Stability Axis System. Stability axes are specialized body axes (see

Figure 4.5) in'which the orientation of the vehicle axes system is determined

by the equilibrium flight condition. The xs-axis is selected to be coincident

with the relative wind at the start of the motion. This initial aligmnent
does not alter the body-fixed nature of the axis system; however, the
aligmnent of the frame with respect to the body changes as a function of the
equilibrium condition. If the reference flight condition is not symmetric,

i.e. with sideslip, then the xs-axis is chosen to lie on the projection of VT
in the plane of symmtry, with zs also in the plane of synmetry. The

moment-of-inertia and product-of-inertia terms vary for each equilibrium

flight condition. wever, they are constant in the equations of nmtion.

y B3ODY- STAB
e., THE STABILTY z PLANE

REMAINS IN THE VEHICLE PLANE

yo, y OF SYMMETRY

FIG=E 4.5. STABILITY AXIS SYSEM
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In the stability axis system;

The unit vectors are is, is, ks

The origin is at the cg

The positive xs-axis points forward coincident with

the equilibrium position of the relative wind.

The x s-zs plane must remain in the vehicle plane of

symmtry.
The positive zs-axis points downward out the bottom

of the vehicle, normal to the Xs-axis

4.4.3.3 Principal Axes. These are a special set of body axes aligned with

the principal axes of the vehicle and are used for certain applications. The

convenience of principal axes results fram the fact that all of the

products-of-inertia are reduced to zero. The equations of motion are thus

greatly simplified.

44.4.3.4 Wind Axes. The wind axes use the vehicle translational velocity as

the reference for the axis system. Wind axes are thus oriented with respect

to the flight path of the vehicle, i.e., with respect to the relative wind,

VT. If the reference flight condition is symmetric, i.e., VT lies in the

vehicle plane of synintry, then the wind axes coincide with the stability

axes, but depart from it, moving with the relative wind during the

disturbance.
The relation bebieen general wind axes and vehicle body axes of a rigid

body defines the angle of attack, a, and the sideslip angle, 8. These angles

are convenient independent variables for use in the eqpression of aerodyamic

force and moment coefficients.
Wind axes are not generally used in the analysis of the motion of a rigid

body, because, as in the case of the earth axs, the mnment-of-inertia and
product-of-inertia terms in the three rotational equations of motion vary with
time, angle of attack, and sideslip angle.
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4.5 VECTOR DEFINITIONS

The Equations of Motion describe the vehicle motion in terms of four

vectors (F, G, VT, w). The caiponents of these vectors resolved along the body

axis system are shown below.

1. F = Fi Fj+Fzk
x y z

2. G = Gi + Gyj + Gzk = Total nment (applied)

S= aerodynamic +other sorces

G Go+h Naerod•ic - o + Maero aerok

~aerodynamc=Tmyn

NXE: Control deflections that tend to produce positive rn, orn,

are defined at the USAF TPS to be positive (i.e., Right dr is

positive).

3. VT = Ui +Vj+ Wk tuie Velocity

where

U = forward velocity
V = side velocity
W = vertical velocity

Angle of sideslip, 8, and angle of attack, a, can be expressed in terms of

the velocity components (Figure 4.6).

sinB V
VT

For a small B

sin8 B
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or

v
vT

Also, for small c and 0

cos8 8 1

or

T S VT

Hence,

sin a =W.. "-

VT Cos 0 VT

or

w
VTvT

Sane texts also define

-1 Wa tan-
U

J//

,1

'I

SI.e l| / I
UI'

4IW -- 4

FIGUR 4.6. VELOCITY COMfI'S AND THE
C'f AEFDYNA14IC OEPIW1~ATI

ANaM, a AND
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4. - - Angular Velocity

S= Pi+Q +Rk

uere

P = roll rate
Q = pitch rate
R = yaw rate.

4.6 EULER ANGLES

The orientation of any reference frame relative to another can be given

by three angles, which are consecutive rotations about the axes z, y, and x,

in that order, that carry one frame into coincidence with the other. In

flight dynamics, the Euler angles used are those which rotate the vehicle

carried moving earth axis systen into coincidence with the relevant vehicle

axis system (Figure 4.7).

The inportance of the sequence of the Euler angle rotations cannot be

overeT#Iasized. Finite angular displacements do not behave as vectors.

Therefore, if the sequence is performed in a different order than ý, 6, 0, the

final result will be different. This fact is clearly illustrated by the final

aircraft attitudes in Figure 4.8 in which two rotations of equal magnitude

have been perfrmed about the x and y axes, but in opposite order. Addition

of a rotation about a third axis does nothing to improve the outccm.
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ROTATION SEQUENCE 1 ROTATION SEQUENCE 2

z
x

y

ROTATE -900 ROTATE +00
ABOUT X ABOUTY

z y

yl

ROTATE +90'
ABOUT Y ROTATE -90'

ABOUT X

1-i r u m ' 2

FIG= 4.8. DDEWkSTRATII ",%T MM' FZTh A•PL-R
DISPLNCTS DO NT DEMAVr• AS VEMZS
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Euler angles are very useful in describing the orientation of flight

vehicles with respect to inertial space. Consequently, angular rates in an
inertial system ($, 8, 4) can be transforred to angular rates in tbe vehicle

axes (P, Q, R) using ERler angle transformations. For exanple, if an Inertial

Navigation System (INS) is available, data can be taken directly in Ealer

angles. P, Q, and R can then be determined using transformations.

Miler angles are expressed as YAW (0), PITCO (0), and 4=LL (0). The
sequence (YAW, PITCH, KWL) must be maintained to arrive at the propr set of

Euler angles.

- Yaw Angle - The angle betoen the projection of x vehicle axes
onto the horizontal plane and the initial reference
position of the X earth axis. (Yaw angle is the
vehicle heading only if the initial reference isNorth)..

" Pitch Agle - The angla measured in a vertical plane between the x
vehicle axis and the horizontal plane.

l -IpllAngle- in the e , dlane of the vehicle
system, btuen the y axis and horizontal plane.
Fo= a given ý and 8, bank angle is a measure of the
rotation about the x axis to put the aircraft in the
desixed porition from a wing's horizontal condition.

The aompted imits an t6e Euler angles are:

-180°0 S S + 180o

-90 S 0 S + 90°

-1 8 0° S S + 1so0

4.7 ANGULAR VMCITY TSOWAj UmT4N

7be fD1UaAiq relationhips, derived by vectr reslution, will be useful

later in the study of dyamcs. (See ,) nix .)

P (s -* n0 )i (4.7)

to00 + V + sin Cos 6)j (4.8)

(00R 4 ( cos.oe - sin*) (4.9)
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The above equations transfrnn the angular rates fran the moving earth

axis system (i, 6, j) into angular rates about the vehicle axis system (P, Q,

R) for any aircraft attitude.

For exanple, it is easy to see that when an aircraft is pitched up and

banked, the vector 4 will have camponents along the x, y, and z body axes

(Figure 4.9). Remeber, 4 is the angular velocity about the Z axis of the

Moving Earth Axis Syste (it can be thought of as the rate of change of

aircraft heading). Although it is not shown in Figure 4.9, the aircraft may

have a value of 0 and •. In order to derive the transformation equations, it

is easier to analyze one vector at a time. First resolve the camponents of

on the body axes. Then do the same with e and T. h cponents can then be

added and the total transformation will result.

z

FIGURE 4.9 CMPNENTI OF 4 ALWNG x, y, AND z BODY AXES.
(NOTE: THE X AND Y AXES OF THE MOVING EART!

AXIS SYSTEM ARE NDT SHOM.)

Step 1 - Resolve the curponents of t along the body axes for any
aircraft attitude.

A.

It is easy to see how 4 reflects to the body axis by starting with an

aircraft in straight and level flight and changing the aircraft attitude one
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angle at a time. Ln keeping with convention, the sequene of change will be

yaw, pitch and bank.

First, it can be seen from Figure 4.10 that the Z axis of the Moving Earth

Axis System remains aligned with the z axis of the Body Axis System regardless

of the angle p if e and 0 are zero; therefore, the effect of • on P,Q, and R

does not change with the yaw angle p.

R= (when = = 0)

4ARTH AXIS SYSTEM

FGURE 4.10. DWELGR rO CF AnICAFT ANGUIAR VEOCITIES
BY T1E EUUM ANGM YAW PMTE (V R)OCX)
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xI

IX

w 0
HORIZONTAL

-- REFERENCE

FIGURE 4. 11. DEVELOPMEN OF AIRCRAFT ANGULAR VELOCITIES
BY T•IE ZER ANaL YAW RATE j0 IrTCNt)

Next, consider pitch up. In this attitude, 4 has ccmponents on the x and
z-body axes as shown in Figure 4.11. As a result, $ will contribute to the
angular rates about these axis.

P - - sinc 0

R w Cos 0

With just pitch, the Z axis remains perpendicuLix to the y-body axis, so 0 is

not affected by in this attitude.

Next, bank the aircraft. leaving the pitch as it is (Figure 4.12).
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y
Y• --- •coo 0 sin o T"

x

HORIZONTAL
REFERENCE
PLANE

*--sin - (NEGATIVE 0 SHOWN)

C-~os. 0 Cost

s-• in 0

Z

FIGIME 4.12. DEVELO OF AIIMAFT ANGEAR vAocrITI
BY THE E ANGLE YAW RATE (0 ROTATICN)

All of the xmp•onents are ncw illustrated. Notice that roll did not
chaqe the effect of ý on P. 7e oaponents, therefore, of _ in the body aws
for any airaft attitude are

P I sin e

Efect of 0 aay 0 - i 0osin*
R C cos cOos0

tep 2- Resolve the ohixnents of 0 along the body ams for any

aircraft attitue.
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Pemember, 8 is the angle between the x-body axis and the local horizontal

(Figure 4.13). once again, change the aircraft attitude by steps in the

sequence of yaw, pitch, and bank and analyze the effects of 8.

x

HORIZONTAL
REFERENCE

PLAN
z

FIGURE 4.13. CONTRmBUTICN OF THE 3!E PITC ANGLE RATE
TO A-flCPMF ANGULAR VELOCITIES (0 TIATION)

It -:an be seen inmediately that the yaw angle has no effect. Likewise
when pitched up, the y-body axis remains in the horizontal plane. Therefore,

0 i. the same as Q in this attitude and the component is equal to

N4w bank the aircraft.
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R-- a sin O k'•,i

~Y

y

FIGURE 4.14. CONTRIBUTION OF THE EULER PITCH ANGLE RATE

TOAIRCRAFT ANUA VELCCITIES (0 ROTATION)

7 /
/ •

~m

It can be seen fran Figure 4.14 that the caqomts of 0 on the body axes are

Q - OCos*

R -6 sin*

Notice that P is not affected by a since by definition e is measured on an

axis dcularto the x body axis.

Step 3 - flesolve the caipczents of t along the body axes.

This one is easy since by definition 4 is measured alov the x body axis.

Tlwrefxxre, * affects the value of P only, or
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The cm• onents of Oand along the x, y, and z body axes for any

aircraft attitude have been derived. These can now be suemmd to give the

transformation equations.

P'= -i sin 6) i

= 0 os + ý sin~ cos e)j

R (i cos • cos e - 0sn ý )k

4.8 ASSUMPnIONS

The following assumptions will be made to simiplify the derivation of the

equations of motion. The reasons for these assumptions will become obvious as

the equations are derived.

Rigid Body - Aeroelastic effects nust be considered separately.

Earth and Atmosere are Assumed Fixed - Allows use of Moving Earth Axis
Systan as an "inertial reference"
so that Newton's Law can be
aplied.

onstant Mass - Most motion of interest in stability and control takes
place in a relatively short time,

The x-z plane is a Plane of S§Mtry This restriction is rmde to sim-
plify the RHS of the equation.
This causes two products of
inertia, I , and I to be zero.
it allcý%^Ith cA&Ilation of
tems •otaining these products
of inertia. The restriction can
easily be removed by including
these tenms.

494.9 P.JflD- SIDE O, 9 -MOt

The RHS of the equation represents the aircraft response to forms or

mments. 1hrough the application of Newbon's Second Law, two vector relations
can be used to derive the six required equatus, three translational and

three rotational.
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4.9.1 Linear Force Relation
The vector equation for response to an applied linear force is

F at (4.10)

or the change in linear momentum of an object is equal to the force applied to

it.
This applies only with respect to inertial space. Therefore, the motion

of a body is determined by all the forces applied to it including
gravitational attraction of the earth, moon, sun, and even the stars. For a
great majority of dynamics problems on the earth and in the lower atmrsphere,
the effects of the sun, moon, and distant stars as well as the spin of the
earth and nvment of the atmosphere are dynamically inconsequential. Mien
considering the forces on an aircraft, the motion of the earth and atsphere
can then be disregarded since forces resulting from the earth's rotation and
Coriolis effects aie negligible when ocupared with the large aerodnamic and
gravitational forces involved. This simplifies the derivation considerably.
The equations can now be derived using either a fixed or moving earth axis
system. For graphical clarity consider a fixed earth axis system. The
vehicle represented by the center of gravity symbol has a total velocity
vector that is chning in both ragitode and direction.
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z

X x

z

Y

x

FIXJRE 4.15. DERIVATIVE OF A VECTR IN A
JR)TATfl4G REFRENCE FRAME

From vector analysis (Apperdix A), the acceleration of a rigid axis

systemo, translating at a velocity VT (correspaxlng to the velocity of its

origin) and rotating at j about an axis of rotation through the origin,

(Figure 4.15) will txansform to another axis system (x, y, z) by the following

relationship;

t !J+ VT

Substituting this into Bqwtion 4.10, and assuming mass is cistant, the

apidforc is

+ 4.26
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which in cocqpnent form is

F =m Ui+Vj +Wk+ P Q R

LU V W

~~~~~~Q ;mLi+ -+ +(O- RVr (i - R)j+ (PV - QU)kW

Fearranging

F = m [(m +QW -RV)i+ (V+RU-PW)j-+ (W+PV-QU)k1

N~w since

Fi + Fi+j + Fk

these three oxponent translational equations result:

F = m (U+ a- RV) (4.11)

FZ = m (W + PV- (j) (4.13)

4.9.2 Mment ESqations
Once again from Nwto' Sec& W Law,

d (- (4.14)

or the change in angula r nti is equal to the total q lied mment.

4.9.3 A mentum

Angular rmntum should not be as difficult to uderstand as ~peoe

wuld like to make it. It can be tkoght of as Linear rmentum with a mtment

axm inchlikle
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V
S• m~w-

r

0

FI(GRE 4.16. ANGULAR MO4E

Consider a ball swinging on the end of a string, at any instant of time,

as sh wn in Figure 4.16.

Linear muxentam - mV

and
Angular nmmentum - mrV (axis of rotation must be specified).

Therefore, they are related in the same manner that forces are related to
moments.

Mmrent r X Frce

Angular Momentum - F X Linear Montum

and just as a forc changes Linear momentum, a t will change angular
mom entum.

4.9.4 AMular W-kmntun Of An Aircraft

Oosider a wUall elemit of mass m samere in the aircraft, a

distace frn the cg (Figure 4.17).
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yI

Ez

FMIWU 4.17. EUIAL DOMMOU OF' RIGID
BODY ANGULM MOtM

SThe airplane is rotating about all three axes so that

P1 P+ (a+ W (4.15)

and
an = + -• IT + j 

(4.16)

The angular mentumi of mis

,- I (r1 x v1 ) (4.17)

and

( 1  (i.e., in the inertial frame)

4.*29



Again fran vector analysis, the radius vector r can be related to the moving

earth axis systen (XYZ) by

dF, ,~Nin Pe-roelasticity ( .8
1+ (4.18)

-x zYZ

Since the airplawe is a rigid body r does not change with tire. Therefore
the first term can be excluded, and the inertial velocity of the element a is

V1 = w X r (4.19)

Substituting this into Equation 4.17

I =mi (r, X wXr,) (4.20)

This is the angular momantum, of the elemental mass m . In order to find the
angular momentum of the whole airplane, take the sum of all the elemmts.
Using nrtation in which the i subscript indicates any particular elemnt and n

the total number of eleme in the airplane,

X 7X- (4.21)

Xi~i yi + zik (4.22)

then

X ri = P Q R (4.23)

Xi Yi I

In an effort to redwe the clutter, the subscripts will be left off. The
deteminant can be expaned to give,
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7x X (Oz - Ry) 1•- Px-z)j + (Py - c)k (4.24)

therefore, Equation 25 beccares

i 3k

M x y z (4.25)

(ez-Ry) (I•b-Pz) (P-ýQ)

So the components of H are

H.e= My (Py - GO) - R (Rx - Pz) (4a26)

H~~lC(Fx -Pz) - my (Oz- Ry) (4.28)

SarraThgais the equations

1& :3 P t (y" + z -F - R n= (4.29)

Q~~(2 + x2 ) f tLe yz - PLmy(4,30)

,z x + y2)- (431)

Define =wxInts of inertia as I & d o- 'ismaue n ln om

to the axis of rotation (Figuxre 4.18). Iliere foro

Ay M (x + 2)

r2 ~ 2 2

These are a tmawae of resistance to rotation - they are never zero.
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d X2=X2 +Z 2

X'<7 \I --

Z

FIGURE 4.18. MIENT OF INERTIA

Define products of inertia (Figure 4.19)

xy
I = •Mrz

yz

I = EMITXZ
xZ

11+
xr

FIGURE 4.19. PRODUCT OF INERTIA

These are a measure of symmetry. They are zero for views having a plane of

syMetzy.
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The angular ntnentum of a rigid body is therefore

H = xi + Hyj + Hzk (4.32)

So that

Hx = PIx - QIxy - RI (4.33)

H y QIY - RI yz- PI 1 (4.34)

H = RIz - P1xz - QIyz (4.35)

4.9.5. mlification Of Angular Mrment Equation For Symmetric Aircraft
A synmetric aircraft has two views that contain a line of symmetry and

hence two products of inertia that are zero (see Figure 4.20). Te angular
muanenttm of a symmetric aircraft therefore simplifies to

H (PIx RIxz) i+ QIyj+ (RIz - PIxz) k (4.36)

FIGURE 4 * 20. A r DR4IA, P10PERTIES WITH

AN x-z PLANE OF SThY
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4.9.6 Derivation Of The Three Rotational Buations
The equation for angular nmrentum can now be substituted into the mmment

equation. PnEeter

G = i(4.37)

applies only with respect to inertial space. Expressed in the fixed body axis

system, the equation becanes:

d I + X (4.38)
xyz

which is

G = I + Hj+H}+ P Q R (4.39)
xI Hy z

Remember, for a symmrtric aircraft,

H = (P1x - RIxz} i + QIyj + (RIz - PIxz) k (4.40)

Since the body axis system is used, the nmoents of inertia and the

products of inertia are constant. TV-refore, by differentiating and

substituting, the nmnt equation becces

T j k

= (P1x - kxz) i+ &y3+ (RIz - Pk ) )k+ P Q R
(Pxx-Rxz) My (RIz-PIxz)

(4.41)
Therefore, the rotational ccoponent equations are,

GX P1x + QR (I - I)- (R+ PQ) Ixz (4.42)

Gy - 61y- PR (Iz - Ix) + (P2 _ R2) Ixz (4.43)

Gz = Lz + PQ ( - Ix) + (QR- P) I1. (4.44)
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Tihis campletes the development of the RHS of the six equations. Bexrraber the

RHS is the aircraft response or the motion of the aircraft that would result

fran the application of a force or a moment. The LHS of the equation

represents these applied forces or mmients.

4.10 LEFT-HAND SIDE OF E• TION

4.10.1 Terminology

Before launching into the development of the LHS, it will help to clarify
same of the terms used to describe the motion of the aircraft.

Steady Flight. Motion with zero rates of change of the linear and

angular velocity cczxments, i.e.,

& = V = W = P = Q = R = 0.

Straight Flight. Motion with zero angular velocity camponents, P, Q, and
R = 0.

Symmetric Flight. Motion in which the vehicle plane of synmmtry remains
fixed in space throughout the maneuver. The unsymmetric variables P, R,
V, 0, and 8 are all zero in symmetric flight. Some symmetric flight
coredtions are wings-level dives, climbs, and pull-ups with no sideslip.

Unsymmetric Flight. Motion in which any or all of the above unsymmetric
viables m have non-zero values. Sideslips, rolls, and turns are
typical unsymmetric flight conditions.

4.10.2 Some Special-Case Vehicle Motions.

Lnaccrilerated Flight. (Also called straight flight or equilibrium

flight.)

FX = 0; F = 0; F 0

Hence, the ag travels a straight path at constant speed. Note that

_ilibrimi does not mean steady state. For example,
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Fx ( m +(U÷ -RV) = 0

could be maintained zero by fluctuation of the three terms on the right in an

unsteady manner. In practice, however, it is difficult to predict that

non-steady motion will remain unaccelerated; hence, the straight motions most

often discussed are also steady state.

Steady Straight Flight Steady olls or Spins

ý= 0 F Y= 0 Fx = 0 FY = 0 By custan this isnot called straight

Fz =0 Gx =0 Fz = 0 Gx= 0 flight even thoughthe cg may be traveling

G =0 =0 P=Q R-0 G y=0 = 0 a straight path
y y

Cn the average Excluded by on the average
custam

Trim Points, Stabilized Points Steady Developed Spins
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4.10.3 Accelerated Flight (Non-•piilibrizu Flight).

One or more of the linear equations is not zero. Again the steady cases

are of most interest.

Sts yetrical Pull up

An unbalanced horizontal force Here an unbalanced z force is
results in the cg being con- constantly deflecting the cg
stantly deflected inward toward upward.
the center of a curved path.
This results in a constantly Q =
changing yaw angle. By the
Euler angle transfonn, Fx a niW

and
- (ass s small e)n Fz a - na 0

Q= sin, cos 0= sin~ hsF rto
TIhis is a quasi-steady motion

R cos cos 0e= Cos since U an W cannot long
remain zero.

and hence

FY = m( cos O)U

Fz = -m (6 sin )U (assm~s e
is very, very

small)

Includes moderate clinbs and descents.

4.10.4 Preparation For Ec•pansion Of The Left-Hand Side

The Equations of Motion relate the vehicle motion to the applied forces

and maoents.

LHS RHS

Ap&4Jed rt"erved

Forces and Moments Vehicle Motion

F - M6 +

etc.
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The RHS of each of these six equations has been completely expanded in terms

of easily measured quantities. The U!S must also be expanded in terms of

convenient variables to include Stability Parameters and Derivatives.

4.10.5 Initial Breakdown of the Left-Hand Side

In general, the applied forces and moments can be broken up according to
the sources shown below.

____________SOURCE

Aero- Direct Gyro-
dynamic Thrust Gravity Soopic Other

F. x xxo x. - MU +---(4.45)

S F. Z e 0 -o =MW+ (4.44)

Q G, M 0 MWV, MG - 1 + (4.47)

* F Y yo 0 YmV +- (4.48)

QG X T ____ 0 L.,,, L." + -P1+- (4.49)

L. GN 0 Nffn N91 6ia+ -- (4.30)

1. Gravity Forces - These vary with orientation of the wight vector.

Xg -m sin 0 Yg = nm cos 0 sin* Zg = mg cos e cos

2. Gyrosco;ic Moments - These occur as a result of large rotating
masses such as engines and props.

3. Direct Thrust Fbrces and Mmients - These terms include the effect of
he rut vector itself - they usually do not include the indirect

or induced effects of jet flow or running propellers.

4. AeroyMic Poroes and Mments - These will be further expanded into
Stability Parameters and Derivatives.

5. Other Sources - These include spin chutes, reaction controls, etc.
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4.10.6 Aerodyiamic Forces And Maments
By far the most important forces and niments on the LS of the equation

are the aerodynamic terms. Unfortunately, they are also the most complex. As
a result, certain simplifying assumptions are made, and several of the smaller
terms are arbitrarily excluded to simplify the analysis. emwber we are not
trying to design an airplane around sam critical criteria. We are only
trying to derive a set of equations that will help us analyze the important
factors affecting aircraft stability and control.

4.10.6.1 Choice Of Axis System. Consider only the aerodynamic fonces on an
airplane. Summing forces along the x body axis (Figure 4.21)

X = L sin a - D cos a (4.51)

Notice that if the forms were srmmed along the x stability axis (Figure
4.21), it would be

X -D (4.52)

xBODY AXIS

x STABILITY AXIS

FIGME 4.21. CHOICE (OF AXIS SMSMD4

It would simplify things if the stability axes were used for development of
the aerodynamic forces. A small angle aassmption enables us to do this:

sina 0 0
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Using this assmption, Equation 4.51 reduces to Equation 4.52. %tether it be
thought of as a small angle assumption or as an arbitrary choice of the
stability axis system, the result is less complexity. This would not be done
for preliminary design analyses; however, for the purpose of deriving a set of
equations to be used as an analytical tool in determining handling qualities,
the assumption is perfectly valid, and is surprisingly accurate for relatively
large values of a. It should be noted that lift and drag are defined to be
positive as illustrated. Thus these quantities have a negative sense with
respect to the stability axis system.

The aerodynamic terms will be developed using the stability axis system
so that the equations assume the form,

"-D + XT + Xg + Xoth = a + (4.53)

"ULIT -L + ZT + Zg + Zoth = ms +---- (4.54)

.PIT"' .f + + + M + Moth = 01y + - - - (4.55)

"S " Y + YT + Ig + Yoth = mý + .... (4.56)
"0OLL"0 + LT + Lgyro + Loth ' PIx - -....- (4.57)

" ")W + NT + Nro + Noth -RI - - - (4.58)

4.10.6.2 EXnsion of Aer € Terms. A stability and control analysis is

concerned with how a vehicle responds to perturbation inputs. For instance,
up elevator should cause the nose to come up; or for turbulence caused
sideslip, the airplane shuld realign itself with the relative wind.
Intuitively, the aerodynamic terms have the most effect on the resulting
motion of the aircraft. Unfortunately, the equations that result from suaming
forces and moWnts are non-linear, and exact solutions are impossible. In

view of the omplexity of the problem, linearization of the equations brings
about especially desirable simplifications. The linearized model is based on
the assumption of small disturbanme and the small pelturbation theory. 1his
model, nonetheless, gives quite adequate results for enmineering purposes over
a wide range of applications; because the major aerodynamic effects are nearly
linear functions of the variables of interest, and because quite large

dl cf-rbances in flight may correspond to relatively small disturbances in the
linear and angular velocities.
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4.10.6.3 Small Perturbation Theory. The small perturbation theory is based
on a sinple technique used for linearizing a set of differential equations.
In aircraft flight dynamics, the aerodynamic forces and muments are assumed to
be functions of the instantaneous values of the perturbation velocities,
control deflections, and of their derivatives. 7hey are obtained in the form
of a Taylor series in these variables, and the expressions are linearized by
excluding all higher-order teims. To fully understand the derivation, same
assuupticos and definitions must first be established.

4.10.6.4 The Small Disturbance AsSmption. A summaay of the major variables
that affect the aarodynamic characteristics of a rigid body or a vehicle is

given below.

1. Velocity, temperature, and altitude may be considered directly
or indirectly as Mah, Pymolds numbers, and dynamic pressures.
Velocity may be resolved into caq=*nts U, V, and W along the
vehicle body moes.

2. Angle of attack, a, and angle of sideslip, 0, may be used with
"the magnitude of the total velocity, V., to express the
orthogonal velocity owvonents U, v, ani W. It is more
comavenient to express variation of force and marnmt
characte-ristics with these angles as independent variables
rather tian the veocity canents.

3. ngular velocity is usually resolved into omponents, P, 0, and
R about the vehicle body axes.

4. OCntrol surface deflections are used primarily to change or
balanme ae•odyidmic forces and moments, and are acaxuted forby e 0 da, 6 r.

Because air has mass, the flow field cannot adjust instantaneouly to s~dden
changes in these variables, and transient conditions exist. In sane cases,
these transient effects become significant. Analysis of certain unsteady
m•tions may therefie require onsideration of the time derivatives of the
variables listed able.
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VARIABLE FIRST DERIVATIVE SECCND DERIVATIVE

D U U U----

L

P Q R p ----
Are a

Function
of

Y

6e 6a 6r ze -

X M Re assumed cczstant

This rather fnrmidable list can be reduced to workable proportions by

assuming that the vehicle motion consists only of small deviations fron sane

initial reference condition. Fortunately, this small disturbance asswmVion
aplies to many cases of practical interest, and as a bonus, stability
parameters and derivatives derived under this assmmptic i u contine to give good

results for motions somewhat larger.
The variables are considered to consist of same equilibrium value plus an

incremental change, called the *perturbed value". TIe notation for these

perturbed values is usually lower case.

P, U Po0+ p

U t U0 +u

It has been found from experience that when operating under the small
disturbance assuaption, the vehicle motion can he thought of as two independent
motions, each of which is a function only of the variables shown below.

(D, L^ - f (U, , &, Q,e) (4.59)

2. lateral-Directtional motion4

(YAX,'l) f (6,a,BUP,R, 6 ,6) (4.60)
a r
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The equations are grouped and named in the above manner because the state

variables of the first group U, a, c, Q, 6e are known as the longitudinal

variables and those of the second group B, 8, P, R, 6a, 6r are kown as the

lateral-directional variables. With the conventional simplifying assumptions,

the longitudinal and lateral-directional variables will appear explicitly only

in their respective group. This separation will also be displayed in the

aeroynamic force and moment terms and the equations will completely deoouple

into tWo in4pnd nt sets.

4.10.6.5 Initial Conditions. It will be assumed that the motion consists of

small perturbations about some equilibrium condition of steady straight

symmetrical flight. The airplane is assumed to be flying wings level with all

cxponents of velocity zero except U0 and WO. Therefore, with reference to
the body axis

VT UO + W U constant

W0 - small constant . a0  - small constant

Vo 0 .. 80 0

P 0 00 P 0

We have found that the Equa=ions of Mbtir& saiwalfy conwidnrably when the

stability axis is used as the reference axis. This idea will again be

eployed and the Enal set of boway conditions will zvsult.

VT R U0  constant

wo - 0 .. O = 0

V0 -0 o . o 0

P0 - o= - 0

(p, M, R., aircraft configuration) constant
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4.10.6.6 Egpansion By Taylor Series. The equations resulting from s,,w.ardnqg

forces and =uuents are nonlinear and the exact solutions are not obtaT-ble.

An approcimate solution is found by linearizing these equations iuipg a Taylor

Series expansion and neglecting bher ordered term.

As an introduction to this technique, assume some arbitrary non-linear

function, f (U), having the graphical representation shown in Figure 4.22.

f(U)

UU

FIGURE 4.22. APPR=WION OF AN A•flMAJw
FUNWION BY rAYIAI SEUES

A Taylor Series acpansion will apip•=imte the cur over a she-r span, AU.

The first derivative assumes the function bebteen AU to be a straight line

with slope af (U0 )/aU. 7his apprvcimation is illustrated in iiigure 4.23.



SaU

SLOPE N(U.

f 4
Au

U*

u,+ Au

FIGURE 4.23. FIRST ORER APPROXIMWION BY -TAYLOR SERL

lT refine the accuracy of the app• imation, a second derivative tenm is aded.

"Seound order apprdmation is shown in Figure 4.24.

•u)A

U.

qU) J" AU.)+ AU + •taa•lq i•

Ut + AU

SFIGURE 4.24. SOO O APPIS( IN BY TAW" SERIES



Additional accuracy can be further obtained by adding higher orderderivatives. The resulting Taylor Series expansion has the form "•

2 f3
f (U) f (U a f NO ( U) 2 1 f (U0 )

fU0 + f(U0 ) + 2U (AU)0 A (U )3

Snf (fU0)
+ u' (AU)

Reasonably, if • make AU smaller, our accuracy will increase and higher order

tenis can be neglected without significant error. Also since AU is Small,

(AU) 2, (AU) , (AU)n are very small. Therefore, for small perturbed values

of AU, the function can be accurately approximted by

af (U0 )
f(U) + f WU0 ) + I AU

U0 + AU

M can ncw linearize the aerodynamic farces and moments using this tech-

nique. To illustrate, recall the lift term from the longitudinal set of equa-

tions. Fran Equation 4.59 we saw that lift was a function of U, a, a, Q, 6e"
The Taylor Series expansion for lift is therefure

r 1+ 2L ..

DL AUU

Lo + I AU +• .-

. + -L Aa + I -A Aa2 +---

2 B: 2

A~A~
:': ' + "Adee

e
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where LO L (u 01  &01 % 0 le e)

Each of the variables are then expressed as the sum of an initial value plus a

small perturbated value.

U - Uo + u ere u = AU =U - 0  (4.62)

and

au 3(U-Uo) = u Uo
;U au rU au

Therefore

9L B au = aL (4.63)
au auau au

and

AU = u

The first term of the expression then becanes

TL A Lu (4.64)"-AU au

Similarly

- AQ 3 q (4.65)

And all other terms follow.

We also elect to let a - A, & = A& and 6. A6

rDropping higher order terms involving u2, q2 , etc., Equation 4.61 now becanes

L Lo ++uu +Mg +9 + U + 8e (4.66)

The lateral-directiioal motion is a function of $, 8, P, R, ra' 6 r a

can be handled in a similar manner. For example, the aerodynmic terms for

S rolling nrwnt beccn.
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To- a T Sa + Sr (4.67)
Tr Ta ar

This developmnt can be applied to all of the aerodynamic forces and nmments.
The equations are linear and account for all variables that have a significant

effect on the aerodynamic forces and mmants on an aircraft.
The equations resulting fran this development can now be substituted into

the LHS of the equations of motion.

4,10.7 Effects of weight
The weight acts through the cg of an airplane and, as a result, has no

efffet on the aircraft nmments. It does affect the force equations as shown
in Figurm 4.25.

LTHRUST LINE U

S• HORIZON

8 Zk (DISTANCE SETWEEN
THRUST UNE AND CO)

' -W sin 0

FIGURE 4.25. ORIGIN C' WEIGHT AND THRUST EFFECTS
N FORMES AND MMS

The same "small pertubation" technique can be used to analyze the
effects of weight. For lor:itudinal motion, the only variable to consider is

e. For camnple, consider the effect of weight on the x-axis.

Xg -W sin 6 (4.68)
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t Since weight is considered constant, 6 is the only pertinent variable.

Therefore, the expansion of the gravity term (Xg) can be expressed as

ax
xg = Xg° + B e x = equilibriu conditionof X (4.69)

For siaplification, the term Xg will be referred to as drag due to

weight, (Dwt). this incorporates the small angle assdmption that was made in
development of the aerodynamic terms; however, the effect is negligible.

Thexrefore, Equation 4.69 becoes

Dwt = DII B

Likewise the Z-force can be expressed as negative lift due to weight (Lw),
and the expanded term becomes

Owt Be

The effect of weight on side force depends solely on bank angle (*), assuning

small 6. Therefore,

ByWt
YWt - YO +-*0

These omqnrmnt equations relate the effects of gravity to the equations of

motion and can be sustituted into the LHS of the equations.

4.10.8 Effects of 7hrust
7he thrust vector can be ocmsidered in the sam way. Since thrust does

not always pass through the og, its effect on the tment equation must be
conidered (Figure 4.25). 7te ompmnt of the thrust vector along the x-axis

is

SXT oT s e
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The compnent of the thrust vector along the z-axis is

ZT = -Tsine

The pitching moment component is,

S= T (-Z k -= Zk

where k is the perpendiagar distance from the thrust line to the cg and e is
the thrust angle. For small disturbances, changes in thrust depend only upon
the change in forward speed and engine RIM. Therefore, by a smll
perturbation analysis

T - T (U, 6RM)

T aT +A T~
TO au . + •a 6 (4.70)

Thrust effects will be considered in the longitudinal equations only since the
thrust vector is noomally in the vertical plane of symmltry and does not
affect the lateral-directional amtion. Men considering engine-out
characteristics in multi-enqine aircraft however, the asyxmmtric thrust
effects nmit be considered. Owe again, for clarity, xT and zT will be
referred to as "drag &e to thrust" and "lift due to thrust" and are
cazionets of thrust in the drag (x) and lift (z) directions.

AMR (To +-ru + 4. (ONi C) (4.71)

+ , u + T 4M (sin c4
- 3T (s (4.72)

%K IS TO m

+ ,, + (4.73)
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4.10.9 Gyrosopic Effects
Gyroscopic effects are insignificant for most static and dynamic analyses

since angular rates are not considered large. They begin to beoome iqportant
as angular rates increase (i.e., P, Q, and R become large). For spin and roll

coupling analyses, they are large and gyroscopic effects will be considered.
However, in the basic development of the equations of mnaion, they will not be
considered. See Appendix A for a complete set of eguations.

4.11 RMS IN TE4S CF SMAtL PURFATICNS

To oonform with the Taylor Series expansion of the WIS, the RHS must also
be expressed in terms of small perturbations. recall that each variable is
expressed as the smn of an equilibrium value plus a mall perturbed value

(i.e., U = O0 + u, Q - 0 + q, etc.). These expressions can be

substituted directly into the full set of the MHS equations (Equations 4.1 -
4.6). As an example, the lift equation (z-direction of longity•inal
equations) will be exanded. Start with the RHS of Zzation 4.2

m (i + w- )

Substitute the initial plus perturbed values for each variable.

m (W0 + + (Po+p) (V o+v) - ( 0 + ) (U0 +u)]

Wltiplyinm out each term yields.

m [•O+ i + PO VO + p Vo + Poy + pv . 0O UO .. q UO - OoU .- qu)

Applyiz the hmaxy ooditinas stqplfies the equation to

m (it + pv- Uo - qu I

m + +pv- q (U0 + U)3
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or

m I* + pv - qU]

Te cuip1ete set of RHS equations are:
"DRAG": m (16 + qw - rv)

S" IF ". m (* + v - q )

""PITC" " - pr (Iz - Ix) + (p2  r2 ixz

"SIDE": m (•" + rU - l:w}

"OWW": p Ix +qr (Iz - Iy) + pq} Ixz
"YAW" i I z+ pq (IY- Ix) + (qr-• Ixz

4.12 RrIM OF EQUUICNS TO A USABLE MM

4.12.1 Nonnnlization Of !?auatioc1s
To put the liuearized acpressions into a more usable form, each equation

is multiplied by a "noalization factor." This factor is different for each
equation and is picked to simplify the first term on the PM of the equation.
It is desirable to have the first term of the IM be either a pure
acoeleration, &, or A and these t e wre previously identified in Equations
4.59 and 4.60 as the longitudxnal or lateral-directional variables. The
faowidz table presents the nonualizing factor for each eqation~:
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t TABLE 4.1

NOW4ALIZIG FACTRS

Normalizing First Term is Now
ua~tion Factor Pure Acel, &, or Units

1 DL -Is +Z+---= +--- (4.74)

1 L ZTR rradI
"T -- j% o - 0  Lsecj

"SIDEI" ly +sc2 (4.76)Ira

"SIDE" 1 Y r+" -i (4.77)
ii; By0  MOO U0 iO

LT + + a (4.78)

1 2 L ~ T - m[ :a d 1"YAW" M +I !I++;1 (.9
Iz Iz Iz - see2J

4.12.2 Stability Paraieters
Stability paramtars used in this text are aiziply the partial

coefficients (aL/3u, etc.) muultiplied by their reqxctive normalizing factors.
They eqxress the variation of forces or anmnts, caused by a disturbance frm

staab state. Stability paramters are iqn tant becau they can be used

di•wtiy as rwnericaL coefficients in a set of simaltaneouB differential

equwt4Ar dcribing the dynwica of an airframe. Ta their
deveopma• a oosider the ronfn! terms of the Lift equation.

BY Dqtwply.n aation 4.75 by the ,o izingfactor 1/WUo, w get

W:+WLUU+0 +u.W.-,+jM+- q W.- [r (4.80)
00 0J 0IE 0 0UOS 0

C a q a
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The indicated quantities are defined as stability parameters and the
equation beoames

L L 0 radl+n.YQ • + % + + L q + L s6 (4.81)

Stability parameters have various dimensions depending on whether they are
multiplied by a linear velocity, an angle, or an angular rate

LU l[-]U [• ril],La je] a [rad] r=ad]

LE [now] i Fr---l . rad
tse-cj C-

The lateral-directional motion can be handled in a similar manner. For
example, the nrmralized aerodynamic rolling moment beccmes

IXB IXp r~ a r risec .

where

B r ,etc.

These stability parameters are sometimes called Mdimensional derivatives" or
"stability derivative parameters," but we will reserve the word "derivative"
to indicate the roxindpnsional form which can be obtained by rearrangement.
This will be develaped later in Ihe chapter. See ApMndix A for a oaplete
set of equations in stability parameter form

4.12.3 SimpLtfication Of lThe Euations

By oombb all of the to deriv so far, the resulting equations are

7 sw~what lengtil'. Tm order to eomm~ize on effort, several simplifications
can be rade. Ebr one, all "=aalI effecta" terms can be disregarded. Normally
these tam are an order of magntude less than the moe predominant terms.
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These and other simplifications will help derive a concise and wrkable set of

equations.

4.12.4 !ongitudinal EBuations

4.12.4.1 Drag The oanplete normalized drag equation is

•ro Trms Gravity Ters

A-

Dci. + D U +Dqq + D 6 e Ie D 8

Thrust Terms

!T +-Tu + 6 1REM] (cos r, = +qw-rv (4.83)

Simplifying assmVtions

"TO D o D I-.+

3- TO o c.... = 0 (Steady State, Sum to Zero)m. •-o m m

.T . cos c 0 (Constant R+M, 8T is samI)

3. rv - 0 (No lat-dir awtion)
The small perturbation assumption
allows us to analyze the longitudinal
motion indepexent of lateral-
diectial xmotion.

4. qw u 0 (Order of magittude)

S. D&, oq, andDz e are all very =aall, essentially zero.
e

W resultingj equation is

- [DQ + IDuU + D0 61l (4.84)
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Paarran~irng

16+DuU+D a+DO = 0 (4.85)

4.12.4.2 Lift quation. The complete life equation is

Aero Temns Gravity Temn
A

S • ,el wt
ML-° + + La, & Luu+ Le + Ln6 6e + N.o + L 8

Thrust Tems

"1 T + B (sin c)

Si~lifyinV assuIons

1. - +-sinc - 0 (Steady State)

3T n D

2. u + 6 o (bnstant R4. is smal)

3. Le8 0 0 (Wder of magnitude, for

4. it s U

5. r - 0 (W, lat-dir MUM)

6. S a q (U U
0 0

- ae- La- U-Lq-L6 6 e - -q (4.86)
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Iaarranging

-La- (I +L-) L.- Iu+ (q-Ly L6  
6e (4.87)

e e, ~4.12.4.3 Pitch Mpment R~uation.

+ At +' a+ m uonm a+'Mlq -m st Texw

(I - + Ixz (4.88)

Viis can be simplified as before. Thus

4 ?n1 ~ ~ ~ 1f.& )nu - 'nu (4.89)

ub now have three longitudiral equations that are asy to ork with. •tie

that there are faur vMaiables*, 0, , #u, and q, but only three equatiros. IT

solve this problem, e can be substituted for q.

q a and 4 ,0

This can be verified from the Maler arsle transfo=aticn for pitch rate 414.re

the roll angle, #, is zeMo.

q. oft" 96/ ÷* +e4 o

.. q

erefote the longitwi•Ual equat• is

C"



(0) (u) (a)

DRAG DOe + +%UI + D a 0 (4.90)

LIFT (1-L) -LuU - (1 + L ) -L a L 6 (4.91)q u Iaa I 6 ee

P=ITC -O7nl6 -31 l. - -M'L~ ull 'flt - (4.92)
qu I I neS

There are naw three independent equations with three variables. The tenns on

the RHS are now the inputs or "forcing functions." Therefore, for any

input 6 e' the equations can be solved to get 0, u and a at any time.

4.12.5 lateral-Directional Equations

The complete lateral-directional equations are as follows:

4.12.5.1 Side Fbrce.

y 0

YFU-0 + Y a + V• + Ypp + Yrr + Y 6a 6 a + Y 6r 6 r

+Yo + + _ _ -_ (4.93)+mU + Y = U0

4.12.5.2 Rolling Moment.

0+ c~ + Pp+ r 66
"Ix ar

Iz - y xz .
= p + qr - - Pq) (4.94)
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4.,

4.12.5.3 Yawing Mome-nt.

fo0_ + •+ + 7++ + r+ an •r

aa •rI

In, order to simplify the equations, the following assumptions are Made:

1. A wings level steady state condition exists initially. Therefore,

to' 0, andYoIwt are zero.

2. p = 0= ( u 0, see Wler angle transforma-
tions for roll rate, Equation 4.7)

3. The~ termIs \a0Jr Y o ' " 6 ~are all wiall., essentially
zero. a

4. ( is small)

5. r (U a U0 )

6. q 0 (no pitching rate in the Lateral-
Direction equations)

7. w 0 (no JoNitudinal motion)

Uging these asmsptinS, the lateral-directional equaticts reduce to

.4
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(() (,) i (r)

(rr
SIDE -Y +(-Y) r (4.9)
MMEN r ar r (

IxI

I T I a

I I!

-- Ixz'-x+ -•rj =a 6a + r r

. n~c -T AB p1l r1  6a 6

(4.98)

Once again, there are three unknowns and three equations. These equations may
be used to analyze the lateral-directional motion of the aircraft.

4.13 STABILITY DERIVATI•ES

The parametric equations give all the information necessary to describe
the motion of any particular airplane. There is only one problem. When using
a wind tunnel model for verification, a scaling factor must be used to find

the vallues for the aircraft. In order to eliminate this requirement, a set of

nondlmensional equations must be derived. This can be illustrated best by the

follawing example:

Given the parametric equation for pitching monent,

q I e

Derive an equation in which all terms are WD=sI4KAL.

The steps In this process are:

1. Take each stability parameter and substitute its coefficient relation
and take the derivative at the initial condition, i.e.,

0
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C is the only variable that is dependent on q, therefore,

PU02 Sc m (4.100)
qn~ 21v 8q

2. n i.nonalize partial term, i.e.,

acM. d dimensionless =h ds radlsec

Tn nondimensionalize the partial terms, there exist certain compensating
factors that will be shown later. In this case, the ccmpensating factor is

c (ft]
2u-- Tft/secl =

Multiply and divide Equation (4.100) by the compensating factor and get

2  c

q 21 Y a

t isterm Is rtw dimensionlesq.

Cieck
am dimensionless

This is called a stability deri, .tive and is written

acm

CM q
~1¶~ asic ~ 3s iiirortant becauaie correlation be-

tween geomatrically similar airfrms or t)e sime airframe at different fl: qht
conditicns is easily attained with stability derivatives. Additionaliy,

aerodynaic stability derivative data fran wind tunnel tests, flight tests,
and theoetical aualyses are usially present:cd in nridmInsional fbm.

S CO Stability derivatives gernrally fall into tL- classes: static ax.J dynamic.
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Static derivatives arise fruit the position of the airframe with respect to the

relative wind (.e., CL , Cm , CnI Ck). Vhereas, dynamic derivatives arise

fran the motion (velocities) of the airframe (i.e. CL , ,C C , C

3. When the entire term as originally derived is considered, i.e.,

m PU0 2 Sc c
q = 2iy 2U0 mq

It can be rearranged so that

lqq 0U2 SC
2 mq 2U0

Define
"" •Z- [ft/sec]

q 2U0 =f/ dimsionless

• .The term becomes,

PU0
2 Sc

y D Di~ sionl variable

LDimansionless stability derivative

Co-nstants

But q is expressed as e in the equation. To convert this, substitute d6/dt

for q.

K' ~Define V-
"• Odt
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I

t V can be considered to te a dimensionless derivative with respect to time and
acts like an operator.

4herefore,= c de

q V6 = M d (i.e., dimensionless derivative of e)

00
4. Do the same for each term in the parametric equation.

L 3 7 P U SIC).

Y''IYa 3U F au

Since both Cm and U are functions of u, then

PSC U2 f s0

1 0CM mO

"-. r. •

21YIA -U + -

but C am 0 since initial hxieitions are steady state. The ccaqenating

factor for this ca is 1/%

00

SC-
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I!r

which gives

2I1

2 V-m v-m -Cm m 6e
PU0  Sc q U Q c 6

7he first term is howona1, hever, it can be changed to a more

cowenient form. Multiply and divide by

c 2/4U02

2- 2

O 2 2

P"Sc

Vd 0

4.4~eref~rethe erm4.64s



The a~pensating factors for all of the variables are listed in Table 4.2.

TAKLE 4.2

COPNATInG FA

PFactor "ndrmionl n0qu0a Rates

p - rad/sec b A r

f 0
Aaalscb - b

0 0
- rad/se b . V b

V- M:0 0

0 U0

-no chqere

8 - no change
These dervations have been Mvented to give an wdenmtaning of their origin
and uhat tUy reprment. It is not ner ssaxy to be able to derive each and
eVerY one Of the epiaticms. It is iMPortnto bmaver, to Undearstand wevral
facts aheut the izmaihumnioniaal aeuatuims.

1.* Sim@U themse suati~mm aft nmuidmesion~a I they cam be use to
•MIVM airaft Characteristics of getricalUy sim&ia a&irfraM".

2. Staility derivatives can be thoui t of as if they we stability
.rfers to the S aw

chwmtr ctiristk as Onl my it is in a zMazIsinalam fom.
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3. Most aircraft designers and builders are acustmed to speaking in
terms of stability derivatives. Therefore, it is a good idea to
develop a "feel" for all of the inportant ones.

4. These equations as ell as the parametric equations describe the
ccmplete motion of an aircraft. 7hey can be programed directly
into a =qputer and connected to a flight simulator. 7hey may also
be used in cursozy design analyses. Due to their sinplicity, they
are especially useful as an analytical tool to investigate aircraft
hmndl~ing qualities and determine the effect of changes in aircraft.
design.
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PROBLE24S

4.1. Mat type of stability is dpicted by the folloing tirm histories?

A

4. C

t
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I- 4. 2. Draw in the vectors VT, U, V, W, and show the angles a and a.

y
i/

.0 Y

z

Derive a a W/VT and 8 0 V/VT using the small angle assurtion.

4.3. Define "Right Hand" and "orthogonal" with reference to a coordinate
system.

4.4. Define "Mouing" earth and "Fixed" earth coordinate systems.

4.5. Describe the "Body" and Stability" axes systems.

4.6. Define:

b.m
d. P
e. Q
f. R

4.7. Define C, O, 6. What are they used for? in what sequenoe must they be
used? Eqplain the difference between * and 8.

4.8. *at are the empreasions for P, Q, R in terns of Euler angles?
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4.9. Given F =d/dt ,Fis a force vector, m is a constant mass, and
VT is the velocity vector of the mass center. Find F, , and F

(if VT = Ut+Vj+& +8ad j = P!+(++Rk-) with respect to the
fixed earth axis system.

n
4.10. Given - i = m i Xi X wherem, is the mas of the ith particle,

i-1
ri is the radius vector fran the cg to the ith particle, and Vi is the
velocity, with respect to the cg, of the ith particle and n is the
number of particles. Find with respect to the fixed earth axis
system.

4.11. wite % in teras of y, xI and Ixz, given:

n

X ni (yi 2 + zj2)

n

I - mi (xi Yi)

n

ji-l

4.12. Mraw the three views of a symetric aircraft and explain why Ixy 0,

I - 0, and I= 0. *~tAt is the aircrafts plans of symautry2

4.13. Using the results frCm Problema 4.11 and 4.12, simeiLfy the o
equation.

4.0
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4.14. If G = dH/dt XYZ, use the following:

S= (PIx - RIxz)

HY QIY

H = (RIZ - P1 )

to derive Q~. G7, and~ G..

4.15. ihat is the difference between straight flight and steady straight

f light?

4.16. Make a chart that has 5 colutms and 6 rows. The oolumns should contain
the terms of the left hand side of the eqations of motion. Also, name
each equation. (Pitch, drag, etc.)

4.17. D,L .- f( , , , , )

Y , . f( n , f ,

4.18. WitA in terms of the stability paramters. Define L, ,,
Lq' Ne"

4.19. ,tpeat 4.18 above for the other 5 equations.

4.20. G n+ + ÷'mM + 6 +,oq

y4.7

%tare

1 dn 1 am.

m e
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Find: Cý u CM OICMvICM6 eandCý, q

if the carpensating factor f--r u is 1/U 0 , a and 6e'S compensating

factor is 1, and a and qs canpensating factor is c/2U0 .

4.21. Repeat Problem 4.20 for

(a)

(b) z

Note: m.he campensating factor for B, 6e, aa•d 6r is I. The

ooqpensating factor for i, p, r is b/2U0 .

Arb

4.2-. Given: P q - r W
2O 2000

(a) Shcu' that C Ca + Ca 6 + C a8 + Ct 0 + C rrSp r

(br) Shc.itha~t Z + Cii B+C + C^p C, r +
n on B Cn pý r

C 6 a C 6r

6 r

a r

6a C 6r

o 0( b ) h o w t h a •' nC n O. 
.



.... • ....-

CHAPTE.R 5

-DNGITIDINAL STATIC STABILITY
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5.1 DEFINITICN OF INGITUDINAL STATIC STABILITY

Static stability is the reaction of a body to a disturbance from

equilibrium. To determine the static stability of a body, the body mist be

init 311y disturbed fran its equilibrium state. If, when disturbed from

equilbriLum, the initial tendency of the body is to return to its original

equilibriun position, the body displays positive static stability or is
stable. If the initial tenency of t!he body is to remain in the disturbed

position, the body is said to be nejta!lJ stable. However, should the body,
when disturbed, initially tend to continue to displace from equilibrium, the

body has negative static stability or is unstable.

Longitudinal static stability or "gust stability" of an aircraft is
determincd in a similar manner. If an aircraft in equilibriumn is nuientarily

disturbed by a vertical gust, the resulting change in angle of attack causes

changes in lift oefficients an the aircraft (velocity is constant for this
time period). The changes in lift coefficients produce additional aerodynamic

forces and nmmerts in this disturbed position. If the aerodynamic forces and

moments created tend to return the aircraft to its original undisturbed
oondition, the aircraft possesses positive static stability or is stable.

Should the aircraft tend to remain in the disturbed position, it possesses

neutral stability. If the forces and mm-mnts tend to cause the aircraft to

diverge further fram equilibrium, the aircraft possesses negative longitudinal

static stability or is unstable. Pictorial examples of static stability as
related to the gust stability of an aircraft are shown in Figure 5.1.

FM30 FI 5. i . STIC STAE AS '0 TO GUST STABILITY OF AIRMAPT
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5.2 DEFNICNS

Aerodynamic center. The point of action of the lift and drag forces such that
the value of the moment created does not change with angle of attack.

Apparent stability. The value of dFs/dV about trim velocity. Also referred
to As "speed stability".

Aerodynamic balancing. Design or tailoring Ch and Ch to either in-
ýýe cct

crease or decrease hinge moments and floating tendency.

Center of Eressure. The point along the chord of an airfoil, or on an air-
craft itself, where the lift and drag forces act, and there is no
moment produced.

Dynamic elevator balancing. Designing Ch (the floating moment coefficient)
to be small or zero. Qt

Dynamic overbalancM. Designing Ch to be negative (tail to rear aircraft
only), -at

Elevator effectiveness. The change in tail angle of attack per degree or

change in elevator deflection. r- dot/d6e and equals -1.0 for the

all moving horizontal tail or "stabilizer".

Elevator power. A control derivative. CM - -aVHn.t

Hinge mamts. The um~ent about the hinge line of a control surface.

Longitudinal static. stab.iti for "gut" stability). The initial tendency of
an aircraft to return to trim Um disturbed in pitch. 'CL/• < 0

for the airplane to be statically stable. The airplane must also be able
to trim at a useful positive CL.

Static elevator balanmein. Balancing the elevator so that the C contribution
Mze to the iFe to the urface is zero.

stick-fixed nurlpoint. The cg locationwhmie cEý/WL 0 for the stick-
fixiad airplane.

Stick-fixed stability. he maitue of Cm/C •for the stick-fixed

Stick-fixed stati: maa. n. The distance, in percent MAC, betbem the og and
he -utral oint.

Stick forpo•e•raent. The value of dFfdVe about trim velocity. Also re-

femý%. to as "speed stability* and "apparent atabiiity%.
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Stick-free neutral point. The cg position where dCm/dCL = 0 for the stick-
free airplane.

Tail efficiency factor. = qt/qw, the ratio of tail dynamic pressure to
wing dynaic pressuree.

Tail vol1m coefficient. VH = 1tSt/CWw

5.3 MAJOR ASSUMPTICNS

1. Aerodynamic characteristics are linear (CL' dCm/dCL, Cm, etc.)
e

2. The aircraft is in steady, straight (B = 0O, * = 
0 ) ,

unaccelerated flight (j, p, r are all zero).

3. Power is at a constant setting.

4. Jet engine thrust does not change with velocity or angle of attack.

5. The lift curve slope of the tail is very nearly the same as the
slope of the normal force curve.

6. C =CL (dCm/dCL) is true for rigid aircraft at low Mach when

thrust effects are small.

7.. x . VH, ad nt do not va• •withCL.

8. Ct may be neglected since it is 1/10 the magnitude of Cw and 1/100

the magnitud3e of Nw.

9. Fighter-type aircraft and most low wing, large aircraft have or's
very close to the top of the mean aerodynamic chard.

10. Elevator effectiveness and elevator pmar are constant.

r 5.3
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5.4 ANALYSIS C' INGIaT!DINAL STATIC STABI=ITY

Longitudinal static stability is only a special case for the total
equations of motion of an aircraft. Of the six equations of motion,
longitudinal static stability is concerned with only one, the pitch ecuation,
describing the aircraft's motion about the y axis.

Gy = 0 - PR(Iz - Ix) + (P - R

The fact that theory pertains to an aircraft in straight, steady,
symmetrical flight with no unbalance of forces or moments permits longitudinal
static stability motion to be independent of the lateral and directional
equations of motion. This is not an oversimplification since most aircraft
spend much of the flight under symmwtric equilibrium conditions. Furthermore,
the disturbance required for determination and the measare of the aircraft's
response takes place about the axis or in the longitudinal plane. Under these
conditions, Equation 5.1 reduces to:

Gy=0

Since longitudinal static stability is concerned with resultant aircraft
pitching momnts caused by momentary changes in angle of attack and lift
coefficients, the primary stability derivatives becme CM orq•. The

value of either erivative is a direct indication of the longitudinal static
stability of the particular aircraft.

To determine an oqreson for the derivative CW , an aircraft in
stabilized equitlbrium flight with horizontal stabilizer con xol surface fied

will be analyzed. A momnt equation will be determizln from the forces and
moments acting on the aixraft. once this equation is rx innsionaized, in
moment coefficient form, the derivative with respect to • will be taken.

This differential equation will be an equvasion for c and will relate
-rL

directly to the aircraft's stability. individual teim contributions to
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stability will, in turn, be analyzed. A flight test relationship for
determining the stability of an aircraft will be developed followed by a
repeat of the entire analysis for an aircraft with a free control surface.

5.5 THE STICK FIXE STABIT E TICt

To derive the longituinal pitching moment equation, refer to the
aircraft in Figure 5.2. Witing the mment equation using the sign convention
of pitch-up being a positive moment

RELATIVE
WINDO i

HORIZON

FIG=• E 5.2. AMAr PITCOHING IONO

5.5
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Mc, Va+ w a + Mf -Ntlt + Ctht -
1 act (5.2)

If an order of magnitude check is made, same of the terms can be
logically eliminated beause of their relative size. Ct can be omitted since

Cw N
w0 w

H actis zero for a symmetrical airfoil horizontal stabilizer section.

Rewrititig the sinplified equation

+ Ma + f - t~t(5.3)

It is owenzment to cq"s Equation 5. 3 in ndimensona1 oefficient
form by dividing both sides of the equation by qwSwcw

- + C- M - + -f Nt't (5.4)
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Substituting the following coefficients in Equation 5.4

CM total pitching mment coefficient about the og

Mac
%" wing aerod~ynam~ic pitching x~mnt coefficient

CMf - f fuselage aerodyn•uiic pitching mcment coefficient

CN -wing aerodynamic normnal fomc coefficient

- ~tail aezudynwkic noral forc coefficient
Ct - -qs

CW
CC wing aerO4yniic crise force coefficient

aqmtion 5.4 may nm be written

'S1  Z Ntlt.

5.7
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were the subscript w is droped. (Further equations, unless subscripted,
will be with refaiwnce to the wing.) To have the tail indicated in terms of a
coefficient, nultiply and divide by qtSt

Nt~t , St- .s-

Substitutin tail efficiency factor nt - q/c and designating tail voltum
coefficiet V ltst/cS at 5.5 be ,es

CC M c M % Hn (5.6)

Cm0 NcCac ft

Equation 5.6 is referred to as the equilibrium equation in pitch. If the
M••itUdes of the individual terms in the above equation are adjusted to the
proe value, the aircraft may be placed in equilibrium flight wherem

Takn the drivative of Dration 5.6 with respect to CL and aswmi•

that Xw, Zw~ VH and ntdo notmarywith%,L

Equation 5.7 is the stability equation and is related to the stability deriva-
tive Cm by the slope of the lift cuxrw, a. Teoretically,
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46

rdCi ddCL aW'~ dC1m

-M = a , (5.8)

Equation 5.8 is only true for a rigid aircraft at low Mach when thrust

effects are small; however, this relationship does provide a useful index of

stability.
Equation 5.6 and Equation 5.7 determine the two criteria necessary for

longitudinal stability:

Criteria 1. 7*he aircraft is balanced.

Criteria 2. The aircraft is stable.

The first condition is satisfisd if the pitching moment equation can be

forced toCm • - 0 for useful positive values of CL.

This condition is achieved by trinming the aircraft (adjusting elevator
deflection) so that mnants about the center of gravity are zero (i.e.,

cg 0).
The sexnd condition is satisfied if Equation 5.*7 or dCm_/WL has a

negative value. From Figure 5.3, a negative value for Equation 5.7 is

necessay if the aircraft is to be stable. Should a gust cause an angle of

attack increase (and a corresponding increase in CL), a negative C% should

be produced to return the aircraft to equilibrium, or C" - 0. The greater

the slope or the negative value, the more restoring moment is generated for an

increase i CL. ¶te slope of dCm/dT is a direct measure of the "gust

stability* of the aircraft. (In further stability equations, the c.g.

Abcript will be dropped for ease of notation).
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SAIRPLANE IN TRIM

NOSE AT A USEFUL CL
UP

- CL

NOSE 
pas

DOWN STABLE

MOIRE
-Cm" STABLE

FIGWE 5.3. STATIC STABILITY

If the aircraft is retrimnd from one angle of attack to another, the

basic staility of the aircraft or slope dCm/CL does not change. Note

Figure 5.4.
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- CL

6...+-

-c 6<,-O-°

P1UJR 5.4. ST•-IC STABIL1 WITH TRIM CKW

Hkowever, if ning the• • is chnMgi the values of XW or Z,, or if vis

changed, the slope or stability of the aircraft is changed. See Ekuation 5.7.

For no change in trim setting, the stability curve muy shifi as in Figure 5.5.
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F0ORWAR-0cg 
M

MWU~ 5.5. SrATIC STA&LiTY( Qamkm wiTHOG CRAM#

5.6 AIRCAFT amm cca mimS 7 THE sTABILmT• EwATX(

5.6.1 The Wing QOntribution to Stability
The lift and drag are by definition always perpendicular and parallel to

the relative wind. It is therefrre inconvenient to u.se tiese fmve to dotain

moments, for their arm to the center of gravity vary with anqle of attack.

Fbc this reason, all fnrces are resolved into normal and chortVis,- foros

uho axes reaijn fixum with the aircraft ard whose a=n am tharefore

Conta5t.
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LzI RESULTANT
AERODYNAMIC
FORCE

x

RELATIVE
WIND

F ~~~FIGURE 5.6. W=N CCUI'PBUI'C# 'iO STh&TIZT

Assmwing the wing lift to be the aMrplasw lift and the wing's angle of

attack to be the airplane's angle of attack, the followin relatio•ship exists

between the normal and lift forces (rigure 5.6)

N Lcosa+Dsino (5.9)

C s Dicose-Lsina (5.10)

Tberefore, the txefficients are si•i•arly related

*CLcosa+%sina (.1

% %08ua in a (5.12)

TMe Aabily ccmtranuticms, aix are obtaiiw
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(5.13)

-d% dCL d dCD da
, •cosa-CL sinf a + • sinc - CD dCOS

(5.14)
dec c dC,

C I) - dc dci cccCo a --oc CD , sinc a sincat L Co

Making an additional as suqtion that

%2
CD = CDP + T A e and that D is on•stant with changes JnCL

dCL CARe

If the angles of attack are small such that cos a a 1.0 and sinci a r ,

Equations 5.13 and 5.14 beomxE

dCN + ( 2 d) do (5.15)
lC~a(ir WAR e +C

dCC 2 - dci dc (5.16)
TýWRe CL -CD 37c' - CL 3

Ebtamining the above equation tor relative magnitude,

C is on the order of 0.02 to 0.30

5
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.4,
CL usually ranges frau 0.2 to 2.0

is small, S 0.2 radians

da is nearly constant at 0.2 radians

2 is on the order of 0.1
1r AR e

Making these substitutions, ruations 5.15 and 5.16 have magnitudes of

dCN 
(.7S= I - 0.04 + 0.06 =.02 1.0 (5.171

(5.18)

CC o 1CL- 0.o12 - 0.2 - CL -0.41

(atci 2.0)

The mutant coefficient abcut the aerodynamic center is invariant with respect

to angle of attack (see definition of aerodynxndc center). Therefore

dC
mac 0

Rewriting the wing contribution of the Stability Equation, Equation 5.7,

dCmý\ XW Zw
-YX 0.41 a 2 (5.19)
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Fran Figure 5.6 when a increases, the normal force increases and the

chordwise force decreases. Equation 5.19 shows the relative magnitude of

these changes. The position of the cg above or below the aercdynanic center

(ac) has a mich smaller effect on stability than does the position of the cg
ahead of or behind the ac. With cg ahead of the ac, the normal force is
stabilizing. Fran Equation 5.19, the more forward the cg location, the more
stable the aircraft. With the cg below the ac, the chorcwise force is

stabilizing since this force decreases as the angle of attack increases. The
further the cg is located below the ac, the more stable the aircraft or the

more negative the value of dCTm/L. Ihe wing contribution to stability

depends on the cg and the ac relationship shown in Figure 5.7.

DESTABILIZING

L

STABIUZING ao DESTABILIZING

MOST STABLE STABILIZING

FIGURE 5.7. CG EFECT ON WI=3 CMMTMIN TO STABILITM
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For a stable wing contribution to stability, the aircraft would be designed

with a high wing aft of the center of gravity.

Fighter type aircraft and most low wing, large aircraft have cg's very

close to the top of the mean aerodynamic chord. Zw/c is on the order of 0.03.

For these aircraft the chordwise force contribution to stability can be

neglected. The wing contribution then becomes

d~m YV(5.20)
dr-L c

WMN

5.6.2 The Fuselage (bntribution to Stability
The fuselage contribution is difficult to separate from the wing terms

because it is strongly influenced by interference from the wing flow field.

Wind tunnel tests of the wing-body carbination are used by airplane designers

to obtain information about the fuselage influence on stability.

A fuselage by itself is almost always destabilizing because the center of

pressure is usually ahead of the center of gr.wity. The magnitude of the

destabilization effects of the fuselage requires their consideration in the

equilibrium and stability euations. In general, the effect of combining the

wing and fuselage results in the cofmbination aero4d c center being forward

of quarter-cbord and the Cm of the combination being more negative than the

wing value alone. Ca

d - Positive quantity

5.6.3 Th Tail Contribution to Stailit
From equation 5.7, the tail contribution to stability was found to be

SI5.
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d C m d C N 't V T

Em TAIL dCL H t

For small angles of attack, the lift curve slope of the tail is very nearly

the same as the slope of the normal force curve.

at dc %dCN (5.22)

7hrefore

C = atet (5.23)

An expression for a in terms of CL is required before solving for dt/adCL

..FI•1E 5.8. TAIL ANGLE OF ATrAOC
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From Figure 5.8

a = aw " + it -(5.24)

Substituting Equation 5.24 into 5.23 and taking the derivative with respect to
CL, were = -/da

S= a d - .= at ( -1 d) (5.25)

upon factoring out 1/aw

"t at dc

Substituting Equation 5.26 into 5.21, the expression for the tail contribution

S a. i c ) VH t (5.27

TAIL

Te value of at/aw is very nearly constant. These values are usually obtained

fram experi1vntal data.
The tail volume coefficient, V., is a term deternniz by the gecstry of

"the aircraft. To vary this term is to redesign the aircraft.

V t (5.28)V H c--

Th furthar the tail is located aft of the eg (inarease 1 or the greater the
tail surface area (St), the greater the tail volume coefficient (V), which
Increases the tail ctribution to stability.
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SThe expression, Tt, is the ratio of the tail dynamic pr-isure to the wing

dynamic pressure and nt varies with the location of the tail with respect to
wing wake, prop slipstream, etc. For power-off consideratiLns, nt varies frou

0.65 to 0.95 due to boundary layer losses.
The term (1 - de/da) is an important factor in the stability contribution

of the tail. Large positive values of de/da produce destabilizing effects by
reversing the sign of the term (1 - de/da) and consequently, the sign of

For example, at high angles of attack the F-104 experiences a sudden
increase in dc/da. The term (1 - dc/da) goes negative caus:'ng the entire tail
contribution to be positive or destabilizing, resulting in aircraft pitchup.
The stability of an aircraft is definitely inf 1 enced by the wing vortex
system. For this reason, the dowash variation with angle of attack should

be evaluated in the wind tunnel.

The horizontal stabilizer provides thL necesstry positive stability
contribution (negative dCm/d.L) to offset the negative stability o. the wing-
fuselage c tmbination and to make the entire aircraft stable and balanced

(Fiqure 5.9).
+

WING ANDFUSLAGE

WING

TOTAL

TAIL

FlGWM 5.9. AD1CRO 'PNEn CONTRIBUTERS TO STAalITy
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A.

Ite stability may be written as,

+ H" (5.29)

5.6.4 The Power Qontribution to Stability

The a~dition of a powr plant to the aircraft may have a decided effect
on the equilibrium as weln as the stability eqwaticns. The overall effect may
be quite complicated. This section will be a qualitative discussion of power
effects. The actual end result of the power effects on trim and stability
should cme from large scale wind tunnel models or actual flight tests.
5.6.4.1 Powr Effects of Propeller Driven Aircraft - The power effects of a
proeller driven aircraft Wich influence the static longitudinal stability of
the aircraft are:

1. ThruSt effect - effect on stability fron the theust acting along
the propeller axis,

2. Normal force effect - effect an stability fram a force normal to the
thrst line and in the plane of the propeller.

3. Indirect effects - power plant effects on the stability contribution
of other parts of the aircraft.

?1'

FIGURE 5.10. P 5.21X T AN WOM F
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PP
Writing the nlmmnt equation for the power terms as

(:-,
Mc =T T+NXT (5.30)

In coefficient form

ZT XT

Cm 9 CTT-+CC~p (5.31)

The direct power effect on the aircraft's stability equation is then

d C .) . d T Z" + d XT(5 .3 2 )

The sign of d % then depends on the sign of the derivatives

First consider the drT/dCL derivative. If the speed varies at different
flight conditions with throttle position held constant, then CT varies in a
manner that can be represented by dCT/dCL. The coefficient of thrust for a
reciprocating power plant varies with CL and propeller efficiency. Propeller
efficiency, which is available fran propeller perfonane estimates in the
manufacturer's data, decreases rapidly at high CL. V32efficient of thrust

variation with CL is nonlinear (it varies with cE ) with the derivative
large at lcw %peeds. The Qxibination of these two' variations approximately

lix~r~ C,, versus CL~ (Figure 5.11). The sign of XrdLis positive.
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CT

.. . CL

FIGURE 5. 11. CO(=ICIENT OF THRUST CURVE FOR A

RECIPROCATING POWER PLANT WITH PROPELLER

The derivative dCN/dCL is positive since the normal propeller force

increases linearly with the local angle of attack of the propeller axis, aT.

The direct power effects are then destabilizing if the cg is as shown in

Figure 5.10 where the power plant is ahead and below the cg. The indirect
power effects must also be considered in evaluating the overall stability

contribution of the propeller power plant. No attempt will be made to
determine their quantitative magnitudes. However, their general influence on

the aircraft's stability and trim condition can be great.

5.6.4.1.1 Increase in angle of downwash, e. Since the normal force on
the propeller increases with angle of attack under powered flight, the

slipstream is deflected downward, netting an increase in downwash on the tail.
The dowTnsh in the slipstream will increase more rapidly with the angle of
attack than the dnwmash outside the slipstream. The derivative dc/da has a
positive increase with power. The term (1 - dc/da) in Equation 5.27 is
reduced causing the tail trim contribution to be less negative or less stable

than the powr-off situation.

5.6.4.1.2 DIcrease of n (qt/V) The dynamic pressure, q, of the

tail is increased by the sli93tieam and nt is greater than unity. Prom
equation 5.27, the increase of nt with an application of pr increases the
tail oontribution to stability.

Both slipstream effects mentioned above may be reduced by locating the
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horizontal stabilizer high on the tail and out of the slipstream at operating

angles of attack.

5.6.4.2 Power effects of the turbojet/turbofan/ramjet. The magnitude

of the power effects on jet powered aircraft are generally smaller than on

propeller driven aircraft. By assminig that jet engine thrust does not change

with velocity or angle of attack, and by assuming constant power settings,
smaller power effects would be expected than with a similar reciprocating

engine aircraft.

There are three major contributions of a jet engine to the equilibrium
static longitudinal stability of the aircraft. These are:

1. Direct thrust effects.

2. Normal force effects at the air duct inlet and at angular changes in
the duct.

3. Indirect effects of induced flow at the tail.

The thrust and normal force contribution may be determined from Figure 5.12.

FIGURE 5.12. JET TMM AND NCMAL FORM .'
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Writing the equation

Mcg = TZT +NT T(.3

or

C T ( 5.34)M 9 SCEjEZT + CNC

With the aircraft in unaccelerated flight, the dynamic pressure is a function
of lift coefficient.

W

C =-(5.35)

Therefore,

T TXT (5,36)

If thrust is considered inpnet of speed, then

TTM + dCT XT (5.37)

The thrust contribution to stability then depends on whether the thrust line
is above or below the og. Locating the engine below the cg causes a
destabilizing influence.

The normal force contribution depends on the sign of the deriv' i..
W1/ dC. The normal force NT is created at the air duct inle* e tQ'.he

tuzbojet engine. ibis force is created an a result of the mmentum .,h&,je of
*-the free strewn which bends to flow along the duct axis. The magnitude o. the
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force is a function of the engine's airflow rate, Wa, and the angle aT between

the local flow at the duct entrance and the duct axis.

W
NT a (5.381

9U CT

With an increase in CIT, N will increase, causing &?.L/dCL to be positive.
The normal force contribution will be destabilizing if the inlet duct is ahead

of the center of gravity. The .gnitude of the destabilizing muimnt will

depend on the distance the inlet duct is ahead of the center of gravity.

Fbr a jet engine to definitely contribute to positive longitudinal

stability (dCm/dCL negative), the jet engine would be located above and behind

the center of gravity.

The indirect contribution of the jet unit to longitudinal stability is
the effect of the jet induoed dwnash at the horizontal tail. This applies

to the situation where the jet exhaust passes under or over the horizontal
tail surface. 7he jet exhaust as it discharges from the tailpipe spreads

outward. Thrbulent mixing causes outer air to be drawn in towards the exhaust
area. Downwash at the tail may be affected. The F-4 is a good example where

entrained air frcrt the jet exhaust causes dwwash angle at the horizontal

tail.

5.6.4.3 Power Efffacts of Rocket Aircraft. Pocet powered aircraft such as

the Space Shuttle, and rocket au-pented aircraft such as the C-130 with JATO

installed, can be significantly affected longitudinally diending on the

magnitude of the rocket thrust involved. Since the rowket system carries its

oxidizer internally, there is no mass flow and no nomal force contribution.

The thrust contribution may be determined Umo Figure 5.13.

52
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FIGURE 5.13. R = TH¶LU T TS

Writing the eqation

P4 - T (5.39)

Asdm that the rocket thrust is constant with changes in aire, the

dyraidc pressre is a function of lift coefficient.

W TRz eo%

and

d , T ---- (5.40)

Frcm the above discussion, it can be Ween that several factors are

1np:taimt in deciding the por effect on stability. Each aircraft mmst be
examined individually. Uds is the reason ta~t aircraft are teted for
s tability in several fouatic•.s and at different powr settings.
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5.7 THE NEUTRAL POINT

The stick fixed neutral point is defined as the center of gravity

position at which the aircraft displays neutral stability or where

dCm/dCL =

The symbol h is used for the center of gravity position where

x
h = cg (5.41)

The stability equation for the powerless aircraft is

dCe X dCm at de
Kc +dc a H t ) (5.29)

Looking at the relationship between cg and ac !n Figure 5.14

N

41SC

FIGURE 5.14. CG AND Ar RELATIONSHIP

-- h- ___ (5.42)c C
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Substituting Equation 5.12 into Equation 5.29,

dC X dC at C)
hm _ ac +.m d3

If we set =dCL 0, then h a hn and Equation 5.43 gives

Xac dm at de
h = ac - _s ÷gVH•o• 1 - ) (5.44)

This is the cg location where the aircraft exhibits neutral static stability.

the neutral point.

Substituting Equation 5.44 back into Equation 5.43, the stick-fixed sta-

bility derivative in tenrs of cg position beccwes

dC
dm wh-h (5.45)

The stick-fixed static stability is equal to the distance between the cg

position and the neutral point in percent of the mean aerodynamic chord.

"Static Margin" refers to the uame distance, but is positive in sign for

a stable aircraft.

Static Margin - hn - h (5.46)

It is the test pilot's responsibility to evaluate the aircraft's handling

qu•tlities and to detennine the acceptable static margin for the aircraft.

5.8 ELA'IOI POM0

For an aircraft to be a usable flying machIne, it must be stable and
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balanced thorughout the useful CL range. For trimnmed, or equilibrium flight,
Ccg must be zero. Some means must be available for balancing. the various

ncg
terms in Equation 5.47

x Z
w + - (at at VH nt) (5.47)Cm - 0c cma+Cmf

(Equation 5.47 is obtained by substituting Equation 5.23 into Equation 5.6.)

Several possibilities are available. The center of gravity could be

moved fore and aft, or up and down, thus changing xw/c or Zw/c. However, this

would not only affect the equilibrium lift coefficient, but would also change

dCm/dCL in Equation 5.48. This is undesirable.

dCm dCC XW _ Zw dCm a I V d (5.48)

Equation 5.48 is obtained by substituting Equation 5.26 into Equation

5.7. The pitching moment -.oefficient about the aerodynamic center could be

changed by effectively changing the camber of the wing by using trailing edge

flaps as is done in flying wing vehicles. On the corventional tail-to-the

rear aircraft, trailing edge wing flaps are ineffective in trimring the

pitching moment coefficient to zero. The combined use of trailing edge flaps

and trim from the tail may serve to reduce drag, as used on some sailplanes

and the F-ME.
The reTaining solutien is to change the angle of attack of the horizontal

tail to achieve a - without a change to the basic aircraft
stability. /
7he control means is either an elevator on the stabilizer or an all moving

stabilizer (slab or stabilator). The slab is used on most high speed aircraft

and is the mxt powerful means of longitudinal control.

5.30
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Movement of the slab or elevator changes the effective angle of attack of
the horizontal stabilizer and, consequently, the lift on the horizontal tail.
Thtus in turn changes the nmoent about the center of gravity due to the
horizontal tail.. It is of interest to know the amumnt of pitching monent
change associated with an increment of elevator deflection. This may be
determined by differentiating Equation 5.47 with respect to 6e

dzt

Ur -atV. Ht ar(,9e e

CM e -at 'H nt T(5.50)

e

This change in pitching nmnent coefficient with respect to elevator deflection
Cm is refeiTed to as "elevator power". It indicates the capability of the

e

elevator to produce nments about the center of gravity. The term dclt/dIe in
Equation 5.49 is termed "elevator effectiveness" and is given the shorthand
notation 'r. The elevator effectiveness may be considered as the equivalent

change in effective tail plane angle of attack per unit change in elevator
"deflection. The relationship betwen elevator effectiveness - and the
effective angle of attack, of the stabilizer is seen in Figure 5.15.

53
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ctt - ANGLE ATTACKAb
OF TAIL

FIGURE 5.15. CHANGE WITH EFFECTIVE ANGE OF A'I'A(
WITH ELEVATOR DE"ZCION

Elevator effectiveness is a design parameter and is determined from wind
tunnel tests. Elevator effectivemess is a negative number for all tail-to-
the-rear aircraft. The values range from zero to the limiting case of the all
mving stabilizer tslab) where r equals -1. The tail angle of attack would
change plus one degree for every minus degree the slab moves. For the
elevator-stabilizer ccablnation, the elevator effectiveness is a function of
the rftio of overall elevator area to the entire horizontal tail area.

5. 9 ALTENATE CCNFrRALTICNS

Alth•• tail-to-the-rear is the cmnfiguration normally perceived as
standard, two other configurations merit qom discussion. The tailless
aircraft, or flying wing, has been used in the past, and same modern designs
crtesplate the use of this cmncept. The cinard cmnfiguration has become
increasingly mare popular in modern designs over the past several years as
evidenced by aircraft like the B-IB and the X-29.

5.9.1 .[.:A RM

In order for a flying win; to be a usable aircraft, it mist be balanced
(fly in euilibriLum at a useful positive CL) and be stable. The problem may

be anlye as followt.
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CC

FIGURE 5.16. AFT CG FLYING WING

For the wing in Figure 5.16, assumMi that the cdrcbise force acts
through the cg, the eviulibriza in pitch may be writte.n

Ng "a- c (5.51)

or in coefficient form

CMCH--~ (5.52)
Cac

For ontrols fied, the stability equation beomes

T..

49 - - _ (5.53)
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Bquations 5.52 and 5.53 sho that the wing in Figure 5.16 is balanced and

unstable. To make the wing stable, or &m/dW negative, the center of gravity

must be ahead of the wing aerodynamic center. Making this cg change, however,

now changes the signs in Equation 5.51. The equilibrium and stability

equations become

Cm (5.54)
MC9 'ac

dC
r -- - ý -c- (5.55)

Tte wing is now stable but unbalanced. The balane condition is possible

with a positive %ac

three methods of obtaining a positive Cac are:

1. Use a negative camber airfoil section. The positive Cac will give

a flying wing that is stable and balanced (Figure 5.17).

4 FIGURE 5.17. NWA= C FLYING W•IG
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Ihis type of wing is not realistic because of unsatisfactory
dynamic characteristics, small cg range, and extremly low CL
capability.

2. A reflexed airfoil section reduces the effect of camber by creating
a download near the trailing edge. Similar results are possible
with an upward deflected flap on a symmetrical airfoil.

3. A symmetrical airfoil section in combination with sweep and wingtip
washout (reduction in angle of incidence at the tip) will produce a
positive Cm by virtue of the aerodynamic cuple produced between

ac
the dbwnloaded tips and the normal lifting force. This is shown in
Figure 5.18.
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5.9.2 The Canard Configuration
Serious work on aircraft with the canard configuration has been sporadic

fran the time the Wright brothers' design evolved into the tail to the rear

airplanes of World War I, until the early 1970's. One of the first successful

canard airplanes in quantity production was the Swed.sh JA-37 "Viggen"

fighter. Other projects of significance were the XB-70, the Mirage Milan, the

TU-144, and the prolific designs of Burt Rutan (Vari-Viggen, Vari-Eze and

Long-Eze, Defiant, Grizzly, and Solitaire). The future seens to indicate that

we will see more of the canard configuration, as evidenced by the X-29 Forward

Swept Wing project and the OMAC airplane. A test pilot, knowing what the

future may hold, should have more than a passing interest in how a canard

affects longitudinal stability.

There are many reasons for a designer to select the canard configuration.

A few of them are listed below:

a. Both the wing and canard surface contribute to the production of
lift.

b. Since the og is between the centers of pressure of the wing and
canard, a larger cg range is possible. (The canard and conventional
aircraft are shuwn balanced in Figure 5.20.)

c. The aircraft structure may be built more efficiently and simpler
control arrangements are possible.

d. Better pitch control is available at high angle of attack because
the canard is not in the wake of the wing, and the stall
characteristics may be made benign by having the canard lose lift
before the wing stalls.

e. The stick-free canard (reversible control system) provides load
alleviation in gusts.
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5,9.2.1 The Bal~ance Equation. PFrom Figure 5.20 the balance equation can be

S~written as follows:

% " " w+ ÷ ,, "ci%,÷ •f÷tlt + Ctht "" (5.56)

-thtar are small azd may be nelected

k-e

C h.t

FIUR 5.20.~' BALNC 001PARISON



Combining merms:

XZ [BALANCE (5.58)
w w JAIiN

CM C9 CN -6-+C cc. mac +m.f +CNt VH n.

5.9.2.2 The Stability Equation. Although the canard can be a balanced

configuration, it remains to be seen if it demonstrates static stability or
"gust stability". By taking the derivative with respect to CL, Euation 5.58

becows

S%•-CdXW Zw~ dCmf•N

dc~- + tC Vw drc STd dNtABIITI'Y (5.59)

7cgý dCý-c + rL c N +-W H t

Th sall angle assuption allows us to say that CN equals CL, and by saying

thJit the cg is close to the wing chord vertically. Equations 5.58 and 5.59
reduce to

CCL C" + C- +%t (5.60)
f t

dCw X .~ dCL

W W (5.61)

Equation 5.59 indicates that the normal (or lift) force of the wing now has a

stabiliing inwiwee (negative in sign), ian the canard term is destabilizing

due to its positive sign It is obviously a risnomor to call the canard a

horizmtal stab~ilzer, because in reality it is a "dŽstabilizer'! The degree

of wistability unot be overcre by the wnq-fuse]age abination in ordor for

the airpl,•n to exhibit positive static stability Cm/L (rgtive in

s This is g m graodcal5y in Figure 5.21.
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FIGURE 5,21. CANPI MYWIS ONi dCm/dCL

5.9.2.3 Upnsh Contribution to Stabilijt. In a rrxtnr similar to the way a

rear mouted horizontal tail ezpeiences a dwwash field frcm the wake of the

wing, the canard will see upa•h ahead of the wing. This upwah field has a

destabilizLn effect or icngitixinal stability bwause it makes the tail term

in the stability equation rre pcsitive.

The tail atriknticm frca Eintin 5.61 can be ewAinsl for the effects

of upash, E'

U -* t d tatC )d

The tail angle of attack, 2t, can be wpresed in terms of incidunc and

up••h, as described in Figure 5.22.
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FIGURE 5.22. CANARD A14GLE OF ATIACK

at- it - = a w- W (5.62)t w
Therefore

at ` =w - w + it + C' (5.63)

The tail contribution now becomes

Sd(a w it + 0)

atVHnt + d )

atVHnt ( dc' 1

5 
,4
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'Therefore,

dL VdIt atI + del 
(5.64)

It is extremly inportant to note that the "upwash and downwash

interaction between the canard and the wing are critical to the success of the

design The wing will see a downwash field from the canard over a portion of
the leading edge. Aerodynamic tailoring and careful selection of the airfoil
is required for the airplane to meet its design objectives at all canard

deflections and flap settings on the wing. Designs which tend to be

tandem.wing become even more sensitive to upwsh and downwash.

5.10 STABILITY CURVES

Figure 5.23 is a wind tunnel plot of C versus CL for an aircraft tested

under tw cg positions and two elevator positions.

Assuming the elevator effectiveness and the elevator power to be

constant, equal elevator deflections will produce equal mroents about the cg.
Pints A and -B represent the same elevator deflection correspondinq to the

xnedW to maintain equilibrium. For an elevator deflection of Ie, in the

aft cq oydlition, the aircraft will fly in equilibrium or trun at point

S. If the og is moved forxArd with no change to the elevator deflection the
quiliriium is now at A and at a naw CL. Note the increase in the stability
of the aircraft (greater negative sloe of dcmI4CL).

ýbr eiidubritm at a lower Cý or at A withcAt cawq~ngi the og, the
elevator is dafltcted to 5 T. e stability level of the aircraft tas not

cha:ged (Sae slope)..

A crms plot of Figure 5.23 is elevator deflection versus for C 0.
This is 4howi in Piqure 5.24. The sloqes of the g" curves are indicative of

the aircraft's stability.
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5.11 FLIGHT TEST MRM ICNSHIP

1he stability equation previously derived cannot be directly used in
flight testing. 1are ts no aircraft instrumentation ihich will measure the

change in pitchiMn nonent cod ficient with change in lift coefficient or angle

of attack. Therefore, an expression involving parametors easily measurable in
flight is required. This expression should relate directly to the stick-fixed

Lmngitina1 static stability, dCm/•ZL, of the aircraft.
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Ibe external moment acting longititinally on an aircraft is

Asstmiing that the aircraft is in equilibrium and in -x~aceelerated flight,

then

? - f (a, 6e) 1.5

Tt¶erefore, using a Taylor series expansion,

ý.Y& .Ao + .• .Ai 6 0.66)

e

and

Cm + CM M e 0 (5.67)
6e

Ma 4e e e

6
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The elevator deflection required to maintain equilibrium is,

Cam

6 e -C (5.68)

e C

Taking the derivative of 6 e with respect to CL,

dCda dCm

e6 _ a C = (5.69)

SCM e CM e

In terms of the static margin, the flight test relationship is,

d6e hn -h = static mnarine n -C m ( l a p 5 .7 0 ) ;
ý C m e~evato powJer

e

The amuDnt of elevator required to fly at equilibriun varies directly as the
amount of static stick-fixed stability and inversely as the amount of elevator
puifr.

5.12 LDUTNICN TO) DEGREE OF STABItJM1

The degree of stability tolerable in an aircraft is determined by the
physical limits of the longitudinal control. The elevator power and amount of

elevator deflection is fixed once the aircraft has been designed. If the

relationship between 6e required to maintain the aL.craft in equilibrium

flight and CL is linear, then the elevator deflection required to eadch any CL

.- ,,,

"d86
6e e ro (5.71

Lift
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The elevator stop deternines the absolute limit of the elevator

deflection available. Similarly, the elevator nust be capable of bringing the
airplane into equilibrium at % .

%ecalling Equation 5.69

dC -
S= . e (5.69)

Substituting Equation 5.09 into 5.71 and solving for dCm/dCL(M.)corre-

4 to

Zer.o e

dCm Lift Limit
fir a CM6( (5.72)

Given a maximum CL required for landing approach, Equation 5.72 represents the

maximan stability possible, or defines the most forward og position. A og

forward of this point prevents obtaining maxium C with limit elevator.
4 If a pilot were to maintain CZmax for the aproach, the value of /mldCL

corresponding to this C would be satisfactory. However, the pilot usually

desires additional C to cmpensate for gusts and to flare the aircraft.
Additional elevator deflection is thus required. This requirment then

dictates a dcmIdIVless than the value required for Caxonly.

in addition to marneavring the aircraft in the landing flare, the pilot

awt adjust for ground effict. The ground Inpose a boundary condition which
affects the dowrwash associated with the lifting action of the wing. This
ground inter •zenoe places the horizontal stabilizer at a reduced negative
angle of attack. 7he eq ur condition at the desired CL is disturbed.
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To maintain the desired CL, the pilot must increase 6e to obtain the original

tail angle of attack. The maximu= stability dCm/dCL must be further reduced

to obtain additional 6 to counteract the reduction in dewnwash.e
The three conditions that limit the amount of static longitudinal

stability or most forward cg position for landing are:

1. The ability to land at high C in ground effect.

2. The ability to maneuver at landing CL (flare capability).

3. 91e total elevator deflection available.

Figure 5.25 illustrates the limitation in dm/

+ 1 -6*LIuVT - -

LIMIT

/ ,6e FOR GROUND EFFECT

6,, O - !-

46FOR MANEUVERING ATC
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5. 13 STICK-FRE STABILITY

The name stick-free stability cares frao the era of reversible control

systems and is that variation related to the longitudinal stability which an
aircraft could possess if the longitudinal control surface were left free to
float in the slipstream. The control force variation with a change in
airspeed is a flight test measure of this stability.

If an airplane had an elevator that would float in the slipstream when
the controls were free, then the change in the pressure pattern on the
stabilizer would cause a change in the stability level of the airplane. The
change in the tail contribution would be a function of the floating
characteristics of the elevator. Stick-free stability depends on the elevator
hinge nmoents caused by aerodynamic forces which affect the total moment on

the elevator.
An airplane with an irreversible control system has very little tendency

for its elevator to float. Yet the control forces presented to the pilot

during flight, even though artificially produced, apear to be the effects of
having a free elevator. If the control feel system can be altered
artificially, then the pilot will see only good handling qualities and be able
to fly what would normally be an umsatisfactory flying machine.

Stick-free stability can be analyzed by considering the effect of freeing
the elevator of a tail-to-the-rear aircraft with a reversible control system.
In this case, the feel of stick-free stability would be indicated by the stick
forces required to maintain the airplane in equilibrium at sums speed other
than trim.

The change in stability due to freeing the elevator is a function of the
floating characteristics of the elevator. The floating characteristics depend
upon the elevator hinge moments. These mments are ceated by the change in
pressure distribution over the elevator associated with changes in elevator
deflection and tail angle of attack.

The following analysis looks at the effect that pressure distribution has
on the elevator hinge matents, the floating characteristics of the elevator,

and the effects of freeing the elevator.

Previously, an expression was developed to measure the longitudinal
static stability using elevator surface deflection, 6e. T expression
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represented a controls locked or stick-fixed flight test relationship where

the aircraft was stabilized at various lift ccefficients and the elevator

deflections were then measured at these equilibriun values of C. The
stick-free flight test relationship will be developed in terms of stick force,

s, the most important longitudinal control parameter sensed by the pilot. In
a reversible control system, the motion of the cockpit longitudinal control
creates elevator control surface deflections which in turn create aerodynamic
hinge moments, felt by the pilot as control forces. There is a direct
feedback from the control surfaces to the cockpit control. The following
analysis assumes a simple reversible flight control system as shown in Figure

5.26.

POSITIVE STICK SIGN CONVENTION
DEFLECTION NOSE-UP MOMENT
(AFT)

(PULL) POISMVE ELEVATOR

ELCTION (Tu)

0 -

SELLCRANK

FIGME 5.26. TAfL--THE-RFAR AICPMT WTH A
REVESIBLE C SYTM

A disc'wsion of hinge moments and their effect on the pitching Mawnt and
stability equations nust necessarily preoede analyss of the stick-free flight
test relationship.
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5.13.1 Aerodynamic Hinge MOment
An aerodynamic hinge umamnt is a nmuient generated about the ccntrol

surface as a consequence of strface deflection and angle of attack. Figure

5.27 depicts the monent at the elevator hinge due to tail angle of attack (Se
= 0). Note the direction that the hinge moment would tend to rotate the

elevator if the stick wre released.

~HINGE
NUNE

RWt

FIM 5.27. IWE H OD M I)UE VTO AIL ANE1= Cr ATTM(

If the elevator wfitrol wre released in this case, the hinge moment, H e wold

cause the elevator to rotate trailing edge up (CM). Since the elevator TEU

*as previowsly detenuined to be positive, a positive hinge muomnt is that

4dich, if the elevator control were released wiad cause the elevator to
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deflect TEUJ. The general hinge nxient equation may be expressed as

He t %Se Ce (5.73)

Where Se is elevator surface area aft of the hinge line and ce is the root

mean square chord of the elevator aft of the hinge line. 1he hinge mnmernts

due to elevator deflection, 6e' and tail angle of attack, at, will be analyzed

separately and each expressed in coefficient form.

5.13.2 Hinge Mment Due to Elevator Deflection

Figure 5.28 depicts the pressure distribution due to elevator deflection.

This condition assms at = 0. The elevator is then deflected, 6e" The

resultant force aft of the hinge line produces a hinge miruxnt, H , which is

due to elemtor deflection.

HINGE
LINE %

RWI

at0

FIGURE 5.28. HInM mi DO iTo EL wA'IX DtjvýccN

Giken the sign Convention specified earlier, Figlre 5.28 depicts the

relationship oZ hinge MoMent coefficient to elevator defletion, where
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J00,
TED) - (TEU)

FIGUW 5.2•9. MN= MOM COW ri.CIFT DUE TO E DnlJCrN

vm•t hip mmant curves are nonlinear at the axtromes of elevator deflection

or tail angle of attack. The bmxldaries shown on Figure 5.29 signify that

only the linear portion of the curvas is considered. The usefulness of this

assumption will be apparent when the effect of elevator deflaction ad tail
angle of attack are combined.

The slope of the curve in Figure 5.29 iU t, * hinge uunt
S~e

derivative de to ele-ator deflection. It is negative in siga and cvi onzt in

the .near regio. The ter is generally called the -retorim-

5.13,3 ixe tmue to Tail hMle of Attack

Figure .. •0 depicts the premm distributi.o dw to tail atvle of

attacA. This condition asMSa~ 4 0. The tail is PIlamd at Go* aNgl of~
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attack. As in the previous case, the lift distribution produces a resultant

force aft of the hinge line, which in turn generates a hinge moment. The

term, Ch , is generally referred to as the "floating" manent coefficient.

t

S/ I ! •. /INE

Rwt

MU .30. HBM1 M"MI DUE To TAIL AW"L OF A~1'1AC(

Figure 5.31 capits the re lationship of hinge mavnt coefficient to tail argle

of attack, where

Re
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5.13.4 CmsbbA Effects of inM !Le ~nu

Given the pr icus amiwi of linearity, tie total aerodyw~idc ldrqe

mment xmefficient for a given elavator deflection~ waz tail angle of attack

may be expressed1 as

S 6e +C at (5.74)
5 t



Figure 5.32 is a graphical depiction of the above relationship, assuming a

sywrtetrical tail so that 0.

"Ch
1 -10

,/ is-5

0, 0
J-4 -// s+5

4- 4-1// /0+10

1,' /i .00•//* //00 .01 ,4

/,

FIGURE 5.32. COMBINED HINGE MOKME COEFFICIENTS

The "e" and "t." subscripts on the restoring and floating hinge moment

coefficients are often dropped in the literature. For the remainder of this

chapter:

Restoring Coefficient

aCh (5.75)
a6 Ch 6 h

5I.5
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I
Floating Coefficient

S= Cn C (5.76)
ata at C

B~amining a floating elevator, it is seen that the total hinge moment

coefficient is a function of elevator deflection, tail. angle of attack, and

mass distribution.

He = f(4e' at, W) (5.77)

If the elevator is held at zero elevator deflection and zero angle of attack,

there may be sane residual aerodynamic hinge moment, Ch0 If W is the

weight of the elevatcr and x is the moment arm between the elevator cg

and elevator hinge line, then the total hinge moment is,

-xCo +C at+Ct ÷ •re- (5.78)

HINGE I
LINE I

FIGURE 5.33. ELEVATOR MASS BALANCING RMJUIRE4
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T he weight effect is usually eliminated by mass balancing the elevator

(Figure 5.33). Proper design of a symmhtrical airfoil will cause Ch to be

negligible. 0

Wten the elevator assures its equilibrium position, the total hinge

maents will be zero and solving for the elevator deflection at this floating

position, which is shown in Figure 5.34

lCh at 
(5.79)

The suitability of the aircraft with the elevator free is going to be affected

by this floating position.

If the pilot desires to hold a new angle of attack fran trim, he will

have to deflect the elevator from this floating position to the position

desired.

DESIRED
POSITION

FLOATING
POSITION

- ~ *FLOAT
ORIGINAL RW ZERO

.. z z.. DEFLECTION

NEW RW

FIGUIRE 5.34. ELEVATOR FLOAT POSITICN
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f The floating position will greatly affect the forces the pilot is

required to use. If the ratio Ch /Ch can be adjusted, then the forces

required of the pilot can be controlled.

If Cb / Ch is small, then the elevator will not float very far and the

stick-free stability characteristics will be muh the same as those with the
stick fixed. But Ch mnst be small or the stick forces required to hold

deflection will be unreasonable. The values of Ch and Ch can be controlled

by aerodynamic balance. Types of aerodynamic balancing will be covered in a
later section.

one additional method for altering hinge moments is through the use of a

trim tab. There are numerous tab types that will be discussed in a later
section. A typical tab installation is presented in Figure 5.35.

SUCTION DUE TO
TAB DEFLECTION

FIGURE 5.35. ELEVATOR TRIM TAB
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Deflecting the tab down will result in an upward force on the trailing

edge of the elevator. This tends to make the control surface float uw. Thus

a damn tab deflection (tail-to-the-rear) results in a nose up pitching moment

and is positive. This results in a positive hinge mumient, and the slcpe of

control hinge moment versus tab deflection must be positive.

The hinge nanent contribution fron the trim tab is thus,

Ch s T or Ch

and continuing with cur assumption of linearity, the control hinge mnment

coefficient equation becumes,

Ch Ch +0 ' Ch + Ch6 e + C6 6T (5.80)

for a mass balanced elevator.

The elevator deflection for a floating symmetrical elevator (with tab) becanes,

6 a -7 6(T (5.81)

eFloat Ch6'

5.14 THE STICK-FREE STABILITY WQTICN

The stick-free stability mr' be considered the summation of the

stick-fixed stability and the contribution to stability of freeing the

elevator.

dCm dCm Xm in + (5.82)
CktiCL~IStick- 3;;:

Free Fixed Elev
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The stability ontribution of the free elevator depends upon the elevator

floating position. Equation 5.83 relates to this position

Ch
'Float CL t (5.83)

Substituting for at fram Equation 5.24

- e iw + it -( 5.84)

Taking the derivative of Equation 5.84 with respect to CL,

dae Ch d3- (5.85)

Substituting the expression for elevator power, (Equation 5.50) into Equation
5.69 and crbining with Equation 5.85.

6C at tH "t (5.50)
e

VC aw t ( 15.86)

Elev
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Su stituting Equation 5.86 and Equation 5.29 into Equation 5.82, the

stick-free stability beccMes

dC~ XW dC a t eCh
- - -" v ( -) - h (5.87)

Free

The difference between stick-fixed and stick-free stability is the multiplier

in Equation 5.87 (1 - T Ch/ ,Ch) called the "free elevator factor" which

is designated F. The magnitude and sign of F depends on the relative

magnitudes of T and the ratio of An elevator with only slight

floating tendency has a swall C. / Ch giving a value of F around unity.

Stick-fixed and stick-free stability are practically the same. If the

elevator has a large floating tendency (ratio of CIC1t large,) the

stability contribution of the horizontal tail is reduced WC / c k- is

Free

less negative). For instance, a ratio of /C -M -2 and a T of -. 5, the

floating elevator can eliminate the whole tail contribution to stability.

Generally, freeing the elevator causes a destabilizing effect. With elevator

free to float, the aircraft is less stable.

The stick-free neutral point, hn, is that cg position at which

dCm/dCLSick- is zero. Continuing as in the stick-fixed case, the stick-free

Free

neutral point is,

ýac d• at V.Tt de

1 a
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and

dCm h - hn (5.89)

The stick-free static margin is defined as

Static Margin hn -h (5.90)

5.15 FREE CANARD STABILITY

While it is not the intent of this paragraph to go into stick-free

stability aspects of the canard, it is useful to present a sumuary of the

effects of freeing the elevator. 1aw•er that the tail term will be
miltiplied by the free eleiator factor F

As F beccmes less than unity, the tail (canard) contribution to stability
bexzmes less positive, making the airplane More stable. In turbulence, stick

free, the nose tenr1s to fall slightly from an up gust, resulting in a sort of
load alleviation or ride moothing characteristic (reversible control system).

The opposite is true for a tail to the rear airplax•.

Table 5.1 compares the differences in stability derivatives and control
tems beboeen the canard and tail. to the rear aircraft.

A!
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TABLE 5.1
STABILITY AND CCNTROL DERIVATIVE COMPARISON

Tail-to-Rear Canard

C, ( H H

"'q
Cm• (+) (+)

e

Ch H H)

Ch () (-)

5.16 STICK-FREE FLIGHT TE REATIONSMIP

As was done for stick-fixed stability, a flight test relationship is
required that will relate measurable flight test paramiters with the stick-
free stability of the aircraft, dm/dL

Free

56
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p.

b GEARING
0 - f(., b, c. d., e)

'I |I

FIGURE 5.36. ELEVATCR-STICK GUEPIG

The pilot holds a stick deflected with a stick force F%. The control

system transmits the i~zent from the pilot through the gearing to the

elevator Figure 5.36. The elevator deflects and the aerodynamic prassure
produces a hinge mment at the elevator that exactly balances the mcxmit

produced by the pilot

with foroe Fs.

F181 - Gi H

If the length 18 is included with the gearing, the stick force becas

S e (5.91)
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The hinge =nu t He may be written

Ch q S. ce (5.92)

Equation 5.91 then beccmes

F -GChqSe ce (5.93)

Subetituting

h Ch 0 + C at h + CTT (5.80)

and using

d6
6 e = o6L 6(5.71)

Lift *

and

"t W MW - iW + it - E (5.24)

With no =all amount of algebraic manipuaatio*i, Equation 5.93 may be written

CLCh~ 1CFS q +Ch 6- (5.94)
S 6T T CM _6 W tick-I

where

A GSec.e
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B(0O - iW+ it) + chn 6eero Lift

Writing Equation 5.94 as a function of airspeed and substituting for

unaccelerated flight, C.q - W/S and using equivalent airspeed, Ve,

Fs = 1/2 o 2 AB+ ChT T -m (5.95)
s 0 Ve C C

+ s • • tlck- (.5
e Free

Sioplifying Equation 5.95 by ombining constant terms,

Fs - "I e 15.96)

Kcontains 6T which deternines trim~ speed. K2 cotii C/CASik

Free

qmuation 5.96 gives a relationship between an in-flight mezsuremnt of stick

force gradient and stick-free stability. The equation is pluttd in Figure

5.37.

SC
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K2

PULL.
, 0

V

FIG= 5.37. STIXC FOLEE IMSS AIRDSPEE

The plot is made up of a constant force springing from the stability teram plug

a variable force propxtiornal to the velocity Wiared, intwduced *trcuxh

constants and the tab term Ch T, Equation 5.96 introxtces the interesting

fact that the stick-force variation with airspeed is apparently dependent on

the first term only and independent in general of the stability level. That

is, the slope of the curve Fa versus V is not a direct function of

dlCM/dLtic, .. If the derivative of Equaticn 5.96 is taken with respect to V,
"Stick-
Free

the second term containing the stability drops out. Ebr constant stability

level and trim tab setting, stick force gradient is a funtion of trim

airseed.

dF-- D0V A (B+ ) (5.97)
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However, dFs/dV is a function of the stability term if the trim tab

setting, 6T' is 2djusted to trim at the original trim airspeed after a change

in stability level, e.g., movement of the aircraft cg. The tab setting, 6T,

in Equation 5.95 should be adjusted to obtain F = 0 at the original trim

velocity C, is affected by moving the tab)

dC= ( 5.98)

6:ýstick-
Free

This not: valum ca T for Fs = 0 is then substituted into Equati 5.97 so

V= f I", (5.99)
.ick-

Free

thus, it a•ears that if an ,ircraft is flon at two cg locations and

dr /aV yim is detemined at the same trim speed each time, then one could

extrapolate or interpolate to determine the stick-free neutral point hn.
Unforttmately, if there is a significant awzrmt of friction in thie control
system, it is impossible to precisely determine this trim speed. In orer to

investigate briefly the effects of friction on t1h longitudinal contiol

system, suppose that the aircraft represented in Figur'e 5.38 is perfectly

trimmed atV1  i.e., (6 e 6e and 6T w 6T ý If the elevator is

used to decrease or increase airspeed with no change to the trim setting, the

friction in the aontrol system will prevent the elevator from returning all

the way back to 6 uhen the controls are released, The aircraft will return
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PULL

Fe 0
V 2 \ V

FIGURE 5.38. CCnM SYSTEM FRICTION

only to V2 or V3  With the trim tab at ST the aircraft is content to fly

at any speed betwn V2 and V3. The more friction that exists in the systza,

the wider this speed range beconmes. If you refer to the flight test methods

section of this chapter, you will find that the Fs versus Ve plot shown in

Figure 5.38 matches the data plotted in Fiqure 5.65. In theory, dF /dVe is

the sklpe of the parabola fremed by EquatIon 5.96. With that portion of the

parabola fram V - 0 to VtalI remwoed, Figures 5.37 and 5.38 predict flight

test data quite accurately.

Therefore, if there is a significant amomt of friction in the control
system, it becomes inpossible to say that there is one e.xact speed for which

5i.5.70



the aircraft is tritwed. Equation 5.99 is something less than perfect for

predicting the stick-free neutral point of an aircraft. To reduce the

undesirable effect of friction in the control system, a different approach is

made to Equation 5.94.

If Equation 5.94 is divided by the dynamic pressure, q, then,

(B ChS) A' dCm

Fs/q = A + - (5.100)S/ + Ch a T T)CM 8 6 Lst ick_

e Free

Differentiating with respect to CL,

dFs/q ACh dCm (5.101)

SCm Stick-

Se Free

or

dCLsh dCL
dCL f ( dCStick-e 512

Free.

Trim velocity is now eliminated fran consideration and the prediction of
I

stick-free neitral point hn is exact. A plot of (dFs/'q) /CI4L versus cg

position may be extrapolated to obtain h.

5 5.17 APPAE2TT STIcK-FREE STABILTY

Speed stability or stick force gradient dFs/dV, in most cases does not

reflect the actual stick-free stability dCm/dCL of an aircraft. In
Stick-
ftee
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fact, this apparent stability dFs/dV, may be quite different fran the actual
stability of the aircraft. Where the actual stability of the aircraft may be
marginal (,m/dC. smal)t, or even unstable (&m//dL posi )veT,

Free Free
apparent stability of dFs/dV may be such as to make the aircraft quite
acceptable. In flight, the test pilot feels and evaluates the apparent
stability of tle aircraft and not the actual stability, &Cm/ tick_.

The apparent stability dFs/dV is affected by: Free

1. Changes in dCm/d tick-

Free

2. Aerodynamic balancing

3. Downrsprings, bob weights, etc.

The apparent stability of the stick force gradient through a given trim
speed increases if X M dCL is made more negative. The constant K2 of

stick-
Free

Equation 5.96 is made more positive and in order for the stick force to
continue to pass through the desired trim speed, a more positive tab selection
is required. An aircraft operating at a given cg with a tab setting 6T is
shown in Figure 5.39, Line 1.
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K22

,,• T,

3

FIGURE 5.39. EFFECT ON APPAREW STABILITY

S If dCm/dL is increased by mo~ving the cg forward, then K2  (which is a

Free
function of dCm/dsL tickin Equation 5.95) becomes more positive or increases,

Free
and t~he equation becoes

F s l Ve2 + K=2  (5.103)

'fins equation plots as LineDin Figure 5.39. The aircraft with no change in

tab setting 6T operates on Lin d is trimied to V2 . Stick forces at all

airspeeds have increased. At this juncture, although the actual stebility

d mdCL~ti~khas increased, ther has been little effect on the stick forcedm•stick- hr

Free
gradient or apparent stability. (The slopes of Line and Line being

, - about the same.) So as to retrim to the original trii airspeed V1 , the pilot

applies additional nose up tab to 6T T The aircraft is now operating on line
2
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~ The stick force gradient through V1 has increased because of an
increase in the Kg term in Equation 5.96. The apparent stability dF s/dV has

increased.
Aerodynamic balancing of the control surface affects apparent stability

in the same manner as cg movment. This is a design means of controlling the
hinge moment coefficients, Ch and Ch . The primary reason for aerodynamic

balancing is to increase or reduce the hinge moments and, in turn, the control
stick forces. Changing Ch6 affects the stick forces as seen in Equation 5.100.

In addition to the influence on hinge mcxnents, aerodynamic balancing affects
the real and apparent stability of the aircraft. Assuming that the restoring
hinge moment coefficient Ch6 is increased by an appropriate aerodynamically

balanced control surface, the ratio of Cha/C in Equation 5.87 is de-
creased.

dm 11 = at de

XCLt, dCLF V _ t (l- - (5.87)

Sick us
Free

The canbined increase in dCm/dC• t and Ch,' increases the K2
m stick- 2

term in Equation 5.96 since Free

K2  0 Ch m (5.104)
-As

6 tick-
Fre

Figure 5.39 shows the effect of increased K2 . The apparent stability is not
affected by the increase in K2 if the aircraft stabilizes at V2 . However,2:':
once the aircraft is retrimned to the original airspeed V1 by increasing the
tab setting to 6T the apparent stability is increased.
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i 5.17.1 Set-Back Wng

Perhaps the simplest method of reducing the aerodynamic hinge manents is
to move the hinge line rearward. 7he hinge moment is reduced because the

nmoent ann between the elevator lift and the elevator hinge line is reduced.
(Cne may arrive at the same conclusion by arguing this part of the elevator
lift acting behind the hinge line has been reduced, while that in front of the

Shinge line has been increased.) The net result is a reduction in the absolute

value of both Ch. and Ch . In fact, if the hinge line is set back far enough,

the sign of both derivatives can be changed. A set-back hinge is shown in
Figure 5.40.

Le,

SMALL

SIj

FIGURE 5.40. IE-BACK K=

gis method is sinply a special case of set-back hinge in %tich the
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elevator is designed so that when the leading edge protrudes into the

airstrem, the local velocity is increased significantly, causing an increase

in negative pressure at that point. This negative pressure peak creates a

hinge moment which opposes the normal restoring hinge moment, reducing Ch
Figure 5.41 shows an elevator with an overhang balance.

NEGATIVE PEAK PRESSURE

)MOMENT

FIGURE 5.41. OVEPAW BALANCE

5.17.3 Hbrn Balance
The horn balance works on the same principle as the set-back hingel i.e.,

to reduce hinge moments by increasirq the area forward of the hinge line. The

horn balance, esecially the unshielded horn, is very effective in reducing

C an . This arrangement shown in Figure 5.42 is also a handy way of

N6

owing the maw balance of the control surface.
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UNSHIELDED

FIGURE 5.42. HORM BALANCE

5.17.4 Internal Balance or Internal Seal
he• internal seal allows the negative pressure on the upper surface and

the positive pressure on the lowr surface to act on an internally sealed
surface forward of the hinge line in such a way that a helping mnmnt is

created, again opposing the nomial hinge mments. As a result, the absolute
valu" of and C are both redue. This method is good at high indicated

airseeds, but is sometimes troublesme at high Mach. Figure 5.43
shows an elevator with an internal seal.
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LOW

PRESSURE

PRESSURE

FIGURE 5.43. INTERNAL SEAL

5.17.5 Elevator Modifications
Bevel Angle on 2p or on Botton of the Stabilizer. This device which

causes flow separation on one side, but not on the other, reduces the absolute

values ofCh • *

Trailing Edge Strips. This device increases both Ch and Ch . In caobi-

nation with a balance tab, trailing edge strips produce a very high
po e , but still a l h . This results in what is called a favorable

"Response Effect," (i.e., it takes a lower control force to hold a deflection
than was originally required to prod e it).

Convex Trailing Edge. This type surface produces a more negative Ch
but tends as well to produce a dangerous short period oscillation.

5.17.6 Tabs
A tab is sinply a mall flap which has been placed on the trailing edge

of a larger one. The tab greatly modifies the flap hinge moments, but has
only a swall effect on the lift of the surface or the entire airfoil. Tabs in
general are designed to modify stick forces, and therefore Ch, but will not
affectc very mrh.6

A

• -,)
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By rewriting Equation 5.96, the expression for stick force as a function of
airspeed, the hinge moment created by deflecting the trim tab can be

determined by setting (i.e. trimming) stick force to zero.

' 6T B + 1 W dCm (5.105)

TII2S0 Stick-
Free

Using a bungee (spring), an adjustable horizontal stabilizer, or a simple trim

tab will have only a small effect on actual airplane stability. Using tabs to
tailor stick forces, and hence the flight test relationship or "speed

stability," may require that the trim and balance tabs be combined in a

single tab.
5.17.6.1 Trim Tab. A trim tab is a tab which is controlled independently of
the normal elevator control by means of a wheel or electric motor. The

k purpose of the trim tab is to alter the elevator hinge moment and in doing so

drive the stick force to zero for a given flight condition. A properly

designed trim tab should be allowed to do this througout the flight envelope
and across the allowable og range. The trim tab -educes stick forces to zero

primarily by changing the elevator hinge mamrnt at the elevator deflection
required for trim. This is illustrated in Figure 3.44.
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FIG=RE 5.44. TRIM TAB

5.17.6.2 Balance Tab. A balance tab is a sinple tab, not a part of the

longitudinal ontrol systae, which is mechanically geared to the elevator so
that a oertain elevator deflection produces a given tab deflection. If the

tab is geared to move in the am direction as the surface, it is called a
leading tab. If it moves in the opposite direction, it is called a lagging
tab. The purpose of the balance tab is usually to reduce the hinge m-k ts
and stick force (lagging tab) at the price of a certain loss in control
effectiveness. Scetimes, hysver, a lea tab in used to increase control
effective••s at the price of increased stick forces. The leading tab may
also be used for the eqew purpose of increasing control force. Thus Ch

=way be iread or decrewd, while remains unaffected. if the .Lage

shoamin Figure 5.45 is made so that the length may be varied by the pilot,
thn• the tab may als serv as a trimmini device. .
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FIGUJRE 5.45. BAtAN( TAB

5.17.6.3 Servo or Om~trol Tab. The servo tab is linked directly to the
aircraft longitudinal control syster in such a mwvzr that the pilot mowes the

tab and the tab momea the elevator, which Is free to float. The summation of

elevator hinge moment due to elevator deflection just balances out the hinge

tm~ ts doe to at and 4 T. The stick forces ame no a function of the tab

hinge mment or Ch Aqa~in Ch is not affected.

5.7.6.4 Tab. A spring tab is a lagging balame tab whidc is geared
in such a viy that the pilot receives the most help frm e* tab at high

speed whare he needs it the mt; i.e., the gearing is a wrct.io of dynmic

pgesre. Ite spriag tab is scm in Figure 5.46.
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FIGURE 5.46. SPRING TAB

The basic principles of its operation are:

1. An increase in dynamic pressure causes an increase in hinge monent
and stick force for a given control deflection.

2. The increased stick force causes an increased spring deflection and,
therefore, an increased tab deflection.

3. The increased tab deflection causes a decrease in stick force. Thus
an increased proportion of the hinge mumnt is taken by the tab.

4C Therefore, the spring tab is a geared balance tab where the gearing
is a funation of dynamic pressure.

5. Thus, the stick forces are more nearly constant over the speed range
of the aircraft. That is, the stick force required to produce a
g•ven deflection at 300 knots is still greater than at 150 knots,
but not by as nuch as before. Note that the pilot cannot tell what
is causing the forces he feels at the stick. This appears a change
in "speed stability," but in fact will change actual stability or
d%/dCL.

6. After full spring or tab deflection is reached the balancing feature
is lost and the pilot must supply the full force necessary foi°
further deflection. (Tis acts as a safety feature.) )
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A plot comparing the relative effects of the var.ous balances on hinge

nrmment parameters is given in Figure 5.47 below. '¶he point indicated by the
circle represents the values of a typical plain control surface. The various

lines radiating from that point indicate the ýminner in which the hinge nament

parameters are changed by addition of various kinds of balances. Figure 5.48

is also a summary of the effect of various types of balances on hinge mmuent

coefficients.

PLAINC ( ) AGAINST THE STOP

SURFACE,,
, • LAGGING

'i • -- BALANCE TAB

INTERNAL SEAL
Ch (OEM -ý - 1-,Oe -000 .0"4

IROUND-NOSE
OVERHANG

SELUIPTICAL-NOSE

UNSHIELDED
HORN

• FIGURE 5.47. TYPICA5 HINGE 14M 00EMMW VALUES
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Cha Ch6

NOMENCLATURE SIGN SIGN )
NORMALLY (+) ALWAYS (-)

SET-BACK HINGE REDUCED REDUCED

OVERHANG REDUCED REDUCED iZI .•

UNSHIELDED HORN REDUCED REDUCED •- l TOP
VIEW

INTERNAL SEAL REDUCED REDUCED

BEVEL ANGLE STRIPS REDUCED REDUCED

TRAILING EDGE STRIPS INCREASED INCREASED 2 c

CONVEX TRAILING EDGE NO CHANGE INCREASED

INCREASED RIZICTL CREASED
TRIM TABS NO CHANGE OR

DECREASEDDECREASED

LAGGING BALANCE TAB NO CHANGE DECREASED

LEADING BALANCE TAS NO CHANGE INCREASED

INCREASED,
ECLOW DOWN TAB OR NO CHANGE DECREASES
SPRING TAB WITH "q"

FIGURE 5.48. ML7HKVS OF CHANGING AERDYNAMIC HINGE
.0T COEMFICI• MALNI ES

(TA 5-T8E-RER A W)
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in summary, aerodynamic balancing is "tailoring" the values of

values of Ch and Ch during the aircraft design phase in order to increase

or decrease hinge mements. It is a method of controlling stick forces and

affects the real and apparent stability of the aircraft. In the literature,

dynamic control balancing is often defined as making small or just

slightly positive. Note from Figure 5.47 that addition of an unshielded horn

balance changes Ch without affecting Ch 6very mch. If Ch is made exctly

zero, the aircraft's stick-fixed and stick-free stability are the same.

Making Ch negative is defined as overbalancing. If C is made slightly

negative, then the aircraft is more stable stick-free than stick-fixed. Early

British flying quality specifications permitted an aircraft to be unstable

stick-fixed as long as stick-free stability was maintained. Overbalancing

increases stick forces.

recause of "he very low force gradients in most modern aircraft at the

aft c-ter of gravity, improvnemnts in stick-free longitudinal stability are

obtained by devices which produce a constant pull force on the stick

indepenfd.t of airspeed which allows a more noseup tab setting and steeper

stick force gradienth. Two dev Ices for increasing the stick force gradients

are the downspring and nobweight. Poth effectively increase the apparent

stability of the airctaft.

5.37.7 Downspring

A virtually constait stick force may be incorporated into the control

system by using a dowrspring or oungee which tends to pull the top of the

stick forward. From Figure 5.49 the force required to counteract the spring

is

F TT2-= K3  (5.106)
5 Downspring 2 3

If the spring is a long one, the tension in it will be increased only slightly

as the top moves rearward and can be considered to be ccrstant.

T equation with the downspri'g in the contra8 system becaes,
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Fs e2 +K 2 +K 3 K (5.107)
s le -+ 3Dcmspring

As shown in Figure 5.37, the apparent stability will increase when the
aircraft is once again retrimmed by increasing the tab setting. Note that the
dcwnspring increases apparent stability, but does not affect the actual

stability of the aircraft (dCm/dCLs ; no change to K2 ).Stick-

Free

* FS

12

"TENSION 1- CONSTANT - T

FIGURE 5.49. DOMSPRItG

5.17.8 Bcbweight
Another method of introducing a nearly constant stick force is by placing

a bobweight in the control system which causes a constant mnment (Figure

5.50). The force to counteract the bobweight is,

nW K (5.108)
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Like the downspring, the bcbweight increases the stick force thraogout the

airspeed range and, at increased tab settings, the apparent stability or stick

force gradient. The bobweight has no effect on the actual stability of the
aircraft WdndC

F,

12

4, 0
nW

FIGUlE 5.50. BOBWEIGW

At spring may be used as an "unspring," and a bobwight may be placed on the

opposite side of the stick in the control system. Those configurations are
illustrated in Figure 5.51. In this configuration, the stick force would be

Ilk' decreased, and the apparent stability also decreased. It should again be.

Sephasized that regardless of spring or bo)wight configuration, there is no

effect on the actual stability (WC/dCý of the aircraft.
Stick-

![ Further use of these control system devices will be discussed in Chapter 6,

maneumring Plight.

5.87



112 

12

0 0

100

FIGURE 5.51. ALTERATE SPRIN & BOBWEIGHT CCNFIGURATIONS

TO examine the effect of the stick force gradient dFs /dV on Equation

5.102 and to find hN, Equation 5.94 is rewritten with a control system device

Fs Aq(B +Ch ) -ACLq Cmh sC k + K (5.109)
6 T a Device

e Free

Fs/q = A (B +C 6  6 m +K1(d 0L (5.110)
6 Stick-
e Free

d% /q dC K
Kl m 3

-CL 24.-,

WT'

4 £Free
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The cg location at which (dFs/q)/dCL goes to zero will not be the true l when

a device such as a spring or a bcbweight is included.

5.18 HIGH SPEED LCIGITdDINAL STATIC STABILIT(

The effects of high speed (transonic and supersonic) on longitudinal

static stability can be analyzed in the same manner as that done for subsonic

speeds. Hwever, the assumptions that were made for incapressible flow are

no longer valid.
Comressibility effects both the longitudinal static stability, dCr/&ZL

(gust stability) and speed stability, dFs/dV. The gust stability depends

mainly on the contributions to stability of the wing, fuselage, and tail in

the stability equation below during transonic and supersonic flight.

dCm X+dCm at
wn + ~ dd e (5.29)

5.18.1 The Wing Contribution

In subsonic flow the aerodynamic center is at the quarter chord. At

transonic speed, f low separation occurs behind the shock formations causing
the aerodynamic center to move forward of the quarter chord position. The

immediate effect is a reduction in stability since Xwyc increases. As speed
increases further the shock moves off the surface and the wing recovers lift.
The aerodynamic center moves aft towards the 50% chord position. There
is a sudden increase in the wing's contribution to stability since XW/c is

reduced (Figure 5.2).

The extent of the aerodynamic center shift depends greatly on the aspect
"ratio of the aircraft. The shift is least for 1lw aspect ratio aircraft.

Among the planforms, the rectangular wing has the largest shift for a given
aspect ratio, Owreas the triangular wing has the least (Figure 5.52).
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5.18.2 The •,eje .untr.b..i.n

In supersonic flow, the fuselage center of pressure moves forward

causing a positive increase in the fuselage dm/dCL or a destabilizing

influence on the fuselage term. Variation with Mach is usually swall and

will be ignorsi.

5.18.3 The Tail O..tribution
'he tail contribution to stability depwes on the variation of lift 'urve

slop•, a% and at, plus doe•ah e with Mach during transonic and
stpersonic flight. It is empressed as:

5.90



(-at/a) VH r (I - /)

During subsonic flight at/aw remains apprcaxmately constant. The slope

of the lift curve, aw varies as shown in Figure 5.53. This variation of aw in

the transonic speed range is a function of geometry (i.e., aspect ratio,

thickness, camber, and sweep). at varies in a sinilar manner. Limiting

further discussion to aircraft designed for transonic flight or aircraft which

enploy airfoil shapes with small thickness to chord ratios, then aw and at
increase slightly in the transonic regime. For all airfoil shapes, the values

of aw and at decrease as the airspeed increases supersonically.

12.0 7

8.0

AR-4
aw

4.0

-- - - RE~CTANGULAR
WING

AR-2
---- DELTAWING

0 1.0 2.0 3.0

MACH

I
IV FGUE 5.53. LIT CLE SLM VAR=lATI WITH MA
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The tail contribution is further affected by the variation in dcwnwash,

,, with Mach increase. The dconwash at the tail is a result of the vortex

system associated with the lifting wing. A studen loss of downwash occurs

transonically with a resulting decrease in tail angle of attack. The effect

is to require the pilot to apply additional up elevator with increasing

airspeed to maintain altitude. This additional up elevator contributes to

speed instability. (Speed stability will be covered more thoroughly later.)

Typical da'mmash variation with Mach is seen in Figure 5.54.

THIN SECTION

THICK
SECTIONON

I'

0.0 0.7 0.8 0.9 1.0 1.1 1.2 1.3

FIGURE 5.54. TYPICAL POWWM VARIATICZM WITH MACH

The variation of de/da with Mach greatly influences the aircraft's

gust stability dSm/dL. Recalling frmi subsonic aerodynatnics,

Since the dcawmsh angle behind the wing is directly proportional to the lift

coefficient of the wing, it is apparent that the value of the derivative de/da

is a fumction of aw. The general trend of dc/d& is an initial iream with
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mach starting at subsonic speeds. Above. Mach 1.0, de/da decreases and

approaches zero. This variation depends on the particular wing gecmetry of

the aircraft. As shown in Figure 5.55, de/da may dip for thicker wing

sections vdvre considerable flow separation occurs. A!ain, d&/da is very nluch

dependent upon aw.

/TAPERED ILW-AFORM

0.48

0 1.0 2.0 3.0

MACH

SFIGURE 5.55. DOs BEr• VS MC

• tFor an air'craft desiWW for high spee flgto, the variation of• Wdo

. .with ir~easig Mach results in a slight destaWI iii y effect in the transc

• -,! rg and •contributes to in.mramed stabUity in the sc sped regim;
tkmre lre, the overall tail omtrihatiaoa to stabLUty is difficult to predict.
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loss of stabilizer effectiveness is experienced in supersonic flight as

mmes a less efficient lifting surface. Te elevator power, C
Ne

ses as airspeed approaches Mach 1. Beyond Mach 1, elevator
iveness decreases. Typical variations in Cm with Mach are shown

e
are 5.56.
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The overall effect of transonic and supersonic flight on gust stability

aor Cm/dCL is also shown in Figure 5.56. Static longitudinal stability

increases supersonically. The speed stability of the aircraft is affected as
well. The pitching moment coefficient equation developed in Chapter 4 can be

written,

writeS+ LX+CC AC++%d +6e +L% AU +C AQ (5.112)

a a6e qe

Assumng no pitch rates, Equation 5.112 can be written

S = Ac + Cm A6e +CC &U (5.113)

e

were % is dfCf/,L- C..L/dL. All thrte of the stability derivatives in
a

Equation 5.113 are functions of Mch. The elevator deflection required to
trim as an aircraft acoelerates fr&M suIxonic to supersonic flight depenis on
hOw these derivatives vary with Mach, For supersonic aircraft, speed

stability is provided entirely by the artificial feel system. towver. it

uually depends on hcw M varies with i*cht A reversal of elevator deflection
witt incresing airseed uw.aly quvires a relaxation of forward pressure or
evM a pull. tTe to maintain altitude or presnt a nose down pitch tendency.

Elevator deflectkic veram Math curms for several supersonic aircraft
are shOw in Fiqure 5.57. lie frortant point &-am this figure is that
supersoically d5e/%, is no lonqer a valid indication of gust stability. All

of the air•caft showm in Figur 5.57 are more stable superac4nically than

suksonicafly, if yvu mare to look perely at dF 6 MV.
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FIGURE 5.57. SWTBILIZLR DEFLBCTICN VS MAtl FOR

SEVI4RL SUPERSCNIC AIRCP.AT

%heth..r the speed instability or reversal in elevator deflections and

stick fLrces are objectionable depends on many factors such as magnitude of

variation, length of time reuired to transverse the region of instability,

control system cýharacter.L cs, amd conditions of flight.

In the F-100C, a pull of 14 pounds was required when accelerating from

Mach 0.87 to 1.0. The test pilot described this trim change as disconcerting

while atteapting, to maneuver the aircraft in this region and reccumided that

a "q' or Mach sensing device be installed to eliminate this characteristic.

Consequently, a mechanism wax incorporated to autcm.tically change the

artificial feel gradient as the aircraft accelerates through the tranonic

range. Also, the longitudinal tai.m is atnatically changed in this region by

the use of a "Mach Trimmr."
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F-104 test pilots stated that F-104 transonic trim changes required an

aft stick moeent with increasing speed and i forward stick movement when

decreasing speed but descrited this speed instability as acceptable.

F-106 pilots stated that the Mach 1.0 to 1.1 region is characterized by a

Smcderate trim chYiange to r•oid large variations in aititude during
accelerations. Minor speed instabilities were not unsatisfactory.

L-38 test pilots describe the transomic trim change as being hardly

perceptible.
Airctaft design considerations are influenced by the stability aspects of

high speed flight. It is desirable to design an aircraft whert_ trim changes

through transonic speeds are small. A tapered wing without camber, twist, or
inczience or a low aspect ratio wing and tail provide values of XW/c, aw,

at, and dtida which vary minimally with Mach. An all-mcving tail (slab)

gives negligible variation of Cm with Mach and maxi=mm control effec-

tiveness. A full pagr irreversible control system is necessary to counter-

act the erratic changes in pressure distribution which affect ah d

5, 19 HYPtSMIC UL lDIMNAL STATIC STABILITY

The X-15 is an exarple of an arpla. o with a low aspect ratio wing and
an all ircvingq torizontal tail. Having achieved a maxinim speed of Mach 6.7,

it was definitely a )iparerdc vehicle. For an airplane to overcome the

thermal and aerodyamic problesm of atmospheric entry., the delta or double
delta configuration with a blunt aft end seems to be on, answer.

OQnfigurations such as the Space Shettle experience low longitudinal

stability in the high subsonic to transomic region. To increase stability in

this region, these vehicles have used boat-tail flape or extended rndder

surfaces to mome the center of presmre aft, creating "shattleoc•k stability.*
As expected, stability inrtoves significantly de to Math effects in the 0.9
to 1.4 Mach region, as the center of pressure shifts aft. The transonic and

5zpersonic lnitdinal stability curves flr the delta oonfiguration are shown
in Figure 5.58.
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FIGURE 5.58. TRANSONIC AND SUPEWRSCIC WENGITUDINAL STABIIITY - DELTA PIANFORM

At Mach 2.0 this coufiguration is stable at low a (low CL) and neutral to
slightly unstable at high 0, (high CL). The opposite is true at Mach 4.0,
where the vehicle is nore stable at high a than at low 0. This is shown in
Figure 5.59. It should be noted that the region around Mach 3.0 is one of
uncertainty in all axes. The shock wave does not lie close to the lower
surface as it does at Mach 4.0 and above, and there is a large low pressure
area at the blunt aft end that makes the elevons less effective. )

I'

FMME 5.59. DELTA COWIGURATIM AT M - 2.0 AND M 4.0

5.98
S~)



4

Above Mach 4.0, there will still be sane problems at low a, but the

vehicle will be stable in the 200 to 600 a range. At these speeds the shock

is adjacent to the lower surface and adds to reasonable elevon control. As

shown in Figure 5.60, a stable break occurs in the plot of dCm/CL at C's

corresponding to 150 to 200.

+

Cm

0 C

M 8.0

FIGURE 5.60. DELTA OONFIGURATICN AT M = 8.0 AND M = 10.0

SOntrol power, Cm can be a problem during hypersonic flight, even in

e
the 200 to 600 range. Figure 5.61 illustrates that as the elevon moves TEU,

it moves into the low pressure area at the aft end of the vehicle and becomes

less effective. At certain cg's you may not have enough elevon effectiveness

to trim. The Space Shuttle uses its body flap as an additional trinming

surface to keep the elevons close to zero degrees deflection throughout the

A aUmable 5g range.d tu
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FIGURE 5.61. HYPERSONIC C(NT1rL POWER

Frcm the knowledge of pitching manent characteristics at Hypersonic Mach

numbers, a schedule of a to fly during an atmospheric entry emerges. From

Mach 24 to Mach 12, the Shuttle flies at 40°0 . As Mach decreases, a

decreases to maintain stability. As shown in Figure 5.62, however,

longitudinal stability is by no means the only limitation in determining the

entry profile.
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5.20 I TN3DIAL STATIC STABILITY FLIGHT TESTS

The purpose of these flight tests is to detemnie the longitudinal static
stability characteristics of an aircraft. These chwracteristics include gust
stability, speed stability, and friction/braout. Trim change tests will
also be dis••ssed.

An aircraft is said to be statically stable longitudinally (positive gust

V stability) if the moments created %be~n the aircraft is disturbed frmi trhmed
flight tend to return the aircraft to the cmiticn fran wrhich it was
disturbed. longitudinal stability theory Whw~s the flight test relainhp
for stIck-fixed and stick-free gust stability, IZ% / •L, to be
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stick-fixed: d6 e c (5.69)e 6 dC k
e Fixed

d(F/q) Ch6 dCM
stick-free: -A - (5.101)

Free

Stick force (Fs), elevator deflection (6•), equivalent velocity (Ve) and
gross weight (W) are the parameters measured to solve the above equations.

M~n d6e/dCL is zero, an aircraft has neutral stick-fixed longitudinal static
stability. As d 6e/dCL increases, the stability of the aircraft increases.

The same statements about stick-free longitudinal static stability can be made
with respect to d(F%/q)//IL. The neutral point is the cg locatton which
gives neutral stability, stick-fixed or stick-free. These neutral points are

detemi~ned by flight testing at two or more cg locations, and extrapolating

the curves of d6e/dL and d(Fs/q) /cL versus og to zero.
The neutral point so determine is valid for the trim altitude and

airspeed at which the data were taken and may vary considerably at other trim
conditions. A typical variation of neutral point with Mach is shown in Figure

5.63.
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The use of the neutral point theory to define gust stability is therefore time
conusii. This is especially true for aircraft tht have a large airspeed
enelope and aerodemtic effects.

Speed stability is the variation in cotzol stick forces with airspeed
changes. Positive stability requires that increased aft stick force be
reqiired with decreasing airspeed and vice verea. It is related to gust
atability but may be owsiderably different de to artificial feel and
stability augvmtation systems. Speed stability is the longituiwnal static
stability characteristic =ast apparent to the pilot, and it therefore recives

the greatest esphasis.
Flight-path stability is defined as the variation in flight-path angle

when the airspeed is changed by use of the elevator alone. Flight-path
stability applies only to the power approach flight phase and is basically

determined by aircraft perfomauce characteristics. Positive flight-path

stability ensure that the aircraft will not develop large changes in rate of

des•ent %a corections are me to the flight-path with the throttle fixed.

,he ecact Limits are procribed in MIIL-F-8785C, paragraph 3.2.1.3. An

1 ,,5.103



aircraft likely to encounter difficulty in meeting these limits would be one

wkse por approach airspeed was far up on tho "backside" of the power
required curve. A corrective action might be to increase the power approach

airspeed, thereby placing it on a flatter portion of the curve or by

installing an automatic throttle.

5.20.1 Military Specification Rýý ets
The 1954 version of MIL-P-8785 established longitudinal stability

reuirements in term of the neutral point. Wile the neutral point criteria
is still valid for testing certain types of aircraft, this criteria was not
optinum for aircraft operating in flight regimes where other factors were more
important. MIL-F-8785C (5 Nov 80) does not mention neutral points. Instead,

section 3.2.1 Of MIL-F-8785C specifies longitudinal stability with respect to
speed and flight-path. The requirements of this section are relaxed in the
transonic speed range except for those aircraft which are designed for
prolorged trawionic operation. As technolog progresses, highly augented
aircraft and aircraft with fly-by-wire control systsm may be designed with
neutral speed stability. The P-15, F-16, and F-20 are exavples of aircraft

with neutral speed stability. For these aircraft, the program manager may
re*uire a mil spec written specifically for the aircraft and control system

involwd.

5.20.2 _EL k,Tt Mthods
There are two general test methods (stabilized and acxeleration/

deceleration) used to determine either speed stability or neutral points.

5.20.2.1 Stabilized Method. 9vis method is used for aircraft with a small

airspeed range in the cruise flight phase and virtually all aircaft in the

power approh, landing or takeoff flight phases. Prqeller type aircraft are
normally tested by this method because of the effects on the elevator control

N• power cased by thrust changes. It inwolves data taket at stabilized

aixqpeecls at the trim throttle setting with the airspeed maintained constant

by a rate of descent or climb. As long as the altitude does not vary
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excessively (typically +1- 1,000 ft) this method gives good restlts, but it is

time oMwing.
The aircraft is trimned carefully at the desired altitude and airspeed,

and a trim shot is recorded. Without moving the throttle or trim setting, the

pilot changes aircraft pitch attitude to achieve a -lower or higher airspeed

(typically in increments of +/- 10 knots) and maintains that airspeed.

Aircraft with both reversible and irreversible hydro-mechan control

systems exhibit varying degrees of friction and breakJot force about trim.
The friction force is the force required to begin a tiny movement of the
stick. This initial movment will not cause an aircraft motion as observed on

the windscreen. The breakout force is that additional amount of pilot-applied

force required to produce the first tiny movement of the elevator. These
small forces, friction and breakout, orcbine to form what is generally termed

the "friction band."
Since the pilot has usually mowed the control stick fore and aft through

the friction band, he must determine which side of the friction band he is on
before recording the test point data. The elevator position for this airspeed
will not vary, but stick force varies relative to the instantaneous position
within the friction band at the time the data is taken. Therefore, the pilot

should (assuming an initial reduction in airspeed from the trim condition)

increase force carefully until the nose starts to rise. The stick should be
frowen at this point .were aa increase in stick force -will result in

elevator mwoment and thu nose rise) and data record. The sawe technique

should be used for all other airspeed points below trim. For airspeed above
trim airspeed, the se techique is used although now the stick is frozen at
a point were any increase in push force will result in nose drop.
5.20.2.2 AceleratioV/Dceleration ,,athod. This ethod is ccmmonly used for
aircraft that have a large airspemd envelope. It is always used fir tranmnoic

testing. It is less time oomzing than the stabilized method but introduoea

thrust effeibcts. The U.S. Navy uses the accelerationdeceleration method but

maintains the throttle setting constant and varies altitude to change
airspeed. The Navy method minimizes thrust effects but intrues altitude

effects.
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7I•he same trim shot is taken as in the stabilized method to establish trim

conditions. MIL-F-8785C requires that the aircraft exhibit positive speed
stability only within +/-50 knots or +/-15 percent of the trim airspeed,

whichever is the less. This requires very little power change to traverse

this band and maintain level flight unless the trim airspeed is near the back

side of the thrust required curve. Before the 1968 revision to MIL-F-8785,
the flight test technique cauanly used to get acceleration/deceleration data

was full military power or idle, covering the entire airspeed envelope.
Unfortunately, this tedmique cannot be used to determine the requirments

under the current specification with the non-linearities that usually exist in
the control systean Therefore a series of trim points must be selected to
cover the envelpe with a typical plot (friction and breakout excluded) shown
in Figure 5.64.

OPERATIONALENVELOPE

ENVELOPE

-V.

FI==E 5.64. SP) STABLIT DATA

)
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The most practical methad of taking data is to note the power setting

required for trim and then either decrease or increase power to overshoot the
data band limits sligtly. Then turn on the instrLientation and reset trim

powr, and a slow acceleration or deceleration will occur back towards the
trim point. The data will be valid only during the acceleratiom or
deceleration with trim power set. A smll percent change in the trim power
setting may be required to obtain a reasxmable acceleration or deceleration
without introducing gross pcwr effects. The points near the trim airspeed
point will be difficult to obtain but they are not of great inportance since
they will probably be obscured by the control system breakcxt and friction
(Figure 5.65).

13 ACCEL

PULL 20- 0 DECEL( 10"'"

2 ":::ýFRiCTION AND
3 BREAKOUT BAND

F,(Ib) 0! -6 4

-55P -10 H 2

300 310 320 330 340 380 360 370 380 390 400

± 50 KTO (OR IS%) S

.. LUI 2 5.65. ACME 0TICN/?C IGOTA
OM TIM SPEW, og, AL1'rt
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Throuitxnt the acoeleration or deceleration, the primary parameter to

control is stick force. It is itmxotant that the friction band not be
reversed during the test run. A slight change in altitude is preferable

(i.e. to let the aircraft clinb slightly throughout an acceleration) to avoid
the tendency to reverse the stick force by over-rotating the nose. The

opposite is advisable during the deceleration.
There is a relaxaticn in the reuirement for speed stability in the

transonic area unless the aircraft is designed for continued transonic
operation. The best way to define where the transonic range occurs is to
determine the point where the F. versus V goes unstable. In this area,
MIL-F-8785C allows a specified maxinmu instability. The purpose of the
transonic lonqitudinal static stability flight test in the transonic area is
to determine the degree of instability.

The transonic area flight test begins with a trim shot at same high
subsonic airspeed. The power is increased to maxim=n thnrst and an
acceleration is begum.

It is Izprtant that a stable gradient be established before enterilg the

transonic area. Owce the first sensation of instability is felt by the pilot,

his primary control parameter changes from stick force to attitude. Prcm this

point until the aircraft is sierssonic, the true altitwie should be held as

closely as possible. This is because the unstable stick force being measured

will be in err if a climb or descent ocws. A radar altimeter output on an
over-water flight or keeping a flight path on the horizon ar precise ways to
hold constant altitude, but if these are not available, the pilot will have to

use the outside references to maintain level flight.
Oace the aircraft goes inpersonic, the test pilot should again conuern

himself with not reversing the friction band and with establishing a stable

gradient. The acceleration should be continzsl to the limit of the service
envelope to test for supersonic speed stability. The supernic data will

also have to be slotm at +/-151 of the trim airspeed, so several trim shots

may be reqpireu. A deceleration Urm V... to sumsac speed shoul be made
with a careful rtrtion in power to decelerate aupersonically and
traoson•c&Uy. The criteria for daceleratirq eth the trar.dac region are
the sae as for the accelaration. Poer re•ltioas duing this deceleration
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will have to be done carefully to minimize thrust effects and still decelerate

past the Mach drag rise point to a stable subsonic gradient.

5.20.3 Flight-Path Stability

Flight-path stability is a crite.on appied to power approach and

landing qualities. It is primarily determined by the performance

characteristics of the aircraft and related to stability and control only

because it places another reqirement on handling qualities. !be following is

one way to look at flight-path stability. Tuvst required curves are shown

far two air~raft with the -e ---d- final approach speed marked in Figure

5.66.

p
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If both aircraft A and B are located on the glidepath shown in Figure 5.67,
their relative flight-path stability can be shown.

1A

POSITION 1

400

00~

PRECISION -- PSTO
GLIDEPATH - " POSITION 2

FIGURE 5.67. AIRAFT ON PRWISION APPROACH

At Position 1 the aircraft are in stable flight above t1e glidepath, but

below the recoamended final approach spaed. If Aircraft A is in this

position, the pilot can nose the aircraft over and descend to glidepath w.ile

the airspeed increases. Because the thrust required curve is flat at this
point, the rate of descent at thic higher airspeed is ,tout the sam as before

the oorrection, so he does not need to change throttle setting to maintain the
glidepath. Aircraft B, under the same conditions, wi-l have to be flown

differently. If the pilot noses the aircraft over, the air•spee will increase

to the re airspeed as the glidepath is reached. Me rate of descent
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at this power setting is less than it was before so the pilot will go above

glidepath if he maintains this airspeed.
At Position 2 the aircraft are in stable flight below the glidepath but

above the recaumended airspeed. Aircraft A can be pulled up to the glidepath
and maintained on the glidepath with little or no throttle change. Aircraft B
will develop a greater rate of descent once the airspeed decreases while
coming up to glidepath and will fall below the glidepath again.

If the aircraft are in Position 1 with the airspeed higher than
reoximard instead of lower, the sawe situation will develop when correcting
back to flight-path, but the required pilot compensation is increased. In all
cases Aircraft A has better flight-path stability than Aircraft B. As
mentioned earlier in this chapter, aircraft which have unsatisfactory

flight-path stability can be inproved by increasing the recczmmened final
approach airspeed or by adding an automatic throttle.

Another way of looking at flight-path stability is by investigating the
difficulty that a pilot has in maintaining glidepath even when using the
thrott+les. 1Vihis problem is seen in ljarge aircraft for which the tire lag in
pitching the aircraft to a hew pitch attitude is quite long. In these
instances, inoorporation of direct lift allows the pilot to correct the
glidepath withot pitching the aircraft. Direct lift control will also affect

the influence of perfomance on flight-path stability.

5.20.4 Trim Oki ne Tests
the purpose of this test is to determine the control force changes associated
with normal configuration changes, trim sy"tm failure, or transfer to
alternate control systems in relation to specified limits. It mwst also be
deterdned that no undesirable flight characteristics accciIany thesqe
configuration chanres.Pitching moments on aircraft are normally associated
with changes in the ondition of any of the following: landing gear, flaps,

speed brWtkes, p06r, bcb bay doors, rocket and missile doors, or any
• "JettixrA• device. The magnitude of the change in control forces resultingfrcm these pitching moments is limited by Military Specification F-8785C, and

it is the resmsibility of the testing organization to detemine if the

Ia specified limits.
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The pitching moment resulting from a given configuration change will

normally vary with airspeed, altitude, cg loading, and initial configuration

of the aircraft. The control forces resulting fron the pitching nument will

further depend on the aircraft parameters being held constant during the

configuration change. These factors should be kept in mind when determining

the conditions under which the given configuration change should be tested.

Even though the specification lists the altitude, airspeed, initial

conditions, and parameter to be held constant for most configuration changes,

some variations may be necessary on a specific aircraft to provide information

on the most adverse conditions encomutered in operational use of the aircraft.
The altitude and airspeed should be selected as indicated in the specifica-

tions or for the most adverse conditions. In general, the trim change will be

greatest at the highest airspeed and the lowest altitude. The effect of cg

location is not so re.-dily apparent and usually has a different effect for
each configuration change. A forward loading may cause the greatest txim

change for one configuration change, and an aft loading may be most severe for

another. Using the build up approach, a mid cg loading is normally selected

since rapid moement of the cg in flight will probably not bepossible. If a

specific trim change appears marginal at this loading, it may be necessary to

test it at other cg loadings to determine its acceptability.

Selection of the initial aircraft configurations will depend on the

anticipated normal operational use of the aircraft. The conditions given in

the specifications will normally be sufficient and can always be used as a

guide, but again variations may be necessary for specific aircraft. The same

holds true for selection of the aircraft paramater to hold constant during the
change. The parameter that the pilot would normally want to hold constant in

operational use of the aircraft is the one that should be selected.

Zerefore, if the requiramnts of MWL-F-8785C do ixt appear logical or

ccuritet, then a more appropriate test should be added or substituted.

In addition to the conditions outlined above, it may be necessary to test

for ams configuration changes that culd logically be accomplished

5.112



sinultaneously. The force changes might be additive and could be objection-

ably large. For example, on a go-around, power may be applied and the landing

gear retracted at the same time. If the trim changes associated with each

configuration change are appreciable and in the same direction, the carbined

changes should definitely be investigated. The specifications require that no

objectionable buffet or undesirable flight chracteristics be associated with

normal trim changes. Some buffet is normal with some .configuration changes,

e.g., gear extension, however, it would be considered if this buffet tended to

mask the buffet associated with stall warning. The input of the pilot is the

best measure of what actually constitutes "objectionable," but anything tat

would interfere with normal use of the aircraft would be considered objection-

able. The same is true for "undesirable flight characteristics." An example

would be a strong nose-down pitching nmoent associated with gear or flap

retraction after take-off.

The specification also sets limits on the trim changes resulting frcm
transfer to an alternate control system. The li llts vary with the type of

S alternate system and the configuration and speed at the tire of transfer but

in no case may a dangerous flight condition result. A good examrple of this is

the transfer to mamal reversion in the A-10. it will probably be necessary

for the pilot to study the operation of the control system and methods of

effecting transfer in order to determine the conditions most likely to cause

an unacceptable trim change upon transferring from one system to the other.

As in all flight testing, a thorough knowledge of the aircraft and the

objectives of the test will improve the quality and increase the value of the
test results.
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P1MBLEM

5.1 In Subsonic Aerodyamics the following approximation was developed for

the Balance Equation

Cm C + CL (cg- ac) + C
mcg Mac'ti

where C is the total stability contribution of the tail.

mtail

(a) Sketch the location of the forces, nxments, and cg required to

balance an airplane using the above equation.

(b) Using trie data shown below, what contribution is required from the

tail to balance the airplane?

cm -0.12 Cmtail ?
Mac ti

ac =0.25 (25%) CL - 0. 5

cg = 0.188 (18.8%)

(c) If this airplane were a fixed hang-glider and a C = 1.3 were

required to flare and land, how far aft mist the cg be shifted to

obtain the landing CL without changing the tail contribution?

(d) If a 4% margin were desired between max aft cg and the aerodlmamic

center for safety considerations, how much will the tail

contribution have to increase for the landing problem presented in

(c) ?

(e) List four ways of increasing the tail contribution to stability.
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5.2 Given the aircraft configurations shown below, write the Balance and
Stability Bquations for the thrust ccotributions to stability. Sketch
the fbrces involved and state which effects are stabilizing and which are
destabilizing.

!(a) DC-10

0 ............. 0 .............. -- ........

(b) Britten-Nonrai Trilandpex

5.3 (a) Are the tw expressions below derived for the tail-to-the-rear

aircraft vli fr the canard aircraft configuration?

m
h- hnh

Static margin h - h
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(b) Derive an expressicn for elevator pcwer for the canard aircraft

configuration. Determine its sign.

(c) that is the expression for elevator effectiveness for the canard

aircraft configuration? Determine its sign.

5.4 During wind tunnel testing, the following data "ware recorded:

CL e e e
(deg) (deg) (deg)

h =0.20 h = 0,25 h = 0.30

0.2 -2 -3 -4

0.6 4 -2

1.0 10 5 0

Elevator Limits are t 200

A. Find the stick-fixed static wirgin for h - 0.20

B. Find the numerical value fom elevator pwr.

C. Find the most forward og permissible if it is desired to be able to

stabilize out of grouna effect at a 1 " 1.0.

5.5 Given the flight test data belw from the aircraft which was wind tunnel

tested in Problem 5.4, anwer the foLlowing questions:

.-1
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A. Find the aircraft neutral point. Was the wind tuinel data

conservative?

cg @ 10% mac
TEU 25 •

20-

15-

106,
(050)

5-~o @q025% mac

0 - CL

TED -10

B. What is the flight test determine value of Cmd

SC. If the lift cuv slope is determined to be 1.0, what is the flight

test detemined value of Cm (per de) at a og of 25%?
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5.6 Given geometric data for the canard design in Problem 5.5, calculate an

estimate for elevator power.
HINT: Assume:

Cm a VH aT T = a =wind tunnel value
Cm = 1.0

Given:

Slab canard

AT = l4ft

ST = loft 2

c = 7ft

S = 200ft 2

5.7 7he Eorward Swept Wing (FWS) technology aircraft designed by North

Anerican is shown below. The aeradynamic load is shared by the two

"wings" with the forward wing desiqned to carry about 30% of the

aircraft weight. For this design ccndition, answer the following

multiple choice questions by circling the nmTber of correct anszwr(s).
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A. At the cg location marked FWD the aircraft:

(1) Can be balanced and is stable.

(2) Can be balanced and is stable only if the cg is ahead of the neutral

point.

(3) Can be balanced and is unstable.

(4) Cannot be balanced.

B. At the cg location marked MID the aircraft:

(1) Can be balanced and is stable.
(2) Can be balanced and is stable only if the cg is ahead of the

neutral point.

(3) Can be balanced and is unstable.

(4) Cannot be balanced.

C At the og location marked AFT the aircraft:

(1) Can be balanced and is stable.
(2) Can be balapced and is stable only if the og is ahead of the neutral

point.
(3) Can be balanced and is unstable.

(4) Cannot be balanced.

D. For this design the sign of control power is:

(1) Negative.
(2) Positive.

(3) Dependent on og location.
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5.8 Given the Boeing 747/Space Shuttle Cobzrbia combination as shown below,

is the total shuttle orbiter wing contribution to the combination

stabilizing or destabilizing if the cg is located as shown? Briefly

explain the reason for the anser given.

8HUIrLE a.c. 0 50% MAC

747 a.. 25% MAC
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Given below is wind tunnel data for the YF-16.

.10-

.05- WING AND• FUSELAGE

-• TOTAL
.3 AIRCRAFT

(.l

-. 10

Ansomr the following questions YES or NO:

Is the total rtraft stable?

Is the wigq-mselage acmbination stable?

Is t* ti onturi Ati stabilizing?
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B. aiw muh larger (in percent) would the horizontal stabilizer have to be

to give the F-16 a static margin of 2% at a og of 35% MAC? Assume all

other variables remain constant.

5.10 Given below is a CM versus CL curve for a rectangular flying wing fram

wind tunnel tests and a desired TOTAL AnKHM trim curve.

0.1-

CF~ 1
0 IF CL.

mi• • V'"" p'•" 0.51.0

-• TOTAL

AIRCRAFT

-0.1- FLYING
WING

A. Does the flying wing need a TAIL or CANAD1 a6Wed or can it attain the

required TOTAL aircraft stability level by ELLMM deflection?

B. Is the TOTAL aircraft stable?

C. Is Cm positive or negative?

D. DII the flying wing have a symtric wig -ction?
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E. What is the flying wing's neutral point?

F. Is C positive or negative?
Ne

G. What is the static margin for this trim condition?

5.11.2 Given the flight test data shoin below, show ho to obtain the
neutral point(s). Label the two og's tested as FM and AFT.
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5.12 Given the curve shown below, show the effect of:

A. Shifting the cg FWD and retrimnng to trim velocity.

B. Increasing Ch6 and retrimming to trim velocity.

C. Adding a downspring and retrimming to trim velocity.

D. Adding a bobweight and retrinmuing to trim velocity.

Fe

5.13 Mtich changes in Problem 5.12 affect:

apparent stability actual stability

)
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5.14 Read the question and answer true (T) or false (F).

T F If a body disturbed from equilibrium remairs in the disturbed
position it is statically unstable.

T F Longitudinal static stability and "gust stability" are the same
dhin.

T F Static longitutinal stability is a prerequisite for dynamic
longitudinal stability.

T F Aircraft response in the X-Z plane (about the Y axis) usually cannot
be considered as independent of the lateral directional motions.

T F Although Cm is a direct indication of longitudinal static

stability, C_ is relatively unitportant.

T F At the USW Test Pilot School elevator TaJ and nose pitching up are
positive in sign by convention. CAREPUL.

T F Tail efficiency factor and tail volume coefficient are not normally
considered constant,

T F With the cg forward, an aircraft is more stable and maneuverable.

T F lfrre are no well defined static stability criteria.

T F To call a canard surfaoe a horizontal stabilizer is a nisncmer.

T F The amit stable wing cortribution to stability results from a low
win3j forward of the 6J.

T F With the og aft, an aircraft is less maneuverable and note stable.

T k. A thrMt We belw the og is destabilizing for either a prop or
turbojet.

T F !tie nr=M force contribution of either a prop or turbojet is
destabilizinq if the rrp or inlet is aft of tha aixcraft cg.

T F A txoeitive walu of cW•aah hXrivative_ CauS a tail-to the-rear
aircraft to be lea stable if dc/& is less than 1.0 than it would
be if dc/da w.e equal to zeo.

T T Verifying adequate stability and manetterability at established og
limits is a legitimate flight test fimotian.

ST F An aircraft is balame if it is forced to a negative value of
for m useful psitive value of



T F An aircraft is considered stable if dc dC is positive.

ccg
T~~~~~~ F h lp fteC Versus CL curve of an aircraft is a direct

measmu:e of "gust stability."

T F Aircraft center of gravity position is only of secondary importance
when discussing longitudinal static stability.

T F Due to the advance control system technology such as fly-by-wire, a
basic knowledge of the requirements for natural aircraft stability
is of little use to a sopisticated USAF test pilot.

T F Most contractors would encourage an answer of true (T), to the above
question.

T F For an aircraft with a large vertical cg travel, the chorcwise force
contribution of the wing to stability probably cannot be neglected.

T F FWD and AFT og limits are often determined fran flight test.

T F Acanard is ahoax.

T F The value oi stitk-fixed static stability is equal to cg minus hn in
percent MAC.

T F The stick-fixed static margin is stick-fixed stability with the sign
reversed.

T F A slab tail (or stabilizer) is a more powerful longitulinal control
than a twpiece elevator.

T F Elevator effectiveness and power are the same thing.

T F Elevator effectiveness is negative in sign for a canard
configuration.

T F Static margin is negative for a statically stable canard
configuration.

"T F Elevator powr is positive in sign for either a tail-to-the-rear or
a canard configuration.

rT F A,,msh caues a canard to be more destabilizing.

T F The main effect on longitudinal stability when accelerating to
supersonic flight is caused by the shift in wing ac fram 25% MWC to
about 50% MAC.

T F T•h elevator of a revemible control system is normally statically
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T F Ch is always negative and is known as the "restoring" marent

coefficient.

T F C is always negative and is known as the "floating" moment

coefficient.

T F With no pilot applied force a reversible elevator will "float" until
hinge mments are zero.

T F A free elevator factor of one results in the stick-fixed and
stick-free stability being the same.

T F Generally, freeing the elevator is destabilizing (tail-to-the-rear).

T F Speed stability and stick force gradient about trim are the same.

T F Speed stability and apparent stability are the same.

T F Speed stability and stick-free stability are the same.

T F Dynamic control balancing is making Ch small or just slightly
positive. a

T F og moveuent affects real and apparent stability (after retrimming).

T F Aerodynamic balancing affects real and apparent stability (after
retrimuing).

T F Downsprings and bctwights affect real and apparent stability (after
retriming).

T F In general, an aircraft becomes more stable supersonically which is
characterized by an AFT shift in the neutral point.

T F Even tbough an aircraft is more stable supersonically (neutral point
further AFT) it may have a speed instability.

T F The neutral point of the entire aircraft is analogous to the
aerodynamic center of the wing by itself.

T F Aerod1ynamnic balancing is "adjusting" or *tailoring" Ch 6and Ch

T F Neutral point is a constant for a given configuration and is never a
function of CL.

T F Te og location vdwe dFs/dV - 0 is the actual stick-free neutral
P point regardless of control system "gadgets.
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T F 7he effects of elevator weight on hinge mment coefficient are

normally eliminated by static balance.

T F A positive 6e is a deflection causing a nose-up pitching marent.

T F A positive Ch is one defined as deflecting or trying to deflect the

elevator in a negative direction.
T F Ch is nmo lly negative (tail-to-the-rear).

at

T F Ch is always negative (tail-to-the-rear and canard).

T F Ct and Ch are under control of the aircraft designer and can be

varied to "tailor" stick-free stabilit, characteristics.

T F Ch and % are identical.
at a

T F and Ch are not the sme.h6 6e

T F dFs/dV does not necessarily reflect actual stick-free stability

characteristics.
T F There are many ways to alter an aircraft's speed stability

characteristics.

T F A bobweight can only be used to increase stick-force gradient.

T F C. cannot be detmined fraii flight test.
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ANSWERS

I 5.1. b. C = +0.151
"tail

C. og 0.226 or 22.6%

d. C = +.172, 14% inc.
' mtail

5.4. A. SM = 0.15

B. C = .01/deg or .57/rad

e

C. h = 10%

5.5. A. = 35%

B. Cn 0.01/deg

e
C. C ~ =-05/deg

5.6. C =0. 1/dogj

5.9. B. 80% larger

5.10. E. hn = 0.25

G. SM - 0.10
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CMAPTER 6
MAWVRING FLIGHT



6. 1 INTRODUCTICN

The method used to analyze maneuvering flight will be to determine a

stick-fixed maneuver point (h ) and stick-free maneuv.r point (hW). Thesem M
are analogous to their counterparts in static stability, the stick-fixed and

stick-free neutral points. The maneuver points will also be derived in terms

of the neutral points, and their relationship to cg location will be shown.

6.2 DEFINITIONS

(Also see definitions for Chapter 5, Longitudinal Static Stability.)

Aceleration Sensitivity - The ratio n/a is used to determine allowable
maneuvering stick force gradients. It is defined in MIL-F-8785C as the
"steady-state normal acceleration change per unit change in angle of
attack for an increnantal pitch control deflection at constant speed."

Centriptal Acceleration - The acceleration vector normal to the velocity
vecor that causes chges in direction (not magnitude) of the velocity
vector.

Free Elevator Factor - F T - /

A multiplier that accounts for the change in stability caused by freeing
the elevator (allowing it to "float").

2U0 ac
"- A stability derivative. C =-Ding thatis generated by a pitch rate.mg C qQ

Stick-Fixed Maneuver M - The distance in percent MAC between the cg
azd th stick-fI mmieuver point h - hm.
Stick-Fixed Maneuver Point - hm The cg location where W d/ d = 0.

Stick-Free Maneuver Margin - The distance, in perceat MAC, between the cg
"a2 -the stick-free maneuver point =h -

Stick-Free Maneuver Point -h The og location where dFs/dn 0.
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6.3 ANALYSIS OF MANEUVERING FLTGHT

Maneuvering flight will be analyzed much in the same manner used in

determiiling a flight test relationship in longitudinal stability. For

stick-fixed longitudinal stability, the flight test relationship was

determined to be

Sd6e dCm/dCL

e m L (5.69)

e

This equation gave the static longitudinal stability of the aircraft in terms

that could easily be measured in a flight test.

In maneuvering flight, a similar stick-fixed equation relating to easily

measurable flight test quantities is desirable. Where in longitudinal

stability, the elevator deflection was related to lift coefficient or angle of

attack, in maneuvering flight, elevator deflection will relate to load factor,

n.

To determine this expression, we will start with the aircraft's basic

equations of motion. As in longitudinal static stability, the six eutiations

of motion are the basis for all analysis of aircraft stability and control.

In maneuvering an aircraft, the same equations will hold true. Recalling the

pitching mxient

G = Q-y - PR (I - Ix) + (P2  ) IXZ (4.3)

and the fact that in static stability analysis we have no roll rate, yaw rate,

or pitch acceleration, Equation 4.3 reduces to

G =0
y

t'iere are five prilmry variables that cause external pitching mciets on

an aircraft:

l f (U, o, Q, (6.1)

6.2
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If any or all of these variables change, there will be a change of total

pitching moment that will equal the sum of the partial changes of all the

variables. This is written as

Ark 2 M AU + at Aa + 3 M Aa + ax AQ + D M. A6 (6.2)
au 3--a -Q --- e

Since in maneuvering flight, AU and Ac are zero, Equation 6.2 beccmes

A f - Ax + --- AQ + ae A6 = 0 (6.3)act aQ aS e
e

and since = qSc Cm, then

=- qSc - . qSc Cm (6.4)

a a%

aQc

S= qSc qSc (6.6)
•e a6e ee e

Substituting these values into Equation 6.3 and multiplying by l/qSc,

3C

e

The derivative 3Cm/aQ is carried instead of Cm since the caypensating

factor c 2U is not used at this time. q

Solving for the change in elevator deflection A6

Act - (PC%/ Q) AQ
a .(6.8)

e

4fo 'Vhe analysis of Equation 6.8 may be continued by substituting in values
,for Au and AQ. 11ne final equation obtained should be in the form of swe•
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flight test relationship. Since maneuvering is related to load factor, the

elevator deflection required to obtain different load factors will define the

stick-fixed maneuver point. The immediate goal then is to determine th•e

change in angle of attack, Aa, and change in pitch rate, AQ, in terms of load

factor, n.

6.4 THE PULL-UP MANEUVER

In the pull-up maneuver, the change in angle of attack of the aircraft,

Ac, may be related to the lift coefficient of the aircraft. In the pull-up

with, constant velocity, the angle of attack of the whole aircraft will be

changed since the aircraft has to fly at a higher CL to obtain the load factor

required. The change in CL required to maneuver at high load factors at a

constant velocity comes from two sources: (1) load factor increase and (2)

elevator deflection. Although often ignored because of its small value when

compared to total CL, the change in lift with elevator deflection CL 6 6e

will be included for a more general analysis. e

Referring to Figure 6.1, the aircraft is in equilibrium at some CL

corresponding to sane a 0 before the elevator is deflected to initiate the

pull-up. If the elevator is considered as a flap, its deflection will affect

the lift curve as follows. When the elevator is deflected upward, the lift

curve shifts downward and does not change slope. This says that a t.ertain

amount of lift is initially lost 4ien the elevator is deflected upward. Tle

loss in lift because of elevator deflection is designated C A e6 'Ie
C

increase in doam-loading continues to pitch upa•d and increase its angle of

attack until it readcs a nw CL and an equilibrium load factor.

V6.4
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AFTER

BEFORE ELEVATOR
C ELEVATOR / DEFLECTION

CL MAN DEFLECTION /} CL MAN

C Lo C1. A60

U o tMAN

FIGURE 6. 1. LIM COXYFICIE2 VERSUS ANGLW Q, A'O'FVr

In other words, a pitch rate is initiated and q increases wntil a mneuvering

lift coefficient %W is reaclvd for the deflected elevator 4 e . IIre change

in angle of attack is aa. The change in CL has coe partially fxmi the

dof1lxtcZ el4avtor atwl m-iny from the pitching maeuver. IThe ch.1Mqe in 17,

due to the taneuwr is fLvu CL0 to -,,. Since it did not change the

the lift curv, and including the chango in lift Caus by elcvtor

deflection, the expression for Au b-"otmv

CL= am 16.9)

XL aMc

4CL AC - A6 ~ aI ~(.0

IN-.
? :

1+ !!



[ACI=a A6e (6.11)

To put Equation 6.11 in terms of load factor, AC_,,, nmust be defined. This is

the change in lift coefficient frcm the initial conditicn to the final

maneuvering condition. This change can occur from one g flighit to some other

load factor or it can start at two or three g's and progress to some new load

factor. If C is at one g then

cL (6.12)

and

nOW

C -- qS j6.3)

,re n 0 is the initial load factor. Similarly,

C ral (6.14)

u4-re n is tvw maneuvring load factor.

,, IN n O0 W

if C (615

finally m/botitutinqV Iation 6.15 into zuation 6.11

,A,. IC All, A61 (6.16)

no I wt io 6. J.
- qjatioin 6. 16 is mw ready for -ouztitution into t)quation 6.8.

Aui Dqexssimn for AQ in E4uwtiw .8 will be derived usitgj the pu1l-ukp

s•uamwuver anaiysis.
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R

AO

A8SA
\1U

U

(a) (b)

FIGURE 6.2. CUR7ILINEAR WIION

Referring to Figure 6.2(a)

AS
R

do lir A0 lir AS 1
dtT At-0 WE At-0 Tt R

do - Q (6.19)

From Figure 6.2(b)

A- A8 (small angles iobere tan 0 0 0) (6.20)

dO lim AU I 1 dU (6.21)
TtE At 0-At U at

Contining Fquations 6.21 and 6.19

dU U2 (6.22)
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which may be recognized as the equation for the centripetal acceleration of a
particle moving in a circle of radius R at constant velocity U. The force (or

change in lift, AL) required to achieve this centripetal acceleration can be

derived from (F = ma). Thus,

AL = -a W U (6.23)'g gR

The change in lift can be seen in Figure 6.3 to be

AL = nW- nW W(n - no) (6.24)

LO

%W

nW

FIGURE 6.3. WINGS LEVEL PVLI,-UP
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, Again, the change may take place frcm any original load factor and is not

limited to the straight and level flight condition (no = 1). Therefore, for a

constant velocity maneuver at U0 , Equations 6.23 and 6.24 give

WU01U_0 U_0)
W (n - no) = - (6.25)

Using Equation 6.19 and the definition of AQ

0 -0 Q Q0 =AQ (6.26)R o

Equation 6.25 can be written

AQ = g (n- n0) An (6.27)

Now Equations 6.27 and 6.16 may be substituted into Equation 6.8.

-C [ an - CL A6 DC An
e Cm

e e

From longitudinal static stability,

C a (h h (6.29)
it, n

Also to help furdter in redwuing the equation to its sioplest txzrms,

0 P10(6.30)

6.9-'p ,,"t,•'



Substituting Equations 6.31, 6.30, and 6.29 into Equation 6.28 results in

A6e - cL - (h -hn+ PCq)(632
An C CL6 - C6 a n m (6.32)

e e

Equation 6.32 is now in the form that will define the stick-fixed

maneuver point for the pull-up. The definition of the maneuver point, hm, is

the cg position at which the elevator deflection per g goes to zero. Taking

the limit of Equation 6.32,

lim Ae d6e (6.33)A n 0 An- dn

or

d6 e aC L h - ha + 1 m (6.34)an Ce

Setting Equation 6.34 equal to zero will give the cg position at the maneuver

point h - I
pSc
ph - - Cm (6.35)

Solving Equation 6.35 for hn and substituting into Equation 6.34,

Z;a (h - hm) (6.36)C- c -c a 6e C

whore we now defint h - h as the stick-fixed maneuver margin.In

.The significant points to be made about: Euation 6.36 are:

1. Ibe derivative dS /dn varies with the maneuver margin. The
more forward tlhe _g., the more elevator will be required to
"obtain the lidit load factor. 'Mat is, as the cg moves
forward, more elevator deflection is necessary to obtain a
given load factor.

6.10



2. The higher the CL, the more elevator will be required to obtain
the Limit load factor. That is, at low speeds (high CL) more

elevator deflection is necessary to obtain a given load factor
than is requiired to obtain the same load factor at a higher
speed (lower CL).

3. The derivat:'.ve d6 e/dn should be linear with respect to c at a

constant C. (Figure 6.4).

I pHIGH CL

di

FIGURE 6.4. M hV'ATOR DTECLICTON PER G

Another approach to solving for the maneuver point h ir to roturn to

the original stability fqiion rotu lornitwlinal static stability.

- ac

dM - ac ÷ M d;

-- I %- (6,43)

lbe effect of pitch d.<mpii- on aircraft sAability wii bc• dliy'c w.id

atddW- to Equation 6.43,. callinq th,• mlationship

•Cm e 4. 31)
' ~2U

frcn uatjiow of motion, &.iticn 6.,37 can be w'i--en

(6.3?4-
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Substituting the value obtained for AQ fran Equation 6.27

AC. = cg C An (6.38)

2in 2 m q2• 0 2 q

Substituting

ACLAn %

from Equation 6.15 and Equation 6.12

w

CL = qS (6.12)

into Equation 6.38 gives

Acr ~ ACT... (6.39)

lim AC dC Osc
= m 4 16.40)

•irlq
Doing

This term may nw be added to Equation 5.43, If the sign of C is negative,
q

then the term is a stabilizing contribution to the stability equation. C"in

will be analyzed further.

inm (1c dc_)+ Sc~h - -12 + m - v I- (6.41)

The maneuver point is found by setting Zmi/dCL equal to wro and solving for

tJe og position %here this occurs.

X I dc SC
hm + 1wV It1C 6.42)

"-6.12
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The first three terms on the right side of Equation 6.42 may be identified as
the expression for the neutral point hn*. If this substitution is made in

Equation 6.42, Bluation 6.35 is again obtained.

I hn - C (6.35)
m hn 4mCmq

The derivtive Cm found in Equations 6.34 and 6.35 needs to be exantined
q

before proceeding with further discussion.

The danping that comes from the pitch rate established in a pull-up comes
from the wing, tail, and fuselage coponents. The tail is the largest

contributor to the pitch damping because of the long moment ann. For this

reason, it is usually used to derive the value of Cm . Swetimes an empirical
q

value of 10% is added to account for damping of the rest of the aircraft, but
often the value for the tail alone is used to estimnate the derivative. The

effect of the tail may be calculated ftan Figure 6.5.

U'A

FIGURE 6.5. PI'ItH WAWIWK;

The pitching mrmmnt effect on the aixcraft from tho do&ward movinA, horizwntal

stabilizer is

t qw w Cw11CM(6.4.3)
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where )

ALt = qt St ACt (6.44)

Solving for ACm,

M = - ACt (6.45)

The conbination £t/cwk can be recognized as the tail volume coeffi-
cient, V H. The term qt/qw is the tail efficiency factor, nt. Equation 6.45

may then be written

= vHt ACLt (6.46)

which can be further refined to

IC t -V. nt at 44t (6.47)

Frcm Figure 6.5, the change in angle of attack at the tail caused by the pitch

rate will be

S tan- AQt t
tA - ;' -- (6.48)tu 0 110

Sbstituting Oquation 6.48 into 6.47

itat - Va n. - (6.5

Ta'•king the limit of Fquation 6.49 gi~s

6.14



Equation 6.50 shows that the damping expression aCm/!Q is an inverse function

of airspeed (i.e., this term is greater at lower speeds). Solving for C

using Equation 6.31 q

2U0 ac t
Cm ~ 2-A= -2at~nc (6.51)C C m QMq c3Q 2t VH 'It c-(.1

q

The damping derivative is not a function of airspeed, but rather a value

determined by design considerations only (subsonic flight). The pitch damping

derivative may be increased by increasirg St or t".

When this value for Cmq is substituted into Equation 6.35

hm P~~S a t n t ItVHj(.2
hn + a (6.52)

S'Ie following conclusions are apparent fran Equation 6.52;

1. The ;,r.neuvr point should always be behir% the neutral point.
This is \xrified since tie addition of a pitch rate increases
the stability of the aixx-aft (Cm is negative in Equation

6.41). t lerefore, the stability margin should increase.

2. Aircraft geciatry is influential in locating the manuver point
aft of the neutral point.

3. As altitsxk- increases, the distanme between the noutral point
and r•ncuwur poIxnt &creases.

4. As wufijt decreases at any given altitude, the maneuver point
mows further be-hind tte neutral point and the naneLuver
stability matg"gin increases.

'M5. h e lzgst variation betwen mnweuver point and neutral point
occurs with a lih-t ailcraft flyLng at sea lev-l.

6.1.$



6.5 AIIERAFT BENDING

Before the pull-up analysis is ccpleted, one more subject should be

covered. (ne of the as=zrTtions made early in the equations of motion course

was that the aircraft was a rigid body. In reality, all aircraft bend when a

load is applied. The bigger the aircraft, the more they bend. The effect on

the aircraft bending is shown in Figure 6.6.

RIGID AIRCRAFT UNDER HIGH LOAD FACTOR

NONRIGID AIRCRAFT UNDER HIGH LOAD FACTOR

FIGURE 6.6. AIt.RAPIr MWING

As the non-rigid aircraft bends, the amgle of attack, at of the horizontal

stablizr dereases. In order to keep the aircraft at the saneý overall angle

of attack, the original angle of attack of the tail twist be roestablished.

This ro*Lires an increase in the elevator (slab) deflection or an additional

46 0 per load factor.

6.6 7w 7"P 4MUVM

.he subject of maneuvering in pull-ups has alreaty been presented. Wile

it is the easiest method for a test pilot to perform, it is also the most time

6.16



consuuing. 1herefore, most maneuvering data is collected by turning. There
are several methods used to collect data in a turn.

In order to analyze the maneuvering turn, Equation 6.8 is recalled

Cm Aot (Cm/3Q) AQ

A6 - ( 16.8)

e

The expression for Aa in Equation 6.16 derived for the pull-up maneuver,

is also applicable to the turning maneuver.

Ac = a(CLAn - A6e) (6.16)

Such is not the case for the AQ expression in Equation 6,8. Another

expression (other than Equation 6.27) for AQ pertaining to the turn maneuver,

must be developed.

Referring to Figure 6.7, the lift vector will be balanced by the weight
and centripetal accelexation. One ccmpnent (L cos €) balances the wight &d

the other (L sin €) results in the centripetal acceleration.
L L oo, s

N0*

wit 4w

AW

U.-...• oa

FIGURE 6.7. FORCES IN WEE URNI MANaUVE•

6.17
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42

L•sin (6.53)

Fbr a level turn,

L cos = W (6.54)

n = L/W (6.55)Cos

Now, dividing Equation 6.53 by Equation 6.54 and rearranging terms

UOsin (6.56)R UOCos

AR RAUIUS OF TURNP

FIQ M 6. 8. A IRLE:•AkT IN "IN -, ¶ I I 4W, M

MfewrlWrij to Fiqwurfe 6,8 Ulte• pitch rate is b- y a wv.tor Aw~n tho

wingn, and yaw rato a Avetor vetically uvwh dlý cantar. of gravity, the

fo11kwitq r aticins4d can be dorive.

U

o,. Sin. ."" 1,4.



IU

Q UIT sin (6.59)

Substituting Equation 6.56 into Equation 6.59

Q 9 -sin 2 (6.60)

From trigonanetzy,

Q q cos (6.61)

Q = - cos 0 (6.62)U Cos

Substituting Equation 6.55 into Equation 6.62 gives

Z (n (6.63)

*41 1 m.x-wing fra1i initial conclitions of n0 to n, the 0Q equation e1,

11,W goeral eVression for AQ in . a .65 ai the value of ba in Dquation

6.16 my now be mbstituted into u.-ition 6.H to determine as

To.- U n)

M~~~~___c ___~ (k (6.66)

Sa~titut~(6.31)

0. q
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into Equation 6.66 and rearranging gives

C. CL An +C% a -- (iin)(1 +~

A6 q 2U C 0 2c a (6.67)

e e

Now, from longitudinal static stability,

Cm = a (h - hn)

and

-PSCI

Using these relationships, Equation 6.67 can be wittern

Se _ L (h-_h + pS e(I + 1 (6.6 8)
aL a n)

e e

Taking the limit of 4e/w as .•--a-0 in Bquation 6.68

d' Lh n ( 6.69)

e - h +

Ttw mxaovmer point is determined by sottitng ds5e/dn tqual to zeto arw!

solving for the cg position at this point.

1rn - (. +

The maneuver point in a turn differs from tJW Irall-up by tho factr
"(1 + 1/n2) . Tis means that at high load factorg the, turn and pull-up

anaVur points will be very nearly the same. 11 Equation 6.70 is so I, *o,

hnand eftitut~Ad back LAtO 14uat~in 6.69 the rtmilt ij
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dc e C aCL (h- h) (6.71)

d~n C L C a

e e

The term d6 e/dn is not the same for both pull-up and turn since hm in

Equation 6.71 for turns includes the factor (1 + 1/n 2) and is different fran

the hm found for the pull-up maneuver. The conclusions reached for Equations

6.36 and 6.52 apply to Equations 6.71 and 6.72 as wei1.

pSat nt kt VH
hm = h + (1 + 1/n) (6.72)

6.7 SU44ARY

Before looking further into the stick-free maneuverability case, it would

be well to review the develognent in the preceding paragraphs and relate it to

the results of Chapter 5.

The basic approach to longitudinal stability was centered around firning

a value for dCm/dCL. It was found that a negative value for this derivative

meant that the aircraft was statically stable. The derivative was analyzed

for the stick-fixed case first and then the stick-free case. The cg position

where this derivative was zero was defined as the neutral point. Static

margin was defined as the difference between the neutral point and the cg

location. The stick-free case was determined by

X~_L dC X•• ~
- m + 6 m (5.82)

L 1
Stick-Free Stick-Fixed Effect of
Aircraft Aircraft Free Elev

The free elevator case was merely the basic stability of the aircraft

with the effect of freeing the elevator added to it.

When the maneuvering case was introduced, it was shown that there was a

( new derivative to be discussed, but the basic stability of the aircraft would

not change - only the effect of pitch rate was added to it.

6.21



d dCmn demn
dC+ A (6.73)

XdLC L L
Stick-Fixed Stick-Fixed Effect of the
Aircraft Pitching Aircraft Pitch Rate

Fbr the stick-free case, the following must be true,

- iM+- (6.74)
LL LL

Stick-Free Stick-Fixed Effect of Effect of
Aircraft Pitching Aircraft Free Elev Pitch Rate

dQ dCdCe dC! I
dc Mm j+ A c m(6.75)

Stick-Free Stick-Free Effect of
Aircraft Pitching Aircraft Pitch Rate

NOTE: This "Effect of Pitch Rate" term is not necessarily the same as the
corresponding term in Equation 6.73.

6.8. STICK-FREE MANEXJERING

The first analysis of stick-free maneuvering requires a review of
longitudinal static stability. It was determined in Chapter 5 that the effect
of froeing the elevator was to multiply the tail term by the free elevator
factor F which equaled (i - T Ch /.Cj ). Consequently, in the maneuvering case,I6
to find the stick-free maneuver point the tail effect of stick-fixed
maneuvering must be multiplied by this free elevator factor. Recalling

Equation 6.42 from the stick-fixed maneuvering discussion,

X ac X m a t de) PS- dCn + a - -- C (6.42)

c d + 'I6t 32q
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Multiplying the tail terms by F,

h' - ac m + -- V • i-• P_•c r. ( 6.76)
-- X 1C dcxdC aw H d. 4m m

The first three terms on the right are the expression for stick-free

neutral point, hn. Thus,
n

F = " -- mCm P (6.77)
m n1 4mm q

This is the stick-free maneuver point in terms of the stick-free neutral point

for the pull-up case. It may be extended to the turn case by using the term

for the pitch rate of the tail in a turn.

n = -' Cm F 1 + (6.79)m n 4m mq

These equations do not give a flight test relationship, so it is

necessary to derive one from stick forces, as was done in longitudinal static

stability. The methcd used will Le to relate the stick- force-per-g to the

stick-free maneuver point. Starting with the relationship of stick force,

gearing, and hinge moment that was derived in Chapter 5,

F = -GH( .s e (5.91)

He = q Se e Ch (5.92)

F s = - Gq S e c e Ch (5.93)

The change in stick-force for a change in load factor becomes,

AF AC
A-n= -Gq Se e hn (6.79)
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where

A = Ch Aat +C A6 (6.80)
a 6

6.8.1 Stick-Free Pull-up Maneuver
ACh must be written in terms of load factor and substituted back into

Equation 6.79. This will require defining Aait and Aa e in terms of load
factor. The change in angle of attack of the tail cames partly frcm the
change in angle of attack of the wing due to downwash and partly from the

pitch rate.

At = AL 1 - de + AQ It (6.81)

%bere Aa and AQ in the above equation are

A = 1 (CLAnC MeUe) (6.16)

AQ 0An (6.27)
U0

1eacall that

aC
L (h - (6.36)

An CM L C

e e

Assuming CL is small enough to ignore, Equations 6.81 and 6.36 can be

written e

-- (I-•) An + 2-- t An (6.82)
64 U02
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Me- C-, (h - hm) (6.83)

e

Substituting Equations 6.82 and 6.83 into Equation 6.80, gives Equation 6.84

Dibt. ••,t Lng,
Ut0 2 = 2W/SCL (6.30)

and the definition of control power,

S = - aVHn (5.50)m6
e

into Equation 6.84 and factoring gives

ACh Ch6 C Chad Ch aS. psit+hh)
Th I~ dc Ca -s-atV t,+(-

e C6 
(6.85)

Fran longitudinal stability,

C-h a thn- h' = -a d

nVH ,t 6 -a (6.86)

Substituting Equations 6.86, 6.51, and 6.87 into Equation 6.85 gives Equation

6.88

=-2a t (6.51)
CM t VH 't cq

F Ch (6.87)
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ACh Chh 6 m nL8
Ahh - hn L s + ( -F)P C -h + l (6.88)

Ann
e

But

h = hn Cm (6.35)
m n 4m i

Therefore
, A• •C6CL Fh h 1c

hn - h I +-P C F (6.89)

Substitutirq Equation 6.89 back into Equation 6.79 and taking the limit gives

dF S ~Ch 6CL S

3n - Gq Se ce h - hn +VCmF1 (6.90)

Defining the stick-free maneuver point h' as the cg position where dFs/dn ism s
equal to zero, Equation 6.90 reduces to

hn --- 'C. F (6.77)
q

which was previously derived. Equation 6.90 can then be rewritten

dr s Ch 6CL
G q-•S ce CM6 (h - h() (6.91)

e

Equation 6.12 can be substituted into Equation 6.91

CL- (6.12)

which gies the final stick-force-per-g equation

d G S (cW I (h -m (6.92)

e
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6.8.2 Stick-Free Turn Maneuver

The procedures set for determining the dF sdn equation and an expression

for the stick-free maneuver point for the turning maneuver is practically

identical to the pull-up case. Fbr the turn condition, AQ is now

('2 n 1 .4 .(6.93)

The change in angle of attack of the tail, Aa becomes

, /1 de) g't <
Ad J_ An + U An + (6.94)

and

Ae CL [hh+PSC (I+ ) (6.95)An -;, h_ n +FCq

e

4 Substituting Equations 6.94 and 6.95 into Equation 6.80 and performing the

sane factoring and substitutions as in the pull-up case

An Kh + Cm (6.96)

ubWstituting Equation 6.96 into Equation 6.79 and taking the limit as An - 0,

GqSnc - - 1(9:2 -U C I n2)(697

Solving for the stick-free maneuver point,

n " hF + (6.98)
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Further substitution puts Equaticn 6.97 into the following form:

= G (S e h)h') (6.99)

e

Again, the turning stick-force-per-g Equation 6.99 appears identical to

the stick-free pull-up equation. However, the expression for the maneuver

point hý is different.

The term in the first parenthesis represents the hinge moment of the

elevator and the aircraft size. The second uerm in parenthesis is wing

loading, and the third term in parenthesis is the reciprocal of elevator

power. The last term is the negative value of the stick-free maneuver margin.

The following conclusions are drawn from this equation:

1. The stick-force-per-g appears to vary directly withi the wing
loading. However, weight also appears inversely in h.

Therefore, the full effect of weight cannot be truly analyzed
since one effect could cancel the other.

2. Since airspeed does not appear in the equation, the
stick-force-per-g will be the same at all airspeeds for a fixed
o0.

S= h ' - SC 1F (6.77)
n mq

Fron Equation 6.77 come the following conclusions:

1. The difference between the stick-fixed and stick-free maieuver
point is a function of the free elevator factor, F.

2. The stick-free maneuver point, hý, varies directly with

altitude, becoming closer to the stick-free neutral point, the
higher the aircraft flies.

The location of the stick-free maneuver point occurs where C's/dn = 0.

It is difficult to fly an aircraft with this tyle gradient. Consequently,

military specifications limit the minimum value of dFs/dn to three pounds per

g.

6.28



The forward cg may be limited by stick-force-per-g. The maximum value is
limited by the type aircraft (bonber, fighter, or trainer), i.e., heavier

gradients in boter types and lighter ones in fighters.

6.9 EFFECTS OF BOBWEIGHTS AND DOW'SPRINGS

The effect of boabiights and downsprings on the stick-free maneuver point
and stick-force gradients are of interest. The result of adding a spring or
bobweight to the control system adds an incremental force to the system. The

effect of the spring is different from the effect of the bobweight. The
spring exerts a constant force on the stick no matter what load factor is

applied. The bobweight exerts a force on the stick proportional to the load

factor.

Fe
Fe

740

1..
nW

FIGURE 6.9. DOCNSPRIN AND BOWEIGMl

Adding incremental forces for the downspring .and boxight of Equation

5.93 gives

Dcwspring

SFs G qGSeceCh+T X (6.100)
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Bobweigt

Ss " Gq S e c e Ch + nW Z2 (6.101)

When the derivative is taken with respect to load factor, the effect on
dFs /dn of the spring is zero. The stick force gradient is not affected by the

spring nor is the stick-free maneuver point changed.

Downspring

d- - G q Se ce d-- + 0 (6.102)

For the bobwight, the stick-force gradient dFs/dn is affected and

Vobweight

d Ps dCh 11
._-G q Se ce Z67 + W --Z (6.103)

OznsiLuetly, the addition of the bcdweight (positive) increases the

stick force gradient, nwves the stick-free mnAneuver point aft, and shifts the

allcable cq spread aft (the mininumr and maxizwim cg positions as specified by

forLc gradlients are mwved aft). See Figure 6.10.

6..
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4ýdn BOB8WEIGHNT

MAX- -
dFd

l ,M I N - h-

mm

FIGURE 6. 10. EFM'CTS OF ADDING A DOW)EIGHT

wcall from Chapter 5, iongitudinal Static Stability, (Reference Figure

5.51), that downsprirKgs and b&ie4ts may be used to decrease stick forces.

Thfe bohweight may also decrease the stick force gradient. If a boebight is

usexl in this configuration, a d&wt~spring may be needed to counter-balance the

bobweight for non-maneuvering (ig) flight conditions, i.e, to preserve the

original speed stability before the be1igt was added.

6.10 AE|•MUDY4IC NIAMNCING

Aerodyrnmic balancing is usaed to af fect the stick force gradient and

stick-free maneuver point. Aerodynwaic balancing or varying values of Ch and
a

Ch affects the following stick-free equatimns:: 6

dF
9 s G (So c hh- hm0 (6.99)

0 c c
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-sc (6.77)

F = 1- h (6.87)

Decreasing Ch and/or increasing Ch by using such aerodynamic balancing

devices as an overhang balance or a lagging balance tab, does the followiig:

1. The free elevator factor F decreases

2. The stick-free maneuver point N1 moves forward

3. The maneuver margin term (h - h;) decreases

4. The stick force gradient decreases

5. The forward and aft cg limits movwe forward

wreasing C, and/or decreasing Ch by using a convex trailing edge or a

leading balane tab does the following:

1. The free elevator factor F increases

2. The stick-free maneuver point IV, qwNes a't

4. 1he maneuver targin term (h - Ih) increases

5. The foraurd and aft cg limits move aft

6.11 CENTER OF GRAVMIT 'RESTRICTIONS

The restrictions on the aircraft's center of gravity location may be

examined by rcferring to the mean aerodynivnic chord in Figure 6. 11.
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dF_ dFS
C x LUM dnMM dn..N h. h. hWm hm

.1.2 .3j .4

FIGURE 6.11. RtETRICrIXIS TO CENTER OF GRAVI¶Y LcATIC•lS

The forward cg travel is nomilly limited by:

I. Maximum stick-force-per-q gradient, dFSI/dr,

2. Elevator required to flare and land at in growd offact
or

3. Elevator required to raise the nose for takeoff at the proxir
airspeed

The aft og trawol is normally limnited by:

1. Minimum stick-force-per-g, dFs /dn, or

2. Stick-free neutral poinit (piwer on), W
n

Additional considerations:

1. The stick-free neutral and mneuver points are located ahead of
their respective stick-fied points.

2. The stick-free manewver point, h' can be mox,,d aft with a
bobc icaigt, but not with a downspring.
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3. The desired aft cg location may be unsatisfactory because it
lies aft of the cg position giving minimum stick force
gradient. The requirements for a bobwight or a particular
aerodynamic balancing then exists to increase the minimum stick
force gradient aft of the desired aft cg position.

The equations which pertain to maneuvering flight are repeated below:

Pull-up, Stick-fixed

h = h -QEc (6.35)Sn 4m m
q

d 6 e a C Lh -( .6
d-n=Cm• CL - Cm a h- (6.36)

e o

Pl !-up, Stick-free

lt hF (6.77)
fn n 4Mm

dF-5  W .. . . h - 1• (6.92)

dn , Se Cebb S CM

dns G q So e CC, IT +6.1031SC

Turn, St ick-fixedJ

h hn-I-+ (6.70)

da a C.
h • h h - (6.71)

Cl t•CL M

Turn, Stick-free

h h ' h - CM F I +L (6.98)
m~ n4Im\ 2J



dFs G ( c )
- G Se ce Ch) (h - hý) (6.99)

e

6.12 MANEUVERING FLIGHT TESTS

Th,,e parpose of maneuvering flight is to determine the stick force versus
load factor gradients and the forward and aft center of gravity limits for an

aircraft in accelerated flight conditions.

To maneuver an aircraft longitudinally from its equilibrium condition,
the pilot must apply a force, Fs, on the stick to deflect the elevator an
increment, A6e' The requirements that must be met during longitudinal

I maneuvering are cowered in MIL-F-8785C, Section 3.2.2.

6.12.1 Military Specification Requirerrents

MIL-F-8785C specifies tne allowable stick-force-per-g gradient during
maneuvering flight. It also specifies that tle force gradients be approxi-

mately linear with pull forces required to maintain or increase nonnal acceler-
ation. The pilot must also have sufficient aircraft response without exces-

sive cockpit control movement. These requirements and associated requirements

of lesser importance provide the legitimate background for good aircraft

handling qualities in maneuvering flight.
The backbone of any discussion of maneuvering flight is stick-force-

per-g. The amount of force that the pilot must apply to maneuver his aircraft
is an important parameter. If the force is very light, a pilot could over-

"stress or overcontrol his aircraft with very little resistance from thej • aircraft. The T-38, for instance, has a 5 lb/g gradient at 25,000 feet, Mach

0.9, and 20% MAC cg position. With this condition, a ham-fisted pilot could

pull 10 g's with only 50 pounds of force and bend or destroy the aircraft.

The designer could prevent this possibility by making the pilot exert 100 lb/g
to maneuver. This would be highly unsatisfactory for a fighter type aircraft,

but perhaps about right for a cargo type aircraft. The mission and type of
aircraft must therefore be considered in deciding upon acceptable stick-

force-per-g. Furthermore, the force gradient at any normal load factor must

be within 50% of the average gradient over the limit load factor. If it took
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10 pounds to achieve a 4 g turn, it would be unacceptable for the pilot to 3
reach the limit load factor of 7.33 g's with only a little additional force.

The position of the aircraft's cg is a critical factor in stick-force-
per-g consideration. The fore and aft limits of cg position may therefore be
established by maneuvering requirements.

6.12.2 Flight Test Methods

7here are four general flight test methods for determining maneuvering

flight characteristics such as stick force gradients, maneuver points, and
permissible cg locations. The names given to these methods vary among test

organizations, so make certain that everyone involved is speaking the same
language when discussing a particular test method.
6.12.2.1 Stabilized g Method. This methcd requires holding a constant
airspeed and varying the load factor. Establish a trim shot at the test

altitude-, note the power setting, and climb the aircraft to the upper limit
of the altitude band (+2,000 feet). Reset trim power and roll the aircraft

slowly into a 150 bank while lowering the nose slowly. At 150 of bank, the
stick force required to maintain the condition is only slightly more than

friction and breakout. Record data when the aircraft has been stabilized on
an airspeed and bank angle. The attitude indicator should be used to establish
the bank angle. Increase the bank angle to 300 and record data when stable,
Obtain stabilized data points at 450 and 600 also.

Above 600 the bank angle should be increased so as to obtain 0.5 g
increments in load factor. Stabilize at each 0.5 g increment, and record

data. Terminate the test when heavy buffet or the limit load factor is
reached. Above 2.0 g's only slight increases in bank angle are needed to

obtain 0.5 g increments. Bank angle required can be apprccimated fran

the relationship cos 1 = 1/n (Figure 6.12).

6
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C. Little altitude is lost at the lower bank angles up to approximately 60&,
and thus more time may be spent stabilizing the aircraft. At 600 of bank

and beyond, altitude is bing lost rapidly; therefore every effort should be

made to be on speed and well stabilized as rapidly as possible in order to
stay within the allowable altitude block (test altitude +2,000 feet). If the
lower altitude limit is approached before reaching limit load factor,

climb to the upper limit and continue the test. It is unnecessary to obtain

data at precise values of target g since a good spread is all that is

necessazy. Pealistically, data should be obtained within +0.2 g of target.

w _Cos • W =
nW nl

L=nW
I

OR n- cos

W

FIGURE 6.12. -LOAD FACIC VERSUS BANK ANGLE RELATIONSHIP
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The method of holding airspeed constant within a specified altitude band

is recommended where Mach is not of great importance. In regions where Mach

may be a primary consideration, every effort should be made to hold Mach

rather than airspeed, constant. If power has only a minor effect on the

maneuvering stability and trim, altitude loss and the resulting Mach change

may be minimized by adding power as load factor is increased. At times,

constant Mach is held at the sacrifice of varying airspeed and altitude. For

constant Mach tests, a sensitive Mach meter is required or a programmed

airspeed/altitude schedule is flown. The stabilized g method is usually used

for testing bomber and cargo aircraft and fighters in the power approach

configuration.

6.12.2.2 Slowly Varying g Method. Trim the aircraft as before at the

desired altitude. Note the power and fly to the upper limit of the altitude

band (+2,000 feet). Reset power at the trimmed value and record data.

Increase load factor and bank angle slowly holding airspeed constant until

heavy buffet or limit load factor is reached. The rate of g onset should be

approximately 0.2 g per second. Airspeed is of primary nuortance and should

be held to within +2 knots of aim airspeed. Take care not to reverse stick

forces during the maneuver.

If the airspeed varies excessively, or the lower altitude limit is

approached, turn off the data recorder and repeat the test up to heavy

buffet onset or limit load factor.

The greatest error made in this method is bank angle control when beyond

600 of bank. Excessive bank causes the aircraft to traverse the g incremnts

too qaickly to be able to accurately hold airspeed. Good bank control is

impoie•nt to obtain the proper g rate of 0.2 g per second. An error is

induced in this method since the aircraft is in a descent rather than level

flight. Stick forces to obtain a specific g wil.l be less than in level

flight. Fortunately, this error is in the conservative direction.

W,
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The slowly varying g method may be more applicable to fighter aircraft.
Often a combination of the two methods is used in which the stabilized g

method is followed up to 600 bank angle and then the slowly varying g method

is used until heavy buffet or limit load factor is reached.

6.12.2.3 Constant g Methcd. Stabilize and trim at the desired altitude and

maximum airspeed for the test. Establish a constant g turn. Record data

and climb or descend to obtain a two to five knot per second airspeed bleed

rate at the desired constant load factor. Normally climbs are used to obtain

a bleed rate at low load factors and descents are used to obtain a bleed rate

at high load factors. For high thrust-to-weight ratio aircraft at low

altitudes, the maneuver may have to be initiated at reduced power to avoid

rapidly traversing the altitude band. Maintaining the aim load factor is the

primary requirement while establishing the bleed rate is secondary. Keep the

aircraft within the altitude band of +2,000 feet. Note the airspeed as the

aircraft flies out of the altitude band. Return to the altitude band and

start at an airspeed above the previously noted airspeed so that continuity of

g and airspeed can be maintained. Note airspeed at buffet onset and the g

break (when aim load factor can no longer be maintained). The buffet and

stall flight envelope is determined or verified by this test method. Repeat
the maneuver 0.5 g increments at high altitudes and 1 g increments at low

altitudes.

6.12.2.4 Symmetrical Pull Up Method. Trim the aircraft at the desired test

altitude and airspeed. CIrrb to an altitude above the test altitude using

power as required. Reset trim power and push over into a dive. The dive

angle and lead airspeed are functions of the target load factor.

44 Maneuver the aircraft to a lead point that will place it at a given

constant load factor while passing through the test altitude at the test

airspeed. Two methods may be used which yield the same results. The idea
behind both methods is to minimize the number of variables.
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a. Method A - Using a variable dive angle and fixed lead airspeed,
smoothly increase back pressure so that the airspeed is stabilizing

as you pass through 100 nose low. For a given g and constant lead
airspeed, there is a specific dive angle which will allow you to

stabilize the airspeed as you pass through 100 of dive.

b. Method B - Using a constant dive angle and adjusting lead
airspeed, smoothly apply back pressure to establish the target g.
If the proper lead airspeed is used, the airspeed will stabilize
as the target g is established.

Using either method, the aircraft should pass through level flight (+100

from horizontal) just as the airspeed reaches the trim airspeed with aim g

loading and steady stick forces. Be sure to freeze the stick. Achieving the

trim airspeed through level flight, +100, and holding steady stick forces to

give a steady pitch rate are of primary :i•portance. The variation in altitude

(+_1,000 feet) at the pull up is less important. The g loading need not be

exact (+0.2g) but must be steady. Pecord data as the aircraft passes through

level flight +100.
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6.1. Given the following data, find the stick fixed maneuver point:

20- - -- - -

0- - - a- - -

1.0 2.0 3.0 4.0

6.2. A. Ompute Cm for the T-33A

LT 16. ft

c a 6.7 ft

I - 1.0

Ar 3. 5 RAD71

Ar 45.5ft2

S -- 235 ft
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B. Compute for the F-4C

kT = 21 ft

c = 16.0 ft

nT = 1.0

aT 3.0 RA-7

ST = 96 ft 2

S = 530 ft 2

C. If Cm is in the range of -6.5 to -9 for most aircraft, which
q

aircraft (T-33 or F-4C) would you anticipate might have maneuvering

flight and dynamic damping problems?

D. How does Cm caputed for the T-33A in 2.A on the last page ccapare

to real wind tunnel data shon below?

CO M ACH4

C 0 0.2 0.4 0.6 0.8
(RAD t)-

-4 .0 i . .... ... . .. .. . .. ._ _ _ _ _ _ .. ..._ _ -...

-6.0-

-12.0-
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6.3. Given that an aircraft with a reversible flight control system has
stick-fixed and stick-free neutral points of 30% and 28% respectively,

the following is flight test data using the stabilized method (which is a

technique involving stabilized turns).

t =-0.4

Ch = .004 CT = -O.4 10,

C~ =.0000
Ch - C, -.008 8

6, 4
(DEG) 3"%

2'

(. 0'.
12 3

NI

Ifat is tbo value of tho stick-froe maneuver point at ni 3?

6.4. At the same trim and test point, a blue T-33 is in a stabilized 3 g pull

up ma•anur, and a red T-33 is in a stabilized 2 g steady turn maneuver.

Both aircraft are standard 1-33's (ewept for the color) and have

identical gross wights. Which one has the higher-stick-force-par-q?
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6.5. For a given set of conditions, an RF-4C had a stick force gradient as

shown below. Compute the weight of the bobweight needed to increase this

gradient to a minimum of five pounds per g.

PULL
FS 20

15 - - --

20IN (lbs) 10

w PR & 83 TRIMd
w aA.o - t - - -

0 1 2 3 4 5 6

NE

631.
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6.6. Given the transport aircraft data on this page, find the stick-fixed and

stick-free maneuver points. What are the stick-fixed and stick-free
maneuver margins? What is the friction and breakout force?

TEU
5-

4--

(DEG) 3-

2-

0~'
- 2.0

TED -3

PULL 60-

40--

/ .

30-

TRI

1.0 2.0j N,



6.7. Given the flight test data below:

A. Calculate the stick-free maneuver point.

B. Calculate the stick-fired maneuver point.

C. If the minitum desired dFs/dn is 3 lb/g, calculate the aft cg limit.

D. Calculate the maneuver margin at the aft cg limit.

E. If the stick-2ixed neutral point was 48% MAC and given the following
data, calculate an estimate for C . NOMT: C is very sensitive

q Mq
to hm locations so an estimate of Cm calculated from aircraft

q•

geometry is probably as good, or better, than this flight test

derived value. Density at test altitude, p, is 0.002 slugs/ft 3

S 300 ft 2

C 7 ft

W 18,O00 lbs

F. A nev internal fuel tank arrangeawnt is planned L•o the aircraft
hiieh will me the aircraft cq to 40% MWC. If a minimom

sti~ck-f&ce~r-g of 3 lb/9 is rajuirxed at .this now cq location,
%wat S.4we boticaitt is raquirW as a "f'ix"?
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TEU PULL

.-- 20 -- - 40 -

15 3030-

10 . 20 -o-

be FS
(DEG) t(bs)

5- - 10 - -

TED 1 2 3 4 0 1 2 3 4

Nx NN

G. What downspring tension, T, is required to obtain the same minim•n
dF s/dn determined in Part F.?

H. The forward cq limit is to remain at 10% MAC. What is the maximum
stick- force-per-g the aircraft will have after bobwight in-
stallation ?

6.8. An aircraft has a stick-force-per-g of one ib/g at a cg of 40% MAC. It

is desired that the aircraft have a three ib/g maneuvering stick force

graciient at the same cg without changing the aircraft's speed stability.

You are given the choice of bobvwight A or B, and/or springs C and D.

Which bobweights and springs should be used and what should their sizes

and tensions be?

FS

10 "1 1 25,1N

nWA "e IN

ASI
i lrc AND To ARE CONSTANTS
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6.9. Given the flight test data and MIL SPEC requirements - iown below:-

FIG. 1 F!G. 2

40- - 20- -

30- ~~z zz .~

(Ibs) nz
20- MIL 10- - -"_

Su SPEC
LIMITS

SIT/'!1111/Ii177771/i 17t777Z'NII /I 1

arr
II,

0 1 2 3 4 0 10 20 30 40 50

CG%MAC

A. One set of data on Figure 1 was taken at MWD cg (15% MAC) and the a

other at an AFT cg (30% MAC). Label the curves MWD and AFT
properly.

B. Determinc h. 3tick-free maneuver point.

C. Vhat is the AXT cg limit to mee t the ir.inimum NIL SPEC stick force
per g shown on Figure 2?

D. %at is the FWD cg limit to meet the maximum NIL SPEC stick force
per g?

E. Given the control stick geometry shown below and choice of either
bobweight A, bobweight B, or upspring C, which weight or spring and
what size weight or spring is needed to just meet the maximum MIL
SPEC stick force per g requirement at cg of 10% MAC?

7-F,
1A B7

lOl2IN 0IN

Te IS CONSTANT
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6.10. Pead the question and circle the correct answer, true (T) or false (F).

T F The maneuver point should always be behind the neutral point.

T F C is always positive.p m
q

T F Pitch rate decreases stability.

T F The distance between the neutral point and the maneuver point
is a function of aircraft gecmetry, altitude, ana aircraft
weight.

T F The additional elevator requirement under aircraft bendiing
gives an increase in stability.

T F Maneuverhig fli4it data can be collected in turns but not in
pull-ups.

T F Theory says that stick-force-per-g is the same at all airspeeds
for a given og.

T F FED cg position may be limited by a maximnum value of dF s/dn.

- T F Imposing a minimum value of dFs/dn as the MIL SPEC does prevent
the permissible aircraft cg from being behind the maneuver
point.

T F The effect of either a spring or a bobweight is the same on
stick-force-per-g.

T F A downspring exerts a constant force on the stick independent
Z of load factor.

T F A bobweight exerts a constant force on the stick independent of
K load factor.

T F A dcwnspring effects maneuvering stick force gradient.

T F A bobweight effects maneuvering stick force gradient.

T F Aerodynamic balancing effects the stick-free maneuver point
location.

* -T F The stick-free maneuver point is normally ahead of the
stick-fixed maneuver point (tail-to-the-rear aircraft).

T F A downspring changes the location of the maneuver point.
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• ' F In "second order differential equation (mass-spring-damper)
terms," Cm is analogous to damping.

T F Although both stick-fixed and stick-free neutral points can be
defined, only a stick-free maneuver point exists.

T F Cm can be obtained from maneuvering flight tests.
q

T F The wing is the largest contributor to pitch damping.

T F Cm is carronly called "pitch damping" in informed aeronautical

circles.

T F In "second order differential equation (mass-spring-damper)
terms," Cm is analogous to the spring.

q

T F In subsonic flight (no Mach effects) dCm/dQ is constant.

T F .n subsonic flight (no Mach effects), C is a function
of velocity.

T F Mancuvering stick-force gradient data obtained from turning •
flight tests iF identical to that obtained from pull-up flight
tests.

T F dC m/dQ and C are identical.
q

T F V is considered constant even though cg is allowed to vary.
VH

T F Increasing stability decreases maneuverability.

T F d6 e/dn is the same for both p'ill-up and turn maneuvers.

T F AercdynartLic balancing does not effect dF /en.

T F FWD and AT cg travel may be limited by axirum and minimum
values of stick-force-pet-'.

T F Maneuvering stick-force g'cadient and stick forze-per-g are the
same.

T F The same curve can be faired through maneuvering flight test
data obtained by the pull-up an', turn techniques.
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,_._. .-.. . . . - -- . .

AN REFS

6.1. h =33%

6.2. A. Cm = -8.2 per rad for tail
q

C = -9.0 per rad for aircraftm
q

B. Cm = -1.9 per rad- tail
q

C = -2.1 per rad - aircraftm
q

6.3. h' = 0.296
m

6.4. Red has higher dFs/dn

6.5. W 6.8 lb

6.6. hm 0.66

h= 0.44

Maneuver margin
0 cgFixed Free

15% 0.51 0.29
30% 0.31 0.14

Friction + Breakout 10 ib

6.7. A. h' = 0.40m

B. h 0.50

C. Aft cg = 0.28 A

__ D. Man mar. fixed 0.22
S• Man mar. free = 0.12
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E. Cm = -10.64 per rad
mq

F. W = 91b

G. Can't be done with spring.

H. F /g = 10.3 Ib/g
s

6.8. WA = 5 b

Must be offset by TD 6.25 lb atn = 1

6.9. B. h' = 0.43m

C. Aft lim = 37%

D. Fwd lim = 20%

E. WB = 0lb
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CHAPTER 7

LATERAL-DIRECTICNAL STATIC STABILITY
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7.* 1 IMTMfUCTIMZ

Your study of flying qualities to date has been concerned with the
stability of the airplane flying in equilibriu~mi on symmietrical f light paths.
More specifically, you have been concerned with the problem of providing
control over the airplane's angle of attack and thereby its lift coefficient,
and with ensuring static stability of this angle of attack.

This course considers the characteristics of the airplane when its flight
path no longer lies in the plane of symmetry. This means that the relative
wind will make scmie angle to the aircraft centerline which we define as 8.
The motions which result from 8 being applied to the airplane are motion
along the y-axis and motion about the x and z axes. These motions can be
described by the follcoing equations of aircraft lateral-directional motion

FY = mv+mrU-pwm (7.1)

px- Ix+ qr (I - IY) + (rpq) Ix (7.2)

utsre the right side of the equation represents the response of an aircraft to
the applied forces and mments on the left side. These applied forces and
imments are cxiPOSed primarily of contributions from aerodynamic forces and
nmcments, direct thrust, gravity, and gyroscopic nximents. Since the aerodynamic
forces and the m~ments are by far the most important, we shall consider the
other contributions as negligible or as having been eliminated throuh proper
design.

It has been shom in Dquations of tMbtion that whken operating under a
small disturbance asswption, aircraft lateral-directional motion can be

onidered ieedet of longitudlinal motion and can be considered as a
fwmctin of the following variables

(Y. Vlaf(80#p. r. 6(7.4
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The ensuing analysis is concerned with the question of lateral-
directional static stability or the initial tendency of an airplane to return
to stabilized flight after being perturbed in sideslip or roll. This will be
determined by the values of the yawing and rolling moments ( ' and c .
Since the side force equation governs only the aircraft translatory response
and has no effect on the angular motion, the side force equation will not be

considered.
The two remaining aerodynamic functions can be expressed in terns of

non-dimensional stability derivatives, angular rates and angular
displacements

C C,= + C a + Cnpp + C, 8rCr + C 6aa + C r 6r (7.5)
C£a C£r

C, = Ca + Ca + Cp+C£r +C 6 a +C 6r (7.6)

The analysis of aircraft lateral-directional motion is based on these two I
equations. A cursory examination of these tw4o equations reveals that they are
"cross-coupled." That is, C and C are found in Equation 7.5, while CIP 6a Cr

and C 9 are pxesent in the lateral Equation 7.6. It is for this reason
r

that aircraft lateral and directional motions must be considered together -
each one influences the other.

7.2 TEM4INOLOGY

Since considerable confusion can arise if the terms sideslip and yaw are
misunderstood, we shall define them before proceeding further.

Sideslip is defined as the angle the relative wind makes with the
longitudinal axis of the airplane. From Figure 7.1 we see that the angle of
sideslip, is equal to the arcsin (v/V), or for the m all angles normally
encmtered in flight, 8 2 v/V. By definition, 0 is positive when the
relative wind is to the right of the geometric longitudinal axis of the
airplane (i.e., when wind is in the right ear).
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Yaw angle, 4, is defined as the angular displacement of the airplane's
longitudinal axis in the horizontal plane fram some arbitrary direction taken
as zero at some instant in time (Figure 7.1). Note that for a curved flight
path, yaw angle does not equal sideslip angle. For example, in a 3600 turn,
the airplane yaws through 3600, but may not develop any sideslip during the
maneuver, if the turn is perfectly coordinated.

V

x!

+ ij
ARBITRARY DIRECTION X FLIGHT PATHAT SOME INSTANT
OF TIME

VV
Vy

( Co

V VELOCITY OF THE AIRPLANE TANGSENTIAL
TO ThE FLIGHT PATH AT ANY TIME

v COMPONENT OF V ALONG THE Y AXIS OF
THE AIRPLANE

F=GU1 7.1. YAW AND SIDESLIP AN=

With these definitions of yaw and sideslip in mind, each of the stability
A derivatives carprising Equations 7.5 and 7.6 may be analyzed.
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7.3 DIRD TICNAL STABILITY)

In general, it is advantageous to fly an airplane at zero sideslip, and

the easier it is for a pilot to do this, the better he will like the flying

qualities of his airplane. The problem of directional stability and control,

then, is first to ensure that the airplane will tend to remain in equilibrium

at zero sideslip, and second to provide a control to maintain zero sideslip

during maneuvers that introduce nrinents tending to produce sideslip. The

stability derivatives which contribute to static directional stability are

those comprising Equation 7.5. A summary of these derivatives is shown in

Table 7.1.

TABLE 7.1
DIRWETICNAL STABILITY AND
CCNTROL DERIVATIVES

SltX4 FOR
A STABLE COMTRIBUTING PARTS

DERIVATIVE NAME AIRCRAFT OF AIRCAFT

Cn Static Directional Stability (+) Tail, Fuselage, Wing
8 or

kather(ck Stability

CLag Effects Tail

CC os-Coupling (4) Wing, Tail
p

C•. Yaw, Danping (-) Tail, Wing, •uselage

C• Adverse or O liventary Yaw O0 Lateral Control
C, Mers or ~ ~ ~ or

slightly

CbrS R (P) 'erkWder control
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7.3.1 C,. Static Directional Stability or Weathercock Stability

Static directional stability is defined as the initial tendency of an

aircraft to return to, or depart from, its equilibrium angle of sideslip
[ (normally zero) when disturbed. Although the static directional stability of

an aircraft is determined through consideration of all the terms in Equation

7.5, C.B is often referred to as "static directional stability" because it is

the predominant term.

When an aircraft is placed in a sideslip, aerodynamic forces develop

which create moments about all three axes. The mome-nts created about the

z-axis tend to turn the nose of the aircraft into or away from the relative

wind. The aircraft has positive directional stability if the moments created

by a sideslip angle tend to align the nose of the aircraft with the relative

wind.
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RELATIVE 
),

WIND

%UNSTABLE

FIGURE 7.2. STATIC DIXlTrIONAL STABILITV

In Figure 7.2 the aircraft is in a right sideslip. It is statically

stable if it develops yawing mou.ets th'At tend to align it with the relative

wind, or in this case, right (positive) yawing moments. Ther-efore, an

aircraft is statically directionally stable if it dmvelops positive yawing

monnts with a positive ea in sideslip. Thus, the slope of a plot of

yawing moment ooefficicmt, Cv, versus sideslip, 6, is a quantitative measure

of the static directional stability that an aircraft possesses. This plot .

would normally be doeterined frcm wind tunnel results.



The total value of the directional stability derivative, c,8 at any

sideslip angle, is determined primarily by contributions fran the vertical

tail, the fuselage, and the wing. These contritutions will be discussed

separately.

7.3.1.1 Vertical Tail Contribution to C. . The vertical tail is the primary
8

source of directional stability for virtually all aircraft. When the aircraft

is yawed, the angle of attack of the vertical tail is changed. This change of

angle of attack produces a change in lift on the vertical tail, and thus a

yawing mment about the Z-axis.

RW

'C
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Referring to Figure 7.3, the yawing nt•..-nt produced by the tail is

1L? t-ZF) (-LF) = £Fz (7.7)

The minus signs in this equation arise frct.i the ase of the sign

convention adopted in the study of ai :raft equations of motion. Forces to

the left and distances behind the aircraft cg are negative.

As in other aerodynamic considerations, it is convenient to consider

yawing moments in coefficient form so that static directional stability can be

evaluated independent of wight, altitude and speed. Putting Equation 7.7 in

coefficient form

Z = www= qwSwbw [wl.&'ce q 1/2 pV2 and w = wing] (7.8)

Vertical tail volume ratio, Vv, is defined as

v = (+)(-) = (-) for tail to (7.9)v the rear aircraftI

(+) for tail to the front

(+) (+) aircraft

Making this substitution into Equation 7.8

C CLqFvw (7.10)

For a propeller-driven aircraft, qw may be less than or greater than qF"

However, for a jet aircraft, these two quantities are normally equal. Thus,

for a jet aircraft, qF/qw-- 1 anr Equation 7.10 bec-cmes

C =(7.11)
NZF CIVv

The lift ci-ve fur a vertical tail is presented in Figure 7.4.

7.8



I.

z

IL

U.

7ANGLE OF ATTACK, aF

", .aF 
(F

FIGURE 7.4. LIFT CURVE FOR VERTICAL TAIL

The negative slope is a result of the sign convention used (Figure 7.3). •hen

the relative wind is displaced to the right of the fuselage reference line,

the vertical tail is placed at a positive angle of attack. However, this
results in a litt force to the left, or a negative lift. Thus, the sign of
the lift cuive slope of a vertical tail, aF, will always be negative below
the stall. Substituting CL aF aF into Equation 7.11 yields

C aF at kVv, (7.12)

The angle of attack of the vertical tail, a F, is not merely a. If the

vertical tail ware placed alone in an airstream, then a would be equal to 8.
However, when the tail is installed on an aircraft, changes in both magnitude
and ditection of the local flow at the tail take place. These changes may be

caused by a propeller slipstream, or by the wing and the fuselage when the

airplane is yawed. The angular deflection is allowed for by introducing the
sidewash angle, a, analogous to the downwsh angle, c. T1he value of o is very
difficult to predict, therefore suitable wind tunnel tests are
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required. The sign of a is defined as positive if it causes aF to be less

than a, which is normally the case since the fuselage tries to straighten the

air which causes ½ to be less than $. Thus,

a = a - 'F (7.13)

Substituting cF fran Equation 7.13 into Equation 7.12

Cn -6 aF=(a ) (7.14)

The contribution of the vertical tail to directional stability is found

by examining the change in C,, with a change in sideslip angle, 3.
F

(.-) (-) (+) = (+) for tail to
rear aircraft

LC~ 'al Fie ) (7.15)

(+) (-) (+.) = (-) for tail to
front aircraft

The subscript "fixed" is added to aephasize that, thus far, the vertical

tail has been considered as a surface with no movable parts, i.e., the rudder

is "fixed."I

Equation 7.15 reveals that the vertical tail contribution to directional

stability can only be changed by varying the vertical tail volume ratio, Vv,

or the vertical tail lift curve slope, aý.. The vertical tail volume ratio can

be changed by varying the size of the vertical tail, or its distance from the

aircraft cg. The vertical tail lift curve slope can be changed by altering

the basic airfoil section of the vertical tail, or by end plating the vertical

tin. An end plate on the top of the vertical tail is a relatively minor
modification, and yet it increases the directional stability of the aircraft
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significantly at lower sideslip angles. This has been used on the T-38

(Figure 7.5). The entire stabilator on the F-104 acts as an end plate (Figure

7.6) and, therefore, adds greatly to the d.irectional stability of the

aircraft.

, FIGURE 7.5. T-38 END PLATE FIGURE 7.6. F-104 END PLATE

The end plate increases the effective aspect ratio of the vertical tail.

As with any airfoil, this change in aspect ratio produces a change in the lift

curve slope of the airfoil as shown in Figure 7.7.
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INCREASING

FIGUM 7.7. ME=CT OF EMD PLATING

As the aspect ratio is increased, the oLF for stall is decreased. Thus, if the
aspect ratio of the vertical tail is too high, the vertical tail will stall at

low sixjeslip angles, and a large decrease in directional stability will occur.
S7.3.1i.2 Fuselage Contribution to C,, . 'Am primazy soirce of directional

U

is-blq is the aircraft fuselage. 7his is so because the subsonic
o•erod~pvmnic mtenr of -a typical fvselzqe umually lies dhed of the'aircraft

S~center of gravity. 1herefore, a positive sideslip angie will produce a

Snegative yawing mosent Wboat the og causing C, (fusselage) to be negative or

destabilizin ( igme 7.8).

71
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The destabilizing influence of the fuselage diminishes at large sideslip
angles due to a decrease in lift as the fuselage stall angle of attack is

exceeded and also due to an increase in parasite drag acting at tne center of

the equivalent parasite area which is located aft of the cg.
If the overall directional stability of an aircraft beccces too low, thc-

fuselage-tail combination can be made more stabilizing by adding r dorsal fin

or a ventral fin. A dorsal fin was added to the C-123, and a ventral fin was

added to the F-104 to improve static directional stability.

FIG=•%E 7.9. APPLICATIONS OF DORSAL AND VMCRAL FINS

The addition of a dorsal fin decreases the effective aspect ratio of the
tail; therefore, a higher sideslip angle can be attained before the vertical

fin stalls. Unfortunately this may occur at the epee of a loss in. (s•e
-LFA

Figure 7.9). Hoeer, this loss is usually more than ompensated for by the

increased area behind the cg. Thus, the overall lift of the fuselage-tail )
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combination is usually increased (LF = C q S). Therefore, a dorsal fin

greatly increases directional stability at large sideslip angles. Figure 7.10

shows the effect of adding a dorsal fin on directional stability.

ZU
a 3- TAIL

ZALONE STALL
-AIRPLANE WITH

Z ORSALFINADDED
____________________________________ COMPLETE

2 ZAIRPLANE
SIDESLIP ANGLE, .j

FUSELAGE
ALONE

FIGURE 7. 10. EFFECT OF ADDING A DORSAL FIN

*0 The addition of a ventral fin is similar to adding another vertical tail.
1Tho not effect is an increased surface area and associated lift which prodtoes

a greater stabilizing moment.

Another design consideration which minimizes the destabilizing influence
of the fuselage is nose shaping/modification. hiole these fore-xody features

are usually not put on primarily for directional stability, they do

coxntibute. lBr ecample, the fore-body fences on the A-37 were incorprated

to attain repeatable spin characteristics, but they also cause the nose to

stall at smaller B than the sane aircraft without the fenms, thus diminishing
the destabilizing influence of the fuselage (see Figure 7.11).
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*ýý ý-0`0*IW"ITHOUT FENCE

FIG= 7. 11. E TS OF FORI-BMOY SHAPING

7.3.1.3 Sing oCtribution to C. '1 contribution of the wng to the

airplane's static directional stability is usually uall and is primarily a

function of wing sweep (A). Straight wings make a slight positive

comtribution to static directional stability duo to fuselage blanking in a

at lip. Effectively, the relative wind "sees" less of the dowmiind wing due

to fuselage blarking. This redkwes the lift of the dairAM wing and thus

reduoes its inmduce drag. The difference in i:ndwe drag between the two

wings ten•s to yaw the aircraft into the relative wind, which is stabilizing.

%ept back wings prochwe a greater positive contribution to static
dirctional stablity than do straight wings. In adtdtion to uslage

blanking effects, it can be seen frm Figure 7.12 that the component of

free strew velocity normal to the *wind wing is significantly greater than

an the c•nwdd wb4ng.
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Te diffamm in cmal oVamts crates unbalanI lift and irdxvd drag

on the two wingop, thus causing a stabiliminq yawing rownt. Similarly, a

7ow7 m an ta"Ke omtributic to static
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7.3.1.4 Miscellaneous Effects on C. The remaining contributors of signi-

ficance to C are propellers, jet intakes, and engine nacelles.
0

A propeller can have large effects on an aircraft's static directional

stability. The propeller contribution to directional stability arises fran

the side force caoponent at the propeller disc created as a result of

sideslip.

RW

+- :

FY -0-:

FIGURE 7.13. PROPEL,, EFFECTS ON C
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The propeller is destabilizing if a tractor and stabilizing if a pusher

(Figure 7.13). Similarly, engine intakes have the same effects if they are
located fore or aft of the aircraft og.

Engine nacelles act like a wall fuselage and can be stabilizing or

destabilizing depending on whether their cp is located ahead or behind the cg.
The magnitude of this contribution is usually small.

Aircraft cg movemnt is restricted by longitudinal static stability
considerations. However, within the relatively narrow limits established by
longitudinal considerations, cg moxwennts have no significant effects on

static directional stability.

7.3.1.5 C?" Summary. Figure 7.14 sumnarizes the relative magnitudes of the

primary contributor to C,
B

U

.00t5. TAIL (AT REAR)

.0010STAUZIG

0005

SIEUPM I .

ý0010'g DSTAISIRIt4G,
-. 0015FUSELAGE

FIGURE 7.14. -'1MAW C MIUIIONS 41D C
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7.3.2 C Rudder Power )
r

In most flight conditions, it is desired to maintain zero sideslip. If

the aircraft has positive directional stability and is synretrical, then it

will tend to fly in this condition. xowever, yawing moments may act on the

aircraft as a result of asymmetric thrust (one engine inoperative), slipstzeam

rotation, or the unsymietric flow field associated with turning flight. luder

these conditions, sideslip angle can be kept to zero only by the application

of a control moent. The control that provides this nmment is the rudder.

Recall from Equation 7.12 that

Differentiating with respect to 6r

3F (7.16)

r r r

B 36 r is the equivalent change in effective vertical tail angle of attack

per unit chae in rudder deflection and is defined as rudder effectivwnss,

,. Ibis is a design parameter and ranges in malue frcm zero (with no iuckar)

to one (in the case of an all moving vertical stabilizer surface). v is a

mmare of how far one would have had to deflect the entire fin to get the

sami side force chaxe that is obtained Jwut by muvinq the ruddr.

b tuting Y aJYaar into S~ation 7.16.

a Cn (7.17)

r 6r
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C The derivative, C is called "rudder power" and by definition, its algebraic

r
sign is always positive. This is because a positive rudder deflection, +6 r is

defined as one that produces a positive monent about the cg, 4C . The

magnitude of the rudder power can be altered by varying the size of the

vertical tail and its distance fran the aircraft cg, by using different

airfoils for the tail and/or rudder, or by varying the size of the rudder.

7.3.3 CN Yawing •Mfent Due to Lateral Control Deflection

a
ITe next two derivatives which will be studied (ji and CP) are called

"cross derivatives," that is, a lateral input or rate generates a yaw
(directional) moment. It is the existence of these cross derivatives that

causes the rolling and yawing notions to be so closely coupled.

The first of these cross derivatives to be covered will be C. , the
a

yawing mment due to lateral aimtrol deflection. In order for a Lateral
( control to produce a rolling mnment, it must create an wn&alancw lift

ondiltion on the wings. The wing with the most lift will also praoduc the

zost incmd drag according to the equation c% i C, e. Also, any

change in the profile of the winc due to a lateral control deflection will
cause a change in profile drag. Thus, any lateral contr-ol deflection will

Srroduce a change in both induced and profile drag. ihi predtiinAte effect

will be dependent on the particular aircraft configuration arn the flight
A ozndition. If induced drag redcvminates, the aircraft will tend to yi- away

from the directicn of roll (neqative C,, . This phenomnon is kna.n as

"adverse yaw. The sign of C% Zor complimwntary yaw is positive. Wioth
a

PAileron: and spoilers ate capable of producing eithdr adverse or
•xmpliintary yaw. In general, ailerons usually ptoduce adverse yaw an.d
sroilers usmally produce prtvrrsoe yaw. Many aircraft use differential

horizomtal stabilizer deflections for roll comtrol. ifln deflecLed, tO.
horizontal stabilizer on the daq oing side has a region of hicgh pressure

above it. This high pessure also acts on the side of the vertical

stabilizer, %hich results in a yawing noent. This yawing noment is normally
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proverse. To determine which condition will actually prevail, the particular

aircraft configuration and flight condition must be analyzed. If design

permits, it is desirable to have C, = 0 or be slightly negative. A
a

slight negative value may ease the pilot's turn coordination task by

eliminating a need to cross control. The designs of some modern fighter-

type aircraft make the pilot's task easier by keeping Cn 0.
--
a

7.3.4 C;) Yawing M~ment Due to Roll Rate
p

The second cross derivative is the yawing ioment due to roll rate (C n).
p

Both the wing and vertical tail contribute to this derivative. In this

discussion the aircraft will be considered with a roll rate, but no deflection

of the control surfaces. It is important that this situation not be confused

with yawing moments caused by control surface deflections. This is

particularly true in flight tests where it may be difficult or impossible to

separate them.

The wing contribution to C., arises from two sources: profile drag and

the tilting of the lift vectors.

As an aircraft i.s rolled, the angle of attack on the downgoing wing is

increased, while the angle of attack on the upgoing wing is decreased. The

increase in angle of attack exposes more of the dcwngeoing wing to the relative

wind. Therefore, the profile drag will be greater on the downgoing wing than

on the upgoing wing. Thus, the profile drag results in a positive

contribution to C,.
p

Since the two wings are at different angles ot attack during the roll,

their lift vectors will be at different angles. The downgoing wirg with a

greater angle of attack will tend to have its lift vectur tilted more forwaxd.

The upgoing wing with a reduced angle of attack will tend to have its lift

vector tilted more aft (Figure 7.15).
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FIGURE 7.15. VBCTOR TILT DUE TO ROLL RATE

For a right roll, the left wing will be pulled aft more than the right

wing. This causes a negative contribution to C), . This is true even though
p

the magnitude of the resultant aerodynamic force may be greater on the

da~ngoing wing than on the upgoing wing. The contribution caused by tilting

of the lift vector is normally greater than the contribution due to profile

drag. Therefore, the overall wing contribution to C,1 is usually negative.
p

Rolling changes the angle of attack on the vertical tail as shown in

Figure 7.16. T1his change in angle of attack on the vertical tail will

gyenerate a lift force. In th4 situation depicted in Figure 7.16, the change

in aiqle of attack will generate a lift force, LF, to the left. This

will create a positive yawing mnrant. Thus, C). for the vertical tail

is positive. P

7
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FIGURE 7.16. CHANGE IN ANGLE OF ATTACK OF THE
VMRTICAL TAIL DUE TO A RIGT ROLL RATE

Considering both wing and tail, a slight positive value of C is desired

to aid in Dutch roll &Wing. P

*7.3.5 Cj, Ya 2M

1he derivative C is called yaw damping. It is strongly desired that Cr 
r

be negative. 2is is so because the forces generated when an airplane is
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yawing about its center of gravity should develop mcments which tend to oppose

the motion.

Figure 7.17 sunmarizes the major contributors to C . In general, the
r

fuselage contributes a negligible amount except when it is very large. The

more important contributors are the wing and tail.

The tail contribution to Cn arises from the fact that there is change in

angle of attack on the vertical tail whenever the aircraft is yawed. This

change in a. produces a lift force, It,, that in turn produces a yawing moment

that opposes the original yawing mcoent. The tail contribution to C r ac-
r

counts for 80-90% of the total "yaw damping" on most aircraft.

The wing contribution to C,, arises from the fact that in a yaw, the out-
r

side wing experiences an increase in both induced drag and profile drag due to

the increased dynamic pressure on the wing. An increase in drag on the

outside wing increases a yawing moment that opposes the original direction of

yaw,.(
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S7.3.6 C __ Yaw DaMin_ Due to La Effects in Sidewash

The derivative C is yaw damping due to lag effects in sidewash, o. Very

little can be authoritatively stated about the magnitude or algebraic sign of

Cý due to the wide variations of opinion in interpreting the experimental data

concerning it.

As an aircraft moves through a certain sideslip angle, the angle of

attack of the vertical tail will be less than it wculd be if the aircraft were

allowed to stabilize at that angle of sideslip. This is due to lag effects in

sidewash which tends to straighten the flow over the tail. Since this

phencmenon reduces the angle of attack of the vertical tail, it also reduces

the yawing mrment created by the vertical tail. This reduction in yawing

moment is, effectively, a contribution to the yaw damping. Figure 7.18

illustrates description, "yaw damping due to lag effects in sidewash."

7i
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7.3.7 ,i S Effeats on Static Directional Stability Derivatives

Since Most of the directional stability derivatives are dependent on the

lift produced by various surfaces, we can generalize the effects of Mach on

these derivatives by reviewing the tollowing relationship fran supersonic

aerokmuics. 1hut the effectiveness of an airfoil decreases as the velocity

increases wapersonically (Figu.~re 7.19).
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7..71C~* Since C f (a~in V) and a~i f(,)enfoa
"8' 8Fin n

given 8, as Mach increases beyond Mach critical, the restoring moment
generated by the tail diminishes. Unfortunately the wing-fuselage corbination
is destabilizing throughout the flight envelope. Thus, the overall C,, of the

aircraft will decrease with increasing Mach, and in fact apprcaches zero at
very high Mach (Figure 7.20).

The requirement for large values of C is compounded by the tendency of

high speed aerodynamic designs to diverge in yaw due to roll coupling. This
problem can be combated by designing an extremely '.arge tail (F-ill and T-38),
by endplating the tail (C-5 and T-38), by using ventral fins (F-1i and F-16),
by using forebody strakes (SR-71), or by designing twin tails (F-15).

2 The F-ill employs ventral fins in addition to a sizeable vertical
f, stabilizer to increase supersonic directional stability. The efficiency of
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underbody surfaces is not affected by wing wake at high angles of attack, and

supersonically, they are located in a high energy compression pattern.

Forebody strakes located radially along the horizontal center line in the

x-y plane of the aircraft have also been employed effectively to increase

directional stability at supersonic speeds. This increase in C,,, by the

employment of strakes is a results from a more favorable pressure distribution

over the forebody and creates improved flow effects at the vertical tail by

virtue of diminished flow circulation. Even small sideslip angles will

produce fuselage blanking of the downwind strake, creating an unbalanced

induced drag, and thus a stable contribution to C

.20-

l.1

.05.
CA,

-. 054C

..,I.30:

' ~FIGURE 7.20. CHANGE IN DIRECTIONAL STABILITY •
W1. .DE62.TIVES WITH MACO (F-4C)U

,,•7.3.7.2 C•. Flow separation will decrease the effectiveness of any

'.i!trailing edge control surface in the transonic region. on most aircraft,

Showever, this is offset by an increase in the curve in the
/73
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transonic reqion. As a result, flight controls are usually the most

effective in this region. However, as Mach continues to increase, the

CL curve decreases, and control surface effectiveness decreases. In

addition, once the flow over the surface is supersonic, a trailing edge

control cannot influence the pressure distribution on the surface itself, due

to the fact that pressure disturbances cannot be transmitted forward in a

supersonic environment. Thus, the rxdder power will decrease as Mach

increases above the transonic region.

7.3.7.3 C 6. For the same reasons discussed under rudder power, a given

a
aileron deflection will not produce as much lift at high Mach as it did

transonically. Therefore, induced drag will be less. In addition, the

profile drag, for a given aileron deflection, increases with Mach. For

some designs, such as roll spoilers or differential ailerons, these changes in

drag will combine to cause proverse yaw.

7.3.7.4 C11. Yaw damping depends on the ability of the wing and tail to
r

([ develop lift. Thus, as Mach increases and the ability of all surfaces to

develop lift decreases, yaw damping will also decrease.

7.3.7.5 C~p. The sign of C p normally does not change with Mach. The
p p

wing contribution and the tail contribution both tend to decrease at high

Mach. The exact response of the derivative to Mach varies greatly between

different aircraft designs and with different lift coefficients.

7.3.7.6 C,. The effect of Mach on this derivative is not precisely known.

7.3.8 Rudder Fixed Static Directional Stability (Flight Test relationship)

Now that we have becare familiar with the ccefficients affecting

directional stability, we will develop a flight test relationship to measure

the static directional stability of the aircraft. The maneuver we use to

determine C is the "steady straight sideslip" (Figure 7.21).
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FIGURE 7.21. STEADY STRAIGHT SIDESLIP
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Steady straight sideslip requires the pilot to balance the forces and mucents

generated on the airplane by the sideslip with appropriate lateral and
directional control inputs. These control inputs are indicative of the sign
(and relative magnitude) of the forces and moments generated.

As its name implies, steady straight sideslip means: EFxvz = EGXvz = 0.
In addition, it implies that no rates are present and, therefore
p = q = r= = = = =0. Given this information and recalling the

static directional equation of motion,

C), 1 + C- + C + C/ 4- C)6 a + Cr 6 r

a r

Therefore,

C•l a + Cn 6a + C•l 6r = 0 (7.18)

Solving for 6r

C•t

C)1. 6 a 6
6 = --- 8 - ----C a (7.19)

6r 6r
6r r

and differentiating with respect to 8

C Cn

r (Fixed) a a ~~~~~~' T• q 20)
30 C C a8

6r 6

The subscript "fixed" is added as a r that Equation 7.2U Ls an
expression for the static directional stability of an aircraft if the xudder

is not free to float.

7.33



Equation 7.20 can be further simplified by discarding the terms that are
usually the smallest contributors to the expression. As we have already

discovered C,, and C •. are both usually large terms and normally dominate
S 6

r
in the static directional equation of motion. On the other hand, if the air-

flight control system is properly designed, CK should be zero or slightly
6

negative. Therefore, if we asswie that C,, is asignificantly smaller than

a
the other coefficients in the equation, then we are left with the following

flight test relationship:

r=f(8 ) (7.21)

Since C,' is a known quantity once an aircraft is built, then 36r/38 can be
6
r

taken as a direct indicatioti of the rtdder fixed static directional stability

of ar aircraft. Moreover, ar/aR can be easily nweasured in flight.

Since C hav to be positive in order to have positive directional

stability ard C, is positive by definition, 36r/ /M must be negative to

r
obtain positive static dirgctiatul stability.
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, UNSTABLE

w SIESI ANGLE,

/

z //

2 //

STABLE.F

W Gs 7.22. / SD SUP• DANGLES•

onI aircraft with• mvrsible cotrol istcnm, Ova rude is- fre to float

in retqxse to its• hinge momets, and this f loatitV can hav o largo ef ots on

t]w direti-onal stability of the airplane. in fact, a plot of 'r/m May be

stable %,hile an tmmiation of tlw voik-W ftw stat~ic dtiroctio~vl stability,

S: reveals tjw aircraft to ba unstable. Thus, if" the mkder is free to float,

Owe•r will be a charge, in the tail contrib•ution to static dirw'tional

.•stability. It mamlyze the natur~e of this cs-age, recall that hinge mmants

S~are prodtmd by the pressmv distribution cauiw-d by angle of attack and

-• control ar face def eI m-
•'i ~~uk -o rac.nior a -tai-o-tht-,r wr) aircraft, with a revrsible

• M•r. Figure 7.23 dapict-s the hirge mment on thtis rude &be to angle of

1 ,: C' attack only (i.e., 6r 0 ). tbte- that is L positive with thw relat-i.m wind

r /
wr ~ /wr31
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FIGURE 7.23. HIN W.IT DUE TO RUDDER
ANGLE OF AXTACK

If the rudi.%r control were released in this case, the hinge mcmnt, Hr, wculd

cause the rvdder to rotate trailing edge left (TEL). This, in turn, would

create a nmoent which would cause the noe of the aircraft to yaw to the left.

Since our convention defines positive as a tight yaw and anythiag that

contributes to a right yaw is also defined as positive, then the hinge mcment

which causes the rudder to deflect TEL is NEC&TIM. Conversely, a positive Hr

would mause the rudder to deflect TER.
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Figure 7.24 depicts the hinge monvat due to rudder deflection. This

condition assumes aF = 0 before the rudder was deflected.

RW

0

." H

ýFIGURF 7. 24. FIfE Ma*M DUE TO RUDDER DEFL•Th ION (TM.R)

This pressue distribution causes a hinge mnomnt which tries to force the

deflected Srface back to its original position; that is, it tries to deflect

the rudder TEL. We have already discovered that this momnt is negative.

COwining the aerodynamic hire moments for a given ruddor deflection and

a given rudder angle of attack, ue find

.7.37



a H a )
Hr _ aF + + r (7.22)
r 1 ro 3 F F 3 rr

In coefficient form

Ch= Ch F + Ch 6r (7.23)

In the rudder free case, when the vertical tail is placed at some angle

of attack, xVF, the rudder will start to "float." However, as soon as it

deflects, restoring moments are set up, and an equilibriurn floating angle will

be reached where the floating tendency is just balanced by the restoring

tendency. At this point EHr = 0 which implies Ch = 0 (see Figure 7.25).

Therefore,

Ch a + %i 6r 0 (7.24)
•F r (Float)

or
2

Ch c -- Ch 6r (Float) (7.25)•F r (Fot

Thus,

Ch
aF

6r(Float) Ch6 F (7.26)

r

:12
4
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Ch6, 6r( Ch aF c

(FLOAT)

FIGURE 7.25. HINGE MOMENT EQUILIBRIUM (TEL)

With this background, it is now possible to cevelop a relationship that

expresses the static directional stability of an aircraft with the rudder free

to float.

Recall that

c ,vv ac .( (7.27)F '
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and that )

aF = a - a (rudder fixed) (7.28)

But for rudder free, another factor (aF/r) " 6r must be added to the

account for the AaF which will result fram a floating rudder.

iTherefore,

a =F (7.29)
F r (Float)

Substituting into Equation 7.27

C•r = Vv aF a - a + -a F(7.30)F r r(Float)

F I V aF L F6

F a + (Float)
Fo r 1(o +aT) I0 (Bee)

where r = BaIr= rudder effective~ness

C'anF 1) - I1I + (7.32)

(Free)

ec*almii that B- a, then ay f3//- O
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C vaLa I+T r(Float) 8

rr13a _ li + , (7.33)

8(Free) F

Cn(Free) aF (7.34)

Recall that

Ch

r (Float) C 0F 17.35)
r

Therefore,

r (Floatj) C F

aa F Ch •(7.36)

r

Thus, fr= Equation 7.34

H-) H- + (+) T + for tail to rear
acircraft

SF, ,-7.37), • ~~~(Free) •, •. 6

(..) (-) +) 1,- (-) H= 1 for tail to front''•.• .•air'craft
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It can be seen that this expression differs frao Equation 7.15,

the expression for rudder fixed directional stability by the term

(1 - t 6'r) Since this term will always result in a quantity less

than one, it can be stated that the effect of rudder float is to reduce the

slope of the static directional stability curve.

YAW MOMENT
COEFFICIENT, C.

/RUDDER
FIXED

o-40 RUDDER
FREE

0 SIDESLIPANGLE,,

FIGURE 7.26. FaFF.Xr OF RUDDER FLOAT ON
DIRWTIONAL STABILITY

while %iquation 7.37 is theoretically interesting, it does not contain

prtaiters that are easily meaured in flight. It is necessary, therefore., to

develop an expression that will be useful in flight test work.

We have already seen that in a steady straight sideslip £ E:. 0.

Therefore it foll••ws that '01i i 0 . ut we have also discovered that
Hinge Pin

for a frm floating system, as angle of attack is placed on the vertical fin,

the, rudder will tend to float and try to cancel saoe of this angle of attack
itil a: eq~xi~ibrih'i is reached. In a aldeslip, therefore, the pilot nust

Sapply rckl•" forte to o~porethe aerod.iaiic hinge m t in order to keep the

* rudder &A -teet the deiiru anr 1nt to maintai, the r irred S. Tis •dex

r rted b. y t.l. pilot, r ., cts thru a moent arm and variot gearing

o nIm, bot, of which are acimuned for by saw cmtant K.
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4 p

Thus, in a steady straight sideslip

oEHinge Pin= Fr. K + Hr 0 (7.38)

or

F = - G.H (7.39)r r

where

G = 1/K (definition)

Recalling coefficient format

Hr = q r Sr Cr (7.40)

From Equation 7.23

H r = [qr Sr Cr ChIF OF +Char 6r (7.41)

Thus, Equation 7.39 becomes

Fr -Gqr Sr cr[Ch aF + Ch6 6r (7.42)r F

Applying Equation 7.24

F r =-Gqr~ Sr r C r(la)+ c1 6 6 r1  (7.43)
[r r r (Float)

Fr =- Gqr Sr Cr 6r [6r - 6 J(iot (7.44)

The difference between where the pilot pushes the rudder, 6r, and the amount

it floats, 6 r , is the free position of the rudder, 6r (Figure

(,, 7.27). (Float) (Free)

7.43
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rI

rI

I>

F•GUE 7.27. 6rFloat VS 6r~ree

Therefore,

"Fr =--gr Sr cr Ch6 '6 r ( (7.45)
r (Free)

r Sr 
(7.46)

Gqr rSr
r

Prm f*tmion 7.21 it can b~e sihiwt that

(7.47)
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Thus,

(+) (+) (+) (+) (-) (+) For Stability

3F6
G 5r Ch 6 r C (7.48)Srn 8 (Free)

Therefore,

for stability, tail to front or rear.

This equation shows that the parameter, 3F r/a , can be taken as an

indication of the rudder free static directional stability of an aircraft

since all terms are either constant or set by design, except C. r
(Free)

Further, this equation constitutes a flight test relationship because

Fr!Da can be readily measured in flight.

An analysis of the components of Equation 7.48 reveals that for static

directional stability (i.e., C,, = +), the sign of aFr/aB should be negative

(Figure 7.28).
RUDDER FORCE, Fr

/ UNSTABLE
/

/
/

/
/

/ SIDESLIP AWGLE, 1

S/ STABLE

Aft

FIGURE 7.28. RUDDER FORCE VS SIDESLIP
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7.4 STATIC LATERAL STABILITY

In our discussion of directional stability, the wings of the aircraft

have been considered at some arbitrary angle to the vertical (angle of bank,

4), usually taken as zero, with no concern for the aerodynamic problem of
holding this angle or for bringing the airplane into this attitude.

The problem of holding the wings level or of maintaining same angle of
bank is one of control over the rolling moments about the airplane's
longitudinal axis. The major control over the rolling mcments is the

ailerons, while secondary control can be obtained through control over the

sideslip angle. Recalling the stability derivatives which contribute to
static lateral stability, we see both of these factors present.

CZ = C Z + C . + C pp + C rr + CZ 6 a + C R 6r (7.6)

aCP+r 6aa r

It can be seen that the rolling nmoent coefficient, C,, is not a
function of bank angle, p. In other words, a change in bank angle will

produce no change in rolling macent. In fact, 4 produces no mcment at all.

Thus, C = 0, and although it is analogous to Cmand C )0 it contributes

lateral static stability analysis.
Bank angle, 4, does have an indirect effect on rolling mcment. As the

aircraft is rolled into a bank angle, a component of aircraft weight will act
along the Y-axis and will thus produce an unbalanced force (Figure 7.29).

This unbalanced force in the Y direction, Fy, will produce a saideslip, 0, and
as seen from Equation 7.6, this will influence the rolling moment produced.
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Fy= Wsin o

FIGURE 7.29. SIDE FORCE PRODUCEM BY 9ANK ANGLE

Each stability derivative in Equation 7.6 will be discussed, and its

contribution to aircraft stability will be analyzed. Table 7.2 summarizes

these stability derivatives.

TABLE 7.2
1ATERAL STABILITY AND CW ROL DERIVATIVES

SIGN FOR
A STAB'L• CO1TRIBUTMM PAWS

DERIVATIVE NAWE AIRCRAFT OF AIRCRAfW'

C, Dihedral lTffect (-H Wing, Tail

C C clue to a1 l~in, Tail

C Roll Dwping (-) Wiirg, Tail
p

CZ CZ due to Yaw Rate M+) WiNi Tr*il

C Lateral Control Power +) I.,teial Coltiol,

C C di* to Rudder Deflection Rudder

r
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7.4.1 C£ Dihedral Effect

C, which is ccamon3y referred to as "dihedral effect," is a measure of

the tendency of an aircraft to roll when disturbed in sideslip. Although the

static lateral stability of an aircraft is a function of all the derivatives

in Equation 7,6, C zis the dominant term.

The algebraic sign of C z must he negative for stable dihedral effect

(Figure 7.30). Cbnsider an aircraft in wings level flight. If disturbed in

bank to the right, the aircraft will develop a right sideslip (+8). If C i is

negative, a rolling moment to the left (-) will result, and the initial

tendency will be to return toward equilibriun.

S/ UNSTABLE

iti

SIDESUPANGLE,,i

FIGUM 1. 30, 3 XO. I U IM TICII-Tr C, VS SDSIP

It is pcssible to have too mich or b-oo little dihs'xal effect. High

vaulw of dihe4a effect give good spiral stability. If an aircraft has a

lar •w t of 4Ueral effect, tve pilot is able to pick up a wing with top

ru&er. 1his also rqman that in level flight, a s mod want of sideslip will

cate the aircraft to roll, %nd this can be anmyiny to the pilot. This is

kmi as a high e/f ratio. In multi-engine aircraft, an enjia failure will

7. ,B



normally produce a large sideslip angle. If the aircraft has a great deal of
dihedral effect, the pilot must supply an excessive amnunt of aileron force

and deflection to overcme the rolling moment due to sideslip. Still another
detrimental effect of too much dihedral effect may be encountered when the
pilot rolls an aircraft. If an aircraft, in rolling to the right, tends to
yaw to the left, the resulting sideslip, together with stable dihedral effect,

creates a rolling moment to the left. This effect could significantly ir-duce
the maximua roll rate available. The pilot wants a certain amount of dihedral

effect, but not too nwh. The end result is usually a design compromise.
Both the win and the tail contribute to C . The various effects on

C can be classified as "direct" or "indirect." A direct effect actually

produces sam increment of C• , while an indirect effect merely alters the

value of the existing C.

The discrete wing and tail effects that will be considered are
classified as shown in Table 7.3.

TAWLE 7.3

DIRECT•I•

GOOP~wtxic. Oihiral Asc Aa tio

WI. 940v Tac .$r Ratio

".-%Lwlae Intr-ferwyx Tip Tanks

Wrtical Tail WV FIlapsq

7.4.1.1 Gauwtxic Dihedral. Gxmtric dihodral, V, is defined as shun in

Figure 7431, an is positive (dihedral) Qen P0e 4rd lines of the wingtip
are above thoe at the wing root, m':d is r..jative (anhedr•A) ,,bw the , tip

dWo4 linos are helti. tOewi roots.

7.49
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DIHEDRAL ANHEDRAL

(CATHEDRAL)

FIGURE 7.31. GEOMETRIC DIHERAL

lb understand the effect of geometric dihedral on 3tatic lateral

stability, consider Figure 7.32.

VT sin ,

VT V i i

(b) 
VT Slin

VT COV

VT sin sin y

(a) I•

FIGURE 7.32. EFFECTS OF y ON C
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it can be seen that when an aircraft is placed in a sideslip, positive

geometric dihedral causes the coaponent, VT sin B sin y to be added to the

lift producing carponent of the relative wind, VTCos3. Thus, geametric

dihedral causes the angle of attack on the upwind wing to be increased by Aa.

Tb find this Aa
VT sin 0 sin Y

tan Aa7.49)
VT cos =

Making the small angle assumption,

Au = tan a sin y (7.50)

Conversely, the angle of attack on the downwid wing will be reduced.

These changes in angle of attack tend to increase the lift on the upwind wing

and decrease the lift on the downwind wing, thus producing a roll away fram

the sideslip. In Figure 7.32, a positive rideslip (+0) will increase the

angle of attack on the upwind (right) wing, thus producing a roll to the

left. Therefore, it can be seen that this effect produces a stable, or

negative, contribution to C

7.4.1.2 im 2 Weep. Te win se-ep angle, A, is measured fram a

perpundicular to the aircraft x-axls at the forward wing root, to a line

connecting thi quarter chord points of the wing. Wing sweep back is defined
as positive.

Aenotlynamic tieory shws that the lift of a yawed wing is determined by

th-e cvanoent of the fre streal velocity noral to wing. That is,

L 4 1/2 CL w hNS Miere, V. is the nmrml velocity.

As was previously shoAn in our disc.ussin of C. , awl as can be seen

from 'igure 7.33, the tormal mcanent of tre stream velocity on tUe upwind

wing on a swept wing aircraft is

N' vT cos (A (7.51)

(biOmiersely, nm UK dolnwind wing,

v • VTow (A + 0) (7.52)
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Therefore, VN is greater on the upwind wing. This causes the upwind wing to

produce more lift and creates a roll away from the direction of the sideslip.

In other words, a right sideslip will produce a roll to the left. Thus, aft

wing sweep makes a stable contribution to C and produces the same effect

as positive geometric dihedral.

RW

I It

I
.- A -~A-(3

*.. RELATWVE WIND

FIGUR= 7.33. NO4WAL VEilXTY ctomcNEN
7.5r w

1 7.52
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rib fully appreciate the effect of wing sweep on static lateral stability,

it will be necessary to develop an equation relating the two.

L - S 2 (7.53)(Upwind Wing) l / 2  PVN

s 2
L = 1/2 C- p [VT cos (A- a)] (7.54)(Upwind Wing) L2 P[T

Similarly,

s 2
L W 1/2 C E P [VT cos (A + a)) (7.55)(Da.wnward Wing) CL2 T

Thus#
s2 s2

L - / 2 CL P [VTCoa JA- 0)] 1/ 2CLg p [VTCos (A+B)i (7.56)

L 1/2C P v0 2  [Co 2 (A - 6) - Cos 2 (A + ) (7.57)

Applying a trigoncwtric iUantity,

(cos2 (A - 8) - cos2 (A + 8)1 28sin2A (7.58)

MaMing d assumption of a small sideslip angle,

sin 2 A sin 2 8 2 sin2A (7.59)

1Zrefore, Bqwation 7.57 becws

AL 1 /CL P pVr2 0sin2A I /1ZA S VT 0 sinA (7.60)

The rwllitV um nt prodced by this change in lift is

7.53
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-•L Y (7.61)

Where Y is the distance from the wing cp to the aircraft cg. The minus sign

arises from the fact that Equation 7.60 assumes a positive sideslip, +a, and

for an aircraft with stable dihedral effect, this will produce a negative

rolling moment

C = (7.62)

Y CL S P VT2 6 sin2A C.Y s(6
C£ = 2 - - sin2A (7.63)

PVT Sb

S ~C CL sin2A - CONST (CL sin2A) (7.64)

0
where the constant will be, on the order of 0.2. Equation 7.64 should not be

use above A 45- because highly swept wings are subject to leading edge

so;:.ration at '-ý,iqh angles of attack, and this can result in reversal of the

dihedral etfect. lerefore, it is best to use emirical results above

Equation 7.64 shows that at low speeds (high CL) sweepback makes a large

contribution to stable dihedral effect, Ikvmr, at high speeds (lD- CL)

swepback makes a relatively small contribution to stable d]ihdral effect

IgUfre 7.34). I

' 7.54
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Lu -00 SWEEP BACK-%, "
I. -. 0006-

S- .MAIGHT WING

-. 0004"

-SWEEP FORWARD--

(HIGH 0.5 1.0 1.5 (LOW
SPEED) SPEED)

LIFT COEFFICIENT, CL

FIGURE 7.34. ETFWTS OF WING SWEEP AND LIFT COEFFTCIET
ON DIHEDRAL EFFECr, C£

For for-4ard swept wings, the sweep beccres more destabilizing at slow speeds

and less destabilizing at high speeds. For angles of sweep on the order of
450, the wing swep contribution to C, may be on the order of - 1/5 CV.

.br large values of CL, this is a very large contribution, equivalent

to nearly 100 of geometric dihedral. At very high angles of attack, such as
during landing and takeoff, this effect can be very helpful to a swept wing

fighter encountering downwash. Since the effect of sweepback varies with CL,

bocoming oxtremely small at high speeds, it can help keep the proper ratio of
C, to Cn at high speeds and reduce poor Dutch roll characteristics at these
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0 cpLOWARWING

)k op HIGH AR WING

FIGURE 7.15. CiV IBLurICN COF ASPECT
RATIO TO DIHM)RAL EFFECT

7.4.1.3 !Wn Aet atio. Thbe wing aspect ratio exerts an indirect
contribution to dihedral effect. On a high aspect ratio wing, the center of

pressure is further from the og than on a low aspect ratio wing. This results

in high aspect ratio planforms having a longer mment arm and thus, greater

rolling mments for a given asymnetric lift distribution (Figure 7.35). It

Wh=uld be noted that aspect ratio, in itself, does not create dihedral effect.

"")7
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*cp HIGHLY TAPERED WING

O 0p LOW TAPERED WING

0000

FILJRE 7.36. CONTRIBUTioN OF TAPE RATIO
TO DIHEDRAL EFFECT

7.4.1.4 Winm Taper Ratio. Taper ratio, A, is the ratio of the tip chord to

the root chord and is a measure of hw fast the wing chord shortens.

Therefore, the lower the taper ratio, the faster the chord shortens. On highly

tapered wings, the center of pressure is closer to the aircraft cg than on

untapered wings. This results in a shorter moment arm and thus, less rolling
mnant for a given asymmetric lift distribution (Figure 7.36). Ta1per ratio

does not create dihedral effect but merely alters the magnitude of the

existing dihedral effect. Thus it has an indirect contribution to dihedral

effect.

7..5
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Cg13

j NDESLUNG TANKS M

SIDESUP ANOLE, 1
PO TANKS

CENTERLNE TANKS.

FIGURE 7.37. EFF-.2T OF TIP TANKS ON

DIHFRAL EF••r, C. OF F-80

7.4.1.5 ip Tan~ks. Tip tanks, pylon tanks, or other etternml stores will
generally exert an indirect influence on U. Unfortunately, the effect of a

given external store configuration is hard to predict analytically, and it is
usually necessary to rely on empirical results. To illustrate the effect of
various externml store configurations, data for the F-80 are presented in
Figuro 7.37. The data are for an F-80 in cruise configuration, 230 gallon
centerline tip tanks, and 165 gallon underslung tanks. These data show that
the centerlinL tanks increase dihedral effect while the underslung tanks
reduce stable dihedral effect considerably.

J.
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AL DUE TO DIHEDRAL AL DUE TO

EFFECT DIHEDRAL EFFECT

FLAPS RETRACTED

FLAPS EXTENDED

FIGURE 7.38. EFFWT OF FLAPS ON WING LIFT DISTRIBUTION

7.4.1.6 Partial Span Flaps. Partial span flaps indirectly affect static

lateral stability by shifting the center of lift of the wing, thus changing

the effective mament arm Y. If the partial span flap is on the inboard

portion of the wing (as is usually the case), then it will shift the center of

lift inboard and reduce the effective moment arm. Therefore, although the

(. values of AL remain the same, the rolling moment will decrease. This in turn

has a detrimental effect on C£ (Figure 7.38). The higher the effectiveness

of the flaps in increasing the lift coefficient, the greater will be the

change in span lift distribution and the more detrimental will be the effect

of the inboard flaps. Therefore, the decrease in lateral stability due to

flap extension may be large.

Extended flaps may also cause a seoondary, and generally small, variation

bi the effective dihedral. This semodary effeet depends upon the planform of

the flaps thas-elves. If the shape of the wimj gives a sweepback to the

leading edge of the flaps, a slight stabilizing .ihedral effect results when

the flaps are extended. If the leading edges of the flaps are swept forward,

flap extension causes a slight destabilizing dihedral effect. These effects

are produced by the same phwenon tiuat produced a change in C£ with wing

sweep.
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7.4.1.7 Wing-Fuselage Interference. For a canplete analysis of dihedral

effect, account must be taken of the various interference effects between

parts of the aircraft. Of these, probably the most inportant is wing-fuselage

interference; more precisely, the change in angle of attack of the wing near

the root due to the flow pattern about the fuselage in a sideslip. To

illustrate, this consider a cylindrical body yawed with respect to the

relative wind.

HIGH WING

- -- LOW WING

FIGURE 7.39. FLOW PATTEN ABOUT A FUSEIMU IN SIDESIIP

The fuselage induces vertical velocities in a sideslip which, when

combined with the mainstream velocity, alters the local angle of attack of the

wing. Whn the wing is located at the top of the fuselage (high-wing), then

the angle of attack will be increased at the wing root, and a positive

sideslip will produce a negative rolling mment; i.e., the dihedral effect

will be enhanced. Conversely, when the aircraft has a law wing, the angle of

attack at the root will be decreased, and the dihedral effect will be

diminished. Generally, this explains why high-wing airplanes often have

little or w geometric dihedral, whereas low-wing aircraft way have a great

deal of geometric dihedral.

The magnitude of this effect is dependent upor the fuselage length ahead

of the wing, its cros-sectionaI shape, and the plamfoxm and location of the

wing.

0
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FIGURE 7.40. ROLLING M0tT CREATED BY VERPICAL
TAIL AT A IOSITIVE ANGLE (OF SIDESLIP

7.4.1.8 Vertical Tail. As we have already discovered in our C dis-
0 T il

cussion when the sideslip angle is changed, the angle of attack of the

vertical tail is changed. 1his change in angle of attack produces a lift

force on the vertical tail. If the center of pressure of the vertical tail is

above the aircraft cg, this lift force will produce a rolling mancunt.

In the situation depicted in Figure 7.40, the negative rolling wctit Was

created by a positive sideslip angle, thus, the vertical tail cnntri at W-3 a

stable ircrurat to dihedral effect. This contribution can be quite lar...

In fact, it can be the major contribution to C onu aircraft with-

large vertical tails such as the T-38. This effect can be calculated in UWt

saw mamer yawing vanents were calculated in the diumetional case.

7.61
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Assuming a positive sides] 4.p angle, S

XF=-ZFxLF (7,.651
Since

C

then

cX .-z- b (7.66)

but

" F C½ qFSF

Therefore,

-ZF C F S F
C m (7.67)

F

W f inw VI,. as

Vt.,. (7,68)

tiSaMt that for a jLt aio rafrt

- (7.69)
And Z4zationi 7.47 kbax~jn

lie "- (7.70)

C.rv p 6 4(.71)
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ac-) (-) (+) (-) Tail on top

C= a V F 1 (7.72)

'erttical
tail (-) (+) (+) (+) Tail on bottom

Equation 7.72 reveals that a vertical tail contributes a stable incraeent

to Cz , whereas a ventral fin = (+)I would ccntribute an unstable

increment to C. Also, if the lift curve slope of the vertical tail is

increased, by end pliting for exanple, the stable dihedral effect would be
•reatly -icreased. Fbr example, the C-5 has a high horizontal stabilizer that

acts as in end plate on the vertical tail, and this increases the stable

dihleral effect. In fact, the increase is so large that it is necessary to
add n.jative geametric dihedral to the wings and a ventral fin to maintain a

v:eagolnable value of stable Uihndral effect.
A

1 .4. C UNURT.R' CA)"W. P47.

Lateral control is norinally achieved by altering the lift distribution so
tOa t-he total lift on the twi wings differs, thereby creating a rolling

nxwftnt. Ibis is dene by d ~'~~glift on one wing by e spoiler, or by
4tering tLh lift on mt~h wings with ailerons (igure 7.41).

many t• e-.r aircrift dosiqnN ut differential deflectic.nS of the
horimital stabiliexr• for roll awitrol. t,,n t-. pilot makes N roll input,

t1* horizontal stabilizer o'l one side will defloct trailing edge down, ubile

the stabili.or no tJh other side lefl•ct•s trailintx o .-Ve up. The diffev-nce in

'- •t on t•-* tw) SiRius of the stabilidzer reacts in a rollim ioment.



LL LL

•.AILERONS SPOILER

FIGURE 7.41. lATERAL CONTROL

This discussion will be limited to the use of ailerons as the means of

lateral control. A measu~re of aileron power as the rolling moment created by

a given aileron deflection. A positive deflection of either aileron, +6a, is

defined as one which produces a positive rolling mci•t, (right wing down).

is0

C£ai positive by definition. Total aileron deflection is defined as the

sumaof the two individual aileron deflections. Thus,

S= 6 + 6 {.
•tal d•eft Bight (.3

The assinption will be made that the wing cp shift due to aileron deflection

will not alter the value of C£8. The distance from the x-axis to the cp of

the wing will be labeled Y. When the ailerons are deflected, they produce a

change in lift on both wings. This total change in lift, AL, produces a
rolling imuent, cit.

- -•y_-ru.1v -I .rIv = - L YT (7.74)

Since

L - C~qS

AL = - - A• q S (7.75)
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therefore

L
O la 2Aa q S Y (7.76)a

where the "a" subscripts refer to "aileron" values.

But

aCLa

. aa (7.77)a

therefore

Oe a Aaa a qa Sa Y (7.78)

Recalling

then
a a 6aa Say Y i

Ca a a (7.79)

If we let Ba = + 6aRight 6aTotal

thmn
a a 6,otal S, Y

C = Swbw (7.80)

and

£ aa ( C 17.81)

a

Thus, from Bation 7.81 the lateral control power is a function of the

,i]eron airfoil section (aa), the area of the aileron in relation to the area

o f the wing SaISW, and the location of the wing cp (Y/b).
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7.4.3 C PollD g
p

The forces generated when an airplane is rolling about its x-axis, at

sane roll zate, p, produce rolling moments which tend to oppose the motion.

Thus the algebraic sign of Ck is usually negative.
p

The primary contributors to roll damping are the wings and the tail. The

wing contribution to CX arises fran the change in wing angle of attack that
p

results fran the rolling velocity. It has already been shown that the

downgoing wing in a rolling maneuver experiences an increase in angle of

attack. This increased a tends to develop a rolling mvient that opposes the

original rolling moment. However, when the wing is near the aerodynamic

stall, a rolling motion may cause the downgoing wing to exceed the stall angle

of attack. In this case, the local lift curve slope may fall to zero or even

reverse sign. The algebraic sign of the wing contribution to C, may then
p

becane positive. This is what occurs when a wing "autorotates," as in

spinning (Figure 7.42).

UPGO2"G UPGOING
WPOQING CWIWINGNC

U./ U. t

ANGLE OF ATTACKI, ANGLE OF ATTACK,,,

NORMAL AOA HIGH AOA

FIGURE 7.42. HIGH AOA E'F "-S ON CZ
p

The vertical tail contribution to CL arises fran the fact that when the
p

aircraft is rolled, tne angle of attack on the vertical tail is changed. This

change in angle of attack develops a lift force which opposes the original

rolling nmoent. This coWnLribution to a negative C£ is the same regardless of
p

whether the tail is above (conventional tail) or beloxv (ventral fin) the
aircraft roll axis.
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7.4.4 C Rolling Moment Due to Yaw Rate
r

The primary contributions to C cane from two sources, the wings and the
r

vertical tail (Figure 7.43).

tRW

IFI

,?} ~As the aircraft yaws, the velocity of the relative wind is increased on '
< the advancing wing to produce more lift and thus produces a rolling moment. A I

right yaw would produce imzrc lift on the left wing and thus a rolling nrzcmet
C• to the right. Thus, the algebraic sign of the wing contribution to 2, ris

RW c£

positive. 
r

ý4..
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The tail contribution to Cr arises fron the fact that as the aircraft is

yawed, the angle of attack on the vertical tail is changed. The lift force

thus produced, LF, will create a rolling manent if the vertical tail cp is

above or below the cg. For a conventional vertical tail, the sign of Ck will
r

be positive, while for a ventral fin the sign will be negative.

7.4.5 C£ Rolling M1ment Due to Rudder Deflection
6r

When a rudder is deflected it creates a lift force on the vertical

tail. It the cp of the vertical tail is above or below the aircraft cg a

rolling moment will zesult. Refer to Figure 7.44.

FIGURE 7.44. LIFT FOCE Dr-V-AE1ED AS A RESULT OF 6

It can be seen that if the cp of the vertical tail is above the cg, as
with a conventional vertical tail, the sign of C will be negative.

However, with a ventral fin, the sign would be positive.
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The effects of C£ and C£ are opposite in nature. When the rudder is
k6

r
deflected to the right, initially, a rolling morent to the left is created

due to C . However, as sideslip develops due to the rudder deflection,

r
dihedral effect, C. , comes into play and causes a resulting rolling moment to

the right. Therefore, when a pilot applies right rudder to pick up a left

wing, he initially creates a rolling moment to the left and, finally, to the

right (Figure 7.45).

U
Vj M+
a
0 lli • / "TIMlE, t-

2 )DOMINANT DEVELOPS DOMINANT

FIGURE 7.45. TIME EFFECTS ON ROLLING M0meNT
DUE TOC andC CAUSED BY + 6rCL6 r~

r

7.4.6 C£, RDlling Moments Due to Lag Effects in Sidewash

In the discussion of C,{, it was pointed out that during an increase in

8, the angle of attack of the vertical tail will be less than it will finally
be in steady state condition. If the cp of the vertical tail is displaced

from the aircraft cg, this change in aF due to lag effects will alter the

rolling mmnt created during the a build up period. Because of lag effects,

C. will be less during the 8 build up periodl than at steady state.
LF

Thus, for a conventional vertical tail, the algebraic sign of C., is positive.

Again, it should be pointed out that there is widespread disagreement

over the interpretation of data concerning lag effects in sidewash and that

the foregoing is only one basic approach to a complex problem.
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7.4.7 High Speed Consideration of Static Lateral Stability

Most of the contributions to C are due to Lwi w or e

tail. As airspeed affects these parameters, it also affects static lateral

stability.

7.4.7.1 Cq . Generally, C is not greatly affected by Mach. Hmever,

in the transonic region the increase in the lift curve slope of the

vertical tail increases this contribution to C£ and usually results in an

overall increase in C in the transonic region.

7.4.7i2 C6 k. Because of the decrease in the lift curve slope of all aero-

a
dynamic surfaces in supersonic flight, lateral control power decreases as Mach

increases supersonically.

Aeroelasticity problems have been quite predominant in the lateral

control system, since in flight at very high dynamic pressures the wing

torsional deflections which occur with aileron use are considerable and cause

noticeable changes in aileron effectiveness (Figure 7.46). At high dynamic

pressures, dependent upon the given wing structural integrity, the twisting

deformiation night be great enough to nullify the effect of aileron deflection

and the aileron effectiveness will be reduced to zero. Since at speeds above

the point where this phoncaenon occurs, rolling mxmimts are created which are

opposite in direction to the control deflection, this speed is termed "aileron

reversal speed."
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WING TORSION

(AILERON TRIMMED)

/L

/
WING TORSION
(AILERON DEFLECTED) CP

CENTER

FIGURE 7.46. AEIUELASTIC EFF-XT

In order to alleviate this characteristic, the wing must have a high

torsional stiffness which presents a significant design problem in swptwing

aircraft. For an aircraft design of the B-47 type, it is easy to visualize

how aeroelastic distortion might result in a considerable reduction in lateral

cont•ol capability at high spuc.ds. In addition, lateral control effectiveness

at transonic Mach may be reduced seriously by flow separation effects as a

result of shock fonikition. However, modern high-speed fighter designs have

been so successful in intrcducing sufficient rigidity into wing structures and

employing such design mxodifications as split. ailerons, inboard ailerons,

spoiler systems etc., that the resulting high control power coupled with the

low C. of low aspect ratio planforms, has resulted in the lateral control
16p

beoaming an accelerating device rather than a rate control. That is to say,

a steady state rolling velocity is normally not reached prior to attaining the

desired bank angle. Consequently, many high speed aircraft have a type of

differential aileron system to provide the pilot with much more control

surface during approach and landings and to restrict the degree of control in

other areas of flight.

Spoiler controls are quite effective in reducing aeroelastic distortions

C4, since the pitching moment changes due to spoilers are generally smaller than

those for a flap type contxol surface. However, a problem associated with
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spoilers is their tendency to reverse the roll direction for small stick

inputs during transonic flight. This occurs as a result of re-energizing the

boundary layer by a vortex generatcr effect for very small deflections of the

spoiler, which can reduce the magnitude of the shock indiced separation and

actually increase the lift on the wing. This difficulty can be eliminated by

proper design.

7.4.7.3 C. Since "danping" requires the development of lift on either the
p

wing or the tail, it depends on the value of the lift curve slope. Thus, as
the lift curve slope of the wing and tail decreases supersonically, C£

P
decreases. Also, since mst supersonic designs make use of low aspect
ratio surfaces, C, will tend to be less for these designs.

7.4.7.4 C and C Both of these derivatives depend on the develop-r 6

ment of lift and will decrease as the lift curve slope decreases super-

sonically.

7.4.7.5 C,80 Data on the supersonic variation of this derivative is

sketchy, but it probably will not change significantly with Mach.
Variation of all the C, camponent derivatives with Mach is illustrated in

Figure 7.47.

e.t
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7.4.8 Qlontrols Fixed Static lAteral Stability (Mlight rebst Relatiggsh)

Having discoassed the lateral stability derivatives, we are now redy. to

develop a parameter which can be measured in flight to determine the static

lateral stability of an aircraft. As in the directional stability case, the

maneuver that will be flow will be steady straight sideslip (reference Figure

7.21). Recalling the static lat*.raý equation of notion and tte fact that in a

steady straightsideslip p r ZG 0,then

7.73



c£8 +c£/•e +c c c6 r + 1 6a
+ r a

Thus

C S + C 3 +C 6r = 0 (7.82)

a r

Solving for 6a

6 (7836a C ----- £ - r (7.83)a C Z6 C16 r

a a

and differentiating with respect to 0

3a (Fixed) 6r 6r
7Ca c C9 .  )

a 6a

Disregardirnj the term that is usually the smallest contributor to the ex-

pression, C6 , we arrive at the following flight test relationship:

r

a = ( (7.84)

Since C = aa (S aiSw) (Y/b), all of which are known and fixed by design,
aa

£6
a

then the only doridant variable remaining is C B. Therefore H /36 can be
a

taken as a direct measure of the static lateral stability of an aircraft,

controls fixed.

Since C has to be negative in order to have lateral stability and Ci l £5

is positive by definiti(o, thxmn 36 fa/a should have a positive. slope as shown

in Figure 7.48.
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STABLE

IN SIDESLIP ANGLE, i•i

' •'%%UNSTABLE

FIGURE 7.48. AIL OF/ Mq=•ION 6 RVE.ýMgS SIDESLIP AMYL.

Na

7.4.9 Controls Pree Static l-ateral Stability (Flight Test ReLationship)

on aircraft with rev/ersible control systems, the ailerons are free to
float in• response to their hinge rwments. Using the s&we approach ýi. in the

directional case, it is panssible to derive an expression th.•t wi'll -relate the
"aileron free" static lateral stkility to parameteýrs that can be ea-sily

treasured in flijit. For th~e disti-ssion of aileron hinge manwnts, a change in

ageof attaxck on a wdir, will be define~d as positive if itcauses a positive

•- •rolling r.ment. Ibis may be contrary to the sign mi]vention us in the

lolxjit~ir-al Case.
III a steady straight sideslip, 1"X = %'.iich inviies that

';:O 11ingje Pin -- 0. Now if ,onents are sumred axlmt the aileron hinge pin,

thuni a pilot must apply aileron forces %to oq~ose the aer•odynivic hinge mome-nt

in cxdp to keep the ailerons deflected thr-e rix]uired wmixt to maintain

ý.O : lne i 0. ".bis ailer,'e for(,:, F, dcts t,-rough a mxw rnt arm Ia.M

gr~aring mecumnism, bothi accounted for by same costAnt K.

111us in steady Str'aight flich

>N
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Zere Ha = the aileron hinge moment. Or

F -a Ha (7.86)

where G = I/K (definition).

.aling coefficient format,

C = (7. 87)a a

qa

H Ch(1/211V, 2 Sa C (7.87)

But %-& have already shoxn f-rm Sqmtion 7.23 that.-

Ha a/~,~ (12Se2)Saca C ~ ha (7.80)
a

aThu S aealed kq~nfr~ution 7.23 behat

Pa -G(/2V 2S c Ch CL a + Ch 6a1.1
6a

a a

¶•s •juation 7.86 becu7es

2
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Recalling that for a floating control surface

Ch Ch 6a 'Float) (7.92)
a a

Terefore

F a G (1/2 P VT 2 C a a (Float) (7

qa

7he differencu between where the pilot pushes the aileron, 6a, and the

amount it floats, . , is the free position of the aileron,

aa

(Float)' (Free-)

~msmy~~um./6 a (Free)
qa

Dif baentiating with respect to r

w =a G (1/2 1 V2 ) Sa C (7.95)
Sh6 a
qa a

From Suation 7.84, it can be shown that

36 C
36 = .... .... (7.96)

...
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Thus

F aCh

G(i/2 -1 S C 2 IS = a+) (7.97)
T a a C kSa•8(Free) for

qa stability

(+)

This equation shows that the parameter aFa/a8 can be taken as an

indication of the aileron free static lateral stability of an aircraft since

all terms are either constant or set by design, except C£8. More importantly,

3F /a/ can be readily measured in flight.
a

An analysis of Equation 7.97 reveals that for stable dihedral effect, a

plot of F /a• 'uld have a positive slope (Figure 7.49).

F4

STABLE

N. SIDESU PANGLEi

\ UNSTABLE

-A':,:• FIGUME 7.49. AILEIDN FORCE Fa VERSUS SIPSLIP ANGLE
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7.5 ROTLING PERFORMANCE

Now that we have shown how aileron force and deflection can be used as a

measure of the stable dihedral effect of an aircraft, it is necessary to

consider how these parameters affect the rolling capability of the aircraft.

For example, full aileron deflection may produce excellent rolling

characteristics on certain aircraft; however, because of the large aileron

forces required, the pilot may not be able to fully deflect the ailerons,

thus making the overall rolling performance unsatisfactory. Thus, it is

necessary to evaluate the rolling performance of the aircraft.

The rolling qualities of an aircraft can be evaluated by examining the

parameters Fa, 6a' p and (pb/2U0 ). Although the importance of the first three

parameters is readily apparent, the parameter (pb/2U0 ) needs sone additional

explanation.

Mathemwatically pb/2U0 is a nondimensional parameter where p roll rate

(rad/sec); b = wing sp (ft); and U0 = velocity (ft/sec).

Physically pb/2U0 may be described as the helix angle that the wing tip

of a rolling aircraft describes (Figure 7.50). In addition, the pb/2U0 that

can be produced by full lateral control deflection is a measure of the

relative lateral control power available.

RESULTANT
4 •PATH OF WING TIp- (FT/SEQC
(FT/SC) -HELIX ANGLE

U0 , AIRCRAFT VELOCITY (FT!SEC)

"(UPGOING WING)

FIGURE 7.50. WING TIP HELIX ANGLE!::: •(UPGOTNG WING)

It can be seen that

tan (Helix Angle) = (7.98)
2U0

7.79
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Assumning small angles)

Helix Angle =pb (7.99)2U
0

This angle also represents the change in angle of attack of a rolling

wing (Figure 7.51).

RESULTANT £ZZZ
RELATIVE WIND

HELIX ANGLE - A

Nato=OF RW DUE TO
COMPONENT OF RW AIRCRAFT ROLLING pb
DUE TO AIRCRAFT 2
FORWARD VELOCITY Uo

FIGURE 7.51. WIND FORCES ACTING ON A DOW•GOING
WING IURING A MLL

This figure shkws that the angle of attack of the downgoing wing is
increased due to the roll rate. This implies increased lift opposite the
direction of roll on the dwngoing wing and, conversely, decreased lift in the
direction of roll on the upgoing wing due to decreased a. This is essentially
the same effect as C Thus pb/2U0 represents a damping term.

1p
With the foreoing disoussion as background, we are now ready to discuss

the effect of Fa, da' p,, p,/2U0 on roll performance through the flight
Senvelope of an aircraft.

Fr= Equation 7.94 it can be seen that

Fa - f(7.98)

~VTD (Free)
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a f(F' 1/VT2) (7.99)
a(Free)a T

TO derive a functional relationship for (pb/2U0 ), it is necessary to

start with the basic lateral equations of motion,

C, = C a + C£a + Cpp + Cr r + C6 + C 6r (7.100)
$p kr L6 aa k6rr

and examine the effect of roll terms only, i.e., assume that the roll moment

developed is due to the interaction of moments due to 6 a and roll damping

only. Therefore, Equation 7.100 becomes

C£ =C~p+C£ 6a (7.101)
P a

( calling from equations of motion that Z = ;b/2Uo, then pb/2Uo.

Therefore,

CL C + CXL6aa (7.102)

Below Mach or aeroelastic effects, C constant, so if it is desired to

evaluate an aircraft's maximum rolling performance, Equation 7.102 becoues

C + C 6 = constant (7.103)
CAP TLia

Constant -C
La
a (7.104)

2Uo Ct

7.81
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Ii

i=

( b =) f (6 a) (7.105)

Bat we have already shown that 6a = f (Fa' 1/VT 2NT)therefore,

2 0  a= f (F 1/V 2 (7.106)

A functional relationship for roll rate, p, can be derived from Equation

7.104

Constant - C 6£6C a

CL 12kUOJ (7.107)

p

p = f (U0, 6a) (7.108)

and since

6a - f (F, 1/VT 2

then

P " f (Fa I/VT) (7.109)
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IZ assuming

U0 = VT (i.e., no sideslip)

To summarize, the rolling performance of an aircraft can be evaluated by

examining the parameters, F a, 6a, p, and (pb/2U0 ). Functional relationships
have been developed in order to look at the variance of these parameters below

Mach or aeroelastic effect. These functional relationships are

Fa = f (VT2 'a) (7.110)

Sa = f (Fa' /VT 2) (7.111)

EL -f (6 f(a T2 (7.112)

p = f (VT' 6a) f (Fa' I1VNT) (7.113)

Ilese relationships are expressed graphically in Figure 7.52 for a case
in which the pilot desires the maxinimi roll rate at all airspeeds. .4

78
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__2__ /F=K
25 I-

LATERAL Fa =f(V 2) "0)----UNBOOSTED FORCE F. 10_ .•iK

BOOSTED 0 68=K------ 6a=
40 -_

20 - - 6 -f~
AILERON --

DEFLECTION, 6 0 -

.09 pb/2Uo= K

b .*06 -4P -

o.03 -0

ROLL RATE, p, 160

050/SEC 1 20 --

80"

40J
100 200 300 400 500

VELOCITY, V (KNOTS)

FIMJRE 7.52. ROLLNG PEPORMANM

As indicated in Bkjation 7.110, the force required to hold a constant

aileron deflection Will vary as the square of the airspeed, The force

redred by the pilot to hold full aileron deflection will increase in this

maurer until the aircraft reaches VMAX or until the pilot is unable to apply

any more force. In Figure 7.52, it is assmed t-Mt the pilot can supply a

Mtdtm of 25 poxU force and that this force is reached at 300 knots. If

the speed is increased further, the aileron force will rafain at this 25 pound

maximim value. 21e curve of aileron deflection versus airspeed shows that the

pilot i' able to maintain full aileron deflection out to 300 knots.

InRMCUM of fuation 7.111 shows that if aileron force is constant beyond

300 bnots, then aileron defleto will be proportional to (1/VT1 -) . Equation
7.112 shows that (pb/2U0 ) will vary in the sm manner as aileron deflection.

tn6PeCtion Of qpation 7.113 stm that the maxinmu roll rate available will

in elinearly as long as the pilot can maintain maximum aileron
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(• deflection, up to 300 knots in this case. Beyond this point, the maximum roll
rate will fall off hyperbolically. That is, above 300 knots, p is

proportional to i/VT. It follows, then, that at high speeds the maximum roll

rate may become unacceptably low. Cne method of caomating this problem is to

increase the pilot's mechanical advantage by adding boosted or fully powered

ailerons.
By boosting the controls, the pilot can maintain full aileron deflection

with less physical effort on his part. Thus, Fa = 25 pouinds will be delayed

to a higher airspeed. The net effect is a shift of the Fa, 'a and pb/2U0
curves and a resulting increase in p (reference Figure 7.52 dashed lines).

Many modern aircraft have irreversible flight control systems. These

systems allow an aircraft to be designed for a specific aileron force at full

deflection, regardless of the airspeed. This allcws the pilot to hold full

deflection at high speeds, resulting in a constant helix angle and increasing

roll rate at higher airspeeds. This change in performance is still limited by
Mach effects and aeroelasticity.

k 7.6 LATERAL-DIRECTICNAL STATIC STABILITY FLIGirW TESTS

The lateral-directional characteristics of an aircraft are determined by

two different flight tests: the steady straight sideslip test and the aileron

roll test. The tests do not measure lateral and directional characteristics

independently. Rather, each test yields information concerning both the
lateral and the directional characteristics of the aircraft. The requirements
of the Mnl-F-8785C will be discussed.

7.6. i Sa Straight Sideslip Flight Test

"he steady straight sideslip is a camon maneuver which requires the

pilot to balance the forces and moments generated on the airplane by a

sideslip with aR=pWiate lateral and directional control inputs and bank

A• • anMle. Sic these cetrol forces and positions and bank angles are at least

injdicative of the sign (if not the magnitude) of the generated forces and
mments (and thereftre of the associated stability derivatives) the steady

straight sidelip is a omwenient flight test tec5nique.
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All equations relating to the static directional stability of an aircraft )
were developed under the assumption that the aircraft was in a "steady
straight sideslip." This is the maneuver used in the sideslip test. First,
trim the aircraft at the desired altitude and airspeed. Apply rudder to

develop a sideslip. In order to maintain "straight" flight (constant ground
track), bank the aircraft in the direction opposite that of the applied
rudder. In Figure 7.53 the aircraft is in a steady sideslip. The moment

created by the rudder,V , must equal the moment created by the
r

-3]

FIGURE 7.53. STADY SIDESLIP
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aerodynamic forces acting on the aircraft ' In this condition the side
F , will always be greater the F . Thus, in thei ~ ~forces are unbalanced. F

a Y6
r

case depicted, the aircraft will accelerate, or turn, to the right. In

order to stop this turn, it is necessary to bank the aircraft, in this case

to the left (Figure 7.54). The bank allows a component of aircraft weight, W

sin 0, to act in the y direction and balance the previously unbalanced side

forces. Thus, the pilot establishes a "straight sideslip." By holding this

condition constant with respect to ti-me or varying it so slowly in a

continuously stabilized condition that rate effects are negligible, he

establishes a "straight sideslip" - the condition that was used to derive the

flight test relationships in static directional stability theory.

W 
V

FIGURE 7.54. STEADY STRAIGHT SIDESIP

MIL-F-7875C, Paragraph 3.3.6 outlines the sideslip tests that must be

performed in an aircraft. The specification requires that sideslips be tested

"to full rudder pedal deflection, 250 pounds of rudder pedal force, or maximun

aileron deflection, whichever occurs first. Often sideslips must be

discontinued prior to reaching these limits due to controllability or

structural problems.
The following MIL-F-8785C paragraphs aply to sideslip tests:

3.2.3.7, 3.3.5, 3.3.6, 3.3.6.1, 3.3.6.2, 3.3.6.3, 3.3.6.3.1, 3.3.6.3.2.

C.
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One property of basic importance in the sideslip test is the directional
stiffness of an aircraft or its static directional stability. To review, the )
static directional stability of an aircraft is defined by the initial tendency
of the aircraft to return to or depart from its equilibrium angle of sideslip

when disturbed from the equilibrium condition. In order to determine if the
aircraft possesses static directional stability, it is necessary to determine
how the yawing moments change as the sideslip angle is changed. For positive

directional stability, a plot of C), must have a positive slope (Figure 7.55).
X

cit

bt 0

SIORSP ANGt.E,4

PIZGE 7.55. WIND IQVNN& PStXTS OF YAWING MM
CO Iim r C VE•S SIDESLIP ANGLE

Plots like those presented in Figure 7.55 are obt~ained from wind tunnml
data, The aircraft model is placed at various angles of sideslip with various

angles of rudder deflection, and the unbalarced mromnts are moasured. 1kwaver
it is inuxpo ble to determine frm flight tests the urbalancod mowents at

varying angles of sideslip. It was sho~m in static directional theory,

hmaver, that the ruider de.1 ction required to fly in a steady straight

sideslip is an indication of the amont of yawing mtment tending to return the

aircraft to or rmeno it from its original trimmed angle of sideslip. A plot

in made of rudder deflection required versus sideslip angle in order to

Vtem th sig of the rudder N static stability, C# 7.i.
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The control fixed stability parameter, 36r/a8, for a directionallv stable

aircraft has a negative slope as shown in Figure 7.56. Paragraph 3.3.6.1,

repaires that right rudder pedal deflection (+6 r) accczqpany left sideslips

(-8). Further, for angles of sideslip between +150, a plot of a6 r / 8 should
he essentially line&r. For larger sideslip angles, an increase in 6 *must

require an increase in 6r. in other words, the slope of 36r/rM cannot go to

zero.
Drastic changes occur in the transonic and supersonic speed regions. In

the transonic region where the flight controls are nmst effective, a small 6r
may give a large 8 arnd thus a6 r/ /3 may appear less stable. However, as

speed increases, control surface effectiveness decreases, and )dr/38 will

increase in slope. This apparent change in is due solely to a change in

control surface effectiveness and can give an entirely erroneous indication of
the magnitude of the static directional stability if not taken into aocowit.

'S.*
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A plot of rudder force required versus sideslip, aFr/aý, is an indication
of the rudder-free -static directional stability of an aircraft. A plot of
3F r/3ý must have a negative slope for positive rudder-free static directional

stability. Paragraph 3.3.6.1 requires that a plot of aFr/as be essentially

linear between +100 of 8 from the trim condition. However, at greater angles

of sideslip, the rudder forces may lighten but may never go to zero, or

overbalance. These requirements are depicted in Figure 7.57.

RUDDER FORCE, Fr

100 100
+9

SIDESLIP ANGLE, 0

Fr(H

FIGURE 7.57. CONTROL FREE SIDESLIP DATA

The control force information in Figure 7.57 is acceptable as long as the

algebraic sign of Fr / is negative. At very large sideslip angles, the slope

F /8 may be positive. This is acceptable as long as the rudder force required
r

does not go to zero.

Static lateral characteristics are also investigated during the sideslip
test. It was shown in the theory of static lateral stability that a6a/ a may

f ibe taken a;3 an indication of the control-fixed dihedral effect of an airrraft,
C . For stable dihedtal effect, it was shown that a plot of 36a/3B

X 7(Fixed) 9
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must have a positive slope. Right aileron control deflection shall

acconpany right sideslips and left a: £eroa control shall accoapany left

sideslips. A plot of H6a /3 for stable dihedral effect is presented in Figure

7.58.

AILERON DEFLECTION,

STABLE

ON

N
N

\,IDESLIP ANGLE. 0
N

UNSTABLE

FIGURE 7.58. CONTIROL FIXED SIDXESLIP DATA

j Paragraph 3.3.6.3.2 limits the amount of stable diledral effect an

aircraft will exhibit by specifying that no more than 75% of roll control

power available to the pilot, and no nmre than 10 lbs of roll stick force or

20 lbs of roll wheel foroe are requied for sideslip angles which may be

experienced in service enployint.

Theoretical discussion of contxol free dihedral effect revealed that

3F /as gives an indication of CL and that for stable dihedrala
effect Wa/38 is positive (Figure 7.59). Paragraph 3.3.6.3 states that

left aileron force should be required for left sideslips and that a plot of

3FaI/M shoeuld be essentially liear for all of the mandatory sideslips tested.
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AILERON FORCE,
Fa (+) STABLE

, B!(+)

SIDESLIP ANGLE, 0

UNSTA'LE

FIGURE 7.59. CONTPOL FRE SIDESLIP DATA

Paragraph 3.3.6.3.1 does permit an aircraft to exhibit negative dihedral
effect in wave-off conditions as long as no more than 50% of available roll
control or 10 lbs of aileron control force is required in the negative

dihedral direction.
Paragraph 3.3.6.2 also states that "an increase in right bank angle must

acomR-arq an increase in right sideslip."

A longitbinal trim change will most likely occir when the aircraft is
sideslipped. ragrap 3.2.3.7 places definite limits on the allowable
magnitude of this trim change. It is preferred that an increasing pull of

4A force aoxVany an increaso in sideslip angle and that the magnitude and
direction• of the trim change should be similar for both left and right
sid•lips. 1he specification also limits the magnitude of the control force
A0cpaYijrng the ongituairal trim change depm-diir on the type of controller
in the aircraft (stick or iweel). A plot of elevator force versus sideslip

arqle that owplies with MIL-F-8;)8W is presented in Figure 7.60.
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F0 (PULL)

SIDESLIP ANGLE, 3

FIGURE 7.60. ELEVATOR FORCE, Fe VERSUS STDES.LIP ANGLF

EXAMPLE DATA

Sanple data ploWs of sideslip test results are presented in Figures 7.61

and 7.62.

AILERON FORCE FS
ELEVATOlR FORCE F*

F? RIRUJDER FORCE Ft

F 
F

N+ SIDESLIP ANGLE,ý3

.P.. I

FIGURE 7.61. STWAN ASTRAIGHT SIDESLIP 01ARAZTERISTIcS
CNTRM F(CF VEIWS SI')EgLIP

7.93



AILERON DEFLECTION b*

ELEVATOR DEFLECTION 6b

RUDDER DEFLECTION 6 r
BANK ANGLE )

SIDESLIP ANGLE,4

FIGURE 7.62. STEADY STRAIGHT SIDESLIP CHARACTERISTICS
CONTROL DEFLICTION AND BANK ANGLE VERSUS
SIDESLIP

7.6.2 Aileron Roll Flight Test

The aileron roll flight test technique is used to determine the rolling
performance of an aircraft and the yawing moments generated by rolling. oill
coupling is another important aircraft characteristic normally investigated by
using the aileron roll flight test technique. The roll coupling aspect of the
aileron roll test will not be investigated at the USAF Test Pilot School.
However, the theoretical aspects of roll coupling will be covered in
Chapter 9.

To accomplish the aileron roll flight test, trim the aircraft at the
desired altitude and airspeed. Then, abruptly place the lateral control to a
particular control deflection (1/4, 1/2, 3/4, or full) with a step input.
Normally, the desired control deflection is obtained by using sawe nmechanical

restrictor such as a chain stop. With the lateral control at the desired
deflection, roll the aircraft through a specified incrment of bank. Fbr
control deflections less than a maxciui, the aircraft is normally rolled

through 900 of bank. Because of the higher roll rates obtained at full
control deflection, it is usually desirable to roll the aircraft throug. 360°
of bank. To facilitate aircraft control when rolling through a bank angle
change of 90P, start the roll frcml a 450 bank angle. During the roll, an
autcmatic data remrding system may be used to record the folowing
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information: aileron position, aileron force, bank angle, sideslip and roll

rate. Aileron rolls are normally conducted in both directions to account for

roll variations due to engine gyroscopic effects. Aileron rolls are performed

with rudders free, with rudders fixed, and are coorditated with a = 0

throughout roll.

Exercise caution in testing a fighter type airplane in rolling maneuvers.

The stability of the airplane in pitch and yaw is lower while rolling. 7he

incremental angles of attack and sideslip that are attained in rolling can

produce accelerations which are disturbing to the pilot and can also cause

critical structural loading. The stability of an airplane in a rolling

maneuver is a function of Mach, roll rate, dynamic pressure, angle of attack,

configuration, and control deflections during the maneuver.

The most important design requivment imposed upon ailerons or other

lateral control devices is the ability to provide sufficient rolling moments

at low speeds to counteract the effects of vertical asymmetric gusts tending

to roll t-he airplane. ibis means, in effect, that the ailerons must provide a

minimum specified roll rate and a rolling acceleration such that the required

(0 rate of roll can be obtained within a specified time, even under loading

conditions that result in the maximum rolling moent of inertia (e.g., full

tip tanks). 7he steady roll rate and the minim= time required to reach a

particular change in bank angle are the two parameters presently used to

indicate rolling capability. Pilot opinion surveys reveal that time to roll a

specified numbOr of degrees provides the best overall measure of rolling

performance.

The follwing is a complete list of MIL--8785C paragraphs that apply to

aileron roll tests: 3.3.2.3; 3.3.2.4; 3.3.2.6; 3.3.4; 3.3.4.1; 3.3.4.1.1;

3.3.4.1.2; 3.3.4.1.3; 3.3.4.2; 3.3.4.3; 3.3.4.4; 3.3.4.5.

I The minwum rolling performance required of an aircraft is outlined in

P eMII-F-8785C, Table IX. ibis rolling performanoe is expressed as a function of

time to reach a specified bank angle. Table IX is supplemented further by

roll performance required of Class IV airplanes in various flight phases. The

t •specific requirements for Class IV airplanes are spelled out in Paragraphs

S3.3.4.1.1, 2, .3, and .4. Paragraph 3.3.4.2 and Table X specify the mxinmm

and mininum aileron control forces allowed in meeting the roll requirements of

Table IX and the supplemental requirments concerning Class IV aircraft.
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Paragraph 3.3.2.5 specifies the maximum rudder force permitted for
oordinating the required rolls.

In addition to ecamining time reuired to bank a specified number of

degrees and aileron forces, %, it is necessary to examine the maximum roll

rate, pa, to get a complete picture of the aircraft's rolling performance.

Terefore, in any investigation of aircraft rolling performance, the maximum

roll rate obtained at maxinun lateral control displacement is normally plotted

vesus airspeed.
Paragraph 3.3.4.3 states that there should be no objectionable

nonlinearities in roll response to small aileron control deflection or forces.

To investigate this area, it is necessary to observe the roll response to

aileron deflections less than maximum - such as 1/4 and 1/2 aileron

deflections (Figure 7.63).

p

AILAERN DEFLECTWON, 6Ct•

FIGURE 7.63. LIFARITY OF' A=XJ RErVNS

ibr obordinati.n r ireaets are spelled out in Paragraph 3.3.2.6 for

steady turning maneuvers.
1110 other area of prime interest in the aileron roll flight test is the

amout of sideslip that is develq)ed in a roll and the phasing of this

. sideslip with resect to the roll rate. Asociated with this characteristic

is the roll rate oscillation. ¶hese factors influence the pilot's ability to

acoc* ab precise tracking tasks. 79&
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77.6.3 Emmstration Fliqht
To unify all that has been said ccncerning the sideslip and aileron roll

flight test techniques, a omplete description of a demonstration mission is
presented in the Flying ualities Phase Planning Giide.

7

I
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PROBLUM

7.1. Answer the following questions True (T) or False (F).

T F The primary source of directional instability is the aircraft
fuselage.

T F Ailerons usually produce proverse yaw.

T F The tail contribution to CY is the dominant damping
factor. r

T F In a steady straight sideslip p = 0.

7.2. The aircraft shown in the following diagram is undergoing a design study

to improve static directional stability. The Contractor has reomvended

the addition of surfaces A, B, C, D, and E. Wtever, the System Program

Office (SPO) isn't too impressed and mnts the folLwing questions

aiswered by the Flight Test Onter. With the wings in position I or 2

determine if the follcwing contributions to C,, are stabilizing (+) or

destabilizing (-) •

1OS lTICA4 1 POSITION 2

a. Vertical Tail

b. Area Z (Ventral)

* C. Qkiopy Area

d. Area 8 (Dorsal)

e. AmeaA

f. Area C
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g. Area D

h. Wing

i. Fuselage .

C D

7.3. Lateral-Directional Static Stability is a function of what variables?

7.4. Sketch a curve (Cr versus 8) for an aircraft with stable static
" ~ ~directional qualitie-s and show the effect on this curve of addiJng a

dorsal.

7.5. Does fuselage sideash (o) have a stabilizing or destabilizing effect on

*~ C? %my?

7.6. How would yvu design a flying wing with no prot aes in the Z
direction so that it has directional stability?

7.7. what effct do straight wings have onC ? Why?

7.8. How doe increasing wing swep (A) effect C ? Why?
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7.9. Mhat effect will increasing AR have on C ? Why?

7. 10. V4at is the sign of a left rudder deflection for a tail to the rear

aircraft? For a right rudder deflection? Why?

7.11. Mhat would the sign of -r be for a tail to the rear aircraft? Why?

7.12. For a tail to the rear aircraft, draw an airfoil showing the pressure

distribution caused by + cF. What is the sign of Hr?

Vhat is the sign of aCh/"c±-. Why? Sketch a plot of Hr versus cF.

7.13. For a tail to rear airc;:aft, draw an airfoil showing the pressure

distribution caused by 6r. What is the sign of Hr6 ?

r

*hat is the sign Of 1*/1 r? Why? Sketch a plot of Hr verss Sr'

7.14. KraM arFMAT = -C F C6r aF for a tail to the rear aircraft,

determine which direction the rix]r will float for - c&F"

7.15. 1nd V

how does float effect C for a tail to the rear aircraft? Tail to

front?

HINT You should be able to anvoer uestions 7.10 - 7.14 for a tail to

frot aircraft.
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7.16. Go-Fast Inc. of Mojave has completed a preliminary design on a new Mach

3.0 fighter. The chief design engineer is concerned that the aircraft

may not have sufficient directional stability. List three design

changes/additions which would help ensure directional stability.

7.17. You are flying an F-15 Eagle on a sideslip data mission. You establish

a steady straight sideslip and record +50 of B. You record the

following data on your DAS: 6 6e = 6,25', 6a = + 8.00,

Fe = + 6 . 8 ibs, Fa = + 3.7 lbs,F - 12.3 lbs.

You had hoped to make a plot of 6/'a8, but in true TPS fashion the

( uder gae failed to wrk. The following is wind tunel data for the
F-15.

C - + 0.006 C- 0.460 C• 1 + 0.003Sr 6r
r

SC * ++0.001 +0.002 C -0.0006

iB a p

g a. Determine the value of 6 r at your test point.

b. Assuming that at 0 = 0 both 6 and F are =0, does ther r
aircraft echibit static directional stability rdider Fixed and

nrdlar free? Sketch plots of 6 r vs and Fr vs 0.
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7.18. Given the following swing-wing fighter:

With wings in kosition 41), what is the sign of C or the folloing

a..

b.Ang4Axselage inhterfer~nerm
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c. Vertical Tail

d. Area B (Ventral)

e. Area A

f. Canopy

7.19. What is the effect on C of sweeping the wings to Position (2)?

win

7.20. Miat is the sign of C for the followuing?

qr

a. Vertical Tail

b. Area B

c. Area A

d. canopy

7.21. What is the sign of C ?

7.22. Miat is the sign of C L for the following?

a. W•rtical Tail

b. Area•

c. Area A

d. Canopy

7.23. rbr this wing wing ofigt&
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Ck - -0.0020

C = +0.0006

C = -0.0046
p

C = +0.0018
r

C = -0,0005

r

C = +0.0010

a

You run a steady straight sideslip test and measure a = + 50 and
6 r - 100. What was your aileron deflection? Does the aircraft

exhibit stick-fixed static lateral stability?

7.24. For an aircraft in a right roll, show the pressure distributions that
cause Ch and Ch on the right wing. Determine the sign of both.

7.25. Assuming an unboosted reversL.•,• flight control system, sketch a curve

of (Fa '5a' pb/2U0 ' p) versus velocity and explain the shape of each

for a maxinn rate roll. Show the effect of boosting the system.

7.26. Answer each of the following questions True (T) or False (r).

T F High wings make a negative contribution to C.

T F Taper ratio only affects the magnitude of C. but does not
provide any asymmetxic lift distribution, 0
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T F Ck is increased if the fin area (SF) is decreased.
0fir,

T F C and C are cross derivatives.

r

T F C is a significant factor in detemining aircraft lateral

stability.
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8.1 INT•IODUCTION

Dynamics is concerned with the time history of the motion of physical

systems. An aircraft is such a system, and its dynamic stability behavior can

be predicted through mathematical analysis of the aircraft's equations of

motion and verified through flight test.

In the good old days when aircraft were simple, all aircraft exhibited

five characteristic dynamic modes of motion, two longitudinal and three

lateral-directional modes. The two lornitudinal modes are the short period

and the phugoid; the three lateral-directional modes are the Dutch roll,

spiral, and roll modes.

As aircraft control systems increase in complexity, it is conceivable

that one or more of these modes may not exist as a daminant longitudinal or

lateral-directional mcde. Frequently the higher order effects of complex

control systems will quickly die out and leave the basic five dynamic modes

of motion. When this is not the case, the development of special procedures

may be required to meaningfully describe an aircraft's dynamic motion. For
(tihe purposes of this chapter, aircraft will be asszid to possess the five

basic modes of motion.

During this stidy of aircraft dynamics, the solutions to both first order

and second order systems will be of interest, ard several important

descriptive parameters will be used to define the dynamic response of either a

first or a seccond order system.

The quantification of handling qualities, that is, specifying how the
magnitude of some of theuse descriptive parameters can be used to indicate how

well an aircraft can be flown, has been an extensive investigation which is by

no means complete. Flight tests, simulators, variable stability aircraft,

engineKring know-hcw, and pilot opinion surveys have all played major roles in

4 this investigation. Ito military specification on aircraft handling

qualities, MIL-P-8785C, is the current state-of-the-art and ensures that an

aircraft will handle well if czxpliance has been achieved. No attempt will be

mde to evaluate how satisfactory MI,-F-8785C is for this purpose, but

iv development of the skills necessary to accomplish an analysis of the dynamic

V behavior of an aircraft will be studied.
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8.2 STATIC VS DYNAMIC STABILITY

'lThe static stability of a physical system is concerned with the initial

reaction of the system tien displaced from an equilibrium condition. 7he
system could exhibit either:

Positive static stability - initial tendency to return
Static instability - initial tendency to diverge
Neutral static stability - remain in displaced position

A physical system's dynamic stability analysis is concerned with the

resulting time histozy motion of the system when displaced from an equilibrium

condition.

8.2. 1 Dynamically Stable Motions
A particular mode of an aircraft' a motion is defined to be "dynamically

stable" if the parameters of interest tend toward finite values as time
increases without limit. Some examples of dynamically stable time histories
and same terms used to describe them are shain in Figures 8.1 and 8.2.

TIME, t

"FIG=B 8. 1. EDO UILML D93 'SG
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TIME, t

FIZG 8.2. DAMPE SINUSOIDAL OSCILIArIC*

8.2.2 Dyjvically t ,stable M•tion

A mode of motion is defined to be "dynamically unstable" if the

parameters of interest increase without limit as time increases without limit.

Sam exnples of dynamic instability are shown in Figures 8.3 and 8.4.

TIME, t
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1
ii 0

TIME, t

FIGURE 8.4. DIVERE SINUSOIDAL OSCILLATICN

8.2.3 Dynamically Neutral Motion

A mode of motion is said to have "neutral dynamic stability" if the

parameters of interest exhibit an undamped sinusoidal oscillation as tire

increases without limit. A sketch of such motion is shown in Figure 8.5.

0

TIME. t

•FIGM 8. 5. LUtAM*EI OJILIATION

Lixanle Stability Problem:

A stability analysis can be acccmished to analyze the aircraft shown in

Figure 8.6 for longitudinal static stability ar.J dynamic stability. This

aircraft is operating at a constant trinmed angle of attack, cat in Ig flight.

8.4



REFERENCE UNE

(SPECIFIED THAT Coa< 0)

FIGURE 8.6. DCAW7Z STABILITY ANALYSIS

Static Stability Analysis. If the aircraft was displaced from its
equilibrium flight conditions by increasing the angle of attack to a = a0 + Am

then the change in pitching moment due to the increase in angle of attack

would be nose down because CM < 0. Thus, the aircraft has positive static

longitudinal stability in that its initial tendency is to return to equili-
brium.

Dynamic Stability Analysis. The motion of the aircraft as a function of

time must be known to describe its dynamic stability. Two methods could be

used to find the time history of the motion of the aircraft:

1. Solutions to the aircraft equations of motion could be obtained and
analyzed.

2. A flight test could be flown in which the aircraft is perturbed fram
its equilibrium condition and the resulting motion is recorded and
observed.

A sophisticated solution to the aircraft equations of motion with valid

aerodynamic inputs can result in good theoretically obtained time histories.
9 .k•-evemr, the fact ramins that the only way to disover the aircraft's actual

dynamic motion is to flight test and record its motion for analysis.

8.3 EXAMPLES OF FIRST AND SBOOND ORDER DYNAMIC SYSTEM

8.3.1 Second Oder Systýe with Positive Daping

""he problem of finding the motion of the block shown in Figure 8.7

0 ex~ipstses many of the methodls and id3eas that will be used in finding the
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time history of an aircraft's motion frum its equaticns of motion.

/

FIGURE 8.7. SEXXND ORDER SYSTEM

The differntial equation of motion for this physical system is

W÷x+Di + Kx = r(t) )

After laplace transforming, assumning that the initial conditions are zero, and
solving for X(s)/F(s), the transfer function, the result is

s +s+
H _H

T he d nator of the transfer ftmtion which gives the free response of a

uystma will be referred to as its "characteristic equation,*" and the symbol
A(s) will be usmd to indicate the characteristic equation.

The characteristic equation, A (s), of a second order system will

frep.ntly be mcitten in a stanzrd notation.

a2 + 2 ans+ 2  = 0 (8.1
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wn = natural frequency

= damiping ratio.

The two terms, natural frequency and damping ratio, are frequently used to

characterize the motion of second order systems.

Also, knowing the location of the roots of A (s) on the complex plane
makes it possible to immediately specify and sketch the dynamic motion
associated with a system. Continuing to discuss the problem shown in Figure
8.7 and makig an identity between the denaninator of the transfer function
and the characteristic equation

wn -

D

2MvI

*he roots of A (s) can be found by applying the quadratic formula to the
characteristic euation

*Are

1,d 2 4nV d

Note that if (-1i r< 1), then the roots of A(s) comprise a ccomplex conjugate

"pair, and for positive , would result in root Lcations as shown in Figure
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-REAL )

6.2•, X

FIGURE 8.8. CCR4PLEX PLANE

The equation describing the time history of the block's motion can be
written by knowing the roots of a(s), s1,2# shaon abcoe.

x(t) = C1 e'nt cos (wdt + ) )

Vftere

C1 and * are constants determined fram initial conditions. Knowing
either the 4(s) root location shopin in Figure 8.8 or the equation in x(t)

makes it possible to sketch or describe the time history of the motion of the
block. The motion of the block shown in Figure 8.7 as a functitm of time is a

sinusoidal oscillation within an exponentially decaying envelope and is

dynamically stable.

8.3.2 Second Order System With Negative DaMping
A similar procedure to that used in the previous section can be used to

find the motion of the block shoa in Figure 8.9.

8.8
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FIGURE 8.9 9 UNTITLE

The differential equat~ion of mot~ion for this block is

Dk Kx= f t)

after assuning the in~ital conditions are zero, the transfer function is

X X(S) 1/H
F rs) 2 D S -- 8EM

B~y inspection, for thins system

Note that the daupAnq ratio has a negative value. The equation giving

the time response of this system is

x()=s. value) txi' 1 CCos(adt +s/

'.
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wh•ere

- = pos. value : =__

For the range (-l < 0 < 0), the roots of A(s) for this system could again

be plotted on the complex plane from Sl,2 = - ±wl+ iwd as shown in Figure
S~8.10.

IMAGINARY

-~ REAL

FIGURE 8.10. C2fM Pt.LA

The motiAn of this eytem can now be Wketd or deribead. The motion
of this system is a siummoidal oscillation within an xponentially divwging

enveloe and is dyniacally unstAble.

8.3.3 __ MtabeF'irst 01OrrWytem:

Asam that awe physiod systm has boem athuatica1ly moled and its

eqaation of notion in the s domain is

0.5 1.25x(s) = ,.8,,7,S z'
0.4s - 0.7 8 T1

k)
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'.-or this system the characteristic equation is

A(s) = s - 1.75

And its root is sho.n plotted on the complex plane in Figure 8. 11.
IMAGINARY

J•d

or S = 1.75

X W REAL

FIGURE 8.11. COMPLEX PLANE

The equation of motion in the time domain becomes

f(t) = 1.25 e1 7 5 t

Note that it is possible to sketch or describe the motion for this system
by knowing the location of the root of A(s) or its equation of motion.

For an unstable firct order system such as this, one parameter that can
be used to characterize its motion is T2 , defined as the time to double

amplitude. Without proof,

.693
T2 = a-9 : a = n (8.2)

For a first order system described by

C eat

Note that for a stable first order system, a similar paraneter T is

the time to half airVlituve.

V.8.1



T/2 --0.693 = -0.693 (8.3)1/2 a = wn

Wbere the term, a, must have a negative value for a stable system.

8.3.4 Additional Terms Used To Characterize Dynamic Motion

The time constant, r, is defined for a stable first order system as the

time when the exponent of e in the system equation is -1, or time to reach 63%

of final steady state value. For C e-"nt

T +1 _+1(84
¶ = - -= -- 84

a "n

The time constanit can be thought of as the time required for the parameter of

interest to accomplish (1 - 1/e)th of its final steady state. Note that

A = 1 et/T

so fort =

A = .63 or 63% of Final Steady State Value.

For t = 2T

A .86 or 86% of Final Steady State Value.

Thus the magnitude of the tirre constant gives a measure of how quickly the

dynamic motion of a first order system occurs. Sma1l - inplies a system that,

once displaced, returns to equilibrium quickly.

I..0S~0 .37

tu.Tt >~T

"FXGFIM 8.12. FIRST OaUZ Tiw•R F.S)SE
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For a second order system we measure haw quickly the envelope of

oscillation changes.

1.0
N,

- N CENVELOPE OF OSCILLATION

FIGURE 8.12A. SECOND ORDER TIME RESPONSE

Final or steady state value for a given set of equations can be

determined using the following expression

Final Steady State Value = lim (s F(s)]
s5o

where F(s) is the Laplace transform of the set of equations with initial

conditions equal to zero.

If the Laplace transform of f(t) is F(s), and if lim f(t) exists, then

lim sF(s) - lir f(t)Ss~o t-b

Exanple: flt) = AOlt) + Be(t) + CO(t)

Input function = D 6e(t)

where 6e(t) is a unit step function.

Taking the Laplace transform with the initial conditions equal to zero.

F(s) 0 (s) D/AFes = ) + s +

S(

Note: (Step Function) 1/s
-Dqx[mpulse Function) = 1

0 lim is F(s)]

8.13



r )I

= s + DA+

The final steady state value of 0 due to a unit step function input is

oss = D/C

The following list contains sane terms cmmonly used to describe second

order system response based on danping ratio values:

Terms Damping Ratio Value

Overdaqtred<C

Critically damped = 1

tkxderdan 0 O< < 1

Unldamped 0

Negatively danmed < 0 J

SUMtAR CF DYNAMIC RESPGNSE PARAMETS

Ss2 + 24%n s + n 2 = 0 T i-Tios Omstant

S1,2 ' -4 t "d

- Danping Ratio T - Period

• ::;•. ,% -Undaaqx,• Ntural I requen cy T --
nd

~dDamped Fruenmcy t 1 , Time to Half knplituKie

d 1/ .69

8.14
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8.4 THE CLB PIANE

It is possible to describe the type response a system will have by

knowing the location of the roots of its characteristic equation on the

complex plane. A first order response will be associated with each real root,

and a complex conjugate pair will have a second order response that is either

stable, neutrally stable, or unstable. A complicated system such as an

aircraft might have a characteristic equation with several roots, and the

total response of such a system will be the sum of the responses associated

with each root. A summary of root location and associated response is

presented in the following list and in Figures 8.12B and 8.12C.

Root Location Associated Response

Case I (n the negative Real axis Dynamically stable with
(lst. Order Response) exponential decay

Case II In the left half plane off Dynamically stable with sinusoidal
the negative Real axis oscillation in exponentially decaying

(2nd. Order Response) envelope

Case III On the Imaginary axis Neutral dynamic stability
(2dJ. Order Response)

Case IV In the right half plane Dynamically unstable with sinusoidal
off the positive Real axis oscillation in exponentially

(2nd. Order Response) increasing envelope

Case V on the positive Peal axis Dynamically unstable with exponential
(lot. Order Response) increase

8.15
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(CASE III) IMAGINARY

(CASE I1) (CASE IV)/ ,K
S. .. ..-- -. REAL

. . -.. ~... t -1- -

I I ~CASE V)

FIGURE 8.12C. ROOT LOCATION IN THE COMPLEX PLANE

8.5 E•UATIONS OF MOTION

Six equations of motion (three translational and three rotational) for a
rigid body flight vehicle are required to solve its motion problem. If a

( rigid body aircraft and constant mass are assumed, then the equations of
motion can be derived and expressed in terms of a coordinate system fixed in

the body. Solving for the motion pf a rigid body in terms of a body fixed
coordinate system is particularly conw,.ient in the case of an aircraft when

the appliod forces are most easily specified in the body axis system.

"Stability axes" can be used as the spcified coordinate system. With
the vehicle at reference flight c'nditions, tle x axis is aligned into the
relative wind; the z axir is 90° from te x axis in the aircraft plane of

symwetry, with positive eirectJon down relative to the vehicle; and the y axis
cunpletes the orthogonal trial. This xyz conrdinate system is then fixed in
the vehicle and rotates wit) it when ptrttutrbed from the reference equilibrium
conditions. "he sc0id lines ia. Figure 8.13 depict initial aligrment of the

stability axes, awte. the dashed lin-os show fhe perturbed coordinate system.
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INITIAL ORIENTATIONCOR \

PERTURBED AXIS - - -

- CHORD -: ,a+c

I

F X1,

FIMGRE 8.13. STABILITY AXIS SYSTEIM

Ciapter 4, Equations of Motion, Pg. 4, contains the derivation of the

caTplete equations of motion, and the results are listed here.

Fx m (-qw - rv)

F + " u - p
F - m 0, + p - qU) (8.5)

01 " •x + qr (I. - Iy) - + + q) Ixz

?n a 4Iy- pr (I. -I.) + (p2 _-r') ix.

S-n ry-i iz + pq -T y Txz

%Are &XF 6y' and Fz are forces in the x, y, and z direction, andcm

andLlare moments about the x, y, and z axes taken at the vehicle center of

Separation of the apuations of Notiom

When all lateral-directional foxces, mtomnts, and accelerations are

constrained to be zero, the equations which govern pure longitudinal motion

A zesult fram the aix general equations of motion. That is, substituting
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Sp= 0 = r

0=Oi

F= 0
y

V= 0

v0

into the Squatioms labeled 8.5 results in the longitudinal equations of motion

, - m + qw)

Fz = m w- qU) (8.7)

M aI

Perfxzming a Taylor series expansion of Equations labeled 8.7 as a function of
s. U, q, and w and assumng small perturbations (u = u + Au) results in a

linrarized set of equations for longitudinal motion. Note that the resulting

equations are the longitudinal perturbation equations and that the unknowns
are the perturbed values of a, U, and 0 frm an equilibrium condition. These

auations in coefficient form are

AA•_-•-. 0 + 2cr) u +C• -ou "u + CD a ' + e-c 6e

u+-2CLO U+9 lc+% + 2m
0 0 70U

8.(8.8)

0 qe
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Where:
U = (A dimensionless velocity parameter has been defined

U0  for convenience.)

c•, 0 are perturbations about their equilibrium values.

CD CL , etc., are partial derivatives evaluated at the reference
u a conditions with respect to force coefficients.

Note that these equations are for pure longitudinal motion.
Laplace transforms can be used to facilitate solutions to the

longitudinal perturbation equations. For exanple, taking Laplace transforms
of the pitching rnoent equation and stating that initial perturbation values
are zero results in [ 2 2

- Uas) + _Xs2 4U2 2- ] 0( s) - 20 CmS + CM (s)
u ~ 4U2  2%U qs0 CAn

(8.9)
=Cm M6e(s)

e

The other two equations could similarly be Laplace transformed to obtain a set
of longitudinal perturbation equations in the s domain.

8.5.1 Longitudinal Motion
The Equations 8.8 describe the longitudinal motion of an aircraft about

sane equilibrium conditions. The theoretical solutions for aircraft motion
can be quite good, depending on the accuracy of the various
aerodynamic parameters. For example, % is one parameter appearing in the

drag force equation, ard the goodness of the solution will depend on how
accurately the value of C is known. Before an aircraft flies, such values

for the various stability derivatives can be extracted from flight test data.
8.5.1.1 tonMitudinal Modes of Mtion Experience has shown that aircraft
exhibit two different types of longitudinal oscillations:

82
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( 1. one of short period with relatively heavy damping that is called the
"short period" mode (sp).

2. Another of long period with very light damping that is called the
"phugoid" mode (p).

The periods and damping of these oscillations vary with aircraft confi _ration

and with flight conditions.

The short period is characterized primarily by variations in angle of
attack and pitch angle with very little change in forward speed. Relative to

the phugoid, the short period has a high frequency and heavy damping.

Typical values for its damped period are in the range of two to five

seconds. Generally, the short period motion is the more important

longitudinal mode for handling qualities since it contributes to the motion

being observed by the pilot when the pilot is in the loop.

The phugoid is characterized mainly by variations in u and 0 with a
nearly constant. This long period oscillation can be thought of as a constant

total energy problem with exchanres between potential and kinetic energy. The

(aircraft nose drops and airspeed iicreases as the aircraft descends below its

initial altitude. Then the nose rotates up, causing the aircraft to climb

above its initial altitude with airspeed decreasing until the nose lazily

drops below the horizon at the top of the maneuver.

Because of light damping, many cycles are required for this motion to

damp out. However, its long period conbined with low damping results in an

oscillation that is easily controlled by the pilot, even for a slightly

divergent motion, %Ihen the pilot is in the loop, he is frequently not aware

that the phugoid mode exists as he makes control inputs and obtains aircraft

response before the phugoid can be seen. Typical values for its damped period

range in the order of 45 to 90 seconds.

Phugoid - Small n

- 1arge time constant
Xi - aSall damping ratio

9hort Period - Large wn

A - &mall time constant
01- High damping ratio
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Example:

Given a T-38 aircraft at M = .8, altitude = 20,000 ft., and at a gross

%eight of 9,000 ibs, the longittilinal equations in the Laplace domain become

(IC = 0)

[1.565 + .00451 u(s) - .42a(s) + .0605(s)0(e) = CD 6e e(S)
e

.236ul(s) + (3.13s + 5.026]a (s) - 3.15s8(s) = CL6 6e(S)

e

0 + .16c(s) + (.0489s2 - .039sle(s) Cm 6 e(s)

e

7hse equations are of the form

Aau + ba + c =d

eu + fi + gV = h6
e

iu + ja + k £6

and using Cramers Rule, this set of equations can be readily solved for any of

the variables.

(u a 0)

~a d c
e h g

ai ) k Numerator (s)6 (eS) la b ie c Deamno(S)

Pzcall that the dez:iztor of the above equat ion in the s dc•.l a is the

j 8.22



system characteristic ecuation and that the location of the roots of A (s) will

indicate the type of dnamic response. Solving for the determinant of the

den~miintor yields:

A(s) = .239s4 + .577s 3 + 1.0996s 2 + .00355s + .0028 = 0

Factoring of this equation into two quadratics

A(s) = (s2 + .0021;z + .00208) (s2 + 2.408s + 4.595) 0

standard fo-mat

s + 2rw s + wn 1IS 2+ nw s + 2  1
'p SP SP (8.10)

Each of the quadratics listed in the equation prior to 54uation 8.10 will
have a natural frequency and danping ratio associated with it, and the values

can be canputed by c1p~aring the particular quadratic to the standard notation

sexmAd order characteristic Bqw-tion 8.10.

LDNM=LINAL MODES CF MUTION
T-38 MILE

Phugoid Short Period

.0236 .562

.0456 rad/soc 2.143 radisoc

T 925.9 sec .83 sec

T 137.5 sec 3.54 sec

Roots of A (s) fbr 1oNitulinal motion:

phuoid roots 12 = -. 00108 t i .0456

8.23
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Short Period Roots: s 3 4 = -1.204 t j 1.733

These roots can then be plotted on the s-plane:
IMAGINARY

83S - - -X'-e"

. REAL

4 -- W X

FIGURE 8.14. 1%IUTDINAL MOTION COMPLEX ILANE

8.5.1.2 Shot Perti Momde Nrajwtion. For a one degree of freedom first

apprcximation, the short period is observed to be primarily a pitching motion
W(igure 8.15). In addition, the short period motion occurs at nearly constant 7:
airspctd, AI4 w 0; and since there is no vertical uotion, changes in anglo of
attack are equal to changes in pitch angle, A* - d8. With these asmxqntions
applied to the pitching moment oquation (44uatin 86.8) thve esiults beo:o:
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U0 -----

FIGURE 8.15. 1 DEGSREE OF FREEDOM MODEL

[211
-_ Cm a- = C

PU0 2Sc 2 [ q]I cm; e

Where Cm and Cm have been assumed to be negligible.
k. U

Applying the Laplace transform to Equation 8.11 and forming the transfer

function a (s) /"e (s) results in an approximate form of the characteristic

equation.

4(S) = -S 2- c m s-- 0 (8.12)
1 2

Comparison of Equation 8.12 with the standard form of the characteristic

equation,(Equation 8.1), results in approximations for the short period
Sfrequencr- and damping ratio.

Cm [7
1 2~t~V T4u 0  (8.13)

ns = pL 2  (8.14)

S., .- I8 .2 5



- Coefficient of pitching mcment due to a change in
a angle of attack. Proportional to the angular

displacement frmn equilibrium (spring constant) )

Cm - Coefficient of pitching moment due to a change in
q pitch rate. Proportional to the angular rate

(viscous damper)

Both Equations 8.13 and 8.14 can be used to predict trends expected in the

short period danping ratio and natural frequency as flight conditions and

aircraft configurations change. In addition, these equations show the

prednminant stability derivatives which affect the short period danping ratio

and natural frequency.

8.5.1.3 Eq2ation for Ratio of Load Factor to Angle of Attack Change. The

reqireents of MII-F-8785C for the short period natural frequency are stated

as a function of n/a and wn.

An expression for the slope of the lift curve is

ACL AnW

CL and Ai = 1 .. T 2 s (8.1-5)

__ 1/2 P uO 2 s(ic, (816
C ( 8.16)

8.5.1.4 Phugoi Mode AArnimation Eations. Ki approach shinilar to that

used when cbtaining the short period approximtion will be used to obtain a

set of equations to apprcximate tle phugoid oscillation. Recalling that the

phugoid motion occurs at nearly constant angle of attack, it is logical to

substitute a - 0 into the longitrinal notion equations. This results in a

set of three equations with only two unknowns. Fe&%oning that the phugoid

motion is characterized primarily by altitie excursions and changes in

aircraft speed, implies that the lift force and drag force equations are the

two equations which should be used. The rvsulting set of two equatins for

the phuqoid ari tion in the Laplace domain is

8.26
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pSU +) D] ^(s) + CL0 (S) = C e(s) (8.17)

r-2 CL] a(s) + 0(s) = CL 6e(S) (8.18)

Where %, CP , a CL, , and CL have been assumed to be negligibly small.

The characteristic equation for the phugoid apprcocimation can now be
found using the above equation.

A(S) 1 2 s + [ 4 ] s+2 [CL =J 2 = 0 (8.19)

Note that lift and weight are not equal during phugoid motion, but also

realize that the net difference between lift and weight is quite small. If

the approimation is made that

L = W

and than the substitution that
W = g

it can be rittmn that

L C=CL

V .27



The phugoid characteristic equation can thus be rewritten as[ 2 U 2  1[ L ~
+2 2 CD0 0)

S2 + 2 c s + 2 g 0 (8.21)

Comparison of Equation 8.21 with the standard form of Equation 8.1

results in a simplified approximate expression for phugoid natural frequency

and is given by

45.5
np U0  (8.22)

Where U0 is true velocity in feet per second.

A simplified approximate expression for the phugoid damping ratio can

also be obtained and is given by

1 [CD (8.23)

Equations 8.22 and 8.23 can be used to understand sane major contributors to

the natural frequency arxI damping ratio of the phugoid motion.

8.5.2 Lateral Directional W4tion Mode

There are three typical asymmetric modes of motion exhibited by aircraft.

These modes are the roll, spiral, and Dutch Roll.

8.5.2.1 rIol Mode The roll node is considered to be a first order response

which desciibes thie aircraft roll rate response to an aileron input. Figure

"8.16 depicts an idealized roll rate time history to a step aileron input. The

Stime constant is normally from one to three seconds to reach steady state roll

rate.

8.28
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FIGURE 8.16. TYPICAL ROLL MODE

8.5.2.2 Spiral Mode The spiral mode is considered to be a first order

resr.*nse which describes the aircraft bank angle time history as it tends to

increase or decrease frow. a small, nonzero bank angle. After a wings level

trim shot, the spiral mode can be observed by releasing the aircraft from bank

angles as great as 200 and allowing the spiral mode to occur without control

inputs. If this mode is divergent, the aircraft nose continues to drop as the

bank angle continues to increase, resulting in the name "spiral mode."

8.5.2.3 Dutch R!ll Mde The Dutch roll mo~do is a coupled yawing and rolling

motion slowly danpaned, W•oerately low frequency oscillation. Typically, as

the aircraft noce yawi to the right, a right roll due to the yawing motion is

generated. This causes increased lift and induced drag on the left wing, and

the nosc yaws to the left. The cctrtination of restoring forces and mumts,

damVing, and aircraft inertia is generally such that after the motion peaks

out to the right, a nose left yawing motion begins accompanied by a roll to

thci left.

8.29



One of the pertinent Dutch roll parameters is 0/a, the ratio of bank

angle to sideslip angle which n'ay be represented by

J c-o (8.24)

A very low value for ý/I implies little bank change during Dutch roll. In the

limit when 0/0 is zero, the Dutch roll motion consists of a pure yawing motion

that most pilots consider less objectionable than the Dutch roll mode with a

high value of W.

A rudder doublet is frequently used to excite the Dutch roll; Figure 8.17

shows a typical Dutch roll time history.

RIGHT WING DOWN N+1

(-)

NOW RIGHT (+1

-)-

FIGUE 8.17. TYPICAL wri, HL M=
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8 8.5.3 Asymmetric Fuations of Motion

Similar to the separation of the longittudinal equations, the set of
equations which describes lateral-directional motion can be separated fran the
six general equations of motion. Starting with equilibrium conditions and
specifying that only asymmetric forcing functions, velocities, and
aocelerations exist, results in the lateral directional equations of motion.
Assuming small perturbations and using a linear Taylor Series approximation
for the forcing functions result in the linear, lateral directional

perturbation equations of motion.

-b 2[ b C6 6a
2 0 y0  j oUO Yrj0] r aa

2X *. b ;+21xb- - b~ 2 b_ B = CC 6 r + 6a (8.25)

"2 Ixz b Cnp, 21z .. b n %

7he lateral-directional equations of motion have been non dimensionalized by
span, b, as or~poed to chord. Also, that the stability derivative c is not

p
a lift referewed stability derivative but that the script i refers to rolling
Ment. If the perturbation products of are not small, then the

lateral-directional motion will couple directly into longitudinal motion as
seen fruM the pitching moment equation (Equation 8.5). our analysis will
assme that oonditions are such that coupling does not exist.
8.5.3.1 Roots Of A(s) Flr As The roots of the lateral-

direction characteristic equation typically are oprised of a relatively
large negative real root, a mall root that is either positive or negative,
aWd a c=Vlex onnjugate pair of roots.

The large real root is the one associated with the roll mode of motion.
Note that a large negative value for this root implies a fast time constant.
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The small real root that might be either positive or negative is

associated with the spiral mode. A slowly changing time response results fran

this small root, and the motion is either stable for a negative root or

divergent for a positive root.

The complex conjugate pair of roots corresponds to the Dutch roll mode,
&:,.ic1 fiequently exhibits high frequency and light damping conditions. This

second order motion is of great interest in handling qualities investigations.

Fbr the T-38 Example (Pg. 8.22), the Lateral Directional characteristic
equation is: (s 2 + .87 s + 18.4)1,2 (s + 6.822)3 (s + .00955)4 = 0

Lateral-Directional Mo~des of Motion - T-38 Example

SPIRAL4  ROLL3 DICH RLL , 2

W 4.29 rad/sec

.102

105 sec .1465 sec 2.31 sec

8.5.3.2 Approximate Roll Mode Equation. This approximaticn results from the

hypothesis that only rolling motion exists and use of the rolling mamnt
equation results in the roll mode approximation equation.

[21 \ /
-( s-I(S C 6 8.6

[ (sbu2I ) L ) 1 1 a (826

heo roll mode characteristic equation root is

[b2 S U 0
SR 4 (8.27)

NoT: r = L21U 1 2 [C
0 L 1

SNote that C less than zero inplies stability for the roll mode and that a
P

larger negative value of sR iAPlies an aircraft that approaches its steady
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state roll rate quickly. A functional analysis can be made using Bquation

8.27 to predict trends in TR' the roll mode time constant, as flight

conditions change.

8.5.3.3 Spiral Mode Stability. After the Dutch roll is damped, the long time

period spiral mode begins. If the Dutch roll damps and leaves the aircraft at

some small a, then the effect is to induce a rolling moment. If the bank

angle gradually increases and the aircraft enters a spiral dive, the mode is

unstable. Since the motion is slow (long time period), we may say

S -(Cnr 
Cza " Cn Ckr) (PU0 Sb2 )

4 Iz C a

The spiral mode will be stable when the sign of the above root is

negative. Since C is negative, the root will be negative as long as

C8 Cn r > n8 Ch r (8.28)

Note that Cn and Ct are both negative while Cn and C z are both positive.

Thus, for spiral stability, we must increase the dihedral effect and

decrease the weathercock effect (nj)

8.5.3.4 Dutch RD11 Mode Approximate Biuations. For airplanes with relatively

"small dihodral effect, C£ , the Dutch roll mode consists primarily of

sideslipping and yawing. An approximation to the Dutch roll mode of motion

can be obtained from Equation 8.25 &1 specifying tht pure sideslip occuirs

S( -4) and eliminating the rolling degree of freedom. The resulting

approxiations to Dutch roll danping and natural frequency are:
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nr b0-O

Cn0 Sbpu 0
2  (8.29)

WnDR z

In practice, the Dutch roll mode natural frequency is well predicted, but

because of the usually large values of C in addition to significant values

of Ixz, the Dutch roll damping is not well predicted.

If we specify that there are no large changes in yawing moments (EA = 0)

and the Dutch roll mode consists primarily of rolling motion, the resulting

approKimations to the Dutch roll damping and natural frequency are

PUoS C b

DR Cy 2

(8.30)fu

2g C~

wn
DRF

p

Just as in the case of Bquation 8.29, the Du.tch roll damping ratio is not

well predicted. To predict the TDutch roll damping ratio, a complete

evaluation of Eguation 8.25 must be made..

These approKimations do give a physical insight into the parameters that

affect the Dutch roll mode, and the effect that changes in these parameters

such as those caused by configuration changes, stores, and fuel leading may

have on flying gualities.

8.5.3.5 qoupled ,iil Spiral Mode. This mode of lateral-directional motion
has rarely been exhibited by aircraft, but the possibility exists that it can

indeed happen. If this mode is present, the characteristic equation for

asymietric motion has two pairs of ccmplex conjugate roots instead of the

usual one ca*Ux conjugate pair along with two real roots. The phenoinenot

8.34
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which occurs is the roll mode root decreases in absolute magnitude while the

spiral mode root becomes more negative until they meet and split off the real

axis to form a second ccmplex conjugate pair of roots, as depicted in Figure

8.18.
IMAGINARY

DUTCH ROLL • X 1Ad

ROLL (SPIRAL
"-X • - X...

UL. REAL

DUTCH ROLL-b X

FIGURE 8.18. CaJPLW ROLL SPIRAL MODE

At least two in-flight experiences with this mode have been documented
and have shown that a coupled roll spiral mode causes significant piloting

difficulties. One occurrence involved the M2-F2 lifting body, and a second
involved the Flight Dynamics Lab variable-stability NT-33. Some designs of
V/STOL aircraft have indicated that these aircraft would exhibit a coupled
roll spiral mode in a portion of their flight envelope (Reference 8.3). Some
pilot comments fron simulator evaluations are "rolly," "requires tightly
closed roll control loop," or "will roll on its back if you don't watch it."

A coupled roll spiral mode can result from a high value for C and a low

value for Cp. *The M2-F2 lifting body did in fact possess a high dihedral
p

effect and quite a low roll danping. Examiiiation of the equations for the
roll node and spiral mode characteristic equation roots shows how the root
locus shamn in Figure 8.18 could result as C decreases in absolute

p
magnituie and C increases.
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8.6 STABILITY DERIVATIVES

Introduction:

Some of the stability derivatives are particularly pertinent in the study

of the dynamic moxles of aircraft motion, and the more important ones appearing

in the functional equations which characterize the dynamic modes of motion

should be understood. , C, CCn a Cnd are discussed in theCM C Ck 8 nad aeds~sdi h

following paragraphs.

8.6.1 C

Th stability derivative, Cnis the change in yawing moment coefficient

with variation in sideslip angle. It is usually referred to as the static

directional derivative or the "weathercock" derivative. Wen the airframe

sideslips, the relative wind strikes the airframe obliquely, creating a yawing

moment, N, about the center of gravity. The major portion of Cna cames from

the vertical tail, which stabilizes the body of the airframe just as the tail

feathers of an arrow stabilize the arrow shaft. The Cn contribution due to

the vertical tail is positive, signifying static directional stability,

whereas the C due to body is negative, signifying static directional

instability. There is also a contribution to Cn fr•a the wing, the value of

which is usually positive but very small compared to the body and vertical

tail contr ibutions.

The derivative C is very inportant in deteuidning the dynamic lateral

stability and control characteristics. Most of the references concernirg

full-scale flight tests and free-flight wind tunnel toodel tests agree that Cn

should be as high as possible for gocd flying qualit-es. A 'nigh value of Cn

aids the pilot in effecting coordinated turns and prevents excesrive sideslip

and yawing motions in extreme flight maneuvers and in rough air. Cn
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primarily determines the natural frequency of the Dutch roll oscillatory mode

of the airframe, and it is also a factor in determining the spiral stability

characteristics.

8.6.2 Cn
r
--e stability derivative Cn is the change in yawing mouent coefficient

with change in yawing velocity. It is kncwn as the yaw damping derivative.

When the airframe is yawing at an angular velocity, r, a yawing moment is

produced which opposes the rotation. Cn is made up of contributions from the
r

wing, the fuselage, and the vertical tail, all of which are negative in sign.

The contribution from the vertical tail is by far the largest, usually

amounting to about 80% or 90% of the total C of the airframe.

The derivative C is very irportant in lateral dynamics because it isCr

the main contributor to the damping of the Dutch roll oscillatory mode. It

also is important to the spiral mode. For each mode, large negative values of

' n are desired.

r

8.6.3 C

1his stability derivative is the change in pitching momennt coefficient

with varying angle of attack and is ca-mumly referred to as the longitudinal

static stability derivative. When the angle of attack of the airframe

increases from the .quilibrium condition, the increased lift on the horizontal

tail cat:,s a i:,eatix'c pit.d...ng momfent about the center of gravity of the

airframe. Siu•ateoNuly, the intreased lift of the wing causes a positive or

negatiýv pirtchitr ,tivwnt, depandirN on the fore avd aft location of the lift

vectc•r with r•eqct to the center of jravity. Those contributions together

witi, twe pitching mamwnt contribution uf the fuselage are cwrbinj to

establish the drivativo C . The magnitude and sign of the total CM for a

particular airframe confic,,aration are tUhs a function of the center of gravity

position, and this fact is very inportant in lngibxlinal stability and

control. If the center of gravity is ahead of the neutral puint, the value of
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CM is negative, and the airframe is said to possess static longitudinal

stability. Conversely, if the center of gravity is aft of the neutral point,

the value of CM is positive, and the airframe is then statically unstable.

CM is perhaps the most important derivative as far as longitudinal stability

and control are concerned. It primarily establishes the natural frequency of

the short period mode and is a major factor in determining the response of the

airframe to elevator motions and to gusts. In general, a large negative value

of Cj (i.e., large static stability) is desirable for good flying qualities.
a

However, if it is too large, the required elevator effectiveness for

satisfactory control may becoane unreasonably high. A ccprczinise is thus

necessary in selecting a design rarnge for CM. Design values of static

stability are usually expressed not in terms of CM but rather in terms of the

derivative #L where the relation is CM = • C It should be
CL CML a

pointed out that \in the above expression is actually a partial derivative

for which tke fozward speed remains constant. 'J
.I;•

S.6.4

1I stability derivative Cý is the change in pitchig moment coot fici.nt

with varying pitch velocity and is cwonly referred to as tlh pitch danping

derivative. As the airfran pitches about its center of gravity, the
angle of attac* of the horizontal tail clmnges and lift develops on the

horizontal tail, produing a negative pitching eont on the air-

frame aid hene a contribution to the derivative CM. There is also a

aontribution to CM becawse of various "dead weight" aurcolastic effects.
q

Since the airframe is mtvizx in a curved f lictit path due to its pitching, a
oentribfg ftrce is deeloped on all the e nxrronts of the airfrare. Thi

force can cause the wvim to twist as a result of the dead woight mument of

overhaMing naclles and can cause the horizontal tail angle of attack to
ChaWge as a reslt of fuselage bending due to tke weight of the tail section.

In lw speed flight, C. caes mostly from the effect of the curved flight
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4L., ýth on the horizontal tail, and its sign is negative. In high speed flight

the sign of CM can be positive or negative, depending on the nature of the
q

aexoelastic effects. The derivative CM is very important in longitudinal
q

dynamics because it contributes a major portion of the damping of the short

period mode for conventional aircraft. As pointed out, this damping effect

comes mostly from the horizontal tail. For tailless aircraft, the magnitude

of CM is consequently small; this is the main reason for the usually poor
q

damping of this type of configuration. CM is also involved to a certain
q

e-,tent in phugoid damping. In almost all cases, high. negative values of

CM are desired.
q

8.6.5 C

This stability derivative is the change in rolling moment coefficient

with variation in sideslip angle and is usually referred to as the "effective

dihedral derivative." When the airframe sideslips, a rolling moment is

developed because of the dihedral effect of the wing and because of the usual

high position of the vertical tail relative to the equilibrium x-axis. No

general statemnts can be made concerning the relative magnitude of the

contrauutions to C k from the vertical tail and from the wing since these

contributions vary considerably from airframe to airframe and for different

angles of attack of the same airframe. C is nearly always negative in sign,

signifying a negative rolling moment for a positive c'deslip.

C Z is very important in lateral stability and control, and it is

therefore usually considered in the preliminary design of an airframe.

It is involved in damping both the Dutch roll mode and the spiral mode. It is

also involved in the maneuvering characteristics of an airframe, especially

with regard to lateral control with the rudder alone near stall.
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8.6.6 CX

The stability derivative C, is the change in rolling moment
p

coefficient with change in rollingj velocity and is usually known as the roll

damping derivative. When the airframe rolls at an angular velocity p, a

rolling moment is produced as a result of this velocity; this moment opposes

the rotation. C is composed of contributions, negative in sign, from the
P

wing and the horizontal and vertical tails. However, unless the size of the

tail is unusually large in comparison with the size of the wing, the major

portion of the total C cames from the wing.
p

The derivative C is quite important in lateral dynamics because
p

essentially CZ alone determines the damping in roll characteristics of the
p

aircraft. Normally, it appears that small negative values of Ck are more
p

desirable than large ones because the airframe will respond petter to a given

aileron input and will suffer fewer flight perturbations due to gust inputs.

8.7 HANDLING QUALITIES

Because the "gcodness" with which an aircraft flies is often stated as a

general appraisal . . . "My F-69 is the best damn fighter ever built, and it

aca•• outfly and outshoot any othler airplane." "It flies good." "Ibat was

really hairy." . . . you probably can understand the difficulty of measuring

how well an aircraft handles. The basic question of what parameters to

nmasure and hcm those parameters relate to good hnudling qualities has been a

difficult one, and the total anwer is not yet available. The current best

an:-Nrs for milituay aircraft are found in MIL-F-8785C, the specification for

the "Flying Qualitim. of Piloted Airplanes.'

When an aircraft is designed for perfom•&wce, the design team has

de finito goals to work toward . . , a particular takeoff distance, a minimzn

tiao to clhmb, or a specified combat radius. if an aircraft is also to be

desicyed to handle well, it is necessary to have somý definite handling

quality goals to work toward. Siecss in attaining these goals can be

measured by flight tests for handling qualities when sale rather firm
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standards are available against which to measure and fran which to recamrend.

In order to make it possible to specify acceptable handling qualities, it

was necessary to evolve some flig1it test measurable parameters. Flight

testing results in data which yield values for the varicus handling quality

parameters, and the military specification gives a range of values that should

ensure good handling qualities. Because MIL-F-8785C is not the ultimate

answer, the role of the test pilot in making accurate qualitative observations

and reports in addition to generating the quantitative data is of great
importance in handling qualities testing.

One method that has been extensively used in handling qualities

quantification is the use of pilot opinion surveys and variable stability

aircraft. For example, a best range of values for the short period damping

ratio and natural frequency could be identified by flying a particular

aircraft type to accoaplish a specific task while allowing the c and Wn to

vary. From the opinions of a large number of pilots, a valid best range of

values for c and wn could be obtained, as shown in Figure 8.19.

.4
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BEST TESTED BOUNDARY
- - - UNSATISFACTORY BOUNDARY

1MOVFS IN STEPS.

V, Vg- 350 KNOTSI RESPONNSE INITIALLY

Fa/g -6.0 lb/g OSCILLATORY. TOO
CLOSELY COUPLED. RESPONSE ERRATIC OR STEP-LIKE.

C /MANEUVERABLE. STICK MOTION
9 ______ TOO RESPONSIVE. I1 I r.. I OCSTOO GREAVY.NOf [ TOO GREAT.

Z DANO11ROUS-COULD 
-__.-

L - EXCEED LOAD FACTOR." . . : :"

z HIGHLY OSCILLATORY. I NOT VERY MANEUVERABLE.
0) 0 PILOT RELUCTAIT TO STIFF AND SLUGGISH.

"W .7 MANEUVER. VERY - FORCE TOO HEAVY. GOOD

I L DIFFICULT TO TRACK. FLYING BUT NOT A FIGHTER.

SBOMBER OR HEAVY FIGHTER.
I I NOT MANEUVERABLE,

RESPONSE FAST. . LIGHT BOM3ER. FORCES HEAVY AND STICK
OSClATORY DIFFICULT NOT FIGHTER TYPE. MOTION TOO GREAT. TR'MS
INTOITACK. FORCE FORCES HEAVY. TOO WELL.
"STIFNI.ALY U•G14T...EN MUCH STICK MOTION.

.4 g NOT MANEUVERABLE.

2S.LIGGISH.

1 01
O. ,2 .3 .4 .5 .6 .7 .8 .9 1.0 2.0

SHORT PERIOD DAMPING RATION "

F4 UliE 8.19. WST PA1,I FOR C AND wn F" PILOT OPINICN

T1w t and wn being diassed here are the aircraft free or oen loop

mawponse characteristics which describe aircraft mtion without pilot inputs,

With the pilot in the loop, the fre response of the azicraft is hidden as

pilom inputs are ccnt~izlly made. Vie closMd loop block diagr~i shown in

Figure 8.20 can be used to mterstanAa ircraft cloed loop rsponse.
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DESIRED CORRECTION

INPUT~ SYSEMDYNAMICS

DESIRED a I a I

OBSERVED a

FIGURE 8.20. CIOSED LOOP BIOCK DIAGRAM

The free response of an aircraft does relate directly to how well the aircraft

can be flown with a pilot in the loop, and many of the pertinent handling

qualities parameters are for the open loop aircraft.
*he real test of an aircraft's handling qualities is how well it cam be

flown closed loop to accomplish a particular mission. Closed loop handling
quality evaluations such as air-to-air tracking in a simulated air ccmbat
maneuvering mission play an important part of determining how well an aircraft

handles.

8.7.2 Pi•l-_ InThe Loop URyndmc Analysis
Calspan (formerly Cornell Aeronautical Laboratory) has made notable

10Mtri17t..on9 to the understanding of pilot rating scales and pilot opinion

survey3. Except for minor variati(ons between pilots, which saowtimes prevent
a sharp delineation between acceptable and unacceptable flight
characteristics, there is very definite consistency and reliability in pilot

opinion. In addition, the opi:ions of well qualified test pilots can be
exploited because of their engineering knowledge and experience in many

different aircraft types.

The stability and control characteristics of airplanes are generally
established by-wind tunnel measurement and by technical analysis as part of
the airlane design process. The handling qualities of a particular airplane
are related to the stability and control characteristics. The relationship is

l,,

a cxmplex one which involves the cowbination of the airplane and its pilot in
the acco.Vlishment of the intended mission. It is important that the effects

Of specific stability and control characteristics be evaluated in
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terms of their ultimate effects on the suitability of the pilot-vehicle

combination for the mission. On the basis of this information, intelligent

decisions can be made during the airplane design phase which will lead to the

desired handling qualities of the final product.

There are three general ways in which the relationship between stability

and control parameters and the degree of suitability of the airplane for the

mission may be examined:

1. Theoretical analysis
2. Experimenta]. performance measurement
3. Pilot evaluation

Each of the three approaches has an important role in the camlete

evaluation. one might ask, however, why is the pilot assessment necessary?

At present a mathematical representation of the human operator best lends

itself to analysis of specific sizple tasks. Since the intended use is made

up of several tasks and several modes of pilot-vehicle behavior, difficulty is

exjerienced first in accurately describing all modes analytically, and second

in integrating the quality of the subordinate parts into a measure of overall

quality for the intended use. In spite of these difficulties, theoretical

analysis is fundamental for understanding pilot-vehicle difficulties, and

pilot evaluation witheut it remains a purely experimental process.

Attaining satisfactory performance in a designated mission is a

fundiamntal reason for our concern with handling qualities. Why can't the

experimental measurement of performance replace pilot evaluation? Why not

measure pilot-vehicle performance in the intended use - isn't good performance

consonant with good quality? A significant difficulty arises here in that the

performance neasuranent tasks may not denand of the pilot all that the real
mission demands. The pilot is an adaptive controller whose goal is to achieve

good performance. In a specific task, he is capable of attaining essentially

thm same perfomaince for a wide range of vehicle characteristics, at the

expense of significant redirtions in his capacity to assure other duties and

planning operatioms. Significant differences in task performance may not be

measured where very real differences in mission suitability do exist.
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The questions which arise in using performance measurements may be

sumnarized as follows: (1) For what maneuvers and tasks should measurements

be made to define the mission suitability? (2) How do we integrate and

weigh the performance in several tasks to give an overall measure of quality

if measurable differences do exist? (3) Is it necessary to measure or

evaluate pilot workload and attention factors for performance to be

meaningful? If so, how are these factors weighed with those in (2)? (4)

Miat disturbances and distractions are necessary to provide a realistic

workload for the pilot during the measurement of his performance in the

specified task?

Pilot evaluation still remains the only method of assessing the

interactions between pilot performance and workload in determining suitability

of the airplane for the mission. It is required in order to provide a basic

measure of quality and to serve as a standard against which pilot-airplane

system theory may bL, developed, against which performance measurements may be

correlated, and with which significant airplane design parameters may be

determined and correlated.
The technical content of the pilot evaluation generally falls into two

categories: one, the identification of characteristics which interfere with

the intended use, and two, the determination of the extent to which these

characteristics affect mission accomplishment. The latter judgment may be

formalized as a pilot rating.

8.7.3 Pilot RatinqScalos

In 1956, the newly formed Society of Experimental Tvst Pilots accepted

responsibility for one program session at the annual meeting of the Institute

of Aeronautical •ciences. A paper entitled 'Understanding and Interpreting

Pilot opinion" was presented wih tlie intent to create better understanding

and use of pilot opinion in aeronautical reseerdi and development. Ile

widespread use of rating systems has indicated a general need for sow uniform

method of assessing aircraft handling qualities through pilot opinion.

Several rating scales were independently developed during the early use

of variable stability aircraft. Tlese vehicles, as well as the use of ground

simulation, made possible systematic studies of aircraft handling qualities

L thugh pilot evaluation and rating of the effects of specific stability and
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control parameters.

Figure 8.21 shows the 10-point Cooper-Harper Rating Scale that is widely

used toa.

HANDLING QUALITIES RATING SCALE

MWWACY MOR SELECTED TASK OR AIRCRAFT DEMANDS ON THE PILI)T PI.OT
UQIuREDOPUATION1 CHARACTERISTICS IN SELECTED TASK OR REQUIRED OPERATION* RATING;

Excellent Pilt compenutwo not a fadur W
Highly desirable desired performance

(ItPlhkt compensation not a famto far
Neglihible deficiencies desired performfunc

Fair - Some inildly Minimal pilot curnpe.•stion required IWc
unpleasnt deiliencies desired prflormerianc

Minor but anltitN le ied performance requirt e mo dertei
defi'.erl•tes prioA . .th ens .ion

Is it Noachart i srfahoy inPtigre 8.22 tdequate trac• ste requireisAs.w a ry t eWe warrant defmarybe farl Considersable Pils thne.rantio

orery or'ttlaAble but Adeqiie Perlnus ue rlquoes votvnusa

theralt fiz~rix ratin isadAch

%lo*pt debWt W A*qua WFwtr't,,t 46 with

C-Citf-114blItt) 111 in RUV'•tt•'1

N , iie ,e

sittastiaw~~~~~~~~~~ wihatw"" ieMvdlww %1~tw ~ttVtkn1 rtttt
iW iitI& iW4V4 4- 'ý iti

¥nt................. 1"Am'ftt'
Fla=R 8.21. TEN-POINT COOPER-IMM_ PILOI RN T=N SCALE

A flow chart is shown in Figure 8.22 that tracies the series of
dicholam" decisions gthat the pilot makes in arriving at the f inal ratimj.
An a rule, the first decision may be fairly obvious. Is tlic configuration

oongttollable or uncontrollable? Subsequet decisions bm less obvious as
the finlt ratin is approached.
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SERIES OF DECISIONS LEADING TO A RATING:

1 ICONTROLLABLEj OR UNOTOLAL

2.1 ACCEPTABLE [_ UNACCEPTABLE

3[1 ATIFCORY OR UNSATISFACTORY

FIGURE 8.22. SEQUENTIAL PILOT RATIM DEBZISIONS

If the airplane is uncontrollable in the mission, it is rated 10. if it

is Controllable, the second decision examines whether it is acceptable or

unacceptable. If unacceptable, the ratings U7, U8, and U9 are considered

(rating_ 10 has been excluded by the %controllableu answer to the. first

decision). If it is acceptable, the third decision must examnine whether it is

satisfactory or unsatisfactory. If unsatisfactory, the ratings 4, 5, and 6

are considered; if satisfactory, the ratings 1, 2, and 3 are considered.

The basic* categories must be described in carefully selected terms to

clarify and Standardize the xundaries desired. Fl7lUng a careful review of

dictionary definitions and consideration of the pilot'h r tuirnmt for clear,

concise descriptions, the category definitions shown in Figure 8.23 w-r.

selected. When Considered in conjunction with the structural outline

presented in Figure 8.22 a clearer picture is obtained of the series of

decisions which the pilot mzst make.

8
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CATEGORY DEFINITION

CONTROLLABLE CAPABLE OF BEING CONTROLLED OR MANAGED IN CONTEXT
OF MISSION, WITH AVAILABLE PILOT ATTENTION. S

UNCONTROLLABLE CONTROL WILL BE LOST DURING SOME PORTION OF MISSION.

ACCEPTABLE MAY HAVE DEFICIENCIES WHICH WARRANT IMPROVEMENT BUT
ADEQUATE FOR MISSION. PILOT COMPENSATION, IF REQUIRED
TO ACHIEVE ACCEPTABLE PERFORMANCE, IS FEASIBLE.

UNACCEPTABLE DEFICIENCIES WHICH REQUIRE MANDATORY IMPROVEMENT.
INADEQUATE PERFORMANCE FOR MISSION, EVEN WITH MAXIMUM
FEAS!BLE PILOT COMPENSATION.

SATISFACTORY MEETS ALL REQUIREMENTS AND EXPECTATIONS; GOOD ENOUGH
WITHOUT IMPROVEMENT. CLEARLY ADEQUATE FOR MISSION.

UNSATISFACTORY RELUCTANTLY ACCEPTABLE. DEFICIENCIES WHICH WARRANT
IMPROVEMENT. PERFORMANCE ADEQUATE FOR MISSION WITH
FEASIBLE PILOT COMPENSATION.

FIGURE 8.23. MAJOR CATEGORY DEFINITIONS

8.7.4 Major Category Definitions

To control is to exercise direction of, or to cammand. Control also
means to regulate. The determination as to whetYhr the airplane is

controllable or not Pust be ivde within the framework of the defired mission

or intended ue. An e.%zmple of the considerations of this decision would be

the evaluatico of fighter handling qualities during which the evaluation pilot
encounters a configuration over which he can maintain control only with his
camlete and undivided attention. Vhe configuration is "controllable* in the

sense thkat the pilor can maintain control by restxictipg the tasks and

neumtrs which hie is called upon to prform an3d by giving the configuration

his undivided attmntion. Hac•ver, for hNi to an!Ar EYes, it is controllable

in the mission," he must be able to retain control in thJe mission tasks with

whatevr effort and attention are available frci, the totality of his mission

duties. Uncontrollable inplios that flight mwiual limitations way be eceeded

during performance of the mission task.
"Thw dictionary shows that "acceptable" veans tjat a thing offerod is

received with a consenting mind; *unaoceptable* veans that it is refustd or

rejected. Aceptable means that the mtission can be acoarwlished1
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it means that the evaluation pilot would agree to buy it for the mission to

fly, for his son to fly, or for either to ride in as a passenger.

"Acceptable" in the rating scale doesn't say how good it is for the mission,

but it does say it is good enough. With these characteristics, the mission

can be accouplished. It may be accomplished with considerable expenditure of

effort and concentration on the part of the pilot, but the levels of effort

and concentration required in order to achieve this acceptable performance are

feasible in the intended use. By the same token, unacceptable does not

necessarily mean that the mission cannot be accomplished; it does mean that

the effort, concentration, and workload necessary to accconplish the tasks are

of such a magnitude that the evaluation pilot rejects that airplane for the

mission.

Consider now a definition of satisfactory. The dictionary defines this

as adequate for the purpose. A pilot's definiticn of satisfactory might be

that it isn't necessarily perfetct or even good, but it is good enough that he

wouldn't ask that it be fixed. It meets a standard, it has sufficient

goodness and it can meet all requirements of a mission task. Acceptable but

unsatisfactory implies that it is acceptable even though objectionable

characteristics should be inproved, that it is deficient in a limited sense,

or that there is insufficient goodness. Thus, the quality is either:

1. Acceptable (satisfactory) and therefore of the best category,
or

2. Acceptable (unsatisfactory) and of the next best category,
or

3. Unacceptable. Nct suitable for the mission, but still controllable,
or

4. Unaocmptable for the mission and uncontrollable.

8.7.5 LAime-ntal Use Of Witing Of Uandli22g QOilities

The evaluationi of handling qualities has a similarity to other scientific

eperiments in that the output data are only as good as the care taken in the.

design arM execution of the experiment itself and in the analysis and

reporting of the results. There are two basic categories of output data in a

handling qualities evaluation: the pilot cotvnt data and the pilot ratings.

Both items aro iqx)rtant output data. An experiment wtich ignores one of the
() two outputs is discardinq a sulstantial part of the output information.
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The output data which are most often neglected are the pilot caments,

primarily because they are quite difficult to deal with due to their )

qualitative form and, perhaps their bulk. Ratings, hoever, without the

attendant pilot objections, are only part of the story. c-nly if the deficient

areas can be identified can one expect to devise improvements to eliminate or

attenuate the shortcomings. The pilot ccmments are the means by which the

identification can be made.

8.7.6 Mission Definition

SExplicit definition of the mission (task) is probably the most important

contributor to the objectivity of the pilot evaluation data. The mission

(task) is defined here as a use to which the pilot-airplane combination is to

be put. The mission must be very carefully examined, and a clear definition

and understanding must be reached between the engineer and the evaluation

pilot as to their interpretation of this mission. This definition must

include:

1. What the pilot is reuired to accarplish with the airplane

2. The codixtions or circumstances under which he must perform the task

For exanple, the conditions or circumstancoes might include instnmrnt or

visual flight or both, type of displays in the cockpit, input informwtion to

assist the pilot in the acanplis•w•it of the task, etc. The envir ent in

which the task is to be acoapllshed must also be defined and considered in

the evaluation, and could include, for ex&Vle, the preswe or absenre of

turbin, day versus night, the frouency vith which the task has to be

repeated, the variability in pilot preparadnss for the task and his

proficiency level.

8.7.7 Simulation Situation

Ie pilot evaluation is seldo cducted wuder t0 cirwstances of dia

real mission. The evaluation AlMt inherently involVs simulatiOn to U

dgree bec e of the absencwe of the real situation. As an exavple, tU4
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evaluation of a day fighter is seldam carried out under the circumstances of a

cobat mission in which the pilot is not only shooting at real targets, but

also beizq shot back at by real guns. Therefore, after the mission has been

defined, the relationship o. the simulation situation to the real mission must

be explicitly stated for both thengineer and the evaluation pilot so that

each may clearly untderstand the limitations of the simulation situation.

The pilot and enginaer must both kncw what is left out of the evaluation

program, and also what is included that should not be. The fact that the

anxiety and tension of the real situation are missing, and that the airplane

is flying in the clear blue of calm daylight air, instead of in the icing,
cloudy, turbulent, dark situation of the real mission, will affect results.

Regardless of the evaluation tasks selected, the pilot must use his hnowledge

and experience to provide a rating which includes all considerations which are

pertinent to the mission, whether provided in the tasks or not.

8.7.8 Pilot Osunent tiata

one of the fallacies resulting from the use of a rating scale -Which is

onsidered for universal handling qualities appli•ation is the assqzption tht

the nanerical pilot ratV can. rpresent the enttrm qualitativta a3seswnnt.

Extrme care mist be taken against thds oversimp lification because it does not

omstitute the full data gathering prooce.

Pilot objctions to t-e handling quallties arvn P•t•ant, tiarticularly to

thM airplane designer who is responsible for the tnTrwvent of thie hamilisw

qualities. But, even woro imortant, th, pilot cýtnm4nt data are essenitial to

the engimer who is atteapting to uraidu-ýta-a. nd use the pilot ratirg data.

If ratings are the only output data, one ha& io real way of assessing whetter

the objectives of the exr!Avnetc were actually realized. Pilot camunts

supply a reans of assessing .lWtohr the pilot objections (which led to his

simaty rating) were related to tbh mission or resilted from sane extraneas

uncmtrolled factor ib ti evv tion of the qVeriment, or fram individual

pilotx focusing on and tirýnq diferently various aspeCts of the missioni.

Attention to &,tail is jOrtant to ensure that pilot oCn&nts are kmtaCll.

PilOts must Ocact in tho siqdest language. Atvid engineering tem

unlass they are ckaefully defined. T1e pilot ahculd rept-t uhat he sees and
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feels, and describe his difficulties in carrying out that which he is

attenpLing. It is then important for the pilot to relate the difficulties

which he is having in executing specific tasks to their effect on the

accacrpishment of the mission.

The pilot should make specific caments in evaluating each

configuration. These conments generally are in response to questions which

have been developed in the discussions of the mission and simulation

situation. The pilot must be free to ccn-ent on difficulties over and above

th-e specific questions asked of him. The test pilot should strive for a

balance betwien a continuous running conentary and occasional catrent in the

form of an expqlicit adjective. The former often requires so much editing to

find tJi substance that it is often ignored, while the latter may add nothing

to the numerical rating itself.

The pilot coamfents must be taken during or immxliately after each

evalutior. In-flight comments should be recorded on a tape recorder.

Epe•rience has shnun that the best free camments are often given during the

evaluation. If the camoents are left until the conclusion of the evaluation,

tv-hy are often forgotten. A useful proedure is to permit free cconent during

the evaluation itself and to requiro ansars to specific questions in the

swimiary cOmentz at the end of tho evaluation.

"Q•estionnaires and supplanentary pilot cmawents are almst necessary to

ensure that: (a) all irofrtant or suspec-td as4ncts are zonsidered and not

ovurlvoxoo, (b) inforation is provided relative to why a given rating has

been givn, (c) an unwerstar~iing is provided of the tradeoffss with which

pilots must continually aonteW, and (d) suppla.!1ntary camroit that 'night not

be offered othcnwise is stiatlated. It is recamnded that the pilots

participate in te preparation of the questionnaires. The qwustionnaires

should be maitfie if nocessay as a result of the pilots' ii-itial

evaluations.

0.7.9 Pilot Pat~ig at
TVe pilot rating is an overall smtnation of the pilot otservations

relating to the mission. The basic question that is asked of the
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pilot conditions the answer that he provides. For this reason, it is
inportant that the program objectives are clearly stated and understood by all

concerned and that all criteria, whether established or assumed, be clearly
defined. In other words, it is extremely important that the basis upon which

the evaluation is established be firmly understood by pilots and engineers.

Unless a conmron basis is used, one cannot hope to achieve comparable pilot

ratings, and confusing disagreement will often result. Care must also be

taken that criteria established at the beginning of the program carry through

to the end. If the pilot finds it necessary to modify his tasks, technique or

mission definition during the program, he must make it clear just when this

change occurred.

A discussion of the specific use of a rating scale tends to indicate some

disagreement among pilots as to how they actually arrive at a specific

numerical rating. There is general agreement that the numerical rating is

only a shorthand for the word definition.. Some pilots, however, lean heavily

on the specific adjective description and look for that description which best

fits their overall assessment. Other pilots prefer to make the decisions

sequentially, thereby arriving at a choice between two or three ratings. The

decision among the two or three ratings is then based upon the adjective

description. In concept, the latter technique is preferred since it

emphasizes the relationship of all decisions to the mission.
The actual technique used is somewhere between the two techniques above

and not so different among pilots. In the past, the pilot's choice has

probably been strongly influenced by the relative usefulness of the

descriptions pro-vided for the categories on the one hand, and the numerical

ratings on the other. The evaluation pilot is continuously considering the

rating decision process during his evaluation. He proceeds through the

decisions to the adjective descriptors enough times that his final decision is

a blend of both techniques. It is therefore obvious that descriptors should

not be contradictory to the mission-oriented framework.
Half rating' are permitted (e.g., rating 4.5) and are generally used by

the evaluation pilot to indicate a reluctance to assign either of the adjacent

ratings to describe the configuration. Any finer breakdown than half ratings

8.53



is prohibited since any number greater than or less than the half rating

implies that it belongs in the adjacent group. Any distinction between

configurations assigned the same rating must be made in the pilot comments.

Use of the 3.5, 6.5, and 9.5 ratings is discouraged as they must be

interpreted as evidence that the pilot is unable to make the fundamental

decision with respect to category.

As noted previously, the pilot rating and commnts must be given on the

spot in order to be most meaningful. If the pilot should later want to change

his rating, the engineer should record the reasons and the new rating for

consideration in the analysis, and should attempt to repeat the configuration

later in the evaluation program. If the configuration cannot be repeated, the

larger weight (in most circtnstances) should be given to the on-the-spot

rating since it was given when all the characteristics were fresh in the

pilot' s mind.

8.7.30 Execution Of Handling Qualities Tests

P':obably the most important item is the admonition to execute the

test as it was planmed. It is valuable for the engineer to Taonitor the pilot

axment data as the test is corducted in order that he becomes aware of

evaluation difficulties as soon as they occur. These difficulties may take a

variety of forms. The pilot may use words which the engineer needs to have

defined. The pilot's word descriptions may not convey a clear, understandable

picture of the piloting difficulties. Direct cammunication between pilot and

e•gineer is most impoitant in clarifying such uncertainties. In fact,

communication is probably the most important single element in the evaluation

of handling qualities. Pilot and engineer must endeavor to understand one

another and cooperate to achieve and retain thLis understanding. The very

nature of the experiment itself makes this somwhat difficult. The engineer

is usually not present during the evaluation, and hence he has only the

pilot's word description of any piloting difficulty. Often, these described

difficulties are contrary to the intuitive judgments of the engineer based on

the characteristics of the airplane by itself. Mutual confidence is required.

The engineer should be confident that the pilot will give him accurate,
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meaningful data; the pilot should be confident that the engineer is vitally
interested in what he has to say and trusts the accuracy of his camments.

It is important that the pilot have no foreknowledge of the specific
characteristics of thc configuration being investigated. This does not
exclude information which can be provided to help shorten certain tests (e.g.,
the parameter variations are lateral-directional, only). But it does exclude
foreknowledge of the specific parameters under evaluation. The pilot must be
free to examine the configuration without prejudice, learn all he can about it
frCm meeting it as an unknown for the first time, look clearly and accurately
at his difficulties in performing the evaluation task, and freely associate
these difficulties with their effects on the ultimate success of the mission.

A considerable aid to the pilot in this assessment is to present the
configuration in a random-appearing fashion.

The amount of time which the pilot should use for the evaluation is
difficult to specify a priori. He is normally asked to examine each
configuration for as long as is necessary to feel confident that he can give a
reliable and repeatable assessment. Scmetimes, however, it is necessary to
limit the evaluation time to a specific period of time because of
circumstances beyond the control of the researcher. If the evaluation time
per pilot is limited, a larger sample of pilots, or repeat evaluations will be
required for similar accuracy, and the pilot comment data will he of poorer

quality.
The evaluation pilot must be confident of the importance of the

simulation Irogram and join wholeheartedly into the production of data which
will supply answers to the questions. Pilots as a group are strongly
motivated toward the production of data to improve the handling qualities of
the airplanes they fly. It isn't usually necessary to explicitly motivate the

pilot, but it is very important to inspire in him confidence in the structure
of the experiment and the usefulness of his rating and comment data. Pilot
evaluations are probably one of the most difficult tasks that a pilot
undertakes. To produce useful data involves a lot of hard work, tenacity, and
careful thought. There is a strong tendency for the pilot to become
discouraged about their ultimate usefulness. The pilot needs feedback on the
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accuracy and repeatability of his evaluations. The test pilot is the only one
who can provide the answers to the questions that are being asked. He must be

Sn-ured through feedback

L his assessments are good so that he gains confidence in the manner in

which he is carrying out the program.

8.8 DYNAMIC STABILITY FLIGHT TESTS

The dynamic response of an aircraft to various pilot control inputs is

important in evaluating its handling qualities. The aircraft may be

statically stable, yet its dynamic response could be such that a dangerous

flight characteristic results. The aircraft must have dynamic qualities that

permit the design mission to be accceplished.

The purpose of the dynamic stability flight test is to investigate an

aircraft's primary modes of motion. An airplane usually has five major modes

of free motion: phugoid, short period, rolling, Dutch roll and spiral.

Flight test determines the acceptability of these modes - frequency, damping,

and time constant being the characteristics of primary importance.

There are several different forms that the modes of motion may take.
Figure 8.24 shows four possibilities for aircraft free motion: a pure

divergence, a pure convergence, a damped, or an undamped oscillation. The

aircraft being a rather complicated dynamic system, will move in a manner that

is a combination of several different modes at the same time. One of the

problems of flight testing is to excite each individual mode independently.
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(C) OSCILLATION WITH ZERO DAMPING (d) OSCILLATION WITH NEGATIVE DAMPING

FIGURE 8.24. AIRCRAET FREE MOTION POScIBILITIES

8.8.1 Control Inputs
There are several different control inputs that could be used to excite

the dynamic modes of motion of an aircraft. To accomplish the task of

obtaining the free response of an aircraft, the pilot makes an appropriate
control input, renoves himself from the loop, and observes the resulting

aircraft motion. Three inputs that are frequently used in stability and

control investigations will be discussed in this section: the step input, the

pulse, and the doublet.

, • 8.8.1.1 Step Input. When a step input is made, the applicable control is
A, rapidly moved to a desired new position and held there. The aircraft motion
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resulting from this suddenly applied new control position is recorded for

analysis. A mathematical representation of a step input assumes the

deflection occurs in zero time and is contrasted to a typical actual control

position time history in Figure 8.25. The "unit step" input is frequently

used in theoretical analysis and has the magnitude of one radian, which is

equivalent to 57.30. Specifying control inputs in dimensionless radians

instead of degrees is convenient for use in the non-dimensional eguations of

motion.

IDEAL INPUT

b - -- ACTUALINPUT

0

TIME, t ").

FIGURE 8.25. STEP INPUT'

8.8.1.2 Pulse. =en a pulse, or singlet is applied, the control is moved to

a desired position, held mcomntarily, and then rapidly returned to its

original position. The pilot can then remove himself from the loop and

observe the free aircraft response. Again, deflections are theoretically

assumed to occur instantaneously. An example of a pulse, or singlet, is shown

in Figure 8.26.

8.5
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IDEAL INPUT

""• ---- ACTUAL INPUT

TRIM -- -----. - -

TIME, t

FIGURE 8.26. PULSE INPUT

The "unit impulse" is frequently used in theoretical analysis and is

related to the pulse input. The unit impulse is the mathematical result of a

limiting process which has an infinitely large magnitude input applied in zero

time and an area of unity.

8.8.1.3 Doublet. A doublet is a double pulse which is skew symmetric with

time. After exciting a dynamic mode of motion with this input and removing

himself fron the control loop, the pilot can record the aircraft open loop

motion (Figure 8.27).

IDEAL INPUT

ACTUAL INPUJT

TIME, t

FIGURE 8.27. DOUBLET INPUT

8.8.2 Pilot Estimation Of Second Order Response

Pilot-observed data can be used to obtain approximate values for the

danped frequency and damping ratio for second order motion such as the short

period or Dutch roll.
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To obtain a value for wd, the pilot needs merely to observe the number of

cycles that occur during a particular increment of time.

Then,

NLmber of Cycles = cycles/sec

fd Time Increment (8.31)

And

f cycles 2 radians radians/sec
d = d sec ) ( -cycle (8.32)

The numier of cycles can be estimated either by counting overshoots (peaks) or

zeroes of the appropriate variable. For short period motion, perturbed 0 is

easily observed, and if counting overshoots is applied to the motion shown in

Figure 8.27, the result is

f Ki (Nuexr of Peaks - 1)

fd = M zi(Ti Incrrent).......

1(4-)
fd 3 3 - 0.5 cycles/sec

FREE RESPONSE STARTS HERE

3 SECONDS

I; FIGURE 8.28. SE=OND ORDER MYrICN
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If zeroes are counted, then

1 (number of zeroes - 1)f d = 2 c c e / e
(Time Increment)

The pilot can obtain an estimated value for t by noting the number of

peaks that exist during sec(od order motion and using the approximation

1 (7- Number of Peaks) (8.33)

for .1 < r < .7

The motion shown in Figure 8.28 thus has an approximate value

(7 -4) .3

Note that the peaks which occur during aircraft free response are the

ones to be used in Equation 8.A3. If zewo observable peaks exist during a

second order notion, the best estimate for the value of ý is then "heavily

(aTped, .7 or greater." If seven or more peaks are observed, the best

estimate for the value of . is "lightly damped, .1 or less."

8.8.3 Short Period Moide

The short teriod is characterized by pitch angla, pitch rate, and angle

of attack change while essentially at corstant airspeed and altitude. The

short period mode is an important flying quality bc-ause its period can

approach the limit of pilot reaction time and it is thl. mode which a pilot

uses for longitudinal maneuvers in nonral flying. The pNriod and damping may

be such that the pilot may induce an unstable oscillation if he attempts to

damp the motion with control movements. Hance, heavy damping of this mode is
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desirable. Although heavy damping of the short period is desired,
investigations have shown that damping alone is insufficient for good flying

qualities. In fact, very high damping may result in poor handling qualities.

It is the combination of damping and frequency of the motion that is

important.

8.8.3.1 Short Period Flight Test Techniqu. To examine the short period

mode, stabilize the airplane at the desired flight condition (altitude,

airspeed, normal acceleration). Trim the control forces to zero (for one g

normal acceleration) and start recording. Abruptly deflect the longitudinal

control to obtain a change in normal acceleration of about one-half g. A

suggested technique is to apply a longitudinal control doublet (a small

positive displacement followed immediately by a negative displacement of the

same magnitude followd by rapidly returning the control to the tritued

position). For stick-fixed stability, return the control to neutral and hold

fixed. For stick-free stability release the control after it is returned to

neutral.

7he abruptness and magnitude of the control input must be approached with

due caret Use very small inputs until it is determined that the response is

not "tiolent. Start with small imagnitudes and gradually work up to thie desired

excitation. When the aircraft transient motion stops, stop recording data.

An input that is too sharp or too large could very easily excite the aircraft

structural mode or produce a flutter that might seriously damage the airplane

and/or injure the pilot. If the aircraft is equipped with artificial

stabilization devices, the test should be conducted withi this device off as
well as on.

8.8.3.2 Short Period Data .•euired. The trim conditions of pressure

altitude, airspeed, weight, cg position, and configuration sho•ild be recorded.

Ite test variables of concern are: airspeed, altitude, angle of attack,

normal acceleration, pitch angle, pitch rate, control surface position, and

control stick/yoke position.

8.8.3.3 Slnort Period Data Reduction. Short period mode investigations have

show that frequncy as well as damping is iqportant in a consideration of

"flying qualities. T.is is so because at a given frequency, dampinq alters the

Sphase angle of the closed-loop systam (which consist:s. of a pilot coupled to
the airframe system). Phase angle of the total system governs the dynamic
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stability.
The short period frequency, damping, and n/a can be determined from a

trace of the tire history of aircraft response to a pitch doublet as shown in

Figure 8.29.

6, t

n

FIGURE 8.29. SHORT PERIOD RESPONSE

The MIL-F-8785C specifies that the angle of attack trace should be used
Sto determine the short period response frcquency and damping ratio; hover,

load factor, pitch angle, and pitch rate are all indicators of the same short
period free response characteristics. Either the Log Decrement or Tim Ratio

data reduction methods can be applied to the short period response trace.

8.8.3.3.1 Log__ Dremrnt Method. If the short period resjonse is
oscillatory and the dawping ratio is 0.5 or loss (three or more overshoots),

proceed with the log decremint method of data reduction. This method is also

called the subsidence ratio or the transient peak-ratio method.
UWing the angle of attack trace, draw a mean value line at the

steady-state trimmed angle of attack. Measure the values of each peak
deviation from trimied angle of attack for AX1, AX2 , IX3, etc., as Ashwn in

Figure 8.30.
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AXxO

Ax3

Ux . TIME

4.---INPUT i RESPONSE

FIGURE 8.30. SUBSIDNCE RATIO ANALYSIS

Leteriuine the transient peak ratios, &X /AX0,I 2/6 AX3/AX 2 .XA nter Figure

8.32 with the transient peak ratio values for AX1/t.X0 , AX2 /AX1, AX3Ax 2
and deterndne corresponding values for damping ratios , I 2' C 3 " The average

of die danping ratios will yield the value of the overall short period damping

ratio. Fr vary lightly daqed oscillatory response, Figure 8.33 can be used

to determnine damping ratio. The m = 1 line is used kien comparing peak ratios

AX /AX0 , AX2/Ax1; the m - 2 line is used for peak ratios of 4X /AXO7  A3/x y

etc.

The period, T, of the styjrt period response can be determined by

measuring the tie between peaks as shown in Figure 8.31. 'he short

period daqx-od freq~uency is then calcuilated by wd 2v/'T (radlsec.) The

short period natural frequency is occmt.,d using n w d/1 - 42.

8.8.3.3.2 Time Ratio Hethcd. If the damping ratio is between .5 and 1.5

(twAo or less overshoots), then the time ratio method of a data reduction can

be used to deteraine short period response froquency and damping ratio.
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Select a peak on the angle of attack trace where the response is free.

Divide the amplitude of the peak into the values of 0.736, 0.406, and 0.199.

Measure time values ti, t 2, and t 3 as shown in Figure 8.31. Form the tine

ratios t 2 /tl, t 3 /ti, and (t 3 - t 2 )/(t 2 - t,).

" MAX

-INPUT REONSE

FICTON. 8.31. TIME WATI7 .•NrALYSIS
- T- - - . - - - - k

0...-.. -9 . . -.. -1 , - -1
0.8 . ... ... .... - - - I . l

0 0.7 - - a--S------.---

- I I - 1 Ia I 1 Ii -I

~0.4 - --

0 .3 - . ..

0.2 ... - - -

0.1

0~~~~ -f I - a- a-T

0.01 0.08 0.10 0.50 1.00
DAMPING RATIO, "

C' •:• FIGUURE 9.32. DMI•MINC t BY 1W10ANSIENT-PEAK-RATIO K6XI'fD
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Enter Figure 8.34 at the Time Ratio side and find the corresponding S
damping ratio for each time ratio. Average these damping ratios to determine

the short period damping ratio, sp
Re-enter Figure 8.35 with the average short period damping ratio and find

the frequency time products wntl, Wnt 2 , and w n t 3 . To determine the natural

frequency, 0n' conpute:

Wnt 1  wnt2 nt3

n tI n t 2 t 3

Average these natural frequencies to determine the overall short period
natural frequency.

8.8.3.4 n/a Data Reduction. From the time history traces of load factor and
angle of attack free response, determine the peak value of angle of attack

that produced the peak load factor, g, as shown in Figure 8.35. Compute the

ratio An.!Acx. /

a TIME

N TIME

-4- INPUT -- ESPONSE

FIGURE 8.35. n/a ANALYSIS

8.8.3.5 Short Period Mil Spec Reuirements. MIL-F-8785C specifies that an
aircraft's short period response, controls fixed and free, shall meet the

requirements of frequency, damping and acceleration sensitivity established in
Paragraphs 3.2.2.1 and 3.2.2.1.1. Residual oscillations shall not be greater
than 0.05g at the pilot's station nor more than t3 mils of pitch excursion
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pitch excursion for category A Flight Phase tasks.

Tests for short period stability should be conducted fram level flight at

several altitudes and Mach. Closed loop short period stability tests should
also be made at various normal accelerations in maneuvering flight. This
stability, when coupled to the pilot, is especially important to tracking and

formation flying.

8.8.4 Phugoid Mode

The phugoid mode is generally not considered an important flying quality

because its period is usually of sufficient duration that the pilot has little

difficulty controlling it. However, under certain conditions it is possible

for the damping to degenerate sufficiently so that the phugoid mode becames

important. The phugoid is characterized by airspeed, altitude, pitch angle,

and rate variations while at essentially constant angle of attack.

8.8.4.1 Phugoid Flight Test Technique. The phugoid mode may be examined by

stabilizing the airplane at the desired flight conditions and trimming the

control forces to zero. Smoothly increase the pitch angle until the airspeed

reduces 10 to 15 knots below the trim airspeed and return the nose to the

trimmed altitude. For stick-fixed stability return the control to neutral and

then release it. After the control is released or returned, it may be

necessary to maintain wings level by light lateral or slight rudder pressure.
Damping and frequency of phugoid motion may be changed appreciably by the
presence of small bank angles (50 to 150). It may be very difficult to return

* the control to its trimmed position if the aircraft control system has a very
* large friction band. In such a case, the airspeed increment may be obtained

by an increase or decrease in power and by returning it to its trim setting or
extending a drag device. In either case the aircraft configuration should be

that of the trim condition at the time the data measurements are made.

4 8.8.4.2 Phugoid Data REjuired. The trim conditions of pressure altitude,
airspeed, %eight, cg position and configuration should be recorded.

The damping can be determined by hand recording the maximum and minimum
airspeed excursions during at least two cycles of the phugoid free response.
In addition, the period can be accurately hand recorded by noting the tine

between zero vrtical velocity points.
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8.8.4.3 Phugoid Data Reduction. To determine the phugoid damping ratio (r),
sketch the damping envelope on the working plot of airspeed versus time.

Measure the width of the envelope at the peak values of the oscillation. Fbrm

the subsidence ratios (/X0) . Find the damping ratio for each subsidence
ratio from. Figure 8.32 or 8.33. Average these damping ratios. If the

subsidence ratio is greater than 1.0, then use the inverse of that subsidence
ratio. The damping ratio thus determined will be negative, and the mode

divergent.

Another method of determining phugoid damping ratio analogous to the
above subsidence ratio method is to compute the difference between successive
mna duz and minimum velocities and assign these magnitudes as AX0 , AX1, AX2 ,
etc., as shown in Figure 8.36. Next form the Transient Peak Patios AXl/AX0 ,

AX2/AX1 and find the damping ratio fran Figure 8.32 or Figure 8.33.

0 AX,

VELOCITY TIM

4-0- INPUT -- RESPONSE

FIGURE 8.36. PHUGOID fI NSIENT PEAK RATIO ANALYSIS

The damped frequency of the phugoid can be determined fran the hand recorded
period by wd 21r/T (rad/sec). The natural frequency is then computed by

( d

8.8.4.4 PhEqoid Mil Spec RESirmnrt. 1he MIL-F-8785C requirnent for
&j phugoid danping is outlined in Paragraph 3.2.1.2.

8.8.5 Dutch P,11 Mode
'The Dutch Roll lateral-directional oscillations involve roll, yaw, and

sideslip. 7he stability of the Dutch roll mode varies with airplane
,oonfiguration, angle of attack, Mach, and damper configuration. Thne
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presence of a lightly damped oscillation adversely affects aiming accuracy

during bombing runs, firing of guns and rockets, and precise formation work

such as in-flight refueling.

Stability of the oscillations is represented by the damping ratio;

however, the frequency of an oscillation and the O/l ratio are also important

in order to correlate the motion data with the pilot' s opinion of handling

qualities. If the frequency is higher than pilot reaction time, the pilct

cannot control the oscillation and in some cases may reinforce the oscillation

to an undesirable amplitude. Since it is the damping frequency combination

which influences pilot opinion more than damping alone, some effort should be

made to correlate this coabination with pilot opinion of the

lateral-directional oscillation.

At supersonic speeds, directional stability often decreases with

increased Mach and altitude for constant g. An evaluation should proceed

cautiously to avoid possible divergent responses that can result fron

nonlinear aerodynamics.

8.8.5.1 Dutch oll Flight Test Techniques.
4-. 8.8.5.1.1 Rudder Pulse (doublet). Stabilize the airplane in level

flight at test flight conditions and trim. Rapidly depress the rudder in each

direction and neutralize. Hold at neutral for control-fixed or release rudder
for control free response. Ebr aircraft which require excessive rudder force

in same flight conditions, the rudder pulse may be applied through the

augmented directional flight control system.

8.8.5.1.2 Release from Steady Sideslip. Stabilize the airplane in level

flight at test flight conditions and trim forces to zero. Establish a steady

straight-path sideslip angle. Rapidly neutralize controls. Either hold

controls for control-fixed or release controls for control-free response.

Start with swall sideslip in case the aircraft diverges.

8.8.5.1.3 Aileron Pulse. Stabilize the airplane in level flight at test

flight conditions and trim. Hold aircraft in a steady turn of 100 to 300 of

bank. roll level at a maximum rate reducing the roll rate to zero at level
flight. CA•rICN. . . Such a test procedure must be monitored by an engineer

who is droghly familiar with the inertial coupling of that aircraft and its
effect upon structural loads and nonlinear stability.

Nnlinearities in the aircraft response may hinder the extraction of the
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necessary parameters. These can be induced by large input conditions. Small)

inputs balanced with instnmzent sensitivity give the best result.

8.8.5.2 Dutch Roll Data Required. Fbr trim condition, pressure altitude,

airspeed, weight, cg position, and aircraft configuration should be recorded.

The test variables of concern are bank angle, sideslip angle, yaw rate, roll

rate, control positions, and control surface positions.

Flight test data will be obtained as time histories. When determining

the damping ratio, the roll rate parameter usually presents the best trace.

In addition, the bank angle and sideslip angle time histories will be required

to determine the 01a ratio.

8.8.5.3 Dutch Roll Data Reduction. The Dutch roll frequency and damping

ratio can be determined from either a bank angle, sideslip angle, or roll rate

response time history trace. The roll rate generally gives the best trace for

data reduction purposes.

The methods for determining Dutch roll frequency and damping ratio are

the same as used for short period data reduction. If the damping ratio is

between .5 and 1.5 (2 or less overshoots), then the time ratio method can be

employed. For damping ratio of .5 or less (3 or more overshoots), then

subsidence ratio methods are applicable for determining Dutch roll frequencies

and damping ratio.

The 0/0 ratio at the test condition can be determined from the ratio of

magnitudes of roll angle envelope to sideslip angle envelope at any specified

instant of time during the free response motion as shown in figure 8.37.

I
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FIGURE 8.37. DETE tATION OF 16 1 iANALYSIS

8.8.5.4 Dutch Roll Mil Spec Requirements
MIL-F-8785C requirements for Dutch roll frequency and damping ratio are

(I specified in Paragraph 3.3.1.1.

8.8.6 Spiral Mode
The spiral mode is relatively unimportant as a flying quality. However,

a combination of spiral instability and lack of precise lateral trimmability
may be annoying to the pilot. This problem will be evaluated as a whole due

to the difficulty in separating the effects.

The divergent motion is non-oscillatory and is most noticeable in the
bank and yaw responses. If an airplane is spirally divergent, it will, when

disturbe&- and not checked, go into a tightening spiral dive. This divergence
can be easily controlled by t&e pilot if the divergence is not too fast.

IExcitation of the spiral mode only is difficult because of its relatively
large time constant. Any practical input using control surfaces would usually Al
excite other modes as well. If a deficiency in lateral trim control exists, it
is c ften difficult to determine what portion of the resultant motion following
a disturbance is caused by the spiral mode. This flight test is used to

determine if a ooCfbined problem of lateral trim and spiral stability exists.

If test results show a definlite divergence in hands-off flight, the problem

exists.
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Spiral divergence is of little importance as a flying quality because it

is well within the control capability of the pilot. The ability to hold

lateral trim in hands-off flight for 10 to 20 seconds is important.

8.8.6.1 Spiral Mode Flight Test Technique. Trim the aircraft for hands-off

flight, ensuring that particular attention is given to lateral control and the

ball being centered. Boll into a 200 bank in one direction, release the

controls and measure the bank angle after 20 seconds. Repeat the maneuver in

a bank to the opposite side.

8.8.6.2 Spiral Mode Data Required. Record aircraft configuration, weight, cg

position, altitude and airspeed. The test variables are bank angle, sideslip

angle, control position, and control surface position.

8.8.6.3 Spiral Mode Data Feduction. Average the time to double amplitude for

right and left banks at each test condition. Figure 8.38 illustrates bank

angle data for spiral mode analysis.

40- 3 2t

BANK

ANGLE

5 10 15 20
TIME--- SECOND8

FIGURE 8.38. SPIRAL MOE ANALYSIS

8.8.6.4 SJral Mode Mil Spec Requirement. Spiral Stability is specified in

NIL-F-8785C in Table VlI. 9ais table established minimu= times to double

amituo when the aircraft is put into a bank up to 200, and the controls are

freML

8.8.7 Roll I

2he roll mode is the primary method that the pilot uses in controlling

the lateral attitudie of an aircraft. The roll node represents an aperiodic
S(ncmodllatory) resmonse to a pilot's lateral stick input which involves

almost a pure roll about the x-axis.
I Of pm• xcotern to all pilots is the roll performance involving the

ti rOtuire 1or the aircraft to accelerate to and reach a steady state roll )
S! rate in reqxia to a pilot's lateral input. The roll performance parameter
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is useful in describing the roll response of an airplane in roll mode time
constant, TR. Physically, TR' is that time for which the airplane has reached

63% of its steady-state roll rate following a step input of the ailerons. The
roll mode thne constant directly influences the pilot's opinion of the
maneuvering capabilities of an airplane. In addition, TR can affect the
piloting technique used in bank angle control tasks.

8.8.7.1 Roll Mode Flight Test Technique. Trim the aircraft for hands-off

flight. Roll into a 450 bank in one direction and stabilize the aircraft.
Abruptly apply a small step aileron input and hold throughout 900 of bank
angle change. The size of the step aileron input should be sufficiently small
to allow the aircraft to achieve steady-state roll rate prior to the 900 bank
angle change; however, sufficiently large to measure the roll rate with the
instrumentation system onboard the aircraft.

8.8.7.2 Roll Mode Data Required. IFcord aircraft configuration, weight, cg
position, lateral fuel loading, attitude and airspeed. The test variables are
bank, roll rate, control position and control surface position.

8.8.7.3 R1ll Mode Data Peduction. The roll mode time constant, TR' can be

measured fru= a time history trace of the roll rate response (Figure 8.39B) or
bank angle response (Figure 8.39A) to a step aileron input. Frcm the roll
rate, p, trace the time constant, TR, can be measured as the time for the roll

rate to achieve 63.2% of the steady-state roll rate response (Figure 8.39A) TR
can also be determined frcm the bank angle, 4, trace as the time for the

ectension of the linear slope of the 0 trace to intersect the initial 0 axis
as represented in Figure 8.39A. It is inportant to note that the roll mode
Stime constant is independent of the size of the step aileron input.
8.8.7.4 Roll Mode Mil Spec Requirements. The roll mode requirements are

specified in MIL-F-8785C, Table VII. This table establishes limits on the

maxim= allowable time for the roll mode time constant.
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FIGURE 8.39B. R)LL RATE TRACE

8.8.8 Roll-Sideslip (oupling

In contrast to most other requirements which specify desired response to

control inputs, roll-sideslip coupling produces umanted responses. The Dutch

roll mode of motion can be seen in the p and a traces. How these parameters

are phased with each other will highlight closed loop problems. These

unwanted responses detract frao precision of control and can czitribute to PIO

tendencies.

Poll-sideslip coupling is manifusted in at least three ways depending on

the Dutch roll 0/8 ratio.

Iow 0/1 Ratio (less than 1.5):

More sideslip than roll motion. In this case, if roll rate or aileron

control exito sideslip, the flying qualities c.n be degraded by such Mtotion
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as an oscillation of the nose on the horizon during a turn or a lag or initial
reversal in yaw rate during a turn entry or by pilot difficulty in quickly and

precisely acquiring a given heading (ILS or GCA). In addition, the pilot has
great difficulty damping Dutch roll with aileron only.

Large 4/O Ratio (1.5 to 6):

The coupling of 6 with p and € beccmes inportant, causing oscillations in
roll rate and ratcheting of bank angle. Here, the pilot may have difficulty

in precisely controlling roll rate or in aoquiring a given bank angle without

overshoots.

Very Large 0/0 Ratio (>6):

Sensitivity of roll to rudder pedals or response to atmospheric

disturbances may be so great that the aircraft responsi% is never considered

good.
( In addition to the different problems caused by the magnitude of the €/8

ratio, the degree of difficulty in controlling these unwnted motions is very

important. If the airplane is easy to coordinate during turn entries, then
the pilot nwy tolerate relatively large umvited motions during rudder -

pedal - £free turn entries since he can control these unwanted motions if
desired. On tho other hand, 4hen ooordination is difficult, the pilot will
tolerate very small unwanted motions, sincm le must either accept these

motions or may even aggravate them if he tries to coordinate. The paramat r
44ý"was introduced as the most precise measure of this very nebulaus, but
itportant factor - difficuIlty of coordination. The use of is primarily
i•ortant when looking at small lateral control inputs and the wssulthig

aircraft response in either roll or yaw.

8.8.8.1 Roll Hate 09cillation. (Paragrah] 3,3-2.2.. This paragraph and the
small itut paragraph are primarily looking at aircraft with a Dutch roll 4I/

ratio between 1.5 to 6.0 Oioderate to largo). This particuLar paragraph is

specified for large inputs (at least 9Q0 of roll). In general, any large

oscillations after a step aileron input (ruxder free) are not %anted. In the
table, the percentage values are giver, for different levels and categories

C hi-i should not be e*eeded. If there is a large uhange, the pilot will see
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ratcheting and won't like the aircraft's characteristics.

pi -20-
P3 -18-

Sp - 15.-- .

IV

TIMe (SEC)

FIGU 8.40. `MU .M OW.LLA TICS

Pi is the first peak in the roll rate trAce, and p) is the- first mninia.m

ite ratio of p2/p1 shall not exomJ the values in the t.able, If: p, crospse

the tim axis into megative territory, the sign of p ha-s claed and an v

autwit1• faU.me shwld be given.

8.8.9 R.. .t. ir~mnt$ For Snail Rnjzta (Pa- &1 3

-This paragraph addresses precision of co~ntrol with -i. W-l illcrol inputs.

The de&gree ozeillation - Poe - are ummtw ýrotior that pidot$,-.01 0

aue flyirq an US or scme other t•sk, perceive as a pe_-rf . difi--,ty

I* lar the oscillation or t1w greater the difficulty it, a, ; i t-e

oscillation, the greater the pilot's workload and ability to acc&pli•b th

tamk. In other wordS, the degradation in flying qualities is prq.ýortiomxi to

the awmt of roll rate oscillation* p..,, about some mean value of .'roll ote,

P 2The tem *#. has been referred to as t~he -difficulty of c•xrdination"

arambr. Thi, is baue• an the fact that an aircraft should dmrolop ..v.

yaw with ailerm inputs so that the pdlot can rovally coordi; te retu,

for emr•Ae, if a right roUl is initiated with aileron, then the aircraft will.

yaw left (&h~erme), Calmirq tke pilot to Useo right ruder to brinq the ad~mrft

yw to zuo. Aftm,, he mkis right r•rder for right ailercA inpxuts. If

mm yAW romlRdd froa the input, then the pilot wmld ham to. cro.s

SOODtnt• ar and ,A1orti to cord mte the roll. with tas kr . W I
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exmination of Figure 8.40 from Paragraph 3.2.2.2.1 can now be done.

FLIGHT PHASE
.9 -/- - - CATEGORY B

.- LEVEL 2

r LEVEL 1

5 FLIGHT PHAS E
CATEGORIESA&C -

S.4... --- LEVEL 2 JLEVEL I

.3 1-

.2 -f .
0 ---A &4-

400 -80°, -120 -1600 -200 -2400 -280' -3200 -360'8 (DEG) WHEN p LEADS 13BY 450 TO 2250

.-180 -2200 -260' -3000 -3400 -200 -60O -1000 -1400 -1800

S(DEG) WHEN p LEADS 0 BY 2250 THROUGH 360° TO 450

FIGURE 8.41. ROLL RATE OSCILLATICN REQUIREMENTS

From this figure it can be seen that the ratio of roll rate oscillation

to steady state roll rate can be greater for some values of 8 than for

others. The assumption that p leads B and that the aircraft has positive

dihedral, will be made for the following discussion. Specifically, the

specified values of posc/pav for 00 ; ,a8 .-900 are far more stringent than

for -180 • -270 . •here are at least three reasons for this.
First, aileron inputs proportional to bank angle errors generate yaw

acceleration that tend to damp the Dutch roll oscillations, when -180°
-270O. Thus, the Dutch roll oscillation damps out more quickly with pilot

7j roll inputs. Conversely, if is betmeen 00 and 909, the aileron input tends

to excite Dutch roll and can even cause lateral PIO. The latter case causes a

pilot's tolerance of Posc/Pav to be reduced.

Secondly, the requirements of pos/pav vary considerably due to the
difficulty of coordination previously mentioned. For - 18 00 I -270°,

normal coordination may be effected, that is, right rudder pedal is required
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for right rolls. Thus, even if roll oscillations do occur, the pilot can

manage the oscillations by using rudders. On the other, for 00 > -900'

it is necessary to cross control t. effect coordination that is, left rudder

for right aileron. Since pilots do not normally cross control, and if they

must, they have great difficulty in doing so, they either let the oscillations

go unchecked or make them worse.

The final reason for the significant variation in posc/pav with 4) is

that the average roll rate, pav' for a given input varies significantly with

ý," For positive dihedral, adverse yaw due-to-aileron (w, t. 180 0) tends to

decrease average roll rate, whereas proverse yaw-due-to-aileron (4) a 00)

tends to increase roll rate. As a matter of fact, proverse yaw-due-to-aileron

is sometimes referred to as "conplentary yaw" because of this augmentation

of roll effectiveness. Thus, for a given amplitude of posc, posc/pav will be

greater for ý 7 18(P than it will be at ý, n0 0.

P0sc/Pav and ý, arc calculated using the following equations where Posc/

pav depends on the value of CD"

Pos P1 + P 3 - 2P2

0.2 -- =
Pav P1 +P3 +2P2

ýD > 0. 2 Pose =
Pav P +P2

where p1 . p2, and P3 are roll rates at the first, second and third peaks

respqctively. See Figure 8.42.
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FIGURE 8.42. ROLL RATE OSCILIATION D1STEM194IONWIt

In order to calculate ' a sign convention must be assumed. First assume

positive diheoral aircraft (p leading B will verify this). Second, use upper

set of nlznu.ers in all paragraphs showing two sets. (Th~is can be ijerified
.:by calculating the angle between the p and (i trace maxiii. ) Third, if th~e
':+roll is made to the right, look for the 1st local nax~im• on the 3 trace, and

S.... •if the roll is made to the left, look for the 1st local minimum. Finally, use

-:.,,• ,360

.+4.

1~ ~ 2(n4-I)t MC

U•, d +InB1 360 deg

In-order = nth Lioal Maxizus

A, . .81

36
(n 1)i60de



)

TD is by definition the Dutch roll period (shown in Figure 8.42); tnB is the

time on the a trace for the 1st local maximum (right roll) or ist local

idi-imml (left roll). Sea Figuoae 8.42 for a right roll. If p/l is calculated,

just compare the time difference between the p and a trace and divide by the

Td and multiply by 3600.

The only other requiremnt is to make sure that the input is small. It

should take at least 1. 7 times Td for a 600 bank angle change.

8.8.10 Bank Angle Oscillations (Paragraph 3.3.2.3).

In order to extend the roll-sideslip coupling requirement to larger

cont=ol deflections and to account for some flight control non-linearities,

this paragraph specifies similar calculations as (Paragraph 3.3.2.2.1), except

that the input is an impulse. This input should be at the maximum rate and at

the largest deflection possible. The resulting motion after the input will be

bank an .e oscillations around zero degrees. The bank angle should be applied

after being stabilized at approximately 150 of bank. The difference in the

shifting of carve in Figure 8.42 is due to ý from a pulse being 900 more

positive than for a stp.

Tb c&"ýculate 0osc/Oav identify bank angles ýi,02' + 03 as wzs done with p

in nd Posc/Pav.

Z 0.2 -OS 1 + 03 + 22
•av 1 4'2 + 22

: • ) 0.___o____________•

osc 'ý1 -2
Oav ý1 + 2

MN&xt cal.%fatxi as was dis-ussed pw'eviously on the S trace.
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FLIGHT PHASE_

.6--- - CATEGOR 8

SLEVEL 2 L VEL 1

I ,,
- FLIGHT PHASE

CATEGORIESA & C-G .4 !, /10 1,

LEV(EL) W2 N LEVEL B Y4°TO2°

.3--

.2/

-8°-W0° -260° -30W -0° -200 -24° -2800 -1320 -3800

00 ()EO)WHEN p LEADS BY 225° THROUGH 3600 TO 450

IGrM 8.43. BANK ANGLE OSCIUATICO RWIRT

8.8.11 Sideslp Excursions (Paragraph 3.3.2.4)
This paragraph and the next one for small inputs are for low Dutch roll

(< 1.5) and are associated with sideslip rather than roll or bank angle
tracking. T1 basis for the paragraph is research indicating a maxium amount
of sideslip generated that can be tolerated by the pilot, whether the sideslip
is adverse or proverse and the phase relationship between the sideslip and the

roll in the DuItch roll are the overriding factors. The coordination of
control with prov.rse yaw is very difficult and unnatural so the levels
specified are much lower than those for adverse yaw. Another factor to be
x ered is the side-fnrce and side acceleration caused by sideslip angles

at high speed. Research has concluded that if such acceleration is very high
S(>0.2 g's), then the resulting motions cause interference with normal pilot

duties.
In order to calculate the required parameters for this paragraph, refer

to Figure 8.41 for 0 and k. The Dutch roll period is determined as before,
and half its value is coopared with two seords. Whichever is greater, the B
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excursion proverse yaw and adverse yaw needs to be used during that time after )
the rudder pedal free aileron input. From Figure 8.41 there is no proverse

yaw, but 1.40 of adverse yaw during two seconds of right roll is present.

Many tests will have a small proverse yaw excursion before adverse yaw builds

up, which would require a calculation of As proverse. Next, calculate the

"k" factor. It is known as the "severity of input" parameter. "k" is the

ratio of what roll rate was achieved during the flight test, (0 I) cammand,

versus what roll rate is required (0 ) by 3.3.4 roll paragraphs for the

particular aircraft Class and Flight Phase.

(0 T) comnanded (what you did)

T required (MIL SPEC Req)

Next calculate Ws/k proverse and ea/k adverse and ccmpare themi to the

requirements of the paragraph. This test must occur with the aileron step

fixed for at least 900 of bank angle change.

8.8.11.1 Sideslip Excursion Requirement For Small Inputs (Paragraph

3.3.2.4.1). The requirements for this paragraph are similar to those seen in

the roll rate paragraph for small inputs. Even though the roll paragraph

applied to problems with roll as opposed to sideslip, the pilot opinions were

similar when coordination is required with adverse or proverse yaw. 1he

difference in the sketch of this paragraph is alost totally due to the

difference in ability to coordinate during turn entries and exits. As

varies fron 00 to - 3 6 0O, it indicates the coordination problem discussed

previously. When adverse yaw is present -180° 0 4 Z - 2 70 0 , coordination is

easy and oscillations can be readily tainimized. As more proverse yaw is seen

-3600 a -900, cross controlling is required and the oscillations go

unchecked or are anplified by pilot's efforts to coordinate with rudder pedal.

Oily one new parameter is needed to calculate f'r this paragraph- 8m.

J It is the total algebraic change of 8 during half the Dutch roll period or two

seconds, whichever is greatest. Next calculate k and t as discussed before.

k Make sure that the sign convention for remains the same (Figure 8.43). The

only other requirement is that dictated for the size of the input. It should

be small enough that 8 600 bank angle change takes more than the Dutch roll
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period or two seconds, whichever is longer.

14// I I I
SfALL FLIGHT PHASE

12.-----------------NCATEGORIES

SFLIdHT PH"IE •

2

o I- I I I
o -40 -80 -120 -160 -200 -240 -280 -320 -360

€ (DEG)

FIGUR~E 8.44. SIDESLIP EXCURSICNS FOR SMALL INP=~

V 8. 9 SuM4AY

The dynamic stability flight test methods discussed in this chapter can

be used to investigate the five major mxdes of an aircraft's free response

motion. These dynamic stability and contro' investigations, when coupled with

pilot in the loop task analysis, will datermine the aoceptability of an

aircraft' s dynamic respns characteristics.
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8.1. Define Static Stability

8.2. Define:

a. Positive Static Stability
b. Neutral Static Stability
c. Negative Static Stability

8.3. Define Dynamic Stability

8.4. Define:

a. Positive Dynamic Stability
b. Neutral Dynamic Stability

c. Negative Dynamic Stability

8.5. List two assumptions for using the LaPlace Transformation to find the
characteristic equation of a given system.

8.6. Given the following expression, determine the steady state roll rate due

to an aileron step input of 100.

0.3i(t) + 0.54(t) -0.6A(t) ; P(S) ( * (S)
Units - rad/sec

8.7. br 1roblem 8.6, %Mat is the time oonstant (0).

8.8. An aircraft is in the design stage and the follow.ing set of equations;

predict one of the modes of motion about the longitudinal axis (short

13.78 I(t) + 4.5 a(t) - 13.78 6(t) -0.25 6(t)

A! .055 ;(t) + 0.619 aft) + 0.514 Oi0t) + 0.19 i~t) -0i.71 6 e M
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a. Determine the characteristic equation.

b. Determine the transfer function 6/6e

c. Find the following:

(1) Undanped natural frequency (n).

(2) omiping Fatio (0.

(3) Dwmped Frequency (M).

8.9. For the longitudinal modes of motion, Short Period and Phugoid, list the

variables of interest.

8.10. From the T-38 wind tunnel data (Attachment 1), the following

longitudinal equations of motion were derived:

1.565u + .00452 u + .060500 0- .042 c = 0

.236 u - 3.15 + 3.13 + 5.026cs 0

( .0489 0 + .0390 + .16 .13 6 e

• ~FUIDs

a. Laplace Transform of the equations.

b. 4th order characteristic eqLation.

8.11. The 4th Order characteristic equation of Problem 8.10 was factorod inito

the folcawin 2nd order quations:

W(I , (S2 + .00214,S + .00208) (s + 2.408s + 4.595) 0

a. Mots of the characteristic equation fox Mhort Pieriod and

b ~~r4. Phgod wn o ' t 12 Period
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I
C. Short Period: wn' TA' d tl/2, Period -

8.12. The short period mode of a fighter aircraft was flight tested at

30,000 ft and .80 Mach with 13,500 lb of fuel. Results were

W = 4 radians/secnsp

ýsP .2

a. The short period is to be flight tested at 30,000 ft and .80

Mach with 500 lb of fuel. (Fuel in this aircraft is

distributed lengthwise along the fuselage, and the CG location

for 500 lb of fuel is the same as it was for 13,500 lb of

fuel.) Discuss why and how you predict SP and wnSP will

change at this new fuel weight.

b. The short period is to be flight tested at 5000 ft and .80 Mach

with 13,500 lb of fuel. Predict the changes, if any, expected

in SP and wnsp at this low altitude point. )

c. Predict the changes, if any, expected in w np when the aircraft

accelerates to M 1.2 (Cm due to rearward movement of

the aerodynamic center.)

8.13. 11-o undarped period of the T-38 short period mode is found to be 1.9

seconds at Mach = .09 at 30,000 ft. What would you predict the period

to be at 50,000 ft at Mach 0.9?

8.14. During a cruise performance test of the X-75B DYN, the following

performance parameters were recorded:

Altitude - 20,000 ft PA
Airspeed m 360 )MAS
E RPM = 62$
Thrust =1,200 lbf
Gross Wei*3ht = 12,000 lb
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a. Esthnate the phugoid damping ratio for the given flight

conditions.

b. Estinate the phugoid frequency (damped).

c. Moving the wing from full aft to full forward position should

cause the short period frequency to increase/decrease and cause

the damping ratio to increase/decrease?

8.15. Given the following time history traces:

St (SEC)

What is the probable static margin, value of C m and static stidility?

8.16.* The approximation eguations for the Phugoid mode of motion for an

aircraft are:

C+O0.04u + 400 -66(t

O.O0lu - 0 2 6e (t)

a. Determine the characteristic equation.
b. Calc'late;and w

n
C. Is this a dynamically stable or unstable mode?

d. Calculate the time to half mplitude (to or double aiplitude

(t 2).

8.17. During reentry fram orbital flight the space shuttle airplane will fly

at ihipersonic speeds and at a constant dynamic pressure to manage .'

heating and airloads.8
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Wind tunnel tests show that the hypersonic stability derivatives are
independent of Mach at these speeds. How does the short period

frequency and damping vary during the hypersonic descent at constant

dynamic pressure?

8.18. For the lateral directional modes of motion, spiral, roll, and Dutch

roll, list the variables of interest.

8.19. From the T-38 wind tunnel data (Attachment 1), the Lateral-Directional

equations of motion were evaluated and resulted in the following 4th
order characteristic equation:

A(s) = s4 + 7.692 s3 + 24.41 s 2 + 125.8 s + 1.193 0
Factored Rorm:

A(s) - (S + .00955) (s + 6.812) (s2 + .87 s + 18.4) =0

a. lbots of the characteristic equation )
b. Dutch 'bil: w•n C' wd' t1/2# Period

c. Roll Mode: time constant T
d. Spiral Mode: time constant T

8.20. Right after takeoff you experience an energency and jettison ycAr
wingtip tanks (2). Oich roll mode prameter(s) is/are affected and hom
will the roll mode be affected?

8.21. Given the foUawing wind tunnel data for the X-75B DYN:

AA

9 4 1.0
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a. Does the Dutch RD1l damping increase/decrease as Mach
increases fron 0.6 to 1.2?

b. Does the directional stability increase/decrease when
decelerating from Mach 1.2 to .6?

8.22. You are flying a KC-135 and you transfer fuel fzm the outboard to the

ioaxrd wing tanks.

a. Dutch Roll damping will increase/decrease.

b. Roll mode time constant will increase/decrease.

8.23. Vhat is the stability derivat :ve that determines the M/B ratio in Dutch
RD11 if Cn is unc••Mnge?

8.24. The apprac.mation equation for an aircraft's roll mode is:

p + .25p 5.5 6A (t)

a. Determine the steady state roll rate for a step aileron inut

of 104,
b. Detemine the magnitude of roll rate after an elapsed tim of:

(1) t = 1 time constant (it)

(2) t - 5 time constants (50)

8.25. For the IoMniti•inal and lateral directional modes of motion, list the

q F *A te period for the petiolc modes and the mwthod(s) of exciting

the five modes of motion.
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8.26. Given the following time history trace:

0 2 4 6 8 1 (SEC)

a. 'Iype of dynamic mode represented?

b. Is this a stable dymamic mide?

c. Estimate using flight test relationmhips.

(1) Daming H~atio (.p

(2) Period of Oscillation (T)

(3) Frequency of Oscillation (M

(4) tkickiWd Natural Fraincy (wn)

(5) Time O3nstant (1)
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8.27. You are a consulting engineer with the job of monitoring flight test

data and giving CCU/.u-(l advice on a real time basis. Today's mission

is to investigate the Dutch roll mode. at Ma-h of 1.6, 1.8, and 2.0.

Predicted values of 'DR and wnDR

Mach wn CDR

(rad/sec) . ....

1.6 3.29 .30

1.8 2.23 .35

2.0 No data available

The sideslip angle free response flight data plots for the first two test

points are:

iM =1.6 M 1 1.8

ew •- .j

2 4 6 t (SEC) 2 4 6 t (SEC)

a. For both M = 1.6 and M = 1.8, estimate DR and fd (cycles per

second).

b. Based on the estimated values, calculate w n-R for Mach = 1.6
and 1.8.

c. In light of the results observed from M = 1.6 and 1.8 points,

should the M = 2.0 point be flown today? Backup your

reccnemendation.
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ATIACBMET 1

BACKGOUJND INFOP4ATICN

FOR T-`3)
Flight Conditions

Altitude 20,000 ft MSL Density = .001267

Mach = .8 True Airspeed = 830 ft/sec

Aircraft Dnmensions:

Wing Area 170 ft 2  wing Span = 25.25 ft MAC = 7.73 ft

Iy = 28,166 slug-ft 2 Ix = 1,479 slug-ft 2  Iz = 29,047 slug-ft 2

Stability Derivatives

(Wind Tunnel)

(Dimensions - per/rad)

C =-.16 C -1.25 )

Cm -8.4 C =-1

q

Cy .92
C6e

Cz =C -5.026 Ct = .0745

Cx * .084 C -. 35
~p

.036 Cz = .055
a r

W= = -4.25 C = .28

1.09 x 10-5 sec/ft C -. 54

CL . .12 .0040 Cp = .08
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--I:-'.. 
....*. . . . . . . ,-- .. . ->.. ~ .2

ANSERS

8.6 14.0 deg/sec

8.7 T =0.6 sec

8.8 a) s2 + .804s + 1.325

b) (s) 1 .383 (s + 0.343)
e s• -- s s2 + 0.804s + 1.325)

c) I. =n 1.15 rad/sec

2. 4 = 0.35

3. w - wd - 1.08 rad/sec

8.10 b) s + 2.408 s3 + 4.555 s + 0.015 s + 0.095 0

8.11 a) s1,2  -1.204 t 1.77j (short period)

s - -. 0011 0.osj (phugoid)

b) wn 0.05 rad/sec, 4 = 0.02, wd " 0.045 rad/sec,

T- 934.6 sec, tl/ 2 -644.9 sec, T m 137.8 sec

C) wn 2.14 rad/s.ec, 4 0.56, wd w 1.77 rad/sec,

, -0.83 swc, tl12 -0.57 sec, T = 3.5 sec

8.12 a) cS in=aw , w• increases
Sp up

"" increases10 up

8.95



8.13 TS = 2.98 sec

8.14 a) • = 0.07

b) wn= 0.074 rad/sec

c) w n decreases, ý increases

8.15 zero, zero, neutral static stability

8.16 a) s2 + 0.04s + 0.04

b) 4 = 0.11, wn = 0.2 rad/sec

c) stable

d) t 1 / 2 = 34.5 sec

8.17 wn constant, 4 increases

8.19 a) s - -0.0096 (spiral)

s =-6.82 (roll), s =-0.43 t 4.27j (Dutch roll)

b) wn 4.29 rad/sec, = 0.1, wd = 4.26 rad/sec,

t1/2 1.58 sec, T t 1.47 sec

c) t =0.15 sec

cd) r = 104.1 sec

8.20 Ixx decrease, Cp change slightly, t decrease
p

S8.21 a) increase

b) decrease

8.22 a) increase
b) dcrease
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8.23 C£

8.24 a) pss = 220 deg/sec

b) 1. p = 138.6 deg/sec

2. p = 218.5 deg/sec

8.26 a) short period

b) stable

c) 1. • =0.3

2. T=2sec

3. w = wd = 3.14 rad/sec
4. n= 3.29 rad/sec

5. =1.01 sec

8.27 a) M = 1.6; c = 0.3, fd = 0.5 cycles/sec

M - 1.8; 4 = 0.4, fd = 0.25 cycles/sec
b) M = 1.6; wn = 3.29 rad/sec

M = 1.8; wn = 1.71 rad/sec .
c) Yes, be careful of large sideslip angle excursions

8i
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