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19.    for which iterative reconstruction is facilitated.    Several potential constraints 
for use in reconstruction algorithms were examined briefly, but support and non- 
negativity are the only two constraints that have been extensively exploited. 
Convergence problems when the support constraint, imposed on the world by active 
illumination, has tapered edges were ameliorated by a modification to the itera- 
tive transform algorithm using an "expanding mask."   Alternative reconstruction 
algorithms were studied, including various gradient search algorithms (for which 
analytic expressions for the gradient of the error metric were derived) and a 
modelling approach, but they have not yet been developed to the point where they 
outperform the iterative transform algorithm.    Laboratory experiments have been 
planned, starting with an active laser illumination of the target with a known 
Illumination pattern and Fourier intensity measurements*    Laboratory experimental 
set up was begun. 
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1 
INTRODUCTION AND OVERVIEW 

1.1 BACKGROUND 
In many Imaging scenarios that require fine resolution at long 

ranges, phase errors limit the achievable resolution and prevent 

diffraction-limited Imaging. The phase errors may arise from a variety 

of sources. Including atmospheric turbulence, misaligned or aberrated 

optics, motion compensation errors, local oscillator errors, and 

waveform generator errors. The conventional approach for obtaining 

diffraction-limited Imagery Is to build Increasingly more complex sensor 

hardware having tight tolerances on Its various components to achieve 

the desired phase stability. 

An alternative approach Is to build hardware having reduced 

tolerances on Its phase stability, and correct for the phase errors by 

employing a phase retrieval algorithm in a post-processing step. In 

some Instances a sensor can be used that Is capable of measuring 

Intensity only and does not measure the phase. Then a phase retrieval 

algorithm Is used to retrieve the lost phase. This Is what we refer to 

as Reduced Tolerance Imaging (RTI). Using this approach one can 

potentially achieve diffraction-11 ml ted imagery using a sensor system 

that Is less complex, cheaper, lighter weight and less bulky. 

In order for a phase retrieval algorithm to work. It Is necessary 

to have some form of a priori Information about, or constraints on, the 

image. Examples of such constraints that have been useful In the past 

are nonnegatlvlty (applicable to Incoherent Imaging) and knowledge of 

the object's support (knowing Its width or shape, which Is available for 

objects on dark backgrounds or If one controls the pattern of radiation 

that illuminates the object). 



Several Important Issues must be addressed to make the RTI concept 

feasible. Constraints must be found that are powerful enough to ensure 

that the retrieved phase and the reconstructed Image are uniquely 

related to the measured data. The relationship between the 

reconstructed Image and the measured data must be robust enough that It 

Is not overly sensitive to noise or other Imperfections In the data or 

constraints. Reconstruction algorithms must be found that converge 

reliably to a solution with a reasonable amount of computation and In 

the presence of realistic amounts of noise. 

This report describes the results of the first year of a two-year 

program to develop the Reduced Tolerance Imaging concept. 

1.2   OVERVIEW OF ACCOMPLISHNENTS TO DATE 

In this section the principal results of the first year of the RTI 

program wll*. be briefly summarized. They are reported In detail In the 

sections and appendices that follow. 

One would like to know how well one could ever hope to reconstruct 

an Image from given data and constraints. Then one would know whether 

current reconstruction algorithms are good enough or further development 

Is needed. One would also be able to evaluate and compare various 

measurement schemes without having to develop reconstruction algorithms 

for each. This can be done using estimation-theoretic lower bounds on 

the reconstruction errors. The Cramer-Rao lower bound was derived for 

the case of far-field Intensity measurements with additive Gaussian 

noise. The lower bound was computed and compared with actual errors 

experienced In Imagery reconstructed from simulated data. These results 

demonstrate the usefulness of estimation theory for predicting system 

performance.   Section 2 and Appendix D describe these results. 

For discrete» or sampled, objects of a certain type a closed-form 

recursive reconstruction algorithm has been developed. It reconstructs 

an Image from the autocorrelation function which Is gotten by Inverse 

Fourier transforming the measured Fourier Intensity data.   Although the 



clostd-fora reconstruction algorltha has questlomble usefulness because 
It Is sensitive to noise. It has provided valuable Insights Into the 
reconstruction problea. It constitutes a uniqueness proof for the class 
of objects for which It Is applicable and suggests lllualnatlon pattern 
shapes that are advantageous. These results are described In Section 3 
and Appendices A, B and C. 

Since laage reconstruction with degraded Fourier phase or no 
Fourier phase requires a priori constraints on the object. It Is 

Imperative that object constraints that are sufficiently powerful and 
robust be found. The vast Mjorlty of the work to date has concentrated 
on two constraints: support, or shape (which occurs naturally for 
iMglng satellites and »ay be forced by an lllualnatlon pattern) and 
nonnegatlvlty (valid for aost passive Incoherent laaglng probleas). 
Issues relating to these and other potential constraints are discussed 
In Section 4. 

When a support constraint Is laposed by using an active 
lllualnatlon pattern at the target to achieve the desired known shape, 
the principal problea Is diffraction effects at the edges of the 
lllualnatlon pattern. This aakes the lllualnatlon pattern fall off 
slowly and saoothly. I.e., Is tapered, rather than falling off abruptly 
as would be preferred. It has been found that reconstruction Is auch 
easier when there Is little or no tapering of the lllualnatlon pattern. 
Previous versions of the Iterative reconstruction algorltha were 
unsuccessful In reconstructing coaplex-valued laages when large aaounts 
of taper was present. laproved versions of the algorltha, eaploylng an 
"expanding aask," were developed, and this resulted In a greatly 
laproved result. It consists of using an unrealIstlcally saall support 
constraint for early Iterations, which forces the energy of the laage to 
be better centered within the true support constraint, and using 
progressively larger support constraints for later Iterations. Section 
5 describes the effects of different types of lllualnatlon patterns, 
describes the laproved algorltha eaploylng the expanding aask, and shows 



exptrlM'til reconstruction results. 

The Iterative algorltha described In Section 5 Is one of several 
possible approaches to solving the phase retrieval problea. laproved 
algorlthas are sought which are faster and »ore robust. One faally of 
alternative algorlthas are the gradient search algorlthas. They consist 
of defining a aerlt function, computing the gradient of the Merit 
function as a function of a ptraaeter space, and searching In the 
par&oeter space for a minimum of the «erlt function In the direction of 
the negative of the gradient (the global ■Inlaua of the aerlt function 
defines the solution, the reconstructed laage). Merit functions that 
were exaalned Include the aaount by which the aodulus of the Fourier 
transfora of an object estlaate differs froa the aeasured Fourier 
aodulus data and the aaount by which an output laage violates the 
object-doaaln constraints. Paraaeter spaces that were Investigated 
include the space of object estlaates and the space of Fourier phase 
estlaates. Closed-fora expressions for the gradients were derived, and 
the entire gradients can be efficiently coaputed using a saall nuaber of 
fast Fourier transforas. Gradient search algorlthas were tested on the 
coaputer with alxed results to da'.e, but they show proalse and will be 
developed further. These results are described In Section 6 and 
Appendices E, F and 6. 

Another approach to solving the phase retrieval problea is a 
aodellng approach. The coaplex Fourier transfora or pieces of It are 
modeled by a paraaeterlzed function. The aeasured Fourier aodulus Is 
least-squares fitted to the aodulus of the aodel to determine the 
unknown paraaeters. Then the paraaeters are Inserted Into the coaplex 
aodel which Is evaluated to determine the phase. Atteapts to make the 
aodellng approach work were unsuccessful. It Is likely that the models 
used were not appropriate to the coaplex Fourier transforas of Interest. 
Better models would be needed before further work along these lines 
should be pursued.   This work Is discussed In Section 7. 



Tht vast Mjority of tht phase retrieval work prior to the current 
effort revolved around analysis and coaputer slMlatlons. Since the 
cowputer simulations Implicitly assume a discrete model for the object, 
there Is a danger that the real, continuous world might behave 
differently. For this and other reasons It Is very Important to 
demonstrate feasibility on real data collected In the laboratory that 
allows us to Include the Important real-world effects on the data. At 
least two experiments will be performed: an active, coherent experiment 
and a passive Incoherent experiment. The active coherent experiment Is 
being set up In the laboratory. It Includes the Illumination of the 
target with a laser beam pattern having the desired Illumination shape 
and controlled amounts of edge tapering. A lens forms the far-field 
(Fourier transform) at a detector plane. A second channel Including 
Imaging optics will be used to form a "ground truth" Image. Section 8 
describes the active coherent experiment being set up and mentions plans 
for the passive Incoherent experiment. 



2 
INFORMATION THEORETIC LOHER BOUND FOR PHASE RETRIEVAL 

2.1 INTRODUCTION 

In phase retrieval problems, It Is desired to estimate the phase of 

the Fourier transform of an object given measurements of the magnitude 

(I.e.. the modulus or the square root of the Intensity) of the Fourier 

transform. This Is equivalent to estimating the object Itself because 

of the Fourier transform relationship. Several Iterative Fourier 

transform algorithms have had great success In making such object 

estimates from Fourier magnitude data and object constraint Information 

[2.1, 2.2]. However, other than through empirical results [2.3], It has 

not been known how the error In the object estimate depends on 

measurement noise, constraint Information, and other parameters 

describing the problem. 

Results In estimation theory Include a number of methods whereby 

lower bounds on the mean-squared error of the object estimate may be 

calculated. These methods use knowledge of the measurement procedure, 

the statistics of the object, and the statistics of the noise process to 

compute an error lower bound. An Important feature Is that these 

methods do not require specification of the algorithm used to compute 

the object estimate from the measured data. The lower bound, then. Is 

Independent of the algorithm and therefore Indicative of the best 

possible estimation performance given the chosen measurements and the 

underlying statistics. 

The Cramer-Rao lower bound Is the most often used lower bound 

because It Is usually the least difficult to compute. It has been used 

In a large number of single and multiple parameter and time-varying 

waveform estimation problems with great success [2.4].   Algorithms exist 



which produce estimates that achieve the Cramer-Rao bound In problems In 

which the measurements are linearly related to the parameters to be 

estimated, the noise Is additive, and the statistics are Gaussian. In 

nonlinear problems (of which phase retrieval will be an example), the 

lower bound can usually be achieved only at high slgnal-to-nolse ratios 

[2.4, 2.5]; nonetheless, the lower bound Is generally regarded as an 

Important first step In evaluating and designing measurement procedures 

and parameter estimation algorithms for these problems. The application 

of lower bounds to two-dimensional signal recovery problems described 

here Is a recent development, and It Is shown that It Is again a useful 

tool. Appendix 0 gives further background material on Cramer-Rao lower 

bounds. 

2.2 PHASE RETRIEVAL PROBLEM DEFINITION 

From the many combinations of possible phase retrieval problems and 

underlying assumptions, the following specific example Is chosen. It It 

desired to estimate a two-dimensional, complex-valued object f     from 
HI 

real-valued measurements S where m ■ (m., m.); m., m, "0, 1,..., M-l 

and p - (pj, p2); p^, p2 - 0, 1,..., 2M-1. The measurements are related 

to the object by 

Sp"cIp + NP {Z']) 

and 

m 

where I   Is the magnitude-squared (Intensity) of the discrete Fourier 

transform of f, c Is a proportionality constant, N    Is additive noise. 

<m, p> ■ nijPj + m^t and summation over m Implies the double summation 

over Hj and m^.    Object constraint Information Is essential for 



tstlMtlng the object. The weighting irray * Is explicitly Included In 
Eq. (2-2) to allow arbitrary support constraints to be placed on the 
object. For an object of N by N resolution elements, Nyqulst sampling 
requires a measurement array of size 2M by 2M because the 
magnitude-squared has twice the bandwidth of the complex-valued Fourier 
transform. It will be convenient later to consider w, f( S» I. and N as 
vectors. The phase retrieval problem Is to estimate the object f given 
the set of measurements S and knowledge of the constraint that the 
product w f   Is zero wherever w   Is known to be zero. 

This mathematical statement can represent a number of applications 
In which phase retrieval problems arise. For example, consider the 
measurement geometry shown In Fig. 2-1. A known, complex-valued, 
monochromatic wavefront w(x,y) Illuminates an unknown, complex-valued 
object f(x,y). Alternatively, for the wavefront sensing problem, an 
unknown monochromatic wavefront may pass through a known aperture having 
known complex transmlttance w(x,y). The Intensity I(u,v) In a 
measurement plane located a distance R from the object plane Is: 

Ku, v) - -L-lfLx. y)f(x, y) exp HMy vy)j dx dy (2-3) 
(xRr 

where x Is the wavelength and It Is assumed that R Is sufficiently great 

that the Fraunhofer approximation can be made. A discrete set of 

measurements S Is made with 

S ■ J J I(u, v) du dv + N (2-4) 

AA 

where n 1$ the detector efficiency, T Is the detector Integration time, 
AA IS the area of a detector element. N   Is the detector noise, and the 

P 
subscript p ■ (pj, p2) Indexes over the measurement plane.    A phase 
retrieval method (e.g., an Iterative Fourier transform algorithm) would 
be applied to the measurement set S using the object constraint provided 

8 
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Figure 2-1. (U) Measurement Geometry for Phaae Retrieval Problem 



by the Illumination pattern w to give an estimate of a sampled version 

of the object f. Conversion of Eqs. (2-3) and (2-4) Into discrete form 

gives, for this application, a value for the constant c In £q. (2-1) of 

nTAA(Aa/XR)   where Aa Is the square area of an object sample. 

The complex-valued object f can be written In terms of Its real and 

Imaginary parts. 

f   ■ fr ♦ If ^. (2-5) 

Equation (2-2) then becomes 

'p-IX-^v^H^^ll2-       (2-6) 

2.3 CRAMER-RAO LOWER BOUND 

It can be proven that the variance of any unbiased estimate of a 

component of a random vector Is greater than or equal to the 

corresponding diagonal element of the Inverse of what Is called the 

Fisher Information matrix. The value of the diagonal element Is the 

Cramer-Rao lower bound. The elements of the Fisher Information matrix 

depend in turn upon the second partial derivatives of the Joint 

probability distribution of the measurement vector and the vector to be 

estimated. This result Is proven primarily by the use of the Schwarz 

inequality. 

Application of the Cramer-Rao method for determining lower bounds 

on estimation errors to a specific problem must therefore begin with a 

determination of the statistics of the parameters to be estimated and of 

the noise [2.4, 2.6].    In this analysis. It Is assumed thet fL fL and 
■ HI 

N are each statistically Independent, zero mean, Gaussian random 

10 



variables with variances af
2/2, Q^II% and 0^ respectively.   Note that 

this implies that the variance of the complex-valued f^ Is oj- 

By the definition of conditional probability» 

p(S. f) - p(S|f)p(f) (2-7) 

where p(S,f) Is the joint probability density of S and f. p(S|f) Is the 

conditional probability density of S given f, and p(f) Is the 

probability density of f. (Recall that f and S are vectors.) The 

assumption of Gaussian statistics gives 

p(f) -IT-1 

-L -Litn 
-7 exp 

mffof 

- ifJ 
21 

2 L of 

(2-8) 

and, using Eqs. (2-1) and (2-6) which Imply that p(S|f) - p(N - S - cl), 

p(S|f) 
-l-.-U./srexp 

(S
P - ^p^ 

2o 
(2-9) 

The Cramer-Rao method continues by defining the Fisher Information 

matrix J In terms of the probability density functions. For the present 

problem, where It Is desired to estimate the statistically Independent 

real and Imaginary parts of f, a workable notation Is to partition J 

Into four submatrlces: 

irr 

u ir 

,r1 

.11 
(2-10) 

»r'j 

11 



2 2 2 
J Is of dimension 2M    by 2M    (representing the N    Independent f"" plus 

the M   Independent fj) and each of the submatrices Is of dimension M   by 
2 

M .    The elements of the submatrlces are defined by, for example [2.4, 

2.6], 

mn 
l^ln p(S. f)1 

L « J (2-11) 

where £[•] denotes expectation taken over both f and N and the partial 

derivative holds S constant. The other submatrlces are defined by 

appropriate substitution of the superscripts r and 1. It Is assumed that 

these and any other required derivatives exist. This assumption is valid 

for the phase retrieval problem. 

The Cramer-Rao method concludes by determining the Inverse J' of 

the Fisher Information matrix J. The diagonal elements of J" are the 

desired lower bounds on the mean-squared error of the object estimate f. 

From the convention used to define J, the upper left diagonal elements 
-1 f < -1 

of J      refer to f. and the lower right elements to fL.    If J      Is m m 
similarly partitioned Into four submatrlces: 

Krr i 
i K^l 
• 

- ...1 

K'r i 
i K,1J 

(2-12) 

then the Cramer-Rao lower bound el on the mean-squared error, 

E[!fm - f
ml ]• 1n thc estimate f^ of object component fm, Is the sum of 

the diagonal elements for f** and fl: 

,rr 11 
om mm      wm (2-13) 
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This Is the quantity which the following analysis seeks. Strictly, the 

lower bound Is only for unbiased estimates of f. It Is beyond the scope 

of this work to determine whether particular phase retrieval algorithms 

give unbiased es imates. 

2.4 LOWER BOUND FOR PHASE RETRIEVAL 

Substituting Eqs.  (2-8) and (2-9) Into Eq.  (2-11). differentiating, 

and discarding a term with zero expected value gives [2.4] 

C • jj PB 31 • ^ »-"i 
where 6  Is the Kronecker delta function. Similar results hold for the 

m rl    in 
other submatrfces of J except that J  and J  have no *  term. It is umn 
Important to note that this result holds for any function I of the 

parameter f. It does not assume that the measurements are of the 

Fourier magnitude-squared. 

Equation (2-6) can now be used to compute the first term on the 

right hand side of Eq.  (2-14).    First. 

m j 

Then. 

rsi 31  1 
UR-2 
3fr 

<\ L m "J 

«ZI v^fj+ 1f]H<+ ^ «p ["iff<J^Mm-n-p>] 
j     k 
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^nZZ Ws * "]"<: - <) -P [^ • k ft " * "* p>] 
j k L J 

+ c.c.'s (2-16) 

Taking the expected value gives 

I>n Z 1"/°? "P [•lT<n H ■■ r] + c.c. (2-17) 

The summation over k Is eliminated since the ff and fi are Independent. 
m m 

The first and third terms In Eq. (2-16) are also eliminated because the 

fl and fl have equal variances.    Finally, the summation over p gives 
m in 

because 

3rr 
tnn 

^y\ m' T. i"ji2t4V™ (2-18) 

Z exp [-'-" H -■ g-] H 1 ■ ^«W (2-19) 
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Equation (2-18) Is a general expression for one of the submatrlces 

of the Fisher Information matrix J given the assumptions above. Similar 

computations show that J ■ Jrr and J ■ J ■ 0. In this case, then, 

J Is diagonal and can be analytically Inverted to obtain J" . This Is, 

of course, a result of the discrete Fourier transform nature of Eq. 

(2-2). Other phase retrieval problems may lead to nondlagonal J 

matrices which may be difficult or Impractical to Invert analytically. 

Using Eqs.   (2-13)  and  (2-18),  the  lower bound e^ on  the 

mean-squared error In the estimate of f. Is: m 

(2-20) c2 . A 
eom 

1 + f-j-2- 
2 

It Is, as stated earlier. Independent of the phase retrieval  algorithm 

used to estimate f. 

The notation of  Eq.   (2-20)  can be simplified by defining a 

signal-to-noise ratio: 

(E[cl  ]}2 

^  (2-21) jnr - — 2 
0N 

where. by Eq. (2-6). 

ECcIp] - ^f Z WJ 2' 
j 

Equatli on (2-20) then becomes 

c2 _ 4 
wom     4 

1 + - 
SNR MZ wm 

Z 

m *v 

(2-22) 

(2-23) 
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As would be expected, the lower bound on the estimate reduces to the a 

priori variance Of If either f Is not illuminated (wm ■ 0) «.- the SNR 

Is zero. The lower bound also approaches zero as the SNR approaches 

Infinity. 

For the case In which the magnitudes of the support constraint w 

are either zero or one, Eq. (2-20) predicts that. If the support 

constraint Includes a smaller part of the M by M object array (and 

thereforeL|w. | decreases), then the error lower bound Increases. This 

Is due to The loss of signal as can be seen from Eq. (2-22). On the 

other hand. If the SNR Is held constant, then Eq. (2-23) predicts that 

the error bound decreases. This Is equivalent to sampling at greater 

than the Nyqulst rate In the measurement array In the Fourier domain. 

The well-known error decrease Is known as compression gain. 

It Is known that current Iterative phase retrieval algorithms are 

more successful In converging to a solution for some object support 

constraints than for others (e.g., for a triangularly-shaped pattern 

Imposed by w, the algorithm more readily finds a solution than for a 

square pattern) [2.7]. By a solution Is meant an object estimate that 

Is as close to agreeing with the measured data and the a priori 

constraints as possible. In some cases, an algorithm stagnates and 

produces an output In poor agreement with the data »»id constraints; such 

an output should not be considered an object estimate. If there Is more 

than one solution that closely agrees with the data and constraints, the 

algorithm may find a solution that Is different from the true object. 

There Is a tendency for Iterative transform algorithms to find solutions 

more readily for cases guaranteed to have unique solutions (e.g., 

objects with triangular support constraints). However, when the 

solution Is unique. It Is also known that. If a solution Is found (I.e., 

16 



the algorithm does not stagnate In poor agreement with the data and 

constraints), then the mean-squared error 1s Independent of the shape of 

the object support constraint. Fro« either Eq. (2-20) or Eq. (2-23). It 

can be seen that, for a given value of L|Nj| . the lower bound e^ 

depends only on |w | and not on the two-dimensional distribution of M 

(the support constraint). The Cramer-Rao lower bound Is apparently a 

measure of the error of algorithms which have found a reasonably good 

estimate and Is Insensitive to lack of uniqueness or to 

algorithm-dependent problems such as stagnation. The Insensltlvlty to 

uniqueness Is further demonstrated by an example shown In Appendix D. 

2.5 CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH 

In this Investigation of the application of estimation theoretic 

lower bounds to phase retrieval and Image reconstruction problems, the 

Cramer-Rao lower bound on the mean-squared error In the object estimate 

from Fourier magnitude-squared measurements, given additive noise, 

Gaussian statistics, and Nyqulst sampling, was found. The lower bound 

approaches the appropriate values In the limits of high and low SNR. but 

does not depend on the object support constraint. Further research 

should Investigate other measurement models (e.g.. Fourier magnitude 

measurements), object domain constraints (e.g.. nonnegatl vlty), 

statlst'cal assumptions (e.g.. Polsson noise), and/or other information 

theoretic lower bounds to extend and refine the bounds and to attempt to 

show a dependence on a priori knowledge such as support constraints. 

Computer simulations and laboratory experiments should also be performed 

to allow comparison of the lower bound to the error achieved by current 

phase retrieval algorithms. 
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3 
UNIQUE CLOSED FORM RECONSTRUCTION ALGORITHM 

3.1 INTRODUCTION 

Since the object's autocorrelation function can be computed from 

the modulus of Its Fourier transform, reconstructing the object from 

Its autocorrelation is equivalent to reconstructing It from the modu- 

lus of Its Fourier transform. In an earlier effort. It was shown 

that a unique closed-form algorithm for reconstructing an object from 

Its autocorrelation, which operated In a recursive fashion, was pos- 

sible for two ery special kinds of objects: those fitting within a 

rectangle with an additional point off one corner of the rectangle 

and those fitting within a triangle having nonzero corners. This 

earlier result has been vastly generalized to Include objects having 

supports whose convex hulls have no parallel sides, a very large 

class of objects. This generalized algorithm, which Includes a 

uniqueness proof, is described in Section 3.2 and Appendicies A, B 

and C. 

Experimental reconstruction results obtained using the algorithm 

are shown in Section 3.3. Although the present form of the algorithm 

is very sensitive to noise, limiting its practical use, it has proven 

to be very valuable in that it suggests useful illumination pattern 

(support) constraints, as is demonstrated in Section 4.1. Another 

problem with this reconstruction algorithm is that it explicitly 

assumes a sampled object, i.e. one consisting of an array of delta 

functions, and it cannot in its present form be employed for real- 

world continuous objects. One possible way around this proolem is to 

use the quasi-samp ling method suggested in Section 3.4. 
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3.2    PHASE RETRIEVAL FOR DISCRETE FUNCTIONS WITH SUPPORT CONSTRAINTS 

3.2.1.    INTRODUCTION 

The reconstruction of object functions having non-redundant 

spaclngs was discussed In [3.1].    Hayes and Quatieri [3.2] showed 

that the boundaries of triangular objects can be reconstructed by 

making use of certain spaclngs In the object which are non-redundant. 

In another direction. Brück and Sodin [3.3] showed that the unique- 

ness of phase retrieval  Is equivalent to the Irreducibility of a 

polynomial  In two variables which Is closely related to the Fourier 

transform (z-transform) of the object function.    Flddy, Brames and 

Dainty [3.4] used Elsenstlen's Irreducibility criterion to prove 

uniqueness for object functions satisfying certain support con- 

straints and showed that Flenup's Input-output Iterative Fourier 

transform algorithm [3.5-3.7] converged faster to a better recon- 

struction when these constraints were satisfied.    Fienup [3.8] pre- 

sented a closed-form algorithm for reconstructing such object func- 

tions from their autocorrelation functions.    He also presen ej a 

similar closed-form reconstruction algorithm for objects sat sfying a 

triangular support constraint and thereby showed that such objects 

are uniquely defined by their autocorrelation functions among all 

object functions satisfying the same support constraint. 

A generalization of Flenup's results to a wider class of support 

constraints is presented here.   Also, an algorithm for generating 

closed-form reconstruction algorithms is described.    Brames [3.9] 
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recently obtained a result similar to the uniqueness theorem in 

Section 3.2.3. 

3.2.2. MASKS 

2 2 
Let A denote the Euclidean plane and let Z denote the points in 

2 2 
Ä with integer coordinates. A finite subset of Z is a mask if it 

contains at least three non-col linear points and its co.ivex hull in 

ST  (the smallest convex set containing it) has no parallel sides. 

Let M be a mask and let [M] denote its convex hull in A2. Then [M] 

is a convex polygon (including its interior). See Figure 3-1. A 

vertex v of [M] is opposite a side s of [M] if the line through v and 

parallel to s contains no points of [M] other than v (see Figure 3-2). 

A vertex of [M] is a reference point of M if it is opposite some side 

of [M] (see Figure 3-3). The set of all reference points of M will be 

denoted by R(M). 

3.2.3. UNIQUENESS THEOREM 

2 
Let f be a complex-valued function on Z .    The support of a 

2 
function on Z is the set of points at which the function is non- 

zero. Let »5(f) denote the support of f. If S{f)  is a finite set, 
2 

the autocorrelation function of f is defined for x e Z by 

r(x) -E f(y)My - x) (3-1) 

y.z2 

where the * denotes complex conjugation. Let f, be another 
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• • • 

Mi (M|] 

• •   • 

M2 [M2l 

FIGURE 3-1.    M1   IS A MASK.    M2  IS NOT A MASK SINCE  [M2] HAS 

TWO PARALLEL SIDES. 

22 



FIGURE 3-2.    THE VERTEX v IS OPPOSITE THE SIDE s. 
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FIGURE 3-3. THE CIRCLED VERTICES OF [M] ARE THE REFERENCE 
POINTS OF THE MASK M. 
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2 
complex-valued function on Z   with finite support J^) and 

autocorrelation function r,. 

We have the following uniqueness theorem. 

Theorem;    If M is a mask, R(M) C s{f) C M. J(f1) C M and r - r1, then 

there exists a complex number a of modulus 1 such that f, > of. 

The proof is  in Appendix A. 

3.2.4.    RECONSTRUCTION ALGORITHMS 

In this section closed-form algorithms for reconstructing a func- 

tion from its autocorrelation function will be described. 

Let S be the number of vertices of [M].    Let VQ,  .  .  ., v- , be 

an ordering of the vertices going around [M] In the counter-clockwise 

direction and let p0,   .... p- , be a similar ordering of the 

reference points of M.    By Lemma A-2 in Appendix A, R(M) contains an 

odd number of points so that T is odd.    Let K ■ (T - l)/2 and let 

qn ' ,,fnK)mod T ^or n m ®*  •   •   •. T - ^    Since K and T are 

relatively prime, the q    are distinct and hence run through all 

the points of R(M)  (see Figure 3-4).    By Lemma A-4 in Appendix A, 

qn and Q/^iw-nji T h*v* unique separation in M.    That is,  if x, 

y < M and x - y - q(n+1)niod T - qn then x - q(n,1)rnod T and 

y - v 

Let N be the number of points in M.    A reconstruction algorithm 

for the mask M is an ordered pair,  (q, m), where q ■ (q0,   .  .  .. qN i) 
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V2 » P4 « q2 

V4 * Po" qo V| ' P3 a 04 

v6aPls<l3 v7»p2»q| 

FIGURE 3-4. THE NUMBERINGS OF THE VERTICES AND REFERENCE POINTS OF 
A MASK. HERE S > 8. T - 5, AND K - 2. 
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Is an ordering of the points in M and m ■ (m-, . . ., m ,) is a 

sequence of integers satisfying the following conditions. The points 

q0, . . ., q-r , 4re «s described above. For n - Tf . . ., N - 1, 

the integers m satisfy the conditions 0 £ nin £ T - 1, and 

M n(M ♦ qn - q^ ) C |q0, . . .. qn| and 
n 

Mn(M - q ♦ <L ) C i qgt • • •» %_! I • In the next section, an 
n 

algorithm for generating such reconstruction algorithms will be described. 

In order to justify the above definition of reconstruction algo- 

rithms it will now be shown how they can be used to reconstruct a 

function from its autocorrelation function. 

Let f be a complex-valued function on Z2 satisfying R(M} 9 »S(f) C M 

and let r be its autocorrelation function. Now let 

2 * 
x • <J(n*i)mo(j T - qn and suppose that for some y e Z , f(y)f (y - x) * 0. 

Then y c »S(f) 9  M and y - x e *S(f)9M.    Also, y - (y - x) - x - 

^n^Dmod T - V S1nce ^(n^Dmod T and qn have ,jn1(»ue 

separation in M, it follows that y - ^Z-^M-OJ T and y - x - qn. 

2 
Therefore y - Q/-«^-^ T '* the only y e Z for which 

f(y)f*(y - x) * 0, hence 

r^(nH)mod T " qn) ■ f^(n*l)mod T) f*(qn)'     (3-2) 

and since R(M) c ^(f), r(fl/n*i)m0(j T " 'U* 0•    ^ now fol1ows from 

(3-2) that 

K 
0   r(q2n -q(2n*1)l|l0d T) 

l^o)'    "^  ' (3-3) 

Ä   r(q2n42-q2n+1) 
n«o 
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Since f Is defined by r only up to multiplication by a modulus 1 

complex number, we may require that f(q0) > 0. Then f(q0) Is equal 

to the positive square root of the right-hand side of (3-3). Now 

f(q ) can be computed for n ■ 1, . . ., T - 1 from the formula 

f(q ) ■ r(qn - qn_])/f (^.i)* 1* 1s s^w 1" Appendix B that if 

(q, m) is a reconstruction algorithm then the following program will 
2 

compute f(qn) for n - T, .... N - 1. Set f(x) - 0 for x e Z 

and x ^ q, n - 0, .... T - 1, and set n - T - 1. 

Step 1: If n - N - 1, stop. Otherwise n ■•- n ♦ 1. 

Step 2: f(qn) - 

n-1 

n  k-0 
',\)- 

Step 3: Go to Step 1. 

3.2.5. ALGORITHM FOR GENERATING RECONSTRUCTION ALGORITHMS 

It will be assumed that we are given a sequence of all vertices 

v0» * • •• VS-1 0^ t*] *here M is a mask and the sequence is ordered 

in the counter-clockwise direction around [M], 

For n - 0, .... S - 1, let sn be the side of [M] with end- 

2 
points vn and Vfp+D^,^ «•    Let U be the linear operator on Ä 

which rotates each vector inSr 90* counter-clockwise. 

First, the reference points p0,  .  .  .. PT i mit^t be found.    Note 

that every side of [M] has a vertex opposite it which is therefore a 

reference point.   Of course, several sides may have the same vertex 

opposite them.   Let wn . v(rrM)mod s - vn for n - 0 S - 1. 

28 



A vertex v.. is opposite a side s„ if and only if m n 

^v„, Uw„> > <v. , Uwn> for k - 0,. . ., S - 1, where <t> denotes m   n  —  K   n 
2 

the inner product on Ä (see Figure 3-5). Thus, by taking each side 

in the order s0 , Sei. all the reference points of M will be 

found, and if they are numbered, in the order in which they are found, 

P0, . . ., p, ,, then the ordering will be in the counter-clockwise 

direction around [M]. 

As mentioned above T is odd. Let K - (T - 1)/2 and qn ■ 

p(nKlmod Tt n ■ 0» • • •» T - ^ Since each q is a reference point 

and therefore is a vertex of [M], there exists an integer kn such that 

0 £ kn £ S - 1 and qn - V|c . For n - 0, . . ., T - 1, define 
n 

n   (V1)"»«1 S   k(n+1)modT 

Then by Lemma A-3 in Appendix A, for x e M, x ^ qn and x ^ ^(n+Dmod T' 

<qn. yn> < <x, yn> < <q(n+1)mod T. yn > • This is equivalent to 

saying all points in M excluding q and Q/p+ix-nH T He strictly between 

lines pendicular to yn and passing through qn and Q/n+Dmo^ y See 

Figure 3-6.  (The uniqueness of separation of qn and Q/^T^^H T 

mentioned in Section 3.2.4 follows from this double inequality.) 

Now let .„ - qn ♦ q(n*1)niod T and let $„ - .„/Z for 

n ■ 0, . . ., T - 1. Then B- is the midpoint of the line segment 

joining qn and flfn+D^jH r« Let 0 • M ^ R(M) (set difference) 
2 

and let 4 be the characteristic function of D as a subset of Z . 

2 
This is, 0 is the function on Z which is 1 on 0 and 0 outside D. 
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v^PO 

FIGURE 3-5. AN ILLUSTRATION OF THE VECTORS «„ AND UV 

AND THE ORIGIN IN«2 IS DENOTED BY "0". 

HERE n • 0 
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v4 s % 
V| = ls<\4 

FIGURE 3-6. AN ILLUSTRATION OF THE VECTORS yn. HERE S - 8, T - 5, 

n - 4, k4 - 1, (k4 - Umod S - 0, (n ♦ 1 )mod T - 0 AND 

k0 - 4. 
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For x c D and 0 £ n £ T - 1,  let hn (x) .   < x - 8n, yn > .    Then 

|h (x)|/||y  ||  is the distance from x to the line through 6    and 

perpendicular to yn, »(here MyJI denotes the Euclidean norm of y 

(see Figure 3-7).    The set 0 contains N - T points and we define T 

orderings of the points in D, D -   I dn 0,   .  .  ., dn uj^ } . 

n - 0 T - 1. satisfying |hn(dnjk)|  > ^„(d,,^^^! for 

k-O.  .  .   ., M - T -2.    The following program generates sequences 

Set n«T-l  and k - 0 and enter the following loop. 

Step 1:    If n • N - 1, stop.    Otherwise define 

b - «in  | j : 0 < j ^ M - T - 1 and #(dk   .) . 1 1 . 

SUp 2:    If #(«k - dk b) - 1. go to Step 7. 

Step 3:    n - n ♦ 1. 

St9>: 4:    Define q., . d.   K. n       x ,D 

Step 5:    If h. (q,)  > 0, define m   • k.    Otherwise define 
K      fl      — n 

fiin - (k ♦  1 )mod T. 

Step 6:    #(qn) ~ 0. 

Step 7:    k * (k ♦ 1 )mod T and go to Step 1. 

It  is  shown in Appendix C that the  loop  is not  infinite and  if 

q - (dQ,   .... q,^) and M • (my.,   .... |nN_1) then (q, n)  is a 

reconstruction algorithm. 
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FIGURE 3-7. 
THE DISTANCE FROM AN ARBITRARY POINT x IN D JO j« UNE 
THROUGH 0 AND PERPENDICULAR TO yn is d - |hnU)|/l |ynM 
HERE S » 8. T - 5, AND n « A. 
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3.2.6. IMPLEMENTATION 

The algorithms presented in the last two sections can be imple- 

mented with two computer programs.    The first program would implement 

the algorithm in Section 3.2.5.    Its input would be a mask and its 

output would be a reconstruction algorithm.    The second program would 

implement the program in Section 3.2.4.    Its input would consist of i 

reconstruction algorithm and an autocorrelation function and its out- 

put would be the object function.    With this arrangement, if one 

wished to reconstruct many object functions using the same mask, the 

first program would have to be run only once. 

3.2.7. CONCLUSIONS 

It has been shown that if a function is zero outside a given mask 

and is non-zero at the reference points of the mask, then it is 

uniquely determined (up to multiplication by a complex number with 

modulus 1) by its autocorrelation function among all other object 

functions which are zero outside the mask.    (A mask is a set of 

points in the discrete lattice whose convex hull has no parallel 

sides.)    Moreover, there is an algorithm for generating 

reconstruction algorithms for any given mask which in turn can be 

used to reconstruct object functions satisfying the above mentioned 

conditions from their autocorrelation functions. 

This theory has some similarity to holography [3.10, 3.11]. 

However, here several (at least 3) reference points are used whereas 
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only one reference point is needed in the holographic situation. On 

the other hand, the holographic reference point must be isolated from 

the rest of the object whereas no such isolation of the reference 

points is required here. It is interesting to speculate whether 

there might be a more general theory of which this theory and holo- 

graphy would both be special cases. 
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3.3    EXPERIMENTAL CLOSED-FORM RECONSTRUCTION RESULTS 

Autocorrelation data was computer-simulated. Including the 

effects of noise, and Images were reconstructed using the closed-form 

reconstruction algorithm described In the previous section. 

For each reconstruction experiment an object, f(x,y), fitting 

within a triangular support was Fourier transformed: 

F(u,v) .grtf(x.y)] 

The squared modulus, |F(U,V)| , of the Fourier transform was com- 

puted, and It was scaled In Intensity so that the total Integrated 

Intensity became equal to a given number of photons, 

2 F(u,v) 

uv 

Then   each   intensity   sample 
12 

drawn number. 

F(u,v)      was   replaced   with   a  random 

Polsson   distribution   with   mean 

and  variance  equal   to    F(u,v) 

from a 
2 

distribution 
112 F(u,v) Is a large num- 

ber (>32), then a Gaussian approximation to the Polsson distribution 

is used. This Polsson noise process simulates the effect of photon 

(shot) noise on the measured Fourier intensity data. The normalized 

RMS error (NRMSE) of the data Is given by 

1/2 

2j (|Fn(u'v)| " |F(u»y)p£ 

Data NRMSE 

— 

2(F'.(u>,) - 
uv 

F(u,v)  )2 

]r F(U.V) 
uv 

2 

A noisy autocorrelation was computed: 

•„(«.yJ.'af-'ljF^..)!2]; 
and an Image, gn(x,y), was reconstructed using the closed-form 

reconstruction algorithm. The NRMSE of the reconstructed image is 
given by 
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Image NRMSE - 

^ |«gn(x.y) - f(x.y)|i 

iL 
k{x.y) 

xy 

1/2 

where a 1s a constant chosen to minimize the error metric, which 

accounts for the unknown phase constant associated with f(x,y). It 

can be shown that the value of a that optimizes the Image NRMSE is 

y^ f(x.y)g (x,y) 

xy 

Examples of Images of objects reconstructed from noisy data, for 

which the object Is a uniform triangle, are shown In Figures 3-6 to 

3-10 for various sizes of the object. Figure 3-11 -plots the Image 

NRMSE versus the data NRMSE for the Images shown In Figures 3-8 and 

3-9. Several Interesting effects are evidenced from these recon- 

struction examples. First, the closed-form algorithm Is very sensi- 

tive to noise. A fraction of a percent error In the data results in 

several percent error In the Image. Second, Increased data error 

results In Increased Image error, but only In an average sense. 

Occasionally the Image error can be greater when the data error is 

less, because for a given amount of data error the Image error that 

one gets Is highly variable. Depending on the particular realization 

of the noise In the data, the three corner points will have different 

amounts of error. Small differences In the error of the corner 

points can yield large differences In the errir of the image since 

the corner points are used over and over again and the error from 

them propagates and Is magnified as the recursive steps build upon 

one another. This also gives rise to a third effect: the error for 

the interior points of the reconstructed image is much worse than the 
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FIGUKL 3-8. 8 . 8 i)BJECT ANÜ IMAGES RECONSTRUCTED BY 
HECURSUE ALGORIT^. Nunber of photons listed dre in 
domain. 
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FIGURE 3-9.  16 x 16 TRIANGULAR OBJECT AND 
CLOSED-FORM RECURSIVE ALGORITHM 

IMAGES RECONSTRUCTED BY THE 
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FIGUHE  3-10.     3^  x 32  TRIANGULAR OBJECT AND 
CLOSED-FORM RECURSIVE ALGORITHM 

[MAGES RECONSTRUCTED BY THE 
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FIGURE 3-11. NRMS ERROR OF THE RECONSTRUCTED IMAGE VERSUS NRMS ERROR OF 
THE DATA. Crosses are for the 8 x 8 triangles and squares for the 16 x 
16 triangles. 
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error of the edge points In the image. Fourth, for similar reasons 

the error of larger images is far worse than the error of smaller 

images. Fifth, a stripe pattern parallel to each of the edges tends 

to occur. This happens for the following reason. Suppose that one 

of the three reconstructed corner points is brighter than it should 

be. Then the opposing edge of the image, the computation of which 

involves division by ttie corner point, will tend to be too dark. Then 

the next Inward row (or column) from the edge, the computation of 

which involves subtraction of terms involving the edge, will tend to 

be too bright, etc. 

How badly this striping effect affects the Interpretability of an 

image was tested by using a picture of an airplane as the object, 

Imbedded in a 32 by 32 triangle. The results of reconstruction 

experiments from noisy data using the closed-form reconstruction 

algorithm for the object are shown in Figures 3-12, 3-13 and 3-14. 

As seen from Figure 3-12, the image can still be discerned through 

the partially-obscuring striped pattern. Therefore the intelligi- 

bility of the image may be understated by the image NRMSE. 

Figure 3-13 shows the image NRMSE versus the total number of photons 

for all the noise values tried for this object, and Figure 3-14 shows 

the same information, but as a function of data NRMSE. 
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FIGURE 3-12.  3? x 32 JET OBJECT AND IMAGES RECONSTRUCTED BY THE CLOSED- 
FORM RECURSIVE ALGORITHM.  The number of photons in the Fourier intensity 
data, the corresponding data NRMS error and the reconstructed image 
NRMS errors are as follows: 

No. of Photons Data NRMSE Imaqe NRMSE 
(a) 

108  " 
10   7 
6 x 10^ 
2 x lO7 

10/ 

Orlgl nal Object - 
(b) 0.0011 0.03 
(c) 0.0034 0.10 
(d) 0.0043 0.11 
(e) 0.0073 0.27 
(f) 0.0107 0.60 
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3.4    QUASI-SAMPLING ILLUMIWION PATTERN 

One nroblem with the closed-form reconstruction algorithm 

described in Section 3.2 Is Its reliance on a sampled object. In 

this section, It Is shown that by a special kind of illumination one 

can approximately achieve the desired sampling effect In the target 

area. 

If one Illuminates a target area ««Uh four mutually coherent 

point sources In the far field at a distance R given by 

<(u - u0, v - vo) ♦ 4(u - u0. v ♦ vo) ♦ i(u ♦ u0. v - vo) 

♦ 4(u ♦ u0 v ♦ v0) 

one gets a field at the target area given by the sum of four plane 

waves (Fourier transforms of the oelta functions): 

(xR^jexp [=^<V ♦ v)] ♦ «p [4r<v • v) 

* wp fxft-v * vj * t,*["4F<-uQ,c - v,j} 

• m'l[.*, (^0x) * .XP (*0K)]{«P (^) ♦ "p (^ 

which has Intensity 

l6(XR).2 co$2 (!^)cos2 (^f) 

which has lines of zeros along x . xR(n ♦ 1/2)/(2u0) and along 
y - xR(n ♦ l/2)/(2u0)t f0r „ - 0. *!, *2 This Is 
must*   ted In Figure 3-15. 
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FIGURE 3-15. QUASI-SAMPLING ILLUMINATION PATTERN. The circles are the 
locus of points 3 dB down from the array of peaks and the lines are the 
locus of zeros. 
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Tnt 111ui1n«t1on patttm would bt of llalttd txttnt which could be 

■odtltd by Multiplying Cht abovt by a slowly varying wtlghtlng function 

daflnlng tht f Itld-of-vltt», (XR/4)t(x.y). so that tht tntlrt 
illumination patltm Is 

»»(x.y) • t(x ̂  co$ (cnr)co, (nar) 
whtrt thor« art a nuabar of cyclts of tht coslnts ovtr tht axttnt of 
t(x,y). 

What Is accomplished by this Is a quasi-sampling of the object. 

It may be possible to use the closed-form recursive reconstruction 

algorithm to reconstruct an object. Illuminated by w(x(y) above, 

from Its autocorrelation, or It may bt necessary to make 

modifications to reduce th^ errors due to approximating this pattern 

by a true sampling pattern. 

Note that by the addition of more plane waves It Is possible to 

get sharper local maxima and broader stripes of low Intensity, but 

at the expense of a more complicated Illumination system with 

phase-stability problems of Its own. 

In the real world, the four mutually coherent Illumination 

sources may have an unknown relative phasing between them.    If the 

constant relative phases of the four sources art ^ t ^ 4. an(i 

^4, then the product of cosines like the equation above occurs 

only If #1 - ^2 - #3 ♦ *4 ■ 0.    This Implies a stringent 
stability requirement on the Illumination system, but It requires 

the control of only a single parameter (one piston term) rather than 

the control of the phase of an entire large aperture. 
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4 
CONSTRAINT INVESTIGATION 

In this stctlon tht various form of constraints that sight bo usoful 

for phasa ratrltval art dlscusstd. Stctlon 4.1 dtscrlbas rttults 

ohtalntd with a varltty of support (lllualnatlon patttm) constraints. 

Tht vast Majority of tht tffort to data conctntrattd on dtvaloplng 

laaglng conctpts bastd on tht support constraint. Stctlon 4.2 dtscrlbts 

othtr constraints that Bight also provt ustful. 

4.1   EFFECT OF IUUMINATION PATTERN SHAPE 

Tht support. S. of an objact Is dtflntd as tht stt of points for 

which tht objact Is nonztro. For tht cast of a satallltt inagad against 

tht night sky or a ship iaagtd on cala wattr with a SAR. tht support of 

tht objact Is basically tht fllltd-ln outllnt of tht objtct. For an 

alrborna or spactbornt stnsor looking downward at a gtntral scana. the 

axttnt of tht objtct Is basically daflntd by tht fltld-of-vltw of the 

stnsor. This latter cast does not represent a useful support 

constraint. However, for an laaglng systea eaploylng active 

lllualnatlon. tht transaltttd btaa (tht lllualnatlon btaa) can take on a 

known shape at tht plant of tht target, and It can be designed to occupy 

an area saaller than tht fltld-of-vltw of the receiver. Then the 

effective support of the object Is the support of tht lllualnatlon btaa 

pattern. For tht cast of a SAR. It Is assuatd that whan no phase Is 

available the pulse epetltlon frequency Is at least twice that 

ordinarily required by lyqulst saapllng when phase Inforaatlon is 

available. 

The two aost laportant properties of an lllualnatlon pattern are 

Its shape (elliptical, rectangular, polygonal, ttc.) and Its taper (how 

slowly It transitions froa tht bright part of tht patttm to where It Is 

effectively zero). As shown In the proposal [4.1. p. 2-29], phase 

retrieval algorithm are auch aore effective for seat shapts (which wt 

rtfer to as strong shapes)  than for others.    Furtheraore, phase 
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rttrltval algorlttas art sort tfftctlvt for sharp support constraints, 

l.t. «don thart Is llttla or no tapor to tho llluBlnaclon pattarn [4.1, 

p. 2-25]. Soctlon 5 of this raport datalls tha results of our 

invastlgation of tht affacts of taparad lllualnatlon patterns and 

alforlthai l^rovaaiants that «ara aada for tht cast of larger aaounts of 

taper. In what inedlately follows we discuss the effects of the shape 

of the support. 

In early phase retrieval work there was not an awareness that the 

support of the object played an laportant role in the success of phase 

retrieval. Early successful reconstruction results were for space 

objects whose supports were naturally non-centrosyvatrlc [4.2]. Other 

groups atteapted phase retrieval for unnatural objects — scenes bounded 

by squares — and were unsuccessful. Flddy. Braaas and Dainty [4.3] 

founo that the Iterative Fourier transfora algorltha, although it worked 

poorly for a rectangular support, worked well for a support consisting 

of a rectangle plus an extra point Just off one corner of the rectangle. 

This latter support has the special property that any saapled function 

defined on that support, which Is nonzero at the extra point and at one 

opposite corner, has a Fourier transfora that Is a nonfactorable 

polynoalal according to Elsansteln's Irreduclblllty theorea. This 

laplles that the phase retrieval problea In unconditionally unique for 

objects of this type. In retrospect, froa those results we can make the 

crucial connection between three different aspects of the phase 

retrieval problea: the support of the object, the uniqueness of phase 

retrieval, and the success of the Iterative Fourier transform 

algorlthas. 

The trends connecting those three eleaants, which we have continued 

to conflra, are the following. First, the support of the object 

deteralnes whether aablgultles are possible. Second, objects for which 

uniqueness can be proven are easier to reconstruct by the iterative 

Fourier transfora algorltha than are other objects. The first trend Is 

aaply deaonstrated In Section 3.2 which shows that saapled objects 

52 



having known, convtx hulls with no ptnlltl sldos art unlqut. Tho 
stcond trtnd Is shown by tho rtconstructlon rtsults [4.1, pp. 2-24 ind 
2-28] In which objects having known triangular support (which art unlqut 
— stt Stctlon 3.2) and objtcts having known supports with stparattd 
parts (which tvtn In ont dlatnslon art usually unlqut — stt txaaplts in 
Stctlon 5) art taslly rtconstructtd whllt objtcts with othtr support 
constraints, llkt that of a slnglt tlllpst or a slnglt rtctanglt art 
difficult to rtconstruct. 

Tht clostd-forn rtconstructlon algorltha dtscrlbtd In Stctlon 3.2 
My not bt practical for ust on rtal-world data, slnct It rtqulrts tht 
objtcts to bt aodtlltd dlscrtttly (as a grid of dtlta functions or 
saapltd points) and it Is vary stnsltlvt to nolst, particularly If tht 
vtrttx points art dla (stt Stctlon 3.3). Ntvtrthtltss, It dots 
constltutt a unlqutntss proof for tht typts of objtcts to which It can 
In theory bt applltd: objtcts whost support has a convtx hull with no 
parallel sldts. This Itads us to consldtr lllualnatlon patttms of this 
typt. Figure 4-1 shows an exaaple of a rtconstructlon txptrlmnt using 
an lllunlnatlon-patttm shapt suggtsttd by tht unlqutntss proof. On the 
left Is the Mdulus of a coop lex-valued SEASAT SAR Inagt Mltlplltd by a 
binary pattern (rtprtstntlng tht 11 lunlnation patttm) In tht shapt of a 
ptntagon. In tht ctnttr Is tht Modulus of Its Fourltr transfom (the 
Fourier phase was discarded). Tht Ittratlvt Fourltr transfom algorithm 
was used to reconstruct an laage, the todulus of which Is shown on the 
right, froa the Fourier Modulus using the known support pattern. The 
result shown Is after several hundred Iterations (It had not coMpletely 
converged yet), and It strongly resoMbles the original object, although 
not perfectly. Given tht difficulty In reconstructing coMplex-valued 
iMtges with contiguous supports (with the exception of triangular 
support) [4.1, pp. 2-24 to 2-30], tha success of this kind of support 
constraint would have bttn difficult to antlclpatt wtrt It not for the 
uniqueness proof. 
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FIGURE 4-1. RECONSTRUCTION EXPERIMENT USING PENTAGON-SHAPED 
ILLUMINATION PATTERN. Left to right: modulus of complex-valued 
Illuminated SEASAT SAR scene; modulus of signal history (Fourier 
transform); modulus of Image reconstructed from modulus of signal 
history and pentagon-shaped support constraint using the iterative 
Fourier transform algorithm. 
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In sumry, to date tht support constraints found to bt aost useful 

for phast retrieval art (a) supports having two or aort well-sepirited 

parts and (b) supports having convtx hulls with no parallel sides. The 

farther the sides art fro« being parallel» tht better. 

4.2   OTHER CONSTRAINTS 

Any InforMtlon that Is In a doMln other than tht doaaln of the 

«easured data has tht potential for being a useful constraint for phase 

retrieval. Constraints In tht dona in of tht Measured data usually Just 

Halt tht available data and tend not to bt useful for phase rttrleval. 

Candidate constraints for tht phase retrieval problea art listed In 

Table 4.1. 

Tablt 4-1 

CANDIDATE CONSTRAINTS 

Support (llliaalnation pattern) 

Nonntgatlvlty 

Polarization 

Transaltttd wavtfoni 

Point scatttrtr in scene 

Other scene characteristics 

Of these, the support constraint received tht aost attention, and It is 

discussed In Section 4.1. The other constraints art described In what 

follows. 

Monnegatlvlty 

Tht nonntgatlvlty constraint has been very useful In previous phase 

retrieval efforts [4.2] and also In other laagt reconstruction problens, 

such as toaographlc reconstruction frot Incoaplete projections and 

constrained deconvolutlon.   Unlike the support constraint, nonnegatlvlty 
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■utt txtst naturally — M do not know ho» to Impost It artificially. 

It naturally occurs In «ost passlvt, noncohtrtnt laaglng sctnarlos. Tho 

brlghtiMSS distribution of an Incohorontly-lllualnattd rtflooting objtct 

or a st If-emissive objtct Is characterized by a real, nonnegative 

function (power or photons per unit area). This can be true for 

actively lllialnattd objects as »»til, as long as the lllualnation Is 
sufficiently Incoherent. An exception In which this constraint My not 
bii valid Is for passive doppler laaglng as encountered In the PACE 

p-ogrta [4.4], for which the aperture function Is band-pass, 

r.onnegatlvlty Is not as useful for band-pass systeas since the lapulse 

response has very large negative (or coaplex-valued) sldelobes which 

convolve the laage, destroying its nonnegatlvlty. For the cases In 

which nonnegatlvlty naturally does occur. It should be relied on heavily 

as a phase retrieval constraint. 

Polarization 

Certain kinds of reflecting objects have distinctly different 

reflectivities for the two different receive polarities (I.e. for saae 

polarity as transalt or for opposite polarity). As an exaaple, comer 

reflectors reflect either very strongly or very weakly depending on the 

polarization. Unfortunately, froa a single collection It Is not 

laaedlately obvious how to utilize this Information. On the other hand, 

If two collections are aade slaultaneously, one for each polarization, 

then there Is Increased possibility of using polarization 

advantageously. One such possibility would be to use the difference 

between two degraded laages (with aeasured Fourier phase In the presence 

of phase errors) to Identify point-like reflectors Then the point-like 

reflectors could be used In the proalnent-polnt processing described 

below.   Other exaaples of using polarization aay be also be possible. 
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TransMltttd Hmforg Typt 

Early on In tht prograa It MIS thought that ptrhaps transwlttlng a 

puls« «1th Hissing frtquency bands sight b« ustful Insofar as It would 

constltuto a support-llkt constraint In tht signal history. Upon 

furthtr txMlnatlon. It apptars that such tlsslng frtqutnclts would 

primarily result In a loss of data rathtr than constituting a ustful 

constraint. 

A point worth aaklng rtlatlng to transiltttd wavtfront Is that tht 

ust of phast rttrltval ttchnlquts nay facllltatt tht ust of 

nonconvtntlonal wavtfoms. As tht transaltttd wavtfona dtparts fro« the 

standard stt (t.g. tht chirp wavtfom), tht availability of hardware 

that can for« tht dtslrtd wavefom In a phast-stablt Manner aay be 

qutstlonablt. By reducing tht tolerance on the phast stability of a 

wavtfona gtntrator it may be possible to achieve waveforms that would 

otherwise be very difficult to produce. The reduced tolerance 

laaglng/phase retrieval ttchnlquts nay provide the «tans for reducing 

tht phast stability of tht wavtfona gtntrator while Maintaining the 

dtslrtd resolution. 

Point Scatttrtrs In Sctnt 

Presently, polnt-llkt scatttrtrs (proalntnt points) In tht target 

area art used for correcting saall aanunts of phast errors In SAR signal 

histories [4.5. 4.6]. Proalntnt point processing can also be of great 

utility for the cast of severe phast errors or when no phase Information 

at all Is Measured. Ont particular sctnarlo for phast correction In the 

presence of large ont-dlntnslonal phast trrors has alrtady bttn 

demonstrated [4.6]. For tht cast of Motion co«ptnsat1on trrors In SAR, 

ont has a ont-dlMtnslonal (azlMuth) phase error. This occurs 

particularly for tht cast of inverse SAR, for exaMple the radar is 

ground-bastd and tht (noncooptratlvt) target flits by with a poorly 

known flight path and rotation.    If thtrt exists a doMinant proMlnent 
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point scatttrtr In t given coaprtsstd rangt cell, then It can be used to 
calculate the azlauth phase error (taking Its phase to be the phase 
error). The phase errors In all range bins can be corrected by 
subtracting that phase. 

Other Scene Characteristics 

The constraints Mentioned above are coaaon to large classes of 
Imagery.    Also, there My often be additional constraints that exist 1r 

specific Instances. For exanple. If the scene has been Inaged by 
another sensor systea or by a slallar sensor at an earlier tlae, then 
these additional laages My contain InforMtlon that can be counted on 
to appear In the present iMgt and therefore can be used as an a priori 
constraint. Exaapl" Include the known existence of pemanent cultural 
targets or of no-return areas such as lakes or saooth surfaces. 
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5 
RECONSTRUCTION OF OBJECTS WITH TAPERED ILLUMINATION 

5.1    STATEntNT OF PROBLEM 

It Is well known that knowledge of the support of an object can be 

a powerful source of inforeatlon <n iw««je-reconstruction problems. By 

support we «ean a compact region outside of which the object Is known to 

be zero, and we denote the set of points that make up the support by the 

symbol S. In particular, considerable success has been realized in 

reconstructing an object from Its Fourier modulus and a known support 

[5.1,5.2]. In the reduced-tolerance Imaging program an effort Is being 

made to exploit this ability. 

Consider an active sensor system that Illuminates a target area so 

that the Illumination Is confined to a predetermined region. Let h(x,y) 

be the complex reflectivity of the target: 

h(x,y) •  Ih(x.y)| e1*^*'^. (5-1) 

Let w(x,y) be the complex Illumination function: 

w(x,y) - iw(x,y)| e1^^- (5-2) 

We define  the  effective object  as   the  product  of  the  complex 

reflectivity of the target and the illumination function: 

f(x,y) » w(x,y) h(x,y) 

• If(x,y)|  e1***-'* (5-3) 
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The effective object will now have a support corresponding to the known 

extent of w(x.y). The Intensity pattern of the field emanatii.g fro« the 

Ulunlnated target Is Measured In the far field which nay be Interpreted 

as the squared Modulus of the Fourier transfom of the effective object. 

Known phase-retrieval algorithm nay then be enployed to reconstruct the 

effective object from the support constraint and the Measured Fourier 

Modulus. 

Notice that there Is sone freedOM In the choice of the form of the 

11IUMInation pattern. For example, the shape of the outline of the 

pattern could be specifically selected to enhance the usefulness of the 

support constraint. It Is known that certain syMaetrles in object 

support can create stagnation problcMS In phase-retrieval algorithms. 

Consequently the outline of the IIIUMInation pattern should have an 

asymmetric shape. Furthermore, there Is SOMM evidence that a support 

consisting of disjoint regions can be an advantage In phase retrieval. 

Finally. It Is useful to choose an illumination function with a constant 

modulus over Most of the region of Illumination thus facilitating the 

Inversion of Eq. (5-3): 

h(x.y) 
(x.y)eS 

»Kx.y) 

*(x,y) 

(5-4) 

iUU.yH (x.y)) 
w 

when one desires the coMplex reflectivity of the target without the 

Influence of the IIIUMInation pattern. 

Unfortunately, the Modulus of the IlluMlnatlon pattern will not be 

binary In practice, but will have some taper associated wit t at the 

edges, due to the effects of diffraction by the aperture of the 

Illuminator. The contrast between an Ideal untapered IlluMlnatlon 

pattern and a More realistic IlluMlnatlon function Is Illustrated In 
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Figure 5-1. Intuitively on« night expect, end experiaentally It has 

been shown [5.1,5.2]* that the reconstruction of an object fro« its 

Fourier Modulus and support would be «ore challenging for an object with 

a tapered profile than for one with a sharp profile. It was the purpose 

of this Inquiry to explore this Issue via computer slaulatlon and to 

look for algorlthalc Modifications that would enhance restoration for 

this case. For exaaple. it was hoped at the outset that any 

difficulties incurred by tapered illuaination Might be offset by the 

support being disjoint. 

5.2   PRELIMINARY SIMULATIONS 

He began by exploring the effect of tapered 11 luaination on phase 

retrieval by Mans of co«puter siwulation. A pair of disjoint ellipses 

was used as the basic shape for the illuaination pattern. The untapered 

IlluHination pattern was assigned a value of unity within the ellipses 

and zero outside. Taper was Introduced by convolving the binary 

ellipses with a convolution kernel. The nonaalized kernels used in 

these preliminary simulations are shown in Figure 5-2. Cross sections 

of the edge of the resulting Illuaination patterns are given In Figure 

5-3. 

As Mentioned earlier, it was speculated that disconnected support 

Might help to overcome any problems associated with tapered 

Illumination. For this reason the total illumination pattern was chosen 

to be two disjoint ellipses. Simulations were performed for objects 

with differing amounts of illumination taper and differing amounts of 

separation between ellipses In the illuaination pattern. A given 

simulation was performed by first multiplying cojplex SEASAT SAR Imagery 

by the given illumination pattern to create an effective object. 

Because it is the effective object that we try to recover through 

phase-retrieval techniques, we will henceforth refer to this as the true 

object. This object was Fourier transformed with an FFT and the Fourier 

magnitude was retained.    The known region of support In the object 
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FIGURE 5-1. CROSS SECTIONS OF 
A. Ideal binary illumination. 

EDGES OF ILLUMINATION PATTERNS, 
B. Tapered illumination. 
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1/9 1/9 1/9   | 

FIGURE 5-2. DISCRETE CONVOLUTION KERNELS USED TO ADD TAPER 
TO BINARY ILLUMINATION PATTERN. A. Ctnttr-wtlghttd kernel 
yields taper #1.    B.    Evenly-weighted kernel yields taper #2. 
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F1ÜURE 5-3.    CROSS SECTIONS OF ILLUMINATION OF TAPER USED IN 
PRELIMINARY SIMULATIONS 
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doMln MS supplied by hard Halting (thresholding) tha lllmilnatlon 

pattern with a vary SMII threshold value. A standardized sequence of 

error-reduction and hybrid Input-output Iterations [5.3] were then 

perforaed to reconstruct the object fro« Its Fourier Modulus and 

support. Convergence for all slaulatlons was aonltortd by calculating a 

Fourier doaaln nomallzed error netrlc. 

^   (lG(u.v)|  -   iF(u.v)|)2 

ii - ü-^ = 2  (5-5) 

u,v 
where F(u.v) Is the discrete Fourier transfone of the true object f(x,y) 

and 6(u,v) Is the Fourier transfer« of the Inage estlaate. The 

convergence Is portrayed In Figure 5-4 for six kinds of 111 uiilnation- 

three amunts of taper, each with two aaounts of separation between 

ellipses. It Is Important to note that Figure 5-4 Is a log-log plot and 

therefore the behavior of the algorltha becoaes horizontally compressed 

with increasing nunber of Iterations. Figures 5-5, 5-6, and 5-7 give 

the final reconstructions for each of the cases tested. These results 

confine our expectation that Increased amounts of Illumination taper 

make the reconstruction process more difficult. In fact, for the case 

with the largest amount of taper the algorithm convergence appears to 

have stagnated. This Is In spite of the fact that the amount of taper 

is extremely mild. There are 51 pixels along the major axis of the 

large ellipse and only two pixels of taper at the edge. Thus 

convergence appears to be relatively sensitive to Illumination taper. 

It Is Important to realize that the convergence curves shown In Figure 

5-4 correspond to a specific initial estimate and that the convergence 

behavior could vary when alternative Initial estimates are used. 

5.3   THE SHRUNKEN-NASK ALGORITHM 

In order to explore the reasons for stagnation we created a 

difference Image between the modulus of the true object and that of the 

restored object for the case of Intermediate taper (taper #1).    This 
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Taper *1, 
Large Seoaraticn 

FIGURE 5-4.    CONVERGENCE BEHAVIOR AS A FUNCTION OF  ILLUMINATION TAPER 
AND SUPPORT SEPARATION 
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FIGURE 5-5. RECONSTRUCTIONS OF OBJECTS WITH UNTAPERED ILLUMINAT ION 
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FIGURE   5-6 
ILLUMINATION. 

RECONSTRUCTIONS   OF   OBJECTS 
(Taper II in Figure 5-3) 

WITH   MILDLY   TAPERED 
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FIGURE  5-7.     RECONSTRUCTIONS 
(Taper #2 1n Figure 5-3) 

OF  OBJECTS  WITH  TAPERED   ILLUMINATION. 
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difference Image Is bipolar and a bias was added for display In Figure 

5-8. Notice that the difference Image Indicates that the reconstruction 

Is shifted In the horizontal direction relative to the true object. 

This suggests that the algorithm may be stagnating because of Its 

Inability to properly register the reconstruction relative to the 

support constraint when tapered Illumination is used. 

To better understand this conjectured mode of stagnation consider 

an object with tapered Illumination f(x,y). We define a binary mask 

m(x,y) that is the characteristic function of the known support: 

m{x.y) ■ 
1 . (x.y)eS 

(5-6) 

0. (x.y^S' 

where S' stands for the complement of S. An image g'U.y) outputted 

by the Iterative Fourier transform algorithm is the inverse Fourier 

transform of a Fourier-domain estimate having modulus equal to the given 

Fourier modulus data coupled with the current estimate of the Fourier 

phase. Suppose the output image Is Just a shifted version of the 

object: 

g'(x.y) ' f(x - x0. y - yo) (5-7) 

A shift In the object domain Introduces a linear phase factor in the 

Fourier domain and has no effect on the Fourier modulus. This output 

Image will clearly satisfy the Fourier modulus constraint. The output 

<<nage has, however, been shifted relative to the mask so that the object 

tain support constraint has been violated. In other words, 

.ultlplying by the mask function will crop an edge of the output image. 

We use a normalized error metric to indicate the degree of Inconsistency 

between an estimate and the object support constraint: 
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FIGURE 5-8. MODULUS DIFFERENCE BETWEEN OBJECT AND RECONSTRUCTION. 
(Illumination due to Taper #2 in Figure 5-3) The bipolar difference 
image has been biased up for display. 
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Y   Ig'lx.yjm'U.y)!2 

E? - X^   = r (5-8) 
7 |g'(x.y)r "o 

x.y 

where m^x.y) Is the characteristic function of S'. If the shift vector 

(x ,y ) Is small with respect to the Illumination taper the object 

domain error metric will also be relatively small. This Is because only 

the tapered edges, where there Is little energy, will be cropped and 

this contributes to only a small portion of the total object energy. 

Though the cropped output Image now satisfies the support 

constraint, Its Fourier-transform modulus no longer exactly equals 

|F(u,v)| . It can easily be shown that the Fourier-domain error metric 

Is also small. Thus the error metric penalty Is small In either domain 

when shifting a tapered object by a small amount. An algorithm that 

chooses successive estimates based upon these error metric objective 

functions will be insensitive to small shifts and would easily stagnate 

due to extremely small slopes In the objective function. Such an 

algorithm would be Ineffective at finding the proper object 

registration. Furthermore, one can imagine that with the nght 

redistribution of the cropped object energy an object estimate could 

correspond to a local minimum In the objective function. 

Although the mode of stagnation Just presented is conjecture, it 

provides the motivation for the "shrunken-mask" algorithm. The 

shrunken-mask algorithm Is designed to find the proper registration 

early on In the iterative reconstruction thus circumventing 

shift-related stagnation that might otherwise appear. 

Consider a new binary mask m (x.y) created by nardlimltlng the 

tapered illumination function with some intermediate threshold value: 
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1 .    (*,y)     such that    w{x,y)i   >    t 
m (x,y) 

[0,    (x.y)    such that [w{x,y)i   <    t 

(5-9) 

where t 1$ the threshold value, 0 <^ t ^ 1. Notice that «iJx.y) will be 

a "shrunken" version of the full mask m(x,y) defined for t * 0. Suppose 

that we employ the shrunken mask as the support constraint. If we crop 

the true object with the shrunken mask this will yield an estimate with 

a modest penalty In both the object and Fourier domains, so long as the 

threshold value is not too large. Notice, however, that a shift in this 

cropped estimate will yield an object-domain penalty, due to the 

shrunken mask and the artlflcally created discontinuous object ec es. 

that is much greater than the penalty that would be due to t^e normal 

support constraint. THUS one would expect the output image to be 

centered better with the shrunken mask. 

While the Fou 1er modulus and the shrunken-mask support constraints 

are inconsistent, they may still be jointly enforced in an iterative 

reconstruction algorithm to get an intermediate reconstruction. We 

might expect this intermediate result to display gross features of the 

true object in proper registration. Enlarging the mask to its full size 

(setting t « 0) removes the constraint inconsi stenc> and allows for a 

complete reconstruction that hopefully avoids shift-related local 

minima. The shrunken-mask algorithm is shown schematically in Figure 

5-9. 

The shrunken-mask algorithm was first tested on the elliptical 

object where the taper (taper #2 in Figure 5-3) induced stagnation in 

previous trials. The convergence characteristics are displayed in 

Figure 5-10. It Is clear that the conventional algoritnm performed 

better early on In the Iterative sequence. This is reasonable since the 

support constraint is Initially looser and easier to satisfy. By 

contrast, the shrunken-mask algorithm error metric quickly levels off 

while an Intermediate reconstruction is being produced but drops 

dramatically when the full-size mask Is Introduced. 
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True object 

Intermediate result 

Ptnal   reconstruction 

FIGURE 5-9.    THE SHRUNKEN-MASK ALGORITHM 

■o 

'0 

FIGURE 5-10.    CONVERGENCE FOR SHRUNKEN-NASK ALGORITHM.    Taptr Is Taper 
#2 In Figure 5-3.    The shrunken mask had a threshold value t ■ .9. 
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5.4    THE ENLARGING MASK ALGORITHM 

While the success In the shrunken-mask algorithm Is encouraging the 

amount of Illumination taper for which it worked remains extremely 

small. A much more substantial taper was introduced by using a circular 

convolution kernel with a radius of 4 pixels. The resultant 

Illumination pattern Is shown in Figure 5-11. When the shrunken-mask 

algorithm was applied to an object with this Illumination the 

convergence was not much better than the conventional algorithm. This 

was true for a variety of threshold values that were tested. Apparently 

the increased taper Is a significant obstacle for the shrunken-mask 

algorithm. 

Recall that the shrunken-mask algorithm Jumps from a small mask to 

the full mask in a single step. A logical generalization of the 

shrunken-mask algorithm uses several intermedlate-size masks in order to 

make a more gradual transition to the full size mask. We call this the 

"enlarglng-mask" algorithm. The collection of masks used in a given 

application Is characterized by a sequence of threshold values. Tne 

convergence curve for the enlarglng-mask algorithm when applied to an 

object with this increased taper is shown in Figure 5-12. The scallop 

effect exhibited by the convergence curve is due to the successive 

application of increasingly enlarged masks. The enlarging-mask 

algorithm clearly out-performs the shrunken-mask algorithm and the final 

reconstruction exhibits very goo; agreement with the data and support 

constraint. 

A final trial was performed with an even more realistic 

illumination taper created with a Gaussian-like convolution kernel with 

a maximum radius of 6 pixels. This kernel, K(r), ras formed by 

correlating a circle function with a radius of 2 pixels with its own 

autocorrelation: 
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FIGURE 5-11.    ILLIWINATIOM PATTERHS 
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K(r) « CIRC  (r/2) ♦* CIRC (r/2) ** CIRC (r/2), (5-10) 

where the doublt star Indicates tHO-dlatnslonal crosscorrtlatlon. Thl^ 

kernel Is a close approxlaatlon to a tM-dlatnslonal Gaussian function. 

The resultant lllialnatlon pattern Is shown in Figure 5-11. Note that 

this lllualnatlon has a saoother taper and that the tails extend out 

further at very low levels. The convergence curves for this case are 

shown in Figure 5-13. Again the enlarglng-aask algorltha succeeds at 

finding a reconstruction that Is In excellent agreeaent with the data 

and support constraint whereas the conventional algorltha did not. This 

reconstruction Is visibly Indistinguishable fro* the true object. The 

results of reconstructions performed with and without the enlarglng-aask 

algorltha are given In Figure 5-14 for lllialnatlon patterns due to the 

circular and Gaussian convolution kernels. 

While tapered lllualnatlon presents significant stagnation probleas 

for conventional phase-retrieval algorlthas. these exaaples deaonstrate 

that the enlarglng-aask algorltha successfully clrcuavents these 

difficulties, even In the presence of large aaounts of taper. 
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FIGURE S-14. RECONSTRUCTIONS W.Mh AND WITHOUT THE ENLARGING-MASK 
ALGORITHM (EMA). The illumination pattern In A-C Is shown In Figure 
5-11B.     The Illumination pattern  In D-F Is shown  In  Figure 5-11C. 
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6 
GRADIENT-SEARCH METHODS IN PHASE RETRIEVAL 

6.1    INTRODUCTION 

Researchers have explored Many approaches to solving the phase 

retrieval problem. These Include direct Methods using complex zeros in 

the analytically extended Fourier modulus [6.1], the error-reduction 

algorithm [6.2. 6.3], Input-output algorithms [6.3], recursive 

algorithms [6.4, 6.5], and gradient-search algorithms [6.3, 6.6, 6.7, 

6.8]. Of these approaches the Input-output algorithms or more 

specifically the hybrid input-output (HID) algorithm appears to be the 

current algorithm of choice when operating on 2-dlmenslonal data. The 

HID algorithm has consistently outperformed competing algorithms with 

respect to computational burden and robustness to noise. In spite of 

the relative success of the input-output algorithms there are documented 

instances In which such an algorithm converges extrenely slowly or even 

stagnates In its convergence [6.9]. 

In this report we are interested in the specific phase-retneval 

problem for which the Fourier Modulus and an object support constraint 

are known. We resurrect the Idea of employing a gradient-search method 

in the hopes of developing an algorithm that will compete well with or 

coaplement the Input-output approach. Gradient-search approaches 

require the determination of an objective function that indicates tne 

degree of consistency with the data and the constraints. This choice is 

pivotal in designing a specific gradient-search algonthM. We oropose 

^ere three distinct objective functions and explore the performance of 

each when used in conjunction with standard gradient-search techniques. 

In the next section we discuss the error-reduction algorithm, the parent 

of the Input-output algorithms and Indicate how it can be Interpreted as 

a gradient-search algorithm. We introduce the first new objective 

function, called the summed objective function. In Section 6.3. T;,e 

second and third objective functions are Introduced In Sections 6.4 and 

6.5.      These objective functions utilize the same object-support error 
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metric but differ In  their underlying parameters.     He conclude  In 

Section 6.6 with projections of future work. 

6.2    THE ERROR-REDUCTION ALGORITHM 

An Iterative algorithm that has enjoyed much success in phase 

retrieval is known as the error-reduction (ER) algorithm, which may be 

easily understood by referring to Figure 6-1. This algorithm consists 

of transforming between object and Fourier domains and applying 

appropriate constraints in the respective domains. We use the symbol 

g|((x) to represent the estimate of a object given by the kth iteration 

of the ER algorithm. The prime notation In gk'(x) indicates a version 

of the kth estimate for which the Fourier-domain constraints have been 

enforced. We use uppercase symbols to denote a Fourier-domam 

representation of a function. In practice the data are always sampled 

and therefore we use the discrete Fourier transform (OFT) 

6(u) Eg(x)e-1Z''u,x/" (6-1) 
» 

and its  inverse 

g(x) ■ H-2Y.MS2'u't/H 6-: 

ü 

in the algorithm. Of course the OFT is most efficiently computed with a 

fast Fourier transform (FFT). In Eqs. (6-1) and (6-2) x and u are 

two-cnmensional vectors in the object and Fourier domains, respectively, 

and the summation notation is understood to represent a separate 

summation for each component of the vector running from 0 to N-l. 

In order to enforce a given constraint we define a least-squares 

constraint operator. The function of the operator is to produce an 

output that conforms to the constraint but differs from the input as 

little as possible in a least-squares sense. It can be shown that when 

the constraint operators  have  this  property the mean  squared  error 
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FIGURE 6-1.  ERROR REDUCTION AL30RITHH 
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between the latest estimate and the data or known Information will 

decrease (or stay the same) at each Iteration [6.3]. Thus as the 

algorithm proceeds, the reconstruction estimate conforms more and more 

closely to the given constraints. This Is the motivation for the title 

"error reduction." 

Although many types of constraints have been used with the ER 

algorithm, our problem affords a modulus constraint in the Fourier 

domain In conjunction with a support constraint In the object domain. 

This specific realization of the ER algorithm Is Illustrated In Figure 

6-2. The modulus constraint Is performed by substituting the modulus of 

the latest estimate with the known modulus while leaving the Fourier 

phase untouched: 

G'(u) - GH!FHl (6-3) 
|G(u)| 

where F(u) Is the known Fourier modulus. The object domain constraint 

Is equally straightforward and is enforced by setting the values of all 

pixels that fall outside of the support equal to zero: 

Vi(x) " 

gk
,(x) ,  xc s 

(6-4) 

0      xe S' 

where S stands for the set of pixels within the known support and S' is 

the complement of S. 

In order to monitor the progress of the ER algorithm 1t is useful 

to define an error metric for each of the constraints. The error metric 

is essentially a mean squared error between estimates before and after a 

constraint has been applied and Indicates the degree of agreement 

between the latest estimate and the known constraint. The error metric 

for the Fourier modulus constraint Is defined as follows: 

86 



gb(x) 

i 
Apply Object Domain 

Constraint: 

Vi(x) • ' 
g^'Cx). x e S 

0     . x e S' 

I 
^'U) 

F.T.   {•} Gk(u) 

i 
Apply Fourier Modulus 

Constraint: 

V(u) 
Gk(u|F(u)| 

Gk'(u) 

FIGURE f"2.    ERROR REDUCTION ALGORITHH FOR FOURIE« HOOULUS AND OBJECT 
SUPPORT CONSTRAINTS 
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eF
2 • N-2 53 [|S(u)| - |F(u)|]2   .     (6-5) 2.^^ r,.,..>,  ,.,...„2 

u 

The error metric for the object-support constraint is given by 

e0
2 » E I g^x)!2 (6-6) 

xeS 

As the algorithm proceeds both of these error metrics will decrease. If 

they simultaneously achieve values close to or equal to zero then the 

algorithm has achieved a restoration that has good agreement with both 

constraints. 
2 

Suppose that we treat the error metric e^   as an objective function 

to be used In a gradient-search algorithm.    Our desire Is to minimize 

the objective function by varying a set of parameters In the estimate. 

The parameters we employ are the Individual pixel  values of the 

estimate.    For the present we treat only real-valued objects which 
2 

require N    Independent parameters for an NxN Image (complex objects 
7 th 

require 2N    parameters).    The j     pixel  In the object domain 1s located 

by a vector x. where the subscript j  represents any convenient ordering 
2       J 2 

of the N   pixels.    We construct an    N -dimensional  Euclidian vector 

space for which each coordinate axis corresponds to an  individual 

parameter.    Each point In this parameter space therefore corresponds to 

an object estimate and may be represented by the parameter vector g(x). 

We represent the j     parameter and its associated parameter space unit 

vector by    g(xj and    v.,  respectively.     The unit vector v. may be 

Interpreted as an estimate for which all pixels are zero except for the 
t h 

j  pixel which has unit strength. This vector may also be represented 
2 

by the Kronecker delta 6       .    The objective function, ec (g(x)), is a 
o X»X J r 

function of the   N   parameters, and may be visualized as a surface in an 
2 

N +1 -dimensional space.    If we were able to calculate the gradient of 

this surface at given estimate locations then well-known gradient-search 

methods could be employed.    The gradient Is formally expressed 
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N2        2 

"F191"" ■ ^ ^fel VJ       " <6-7) 

One method of computing the gradient Is to proceed numerically using a 

finite differences approximation to the partial derivative: 

aeF
2       e 2(g(x) ♦ av ) - eF

2(g(x)) 

IgT^T * ^ 1 '  {6-8) 

where a  Is small  compared  with  significant feature sizes  in the 

objective surface.    This brute-force approach Is computationally 
2 

prohibitive since each evaluation of eP   Involves an NxN FFT and this 
2 must be accomplished for each of the N    parameters.   Fortunately Flenup 

[6.3] showed that the exact partial  derivative may be  calculated 

analytically as follows: 

^b-2^'-^']     • (6■9, 
3g(xj) 

We reemphaslze that the prime Indicates that the Fourier magnitude 

constraint has been applied to the estimate. If Eq. (6-9) is 

substituted Into Eq. (6-7) the result Implies that the entire gradient 

may be evaluated with a forward and an Inverse FFT: 

Ve2(g(x))   . £ 2[g(xj) - g'Ujjjvj 
J . (6-10) 

- 2  [g(x) - g'(x)] 

This desirable result means that a gradient search method could 

realistically be employed for the ep (g(x)) objective function. 

89 



Perhaps the simplest gradient-search algorithm is the method of 
steepest descent [6.10]. According to this approach the latest estimate 
may be Improved upon by moving In parameter space In a direction 
opposite that of the gradient. The location of the minimum of the 
objective function along the resulting one-dimensional cut Is then 
determined giving an Improved estimate.    This procedure Is repeated 
Iteratlvely until a local minimum In the objective function Is achieved. 

Some optimization problems afford additional a priori Information 

about disallowed regions In parameter space. There are many ways of 
constraining the final solution to the allowed region of parameter 
space. One obvious way of Incorporating this information Is to proceed 
as usual with the steepest-descent algorithm until an estimate Is 
produced that violates the a priori knowledge. A constraint operator is 
then employed to find the closest allowed estimate. The 
steepest-descent algorithm Is then applied to the latest allowed 
estimate. Unfortunately this constrained steepest-descent algorithm can 
be very slow since the direction of steepest descent Is often In 
competition with the direction enforced by the constraint operator. 

A careful analysis of the ER algorithm reveals that It Is, in fact. 
a constrained steepest-descent algorithm for which the objective 
function is e^ (g(x)) and the knowledge of object support defines a 
disallowed region In parameter space. The kth Iteration of the ER 
algorithm begins with an estimate, dkt*)* and replaces Its Fourier 
modulus with the known Fourier modulus to get gk'(x). Notice that this 
intermediate result Is equivalent to moving from gkU) In parameter 
space In a g^'U) - qAx) direction; that Is, ir a direction opposite 
to that of the gradient. In fact It can be shown that the objective 
function Is a minimum (zero) at g^'UK Typically gk'(x) will violate 
the known support and therefore exists In a disallowed region in 
parameter space.   Applying the support constraint to   gk'(x) produces a 
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new estimate, SL+I i  that now resides  In the allowed  region,   thus 

completing one iteration of the constrained steepest-descent algorithm. 

While we have thus far treated the Fourier-domain error metric as 

an objective function we could Just as easily have selected the object- 

domain error metric, e {g'(x)), for that role. The gradient for this 

objective function Is easily obtained because the calculation of the 

partial derivative with respect to a pixel value Is more direct: 

^2 . ^    .       ,2 

^r-^r S19^1 

x
jes 

(6-11) 

2g'(Xj) Xj e S' 

Recall that the support constraint operator sets to zero all pixels in 

S' and leaves those In S untouched. Clearly, this operation moves the 

latest estimate gk'(
x) 1n a direction opposite that of Ve (g'fx)). In 

addition this objective function Is quadratic along this one-dimensional 

cut with a minimum value (zero) at g^iU). The Fourier modulus 

constraint may now be Interpreted as the operator that takes gk+1(x) 

out of a new disallowed region In parameter space. Thus the ER 

algorithm qualifies as a constrained steepest-descent algorithm from 

this new perspective as well. 

6.3    THE SUMMED OBJECTIVE FUNCTxON 

Historically the error metric e has been used to evaluate an 

estimate for which the Fourier constraints have been satisfied. 

Consequently, this error metric is a function of the pixel values In a 

primed estimate, as defined In Eq. (6-6). A simple generalization of 

this definition yields a new error metric that can be applied to any 

estimate g(x): 
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?(9(x))-  E [g(x)]2 (6-12) 
60 '      xeS' 

2 
It Is easy to show that the partial derivative of e0 with respect to 

pixel values In the estimate has the same form as given In Eq. (6-11). 

Clearly this generalized objective function and Its gradient still 

pertain to functions for which the Fourier constraints have been 

satisfied. Notice, however, that e. (g(x)) now has the same underlying 
2 parameters as e^ (g(x)).    This observation affords  still  a  third 

interpretation of the ER algorithm that yields new insight.    The ER 

algorithm may be viewed as alternately performing steepest-descent 
2 2 operations on two objective functions, e^ (g(x)) and e0 (g(x))t that 

coexist In the same parameter space. In practice It Is often observed 

that the ER algorithm converges rapidly for Iterations early In the 

sequence but that convergence becomes painfully slow as the Iteration 

number Increases. This Is because the work performed In minimizing the 

eVg(x}) objective function Is largely nullified when minimizing the 

e2(g(x)) objective function, and vice versa. Figure 6-3a Illustrates 

this point pictorially. This viewpoint suggests the definition of a new 

objective function that is the sum of the opposing objective functions: 

e 2/_/„vx - . 2/  ,  xx       .2 
s (g(x)) •eF

t(g(x)) ♦ e0
4(g(x)) . (6-13) 

The gradient of this new objective function is simply the sum of the 

gradients already derived: 

^s
2(g(x)) - 7BF

2(g(x)) + 7«i)
2(g(x))   . (6-14) 

The calculation of this new gradient Involves a forward and Inverse FFT 

and a small amount of computational overhead. Figure 6-3b suggests how 
moving In  a  direction  opposite  that of the  gradient of the surnned 
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FIGURE 6-3. OBJECTIVE FUNCTION SURFACES FOR TWO PARAMETER OBJECTS 
a. Surfaces used in error reduction, b. Summed objective function 
surface. 
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objective function may circumvent stagnation due to opposing 

constraints.    Notice that If we choose to remain with steepest descent 
2 

using e , the stepslze still has to be determined. This can be 

accomplished by one of a variety of line search methods that utilize 

additional samples of the objective function. Each additional 

objective-function evaluation requires a single forward FFT. 

Furthermore, because the gradient of the summed objective function Is so 

easily computed more sophisticated gradient-search methods such as the 

method of conjugate gradients or a memoryless quasl-Newton method [6.10] 

may profitably be employed. Finally, a simple generalization of these 

ideas to include complex objects Is found In Appendix E. 

6.4   THE e0
2(g(x)) OBJECTIVE FUNCTION 

We now briefly review the basic characteristics of the so-called 

input-output phase-retrieval algorithms. These observations will 

suggest the defining of a new objective function that will serve as an 

alternative to the summed objective function. 

It is convenient to partition an iteration of the ER algorithm into 

two steps.    The first step enforces the Fourier-domain constraints while 

the second step enforces the object-domain constraints.    For the moment 

we focus on the first step.    This step involves a Fourier transformation 

of the latest estimate, a substitution of the Fourier modulus by the 

known values, and an inverse Fourier transformation.    Together,  these 

operations constitute the enforceim nt of Fourier knowledge and may be 

viewed as a single nonlinear operation.    This is depicted schematically 

in Figure 6-4.    It Is Important to recognize that any output of this 

operation will  satisfy the Fourier-domain constraints and consequently 
2 

ep   will be zero.    Should the output also satisfy the object-domain 

constraints then a solution has been found.    This suggests that clever 

adjustments to the input function night produce an output that more 

closely satisfies the object-domain constraints.    The degree of 
2 

consistency with the support constraint can be monitored by the e 

94 



Input g "{•} 

Fourier 
Constraints 

Output g' -*•- "■'i-i 

FIGURE 6-4.    INPUT-OUTPUT ALGORITHM 
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error metric defined In Eq.  (6-6).    A variety of feedback strategies 

borrowed from nonlinear-systems control theory can be employed to modify 
2 

the latest Input In order to drive the    e      error metric toward zero. 

The use of each feedback rule defines an Individual algorithm and the 

collection of  feedback  rules defines  the class of Input-output 

phase-retrieval algorithms.   All feedback rules that have been employed 

to date are point operations meaning that  an  Input pixel-value 

adjustment Is based solely upon the desired change In the corresponding 

output pixel value. 

We recognize immediately that if a solution were to serve as an 

input function then it will pass through the nonlinear modulus operator 

unchanged. Notice however that other inputs can also output a solution. 

In fact any Input function with the proper Fourier phase will produce a 

solution. Thus a solution will result from any of an uncountable 

infinity of input functions, many of which differ dramatically from the 

solution. The ER algorithm may be viewed as a particular input-output 

algorithm for which the feedback rule drives the input (as well as the 

output) toward a solution. By contrast most input-output algorithms 

have a more flexible feedback rule since they may converge upon any of 

the many input functions that yield a true solution upon output. 
2 

We reiterate that any output for which e is zero will be a 

solution. Therefore, the task of simultaneously minimizing the Fourier 

and object-domain error metrics has been converted into minimizing a 

single error metric. Unlike the summed objective function, however, 

this blending of the two error metrics into one is accomplished without 

resorting to ad-hoc methods such as sunning. 

We use the term objective function to refer to an error metric in 

conjunction with a set of underlying parameters. A logical candidate 

for an alternative objective function suggested by input-output 

algorithms is the e^ error metric as a function of input pixel values. 

This new objective function should not be confused with the e   (g'(x)) 
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objective function used In the ER algorithm which treatsthe N 
object-estimate (output) pixel values as parameters. By contrast the 
new objective function, e (g(x)), utilizes the Input-function pixel 
values as parameters associated with the object estimate given upon 
output. Having made this subtle but critical distinction we may now 
write an expression for the gradient of the e (g(x)) objective 
function; 

N 2 

As before a numerical computation of the gradient Is overwhelming. It 
Is natural to ask if an analytic expression for the gradient can be 
derived. While the details of this calculation are outlined In Appendix 
F, we give the suprlslngly simple result here: 

3ef 

3g(xj) 

y f|F(u)|6t(u)      G'(u)G* (u)"] 
giZTru-Xj/N (6-16) 

where * denotes complex conjugate and G (u) Is the Fourier transform of 

an error Image g_(x), where 

ge(x) - S'(x)g'(x) (6-17) 

and 

S'(x) 

1 , x ■ S' 

0 . x e S 

(6-18) 
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Three FFT operations are required to compute G from g. A very 

Important feature of the analytic partial derivative quoted In Eq. 

(6-16) Is that It has the form of a OFT. The Implication Is that given 

the expression within the brackets all partial derivatives needed to 

compute the gradient are provided by a single DFT. Thus the total 

computational cost of finding 7B (g(x)) for a £lven Input function Is 

four FFTs plus minor overhead. With these manageable computational 

requirements the e (g(x)) objective function may bt minimized via 

various gradient-search algorithms. Some care must be taken in the 

evaluation of Eq. (6-16) to avoid division by zero. This problem can be 

circumvented by adding a small constant to the Fourier magnitude of the 

Input function at those spatial frequencies for which |6(u)| is 

Identically zero. 

Notice that, like Input-output algorithms, there are many Input 

functions to which a gradient-search algorithm can converge for this 

objective function. This means that the objective function contains 

many global minima, each equally acceptable for producing a solution as 

an output. It Is conceivable that this multiplicity of Input solutions 

could yield faster convergence rates than an objective function having 

only a single global minimum (e.g. the summed objective function). 

It Is useful to recognize that any gradient-search algorithm used 
2 In conjunction with the    e0 (g(x)) objective function may also be 

interpreted as a particular feedback rule In an Input-output algorithm. 

Unlike other feedback rules, however, this rule Is not a point 

operation. In other words, the gradient-search feedback rule is more 

flexible than other existing rules since many Input pixels may be 

adjusted In order to effect a desired change In a single output pixel. 

Unfortunately, there Is no guarantee a priori that the e ^(g(x)) 

objective function has a surface contour that lends Itself to 

minimization via gradient search.   For example the   e    (g(x)) surface 
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My contain wmy local alnlM In which gradiant-starch algorithms could 
becoaw entrapped. Answers to such questions are often the byproduct of 
extensive experimentation. 

Some preliminary experiments were performed In which the e0 (g(x)) 
objective function was used In conjunction with the method of steepest 
descent. A number of observations can be made about the results 
displayed In Figure 6-5. Notice the dominant stripes In the gradient 
Image for the first Iteration. By gradient image we mean the Image for 
which each pixel value Is assigned the value of the associated component 
of the gradient. This Is the Image that Is scaled and added to the 
latest Input Image to acquire the succeeding Input Image In a 
steepest-descent scheme. These stripes are Intriguing; but their origin 
is unknown at present. The magnitude of the gradient was observed to 
decrease with Iteration number. As a result, the stripes from the first 
gradient Image still persist In the 100th Input Image. Notice, however, 
that the stripes do not appear In an output Image, which Is consistent 
with the notltn that the Input Image need not resemble the output Image. 
It Is encouraging that after 100 Iterations the output image bears a 
rough resemblance to the true object. More experimentation with this 
objective function Is needed before a judgement can be made about its 
usefulness. For example, more sophisticated gradient-search methods 
would have a better chance of converging to a solution. Should the 
*0 (g(x)) objective function in conjunction with the best 
gradient-search methods prove not to be competitive with current 
input-output algorithms. It may yet be useful for breaking out of 
stagnation episodes. 

Me conclude this section by noting that while we have restricted 
objects to be real-valued for simplicity, the case admitting complex 
object;: Is of great Interest when objects are Illuminated coherently. 
The definition and derivation of the gradient of the e (g(x)) objective 
function for complex objects Is presented In Appendix 6. 

99 



FIGURE  6-5.     PRELIMINARY 
OBJECTIVE FUNCTION 

IMAGES  DERIVED   FROM  MINIMIZING THE  e. 

IQO 



6.5    FOURIER PHASE PARAMETERS 

The choice of underlying parameters for an objective function can 

have a  tremendous  Impact  upon  the behavior of gradient-search 

algorithms.    To this point we have selected the Input pixel values (or 
2 2 real  and Imaginary parts of the   Input pixels) as our    N    (or 2N  ) 

parameters underlying the e   (g(x)) objective function.   This choice has 

merit since It affords an analytic expression for the gradient requiring 

only four FFTs.    An alternative and very different set of parameters 

worth consideration is the set of Fourier phase values In a Fourier 

estimate of a solution.    Because the Fourier modulus is known, a Fourier 

estimate Is determined by an estimate of the Fourier phase, 4>(u): 

G'(u) •  |F(ü)|ef^u). (6-19) 

An Inverse FFT gives the corresponding object-domain estimate, 

g'^-N^ElFfuJle^V2™-*/"    . (6-20) 
u 

This estimate may also be Interpreted as the output from an input-output 

algorithm since It has the proper Fourier modulus. Consequently, the 

object-domain error metric can be computed: 

e0      ■£    IS'WI2 • (6-21) 
xeS' 

2 
The e0

t error metric Is therefore implicitly a function of the Fourier 

phase values and e0 (<t)(u))  serves as the third new objective function 

Introduced In this chapter.   We mention parenthetically that throughout 

this section we allow for complex-valued objects since there  Is no 

simplification of derivations by resorting to real-valued objects. 

Notice that the designation  of  the  Fourier phase values as the 
2 

underlying parameters has fixed the number of parameters at    N  .    This 
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Is exactly half the number of parameters that occur when using the real 

and Imaginary parts of the Input pixel values as parameters. It remains 

to be seen, though. If an analytic expression for the gradient of the 

object-domain error metric with respect to the Fourier phase parameters 

can be derived. 

The gradient Is defined as 

N23e2 
Ve2(^(u)) .£ -f-r v. (6-22) 

where v is the unit vector In parameter space associated with the 

phase parameter at location u. In the Fourier-domain estimate. As 

usual, the heart of the gradient Is the partial derivative 

3e2 

^V   ^V  xTs 
£   |g'(x) (6-23) 

5. *•"«♦"■ (6-24) 

where C.C. stands for complex conjugate. The partial derivative in Eq. 
(6-24) may be simplified: 

^ - N-2 L |F(u)|e-12^x'N -1- e-^")      (6.25) 
3$(Uj) 3«(u.) 

N"2 ZlFtu)^-'0'" A/,,(-i)e --"'6 
u 

-12mi'x/N, t\*'M{u)t (6-26) 
U.Uj 
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Applying the sifting property of the Kronecker delta,    6u u  ,  in Eq. 

(6-26) leaves only one term from the sumnatlon: 

|a^.M-2|F(Uj)|.-,2™J-«/N(.t).-,«'Uj'        • (6-27) 
J 

Substituting back Into Eq. (6-24): 

^--j - E   [g'(x)(-i)rr2|F(uj)|e-12-j-/Ne-i^u
j) * C.C.I    ^ 

- N-2  |F(uj)|[((.i)e-i^uj) E S'(x)g'(x)e"i27ruj-X/N)  + C.C.I 

(6-29) 

The summation In Eq. (6-29) is the Fourier error Image.   6e(u), defined 

in the previous section by Eq.  (6-17).    Therefore we have 

"I 
HUj) 

• N"2 lF(uj)ir(.i)Ge(uj)e-1,>(uj) ♦ C.C.I (6-30) 

» 2N-2  ^(u^lImJG^u^e-^^jj (6-31) 
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where Im {•[stands for the Imaginary part. 

Again Me have been able to find an expression for the gradient with 

a remarkably compact form. Equation (6-31) Implies that the component 

of the gradient associated with the spatial frequency u. 1s 

proportional to the modulus at that spatial frequency and Is dependent 

upon the Fourier-domain error Image and the latest Fourier phase In a 

less direct way. An examination of Eq. (6-31) reveals that the entire 

gradient can be computed with 2 FFTs plus minor overhead. The actual 

evaluation of the objective function for a particular Fourier-phase 

estimate requires only one FFT. Thus employing Fourier-phase values as 

optimization parameters Is certainly competitive with the use of 

Input-pixel values from the standpoint of operations required to compute 

the gradient. How these two gradient-search formulations compare with 

respect to convergence properties can only be determined by 

experimentation. We might expect the Fourier-phase formulation to 

perform differently since the Fourier-phase parameters are so different 

In character from and nonlinearly related to the Input pixel-value 

parameters. Use of the Fourier phase for parameters has the added 

appeal that these are In fact the unknowns In the phase-retrieval 

problem. As a result the Fourier phase formulation Is somewhat mure 

direct and may lend Itself to analysis when noise is present. 

6.6   CONCLUSIONS AND FUTURE WORK 

We have shown that the ER algorithm may be interpreted as a 

constrained steepest-descent algorithm for which the objective function 

consists of the Fourier-domain error metric as a function of pixel 

values In the latest estimate. In addition we have proposed three new 

objective functions for performing phase retrieval using gradient-search 

methods.    These Include: 1) use of the summation objective function with 
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pixel values of the latest estimate as optimization parameters, 2) use 

of the object-domain error metric with Input pixel values as parameters, 

and 3) use of the object-domain error metric with Fourier-phase values 

as parameters. Analytic expressions for the gradients for each of these 

approaches have been derived. The simplicity of these expressions 

Implies that gradient-search methods have the hope of being 

computationally tractable and even competitive with existing 

Input-output algorithms. The total number of FFTs required to evaluate 

the objective function and compute the gradient for each of these 

approaches Is shown In Table 6.1. 

TABLE 6.1. NUMBER OF FFTs REQUIRED FOR GRADIENT-SEARCH APPROACHES 

ctlve Function #FFTs to evaluate 
objective function 

#FFTs to evaluate 
gradient 

4(g(x)) 1 2 

^(gU)) 1 2 

•0
2(g(x)) 2 5 

e^u)) 1 2 

Of course extensive experimentation needs to occur to see if the 

surface contour of each proposed objective function Is well suited for 

gradient-search methods. Surface contour depends upon such things as 

the Intrinsic definition of the objective function, the particular true 

object, and the amount of noise In the data. The suitability of a 

particular gradient-search algorithm to a given surface contour 

manifests itself in the convergence rates of the algorithm. For example 

a memory less modified Newton method [6.10] may converge well with the 

same objective function for which a steepest-descent algorithm 

stagnates. Software Is currently being developed to test for the 

convergence rates as a function of type of objective function, choice of 

true object, amount of noise and gradient-search method employed.    In 
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addition, thtst gradltnt-starch approaches need to be tested in a role 

that coaplenents current Input-output algorithms. Gradient-search 

approaches could Mke a significant contribution to the field of phase 

retrieval, should they consistently provide a «ode of escape fron any of 

the various typesof stagnation that hive been known to appear with 

Input-output algorlthas. 
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7 
MODELING APPROACH TO PHASE RETRIEVAL 

Tht modeling approach Is a new Mthod for attempting to solve the 

phase retrieval problem. In this section we describe the modeling 

approach in general terms, and then discuss a particular Implementation 

that was attempted. 

Let F(u.v) - |F(u.v)| exp[lD/(u,v)] be the complex Fourier transform 

of a particular object. Suppose that either F(u(v) over the entire 

measurement aperture or F(u,v) over some small area can be modeled by a 

parameterized function, M: 

M(utv,;a,b,...) ■ |M(u,v;a,b...)|   exp[1*(u,v;a,b,...)],      (7-1) 

where a.b.... are unknown parameters. If we are given only the Fourier 

modulus. |F(u.v)|, then It might be possible to estimate the phase, 

^(u.v). by (1) finding the values of the parameters a.b.... that best 

fit the modulus of the model, |N(u,v;a,b,... )| , to |F(u,v)| . and (2) 

evaluating ^(u,v;a,b,...} for that set of values of the parameters. 

The most difficult part of this approach Is finding a model, N, 

that is suitable. 

In a first attempt at using the modeling approach, each small area 

about the local maxima of the Fourier modulus was modeled using a 

function taken from the control theory literature. Suppose that 

contours about a local maximum of the Fourier modulus, at a level 3 dB 

down from the local maximum, have an elliptical shape, with the major 

axis of length wb at an angle 9b relative to the u-axls and minor axis 

w^.   Let the local maximum be at location (ub,vb) where It has the value 

Ab " I F(ub.vb)|. (7-2) 
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Also define the distance fron a given point (u,v) to the peak (ub.vb) as 

and let 

w - [(u-ub)
z ♦ (v-vb)

z]       , (7-3) 

e - tiB"1C(v-vb)/(u-ub)] . (7-4) 

and 

wc ' wb CM<V9) * wd s1n(eb■9, ' (7"5) 

Then the model m used for a region about the local MXIMUH IS 

Aw2 

M(w;Ab,eb.wb,wd,0) ■ —x ^  (7-6) 
w.    - w   + iZvMD c c 

which has squared modulus 

and phase 

,H|2"-i—rr^ ? (7-7) 
(w^ - wY + (2wwcD)^ 

♦ - -tan'1[2wwcD/(wc
2 - w2)] . (7-8) 

Note that the parameters wb, w. and e. «re contained within   w . 

These expressions were used In the following way: 

(1) A local maximum of the squared Fourier modulus was 
found. 

(2) A curve fit of Eq.(7-7) to the squared Fourier modulus 
was performed to estimate the unknown parameters. 
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(3) Tht phase In that region was conputtd by Eq.(7-8) using 
tha parameter estimates. 

(4) Eq.(7-7) was evaluated using the parameter estimates 
and subtracted from the squared Fourier modulus, 
leaving the residual Fourier modulus. 

(5) Repeat steps (1) to (4) replacing the squared Fourier 
modulus with the residual Fourier modulus, until all 
the major local maxima are accounted for. 

(6) Form the net Fourier phase as the sum of all the phase 
functions obtained In step (3). 

(7) Form an Image by Inverse Fourier transforming the 
complex function formed from the given Fourier modulus 
and the net Fourier phase. 

2 
Note that for large w.  |M|    approaches zero and 4 In Eq.(7-8) 

approaches zero, so the model has strong local effect near each local 

maximum and a weaker effect on neighboring points. 

When the procedure was performed for a SAR Image of the type used in 

the digital experiments described In Section 5, the reconstructed Image 

bore no resemblance to the original object. The reason for failure Is 

not totally understood, but we speculate that the model, Eq.(7-6), 1s 

not appropriate to the Fourier transforms of SAR Images. 

If further work along these lines were to be pursued. It would be 

Important to first develop more appropriate models for SAR signal 

histories. 
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8 
LABORATORY EXPERIMENTS 

The objective of Task 3 of the program Is to perform laboratory 

experiments which demonstrate reduced tolerance Imaging. These 

experiments will validate the theoretical developments concerning 

constraints» measurements, phase retrieval and Image reconstruction 

algorithms» and uniqueness and sensitivity Issues under more realistic 

conditions than Is possible In the computer simulations performed under 

Tasks 1 and 2. The use of real objects, Illumination sources, optics, 

and detectors will place greater demands on the reconstruction 

algorithms. The quality of the reconstructed Images from experiment«./! 

data will be compared both to Images from computer simulations of the 

experiment and to "ground truth" Images collected In the laboratory with 

a conventional sensor having an equivalent aperture. Experimental 

parameters (e.g., measurement slgnal-to-nolse ratio» type of shape 

constraint» sharpness of shape constraint) will be varied for 

comparlslon to theoretical and computer simulation results. 

Two experiments simulating different types of systems will be 

performed: an active coherent experiment In the visible and a passive 

Incoherent experiment In the visible or Infrared. The results of the 

active coherent experiment will be useful for predictions concerning SAR 

and active laser Imaging sytems» whereas the passive Incoherent 

experiment will be pertinent to conventional passive and passive 

Interferometrlc Imaging systems. In the active» coherent experiment a 

target will be Illuminated with a laser (with various Illumination 

shapes) and Intensity data will be collected In the far-field of the 

target. Reconstruction algorithms will then be used to determine the 

phase In the far-field of the target and therefore an Image of the 

target. Thus» this experiment simulates an active» coherent 

reduced-tolerance sensor which measures Intensities only.    The optical 
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and electronic equipment requirements of this experiment have been 

determined and most of the additional equipment has been purchased, 

delivered, and tested. An Initial setup has been made of part of the 

equipment in the laboratory. Computer software is under development to 

collect and process the measurement data. The two experiments will be 

performed serially, so further planning of the passive experiment 1s 

purposely proceeding slowly until the active experiment Is approximately 

one-half complete. Further discussion of both experiments Is given in 

Sections 8.1 and 8.2. 

8.1   ACTIVE EXPERIMENT 

The objective of the active experiment Is to demonstrate Imaging of 

a coherently Illuminated target from Intensity-only measurements made in 

the far-field. This simulates a sensor having greatly reduced tolerance 

to the position and quality of Its receiving aperture compared to a 

conventional Imaging sensor. The wide range of parameters which must be 

considered In planning this experiment and which are available to be 

varied to test theoretical developments and computer simulation results 

are discussed In Section 8.1.1. Many, but due to finite resources, not 

all, of the parameters discussed will be exercised In the actual 

experiments. The experiment design Including both optics and electronics 

Is discussed In Section 8.1.2 

In order to greatly Increase the range of parameters which could be 

Investigated with a fixed amount of manpower. It was decided at the 

beginning of the program that an array processor would be purchased 

which was sufficiently powerful to perform the Iterative Fourier 

transform algorithms needed for Image reconstruction and which was 

compatible with one of ERIM's laboratory computers. (The use of 

existing VAX facilities would have required time-consuming transfer of 

large amounts of data and vastly Increased computational costs.)   A 
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suitable array processor was ordered, but delays In Its delivery have 

forced the experimental work to fall behind Its Initial timetable. A 

less powerful, but similar, array processor has been obtained on loan 

fron the manufact'.rer (Mercury Computer) until the original order can be 

shipped. Current work on the laboratory experiments Is concerned with 

writing software to collect and process the measurement data, further 

setup of optical components, and final equipment purchases. 

8.1.1. ACTIVE EXPERIMENT PARAMETERS 

A wide range of parameters Is available to be varied In the active 

experiment to test theoretical developments and computer simulation 

results. These parameters must also be carefully controlled to ensure 

meaningful results. The most Important of these parameters are 

discussed In this section. 

The pattern of illumination on the target can be described by its 

spatial and temporal coherence, shape, sharpness of edges, phase 

distribution, angle of Incidence on the target, and polarization. All 

of these parameters may affect the quality of the reconstructed Image. 

Equally Important, they may take on different values depending on the 

application being simulated In the laboratory. In an application where 

the target Is actively Illuminated by a laser, the spatial (transverse) 

and temporal (longitudinal) coherence lengths may be less than the 

target size. The laboratory system can allow Illumination with variable 

coherence lengths either by manipulating the spatial coherence of a gas 

laser or by using a broader-band dye laser. It Is known from ERIM 

Investigations that the illumination pattern shape and sharpness of the 

edges affects reconstruction algorithm convergence. In applications, 

the range of Illumination shapes and sharpness of edyes may be limited 

by practical considerations on the transmitting aperture. The 

laboratory system must accept a variety of masks and image them onto the 
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target through a controllable finite aperture to control Illumination 

shape and sharpness. Since the lllunlnation phase nay not be constant 

over the target In practical applications, the masks will need to be 

holographic If experimental control of the Illumination pattern phase 

distribution Is desired. Applications may be either monostatlc or 

blstatlc, so the laboratory system should allow for either. The target 

will. In most cases, partially depolarize the Illumination. The 

experimental system should be capable of making measurements of the two 

orthogonal components of the light at the detector. 

The target parameters Include reflectivity contrast and structure, 

surface roughness, surface topography (3-0 nature of target), motion 

during the measurement process, and noncoherent background Illumination. 

Practical targets will vary In their roughness, although nearly all will 

be rough at visible and Infrared wavelengths. The experimental system 

should primarily use rough targets to create real speckle effects. 

However, It may be useful to use smooth targets (film transparencies in 

a liquid gate) In setting up the experiment to test and debug the 

optical and electronic components and software. Real targets are 

three-dimensional, but to varying degrees. A variety of 3-0 objects 

should be available for the experiment. A practical reduced tolerance 

sensor may need to cope with target motion during the detector 

Integration time. This effect can be simulated by mounting the target 

on an motor-driven translation or rotation stage. Any real target will 

also be noncoherently Illuminated from various thermal sources. While 

this Illumination will only add a uniform bias to the far-field 

measurements, it should be Included In the experimental setup. 

The propagation path between the target and the sensor can be of 

such a length as to be either near or far field and can Include 

atmospheric turbulence, scattering (aerosols, fog, smoke), and 

absorption.    In an application, any or all  of these effects may be 
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present. The optical setup of the experiment can allow for Insertion or 

removal of lenses to give either near or far field conditions at the 

detector. (It must be noted that the size of the speckles In the 

measurement plane Mill depend on the sensor distance.) Turbulence with 

the proper statistical properties is very difficult to simulate In an 

Indoor laboratory. The best approach (and one which allows reproducible 

turbulence) Is to use movable phase plates. These are glass plates with 

controlled thickness variations. Scattering and absorption are easier 

to simulate (e.g., with fog chambers, optical narrow band filters). 

Since their main effects are to reduce signal levels and Increase 

detector bias light levels, they can also be studied as described In the 

next paragraph on detector parameters. 

The most Important detector parameters are signal level, type of 

noise, noise level, background Illumination level, spatial and temporal 

sampling rates, polarization detected, nonlinear!ties In response, and 

nonunlformltles In response, bias and noise. The values of these 

parameters are crucial to the viability of any real application. To 

give useful results, the experimental setup must be able to vary the 

signal and background Illumination levels, simulate various sampling 

rates, detect orthogonal polarizations, and create nonunlform background 

Illumination levels. The type of noise, noise level, nonunlformltles in 

detector response and noise (pattern noise), and nonllnearities In 

response will be primarily determined by the detector chosen for the 

experiment. An important aspect of the experiment design and procedure 

should be to measure, calibrate, and correct for the effects of these 

parameters on the measured data. This may be a difficult task and much 

practical experience will be gained which may be applied to other 

detectors In the future. 
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Many applications Involving active Illumination can be expected to 

have low signal levels. To adequately simulate these applications, an 

Image Intenslfler should be used before the detector. Even with a 

thermal-nolse-llmlted detector, the use of an Image Intenslfler may 

allow operation In a shot (photon) noise limited mode. The Image 

Intenslfler will, of course, also have nonunlformltles, nonllnearltles, 

and a spatial sampling rate which must be measured and considered In the 

experimental setup and data analysis. 

The effects of speckle are so Important to an active coherent 

experiment that Its parameters deserve to be discussed separately. The 

speckle In the measurement plane will have Its size determined chiefly 

by the size of the Illuminated region on the target and by the optics 

(If any) placed between the target and the sensor. Ideally, the 

detector must sample the Intensity speckle pattern at the Nyqulst rate 

(two samples per speckle) or greater. For a given detector, magnifying 

optics may be necessary. It may also be desired to Investigate the 

effect of measurements at less than the Nyqulst rate. Some speckle 

reduction techniques Include averaging the Intensities of Images from 

Independent looks (aspect angles) at the target. The experimental setup 

should be capable of rotating or translating the target In discrete 

steps to generate these Independent looks. 

8.1.2   ACTIVE EXPERIMENT DESIGN 

An optical setup and electronic hardware for performing the active 

experiment Is shown In Fig. 8-1. The laser source Is spatially 

filtered, colllmated, and used to Illuminate a MSK which Is Imaged onto 

the target via a beamsplitter. The target Is In the front focal plane 

of lens Lj and the far-field distribution of the light from the target 

Is obtained In the back focal plane. This distribution Is Imaged with 

magnification by lenses L2 and L3 (together forming an afocal telescope) 
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onto the detector. Some of this light Is redirected by a beamsplitter 

or a removeable mirror to lens L* which forms an Image of the target on 

a second detector. Signal processing Is used to digitize the detector 

signals, perform preprocessing of the data, and to perform the phase 

retrieval and Image reconstruction algorithms. A laboratory computer is 

used to control the experiment and for data storage. 

The experiment design outlined above permits most of the parameters 

discussed In Sec. 8.1.1 to be controlled. For example. It allows the 

use of various masks and targets, target rotation and translation, 

noncoherent background illumination of target and detector, variation of 

detector signal levels, matching of speckle size to detector resolution, 

detection of orthogonal polarizations, use of an image Intensifies and 

detection of the target Image using a conventional optical sensor. 

Simple rearrangements of the optical equipment will allow holographic 

masks to be used, the spatial coherence of the Illumination to be 

varied, monostatlc or blstatlc Illumination, near-field Intensities to 

be measured, and the Inclusion of simulated turbulence, scattering, and 

absorption. 

Target, Optics, and Detector Design 

For the active (far-field) experiment, the following parameters 

need to be chosen or determined: 

Target diameter, d 

Target 1-0 space-bandwidth product, N 

Lens L. focal length. F. 

Lens Lj aperture diameter, Dj 

Magnification by lenses L2 and L*, M 
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Far-field detector diameter, s 

Far-field detector element spacing, AS 

Lens Lj focal length, F4 

Target image detector diameter, w 

Target Image detector element spacing, Aw 

Wavelength, X. 

These parameters are related by a number of equations. Which parameters 

can be freely chosen and which are thereby determined depends upon one's 

point of view. The following explanation Is based on the fact that, for 

experiments performed In this program, most of the parameters will be 

determined by the capabilities of available detectors. 

The allowable target space-bandwidth product (SBP) Is obviously 

limited by the number of detector elements In the far-field detector. 

Because of the squaring operation Inherent In Intensity measurements, 

the spatial frequency spectrum of the detected signal Is doubled 

(relative to amplitude detection) and therefore a detector with 2N 

elements In each dimension is required to collect the data from which a 

(possibly complex-valued) target Image with a SBP equal to N (in each 

dimension) can be reconstructed. For current solid state array 

detectors operating In the visible, the number of detector elements in 

either dimension varies from about 240 to 490. Therefore, assuming that 

a square Image with N equal to a power of 2 is desired, N will be no 

greater than 128. 

If the target field diameter, d. Is chosen, then the resolution 

required of the optical system to the far-field detector Is d/N. The 

achieved resolution will be XMF./s. Setting these two expressions equal 

and using the fact that s a 2lfcs gives 
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MFj - 2dA$A. (8-1) 

The detector element spacing, As, therefore has an Important effect on 

several other paraneters. Note that the focal length. F., can be 

Increased to compensate for a larger d and that Increases 1n the 

magnification factor, M, can be used to decrease F.. 

The aperture diameter, D,, of lens L. must be sufficiently large so 

that rays leaving the extremes of the target and traveling In directions 

corresponding to the maximum allowed spatial frequency are not 

vignetted. The maximum spatial frequency Is s/ZAMFj which corresponds 

to an angle e with sin e a S/2MF.. The aperture must be of diameter 

d ♦ 2F.tan e, so, for e small, 

Dj • d ♦s/H. (8-2) 

In the planned experiment, s Is less than d and N Is greater than 1. so 

the aperture diameter, 0., Is slightly larger than the target diameter, 

d. 

The aperture diameters of lenses L. and L, similarly need only be 

large enough to avoid vignetting and can be easily calculated. The 

aperture A» (see Fig. 8-1) In the common focal plane of lenses L3 and L4 

must be of diameter equal to the far-field detector diameter, s. This 

ensures that the Image collected by the Image detector has the same 

spatial frequency content as the data collected by the far-field 

detector. 

The magnification from the target to the Image detector is F4/MF1 

«here F4 is the focal length of lens L-. Since at least 2N samples of 

the Image must be detected, F4 must be at least 
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F4 - ZMFjNAw/d (8-3) 

where Aw Is the detector element spacing of the Image detector. By an 

argument similar to that given above for lens L.t the aperture diameter 

of lens L. must be at least s + w. 

One possible set of parameters calculated from the above and which 

represents the current plan for the active experiment Is: 

Target diameter, d ■ 25.7 mm 

Target space-bandwidth product, N ■ 128 

Lens L, focal length, F. ■ 500 mm 

Lens Lj aperture diameter, 0. ■ 27.0 mm 

Magnification by lenses L2 and L3, M « 6 

Far-field detector diameter, s ■ 7.68 IHR 

Far-field detector element spacing. As ■ 30 microns 

Lens L4 focal length, F. • 1000 mm (must be greater than 896 mm) 

Target Image detector diameter, w ■ 8.57 mm (for F« 1000 mm) 

Target Image detector element spacing, AW > 30 microns 

Wavelength, X - 0.5145 microns. 

Light Level Consideration 

The optical Intensity, I, incident on the far-field detector will 

be a product of the following factors (estimated or measured values are 

given where appropriate): 

Laser power, 1 Watt 

Transmitlance of spatial filter, 0.5 

Transmlttance of mask, 0.5 
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Reflectivity of target. 0.5 

Two-way efficiency of beanspltter, 0.25 

Light collection efficiency (assuming diffuse target), 

Ms/aiFj)2^ - i2/8M*F^ 

Transnlttance of six lenses. 0.9 

Gain due to Image Intenslfler (If used). 6 
2 

Reciprocal of detector area. 1/s 

The resulting expression Is approximately: 

1-2.1 G/(MF1)
2 x 10"3 Watts. (8-4) 

Using the values from the previous paragraph gives an Intensity.  I, of 
-fl 2 about 2.3 6 x 10     Watts/cm .    This can be compared with a laboratory 

measurement with a  system similar to that of Fig.  8-1 (with no 
-8 2 intenslfler) which gave an Intensity of about 3 x 10     Watts/cm    for a 

cast metal target.    Since current solid state array detectors have noise 
-8 2 

equivalent Intensities of. for example, about 1.4 x 10     Watts/cm   for 

the Falrchlld CCD3000. either frame Integration or an Image Intenslfler 

with a gain, G. of at least 100 Is planned to be used In the active 

experiment. 

Software Development 

Software Is currently under development to control the signal 

processing hardware and to permit digitization of detector signals, 

preprocessing of the data, and computation of phase retrieval and image 

reconstruction algorithms. An outline of the functions planned for this 

experiment control program Is given below. 
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1. General 
Program to operate In command file and Interactive mode. 

Program to save Journal of all commands Issued and their responses 

to the user via the terminal Including comment lines In order to 

document work done. 

2. Data acquisition 

Digitize: Digitize and store image In Imaging Technology. Inc. 

(ITI) frame buffer with correction for calibrated nonunlformltles. 

Integrate: Digitize n Images and sum In array processor (AP) 

with/without normalization. 

3. Image transfer 

Transfer: Move Images from ITI to AP and hard disk and between AP 

and hard disk. 

4. Image display 

Display: Display AP and hard disk Images on ITI. 

Notes: (1) Conversion from 32 bit to 8 bit data needed 

(2) Many options needed: 

Display real« Imaginary, magnitude, magnitude-squared, 

or phase 

Apply bias and scale (as In y»ax+b) 

Display absolute value 

Magnify by 2,4,8,... (specify subImage to be displayed) 

Sample to give 256x256 Image and display In specified 

quadrant of ITI display (allows four Images to be 

displayed simultaneously for comparison) 

Display any size Image In any location of display 

(3) Some of these options can be done by altering lookup 
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tables In ITI 

(4) Values above and below the 8 bit range of the ITI 

should be clipped at 0 and 255 

Llve/Memeory: Toggle between displaying video incoming to ITI and 

data In ITI frame buffer. 

5. Image algebra (all In AP) 

Add: Add two Images. 

Subtract: Subtract two Images. 

Multiply: Multiply two Images. 

Divide: Divide two Images with user definable result for divide by 

zero. 

Scale: Add bias and scale Image. 

.Threshold: Hard limit above and below. 

Logic operations between binary Images. 

Magnitude: Find magnitude or magnitude-squared of an Image. 

Phase: Find phase of an Image. 

Convert: Change real Image to/from complex Image. 

Print: Print values of specified small part of an Image. 

Statistics: Find mean, variance of Image and magnitude-squared of 

an Image. 

Maxmln: Find max and mln values of Image. 

Histogram: Compute histogram of Image and display on ITI. 

Convolve: Convolve Image with a small specified convolution kernel 

(allows smoothing and other operations on data). 

Interpolation: Interpolate from one sample spacing to another. 

6. Create images (In AP) for test purposes 

Zero: Zero fill an Image. 

Create: Place a rectangular, circular, or triangular region of 
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specified complex value at a specified position In an Image. 

Aperture: Multiply Image by a binary rectangular, circular, or 

triangular aperture located at a specified position. 

Noise: Add zero-mean Gaussian noise with specified variance to an 

Image (should specify seed so that same or different set of 

random numbers can be generated) (Also Include uniform and 

Polsson noise). 

7. Image warp 

Measure warp: By use of calibrated test patterns, measure image 

magnification and distortion. 

Remap: Resample Image to compensate for magnification and 

distortion. 

8. Iterative algorithm 

Setup: Allocate and load Image domain, Fourier domain. Image 

domain constraint, Fourier magnitude constraint, and buffer 

arrays In AP. 

Iterate: Iterate n times using specified form of Iterative 

algorithm, computing and printing error measures. 

Display: Display Intermediate results. 

Save: Save results. 

9. Image error computation 

Error measure: Compute normalized root-mean-squared error of 

complex image or of image magnitude relative to reference 

object, taking Into account Intensity scaling and (for complex 

Images) constant phase shift. 
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10. Help Information 

Help: Print list of available comands. 

Print help Information about specified command. 

11. Termination 

Stop: Complete all commands Issued Including writing all buffers 

to hard disk, save Journal file, and return to UNIX. 

Journal file should also be saved at each step In case of program 

or system crash. 

8.2 PASSIVE EXPERIMENT 

The objective of the passive experiment Is to demonstrate Imaging 

(In the visible or Infrared) of a noncoherently Illuminated or emitting 

target from Intensity-only or Intensity and reduced tolerance phase 

measurements. Several candidate experiments, currently under 

consideration, are described below. 

Stellar Speckle Inteferometry 

Images of space objects from ground facilities are degraded by the 

effects of the turbulent atmosphere. One solution to this problem is to 

use adaptive optics and to correct for the phase distortions of the 

atmosphere in real time. This solution, of course, requires precise 

phase measurement and compensation In real time. The reduced tolerance 

solution Is to use (stellar) speckle Interferometry which can determine 

the magnitude of the Fourier transform of the target Image despite the 

turbulent atmosphere. Phase retrieval and Image reconstruction 

algorithms can then be used to form an Image of the target. Sped i a 

Interferometry has been used by astronomers to Image simple objects such 

as  binary stars.     The  technique has also been used In computer 
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simulations to image more complicated objects. An experiment 

demonstrating the use of speckle interferometry to Image complicated 

objects would therefore be a significant step forward In the development 

of reduced tolerance Imaging through turbulence. The experimental setup 

required could use much of the equipment from the active experiment with 

the addition of glass plates with small thickness variations to simulate 

the effect of the turbulent atmosphere. 

Passive Synthetic Aperture Imeqinq 

ERIM is currently developing techniques for passive synthetic 

aperture Interferometrlc Imaging of noncoherently Illuminated or 

emitting targets in the visible and Infrared. These techniques require 

accurate alignment and position control of the sensor optics (similar In 

degree to that required in conventional Imaging). The use of reduced 

tolerance Imaging techniques could reduce these accuracy requirements. 

It would be very appropriate and effective for ERIM to initiate the 

research to combine thes,» two techniques. The experimental setup 

required would rely heavily on the equipment used for passive 

Interferomtrc Imaging. However, the passive Interferometrlc Imaging 

program plan Is such that its experiments will take place In parallel 

with or after, rather than before, those of the reduced tolerance 

Imaging program, so It may not be feasible to link the two experimental 

programs together. 

Imaging with Phase Diversity 

In conventional passive imaging systems where the image Is degraded 

by phase aberrations due either to atmospheric turbulence or to 

misalignment of segmented optical element arrays. It is known that Image 

quality can be Improved by using Iterative reconstruction algorithms 

operating on two 2-0 Intensity measurements.    In the case of turbulence. 
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these two measurements can be of a best focus Image and an Intentionally 

slightly defocused one (that Is, a quadratic phase error Is 

Intentionally Introduced — phase diversity). For a primary mirror made 

of segments, the segments may be slightly moved or tilted by a known 

amount between data collections In the Image plane. The use of this 

approach allows reduced tolerance to atmospheric phase or to accurate 

positioning and alignment of segmented optics. The equipment required 

here would again be similar to that used In the active experiment except 

that plezo-electrlc actuators controlling multiple segments would be 

required. 

Further planning of the passive experiment Is purposely proceeding 

slowly until the active experiment Is approximately one-half complete. 

If the stellar speckle Interferometry experiment Is chosen, then the 

optical equipment requirements are not expected to Involve any major 

purchases beyond those of the active experiment and. In any case, the 

electronic signal processing hardware already purchased will serve both 

experiments. 
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Appendix A 

PROOF OF THE UNIQUENESS THEOREM 

In this appendix the uniqueness theorem presented in Section 3.2.3 

is proven. 

Let S, T, v   for n - 0, .  .   .,  S - 1, and qn for 

n ■ 0.  .... T - 1 be defined as  in Section 3.2.4.    Therefore all   the q,. 

referred to in this appendix are reference points.    Also, let U, sn and 

w    for n - 0,  .... S - 1 and k    and y    for n ■ 0,  .... T - 1 be n n 'n 

defined as  in Section 3.2.5.    Let t. be the side of [R(M)] with end- n 

points pn and P(nH)mod T (see Figure A-l) and let un - P(n+1)mod T - Pn 

for n.G, ...,T-1. We note for future reference that for 

v, we«2» < v, Uv> . 0, U2v « -v, < Uv, Uw> - <v, w> , and 

<v, Uw > • <Uv, U w> ■ - < Uv, w) . The proof of the uniqueness 

theorem in Section 3.2.3 requires a series of lemmas. 

Lemna A-l; R(M) is a mask and R(R(M)) « R(M). 

Proof: Suppose it can be shown that every vertex of [R(M)] is opposite 

some side of [R(M)]. Since at most one vertex can be opposite a given 

side and the number of vertices equals the number of sides, it would 

then follow that every side must have a vertex opposite it and there- 

fore no two sides can be parallel, hence R(M) is a mask. Also, since 

every vertex is opposite a side, R(R(M)) is the set of all vertices of 

[R(M)] which is equal to the set R(M), hence R(R(M)) - R(M). Thus it 

suffices to show that every vertex of [R(M)] is opposite some side of 

[R(M)]. 
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V2 » P4 = q2 

v4 s PO = % 
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3 P3 = ^4 

FIGURE A-1. THE SET [R(M)] IS THE CONVEX POLYGON WITH SIDES t,, 
1 • 0 4. 
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The vertices of [R(M)] are p , m ■ 0,  .  .  ., T - 1.    Let m be 

fixed but arbitrary, 0 £ m £ T - 1.    Then p    is also a vertex of 

[M] and hence p. ■ v.   for some k.    Let v   be the vertex of [M] 

opposite side S^.D^H C of W «nd let vb be the vertex of [M] 

opposite side s^ of [M].    Then v    and vb are in R(M) and v   - p 

for some n.    (Refer to Figure A-l  and take m • 0.    In this case k « 4, 

a > 7, b > 1 and n ■ 2.)    r' v
a ^nd v.   are the same vertex, then 

there can be no side of [M] opposite v..    But VL ■ P- « R(M) 

and so v^ must be opposite some side of [N].    Therefore v
a ^ vb.    It 

then follows that vb ■ Pf^n^wj j-    It will be shown that p^ is 

opposite side tn of [R(H)].    That is, we wish to show that for 

0<J£T-1  andj^m, 

<PJ. Uun>  <   <prn, Uun>   . (A-l) 

Since v    is opposite side s(|c_i)rno(j c of W ^ follows that for 

0 <  i £ S - 1  and i ^ a, 

<U"(k-1)no<.S-'i-'a><0 f*-2» 

and since vb is opposite sk, for 0 £ i < S - 1 and W b, 

<Uwk, v1 - vb> < 0. (A-3) 

Setting i  - b in (A-2) we obtain   < U*"^.] ^(j s*  vb ~ va ^ * 0 and 

thus 
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<V(k.l)mod S " V "%>  "  <v(k-l)mod S " vk- U{Vl)«od T " pn)> 

■"^(k-DmodS^^b- V> 

" <Uw(k-l)mod S» vb- va> 

< 0. 
(A-4) 

Setting 1 . a In (A-3) we obtain  <Uw|(. va - vb > < 0 and thus 

<v(k>l)«od S " V Uun> - < Vl)mod S " vk» "^(n^Dmod T " Pn)> 

- <»*k. U(vb - va)> 

■  <IJwk' va- vb> < 0- 
(A-5) 

S,nce v(k-l)mod S« V • Pj *nd y(k*l)mod S are <"*"*« vertices 

of [M]. the vectors ^])m6 % - pm and ^})m4 s - p^ are 

linearly Independent.    Let p . R(M). p * ^^ s. p^, ^^ y 

Then there exist real nui^ers, a and a,  such that 

P - pm " 9(v(k-l)mod S " PJ * • <v(k*l)nK,d S " 'J'      ^ 

Also, since   < vk, U»^ >  <  <p, Uwk> , 

0 <  <P - ¥k. üi»k> 

■   <p-VU(v(k^l)modS-Pm)> 

■0<v(k-l)modS- VU^(k*l)«odS-^> 

*,<Vl)«odS-'V ^Wmal-'m» 

■•<v(k-M««dS-Pm' U(v(k*l)modS-Pj> 
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--a<w(lc-l)nK)dS' U(v(k^)mod S- "k» 

- •<Uw(k.1)mod s. v(k+1)rI|0d s- vk>   • {A-7) 

Since <Uw(k.1)mod s. *{k*])m(l s - vk >  > 0. It follows from (A-7) 

that • > 0.    Similarly, 

0<  <p-yk. Uw(k.1)lB<)dS> 

- <P-Pm. uipm-*{k.})m(i S)> 

■a<v(k-l)modS-V U(pm- ^k-DmodS^ 

*0<y(k*l)modS- V ^Pm-^k-DmodS^ 

•-a<pm-v(k-l)modS» U(pm- ^k-DmodS^ 

'^^k-DmodS-V  ^m-^k-DmodS^ 

■ s<v{k*l)mod S-pm' 
U(pm- v(k-l)mod S^ 

" '<v(k*l)mod S ' vk' ^(k-Dmod S>     . (A-8) 

Since   <v(k*l)mod S " vk' ^(k-Dmod S > * 0'  it fonows fr0M (A-8) 

that B > 0.    Using (A-4). (A-5), (A-6) and the fact that a > 0 and 

s > 0. we have, for p ^ *(k_])nod s. Pm. *{k*])m<i s 

<p-pm. Uun> .c.<v(k.1)mod s-pm. Uun> 

*8<v{k-l)modS-pm' Uun> 

< 0. (A-9) 

Inequality (A-l) now follows from (A-4),  (A-5) and (A-9).    This 

completes the proof of Lernna A-l. 
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Lewina A-2:    The number, T, of points in R(M) Is odd and if 

K-(T-l)/2andO<j<T-l then p.,  as a vertex of [R(M)], is 

opposite side t(K<(jjmod T of [R{M)]. 

Proof:    It follows from Lemma A-l that every side of [R(M)] has 

exactly one vertex of [R(M)] opposite from it and every vertex, 

i.e., every point in R(M), Is opposite from exactly one side.    Thus 

there is a positive Integer K < T - 2 such that p|(4.1  is opposite 

side t .    Then p1  is opposite side t^ and p^ is opposite side 

V2)mod T-    *>r% generally. Pj is opposite side t(^j)mod T.    Set- 

ting j - T - K we obtain pT_^ is opposite t0.    But pK4l  is opposite 

t .    Therefore T - K • K ♦ 1 orT-2K* 1.    This completes the 

proof of Lemna A-2. 

• Lewmia A-3;    For x c [M], x t q^, q(j>1)mod T ,  j • 0,  .   .  ., T - 1 

(qj. yj) <  <x, yj) < <q(j.1)modT. yj)- 

Proof: It suffices to show that the inequalities hold for all ver- 

tices v of [M], v + q., q/^D^-jjj y Let j be fixed but arbitrary. 

For convenience let m - (k. - l)fflod S and n ^(«♦Mj-oj y    ^e*1 

First we will show that q(j4.i\ll(M| j* « * vertex of [M], is 

opposite side s. of [Ml.   Let v   be the vertex of [M] opposite side 
in a 

%m of [M] and let vb be opposite Sf^iw,« c« 
T,,en v

a «"^ K  are in 
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R(M) and v ■ p. for some k. (Refer to Figure A-l and take j ■ 4. 

Then k. - 1, m . 0, (j ♦ 1)mod T • 0, n - k ■ 4, a ■ 4, b - 6 and 

k - 0.)    By the argument In the proof of Lemna A-l, v.   . P/L+IJ-QJ T 

and p(jK)mod T ( " ^ ^(m^Dmod S^ as a vertex of CR(M)]'  is 

opposite side tk of [R(M)].    By Lemma A-2. P(jK\mod j '* opposite 

'(j+DK nod T-    Hence' by lem* A-L tk . t(j+1)K ^ T and 

k . (j*1)K mod T.    Thus q{j*1)(i0d T - P(j+1)K ^ T ' »k ' va' and 

therefore Q/J^D^KJ T' as a vertex 0*  CH1» 1s OPP0*1*« side sm of 

CM]. 

By a similar argument it can be shown that q,, as a vertex of 

[M], is opposite side sn of [M]. 

Since q(j*l)mod T is 0«,os1te sm and v * ^j^Dmod V  it follows 

that  <q(j*l)mod V  Uwm>  >  <v' ,Jwm>   or   <q(jH)mod T ' v» Uwm>   > 0' 

Also, since v c [M], < v - v , UK  >    >0.    Therefore, 

<q(j*l)mod T« yj>   "  <v' yj>   "   <q(j>l)mod T- v' ^j > 

• <q(j>l)mod T- v'  Uwm-Uwn> 

* <q(j*l)mod T " v' %>  -   <q(jH)mod T " v« ^n > 

"   <q(J*1)mod T-v' Uwm> -   <vn " v' ^n > 

"   <q(j-l)modT-v' ^m^*  *  <v - vn'  Uwn> 

> 0. 
(A-10) 
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Since q^  is opposite sn and v ^ q.,   <q.,  Uwn>   >  <v, Uw^ > or 

<qj - v, Uwn>   > 0.    Also, since v e [M],  <v - *{m+])mod s. Uwm >  > 0. 

Therefore 

<v. y^ - <qj.yj> - <v-qJ. yj) 

■ ^'Oy*1^*  <<»j-v' Uwn> 

■ <v-v(m*l)modS' Uwm>  *   <qj " v» ^n > 

> o. (A-n) 

It now follows from (A-10) and (A-ll) that 

^j* yj > <   ^ v, ^^   <   ^q(j*l)mod T» yp '    Th1s comPletes the 

proof of Lemma A-3. 

In the remainder of this appendix, all modulo arithmetic will be 

mrd T.    For convenience, we define m© n ■ (m ♦ n)mod T. 

The next  lemma asserts that q.  and q. Q ,  have unique separation 

in M. 

Lewiwa A-4;    For 0 ^ j ^ T - 1, if x,, x- e M and x, - x2 ■ ^i Q i " ^i» 

then x1  - q. ^ 1  and x. • qj. 

Proof;    If either x, ^ q. ^ , or x^ ^ q.  then  it follows from 

Lemma A-3 that 
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<x1  - x2, yj >   -   <x1, yj>   -   <x2, y^ > 

- <qj91 -qj. yj) (A-I?) 

which contradicts the assumption that x1 - *2 m ^i 9 ] " qr 

Therefore x, • q. ^ ^ and x- - q.. This completes the proof 

of Lemma A-4. 

2 
Let g and h be complex-valued functions on Z   and let g * h 

denote the convolution of g and h.    That is,  if f - g * h then 

f(x) -^  g(u)h(x - u). (A-13) 

u.Z2 

We define »S(g) ♦ 3{h) .   1 x ♦ y: x e ^(g) and y c J(h) | .    The fol- 

lowing Lemma is fundamental. 

Lemma A-5;    If f - g * h then [^(f)] - [^(g) ♦»S(h)]. 

Proof:    It follows from (A-13) that vS(f) 9 ,S(g) ♦   S{h) hence 

lS{f)] C CJ(g) ♦ vS(h)].    It remains to show that [J(g) ♦ ^(h)] C 

[*S(f)]. 

Let x be a vertex of [S(g) *S{h)].    Then there exists a y eÄ 

such that for x'  c S{g) * S{h) and x' ^ xf 

<x'. y>  <   <x, y>. (A-11) 

Also, since x is a vertex of [3{q) ♦ .$(h)],  it follows that 

x c vS(g) ♦ J(h) and hence there exist x, c «5(g) and x^ c J(h) 
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such that x • x, ♦ x«. We will show that this decomposition of x is 

unique. Suppose x ■ x^ ♦ x'^ with x', c vS(g) and x'- e iS(h). Then 

<x1, y>  ♦   <x2, y>   -  <x1 ♦ x2. y> 

- <x. y> 

- <x| ♦ xj. y> 

- <xjf y>   ♦   <x^ y>     .       (A-15) 

Therefore, either  <x,lt y>   > (x^ y> or  O'g, y>   >  <x2, y> 

or both.    Suppose   <x'1, y> 2 <xii y^«    Let x' ■ x^ ♦ x-.    Then 

x' c ^(g) ♦ S{h) and 

<x,, y>   .  <x1', y>   ♦  <x2. y> 

> <x1, y> ♦  <x2, y> 

-  <x, y>     . (A-16) 

therefore, by inequality (A-14), x' • x which implies that 

x^ ■ x^ and hence x^ * x2.    If  <x,2, y> 2 ^x2, y>   a similar 

argument leads to the same conclusion.    Therefore the decomposition 

x • x, ♦ x2 with x,  c iS(g) and x- c J(h) is unique.    Now suppose for 
2 

a particular u0 C Z , gCu«) h(x - UQ) ^ 0. Then 

u0 e vS(g), x - u« e J(h) and x ■ u« ♦ (x - UQ). By the uniqueness 

of the decomposition of x it follows that UQ ■ x, and x - u^ ■ x*. 

Therefore, f(x) - g(x1) h(x2) ^ 0 and x e S{f).    Since x was an 

arbitrary vertex of [J(g) ♦ J(h)], it follows that all the vertices 

of [3(g) +vS(h)], are inJ(f) and therefore [^(g) ♦ J(h)] c [^(f)]. 

This completes the proof of Lemma A-5. 
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We are now ready to prove the theorem. 

Proof of Theorem;    Since r . r1,  it follows from the results of 

Brück and Sodin [3.3] that there exist functions g and h with finite 
2 

supports and a vector d e Z   such that f • g * h and fJx) ■ 

g ♦ h^x - d) where h^x) . h*(-x) for x c Z2. 

We have R(M) c ^(f) c s{g) * vS(h). Therefore there exist 

ag, . . ., aT_1 c S{g)  and bQ, . . ., bT_1 c S{h)  such that 

q. - aj ♦ bj, j - 0. . . ., T - 1 .       i.V17) 

Now let j be fixed but arbitrary and let x c vS(g), x ^ a.. We 

will show that <a,, y.> < <x, y^. Suppose to the contrary that 

< x, y.> £ <a,, y^ • Let x' - x + b.. Then, using Lemna A-5, 

x' c 3{q) * S{h) c lS{g)  ♦ ^(h)] . [J(f)] C [M]. Also. 

<x,, yj) - <x, yj) ♦ <bj, y^> 

< <a.. y^ *  <bj. y^ 

- <qj. yj) . (A-18) 

It now follows from Lemma A-3 that x' ■ q. which  implies that 

x « a. contradicting the assumption that x ^ a..    Therefore 

(*i* y*y  <  (** ¥*) •    By a similar argument it can be shown that 

if x c v5(g) and x ^ a. ^ ^ then   <x, yj> "^ ^aj ® ]» yj > •    Thus» 

if x e vS{g) and x ^ a^, a. ^ ,, then 

<aj, yj>  <   <x, yj> <   <aj 9 ^ yj>     . (A-19) 

Also, by similar arguments, it can be shown that if x c 5(h) and 

x 4 bj, b. Q j then 
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<bj.. y.>   <   <x, yj)  <   <bjai. yj). (A-20) 

Let 3(g) - S{h) .   { x - y:    x e S(q) and y c J(h) [ .    Since 

^(h^ - -3(h),^(g) ♦vS(h1) -J(g) - ^(h).   Also, since 

Mx) - g * h^x - d),  it follows from Lemma A-5 that 

lS{f})] - I3{q) -Sim * d. (A-21) 

We will show that 

a. - b. 9 1 ♦ d e M. (A-22) 

We have a4 ~ b4 o i  c ^(9) - <S{h).    Let j be fixed but arbitrary and 

let x c 3{g) - S{h)t x ^ a, " bi Q T   Then there ex1st x1 c J(g) 

and Xy c ^(h) suc'1 that x ■ Xi - x*«    Since x ^ a< ~ b< Q it either 

x, ^ a. or x- ^ b. 0 1 or both.    In any case it follows from (A-19) 

and (A-20) that 

<x. yj>   -   <xlf yj>   - <x2, y^ > 

>   <ar yj)  -  <bjQl. yj) 

' <aj " bj ® l* yj>     * (A"23) 

Therefore, aj - bi 9 i   is a vertex of [vS(g) - «S(h)] and by {A-21), 

a. - b. ^ 1 ♦ d is a vertex of [»S(f,)].   Therefore 

a. - b. 0 1 ♦ d e S{f}) 9 M and (A-22) follows. 

By a similar argument it can be shown that 

a, # 1 - bj ♦ d e M. (A-24) 

Now 
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(«j - bj Ä 1 ♦ d) - (aj 9 ! - bj > d) - (a. * b.) '{äj9]*bi9]) 

"qj'qjeT      (A"25) 

By Lemma A-4, a. - b. ^ , ♦ d - q. ■ a. ♦ b. from which we obtain 

b .♦ b. 9 1 - d. (A-26) 

From b. * b. 9 , - d and b. ^ ,  + b. Q ^ ■ d ^ obtain b. « b. ^ -• 

Since by Lemma A-2 T Is odd. It now follows that b0 « b, «      .  . ■ 

b,,  and, using (A-26), we obtain 

b. ■ b, • .  .  . • bT_1 > d/2. (A-27) 

From (A-20) and (A-27) we obtain ^(h) . | d/2 ( . Therefore, for x e 

Z2. 

f(x) - g * h (x) 

. h(d/2)g(x - d/2). (A-28) 

If h(d/2) - 0 then f would be Identically zero, contradicting the 

assunption that R(M) C ^(f). Therefore, h(d/2) ^ 0. Now, for 

x c Z2, 

f^x) - g * h^x - d) 

- h*(d/2)g(x - d *d/2) 

- h*(d/2)g(x - d/2) 

- «f(x), (A-29) 

»<here 
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Since lal  » 1, this completes the proof of the theorem. 
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Appendix B 

PROOF OF PROGRAM FOR IMPLEMENTING RECONSTRUCTION ALGORITHM 

It will be shown in this appendix that the program presented at 

the end of Section 3.2.4 computes f(qn) for r - T, . . ., N - 1. It 

will be assumed that f(qn) for n - 0, . . ., T - 1 has been computed 

as described in Section 3.2.4. Then, since 0 £ mn ^ T - 1, f(mn) 

has been computed for n « T, . . ., N - 1. 

For T <^ n £ N - 1 we have 

r(qn-qra).i; f(y)f*(y-qnM ).       (B-D 
n  y.Z2 n 

If y c 3(f) and y - qn ♦ (^   c *S(f) then, since vS(f) 9 M.  it follows 
n 

that y e M and y - qn * qni    c M or, equivalently, y e M + qn - qm . 
n n 

Therefore, 

y c Mn(M > qn - qm ) C  | qo,   .   .  ., q^ [   . (B-2) 
n 

Hence, 

^n -%,)"£ f^k)f*(qk -qn+ V5 
n
       k-0 

n-1 

n       k-0 

Thus, 
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1   «   —.—" n f(qj - -T 

n 

n-1 

n       k-0 
(B-4) 

An induction argument will be used to prove that f(qn)  Is com- 

puted correctly for n - T,  .  .   ., N - 1.    The Induction hypothesis  is 

H(n):    f(q.)  is computed correctly for 0 £ j £ n. (B-5) 

By the derivation In Section 3.2.4, H(T - 1) Is true.    Horn assume 

T < n < N - 1  and H{n - 1) Is true.    We want to show that H(n) is 

true.    It suffices to show that ^(qn) Is computed correctly.    Let 

all variables have the values that they have at Step 2 of the pass 

through the loop In which f(0  Is computed.    It must be shown that 

all values of f appearing In the right-hand side of Eq.  (8-4) are 

correct.    Since, by assumption, H(n - 1) is true it follows that 

f{q|J. k ■ 0,  .  .  ., n - 1, have the correct values.   Also, as 

mentioned above, f(q^ ) has the correct value.    Now let 
n 

x " qk " qn * Sn   with Oikl"-1-    I^x^M, then f(x) - 0.    In 
n 

this case, since v5(f) C M, it follows that x f S{f) and therefore 0 

is the correct value for f(x).    Now assume x e M.    We have 

x * qn " %»   " q^ « M and therefore x e M - qn * q,,, •    Hence 
n n 

x c Mn(M - qn ♦ (^ ) C  {q0 qn_1 | ^    It ^ fonows ^ the 
n 

induction hypothesis, H{n - 1), that f(x) has the correct value when 

the value for f(qn) Is computed. Therefore f(qn) Is computed 

correctly and H(n) is true. By Induction It follows that H(N - 1) 

is true and hence f(n) is computed correctly for n - 0,. . ., N - 1. 
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Appendix C 

PROOF OF THE ALGORITHM FOR GENERATING RECONSTRUCTION ALGORITHMS 

In this appendix it will be shown that the program in Section 3.2.5 

generates a reconstruction algorithm. First, it will be shown that 

the loop is not infinite and hence the program produces sequences 

Q-r, . • «t dN_i and m-, . . ., m^,. Secondly, it will be shown that 

if q - (Qn. • • •! %_])  and m ■ ("V» • • •• mH-]}  then (Q*  m) is a 

reconstruction algorithm. 

In the following, 0 will be used to denote both the number zero 
2 

and the origin of Si .    Context should prevent any confusion. 

If x, y, z e Jr, let [x, y, z] denote their convex hull inÄ . 

If x, y and z are non-col linear then the interior of [x, y, z] is 

given by 

int[x, y, z] - iax ♦ by ♦ cz: a, b, c > 0 and a ♦ b ♦ c ■ 1 I . 
(C-l) 

Then 0 e int[x, y, z] if and only if x, y and z are non-coilinear 

and there exist strictly positive numbers a, b, c such that 

ax + by + cz > 0. (The sum of a, b and c can be made equal to 1 by 

dividing each of these numbers by their sum if necessary.) 

The following lemma will be needed. 

2 
Lemma C-l;    If un, vn e Ä , n . 1, 2, 3,   <Mn, vn>  > 0 and 

<Mn. «m > < 0 for n ^ m, then 0 e IntCi^, i^. 1*3] and 

0 e  int [v.|,  V2,  v3]. 
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Proof:    By symmetry it suffices to show that 0 c intCi^, u?, u*]. 

First, we will  show that ui, up and 113 are non-col 11 near.    If 

they were collinear then one of them would be in the convex hull of 

the other two.    Say MI is in the convex hull of u* and 113.    Then 

there would exist numbers r» and T^ such that T-, T, ^ 0, T« ♦ T3 - 1 

and M| ■ T2M2 * T2U3' ^u^ ^',en ^Ml» vi^ " ^T2M2 * X2U2* vl ^ " 

T2^M2* v]> * T3^»13, v.) < 0, contradicting the assumption that 

<i^f v^>   > 0.    Therefore Hit M^ *nä U3 are non-col linear. 

2 
Since any three vectors InÄ    are linearly dependent, there 

exist three numbers 0^, 02 and 03, not all zero, such that 

01M1 * a2u2 * ff3w3 " ^* (C-2) 

Since   <iin, vn >  > 0, un ^ 0, n ■ 1, 2, 3.    Therefore no two of the 

o„ can be zero, n 

Now suppose a^ - 0.    Then «^ ^ (W 03 and it follows from (C-2) 

that 

03 
i: M3 u- • (C-3) 

hence 

0 <   <H2, v2> . -^ <M3. v2>. (C-4) 

Since   <U3, V2>   < 0, it follows from (C-4) that 
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- ■^< 0. (C-5) 

Also, 

03 

and since <M3, v1 > < 0, it follows fro« (C-6) that -«3/02 > 0 which 

contradicts (C-5). Therefore oj 4 0 and by sywnetry, 0- ^ 0 ^ 0,. 

By multiplying the 0 's by -1 if necessary, we may assume that 9, > 0. 

Now 

01 ^ur v1^ * 02 ^u2*  vl^ * a3 ^u2*  v1'> 

- <o]u] *  a2M2 ♦ 03,13, vl> 

- 0. (C-7) 

Since o1 > 0 and <u1, v^ > 0, 

«»2 ^g» vl^ * 03 ^"S* vl ^ " -0i < M]» v] ) < 0«    (C-8) 

Since < »2» vi ^ < ^  and (vv  vl ^ < ^» at 1east one 0^ the """'bers 

oy  and 03 must be strictly positive. By symmetry, we may assume 

without loss of generality that 02 > 0. Now 

al<uT v3>  * 02<u2» v3>   * 03<,l3' v3> 

- <o1u1 ♦ 02U2 * V3» v3> 

- 0. (C-9) 

Since a^ > 0, «^ > 0. <ui» N»3> < 0 and ivo*  v3^ < 0» ^ follows 

that 
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> 0. (C-10) 

Since   <U3, v3>   > 0, it follows that o, > 0.    By the comment pre- 

ceeding the lemma, it now follows that 0 c intC^, wy* U3].    This 

completes the proof of Lemma C-1. 

One more lemma is needed before proving that the loop is not 

infinite.    As in Appendix A, we define J   ®   k • (J ♦ k)mod T. 

Lemwa C-2;    For j - 0,  .  .  ., T - 1 and k - 2,  .  .  ., T - 1, 

0 e IntCyj, y. ^ p (-1)   ^^9^- 

Proof:    The proof will be by induction on k.    Let k - 2.   We want to 

show that 0 c intCy., yj 9 ^ ^j 9 2^'    Let 

''I " qj 9 1 ' qj « 3' u2 " qj 9 2 " qj « 1» M3 " qj ■ qj 9 2* 

vl m*y v2 ■ yj9l' v3 "^92    ' 
(C-ll) 

By Lemma A-3,   <u., v. >  > 0 and  <M„, v. > < 0 for n ^ m.    There- nn nm 

fore, by Lemma C-1. 0 e intCv^ v2, v3] - int[yj, yj Q p yj ® 2^ 

Now let 3 < k £ T - 1 and assume the lemma is true for k - 1.    We 

want to show that 0 c intCy^, yj e !,  (-
1)kyj 9 k].    We have shown 

that 0 c intCy,, y^ 9 ^ y^ 9 2^ and therefore there exist strictly 

positive numbers o«, 0« 03 such that 

0lyj * 02yj9l * 03yj9 2 " 0- (C'12) 
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Applying the lemma for k - 1 with j replaced by j ® 1, we have 

k 1 
0 e  int[y. 9 ]. Yj « 2'  ^"1^ ' yj * k^  and therefore there exist 

strictly positive numbers,  T,, T«,  T, such that 

Tlyj 9 1  * Vj • 2 * T3{-1)k"lyj • k " 0- (C-13) 

Multiplying (C-13) by oJr2 and subtracting the result from (C-12) 

we obtain 

xlyj * x2yj • 1 * x3 ('1)kyj • k " 0• (C_14) 

where x, - o,,  x2 " 02 ~ 03 T1^T2 and x3 " a3T3'T2*    We haye xi  > ^ 

and x, > 0.    We will show that x. > 0.    From (C-14) we obtain 

k-1 
x2yj • 1 ' "xlyj * x3^'1)      y)9k' (C"15) 

We consider two cases. 

Case 1; k is odd. Then k - 1 is even and by (C-15) 

x2yj©l -"Vj + x3yj®k' (C-16) 

and, using Lemma A-3, 

x2<qjök © 1 ' qj® 1' yje ^ 

" -x1 <qj»k#1 " qj«T yj>  * x3<qjek« 1 ■ qj9 1* yjÖk> 

• xl<qj © 1 " qj«k© 1» ^ + x3<qj© k© 1 " qj© 1« yj ©k> 

> 0. 
(C-17) 
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Since, by Lemma A-3, ^j ^ ^ 9 ] * ^j # ]• y* 0 j ^ > 0, it fol lows 

from (C-17) that x^ > 0. 

Case 2: k is even. Then k - 1 is odd and by (C-15) 

^•1 "x]^ -  x3yj«k' (C-18) 

and, using Lemma A-3, 

x2<qj «k ' qj « 1* yj « ^ 

• *1<(»J#1 " qjdk' yj> * x3<<'j« 1 ' qj«k' yj«k> 

> 0. 
(C-19) 

Since by Lemma A-3, ^ ^j 9 ^ ' 4j 9 ]• /j # ]^ > 0, it follows from 

(C-19) that x2 > 0. 

It remains to show that y., y* 9 1 and (-1) y< ® b are non- 

collinear. Since x^ x^, x, > 0, it follows from (C-14) that 

0 e [yy y^Q y  M) yj o 1(3- Therefore if y^, y^ 9 ]  and (-1)^ 0 k 

are col linear then they must all lie on a line through the origin. 

But since we have already shown that 0 c intCy., y,- « it y.- A ;]. 

y. and y. 9 , cannot lie on a line through the origin. Therefore 
k y., y< 9 ] and (-1) y< Q ^ «re non-col linear and hence 

0 c int[y., y< Q it (-1) y* Q LJ« ^is completes that proof of Lemma C-2. 

In order to prove that the loop is not infinite It will be shown 

that the parameter n in the program in Section 3.2.5 can fail to be 

incremented on at most T - 2 consecutive passes through the loop. 

The proof will be by contradiction. Accordingly, assume that n is 

not incremented on T - 1 consecutive passes through the loop. 
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Let k and 4 have the values that they have at Step 2 of the first 

of these T - 1 passes.    Let 

b4 - mini j:    0 < j < N - T - 1 and #(d|( ^       .) - l} (C-20) 

for a - 0,  .... T - 2.    Then 

#(dk9atbJ-l {C-21) 

and 

*(% • i - ^ • i.bj " 1 

for a - 0,  .  .  ., T - 2.    Let 

{C-22) 

dk • a.ba 
1f hk • a<dk • a.b^ ^ 0 

**•  \ (C-23) 
\»a-dk«a.b   oth«rwi"- 

8 

Then 

hk«a(xa) -^k^a^kÄa.bJ1    ' (c-24) 

2 
If x t Z   and *(x) - 1, then x e D and x - dk ^ a   j for some j 2 b . 

Therefore |hk9a(x)| - \\ 9 ^ 9 ^ j)! <   l\ea «y 9 i%b )l - 
2 a 

\ 9 a(xa).    Thus, for x c Z', 

*(x) - 1 —>  l\9a(x)l < h
k9a(xa). (C-25) 

Claim;   For a • 0,  .  .  ., T - 2, 

(-1)a<xa-,'k«a«l«yk«(T-l)>   >0- (C-26) 
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Proof of Claim;    First, *e will prove the claim for a - 0.    Since by 

(C-21), (C-22) and (C-23)» *(<ik - x0) . 1, it follows that 

ok - x0 c 0.    Therefore, by Lemma A-3, 

<ak " V yk • (T-1)>   <   <%' h 9 (T.l)> • (C-27) 

or, since .k -^ ♦qk#1. 

<xo'%9^' yic«(T-i)> >0- (c-28) 

Thus, the claim is true for a • 0.   Now let 1 £ a < T - 2 and assume 

the claim is true for a - 1.    By {C-21), (C-22), and {C-23), 

^"k ©a " xa' * ^ and hence using (C-25), 

hk •(•.l)(ak#i " xa) i |hk ©(a-D^k «a ' S^ 

<hlc«(a.l)(Vl)' (C-29) 

or equivalently, 

<xa-l -0k«a + xa'yk©(a-l)> ^ 0- (C-30) 

Similarly, ♦(x. i) ■ 1  and 

^kda^a-l^" ^kea^a-l^ 

- -h
k«a(«k®a " x

a). (C-31) 

and therefore, 

hk«a(ak«a-xa)ihk«a(xa-l)' (C-32) 

or equivalently. 
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<xa-l " ak®a + xa' ylcÖa> ^0- (C-33) 

By Lemma C-2, 0 c int[yk 9 ^j, ^ Q a,  (-1) "a yk Q (J.!)] and 

therefore there exist strictly positive real numbers o,, o-, o^ such 

that 

Vk ® (a-1) + a2h 9 a + 03(-1)T'a ^k 9 (T-l) " 0-     (C-34) 

Since, by Lemma A-2, T is odd, (-l)T'a . -(-l)a. and from (C-34) we 

obtain. 

a3{-])    yk9(T-l) "0lyk9{a-l) +02yk® a* (C-35) 

By {C-35), (C-30) and (C-33), 

03(-1)a<xa-l -ak®a + xa'yk9{T-l)> 

" 0l<xa-l " "kÄa * xa' yk® (a-l)> 

*02<xa-l -0k®a + V ykea> 

> 0, 
(C-36) 

and since o, > 0, 

(-1)a<Vl -ak©a + xa' yk9(T.l)>  ^ 0- (C-37) 

Substituting «^ © a ■ ^ ® a ^ Q^ ® a ® ]  and using (C-37) and the 

induction hypothesis. 
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(-1)   <x
a - ^k ® a® 1« yk 9 (T-l)> 

>-i-V* < Vl " qk«a' ylc»{T-l)> 

" {-1)a'  <xa-l " qk®a' yke(T-1)> 

> 0. 
{C-38) 

This completes the proof of the claim. 

Now set a - T - 2 In (C-26). Since, by Lemma A-2. T - 2 Is odd 

we obtain, 

^T^* yk« (T-l)> < <qk • (T-l)' yk • (T-l)> *  (C"39) 

It now follows from Lemma A-3 that x* - * Ü  and therefore 

^(xT_2) - 0 which contradicts either (C-21) or (C-22). Therefore n 

cannot fail to be Incremented on each of T - 1 consecutive passes 

through the loop. This completes the proof that the loop Is not 

infinite. 

It now follows that the program produces sequences 

QT. • • •. Qw i aid nu, . . ., mN_,. It remains to show that if 

q « (0^, . . •» q* I) and m m  (nu, . . ., m,. ■.) then (q, m) is a 

reconstruction algorithm for the mask M. 

We have R(M) ■ | q*, . . ., qT_1 | . Let T £ n £ N - 1 and let 

all variables havt the values that they have after Step 5 and before 

Step 6 of the pass through the loop in which q and m are de- 

fined. By the definition of b in Step 1 of the loop, for x c Z2t 
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Ihk(dk,b)l < lhk(x)l "" *{x)'0- (c-40) 

If x e D, then before entering the loop 0 had to have the value 1 at 

x.    Thus If the current value is 0(x) ■ 0, 0 must have acquired the 

value 0 at x on some preceed^ng pass.    That is, x - qn, for some 

n'  < n.    Therefore x e   |q ,   .  .   ., q^ } .    Thus, for x e 0, 

#(x) - 0 —> x e   |q0. -...Vl'* (C"41) 

First,  it will be shown that 

Mn(M * qn - qm ) C  {q0 qn } . (C-42) 
" n 

Let x c Mn(M + qn - q,,, ).    We want to show that x e   | q,*,  .   .   .  ,qn | . 
n 

If x e R(M) then, since n ^ T, we are done.    Since qn ■ d^ b.  if 

x « d.   .   we are done.    Now assume x 4 R(M) and x ^ d.   ..    Since 

x t R(M),  x c 0. 

Claim; 

lhk(dkjb)| <  |hk(x)|   . (C-43) 

Proof of Claim;    The proof of the claim will  be divided  into two 

cases. 

Case 1; 

hk(dk,b) ^0- (C"44) 

Since q « d. b, it follows from Step 5 of the loop that 

m ■ k. Let z ■ x - ^ K 
+ qk* ^nce x r M * ^k b " ^k' ^ follows 

that z e M. Also, since x ^ d^^t z * \.    Therefore, by Lemma A-3, 
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<qk. yk> < <z. yk> 

•   <x, yk>   -   <dktb, yk>   ♦   <qk, yk> ,      (C-45) 

or   <dk ., yk>   <   <x, yk > .    It follows that hk{dk b) < hk(x) and 

since Mdk b) > 0, the claim follows. 

Case 2; 

hk(d^b) < 0. (C-46) 

In this case m - k • 1. Let z ■ x - dk b + qk Q ^ Since 

x c M * dk b " qk ® 1* ^ follows that z e M. Also, since x ^ dk b, 

z ^ qk 0 i • Therefore, by Lemma A-3, 

<x» h>   "   <dk,b' yk>   +   <qk®l' h^ 

< <qke !• yk> . (c-47) 

or <x, yk> < <dk b, yk> . It follows that hk(x) < hk(dk b) and 

since hjfd b) < 0, the claim follows. This completes the proof of 

the claim. 

Now it follows by implication (C-40) that ^(x) ■ 0 and since 

x c D, it follows from implication (C-41) that 

x c |q0, . . ., qn_1 | C jq0, . . ., qn( . This completes the 

proof of (C-42). 

It remains to show that 

Mn(M - dkib * q,,, ) C lqo qn_1 | .     (C-48) 
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Let x c M n (M - dk b + ^ ).    We want to show that 

x e   { q ,  .  .  ., qn_1 ( .    Since n 2 T, if x c R(M) we are done.    Now 

assume x i R(M).    Then x c 0.    The proof will be divided into two 

cases. 

Case 1:    hk(dk b) > 0. 

In this case m
n - k.    Let z ■ x ♦ d.   .  - q. .    Since 

x e M - dk b ♦ qk, it follows that z e M. 

If z - qk e ^ then x - qk * (^ e 1 - dkib - ak - d^.    Now if 

*(x) > 1, then by Step 2 of the loop, qn would not have been de- 

fined on this pass contrary to the assumption that it was.    There- 

fore, ^(x) - 0 and by implication (C-41), x c   | q0,  .  .  ., q    , | . 

Now assume z ^ qk ^ ..    Then by Lemma A-3, 

Recalling that 8k ■ (qk * q|( ® 1)/2,  it follows from (C-49) that 

<dk,b-Bk- yk> < <-**h'\> (C-5V 

or hk(dk b) < -hk(x) and since hk(dk b) > 0, it follows that 

ihk(dk b)|<  |hk(x)|.    Now by implication (C-40). *(x) ■ 0 and by 

implication (C-41), x c   | qg,   .   .   .,  qn_i | • 
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Case 2:    hk{dk b) < 0. 

In this case m   • k • 1.    Let z ■ x ♦ d^ .   - q^ ^ ,.    Since 

x c M " ^k b + ^k 9 1* ^ follows that z e M' 

If z - q^ then x - qk ♦ qk ^ 1 - ^ (, " % " dk b and by the 

argument given in Case 1 above, 4(x) ■ 0, and by implication (C-41), 

x c   |q0.   .  .   ., qn_1 | . 

Now assume z 4 qk.    Then by Lemma A-3, 

<qkt yk> < <z. yk> 

from which it follows that -Mx) < \i\  *.)• Since hk(dk b) < 0, 

it follows that lhk(dk b) I < lhk(x)l. Hence by implication (C-40), 

d(x) « 0 and by implication (C-41), x e {qg, . . ., qn_1 } . This 

establishes (C-48) and completes the proof that (q, m) is a recon- 

struction algorithm for the mask M. 
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APPENDIX   D 

PARAMETER ESTIMATION AND THE CRAMER-RAO LOWER BOUND 

D.I.   INTRODUCTION 

The estiattioa problem we consider is to estimate a parameter vector 

1 * («i, ...,«£,) from a measoremeni vector fi •- (Ä^ . • , /?«)■ The estimate of 

1 is denoted Ä MÄ(&)- ^ >• assumed that the conditional probability density 

Pit ll) >* known. We consider two estimation enTironments that differ primarily in 

their prior knowledge of j. 

A word on notation is in order. In general, we will use upper case letters to denote 

random variables or vectors and will use lower ease letters to denote their possible values 

and also most non-random variables or vectors. Vectors will be underscored. Thus, the 

received vector, which contains randomness, is denoted fi. A function of a random 

quantity is also to be considered random; hence, the estimate ± is capitalized. As 

described below, the parameter vector to be estimated may be random or not. in the 

previous paragraph, we elected to use the lower case g. The probability density of a 

random vector such ss & will be denoted pgd.), or simply pit), «hen no confusion can 

arise. A conditional probability density such as that of fi given A will be denoted 

Pg 1 .id. 11) or p(l. ll)- The average of a random quantity will be denoted either 

E\A\ or £A[S]. The latter is especially helpful for expressions like EA [dpA(a)/da\, 

which otherwise would have to be written E[dpA {A )/iA \ 

159 



Eoviroomant 1:   Nonraodon Par«m«t«rs 

Here, the pmrmmetcr rector to be estimated b % fixed bat aakaown rector j, sod 

the quality of »a estimator it jodfed by the mcen »qutrei «rrer« (MSE) 

E^Ai -ii)2!.   i-l, !,...,£,    . (D-l) 

There may be no eertifiably beet estimator. The mmsimmm likeUk»0d (ML) estimator 

chooses ild)"" J if fit ll) •» ••fest amoag all chokes for i. An estimator is 

unhiitd if £(A,] — «,, • — 1, . . . , £>. The ML estimator might or might not be 

unbiased. 

Envlroamoal St   Raadom Paramotars 

Here, the parameter rector to be estimated is a random rector A. v*h known pro- 

bability density p (j). The quality of an estimator is judged by the mean squared erron 

(MSE) 

EM. -^.fl.   • -» L    ■ (D-2) 

The best estimator, i.e., the mmimiim mean tqmurei error (MMSE) estimator is 

i(r)-£lA IÄ -L) (D-3) 

An estimator is mnbiwi if E[A,\ — E[Ä,\, i — I, . . . , L. The MMSE estimator is 

unbiased. In either enrironment, there is a Cramer-Rao lower bound (CRLB) to the 

MSE. 

Environmeat It For »<   nbisscvl estimator, 

BjjAi -s1)
2I>(Jl,-,  ,    • -1, ...,L (D-4) 
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Jii - EAJ^ •» P(L\A) ^ I« 9{L I J)| (D.5*) 

--^{^■^■'"I^U))    • (D-5b) 

where the expectatione arerage over £. 

Eaviroomeot Si For estimston htriog % eerttin "unhitsei-like" property, 

ElAi-AiflZp + K]?,   i-l,...,L    . (D-0) 

«here 

7,—«1^,1 (D-7) 

- ^{Äta'u,) (D'8b) 

In this enrironmeat, the expeetatione aTerage orer both B, and A    IB the scalar case 

(i.e., L »1) the "unbiaaed-Iike" property which the estimator must satisfy is 

-!i,",^(«K£k^(l)M.-«I-4-0   . (D-9) 

NotMi 

(1) The existence of the above deriTatires is presumed. 

(2) The matrices J and K are functions of the likelihood distribution p(z. \ a) and 

the a priori distribution p(j), respectirely. J is related primarily to the likelihood dis- 

tribution p (r | A ) and secondarily to the a priori distribution p (A ). 
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In the cue where A » * scalar (L * 1). these bounda reduce to the folloving. 

Environment It 

^"^^(^'■^'•rMi^'-'ii lD■,o, 

Envlronmeafc It 

E[{A-An> 
^(^»•F(r|.)|-£.(f2l.,(.)| (D-lla) 

«-A.« 

1  
IT TTZ rr; 

(D-llb) ((£..,UI.))) + B<((£..M.)1 

Note that in EnTironment 2 one any use the bonnds in Eq. (D-ll) for the vector 

case aa «ell; i.e., 

£((^-M1)
2l>|£aA||^lnP(r|.,)|2J+£4||^p(.,)|2|jl(D-l2) 

This bound is presumably aiapter to compute bot not aa good aa that of Eq. (D-Ö). 

D.3   ADDITIVE NOISB PROBLEMS 

In thia section, we focus on the following "additive noise" estimation problem and 

special caaes thereof: 

Ä-/U) + Ä (D.13) 

where /   is a known function and ^ ■■— ^V0 . . . , .Vw)r is a random noise vector, 

independent of ±, with density p^(u )• The conditional density of A given A "" 1 is 
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fUll)-PÄ(L-/U)) (0-14) 

D.3.1   SCALAR CASE 

Wben both the parameter to be estimated mad the meaiorement are sealan, the 

CRLB reduces to: 

Eavlroamoot li 

e«'-•^H(7£)T),/',•,,' (D-IS) 

where ?'*(*) deaotes the deriTatire of ^(fi) with respect to m, aad / '(•) denotes the 

deriratiTe of / (e ) with respect to a. 

Eoviroomeat St 

E\(A -A)2] ^{{^\h'^B'{{^\) 
-i 

(D-ie) 

where p'(« ) deaotes the deriTatire of p(s ) with respect to e. Note that the functhnal 

form of / influences oaly the first term ia the brackets, whereas the a priori d:«tribu- 

tion influences both terms. 

D.2.2   VECTOR CASE 

One may obtain similar but more complicated expressions for the CRLB for the 

rector case. We note that the functional form of / influences J only, whereas the a 

priori distribution influences both J aad K. 
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DJJ   DD GAUSSIAN CASE 

Here & — {Hi, ■ ■ ■ , MM) u * rector of iodependent Mid identicailj distributed 

(IID) Gaussian H0*N) nuidom Tariablw, and (io eoTiroument 2) A ^{Au . . ., AL)'m 

IIDG»ussi»B. iH0,«ri). The CRLB becomes: 

Eoviroamaat It 

BÜi-*?[>[']?   . (D-17) 

y"--i   S ^7 /»U)ä7 /»(J) 
9^ i.i »•• ««i 

(D-I8a) 

/-4 ^./)r(7s/)l.    (V./I*. -^   /» (D-lSb) 

EnviroomoBl Si 

/C1; - ^ *.|   .   ('., -0 , i >* i   md ^ — 1) (D-21a) 

(AC — -ir  / , / — identity matrix) (D-21b) 
'A 

In the scalar case with L — M — 1, these reduce to 
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Enviroomcoi It 

'i EtA-'n>-TrU (D-22) 

Environmsnt St 

E\(A -Af\> 
EV*iA)f\/*& + U*l (D-23) 

E[A -A\2 >  1_ 
»i " Ey'(A\f\*lJ*l + l (D.24) 

D.3.4   UNEAR IID GAUSSIAN CASE 

Her« 

Ä -^d +Ä   , (D-25) 

where F is *n M X L   matrix; ß., A,  tad ^  are column rectors; and A. ^  are 

independent and IID Gaussian as before. In this case, the CRLB becomes: 

Environment It 

B\liAi'*if\>{J\äl-'MFTF\-* 

^ - -i E ^ rki - (^^1.; 
*N   »-I **N 

(D-28) 

(D-27) 

Environment 3t 

^M. -^J^I^ + ^IM1- (D-28) 
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1~J~~r (D-ag) 

""-'i'^'-h'] ,D•50, 

Additiooilly, it is known that there exist liaear estimators for which the bounds are 

tight, i.e., for which equality holds. 

If F is an orthogonal matrix, i.e, its rows we orthonormnl, its columns are ortho- 

normal, and F'1 — FT, then 

Environ moat It 

m-«.fl>'£ (D-31) 

Environment St 

EM. -^)2l>   .      ^,    , (D-32) 

If F u orthof^>nal except for a scale factor, i.e., its rows are orthogonal, with norm 

e , then f   F ■■ c2/, and 

Environment It 

^IM. -•.)21>^1 (D-33) 

Environmont 2t 

c 

9A 

If F is o. ... _«4 with F,, « IV,, as it would be if it represented a simple weighting 

of the components of A, then 
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Enviroomeot It 

Enviroomeot It 

2 

'**'■*<** i.wM/.t ,D■M, 

D.3   CRAMER-RAO BOUNDS IN THE PRESENCE OF AMBIGUITY 

Consider the additire noise estimstion problem where 

Ä-/U) + ^    • (D-37) 

If / is not on*to-one, we saj that there is smtifeify is the function / and the meas- 

urement R. In sneh eases, one cannot expect anj estimator to perform well. Unfor- 

tunely, howerer, the Cnmer-Rao bound may not reflect this, i.e, it may give a very low 

MSE even though the actual MSE is rather large. We illustrate this phenomenon in the 

scalar case and show thai it is not a problem in the linear Gaussian case. 

Example It Scalar Parameter* 

One may see from Eqj (D-15) and (D-1Ö) and, for the Gaussian case, Eq.s (D-22) 

and (D-23) that the CRLB will be the same for any function / whose derivative has the 

same magnitude as that of / . To get a clearer picture, consider the situation where / 

has a continuous second derivatire but is not one-to-one. Then / has intemls where it 

is constant (/ ' ■- 0) and/or pain of intervals /+ , /. such that / increases on /„. 

(/ ' > 0) and / decreases through the same range on /. (/ ' < 0). The CRLB will be 

made large (and appropriately so) by the intervals where / ' » 0.  On the other hand, it 
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will oot be affected by the exiatence of pain of interrab where / increases and 

decreases, respectireij, through the same range, i.e., it will be as small at the CRLB for 

the aonambifuoos function 

/(•)- /   l/'(*)l^    . (D-38) 
-40 

for which one expects there are estimator! with much lower MSE than for / . Thus, we 

conclude that in the presence of ambiguity, the CRLB can only be expected to give a 

reasonable lower bound to the MSE for the estimation problem inTolring / . 

As a concrete example, compare the estimation of A based on either but not both 

of the following two measurements 

Ä,-/,M)+/V, Ä,-/jM)+;V, (D-39) 

where / Js) — e', / ^e) « | a91, A and N are Gaussian, independent and iKO, <T; ), 

fj(0, 0s)> respectively. There is obrioas ambiguity in the Äj measurement. For either 

measurement, the CRLB giyes 

This is a reasonable bound for estimation based on /?,. (It tends to 0 as (r^ -* 0; it 

tends to ffj as <r^ -» oo.) It is not reasonable for estimation based on A 2- Indeed f 

as ~ 0, then the best estimate for A based on R7i* A — £ (/4 | A2| — 0 with MSE 

— <r j, whereas the CRLB lower bound is tero. 

Finally, consider estimation based on /?2> «hen the density of ,1  is replaced by 
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Pi*)" 

2 exp{--^}  .     i>0 

(D.41) 

0  , • < 0   . 

Now the increased » priori iaforniktion remores all ambiguity (at least with probability 

1), and the CRLB (which is the same as before) is a reasonable bound to MSE based on 

A3. Thus, we see that additional a priori information can modify the problem so the 

CRLB is useful. 

ExnmpU St Linear IID Gaussian Case 

Here. 

Ä - fA + Ä    . (D-42) 

where Ä - (*„ • . . , Äi,)r. A -(Au . . ., AL)
T, & ~(NU . . ., N,,)*, F is an 

M X L matrix, and A *Bd £L vc HD Gaussian i^O, <rl) and f}(0, 0$), respectively and 

independent of each other.   For MMSC estimator, the CRLB bound (10) is tight and 

gives 

E[{A, -^)21- FTF     J_ 
(D-43) 

If F  has rank less than L  (for example, if A/ < L), there will be ambiguity in fi 

Nevertheless, as mentioned in Section D.2.4, the CRLB is tight. 

As a concrete example, suppose 

R ~ Ax + At + N   , (D-4-1) 

so that L - 2, ,V/ - I. f - [1 1|.  Then 
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's 

1  1 
1  1 

^ 

1 0 
0 1 (D.46) 

9A *N 

^-'-TSTti 

^w+^i     i 

*A 9H 

*& 

'*N 

'N+*A 

'4 9S 

and for the MMSE estimator it is «ell known that 

(D-46) 

EUt-Atf-EUi-Aif] *A{*N+*V 

^w + ^i 

Note that as *£ -> 0, MSE — <r j / 2, and as <r^ — oo, MSE —■ <T j. 

(D-47) 
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, Appendix E 
VCj (g(x))FOR COMPLEX OBJECTS 

In this appendix we generalize the expression for the gradient of 

the summed objective function to Include objects and object estimates 

that are complex valued. 

Recall that the summed objective function Is defined as the sum of 

a generalized object-domain error metric and the Fourier-domain error 

metric: 

s o 
2 2 + V' (E-l ) 

where 

£b2'   E   |9(x)|2. (E-2) 
xeS' 

and 

«F2' N"2Li:lG(")l   -   lF(u)l]2. (E-3) 

Notice the summed objective function Is Implicitly a function of the 

real and Imaginary parts of the pixel values for the latest estimate, 

g(x). We therefore treat the real and Imaginary parts of each pixel as 

distinct parameters that can be adjusted in order to minimize e . We 

express the real and liwaglnary parts of the latest estimate as 
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g(x) - a(x) + ib(x). (E.4) 

We define the gradients to be: 

7.'(S(x)) • E   ^   ,.« * Üil   ,,■ (£-5) 

R I 
where v.    and v/ are orthogonal unit vectors associated with the real 

J J tk 
and Imaginary parts of the j     pixel.    The first partial derivative in 
Eq.  (E-5) may be separated Into two terms: 

3es
2        3eF

2   +   3e0
2 (E.6) 

SaTxj)     3i(xJ)     aalxj) 

For the moment we examine the first term In (E-6) 

5eZ 

J u 

• 2N-2 ^   (|G(u)|   -  |F(u)|) 4ff^|   ' (E-8) 

It is easy to see that 

aaOTj)     2|G(u)l    aatxT 

.       r i27\u-x./N "I 

•?Tw[G(u)e *C-C-J    • (E'9) 
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Substituting Eq.   (E-9) Into Eq.  (E-8) yields 

3e i27TU-\, /N 

^.N-^dwi-lr^DlSi^  ^   tcxj (E.,0) 

- (gCxj) - g^xj)) ♦ (g^Xj) - g'Mxj)) (E-ll) 

- ZtaCxj) - a'lxj)). (E-12) 

This  result  Is  consistent  with   the   result quoted for  real-valued 

objects.    A parallel derivation gives 

3er ^r^-^v) • (E-13) 

We now return to the second term In Eq. {E-6) 

2 
3eo  .  3 

5iTxjy    ääTxT) E   l9(x) 
xeS' 

ääT^TJ y    a2(x)  * b2(x) 

tcS' 

Similarly, 

MX;)   .  «j c S' 

,  x.  c  S 
J 

(E-14) 

-o2 
f2b{xj)   .   Xj  e  S- 

.   x. e  S 

(E-15) 
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Let 

S'U) 
1,      x e S' 

0.      x e S 

(E-16) 

Now Eqs.   (E-14) and  (E-15) may be expressed more conveniently: 

2i{K.)S'{*.) (E-17) 

and 

o 
TblTT 

J 

2b(xj)S'(xj) (E-18) 

Collecting these results, we have: 

'e5 
Xfj ' Ztafxj) - i'Cxj)] ♦ 2a(xj)S,(xj) (E-19) 

^7 V » ZtbCxj) - b'Uj)] ♦ ZbCx^S'Cxj) {E-20) 

Equations  (E-19) and  (E-20) may be combined to form a  complex  gradient 

image. 
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Gradient Image = 2[g(x) - g'U)] + ZglxlS'ix) (E-21) 

The extension to complex-valued objects still  requires only 2 FFTs to 

compute the gradient. 
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,   Appendix F 
Ve0'f(g(x)) FOR REAL OBJECTS 

Recall that the object-domain error metric Is Implicitly a function 

of the Input estimate g(x) and Is given by: 

e0
2(g(x))- Etg'un2- 

Its gradient with respect to the Input pixel values may be written: 

(F-l) 

N2ae? 

j-1     J 
(F-2) 

where v. is a unit vector In the direction of the parameter g(x.) In 

parameter space. We focus now on the partial derivative that appears in 

Eq.  {F-2): 

^ ?^T'^ J.^'H 

Z   ^(xl^g'U)  . 
XGS' J 

(F-3) 

Substitution of the Fourier-domain expression for g'(x) gives: 

,2 

J xcS" J 

Recall that 

N-2 £  G,(u) e12^" x/N (F-4) 

^'■^W1 
(F-5) 
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giving 

je 

39 
J xeS1 J u 

•x/N 

2N -2 £    g-(x)^|F(u)|ei2-x/N       3      'G 

xeS' 
äg^IITOTT ^ 

(F-6) 

In  order  to  evaluate the partial  derivative In Eq.  (F-6) we need 

expressions f«r jSiiL and iMiil : 
SgTxTI        3g(xJ 

iGkL  . -3      V g(x) e-i2lTU" x/N 

Z-i2iTU-x/N 3q(x) 

i2TTu-x./N 

The derivation for I^HlL requires the result In Eq.  (F-7); 

^•JTCTT W,G'U''2 

?TEMT V.u) m, . C.C.' 
> J *. 

(F-7) 

?TOiT 
lG*(u) e 

•iZnu-x./N i/N 1 
J      ♦ C.C. (F-8) 
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where C.C. stands for complex conjugate of the explicit term. Using the 

results In (F-7) and (F-8) and with some algebraic manipulation the 

partial derivative In (F-6) becomes 

ägT^ T^ 

-i2Tru-x./N 
(u)     . G*(u) e           J      - C.C. 
tuJT 2|ä(u)I TO  (F.9) 

Substituting Eq.  (F-9) back Into Eq.  (F-6) yields 

2 9e [-iZiru-xJH 
C.C. 12ITU-X/N 

(F-IO) 

By changing the order of summation we have 

2 ec r -127ru-x./N 

u ^ J xcS 

g'U) e 
i2iTu-x/N 

(F-ll) 

At this point It is convenient to define the characteristic function of 

the complement of the support S as follows 

S'(x) 

1    .   x € S* 

0   .   x e S 

(f-12) 

The second suHMtlon In (F-ll) My now be rewritten 

Z    9'(x) i2TTu-x/N 

xcS' 
J  S'(x)g'(x) e12nu x/N 

(F-13) 

The error In the output, g (x), consists of that component of the output 

that violates the support constraint: 

gt(x) - S'(x)g'(x) (F-14) 
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Tlw sumtlon In Eq. (F-13) Ins th« for» of a forwrO OFT: 

J gt(x) e12""-^ • Y.   5.'«) .■i2''(-u-x)/N 

X 

- Ge(-u) (F-15) 

where 6 (u) Is tht OFT of gt(x). Th« total partial dtrlvatlv« may now 

b« written: 

3en ? _   |F(u)|G.(.u)r -12WU-X./N 

W71'H      Y.   |fi(u)|fi'(u)    G^e J      -C-C- 
J u L J 

■ N"2 L        !5(u)|       e J     - N     I  |5(u)!G*(u) e J 

(F.16)   * 

Using Eq.  (F-5) In th« sacond term: 

iej 2 —   |F(u)|Gt(-u)    -IZiru-Xj/N       .2 _  G'^G^-u)    iZ-u^/N 

J u u •   (F-17) 

Ranarkably both of these tenas have the general for« of DFTs. In order 

to cosine both of these tents Into a single Inverse OFT we perform a 

sign change of variable on the Fourier vector In the first term. The 

net result Is: 

3eo -2  r- riF<-u)lGi>)     G'(u)G^(-u)l  12iru-x./N 
WJ-^I-M sw—e     j   .        (F-18) 
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Finally, by appealing to the Hermltlan property for Fourier transforms 

of real functions m nay make the following substitutions: 

|F(-u)(  - |F(u)| 

|G(-u)|  - |G(u)| 

Ge(-u)    • Gf*(u) (F-19) 

to get the final result: 

3eo -2 r ^|F(u)lGe(u,     G'(u)Ge*(u)l     i; 
W^T 'H   L [   lfi(u)i s^ui—J e j

      . (F-20) 
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9 Appendix 6 
^0 (g(x)) POR COMPLEX OBJECTS 

The derivation of the gradient of the e (g(x)) objective function 

for the case of complex objects closely follows that for real objects 

(Appendix F). Therefore, we Just highlight this derivation, calling 

attention to significant differences. We begin by acknowledging that 

the coiiplex case admits twice as many parameters: namely the real and 

Imaginary parts of each Input pixel. We denote the real and Imaginary 

parts of the Input function as follows: 

g(x) - a{x) ♦ 1 b(x). (6-1) 

We define the gradient to be: 

^Cg(x))   . f io      v R , !!o_^ v I lr 2) 0 L* utT) vj      3R77rvJ (G-2) 

j»l        J J 

R I where v.    and v      are orthogonal  unit vectors associated with the 

parameters of the real and Imaginary parts of the pixel at location x.. 

The partial  derivative of the objective function with respect to the 

real part of a pixel value may be written 

3e2 

^7) ' OTTT Z   l9,{x)l2 

xeS' 

xeS. 3«UjJ 

'Li.9,*(x,^?lN'2IG'(u,ei2"l",/N^cc- 
+ c.c. 

(G-3) 
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The extra complex-conjugate tern appears because the output function, 

g'(x), can assume complex values.    The partial derivative with respect 

to the imaginary part Is similarly found: 

2 
3e 

3b 
J       L       xeS' u 

Ziru-x/N      a       j  G(u, 
3^T|TG(^T ♦ c.c. 

(G.4) 

With simple algebraic manipulations the following useful Identities may 

be verified: 

3G(u) -i2^VN 

-12TTU-X./N 
1e J LGju)   _ 

abUjT 

'®$-i*U[ -IZTTU-X./N 
G*(") e J     * C.C. 1 

(G-5) 

(G-6) 

(G-7) 

(G^) 

With the aid of Eqs. (G-5) thru (G-8) we deduce 

i2iru-x./N 
3 G(u)    I   a G*(u) e J      - C.C 

ääTirp'jTOTrj 2Iä(u)I6*(u) (G-9) 
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and 

 3 
äRTT 

G(u „ 1G*(u) e 
■12ITU-X./N 

2|G(u)|G*(u) 
- C.C 

(G-10) 

When Eq. (6-9) Is substituted Into Eq.  (G-3) and the order of summation 

Is Interchanged we get: 

3 6, 

3iTxJT' 
N-2 

£   (F(u)| 
i2Tru.x./N 

G*(u) e i 

G(u)|(S*(u) 
C.C, J] S'Cxjg'Mx) ei2,TU- x/N 

C.C. 

(G-ll) 
were S'(x) Is the characteristic function of the set S'. as before. 

Recall the object and Fourier-domain expressions for the error Image: 

9t(x) - S,(x)g'(x) 

Ge(u) •   Y S,(x)g'(x)e'127rU,x/N 

(6-12) 

(6-13) 

We may therefore write 

6e*(ü) -  £ S'(x)g'*(x)e127ru'x/N (6-14) 

which may be substituted Into (6-11) to get: 

36. 

aifxp ' 
N-2 

T 
|F(u)|Ge*(u){G*(u) 

i2Tru-x./N 

G(u)|G*(u) 
w • L • | 

+ C.C.  (G-15) 
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By similar steps Me find 

2 
3eo 
3bft~T 

N-2 
/ -i2irU-x./N 

(u)|G *{u){iG*(u) e J      - C.C, 

|fi(u)|6*{u) ] ♦ C.C.    (G-16) 

Explicitly writing out the complex-conjugate terms In Eqs. (6-15) and 

(6-16) and performing a few additional manipulations we produce the 

final result. 

Re{N 

•Im' 

ZpF(.u)|Ge*(-u)     G'(u)Ge*(u)l    i 
j^   rsr^n fi*(u)  Je 

. r- rF(-u)6e*(-u)     G'(u)Ge*(u)l     1 
L I       |G(-u)I      +      G*(u)      J   e 

ZTTU-X^N 
<J (G-17) 

(G-18) 

It Is gratifying that Eq. (G-17) Is consistent with Eq. (F-18) which Is 

the equivalent partial derivative for real objects only. It is worth 

mentioning that because the summation arguments In Eqs. (G-17) and 

(G-18) differ, an additional FFT Is required In the computation of the 

gradient for complex objects. The total number of FFTs (forward or 

inverse) needed Is Increased to five. 
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