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1 Introduction

A key component in distributed computer systems is the naming facility: the means by which global, high.
level names are bound to objects and by which objects are located given only their names. High-level names
are user-assigned character-string names, such as file names, user account names, mailbox namnes, host names,
and service names. These names are distinguished from system-assigned low-level identifiers such is process
identifiers and open file handles. A global naming facility provides nanmes for objects in the system that can
be passed between clients without change in interpretation, often referred to its absolute names.

It this paper, we present a decentralized approach to naming, using the paradigm of problem-oriented
shared memory [4]. Conceptually, a global naming facility can be realized as a single global directory that
records all bindings between global names and objects. This directory can be viewed as a shared memowry that 1
is accessed by all nodes in the distributed system. In our design, the global directory is partitioned across
multiple servers and accessed by multiple clients connected to a network, analogous to multiple memory
boards and multiple processors connected to a backplane. Each client maintains a cache of names to reduce ............
network traffic, with a cache imiss producing it broadcast or nmlticast to the participating servers. Various
aspects (if the design, particularly cache consistency, rely on the semantics of the proble'tt dontain, in this
case, naming. Besides consistency maittenance, prblern-oriented aspects of the design arise in caching
optimizations and handling of specialized naming operations. Codes
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We examine how the problem-oriented shared memory Iaratligui leads to all eflicie t, reliable, extensible,
and network-transparent naming facility, drawing on experience with our design as imphnlented in the V
distributed system 15). We conclude that ours is a feasible approach to high-level naming in distributed
systems, with several advantages over the more conventional approaclh of using dedicated nanti servers.

The next section describes our design in detail, while section 3 discusses general properties of the design,
including its efficiency, reliablility, extensibility, and network transparency. In section 4 we present perfor-
mance measurements of the design as realized in the V distributed system. Section 5 presents an application
of decentralized techniques to low-level naming, and section 6 compares our approach to naming with related
work. We close with conclusions and an indication of future directions.

2 Design

Conceptually, our naming facility is a system-wide global directory providing reference by high-level name
to objects implemented by multiple object managers. The global directory contains a (name, object)-tuple
for each binding of global name to object.' Each client may also have its own directory of bindings from
local names (or aliases) to global names. The naming facility provides operations for

* Binding names to objects

o Removing name bindings

* Name mapping: finding objects hound to a given name

* Inverse name mapping: finding the name hound to a given object

In our decentralized design, the global directory is distributed across the object managers such that each
object manager stores and maintains that portion of the directory corresponding to the objects it implements.
Each client maintains a cache of bindings from name to object manager, as illustrated in Figure 1. When
a client invokes an operation using a high-level object name, the client checks its cache for an entry that
maps the name to an object manager. If a cache entry for the name is found (as is the case with name2 in
Figure 1), the operation and name are then forwarded to the object manager indicated by the cache entry.
Otherwise, a query is multicast to the object managers to determine the correct object manager for the
named object (as is the case for narnel in Figure 1). If an object manager responds, a cache entry is created
and the processing of the request proceeds as before, with the operation being forwarded to the responding
object manager. Otherwise, the specified object name is assumed to be invalid and an error indication is
returned to the client.

Inverse name mapping is simply a lookup in the global directory using an object's low-level identifier or
handle in place of its high-level name. We assume that the low-level identifier provides enough information
to determine which manager implements the object in question, and hence which manager stores the portion
of the global directory containing its name. The same (absolute) global name is returned for a given object
even if the client originally accessed the object using a local name, alias, etc. Low level identifiers are not
standardized across all object types, so the inverse name mapping operators provided are nlanager-specific.

The design as described above follows the conventional implementation of shared memory in a multi-
processor. Each processor (client) has a cache which provides highly efficient access except on cache miss.
On cache miss, a request is broadcast on the backplane bus (network) for the missing entry, with the re-
sponse coming from one of possibly several memory boards (servers). Consequently, it has some of the same
advantages, namely:

* Efficiency. With a high cache hit ratio, average access time to the global directory is fast. (Mea-
suremnents indicate that our implementation in the V-System achieves a very high hit ratio; see section
4.1.1.)

!Nite that high-level names are hound directly to objects. not to low-level nanes (such as globally uniqce mmunieric identifiers).
Our d,'.ign views high-hleVl narncs as the only peruami'nt, globally unique i,h'ntifiers for objects.

2
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Figure 1: Decentralized Global Directory

" Reliability. The failure of an individual server (memory board) only disables access to the portion of
the name space it implements.

" Extensibility. The global directory can be extended by simply adding new managers (memory
boards).

However, consistency maintenance and the provision of specialized naming operations, such as inverse name
mapping, require problem-oriented techniques that exploit the semantics of the naming operations on this
directory "memory."

The name caches attempt to replace multicast network access with directed or unicast network access
to the object manager, not to eliminate network access, for we assume that every operation on an object
specified by name requires communication with the object's manager. In this respect our design (lifters from
the general shared memory model. In the case of shared memory, eliminating bus access is possible because
the cache can maintain complete local copies of the named objects (memory cells). With high-level naming
of more complex and varied objects, however, caching the objects themselves is not feasible. Instead (in
effect). our design caches each object's last known location.

Tlte following subsections describe naming-specific techniques used to provide cache consistency, to ensure
good cache utilization, and to implement various specialized naming facilities.

3
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2.1 On-Use Cache Consistency

Information in one or more client caches may become invalid (or stale) when a change is made to the name-
object mapping in the global directory. In our design, stale name cache entries are detected and corrected
upon use, exploiting the fact that names are only used as part of performing some operation on the named
object. To perform the operation, the client must access the object manager for the object and this object

manager is, by design, the authoritative storage site for the portion of the global directory that names the
object.2 If the cache entry is stale because the object manager it specifies no longer exists, the communication

system signals failure to the client when the client attempts to communicate with the manager. If the object
manager exists but no longer stores the named object, the object manager returns a failure indication to the
client after examining the name (or portion of the name) passed with the operation request,

When a failure is detected in either of the above two cases, the offending cache entry is deleted, a query
is multicast to refresh the cache entry, and the request is tried again. If the multicast query fails or the
subsequent retry of the operation fails, an error indication is returned to the invoker of the operation.

On-use cache consistency is much simpler and more efficient to implement in a network environment than
cache consistency protocols that require cached information to be consistent at all times. For example, the
currently-popular "snoopy" cache protocols for multiprocessors [1,10,11,121 depend on reliable broadcast to
notify processors of changes to data that may be in their caches. Such protocols are not practical in our
application, since as argued in [81, it is costly to achieve reliable broadcast over an unreliable network. There
also a substantial cost in delivering updates to clients that do not have the changed information in their
caches. One can, of course, reduce these costs by keeping a central record of which caches contain each data
item and transmitting updates only to the affected caches. This approach still requires reliable mnulticast (or
the equivalent series of unicasts), however, and imposes an additional record-keeping burden as compared
with on-use consistency.

2.2 Contexts and Context Identifiers

In our design, the name space is hierarchically structured, and we refer to each internal node of the naming
hierarchy as a context [19]. Names are pathnames in that they describe a path through the hierarchy,
beginning at (i.e., relative to) some specific context. Absolute names are those that begin at the root
context.

While providing this familiar hierarchical name space, our design maintains a strict division of the global
directory among object managers, using a technique we call vertical partitioning. Each object manager
implements a tree of contexts starting at the root of the complete name hierarchy, thus storing the absolute
names of the oLjects it implements. Some contexts (the root in particular) are implemented by multiple
object managers. Such mufli-manager contexts are partitioned across the managers that participate in their
implementation. Each participating manager stores only that subset of the context needed to name objects
it manages.

3

An example of vertical partitioning is shown in Figure 2. The root context, here represented by "/',

has two descendants, /A and /B. /A is implemented by manager 1 as a single-manager context, mneaning
that all objects with prefix /A are implemented by manager 1. Similarly, the context /BM is implemented
by manager 2, while /B11/N is implemented by manager 3. In this example, /1B is a multi-manager context
since some objects with this prefix are implemented by manager 2 and some by manager 3. Within /1B, the
binding from name M to context M is stored only by manager 2, while the binding for N is stored only by
manager 3.

Object managers can join or leave the naming hierarchy at any time. For example, assume manager 1
in the above figure is a file server. As the load on the server grows, eventually it may become necessary to

2
Even simple query operations that could potentially be satisfied by cached information alone, actually verify the cached

information with the associated manager before returning it to the client.
3 The partitioning is called ,ertical by analogy with "vertically integrated" manufacturing companies. Each object manager

is self-sufflcient, implementing a complete tree of contexts extending vertically to the top of the hierarchy.
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Figure 2: Example of a Vertically Partitioned Name Space

move some of its files to a new server. Assume that the subtree beginning with /A/C is copied to the new
file server and deleted from manager 1. Now the new file server can join the naming hierarchy, sharing the
implementation of context /A with manager 1, and that of / with all the other object managers. Adding
a new object manager in this way is analogous to mounting a new UNIX 117] file system its a new entry in
an existing directory. The difference is that each object manager in our design maintains its own knowledge
of where it is "mounted" in the global namne space-the previous implementors f the existing directory
(context) (to not store the new entry, nor is it recorded in a global "mount table."

A context can he referenced by its absolute name, or by its conlexi identifier: a compact low-level
identifier that is effectively a pointer into the name space, providing direct. efficient access to the object
mamtager(s) implementing the context. Referencing an object using a context identifier plus relative name
allows the name lookup to start at the identified context rather than from the glolbal root, thereby reducing
the inced for iumlticast and reducing the length of the namnte that must be lookedt up by the object managers.
In V, a context identifier is structured as a (mnatiagcr-td. ipccmfic-context-id) pair, where the manager-id is
a process identifier or pro~ess grwip id,'utifier specifying the object nmanap'er( ) that iunplemuent the context,
and th e i:( JiC-cozt -.d is mapped by the identified mtmanager(s) to one of the coitexts they implement.

Wihen a context is renamevd. its oId c ,ntext identifier becis invalid arid aother is assigned. Thus, in
effect, a comtext identifier is hold to a ontext naine. not to the context object itself.

- '-" 
"

"i F r -' " l | ' :l [ " - 5-: " " " t . . . . ' " i



2.3 Prefix Caching

Our design exploits the hierarchical nature of the iiame space by using prefix caching -the caching of name
prefixes rather than full names. With a prefix cache, a cache hit occurs when a cache entry matches some
prefix of the name and not necessarily the entire name. Thus, one cache entry serves as a "hit" for a
potentially large set of names. For example, if the root context consists of 10 immediate subcontexts that
are strictly partitioned across 10 object managers, then a client cache containing these 10 entries eliminates
use of mnilticast for valid names 'ntirely, independent of th total number of names in the system.

Entries in the prefix cache map from name prefixes to context identitiers, allowing the mapping of an
absolute name that hits in the cache to proceed with the efficiency of relative name mapping. For example,
referring again to Figure 2, if the cache contains an entry for the prefix /B/N, all operations using a name
with that prefix are unicast directly to manager 3 rather than requiring multicast to locate the correct
manager. An operation specifying the name /B/N/V/Q results in the suffix V/Q being transmitted to
manager 3 together with the context identifier for /B/N.

2.4 Context Identifiers as Hints

Context identifiers are provided as hints. That is, 9 context identifier is allowed to become invalid even
if the corresponding character-string name is still bound to the same context. For example, if a V object
manager crashes and is restarted under a different process identifier, all its old context identifiers become

invalid (since they contain the manager's process identifier as a subfield), even if all the objects it manages
are recovered.

This treatment of context identifiers has several advantages. First, a context identifier can contain
information that makes it easy to find the context's current manager (e.g., its process id), since the identifier
is permitted to change when the manager changes. Further, context identifiers need not be allocated for
contexts that have never been queried, and need not be kept in stable storage. In particular, the object
manager can use in-memory descriptors to identify the context name bound to each context identifier it has
returned in response to a name query. The descriptors can be discarded across object manager crashes, or
more frequently if memory is limited.4 In-memory descriptors have proven particularly convenient for object
managers implemented at guest level in an existing operating system, such as one we have implemented to
provide access to UNIX files from the V-System.

Invalidation of context identifiers introduces another way in which prefix cache entries can become stale.
As before, such stale cache entries are detected and corrected on use. An invalid context identifier is detected
either by the communication subsystem identifying the manager-id portion as invalid, or by the identified
manager reporting the specific-context-id pettion as invalid. When a client receives such an error response, it
proceeds by retrieving its stored copy of the cotext's absolute name, multicasting a query for a new context
identifier, and retrying the name mapping.

We require object managers to maximize the recycle time for context identifiers, so that a context identifier
is very unlikely to be bound to a new context name when one or more client caches still contain a (stale)
binding of that identifier to some other name. Maximizing the recycle time is facilitated by providing a large
space of possible context identifiers. For example, a V context identifier is 6-1 bits wide: 32 bits for the object
manager identifier and 32 bits for the specific context identifier. This identifier space is large enough that,
for all practical purposes, a client cache will never contain an identifier for a previous object manager when
the manager identifier is reused for a new object manager, S nor will it ever contain an old specific context
identiiier that is reused within an object manager.

'In practice. we find that each nnnager has sifficient ,rin.ory that the invalidation of context identifiers is only necessary
when an objct manag,.r is rebooted, and tlhref,r' has little impact on performance.

'Creation of new objert managers is an infrequent event.
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2.5 Relative Names and Current Context

Context identifiers provide a simple implementation of a current context for interpreting relative names,
analogous to the current working directory in UNIX and other systems. In our design, the current context of
a progran is represented by a context identifier, stored by run-time routines within the program's address
space. Each name that is syntactically recognized as a relative name by these run-time routines is augmented
with the context identifier of the current context, The context identifier and name suffix are then forwarded
to the object manager(s) specified by the identifier, as in the case of a prefix cache hit. The client also
stores the absolute name for the current context. If the context identifier for the current context has been
invalidated, the client retnaps the absolute name for the context, as described previously.

This implementation of relative names and current context provides a facility that works efficiently across
the network, requires minimal support in the servers or managers, and provides much the same mechanism as
that enjoyed in U NIX. There is a subtle difference in semantics, however -- a consequence of our treatment of
high-level names as the only permanent identifiers for objects. In V, setting one's current context is logically
equivalent to storing a constant absolute name prefix that is prepended to all relative names. If a client's
current context is renamed or deleted, all relative names it uses from that point are invalid, unless a new
context is subsequently created with the same name as the old one (or the client switches to a new current
context). In UNIX, setting one's working directory causes the directory name to be mapped at that time
only. If the directory is renamed, the client's focus of attention effectively follows it to its new location; if it
is deleted, relative names are invalid until the client resets its current context, regardless of whether a new
context is created with the old name.

Another way to specify context for a relative name is to prepend a locally-defined name prefix, as described
in the next section.

2.6 Local Aliases as Cache Entries

An alias is a name bound to another name, such that when the alias is used, it maps to the referent of the
second name. A local alias is an alias defined locally to a single client, whose interpretation may thus vary

from client to client. For example, in the V-System the name prefix /horne/ is locally defined in each program
to refer to the home directory of the user who invoked the program.

Local aliases for context names are implemented in our design as additional name cache entries, inserted
by explicit client operations. The cache entry for a local alias contains, in place of a context identifier,
a pointer to another cache entry containing the name to which it has been equated; this entry may be
either another alias or a global name. When the cache lookup algorithn encounters a local alias, pointers
are followed until a global nane and cached context identifier are encountered. With this structure, if the
named context changes its context identifier, the cache management routines can recover by remapping the
saved absolute name to obtain the new identifier. Further, if A is (,fined as an alias for B, and B is also an
alias, the meaning of .4 will change as it should if B is redefined.

Storing local aliases as part of the prefix cache allows both alias expansion and prefix mapping to he
performed in a single lookup. Also. the aliases have the correct scope-local to a single program, with
inheritance by programs it creates ---as discussed in the next section.

2.7 Cache Loading

C'licat caches are preloaded with a number of entries when the cache is created, rather than relying entirely
on cache misses to fill the cache. For instance, when the V program executive starts a new progran, it
preloads the new program's name cache with a set of useful entries, including soute standard local aliases. In
fact. any programn invoked by another program inherits a copy Lof its parent's matne cache, including aliases.

Nninig 4ystcrns typically use ione special syntax to distingnish hetween absolute rid relativt" e antes; abs.,lite nal nes: for
exariph.. a sp,.rial initial rharn, ter (e.g, - " in UNIX) inny he used t, identify nbsltite r1Are. with other names being relative
to the Corrtirt w.,rking context. The V-System naming inirenr, ntati,,n r s -" for this purpose.
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Preloading gives much of the benefit of it shared cache, together with the efficiency and flexibility of a per-
program cache. That is, there are few cache misses as part of program startup compared to starting with
an empty cache, yet a program can efficiently access the cache information since this information is stored

in its own address space.
Storing the name cache in every program also allows programs to be executed relnotely and migrated

[23) without additional communication cost or change of name semantics. The name cache migrates along
with the program and the binding of absolute names and context identifiers remains unchanged, since both

are location independent.
Clients can also explicitly load particular entries into their caches. In the V implementation, this facility

is used primarily to define new local aliases.
Finally, caches are automatically loaded with a new entry after every cache miss, providing the name

is valid. Each such miss generates an additional cache entry. We have not considered cache replacement
because we do not expect client caches to grow large enough for it to be necessary to remove old entries
to make room for new ones.' However, each client is free to provide its own cache management. As an
extreme example, a simple client (the V bootstrap program) runs with no cache at all, relying entirely on
the multicast mechanism for each name.

2.8 Prefix Cache Refinements

The prefix caches in our design include some refinements beyond what has been presented so far. First, since
the cache can include prefixes for multi-manager contexts, several prefixes of varying lengths may match a
given name. In this case the longest matching prefix must be returned to get maximum benefit from the
cache. For example, if the name /a/b/c is presented and the cache contains entries for /a and /a/b, the
latter is returned.

A match in which the given name extends beyond the matched prefix and the prefix identifies a multi-
manager context is considered a "near miss" rather than a hit, since a multicast query is still needed to
narrow the search for the named object down to a single manager. A near miss is still helpful, however, as
the resulting query need only be directed to the subgroup of object managers identified in the cache entry,
not to every object manager. For example, referring to Figure 2, if the name /B/M/K were presented to the
cache, a match on the cached prefix /B would result in a multicast to servers 2 and 3 only.

Some care is needed to determine when a sufficiently long prefix has been matched and a name query is
no longer necessary. When the matched prefix maps to a single-manager context, there is little additional
benefit in caching longer prefixes, so such cache entries are considered uon.eztendible. It is also possible for
a context to be implemented by a group of processes that split up the work using some criterion other than
a name prefix - for example, the user identification of the requestor. Such contexts are also non-extendible.
The V implementation provides a flag bit in the specific-context-id field of each context identifier to indicate
whether the corresponding context is extendible.

The cache also contains entries for relative prefixej, i.e., prefixes of relative names. Relative prefix entries
are generated and used when a client attempts to map relative names after having set its current context to
a nmlti-manager context below the root. For example, in Figure 2, the client nmight set its current context to
/. then map such nanes as Al,/L or N. Relative prefix cache entries actually map from (context identifier,
prefix) pairs to context identifiers. To obtain the longest matching prefix for some names input to the cache,
several relative prefixes may need to be chained together and possibly appended to an absolute prefix. As a
further optimization, the inforimnatin returned from a query that extends an extendible prefix is stored as a
relative prefix, allowing it to contribute to cache hits for both relative and absolute names.

The full alg rithm for processing name queries in the object managers is also slightly mhore c-omnlplex than
described so far. Upon receiving such a query, each object manager parses the received lnale left to right
until it either (1) reaches the end of tie ane. (2) reaches a single-manager context that it implements,
or (3) reaches a context it does not inplmmenmt that is. encounters an undfilmd lmane component within

Stale entries are 4 c..rse, dl',' Id lpon d,'tertion.
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a multi-manager context it participates in. Each object manager which reaches case (1) or (2) returns an
indication of how far the parse proceeded and which manager (or managers) implement names beginning
with that prefix. Object managers that reach case (3) do not reply. For example, referring again to Figure
2, a qtery specifying the name /B/N/VIS causes manager 3 to return an indication that the prfix /B/N
maps to mitanager 3. (Information on shorter prefixes (e.g.. /1) could also be return(d if convenient for the
manager.) A query specifying the name /B returns an identifier for tile group of managers that implement
context /B; both managers 2 and 3 respond with the same information in this case.

2.9 Generic Names and Group Names

A group name is a name that refers to a group (i.e., set) of objects, which need not all be implemented by
the same object manager. A generic name refers to one member selected from such a grout according to
a rule associated with the name. Such names are usefld in supporting replication for objects or services,
as illustrated in Figure 3 below. A request for the current time would be directed to the generic name
/time/anv, indicating that a response from any of the three time servers A, B, or C would be acceptable.
The same request sent to /time/all would return the current time value from every time server.

storag

S/Sy

A / A BC
bin bin bin ABCD1E

/limelany. Itime/all /dsptay/Iocal

pascal pascal pascal

Figure 3: Replication Using Generic Names

In this example, the same et of object managers respond to name query operations ,n both the generic

na iaznte /timc/ay arid the group name 'ihac all. However, the context identifier rturned from a lqery oil a

group nani cottains an identifier for thle e'ntire group of managers implementing the prefix and is marked
non-exter, dible. while each object mantager responds to a query on a generic iaie with an identifier (f its
own. possibly marked as ext endible. Thits. generic niaie requests generated by a client programi are niapped
to a ranldomi thatching cache entry, if any. otherwise to the first object manager to respontd to til. intlticast

query. In tmtrast, grolp lItanri requ,ts ar' sent to all th, obje'ct muanagers that itiplettient a portion of

the naite .pace th;.t matches. A request specifying a group inaime may result ini multiple rsioiwes being

returntod. Iln V, this is ipportc(l by the ability to rec( ive nm ltiple r.l)lics in response to a re(ie'st itessage
8j}.

Fitgure 3 also illustrates replicati(n f s,,ne other types of objects. lit the example, a user request to
runm the Pascal cinipihvr would trigger lo;oliig of the progral code from /sy./'binpa.scal, where /.ys is a
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generic name prefix for the tree of standard system files, replicated across several storage servers. Output
requests itended for the local graphics display--that is, the display attached to the host the client program
is running on--would use the geveric name /display/local, while an announcement that should be displayed
on every user's screen would go to /display/all.

To prevent unpredictable behavior when mapping relative names, the standard run-time routines do not
permit a client to set its current context directly to a generic name. If a generic name is presented to the
change contezt operation, its selection rule is applied to choose a single member context from the group it
represents, and that context's absolute name is used as the stored prefix.

It is outside the scope of the naming facility to ensure consistency among replicated files or other objects.
The naming facility simply provides support for referencing the replicas by a conmon name; the object
managers implementing them are responsible for maintaining whatever consistency is required. This division
of responsibility is appropriate since each type of object has different consistency requirements. For example,
replicated files should ideally be locked against parallel update to ensure that the replicas appear identical
at all times, whereas replicated time servers must update their times in parallel and can only guarantee
approximate consistency- -and graphics displays or other devices "replicated" on each workstation do not
maintain consistency with one another at all.

2.10 Support for Upward References

An upward reference is a name component that refers to the parent of the context it is interpreted in, as
with the UNIX ".." notation. If the parent context is implemented by the sane manager that implements
the interpretation context, the upward reference is handled directly by that manager.

If the parent context is not fully contained in the object manager, however, the operation must be
* forwarded to the object manager or group of object managers that implement the parent context. This

technique is illustrated in the following example. Referring to Figure 2, a client specifies the name ../M/L in
context N, which is equivalent to the absolute name /B/M/L. The client's stored context identifier indicates
that context N is implemented by manager 3, but the object named by ../M/L is implemented by manager
2. Manager 3 modifies the client's request by stripping off the name prefix it was able to map and replacing
the identifier specifying mapping in context N with one specifying context B. It then forwards the request
to the group of managers that implement context B (excluding itself).

Alternatively, the object manager could return an indication to the client to retry the operation in the
parent context with a modified name. Using this approach, in the above example manager 3 would return to
the client an indication that it mapped the first component of the given name (../) to context B, specifying
the latter by its context identifier. The client would then strip off the prefix and reissue the name mapping
request, this time relative to context B.

The forwarding technique is preferable in systems that permit forwarding of client requests from one
object manager to another, as it is more efficient, simplifies the implementation of clients, and is no more
complex to implement in object managers. (The V implementation uses the Forward message-passing
primitive ,51 to implement this technique.)

2.11 Predefined and Administratively Defined Names

Some portion of the hierarchical name space needs to be predefined. At minimum. the name of the root
context must be defined and correspond to a particular context identifier. For instance, in the V imuplemen-

*.' tation, tile root is nanmed "[", and its context identifier is a static value known to all programs, consisting
of a manager-id subfield that designates the group of all object managers providing named objects, and a
reserved value for the specific-context-id subfield.

In addition, certain classes of services or categories of objects can be predefined. In V, for example,
the context name /storage] serves as the root of the subtree of files provided by file managers (or "storage
servers"), [leanm! as the context in which the program manager (or "team server") on each workstation
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defines its name, and so forth. Each of these context names is assigned a fixed context identifier including a
statically-assigned process group identifier for the group of managers participating in the context.

These static definitions are among those preloaded into each name cache when it is created. Thus, for
example, a cache miss on the name [storage/user/cheriton/... is multicast to the set of all storage object
managers, not every name-handling manager in the system. Note that logically, only the root name "I"
and its context identifier need be known to a client program for it to begin issuing name mapping requests;
preloading the other static names serves only to improve performance.

In addition, most object managers are administratively assigned their portion of the name space. For
instance, a program manager uses the name of the workstation on which it is running (e.g., Teton) and
after booting responds to the /tearn/teton/... portion of the name space. Each object manager checks at
initialization time that it is not in conflict with some existing manager by multicasting a query for its portion
of the name space. If there is no response, the new object manager assumes there is no conflict. (Two object
managers initializing simultaneously for the same portion of the name space would receive responses from
each other.) In the case of conflict, the object manager produces an error indication and exits, since the
situation calls for administrative intervention.

2.12 Dynamic Name Definition

Dynamic definition of new names takes place in two stages. First, it is necessary to Nelect the object manager
that will implement the newly named object, and send it a request to define the new name. If a new object
is being created, a default location may be implicit in the new name. For example, if [storage/user/mann
is currently a single-manager context implemented by a specific storage server, a newly created file with the
name /storage/user/nann/aming.mss would by default be located on the same manager. The client can
also choose to override the defaut and submit its request to some other manager. If an existing object is
being renamed, by default it continues to be implemented by the same manager. Overriding the default in
this case implies copying or moving the object to another manager.

Next, the selected object manager checks the request for validity, then records the new definition. Assume
manager M is attempting to establish a binding for a previously undefined (absolute) name. Call the longest
context prefix of the new name that specifies an existing context the defined prefiz.' There are three cases
for the manager M to consider.

1. The defined prefix specifies a single-manager context CNl managed by M. In this case, the name to
be bound is in a part of the name space implemented exclusively by M, so it can simply define the
name locally.

2. The defined prefix specifies a multi-manager context CG. In this case, M joins the groups implementing
CG and each of its ancestors in the tree (if it has not already done so), then adds the name suffix
to CG after querying the other managers in the context to be sure the suffix is not already defined
elsewhere.' Any contexts M creates below CG are initially made single-manager.

3. The defined prefix of the name specifies a single-manager context Cy on another manager N. In this
case. C.v (and possibly some of its ancestors) must be expanded to a multi-manager context. For each
context to be expanded, M chooses a new context identifier (with embedded group identifier), and sends
it in a request message to N. If N agrees to share management of the context, it responds affirmatively
to the request, and both managers begin using the new context identifier. If all the expansion requests
succeed, M defines the name suffix as in the previous case. If not, the nanme binding attempt fails.

For each new name to be bound, M identifies the defined prefix and determines which of the three cases holds
using local naming information plus the same query operations used by clients to gather cache information.

'The defined prefix is nev'r null since it always includes at least the initial component specifying the root context
9 As with the manager initialization check, the mrinager must be prepared - respond to such queries from the other managers

concurrently with its query, to prevent race conditions if two managers attempt to define the same name simultaneously.
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Our model is that contexts are generally created as single-manager and are expanded to include more
managers when needed. For example, if only manager M implements objects with name prefix /a/b/c, the
context with that name need only be single-manager. If at a later time manager N agrees to implement
an object named /a/b/c/d context /a/b/c must become multi-manager with both M and N participating
in its implementation. However, not every object manager need be willing to implement more of the name
space than was initially statically assigned to it, nor need every manager be willing to give up exclusive
control over parts of the name space it initially implemented as single-manager contexts. For example, the
program manager on host Teton would not be willing to implement an object named /time/gmt], nor would
it be willing to share implementation of the context of teams running on Teton ([team/teton) with any other
object manager.

2.13 Context Directory Listing

In our design, each context in the naming hierarchy has an associated context directory: a set of object
descriptors, one for each object named in the context. A context directory provides the ability to list the
names defined in the associated context and to identify the type and properties of each named object. As
with most hierarchical naming designs, only objects (including subcontexts) that are named by a single name
component relative to the given context are included in its context directory. I.e., if there is a subcontext, it
appears as a single object in the parent context directory, and objects named within the subcontext do not
appear. Following other file system designs (again the UNIX file system is a familiar example), a context
directory is read by opening it as a file and reading each entry as a data block. Unlike UNIX, however, a
directory entry in our design contains a full descriptor for the object, not just a name and internal identifier
for the object.

A multi-manager context directory is implemented as multiple context directory files, one per manager
in the context. To list a multi-manager context directory, the client opens the context directory for each
object manager in the context and then merges the object entries into a single list, as illustrated in Figure
4 below. All the context directories for a context are opened in parallel using multicast, using the name of
the context as a group name (section 2.9). To compensate for the inherently unreliable delivery of multicast
messages and responses, a followup message containing the list of managers from which replies were received
can be multicast to the object managers. Only omitted object managers respond to the followup message.
For full reliability, additional followup messages can be transmitted until no more replies are received.

This approach requires the client software to handle the distributed nature of the context, both in
locating all object managers and in merging the entries from the set of context directories; however, it has
the advantage of allowing the object managers to remain relatively autonomous. They need only cooperate
to avoid duplicate names.

3 Discussion

Typical requirements placed on a high-level naming facility include transparency, extensibility, reliability,
and efficiency. In this section, we describe how our design meets these requirements, then go on to discuss
some other key issues.

3.1 Name Transparency with Local Aliases

The design provides a single global name space in which objects are named with name and location trans-
parency [241. That is, an absolute name specifies the same object, independent of the client using the name.
An object manager can be moved within the system without changing the names of any of the objects it im-
plements, since there is no fixed binding between names and network addresses. Further, individual objects
can be relocated to different object managers with no change of name because contexts can he split across
multiple managers.
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Figure 4: Listing a Multi-Manager Context Directory

At the same time, local names are defined on a per-program basis, minimizing interference between
programs. Further, a current context for each process is supported, similar to the MULTICS and UNIX
concept of working directory. Since these definitions are stored in each program's address space, they
migrate with the program and are easily (selectively) passed on to subprograms.

There is, however, some cost associated with naming objects completely independently of their locations.
For example, if objects named a/b/c/d/e and /a/b/c/ldlf are stored by different object managers, /a/b/c/d
becomes a multi-manager context, along with each of its parent contexts. Listing or adding names to these
contexts then become multi-manager operations that require rctransmissions and a time delay to ensure
reliable communication with all participating managers. Hence there is a performance advantage in grouping
objects implemented by a single manager into a subtree of single-manager contexts where possible.

3.2 Extensibility

The naming space is easily extensible to accommodate new objects and new object types, since any object
manager can provide global names for the objects it implements by joining the necessary process groups and
implementing a system-standard protocol. No changes are required in existing object managers or clients
when a new manager is added in this way.10

New ibjects can be added to the name space by adding additional branches or whole subtrees to the
hierarchy, as with any hierarchical naning scheme. As discuss.d in section 2.12 above, if the new branch
point is already a multi-nmanager context, a new object manager can begii. in plemnenting names in it simply

"°Of course, when a new type of object is intr,,duced, clients that need to manipulate such objects may need new type-specific
code, but this requirement would arise regardless of the naloing mechanism used.

13

~.s a N . \. *N *~' * a a* . *.-,
............... .................... . . .



by joining the group that implements the context; if it is a single-manager context, the new manager can
convert it to be multi-manager after obtaining permission front the existing manager.

Independently designed nane spaces can also be added as subtrees within the global naming hierarchy.
A comnmont name syntax for different contexts is not required; only prefixes for different managers must be
unique. For example, [mail/csnetl could designate the context within which names are interpreted as CSnet
mailbox names. Each manager miust, of course, implement the standard name operations, particularly the
name query operation. For existing (foreign) systems and object managers that need to be accessible from
a distributed system following our design, a facade can be implemented that handles the required naming
operations and passes other operations on to the foreign system. The facade strips off the global prefix on a
name before passing on the operation request to the foreign system to be interpreted in its name space. In
V, we have one stuch facade that provides access to UNIX file systems.

3.3 Fault Tolerance

Failures in a distributed system can disable client nodes, server (object manager) nodes, or the connecting
network. If a client node fails, it has no effect on the naming mechanism for the rest of the system, since
a client node only implements the name cache and name handling for its local programs. In fact, client
programs can fail individually without detrimental effects on other programs, at least with respect to the
naming mechanism, since each program has its own name cache.

If a server node fails, only the object managers on that node are disabled, so only the portion of the name
space corresponding to those managers is affected. An object cannot be made unavailable by the failure of
an independent entity, such as a global name server. In fact, because a name and the corresponding object
are implemented by the same object manager, objects are available precisely ohen they are nameable.

Storing names together with the named objects also minimizes the danger of inconsistency between
the name directory and the objects. For example, with a separate name server, deleting a named object
requires notifying the name server that its name for the object is invalid. If one of the servers crashes
during the operation, the system would be left inconsistent unless deletion were performed as a multi-server
atomic transaction. Such expensive solutions to the consistency problem are not required with decentralized
naming.

Storing the name and object together also means that, if the object is replicated across multiple managers
for reliability, the name binding is automatically replicated the same number of times, thus maintaining a
comparable level of reliability for the name binding.

Finally, if the network fails and partitions the system, all objects whose managers are reachable within
a given partition remain nameable and available within that partition. Of course, if the network fails
completely, each node is left with only the functionality it implements locally. For instance, a personal
workstation with its own local disk would continue to have its file system available even though the rest of
the distributed file system was unavailable.

During partitioned operation, we do not prevent definition of the same name to refer to different objects in
different partitions. When this occnrs, an inconsistency can result if the partitions are later reconnected."1 In
environments where such partitioning is expected to occur, each object manager must periodically multicast
a query for the root of each of its trees of single-manager contexts, to ensure that no other manager has
begun to implement an object of the same name during a period of partitioned operation. Dynamically
created multi-manager contexts must also be checked in this way, since two groups of managers could have
created contexts of the same name, but with conflicting context identifiers. If a multiply-defined name is
detected, in some cases the problem can he corrected atutomatically-for example, two identically-named
contexts could be merged into one multi-ntanager context -bitt in general, human intervention is required
to determine which object should retain its name and which should be renamed or deleted.

11 Actually, after the partitions are reconnected, the natiltiply-defined name acts as a generic name for the set of objects that

are bound to it. If this behavior is acceptable, there is no reason to consider the system inconsistent.
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There are two other possible sources of reliability problems. First, correctly detecting stale cache entries
is dependent on not reusing context identifiers too quickly. In the V implementation, specific context
identifiers are selected from a large space (32 bits), allowing the interval between reuses to be long. it fact,
an object manager is unlikely to reuse any specific context identifiers during its lifetime between restarts.
When restarted, the object manager is assigned a new manager identifier (also selected from a 32-bit space),
thereby invalidating all its previous context identifiers and allowing it to start assigning new specific context
identifiers beginning at 0.

Second, reliably concluding that a name is undefined is dependent on correct behavior of the commu-
nication subsystem, in particular the multicast mechanism. 12 To determine with absolute reliability that a
name is undefined, it is in principle necessary to query all object managers that could hold a definition for it
and receive a negative response from each. Any object manager from which no response is received must be
assumed to have failed to receive the query, and could potentially hold a conflicting definition. Thus, fully
reliable multicast is required for absolute reliability of the naming; however, this level of reliability is costly
to implement.

Instead, our design adopts a technique that is less costly but still maintains acceptable reliability. A
name query is unreliably multicast to the group of all object managers that could hold a definition for
it. Only those object managers that recognize the name being queried respond. If no response is received
after some number of retransmissions, say N, the client concludes that the name is undefined. 3 The client
need not (and does not) know the identities or even the number of group members it is querying. Negative
replies would thus carry no useful information; they are therefore omitted to reduce network traffic and avoid
systematic errors at clients with inadequate buffering for incoming replies.

With this technique, repeated network failures can cause a client to conclude that a name is undefined
when it is in fact defined, but the probability of this error can be made as low as desired. If we assume that
the probability of a packet being delivered to a given node is p and is an independent event, the probability
of falsely concluding that a name is undefined is (1 - p2)N, which approaches 0 as N is increased.

Clearly, there is a trade-off between reliability and efficiency here since higher reliability requires a larger
4number of retransmissions. In the V implementation, retransmissions are separated by a time period (R)

longer than the expected response time for the object managers, so concluding a name is invalid requires
N • R seconds. This worst-case time period can be shortened somewhat by retransmitting N times before
waiting R seconds, but only at the cost of additional network traffic in the average case.14 The time can also
be reduced by careful tuning of the retransmission period: although reducing R may cause some responses
to be missed, effectively reducing p and requiring an increase in N to achieve the same reliability, N . R does
not necessarily remain constant as R is varied.

Another source of failure in the naming design arises if an object manager or some other entity responds
to a portion of the name space that it is does not implement, or is not authorized to implement. We treat
this as a security violation.

3.4 Security

Security is commonly divided into mandatory security and discretionary security. With mandatory security,
we assume that different security levels are cleanly separated at the communication level so, for instance, a
query at the top secret level is not receivable at the confidential level. Thus object managers at one security
level are totally isolated from other security levels. Multi-level object managers must be verified to respond
to requests from different security levels in such a way that security is not compromised. In this terminology,
multi-level object managers are part of the trusted computing base. Clients can only access that portion

' 2 Note that incorrectly concluding a name is undefined may not only cause clients to fail but may also allow multiply defined

names to arise in the system, since the check for duplicate names in a multi-manager context involves checking whether the
name is already defined among several object managers.

"The V implementation of this mechanism uses the so-called 1-reliable multicast provided by the V kernel [8].
"
4

Also, closely spaced retransmissions may not provide the same level of reliability because the receiving end does not
r. transmit the reply in response to retransmissions until it has generated a r, .ponse.
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of the name space at their security level since they can only communicate with object managers at their
security level. However, there is a slight security problem in avoiding multiply defined names across different
security levels. That is, suppose a client at the one level wishes to create an object with a name that conflicts
with an existing name at a higher security level. A simple solution is to have separate basic prefixes for each
security level, i.e. funclassified/storage/..., [confidential/storage/... , etc.

With discretionary security, there is a need to restrict both clients and object managers to that which
they are authorized. Object managers can individually respond to clients according to the authorization of
the clients. We assume that the communication system provides the identity of the requesting client and
the authorization of the client can be determined from this identity.

There are three approaches to enforcing object manager authorization so that an object manager only
responds to name prefixes to which it is authorized to respond. First, one can restrict the object managers
that can hear and thus can respond to multicast requests to particular parts of the name space. For instance,
one can restrict fstorage] so that only "system" object managers can participate. In the V implementation,
we use restricted process groups, whose membership is restricted to a set of processes all associated with the
same user account. However, this technique precludes providing different file servers under different accounts
or authorizations. For example, users of personal workstations may have local file systems that they would
like to include in the global name space. To solve this problem, one can provide separate multicast groups
for each authorization, but clients then need to know which multicast groups to use, leading to the second
approach.

The second approach is to rely on the client to avoid or detect unauthorized participants. For example,
one could have a subcontext for each authorization and a well-known mapping from each such subcontext
to a multicast group. That is, /storage/cheriton could be used by the set of storage servers run under
authorization of the user account "cheriton". In V, clients are able to receive multiple responses to a
multicast query plus identify the authorization or account associated with the responder. In the case of
accessing a object with prefix fstorage/cheriton, the client would discard all responses not associated with
the "cheriton" user account. In general, one can place the onus on the client to detect and reject bogus
responses if there are criteria available to clients to recognize bogus responses. Encoding this information
in the name is but one relatively simple and convenient scheme. Within this client-based scheme, some

additional security derives from the ability for a client to first select an object manager by multicast and
then invoke the operation on a particular object manager. The alternative, sending the operation to the
group, does not allow the client to control the recipients of the information in the operation invocation
request.

Finally, separate network monitoring facilities can be used to watch the network for object managers
transmitting unauthorized responses. Again, the multicast query followed by object manager selection
allows the network monitor to disable the unauthorized responder before the client actually makes use of
the responder.

These ideas go well beyond our current V implementation. However, we regard it as important to consider
how these security issues can be addressed with our design and hope to explore them further in our ongoing
development of V.

3.5 Efficiency

The efficiency of our design is highly dependent on a high cache hit ratio (which is achieved in practice, as
documented by the next section). For instance, the expected elapsed time C of a naming operation (that
specifies a valid absolute name) is

C = pU + (1 - p)(M,, + U) + B

where p is the probability of a cache hit, U is the time for unicast communication with a manager, Mk is
the time for multicast communication with all k object managers, and B is the time for the operation.15

15 For simplicity, the possibility of a "near miss" in the cache permitting multicast to fewer than k servers is ignored here.
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Assuming a high cache hit ratio, and ignoring cache lookup overhead, the expected time approximates U + B,
the minimal cost. These formulas may also be adapted to compute expected system overhead, as developed
further in the next section.

A high cache hit ratio also nicely distibutes the processing overhead of name lookup between clients
and servers. In the extreme, the complete name is contained in the client cache so the context identifier
provided to the object manager eliminates the entire name lookup overhead in the server. This transfer of
processing load from servers to clients is appealing, given the nulti-client load placed on each server, as a
shared facility.

In contrast, a design based on a centralized name server requires two messages to perform each naming
operation or 2U + B, one to the naming server and a second to the object manager. While it would appear
that providing a client cache would reduce this to approximately U + B, the same as for our design, this
realistically requires partial name lookup facilities in each object manager. Otherwise, the client cache must
contain the complete names for a large number of individual objects to achieve a high hit rate; i.e., prefix
caching is not applicable. In this case, the centralized name server only serves to implement the top levels of
the name hierarchy. While such a minimal top-level name server with client caches should have comparable
performance to our design, a variety of management problems arise with a server that does so little, yet is so
crucial. In our experience with similar servers in V, it is difficult to keep servers of this nature available at
all times. It seems necessary to replicate the servers for availability and load balancing, but such replication
raises problems of multiple copy consistency that are research issues in themselves.

3.6 Dependence on Multicast

Our decentralized design is dependent on multicast for efficient query of a group of object managers. In the
case of a cache miss, querying k object managers using multicast costs Mk, which it is typically much less
than k • U, the cost of unicast communication with each manager in turn. When the object managers run
on distinct processors, multicasting also reduces the elapsed time to complete a request, due to parallelism.
In the absence of multicast support, our design could be implemented by a series of unicast communications
with the object managers assuming the client knew their identities; however, this technique significantly
increases the cost of a cache miss.

Our design also depends on multicast as a binding mechanism. Clients request commnuication with
groups of object managers using a single group identifier. The communication subsystem handles the details
of delivering each request message to all group members (but need not guarantee full reliability). A client
can begin operation with no a priori knowledge of specific server identifiers; only the well-known context
identifier for the root context "[" is required.

The total absence of multicast or broadcast at the communication level would make our design less at-
tractive. However, such an environment also makes any name service implementation difficult. For instance,
with a centralized name server, the client has the problem of determining the identifier or network address for
the name server. Worse yet, if the name server is replicated (as it should be for availability), each client must
know the identity of many replicas. Clearly, it is preferable that clients not have these addresses "hardwired"
into the code or hardware. While a simple broadcast mechanism would solve this problem, the high cache
hit ratios presented in the next section suggest that a simple broadcast mechanism is also adequate for our
design without significant loss of efficiency.

4 Performance

We have implemented our decentralized naming design as part of the V distributed operating system. In
considering the performance of this implmmemntatiOn, there are three primary imeasures of interest: the elapsed
times for naming operations. the systemo Ioad imnp, ised by these operations, and the space cost of the im-
plementation. In this section we report pe forimance data gathered on the V installation in the Computer
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Science Department at Stanford. We- also discuss the possible effect of scaling the system size on these
measurements.

4.1 Measurements

Our V installation consists of about 35 Sun and MicroVax II workstations and two Sun-based file servers
running the V kernel, plus two Vax UNIX systems providing additional file service, all interconnected by
Ethernet. During the measurement period, the workstations were being used in their normal fashion to
support day-to-day tasks including software development, text processing, and remote access to other hosts
on the DARPA Internet.

4.1.1 Elapsed Time

We first performed a series of experiments to determine the average elapsed time required to map a name.
We began by timing a trivial operation performed on an object referenced by name, making separate mea-
suremnents for each of the three primary cases of interest (Table 1). In the cache hit case, a cache hit allowed
the operation to be completed in a single unicast message transaction. In the cache miss case, the given
name missed in the cache but was recognized by some object manager. Completing the operation required
a multicast query to fill the cache plus the same unicast message transaction as in the cache hit case. In the
unimplemented name case, no prefix of the given name was recognized by any object manager. Attempting
to map the name generated an unsuccessful multicast query, consisting of several retransmissions and finally
a timeout on the client machine.

Case Elapsed Time (ms)
Cache hit 9.23 ± 0.24
Cache miss 47.7 ± 9.2
Unimplemented name 5379 ± 92

Table 1: Elapsed Time Measurements

The timing tests were run on Sun-2/50 workstations with 10 M|Iz MC68010 processors and Ethernet
interfaces based on the Intel 82586 chip. The test program used the standard client name caching code, while
the referenced objects were files managed by a standard in-memory file server commonly used for temporary
file storage on the diskless workstations in our system. A test run measured the total time for 100 to 10000
operations referencing an object by name, dividing by the number of repetitions to obtain the average time.
The table gives the means and sample standard deviations of the times obtained on four test runs.

The measured times break down into four parts--time spent in the client's name caching code, com-
munication time, time spent by the server mapping the name, and time spent by the server performing
the operation. The latter time is negligible for these tests, since the requested operation was a trivial one
(GetContextId). Comnnication time makes up a substantial fraction of the remainder. For example, the
cache hit case required one unicast message including the name (approximately 32 bytes long) as "appended
data" [9). A separate measurement of communication time alone for messages with 32 bytes of appended
data gave a time of 5.71 mns (±0.10), accounting for 62% of the total time."6

The average elapsed time for name mapping depends on the cache miss ratio and the frequency of
occurrence of unimplemented names seen in actual use of the system. Accordingly. we have instrumented
the standard library routitines for name management used by each program in our system to collect such
statistics. With the modified library in place, each program reports the statistics gathered (luring its run
just before exiting. A system statistician process running on each workstation maintains a running total of

"Additional V kernel prfo.riiance figures, including some nkeasmrements of group commiication. are available in 18,9,261.
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the statistics for programs run there, plus the statistics for the other system processes on that workstation.
Periodically, a master statistician program multicasts a request for statistics to the local statisticians, which
respond with their current totals, then clear them.

Experimental period: Oct 17 through Nov 9, 1985
Workstation-seconds: 17  6.033.10'
Total names mapped: 386626
Successful multicast queries: 780 (0.20%)
Failing multicast queries: 380 (0.10%)
No query required: 385466 (99.70%)

Table 2: Summary of Statistics

Referring to Table 2, we see that, using the cache, multicast queries were necessary on only 0.30% of all
operations involving name lookups. Of these, one third (0.10% of the total) failed because the given name
fell within an unimplemented portion of the name space, while the remainder (0.20%) were true cache misses.

Using these statistics and the elapsed time measurements of Table 1, we can compute an approximate
average name mapping time of 14.7 ms. The unimplemented-name case increases this average significantly;
the average time for mapping an implemented name is 9.31 ms.15

These figures allow us to quantify the speed advantage of decentralized naming as compared with central-
ized name servers (introduced in section 3.5 above). Our implementation of decentralized naming performs
operations on named objects in an average of 9.31 + B ms, where B is the basic cost of the operation. We
can assume that a similar implementation of centralized naming would require about the same amount of
time to perform the name mapping as in the cache hit case, plus an additional message transaction to con-
tact the object manager once the name was mapped. Taking 5.71 ms as the cost of the additional message
transaction, the total cost per operation would be 15.02 + B ms, a significant difference when B is small. Of
course, this analysis assumes a totally unloaded name server; under load, the queuing delay in a centralized
name server acting as a front end to multiple object managers could be substantial.

Our name-mapping scheme shows its worst-case performance when called upon to map an unimplemented
name, taking more than 5 seconds of elapsed time to time out and return an error indication to the client. This
time is determined primarily by two characteristics of the underlying communications medium-reliability
and delay-as outlined previously in section 3.3. Timing out an unacknowledged transmission requires N. R
seconds, with N determined by the required reliability as compared with the reliability of the communication
medium and R determined by the expected time to receive an acknowledgement. In our local network envi-
ronment, both the retransmission interval and the number of retransmissions could be reduced significantly
were it not for the need to communicate with a guest-level implementation of the V interkernel protocol
running at process level on our UNIX systems.

Fortmately, unimplemented names are encountered fairly rarely (0.10% of all names mapped); however,
the 5-second delay can be annoying to the user who inadvertently types in such a name. In such cases the
user will typically notice his mistake after a second or two of delay and interrupt execution of the program
from the keyboard.

"T The woorkstation-seconds figure gives the total number of seconds of workstation running time for which statistics were

reported; it is approximately the product of the number of workstations in the network and the length of the experimental
period.

"These averages omit some uncommon cases that have little impact on performance, including retries due to stale cache
data. The interested reader is referred to I13] for additional data.
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4.1.2 System Load

To measure the system load imposed by name mapping, the experiments reported in Table 1 above were
repeated, this time measuring the average CPU time consumed on the client workstation requesting the
operation, on the server containing the named object, and on another server implementing a different portion
of the common name space (a "bystander"). The results of this experiment are reported in Table 3. Again,
the mean and standard deviation were computed over four test runs.

Case Client (ms) Server (is) Bystander (ms)
Cache hit 3.38 ± 0.13 3.89 ± 0.082 -
Cache miss 26.7 ± 5.5 11.6 ± 0.30 6.42 ± 0.21
Unimplemented name 16.0 ± 1.1 - 9.29 ± 0.75

Table 3: System Load Measurements

The most significant figures in this table cases are the 6.42 ms load imposed by a miss and 9.29 ms by
an unimplemented name on each bystander reached by the multicast query. Assuming there are enough
servers that most servers are bystanders even on successful queries, and using the statistics of Table 2, we
can compute an average of 0.0221 ms per naming operation consumed on each server in processing operations
in which it is a bystander. 1 During the experimental period, we observed 386626 name mapping operations
in 6.033.107 workstation-seconds for an average rate of 6.4. 10-3 operations per workstation per second, or
taking the number of workstations to be 25, 0.16 operations per second. Thus on the average 0.000355% of
each server's time was consumed in bystander processing over a 24-hour period-a negligible amount.

The peak load observed over any half-hour of the experimental period was 16.5 operations per second
(with 27 workstations reporting). During this period the cache miss rate was only 0.025% and the invalid
rate only 0.00625%, both much lower than the daily average. Repeating the above computation with these
peak load figures, it appears that 0.00361% of each server's time was consumed in bystander processing
during the peak period-still negligible.

4.1.3 Space Cost

With decentralized naming, all clients and servers must contain a certain amount of naming code. The space
cost of this code is small, howev* r, particularly for modern, medium to high performance workstations.

In V-System servers, the space cost for naming support is insignificant relative to the overall size of the
servers. For example, in our disk file server, the C code to implement naming compiles to less than 4000
bytes of object code on the MC68010. less than 5% of the total size of the file server. This figure inchdes the
code for name lookup. name query, inverse name mapping, context directory listing, and context identifier
management required to participate in the global naming, plus the implementation of hierarchical naming
internal to the file system.

Simpler servers require less naming code. A mitiimal server that implements only a single object and sup-
ports only forward name mapping would require less than 100 lines of C code for its naming implenmentation.
The space cost in client programs is also small in comparison with their total size, typically less than 3000
byte, of code and data space. This space includes a set of standard library routines that handle the details
of prefix caching, queries, and retries, presenting a simple interface to the user-level programmer. A typical
prefix cache contaii.s less than 20 entries, each of which occupies 22 bytes of memory plus the length of the

4 prefix. This space tost is comparable to that imposed by other standard library roittines--for comparison,
doprnt (the main module that implements the C formatted printing routine printf) compiles to 1276 bytes
on the MC68010.

"mThis figure is conservative, since queries resulting from "near misses" are not received by all servers.
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The effort to write and maintain this code is significant, hut still manageable. There is only one imple-
ntentation of the client naming code to be maintained, as all clients use a common set of library routines.
The server code is rather similar across different types of servers, and much could be abstracted out into a
common library of routines, though this has not yet been done.

4.2 The Effect of Scale

Decentralized naming has demonstrated excellent performance at low cost in our installation, a moderately
large distributed system by today's standards. In this section we speculate on how cost and performance
would be affected if the system were scaled up to include many more clients and servers.

4.2.1 Elapsed Time

With the cache miss rates we observed, only three operations in a thousand required multicast, resulting
in excellent elapsed-time performance in the average case. Several factors could change the cache miss rate
in a larger system, however. First, it is possible that with more servers available, each client would access
a larger selection of different servers, thereby driving the miss rate up. However, one would expect the
widely-observed locality of reference property to hold; that is, the number of different servers accessed by
a typical client would not increase as rapidly as the number available, so the effect on the cache miss rate
would be small.

On the other hand, it appears that in our installation, most misses occur as a result of a client workstation
being rebooted (thereby losing its cache contents), or a server process being restarted (thereby invalidating
information cached by clients). Since our workstations are used to test experimental system software, such
restarts are rather frequent. A large production system would likely be more stable, and would therefore
display a lower miss rate.

The elapsed time in the cache hit case, being dependent mostly on the speed of unicast communica-
tion, would change little as the system is scaled up unless the increase in size requires a change in net-
work technology--such as from high-speed local networks to an internet incorporating low-speed, long-haul
links-thereby increasing the error rate or round-trip delay time for communications. The elapsed times for
multicast, either successful or unsuccessful, vary similarly.

In scaling to very large systems, however, (for example, a world-wide internet) some refinements in the
use of multicast may be necessary. For example, upon cache miss, one could initially use scoped multicast [6]
to query only nearby object managers, retransmitting the query throughout the internet only if no response
is received after a few tries. If even occasional multicasts to the entire network are infeasible, one could
adopt a hybrid architecture in which decentralized naming with multicast is used within local clusters, with
a global registration service used to locate object managers in other clusters.

4.2.2 System Load

As observed above, the load imposed on bystanders is proportional to the number of clients, the level of
client activity (names mapped per second), and the cache miss rate, and is not affected by the mumber of
servers. Thus in systems with an sufficiently large number of clients, a server would spend 100% of its time
receiving and discarding multicast name queries-and this problem could not be alleviated by increasing the
number of servers.

Fortunately, with the miss rate and activity levels we measured, bystander processing (even at peak
loads) does not reach this level until the number of clients exceeds 700,000. It does not even consume 1% of
each servwr's CPU until tire number of clients exceeds 7000.

4.2.3 Space Cost

Scaling up the system should have little effect on space costs. If, as conjectured above, clients access a wider
variety of servers when more servers are available, the average munber of entries in a client cache would
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increase as the number of servers is increased. No additional code is needed as the system is scaled up, nor
are servers required to store aoy additional data.

5 Decentralized Low-Level Naming

The design we have presented is also useful in low-level naming: the management of process identifiers in
the V kernel [5) is an example. Process identifiers in V are structured as two-level hierarchical names, with
the top level being a host identifier (logical host number), and the second level identifying a specific process
oi the logical host. Each kern, I maintains a prefix cache mapping logical host numbers to physical host
addresses, loaded dynamically as interkernel packets are received. A cache miss results in a multicast to all
V kernels. The caches achieve a high hit rate in practice due to locality in communication patterns.

Here as in our high-level naming scheme, stale cache data is detected and corrected on use. (Cache entries
can become stale when a logical host migrates or is destroyed.) Whenever a kernel packet must be retrans-
mitted due to lack of response, the destination logical host's cache entry is flushed and the retransmission
is (lone as a multicast. This scheme has been in use in the V kernel for about 2 years, and has proven to be
practical and efficient.

A similar technique has been proposed for mapping host group identifiers in an iuternetwork environment
161.

6 Related Work

In this section, we discuss several systems that are representative of important contemporary styles of naming
architecture, contrasting them with our decentralized naming design.

6.1 Network Name Servers

The Clearinghouse 1161 is representative of a class of naming systems that are an outgrowth of simple network
% name servers used for host naming. extended to function across a large internet and to name other objects

such as mailboxes or services.
lin contrast to our work. which provides an absolute naming nechanismn for objects, the Clearinghouse

is used primarily for naming and locating object managers. Each object manager must then implement a
separate name space for its own objects. For instance, one might use the Clearinghouse to locate the file
server containing a desired file, but the actual fileniame would be interpreted by that server and meaningful
only to it.

A nothr difference bt tween the Clearinghouse design and ours is that entities named by the Clearinghouse
do not participate in their own nailting. Thus. it does not share the intrinsic availability properties of
deci.ntralized naming (section 3.3): instead, high availability is achieved by replicating the name registry
acrus.s mmany Cleariughoumc servers. An advantage of this approach is that the Clearinghouse "remembers"
that a given entity exists evel when the entity is temporarily unavailable.

Clearinghouse-lik, object location services seen well suited to large internetworks with a mixture of
high-speed and low-speed links. In such all environment. one might use decentralized naning as a high-
performance ntamie mapping muechanuismt within each local cluster of hosts, with a Clearinghouse-like regis-
tration service available as a facale through which services ill other clusters can be located.

Other examples of systemns in this class include the registration service of Grapevine [2,211 and the Domain

Nanie service recently adopted in the DARPA Internet 14,151.

6.2 Network File Systems

Anlother class of naming system arises in distributed systems that are built by tying together a number of
instances of existing centralized systems. Some recent examples include the Newastle Connection 131 and
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Sun Microsystems' Network File System 1201; an older example is CocILnet UNIX [18]. The cited systems
link together a network of UNIX hosts using ai extension of the UNIX mount system call. 2

1 Each host in
the network has its own root file system, in which foreign file systems are locally mounted. Thus the name
of file /usr/pol/news on host Laurel, as viewed from host Hardy, might be /laurel/uir/pool/news. Name
nmapping in such a system is efficient, since the initial components of each name are mapped locally, the
retainder by the host storing the file. Another advantage of this technique is that it is relatively simple to
implement as a modification to UNIX.

Responsibility for name- management and mapping in these systems is decentralized, but they differ from
ours in that there is no global absolute name space, as there is no guarantee that the multiple root file
systems are exact replicas of one another. Thus the same object may have different "absolute" names when
viewed from different hosts. This lack of absolute naming can cause difficulties for distributed application
programs, since processes running on different hosts are in different naming domains. For example, an
application using several hosts to process a data file would run into trouble if the filename were specified as
/usr/nann/data; rather than opening the same file, participating processes on hosts Laurel and Hardy would
respectively open /laurel/usr/mann/data and /hardy/usr/mann/data. Even if the user were to explicitly
specify /ardy/nsr/marnn/data, the program would fail if Laurel did not have Hardy's file system mounted,
or worse, had some other host's file system mounted under the name /hardy.

Another drawback of this technique is that it does not work well with diskless workstations, which do not
have local storage to implement their own root filesystems. The Sun NFS solves this problem by assigning
each diskless workstation some private space on a file server for its root filesystem. This solution reduces the
efficiency of name mapping, however, requiring the diskless workstation to communicate with both its root
file server and the file server that stores the named object, which may be on different hosts.

6.3 Integrated Distributed File Systems

Locus [24] represents a third class of naming architecture, in which a centralized file system is extended
across a network to form the backbone of a tightly-integrated distributed system.

Like ours, the Locus naming facility provides a global, absolute name space, partitioned across multiple
servers (iin this case, primarily file servers). The method of partitioning the name space is quite different,
however. The Locus name space is split into file groups that can be independently assigned to different
storage sites, as illustrated in figure 5 below. Each file group contains naming information for the files in
that group, relative to the root of the group. One file group (marked group 0 in the figure) is distinguished as
the roet, and name maping is performed by traversing the naming hierarchy, searching a context directory
at each node to map the name of the next context in the path.

One advantage of this method of partitioning the name space is that, once the root file group is located,
there is no need for broadcast or multicast. To achieve acceptable efficiency and reliability, however, it is nec-
essary to replicate the naming information in the root file group-- otherwise, the host storing it would likely
become a performance bottleneck, and failure of that host would make all files in the system unavailable.
The Locus design solves these problems using a powerful, general mechanism for replicating files and file
groups. This me'hanismn is, of course, riot without cost in terms of complexity and the communication time
required to keep eath replica up to date.

Another difference between the Locus design and ours is that Locus directories (contexts) are never
partitioned among multiple servers. As a result, only one server must be contacted to list any directory
or to determine whether a name component is defined in a given directory. However, a directory that is
partitioned in our design must generally be replicated in Locus (as discussed above), thus requiring updates
to the directory to be performed as nmilti-server atomic transactions to maintain consistency among the
replicas. Thus, we do not see either approo -h as being clearly superior in this respect.

"°The Newcastle Conne-cti,,n act,.ally simulates this extension outside the UNIX kernel.
" In fact, this argument applie, to any directory with subdirectoric' stored on multiple hosts.
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Group 3

Figure 5: Partitioning Into File Groups

In Locus, moving a file from one host to another without changing its name requires either moving
its entire file group, establishing a (partial) replica of the file group on the new host (including naming
information for the migrated file), or possibly splitting the file group. In either of the latter two cases, some
additional replication of naming information may be required to provide efficient and reliable name mapping

* for the migrated object. This cost is similar to that incurred when migrating an object in our system: one
can either move the object manager along with all the objects it implements, or move the object individually.
In the latter case, some contexts that were formerly single-manager may be converted to multi-manager.

A recent extension to Locus is to cache the contents of remote directories that are read in the process of
name mapping 1221. This form of caching iniproves performance in uch the same way as the prefix caching
used in our design; however, it is somewhat more complex. Servers are required to know where each of their
directory pages are cached remotely and to notify the clients holding copies of a directory page when that
page changes. An advantage of this technique is that cached infornmation at clients is always up-to-date, so
it can be used without checking with the server it was obtained from. Thus a client program can list the
names defined in a locally-cached directory without contacting the server that stores it.
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6.4 Prefix Tables

Welch and Ousterhout 125] describe an extension of the UNIX file system to distributed operation, using
prefiz iables to locate file servers. Prefix tables are essentially the same as our prefix caches and provide
similar performance benefits. The ur--rlying name space structure is quite different, however. There are
no multi-manager contexts; itstead, file servers near the root of the tree dhelegate authority for sonme of their
subdirectories using remole links, yielding a structure sinilar to that of Locus (Figure 5). One difference
from the Locus approach is that a remote link does not indicate which server implements the subdirectory
in question; instead, the client must broadcast to find it.

6.5 Earlier V-System Work

Our current work in naming is an extension of the design described in [7]. Our earlier system also distributed
the responsibility for object naming among the system's object managers and used a similar name-mapping
protocol, but did not provide a uniform global name space. Instead, each workstation was provided with
a small, independent name server to store local aliases and the top level of the naming hierarchy. A set

* of conventions outside the naming system proper ensured that most workstations had similar views of the
* name space. Our current system replaces these with the multicast name mapping mechanism and per-client

name caches described in this paper.

*7 Conclusions

*, We have described a decentralized naming facility based on the paradigm of problem-oriented shared memory.
" The naming facility is decentralized in that, although a central (human) authority may make decisions on

how to split up the name space among different object managers and object types, no single entity within the
system stores the results of these decisions. Instead, each object manager stores the binding from absolute
name to object for the objects it implements. An object's name is its only permanent, globally-unique
identifier. We have argued that this approach has advantages in efficiency, reliability, extensibility, and
network transparency. Our claims of efficiency are supported by performance measurements taken on a
complete implementation.

The efficiency of our design derives largely from its use of per-client prefix caches with a high hit rate.
The division of labor among multiple clients and servers, together with the use of multicast in the event of
a cache miss, are also contributing factors.

There are two aspects to reliability: availability and correctness. Our design contributes to high avail-
ability of resources by vertically partitioning the naming hierarchy among object managers, ensuring that
objects are available precisely when they are nameable, i.e., no object can be made unavailable by the failure
of an independent entity (such as a global name server). Reliably correct name mapping is achieved (in the
absence of persistent network failures) by checking and correcting cached naming information on each use.

Extensibility is provided by the decentralized nature of the name mapping mechanism. Object managers
can join or leave the naming hierarchy at any time. Nevertheless, the object managers cooperate sufficiently
to implement a single, uniform, network-transparent name space.

In general, we continue to see naming as an important research topic in distributed systems. Our
continuing work in this area includes further investigation of the issues of generic and group naming, security,
and dynamic extension of the name space. We are also attempting to develop a concise semantic model
of high-level naming. For the present, we put forward our design as one that has produced a successful
implementation and provides great flexibility and uniformity.
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