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Abstract: Perhaps the most significant accomplishment of the Rewrite Rule ggf Ti 3 ’

Machine (RRM) project so far has been to explore the hardware and software U
. e . .o . nannounced

‘ implications of a novel model of computation, concurrent tree rewriting. This cats ot._ﬂ&
model serves as a bridge between easily programmed Ultra High Level Lan- % s

guages (UHLLs), featuring implicit concurrency, and advanced architectural de-

signs having unprecedented performance (thousands of MIPS). Additional ac-

complishments include: (1) construction of a (high level) instrumented simulator | Distribu’ on/

for a declarative UHLL (called OBJ) running on the RRM; (2) demonstration Availability Codes

1 that OBJ can be used eflectively to program the RRM; (3) demonstration that Avail snd/or

large amounts of concurrency are available in typical OBJ programs; (4) de- Dist Special

sign of even more powerful UHLLs for the RRM that combine object-oriented, pecta

functional and logic programming; (5) exploration of more detailed computa- l

tional models and hardware designs for the RRM; and (6) progress toward a M |

powerful graphical notation for UHLL programming. We find these results very '/ |

encouraging and look forward to their fruition in a prototype machine.

~

1 Introduction

A This report summarizes some background and recent progress of the Rewrite Rule Ma-
chine (RRM) project at SRI International. The sections following this introduction discuss
our model of computation, programming languages, simulation results, and architectural
1 designs.

1 1.1 Goals of the Project
The purpose of this project is to design and test a prototype high speed, parallel computer
architecture for executing ultra high-level languages (UHLLSs) to support development of
extremely large software systems with stringent correctness requirements. Such UHLLs can

be used to write extremely powerful environments including “intelligent” editors, compil-
ers, libraries of reusable software, rapid prototyping tools, formal specification languages,
program verifiers, debuggers, test case generators, etc. The language supported by the
environment could be a conventional programming language (e.g., Ada), even though the
system itself is written in an UHLL; similarly, the target machine for the environment could
be a conventional machine, even though the environment runs on the RRM.

The RRM will consist of a large number of loosely connected processors, each with cus-
tom VLSI to process tree-structured data independently and very efficiently. The UHLLs
considered will combine the paradigms of object-oriented, functional, and logic program-
ming, plus other powerful features, including parameterized programming, graphical pro-
gramming, sophisticated error handling, and powerful type systems. Compilers will convert
UHLL programs into sets of rewrite rules for execution on the RRM.




l—"—_-—__—_k

Poyan

This effort is aimed at significantly advancing the state of the art in software develop-
ment, so as to make feasible enormous software development efforts like that required by
the Strategic Defense Initiative (estimated at 10 to 35 million lines of bighly reliable code).
We believe that such an advance can only be achieved by radically new approaches in both
hardware and software. The RRM is, however, a general purpose large scale parallel ma-
chine that is well-adapted to any kind of symbolic computation; for example, it should excel
at artificial intelligence applications such as high-level vision, expert systems, and natural
language processing. Hardware simulation is another promising application area.

1.2 Key Issues

We feel that programmabdility is one of the most critical issues blocking further progress in
parallel computation: it does little good (for most problems) to provide lots of processors
if the programmer has to explicitly assign processes to processors. We feel that the best
approach to combining hardware efficiency with programming ease and flexibility is to have
a model of computation that provides a simple bridge between a powerful UHLL and the
hardware itself. We argue that tree rewriting is such a bridge. On the one hand, recent work
on programming language semantics shows how to implement advanced languages with tree
rewriting; on the other hand, the RRM will process tree-structured data very efficiently.
This is a radically different computational model from that of von Neumann machines, and
also differs from other new machine projects in important ways. We have taken OBJ2 [1]
as our basis. This is a very advanced functional UHLL with a uniquely powerful generic
module facility and type system. This basis has been extended to include logic programming
[2] and object-oriented programming [3].

From the software point of view, tree processing means that manipulations can easily
be described in a way that is independens of the order of execution, and that also provides
ample opportunities for concurrent execution. The basic mode of tree processing is called

" tree (or term) rewriting (or replacement or reduction), and refers to the replacement of one

subtree by another, whenever a tree-structured template is matched. A rewrile rule consists
of two such templates, one for the subtree to be replaced, and another that determines what
it is to be replaced by. See Section 2 for further discussion.

The feasibility of writing nontrivial programs with rewrite rules has been shown by
experience with programming languages like OBJ, Hope, Miranda, FP and work of Hoffman
and O'Donnell; for example, several different language interpreters have been written in
OBJ, including one for OBJ.

Some ideas that are basic to our design include the following:

o Tree structure supports concurrent processing in a natural way;

o Interprocessor communication required during computation is largely local;
o Each processor needs to know only a small percentage of the rules; and

o Each processor is especially designed for tree processing.

1.3 Summary of Progress

The Rewrite Rule Machine project blends state-of-the-art research in hardware and software.
Because of the concurrency inherent in our concurrent tree rewriting model of computation,
we expect unprecedented performance (many thousands of MIPS). And because of the
closeness of the model to declarative programming, we also expect unprecented ease of
programming in Ultra High Level Languages, further augmented by a powerful graphical
notation. The following are some of the main achievements of the project:

1. Exploration of the hardware and software implications of a novel and promising model
of computation, concurrent lerm rewriling.




2. Instrumented simulator for OBJ using the Concurrent Tree Rewriting computational
model.

. Demonstration that OBJ can be used very effectively for programming the RRM.
. Demonstration that there is enormous concurrency in OBJ programs.

. Improvement on the OBJ interpreter.

. Development of multiparadigm UHLLs for the RRM.

Progress in architectural design.

® N G . W

. Installation of Symbolics machine and porting OBJ2 to it; installation of Sun-3 net-
work.

9. Progress on the development of a powerful graphical notation for writing, reading, and
modifying UHLL programs.

2 Models of Computation

At the highest level of abstraction, RRM computation can be seen as rewriting a tree at mul-
tiple sites concurrently. Less abstractly, such a {possibly very large) tree can be partitioned
into pieces that are assigned to different processors, with each processor doing concurrent
rewriting on its own fragment of the tree; this gives a second level of computational mod-
elling, which we call partitioned concurrent rewriting. Considering how trees are represented
and transformed inside processors gives an even more concrete, third level of description,
which is addressed in Section 5.

2.1 Tree-structured Data and Computation

There are many applications in which the data are naturally tree-structured (in the sense
that there is a natural hierarchy, with 3 “root” node at the top and with one or more
branches from each node that is not a tip node), and for which tree rewriting is a highly
efficient and natural mode of execution. Some examples of naturally occuring tree structures
are:

o Menus, such as occur in interactive graphics.
¢ Expressions, such as (A + B){A? + 3) and, more generally, programs.

o Natural language syntax, and many other structures that occur in natural or artificial
languages, such as plans and explanations.

In fact, tree structure is a fully general form of data structuring, since any computable
function can be seen as a computation on tree-structured data that rewrites subtrees into
other subtrees. In particular, such processes as selecting a particular item from a menu,
evaluating an arithmetic expression, verifying a program, assigning a meaning to a sentence,
editing a program, constructing a plan, and compiling or interpreting a program, can all
be conveniently described as tree rewriting processes. Moreover, tree stincture helps pro-
grammers and users visualize what programs are doing, aad is thus very convenient for the
graphical user interface that we are contemplsting for languages to rus on the RRM.
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2.2 Concurrent Tree Rewriting

The RRM computation is concurrent tree rewriting. Data are trees (or terms) with internal
nodes labelled by function symbols and leafs labelled by constants. Programs are sets of
equations, which are interpreted as rewrite rules. Then computation proceeds by subtree
replacement, which consists of matching the lefthand side of a rewrite rule with a subtree,
and then replacing that subtree with the corresponding instance of the righthand side of the
rule. For example, one step of evaluating £1bo(6) + £ibo(S) (where fibo is the function
symbol for Fibonacci numbers), as represented by the tree

! L 4

£1b0(6) £1bo(B)

matches the rewrite rule
(*) fibo(N) = fido(N - 1) < fibo(N - 2)

to £1bo(6), yielding (£1bo(6-1) + fibo(6-2)) + fibo(E). If the rewrite rule (*) had
been applied to £1bo(5) instead, one step of rewriting would bave yielded fibo(6) +
(£1bo(6-1) + £1bo(5-2)). Notice that the rule (*) actually applies concurrently to both
2ibo(6) and £ibo(6), yielding (£1bo(6-1) + £1bo(8-2)) + (£ibo(6-1) + fibo(5-2)).
In addition to applying the same rule in parallel to several subtrees, one can also apply sev-
eral different rules concurrently. For example, applying a rule for subtraction simultaneously
with the rule (*) would transform the original tree into the tree

uboiS) fu;o(o fib;:(l)
£1bo(3)

in one step of concurrent rewriting. This process continues until there are no more matches,
when the expression is said to be reduced. This simple example shows that tree rewriting is
by its very nature concurrent. We emphasize that the concurrency bs implicit in the rewrite
rules themselves, and no esplicit concurrency constructs are required in the language we see
this as a3 major advantage.

2.2.1 Locality of Communication

An importaat property of tree rewriting is that usually only locel infonaation is needed to
determine whether or not a leftband side matches, and then if it does, to carry out the
corresponding subtree replacement!; that is, only a small number of neighboring cells need
to be involved. This implies that only local communication is needed for tree rewriting, and
makes it possible to use a relatively inexpensive communication setwork.

1This holds for the “left linear” case where there are no repeated varisbles in the pattera to be matched;
otherwise, it may be necessary to check equality of arbitrary subterms. However, lef\ linear rules are much
more common thaa non-left linear rules, and in practice, one caa coavert programs into non-left linear form.




2.2.2 Theoretical Study of Concurrent Tree Rewriting

We have begun the theoretical study of our most abstract computational model, concurrent
tree rewriting. Although there is an extensive literature on sequential tree rewriting, which
has been extremely useful in our research, concurrent tree rewriting is a new concept. The
first thing to investigate is to what extent standard results extend from the sequential case
to the concurrent case. Two of the most basic properties of tree rewriting systems ‘lift’
from sequential rewriting: if the system is (sequentially) terminating (there are no infinite
sequences of rewritings) or Church-Rosser (which implies that reduced forms are unique if
they exist) then so is concurrent rewriting. However, some other conditions, such as “weak
termination” (that each tree has at least one reduced form) do not extend from sequential
rewriting to concurrent rewriting. More restricted tree rewriting systems, such as left linear
systems (see footnote 1) and non-overlapping systems, may overcome these difficulties.

2.2.3 Tree and Rule Set Partitioning

Wh.n the tree to be reduced is large, it must be partitioned into subtrees residing on different
processors, each concurrently reducing its own subtree. This will require communication
when a rule match overlaps a partition boundary.

In order to more efficiently use a network of processors each baving small local memory,
we partition the set of rules, attempting to assign to a given processor only the rules it will
need. This can be done in several complementary ways, of which the main ones are:

e By module: The hierarchy of OBJ modules indicates some important relations of
grouping and dependency among rules.

o By complexity of lefthand sides of rules:

1. Left linear non-overlapping rule sets can be compiled into very efficient matching
algorithms {4]°.
2. Non-left linear non-overlapping rule sets will be more costly to match.

3. Self-overlapping rules (their lefthand side overlaps with itself) can be grouped
into a single “try last™ rule subset; among these, non-left linear rules constitute
the worst case.

Rules that might overlap should be delayed as long as possible, since communication
is needed to prevent meaningless results, This suggests partitioning the rule set into
non-overlapping rule subsets.

e By flow analysis: rules can be clustered into subsets such that, given a subtree to
which a given rule applies, other rules in the same cluster are more likely to apply to
the subtree than are rules outside the cluster.

2.2.4 Concurrent Rewriting Strategies

The notion of E-strategy (E is for evaluation) was introduced in sequential OBJ2 1] as a
powerful and flexible way to control the order of evaluation, so as to improve efficiency of
execution. For example, given a 3 argument operator / with strategy [1 2 0 3] and an
expression f(t;,f2,ts) to be reduced, the first argument ¢, (indicated by the pumber 1)
must be reduced first, say to ¢}, before reducing the second argument ¢, to t} (indicated
by the number 2); then we must attempt to rewrite at the top (indicated by the aumber 0)
of f(t},¢5,ts) before finally going on to reduce t5. This kind of sequential evaluation is not
appropriate for concurrent rewriting; but fortunately, the interpretation of E-strategies can
be extended. For the example given above, we would begin by evaluating all three major

8ome additional work will be seeded, however, to understand the application of [¢] to the concurrent
case.




subtrees of f(t;,t2,ts) concurrently, until its first and second subirees are reduced; thea
we would apply rules to the top of the resulting tree before going on to reduce the third
argument further (if needed). We have found that such concurrent rewriting strategies can
yield significant savings of space without reducing the amount of useful concurrency.

More generally, it appears that OBJ with E-strategies can be used to specify quite general
concurrent processes, for example, protocols. If so, this should be an important advance in
specification technology.

2.2.5 Tree Representation

An important question is how to represent trees in the RRM. A basic choice is between dags
(directed acyclic graphs), which permit sharing identical subtrees, and strict tree structures.
The following summarizes our discussions on the relative merits of these representations for
concurrent tree rewriting:

1. We first note that the dag representation may consume much less space, since identical
subirees need not be duplicated. The extreme case is to maintain a fully shared dag,
having no duplicated subtrees at all. However, this is not practical, since it would be
very expensive to maintain full sharing during rewriting.

2. Detecting a match may involve determining equality of subterms. For example, to
see whether the rule z + z = z applies to a structure, we must check equality of the
two substructures matching the variable z. This favors the dag representation, since
checking equality may reduce to checking actual identity. However, this yields only a
partial gain, because we will not have fully shared dags.

3. Rules with daplicated variables on their righthand side will require copying ia the tree
representation, but can be implemented just by sharing in the dag representation.
Although such rules {called “non-right linear”) are quite common, cases that actually
require copying large subtrees are rather rare.

4. Sometimes a rewrite can be efficiently implemented just by modifying the content of a
cell. This is correct for the tree representation, but for dags it can be wrong. Instead,
the part which might have been modified will have to be created independently.

5. For dags, two non-overlapping matches may request information from the same cell
in different contexts, thus creating a communication problem that does not arise for
trees in the same situation.

6. Both dags and trees require freeing unreferenced items, but dags involve the farther
issue of controlling maltiple replacements of data to avoid damaging shared parts;
reference counts or some similar mechanism will be needed.

Quite possibly the debate between these alternatives will be solved in the end by hardware
considerations.

3 Ultra High Level Languages

This section describes our work on UHLLs for programming the RRM, begianing with OBJ2
[1]. Al of these languages are declarative, in the sense that their programs try to state what
the problem is, rather thaa bow it should be solved. This allows the compiler and operating
system much more leeway in detecting and utilizing whatever concurrency is present in the
problem (to the extent that this is possible with available resoarces). By contrast, today's
most popular languages (including parallel languages) are imperstive, in the sense that their
programs consist of commsads that tell just what to do and when to do it.




3.1 OBJ2

OBJ2 [1] is a functional programming language with an operational semantics given by
tree rewriting, and a mathematical (or “denotational”) semantics given by equational logic.
Thus, OBJ2 is a declarative language, since its statements have a declarative reading as
equations stating properties that one desires the solution to have; in effect, they describe
the problem to be solved. Moreover, OBJ2 is particularly suitable for the RRM because its
operational semantics is tree rewriting. In addition, OBJ2 has a very expressive and flexible
type system, including overloading and subtypes; OBJ2 also has user-definable abstract data
types (with user-definable “mixfix” syntax) and perhaps the most powerful generic module
mechanism available in any current programming language. Moreover, OBJ2 is a “wide
spectrum” language that elegantly integrates coding, specification, design, and verification
into a single framework.

3.1.1 A Simple Example
The following simple program illustrates some basic features of OBJ2:

obj BITS is
protecting INT .
sorts Bit Bits
ops 0 1 : -> Bit .
op nil : -> Bits .
op ... : Bit Bits -> Bits .
op leagth_ : Bits -> Iat .
var B : Bit
var § : Bits
eq : lesgth nil = 0 .
eq : length B . S = inc length S .
endo

OB J2's basic entity is the odject, a module encapsulating executable code. The keywords
obj ... endo delimit the text of the object. Immediately after the initial keyword obj
comes the object name, in this case BITS; then comes a declaration indicating that the
built-in object NAT is imported. This is followed by declarations of new data sorts, in this
case Bit and Bits, and of the constants O 1 ail, and the operations _._ and length_,
each with information about the distribution and sorts of arguments and the sort of the
result; underbar characters “_" are used to indicate argument places for mixfix operators;
thus _._ is infix and length_ is prefix. Finally, variables of sorts Bit and Bits are declared
and two equations constituting the body of the object are given; iac is the increment (i.e.,
add 1) function on integers. Trees (i.e., terms) are built up from the constants and function
symbols. For example, two such terms are 3 . (7 . ail) and length 1 . (8 . (3.
nil)); the latter evaluates to 3, by applying the two equations as left-to-right rewrite rules.

3.1.2 Modules

OBJ2 has three basic kinds of entity:

o Objects declare new types (with operations and sorts of data), and give equations
that define the operations. These equations are executable code whena interpreted as
rewrite rules.

o Theories define the requirements of interfaces; they also declare sorts, operations, and
equations, but these equations are not executable as rewrite rules.

o Views express bindings of actuals to requirements at module interfaces; they are used
to put modules together to form larger program units.




The first two together constitute the class of modules. Modules can also import other
modules, thus making use of the capabilities that they provide. This leads to the OBJ
module hierarchy.

An important aspect of OBJ2 is its systematic use of generic (parameterized) modules.
Encapsulating related code makes it more reusable, and generics are even more reusable,
since they can be “tuned” for a variety of applications by choosing different parameter
values; moreover, debugging, maintenance, readability and portability are all enhanced.
The interface declarations of OBJ2 generics are not purely syntactic, like Ada's; instead,
they may contain semantic requirements that actual modules must satisfy before they can be
meaningfully substituted. This can prevent many subtle bugs. An unusual feature of OBJ2
is the commands that it provides for modifying and combining program modules; thus, (a
form of) program transformation is provided within the language itself. A key principle here
is the systematic use of module ezpressions for describing and creating complex combinations
of modules. This process of putting generic modules together to form larger program units,
in which previously writtea code is described by theories, and also is manipulated by module
expressions to produce new code, is called parameterized programming; it provides a level
above that of conventional programming languages [?].

3.1.3 Progress on OBJ2
The following enhancements of the OBJ2 system have been accomplished:

e A new pattern matching algorithm for combinations of axioms such associativity,
commutativity, identity, etc. has been implemented. This algorithm is extensible, so
that algorithms for new cases can be easily added.

e Save-restore facilities have been implemented for both OB J2 text and internal database
states.

e The user interface has been substantially enhanced.

e The library of OBJ2 programs has been greatly increased, and several substantial
examples (including some programming language interpreters) have been used for
debugging.

In addition, we have developed the mathematical and operational semantics of the lan-
guage, based on order-sorted equational logic; two long papers on these topics are in an
advanced stage of completion.

Work is underway to make the evaluation of module expressions (one of the most sophis-
ticated features of the language) and the rule generation process (to generate and optimize
the internal form of the rewrite rules) more robust, and to further test the interpreter with
some large-sized benchmarks. First release of an OBJ2 interpreter is expected in August
1986.

3.1.4 Towards OBJ3

Our experience with OBJ2 has led to new design ideas that will make OBJ3, a future version
of OBJ, substantially more expressive, robust, and efficient. We have been using OBJ2 as
a design language for OBJ3. The ideas include:

o A new, simpler and more efficient, operational semantics.
¢ A more general parameterization mechanism.
¢ A better interactive parser.
@ A better error recovery and error specification mechanism.
OBJ3 design is well advanced, and completion is scheduled for mid-1987.




3.2 Multiparadigm Languages

The RRM is a perfect match for a rewrite-rule based functional language like OBJ. However,
our recent work has shown that logic programming and object-oriented programming can be
viewed as extensions of OBJ (we have already published two versions of a paper on “Eqlog”
[2], combining OBJ with logic programming, and have an advanced draft of a paper on
“FOOPS" [3], extending OBJ with object-oriented facilities). Moreover, these extensions are
naturally and efficiently supported by the RRM. Support for object-oriented programming
only requires implementing more general access to subtrees that store attributes of objects;
tree rewriting is still the computational model. Logic programming is a more challenging
extension, since it requires the architecture to handle unification as well as tree rewriting.
However, tree rewriting and unification are very closely connected, and it is possible to
efficiently implement unification by tree rewriting; in this regard, the ideas of Berkling [5]
seem very relevant. In summary, the RRM seems an ideal match for UHLLSs that combine the
most promising programming language paradigms, including functional, logic, and object-
oriented programming. Of these, functional programming is the most fundamental (and
consequently the one receiving the most current attention) with the others being regarded
as extensions. However, we expect the final UHLL for the RRM to support all three major
paradigms in an integrated manner.

4 Simulation of Concurrent Tree Rewriting

We have run a number of RRM simulations at the level of concurrent tree rewriting, by
modifying and instrumenting our current sequential OBJ2 interpreter. The purpose of this
exercise was to determine:

1. How easy is it to program the RRM with OBJ2?
2. How effectively does OBJ2 capture the concurrency that exists in typical problems?

We discovered that it was not difficuit to write highly abstract OBJ2 programs that effec-
tively captured the concurrency that existed in the problems considered.

4.1 The Examples

Our earliest simulation studies used some simple standard benchmarks, the Fiboracci aum-
bers, matrix multiplication, and sorting; the resuits for these examples are presented in
some detail, because the examples are familiar and facilitate comparison with other compu-
tational models. Many other examples have also been done, including generating the prime
numbers in a “lazy stream” and an interpreter for a higher-order functional language. These
examples cover a wide range of basic problems: for example, FFT (Fast Fourier Transform)
can be viewed as matrix multiplication, and results for matrix multiplication transfer to
FFT, and in fact, give essentially performance; also, communication routing problems can
be viewed as sorting problems; and the functional language interpreter is typical of many
software development tools.

We first wrote very straightforward OBJ2 programs for the Fibonacci, matrix multi-
plication and sorting problems. For the Fibonacci numbers, we used the usual recursive
definition; for matrix multiplication we used lists to represent matrices (thus, a matrix is
a list of rows which are lists of matrix elements); and for sorting, we used a simple merge
sort.

4.2 The Results

We first igvestigated the claim that straightforward OBJ programs often exploit much of
the concurrency available in a problem. For this purpose, the time required by our current
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sequential OB J2 interpreter was compared with the (virtual) time required to compute the
answer with concurrent tree rewriting. The results were as follows:

Problem | Sequential [ Concurrent | Ratio

Fibo a" n exponential
mm nd n n?

sort nlogn n logn

where ¢ is the golden mean, about 1.618. In each case, the concurrent tree rewriting
simulation agrees with the theoretical lower bound for the given algorithm. These results
strongly support our claim that natural and simple OBJ programs often exploit much of
the concurrency that is available in a problem.

As might be expected, if a Fibonacci algorithm that runs in logarithmic sequential time is
coded in OBJ, its execution by concurrent rewriting is only slightly faster than its sequential
execution. (It is worth recalling that some problems are inherently sequential in the sense
that there is a sequential solution which no concurrent solution can outperform.)

We also investigated how much concurrency could be exploited by OBJ. The matrix
multiplication and sorting problems were rewritten to use tree structured data rather than
lists; this naturally gives rise to “divide-and-conquer” solutions. The resulting programs
were only about fifty-percent longer than the straightforward list programs. However, espe-
cially for sorting, they were conceptually more difficult; the sorting program was essentially a
bitonic merge sort. The results were as follows, where Max Tree Size refers to the concurrent
case:

Problem | Sequential | Concurrent | Ratio Max Tree Size
mm n> logn exponential | n3
sort n(logn)? | (logn)? n n?

Comparing these results with theoretical AT? lower bounds for VLSI circuits [6], where
circuit area A is the maximum tree size arising in concurrent simulation, gives the following:

Problem | Concurrent | AT Lower Bound
mm n°(logn)* | n*
sort n?(logn)* | n?

Sorting achieves performance very close to the theoretical lower bound (this is actually typi-
cal for realistic VLSI sorting designs). Matrix multiplication shows a simulated performance
that is not realizable in practice; i.e., no actual VLSI implementation could attain this per-
formance. This is because the concurrent tree rewriting model does not count the cost
of rearranging and duplicating the elements of the matrices involved, which would require
significant area in a VLSI circuit.

The maxi:num tree size for the re..rsive Fibonacci number program grew very rapidly
with 7 under (simulated) concurrent rewriting. We also found other examples of exponential
or hyperexponential growth. Since real machines will have limited tree storage, this is very
undesirable. We found that relatively simple programming style guidelines and generalized
E-strategies can often reduce the problem to acceptable proportions. For example, it is
better to use two conditional equations than a single if_then_else_f1, provided that it
is easy to evaluate the conditions. Similarly, tuning the iterative Fibonacei algorithm by
“specializing” its rules (by replacing a single rule by two or more other more specialized rules
whose lefthand sides together cover the original lefthand side) yielded roughly a five-fold
reduction in maximum tree size (by forcing bottom-up evaluation). Such transformations
are straightforward, and could even be done mechanically.

The concurrent rewriting simulator was constructed by modifying the existing OBJ2
interpreter so that a single simulated concurrent rewriting step is found by:

1. labelling the tree with all possible rewrites,
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2. choosing a non-overlapping set of rewrites (by top-down search), and
3. performing all these rewrites.

Statistics were accumulated as the simulation proceeded. This was relatively easy to imple-
ment, given the facilities provided by the current OBJ2 implementation.

4.3 Discussion

A major finding is that it is often easy and natural to write algorithms in OBJ2 that exploit
most of the concurrency available in a given problem, and thus run surprisingly fast on the
RRM. (For the closely related discussion of scalability, see Section 5.3.)

Although we found that it was not difficult to get essentially time optimal performance
from OBJ programs, we also noticed that some of these programs consumed great amounts of
space. However, relatively simple programming style guidelines and generalized E-strategies
often reduced this problem to acceptable proportions. E-strategies can be useful when
calculations are performed that turn out to be useless, by imposing restrictions on the order
in which subtrees are reduced.

5 Architectural Options and Test Facility

From an architectural viewpoint, the RRM provides a unique opportunity to execute ultra
high level programs with an unprecedented degree of concurrency. In contrast to most
current investigations of advanced computing structures, the RRM project is a symbiosis
of software and hardware concerns. We therefore expect to avoid the sad outcome of a
“concurrent computer architecture in search of suitable problems” or its dual, a “modern
programming paradigm woefully slow on traditional von Neumann computers.” Qur group
is excited by the prospect of a long-awaited breakthrough.

5.1 Architectural Alternatives
We have identified three levels of architectural concern, each with specific problems:

1. The cell level is concerned with implementating rewrite cells, which store the individual
tokens that constitute trees.

2. The node level is concer.ed with organizing a single RRM processor, composed of
many cells plus a common controller.

3. The network level deals with several RRM nodes cooperating to solve a problem.

The architectural options under consideration for each of these levels are outlined below.

5.1.1 Cell Architecture

A cell stores the tokens that constitute trees and performs simple operations on them. We
expect to partition problems so that only a few bits (say 8 to 10) are needed for these tokens.
The operations performed on a stored token are:

e Match the token against an externally supplied pattern.

e Cooperate with immediate neighbor cells to determine the success or failure of a
pattern match.

o Replace the token with a new value when the pattern match is successful.
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Although we are far from a final cell design, it seems clear that it would be desirable to
pack as many cells as possible on a single custom VLSI chip. This implies that we should
minimize the amount of logic local to each cell. Currently, we favor having all cells in a
chip share a common controller, which will broadcast matching and replacement commands.
Thus, cells will operate in lock-step (SIMD) mode.

The RRM is not intended to deliver optimal performance for massively numerical com-
putations. If relatively few numerical operations are required, they can be performed on a
backup microprocessor (possibly the controller) associated with a number of cells, without
loss of efficiency. This is becanse numerical calculations can occur only at the outermost
frontier of a tree, and therefore cannot delay other computations. At a cost of approximately
25% more transistors, numerical calculations could be handled at the cell level, though not
in the fastest possible way.

5.1.2 Node Architecture

An RRM node consists of many cells and their controller; it is in effect a block of active
memory. Assuming that all nodes are implemented on a single VLSI chip to enhance speed,
the main issues at this level are:

o The connection structure supporting exchange of information among cells.
e The node controller and its dialog with cells.

It seems clear that the cells inside a node must be arranged in a regular pattern so as
not to waste silicon area. We are still debating how to use this physical structure to support
the underlying tree structure that is being rewritten. The two major alternatives provide
different performance trade-offs:

e Mapping trees onto the physical interconnection pattern provides very fast intercell
communication, but structure changes (resulting from tree rewriting) are very costly.

® Non-local communication channels incur a high performance penalty and may reduce
the degree of concurrency, but structure rearrangements become trivial.

We will use extensive simulation to determine the best trade-off between these options.

The node controller broadcasts commands to all cells inside its node. We expect rules to
be already compiled into a sequence of simple operations. Due to limited storage capabilities,
only active rules will be kept inside a node. This raises issues similar to those associated
with “working sets” in von Neumaan virtual memory architectures. A further difficulty is
the need to avoid decisions based on cell status, since otherwise the controller will become
a bottlepeck as it serializes cell replies. Much more work is needed in both defining the
architecture at this level and in devising efficient compilation techniques.

5.1.3 Network Architecture
This architectural level is concerned with issues of coordinating many rewrite nodes, includ-
ing

o node communication needs,

e node interconnection structures, and

o rule distribution methods.

RRM nodes are relatively independent eatities. Since the resources available at each node
are quite limited, nodes must cooperate to solve pon-trivial problems. The underlying data
tree is a very dynamic object, and may expaad or shrink at any moment. The active rewrite
region may thus span several nodes. The partitioned concurrent rewriting computation
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model (see Section 2) will be used to study the problem of finding “articulation poiats™ in
trees where activity should be continued to another node.

Two nodes containing adjacent tokens must cooperate in the pattern matching process.
We assume that nodes are each on a VLSI chip, so that internode communication is very
slow compared with operations inside of nodes. There are also synchronization issues, since
the nodes are independently controlled. We are still evaluating solutions to this problem.
The major options are duplicated memory and message passing :

¢ The duplicated memory model of node communication allows a few cells in each of the
two nodes to contain duplicated information, so that pattern matching is not hindered
by node borders. This comes at the expense of more complex node coordination to
avoid inconsistency.

o The message passing model relies on nodes sending part of their cell information in a
message to another node. This requires more complex pattern matching operations.

Again, the debate between the two models will be resolved by simulation.

Two other important issues are [0ad balancing and network topology. A node that needs
to send part of its activity to another node must find a free node that can be accessed
cheaply, or else place some of its tree on backup memory. We need a network topology
that will support cheap access to free nodes. The correct solution probably depends on the
rumber of nodes. For a relatively few nodes, a crossbar switch seems practical. For a larger
aumber of nodes, we should try to avoid a fully general routing facility, since it will either
be slow, or else very expensive or even impossible. To take advantage of the locality of
interconnection that is characteristic of tree-structured data, we are considering a variety
of interconnection structures, including a hexagonally tesselated sphere (or torus) and a
hypercube.

Rule sets are compiled and distributed from a central minicomputer. Since we envision
a large number of RRM nodes, each with a different active rule set, the architecture must
avoid the minicomputer bottleneck. One solution currently being explored is the inkeritance
of rule sets. Preliminary simulation results show that when a node spawns another active
node, its rule set is often relevant to the new node. Therefore the rule memory can be copied
from the old node, instead of waiting for the minicomputer; only rules that are specific to
the new node need be requested from the central minicomputer.

5.2 Architectural Testbed

Our discussion of architectural designs has stressed the need for extensive simulation, since
we are faced with an enormous decision space, in which functionality, structure, and coor-
dination should all be varied. This motivates some requirements on a simulation facility for
the RRM project:

o Modularity is needed to facilitate experimentating with small model changes.
o Our multiple levels of decision need multiple levels of representation and simulation.
o Model development requires separating tasks into

1. module functionality,
2. module interconnection structure, and
3. control and coordination of module activity.

o Easy to use graphics interface.

We will carefully evaluate existing simulators, such as SARA, Palladio, and N.2, but it
seems likely that none will satisfy our requirements. Therefore, part of our effort should be
devoted to building a custom simulator that caa cope with our rich decision space.
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5.3 Architecture Scalability and Fault Tolerance

The proposed RRM organization combines two concurrent architectural paradigms:
o Cells within a node share a single controller, and therefore operate in SIMD mode.
o Nodes are independent MIMD processors that cooperate by exchanging messages.

The combination of SIMD and MIMD allows both the speed advantage of cells executing
rewrites in lock-step, as well as the flexibility of independently controlled processors.

A particular advantage stemming from independent execution at the node level is scal-
ability. In the proposed RRM architecture, whenever existing resources are exhausted by
a particular rewrite activity, some nodes may have to stop and wait for other activities to
finish. Requests to spawn new nodes will not be honored, but instead must be kept for later
processing3. If the node interconnection structure is a regular tesselation (e.g., a sphere
or torus), more nodes can be added just by expanding the surface, and these additional
nodes could take care of pending node generation requests. Thus, a computation that can
use more resources will show performance proportional to the number of available nodes.
Of course, the node interconnection structure should allow unlimited addition of new node
communication channels, but this does not seem especially difficult given the inherent local
connectivity of tree rewriting.

Another important issue is fault (olerance. In common with most MIMD architectures,
the RRM can tolerate faulty nodes, since the node connection structure provides more than
sufficient connectivity. More relevantly, the rewrite model of computation can survive failed
nodes simply by re-requesting action {rom other healthy nodes. This feature, common to
functional programming languages can guarantee that no partial computation will be lost
if some node fails to deliver results.

5.4 Estimated Performance

Although it is early to evaluate the RRM architecture, some educated guesswork is possible,
based on a number of assumptions. RRM design called for each rewrite node to be contained
on a single custom VLSI chip. Several rewrite nodes can be placed on a single printed circuit
board, sharing some backup memory and access to a minicomputer storing the total rule
set. Since we plao initial experimental chip designs using DARPA's MOSIS facilities, several
constraints are more or less clear:

o Power consumption demands CMOS technology; previous MOSIS experience shows
that the largest standard chip can accomodate up to about 250,000 transistors.

o A reasonable guess at the cell complexity yields about 200 logic gates, cotresponding
to about 1,500 transistors for each RRM cell.

o Packing 128 cells in each chip would leave enough space for the node controller®.

¢ One could place 128 nodes (custom VLSI chips) on a single board, together with their
interconnections, some backup memory, and a minicomputer interface.

o A reasonable demonstration machine could contain 16 such boards.

This discussion sets a target of 128 rewrite cells per node and 16,384 cells per RRM board.
The proposed prototype will then contain 16 boards for a total of about 256 thousand cells.
For estimating speed, let us assume that:

o The custom chips operate at 20 Mht, since there are o complex ot lengthy operations
involved in tree rewriting.

3This could be done by providing message backup memory at the node level.
*The choice of cell communication method could change these estimates.
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o A rewrite, consisting of a pattern match and a subtree replacement, takes an average
of 5 clock cycles.

o The result is a cell having a computational power of 4 MIPS (million instructions per
second).

o The total prototype computational power is then (by straight multiplication of the
two factors) one million MIPS!

Of course, this result is utterly misleading®. First of all, only a fraction of the pattern
matches will succeed, so most cells will not actually do replacements. Secondly, internode
communication will slow down the computation whenever a pattern is matched across a
chip border. Thirdly, the basic instruction is considered to be a single replacement, which
is hard to compare with the ultra high level instructions of OBJ programs.

However, the performance estimate of one million MIPS is still valuable. If unsuccessful
matches and communication problems permit only .75% of matches to yield replacements®,
the RRM prototype would still have a performance of 8,000 MIPS. Although more simu-
lations are needed to refine these figures, it seems clear that the amount of concurrency
available in the RRM promises a tremendous breakthrough in performance.
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