

اون او آزهدته اسم جرا ا درد او

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A ł

ŝ

1555555

11 St. 199

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER 2. GOVT ACCESSIC		
AFIT/CI/NR 86- 104T	5. TYPE OF REPORT & PERIOD COVERED	
Modeling and Interpreting Construction	THESIS/DISSERTATION/	
Production Data: A Regression Approach	6. PERFORMING ORG. REPORT NUMBER	
AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(8)	
Christopher Bryan Bohne		
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
AFIT STUDENT AT: The Ohio State University	AREA & WORK UNIT NUMBERS	
······································		
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
AFIT/NR WPAFB OH 45433-6583	1986 13. NUMBER OF PAGES	
	81	
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Of		
	UNCLAS	
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UN	LIMITED DTIC ELECTE AUG 1 3 1986	
	AUG 1 3 1986	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ	AUG 1 3 1986	
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 differ , SUPPLEMENTARY NOTES	E CLYNN E. WOLAVER CAURTO	
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNI DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, 11 diller , supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	E E E E E E CAUCIO E CAUCIO Dean for Research and Professional Development	
DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 differ , SUPPLEMENTARY NOTES	E E E E E E E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ , supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	E E E E E E E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ , supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	E E E E E E E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ , supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	E E E E E E E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ , supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1	E E E E E E E CAUCION E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR UMber)	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 KEY WORDS (Continue on reverse side it necessary and identify by block n	E E E E E E E CAUCION E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR UMber)	
DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differ supplementary notes APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 KEY WORDS (Continue on reverse side it necessary and identify by block no ABSTRACT (Continue on reverse side it necessary and identify by block no	E E E E E E E CAUCION E CAUCION E CAUCION Dean for Research and Professional Development AFIT/NR UMber)	

2220

Soon approve weekees pooraaan zezerere. Annonoon pizerere weekees propaan bossees nizerees

•

MODELING AND INTERPRETING CONSTRUCTION PRODUCTION DATA:

A REGRESSION APPROACH

A Thesis

Presented in Partial Fulfillment of the Requirements for

the degree Masters of Science in the

Graduate School of the Ohio State University

ЪУ

Christopher Bryan Bohne, BSCE

* * * *

The Ohio State University

1986

Accession For NTIS GRA&I DTIC TAB Unannounced Justification By______ Distribution/ Availability Codes Avail and/or Dist Special A-/ でいいたいです

Master's Examination Committee:

Richard E. Larew

Paul A. Thompson

Fabian C. Hadipriono

istate is is is in the

Adviser Department of Civil Engineering

Approved by

THESIS ABSTRACT

THE OHIO STATE UNIVERSITY GRADUATE SCHOOL

NAME: Bohne, Christopher Bryan

QUARTER/YEAR: WI/1986

- 1

DEPARTMENT: Civil Engineering DEGREE: Master of Science

ADVISER'S NAME: Larew, Richard E.

TITLE OF THESIS: Modeling and Interpreting Construction Production Data: A Regression Approach

This thesis examines elevated concrete slab production data from a high-rise building. The importance of collecting pertinent information during construction is discussed.

A nine step approach is presented as a methodology for analyzing construction data by linear regression.

Examples are given to show how analysis results may be used in the evaluation of alternative construction methods and in deciding the number of workers to be assigned to a crew.

> Adviser's Signature

ACKNOWLEDGEMENTS

This author would like to thank Dr. Paul Thompson and Dr. Fabian Hadipriono for their help in the preparation of this thesis. A special thanks to Dr. Larew for his support and guidance throughout the author's masters program. Dr. Larew combines a unique blend of knowledge and genuine concern for the construction industry and his students.

The United States Air Force deserves credit for seeing the value of an educated, quality force. Without the support of the Air Force, a masters degree would have remained a dream of this author's for a long time.

The value of a good education was instilled in this author by his parents to whom much appreciation and love is passed.

This thesis is dedicated to Mary, Sarah, and Laura for whom, when all is said and done, the long hours away from home are really for.

ii

TABLE OF CONTENTS

C.Sono

14.46

- 1

CHAPTE	ER		PAGE
	ACKNOWLEDGEMENTS	•••	ii
	LIST OF TABLES	•••	v
	LIST OF FIGURES	• •	vii
	LIST OF SYMBOLS	•••	viii
1.		• •	1
	1.1 Introduction		1
	1.2 Two Types of Response Variables	• •	2
	1.3 Goals of Study	• •	3
2.	DATA COLLECTION		4
	2.1 Introduction		4
	2.2 Data Used in This Study		6
	2.3 Summary	• •	8
з.		• •	9
	3.1 Introduction	• •	9
	3.2 Three Predictor Variable Groups		9
	3.3 Standardization		9
	3.4 Draft Model Formulation		10
	3.5 Example Model Formulation		12
	3.6 Summary		15
		•••	10
4.	MODEL TESTING		16
	4.1 Introduction	• •	16
	4.2 Traditional Approach	• •	16
		• •	
	4.8 Testing LABORWH	• •	17
			21
	4.10 Testing FIXEDOH	• •	22
	4.11 Summary	• •	22
5.	INTERPRETATION OF RESULTS		24
	5.1 Introduction		24
	5.2 Interpretation of LABORWH	• •	25
	5.3 Summary	• •	25
		• •	28

CHAPTER

3

G

ķ

والمتحد والمتحقين

5.	SUMMARY AND CONCLUSIONS	•	•	•	•	•	30
	6.1 Summary		•	•	•	٠	30
	6.2 Major Conclusions of Confusion Areas	•	•	•	• ·	٠	30
	6.3 Satisfaction of Goals of This Study	•			•	•	32
	6.4 Recommendations for Future Research		•				32
	0.4 Recommendations tol. Future Research	•	•	•	•	٠	52
	REFERENCES CITED	•	•	•	•	•	34
Α.	DATA USED IN STUDY	•	•	•	•	•	35
в.	VARIABLE LABELS	٠	•	•	•	•	<u>39</u>
с.	TRADITIONAL TEST OF LABORWH	•		•	•	•	41
	C.1 Intrduction				•	•	41
	C.2 Hypothesis	_			_		41
	C.3 Testing the Model						41
							-
	C.4 Interpretation of Results						42
	C.5 Summary	٠	٠	•	•	•	42
D.	LABORWH COMPUTER OUTPUT	•	•	•	•	•	48
E.	FINISWH COMPUTER OUTPUT	•	•	•	•	•	67
F.	FIXEDOH COMPUTER OUTPUT	•	•		•	•	75

PAGE

LIST OF TABLES

Ĺ,

TABLE			PI	\GE
2.1	Sample Observation	•	•	7
3.1	Chosen Variables for the Prediction of LABORWH .	•	•	13
4.1	Summary of Tests on LABORWH	•	•	18
4.2	Collinearity Diagnostics of LABORWH Model	•	•	20
4.3	Summary of Tests on FINISWH	•	•	23
4.4	Summary of Tests on FIXEDOH	•	•	23
5.1	Descriptive Statistics of LABORWH Model	•	•	27
A.1	List of Data	•	•	36
B.1	Variable Labels	•	•	40
C.1	Traditional Approach Regression Run 1	•	•	43
C.2	Traditional Approach Regression Run 2	•	•	44
С.Э	Traditional Approach Regression Run 3	•	•	45
C.4	Traditional Approach Regression Run 4	•	•	46
C.5	Traditional Approach Regression Run 5	•	•	47
D.1	Last Step of Stepwise Regression Run	•	•	49
D.2	Regression Run 1	•	•	50
D.3	Regression Run 2	•	•	51
D.4	Regression Run 3	•	•	52
D.5	Regression Run 4	•	•	53
D.6	Regression Run 5			54

v

TABLE																PAGE
D.7	Influence Di	lagnost	ics	5	•	•	•	•	•	•	•	•	•	•	•	55
E.1	Regression R	Run 1	•	•	•	•	•	•	•	•	•	•	•	•	•	68
E.2	Regression F	Run 2	•	•	•	•	•	•	•	•	•	•	•	•	•	69
E.3	Regression H	Run 3	•	•	•	•	•	•	•	•	•	•	•	•	•	70
E.4	Regression A	Run 4	•	•	•	•	•	•	•	•	•	•	•	•	•	71
E.5	Regression H	Run 5	•	•	•	•	•	•	•	•	•	•	•	•	•	72
E.3	Regression H	Run 6	•	•	•	•	•	•	•	•	•	•	•	•	•	73
E.7	Regression i	Run 7	•	•	•	•	•	•	•	•	•	•	•	•	•	74
F.1	Last Step of	fStepw	ris€	Re	gre	essi	on	Rur	ı	•	•	•	•	•	•	73
F.2	Regression H	Run 1	•	•	•	٠	•	•	•	•	•	•	•	•	•	77
F.3	Regression H	Run 2	•	•	•	•	•	•	•	•	•	•	•	•	•	78
F.4	Regression 1	Run 3	•	•	•	•	•	•	•	•	•	•	•	•	•	79
F.5	Regression H	Run 4	•	•	•	•	•	•	•	•	•	•	•	•	•	80
F.6	Regression 1	Run 5	•	•	•	•	•	•	•	•	•	•	•	•	•	81

ĥ

an interest

ľ

vi

LIST OF FIGURES

FIGURE	PAGE
2.1 Air Force Labor Accounting Form	5
D.1 Plot of Residuals Versus XOD	5ô
D.2 Plot of Residuals Versus TEMP	57
D.3 Plot of Residuals Versus VOLGROSS	58
D.4 Plot of Residuals Versus VCLXOD	59
D.5 Plot of Residuals Versus VOLDAY	60
D.6 Plot of Residuals Versus VOLTRUCK	61
D.7 Plot of Residuals Versus ASSLEN	62
D.8 Plot of Residuals Versus ELASSLEN	63
D.9 Plot of Residuals Versus TASSLEN	64
D.10 Plot of Residuals Versus TVOLGROS	3 5
D.11 Plot of Residuals Versus DAY	66

vii

and the state of the test of the second s

LIST OF SYMBOLS

SYMBOL

ͺͺϗ·ϼͺϝϿʹϗʹϗ·ʹϧʹʹϧʹͻϛϧʹϒϐϧʹϒϐϧʹϻϗϏʹϨϐϧʹʹϻϬϧʹϻϐϧʹϏ·ϧϐϧϒϲϧϲϧϲϧϲϒϧϒ;ϐϧϒϨϧϫϹϐϧϫϹϐϧϫϹϐϧϫϹϐϧϫϒϐϧϫϹ

MEANING

- k NUMBER OF VARIABLES IN THE EQUATION.
- n NUMBER OF OBSERVATIONS.
- X ARITHMETIC AVERAGE OF X, EQUAL TO THE SUM OF X'S DIVIDED BY THE NUMBER OF X'S.
- X(S) STANDARDIZED X IN ACCORDANCE TO EQ. 3.1.
- Σ SUMMATION FROM 1 TO 1.
- Δ BINARY VARIABLES WITH VALUE 0 OR 1.
- df DEGREES OF FREEDOM.
- MSE MEAN SQUARE ERROR.
- SSE SUM OF SQUARES OF ERRORS.
- SSR SUM OF SQUARES REGRESSION.
- MULTIPLY TIMES

CHAPTER 1

INTRODUCTION

1.1 Introduction

In today's construction industry where approximately 15% of all contractors are failing (4:59)[#], and where litigation and arbitration are increasingly used as avenues of restoration (3:391), new management tools and methods are required to increase survivability. Analytical procedures can be used to improve planning of a forthcoming construction job. Trouble-shooting during the course of construction can be accomplished using analytical procedures. Additionally, if claims cannot be avoided on a job, analytical procedures could be used to compare what actually happened, to what should have happened.

However, analytical procedures tailored to the needs of the construction manager are scarce. It is therefore the objective of this thesis to tailor one analytical method for use by the construction industry. The technique chosen for research is the modeling and interpretation of construction data using regression analysis.

Linear regression is a tool which has been available to the construction industry for a long time, yet has not been utilized for a

The first number gives reference number in the REFERENCES ...TFD section. The second number is the page number.

variety of reasons. Based on this writer's experience and the courses taken during masters studies at The Ohio State University, four areas of confusion exist:

1) <u>Data acquisition</u>: The data necessary for linear regression is not usually collected. Chapter 2 of this thesis will present some of the reasons and possible cures.

2) <u>Model formulation</u>: A methodology for the formulation of possible models is lacking in the construction industry. A proposed methodology is the subject of Chapter 3.

3) <u>Model testing</u>: Several techniques are available for the development of the "best" model. A few of these will be reviewed and utilized in Chapter 4.

4) <u>Interpretation of results</u>: The utility of the exercise depends on the interpretation of the regression results. Chapter 5 will present the interpretation of the results derived from the data analyzed.

1.2 Two Types of Response Variables

Construction studies generally involve labor and material quantities. Two circumstances exist in such studies:

 The quantity of work in a given period is fixed and the labor required (input) is a random variable; and
 The labor available to do the work is fixed and the quantity (output) is a random variable.

In this study, the data was obtained from a project in which the first condition held. In particular, this study will concern concrete work in which the quantity to be placed varied from day to day. The quantity for each day was known and fixed prior to starting the day's work. The question to be examined may be stated as "How many men (manhours) are required to complete a given day's pour? Hence the dependent variable is manhours.

1.3 Goals of Study

The goals of this study are threefold:

1) To present a methodology or approach to developing a regression model;

2) To show how one may predict and call important information from a final model in order to make decisions on process selection; and

3) To show how one may select a crew size which is sufficient to complete the work without excess idle time using said model and associated descriptive statistics. 3

25555555555555

CHAPTER 2

DATA COLLECTION

2.1 Introduction

Initial analysis is generally done on whatever data is available. Upon completion of this analysis, the analyst might suggest collection of additional types of data. This may require changes in collection techniques such as additional field forms or proper completion of present forms. In order to effectively use regression analysis, a data set including all possibly relevant variables is required. An incomplete data set will yield a large random error term which consists of unexplained error, and error due to excluded variables. "The ordinary least squares estimates of the parameters are unbiased only when all theoretically specified variables are included in the regression."(8:82). A complete data set will result in a more meaningful model to the analyst. In general, the construction industry does not keep the right records from which a complete data set can be extracted. A typical construction accounting form is shown in Figure 2.1. This form is used by The United States Air Force to account for manhours expended on in-house construction.

Through examination of the form in Figure 2.1, it is noted that items of interest to the construction manager are missing. Other potentially interesting variables include crew size, temperature, floor (elevation), method of construction, material type, area, and volume.

ILME DESCRIPTION LABOR MAXIBIN ALLECTIONS MAXIBIN ALLECTIONS NO A UTL MAN MON TELS WED TNU FAI SUI NO A B C MAN MON TUES WED TNU FAI SUI SUI <td< th=""><th></th><th>BASE CIVIL ENGINEER WEEKLY WORK SCHEDULE (PART I)</th><th>W O R</th><th>K SCF</th><th>HEDULE</th><th> PAR</th><th></th><th></th><th>(ENDI</th><th>JUN</th><th>0ST C</th><th>WEEK ENDING COST CENTER APPROVED</th><th>V</th><th>PROVE</th><th></th></td<>		BASE CIVIL ENGINEER WEEKLY WORK SCHEDULE (PART I)	W O R	K SCF	HEDULE	PAR			(ENDI	JUN	0ST C	WEEK ENDING COST CENTER APPROVED	V	PROVE	
UTIL MAN ILUCI MAS ILUCI MAS BB C 38 38 31 31 31 31 31 33 31 33 31 33 33 31 33 31 33 33			LABOR				R	NUON	III DCM	E					
ILUCI MRS 8 C 38 38 31 31 31 31 31 31 31 31 31 31				MAN	MOM	LUES	-	9	E		Ē		SAT	SUN	z
8 C C 33 33 33 33 34 33 35 C C C C C C C C C C C C C C C C C	Q N		ורחכו	NRS											
38 38 31 31 32 33 33 34 34		4		ပ	[31 # 1 + 1 + 1	36 46 40			1						
38 38 31 31 31 31 31 31 33 34	-	ASSIGNED							 	 					
36 31 32 33 34 39 39	~	BORROWED	Bur Sta				<u> </u>			L 			<u> </u>		
31 31 32 34 34 39	~	OVERTIME	36							 	<u> </u>		 		
31 31 32 32 34 34 39 31	-	TOTAL AVAILABLE (tetal of test 12 ad 3]								L 	$\left \right $	 	ļ		
32 32 34 34 39 36	5	SUPERVISION	16						$\left[- \right]$		\vdash	-			
33 34 39	م	TRAINING	32						<u> </u>	 	 				
		LEAVE	33				<u> </u>	1		 	 				
	æ	ALL OTHER	34						 	<u> </u>	 		<u> </u>		
10 TOTAL INDIRECT [unu ut deset 5 through 9] 11 AVAILABLE FOR WORK -test 4 sets des 14;	6	LOANED LABOR	39					, L		 !			! 		Ì
11 AVAILABLE FOR WORK - test 4 east 4 tes 14;	10	TOTAL INDIRECT (Intel of deat 5 through 5]								 					[
	=	AVAILABLE FOR WORK TIME & BAN TER 18								 					ļ

1.55

Figure 2.1 Air Force Labor Accounting Form (10)

An iterative process consisting of collecting data, analyzing the data, then collecting more data, often exists. Variables found important in previous analysis along with new variables to be tested, are collected in subsequent studies. This iteration continues until it becomes uneconomical to do so, or until the analyst chooses to halt. It is noted that it is always less expensive to collect the data as the process is going on rather than to hire a consultant to piece the information together at a later date.

2.2 Data Used in This Study

A complete data set made available to this writer will be analyzed and reviewed in this thesis. The data was extracted from work account records of a concrete contractor's performance on elevated concrete slab pours of a 45 story building. The data is listed in Appendix A. Labels and definitions of the variables are given in Appendix B. These data are very complete and provide an example of a good data collection system in construction.

In order to avoid confusion, a description of data from one workday will be presented. In particular, observation one in Table 2.1 will be explained.

DATE is given in month/day/year format. For this work day, the date is November 22, 1983. DAY refers to the day of the contract. Day one of the contract is March 8, 1983. The elevation above ground level (EL) is zero feet for this observation, and the area of the pour (AREA) is 17,300 square feet. The gross volume (VOLGROSS) of concrete poured is 345 cubic yards. The minimum temperature (MINTEMP) is 55 degrees

Table 2.1 Sample Observation

D A T E	D A Y	EL	A R E A	V O L G R O S S	M I N T E M P	PRECIP	P L C B U G Y	T R U K P U M P	F L O T F I N	K O	A T R	A S S L E N	F I X D O H	L A B O R W H	FINISWH
112283	260	0	17300	345	55	0	0	1	1	0	0	75	1483	100.5	51

P

Fahrenheit with no precipitation (PRECIP). The method of placement is truck pumping (TRUKPUMP = 1, PLACBUGY = 0). The slab is float finished (FLOTFIN = 1) by the cement finishers, and the fixed overhead (FIXEDOH), which consists of supervisor costs and an occasional police officer, is \$1,483. The pour is not made in the Kodiak (KOD = 0) area of the building, nor was it part of the atrium (ATR = 0). Workers had to assemble 75 feet of pipe (ASSLEN) to facilitate the pumping operations. This particular pour required 100.5 manhours of concrete laborers (LABORWH) and 51 manhours of cement finishers (FINISWH).

The population of this study consists of all elevated concrete slab pours constructed in this project. Due to the size and nature of the data, all the data was utilized. No random sampling was done. This particular project ran for more than nine months and involved over \$10 million worth of concrete work.

After some preliminary work with graphics and descriptive statistics, a change in modus operandi (5), or change in methods, was identified. Upon inquiry of the data source, it was discovered that a

truck pump was used in addition to the stationary pump which was the standard method of placement. This additional information was added to the data set. Another class of work, slab on grade (as opposed to elevated slab) was included in the original data set. The slab on grade pours were removed. Outliers were identified and investigated, and all errors in data entry were corrected.

2.3 Summary

A DECEMPENT PRODUCED PRODUCED PRODUCED AND ADDRESS ADDRE

Construction data historically has not been examined by linear regression. Field data has generally been limited to that which was required by accountants. Reluctance of field personnel to record data and failure by management to request indepth data have contributed to the problems in availability of data. One data set will be examined in this study to illustrate the methods proposed in this thesis.

l

CHAPTER 3

MODEL FORMULATION

3.1 Introduction

The purpose of this chapter is to introduce a standardized approach for the formulation of a model. Any approach should provide for useful interpretation of the intercept term and predictor variables. This project includes variables at the ratio, interval, and binary levels. Each type of variable requires a different type of analysis.

3.2 Three Predictor Variable Groups

Ratio-level variables have an absolute minimum value of zero. They are typically real, positive variables which are objective in nature such as area and volume.

Interval-level variables have arbitrarily chosen zero points. These variables have values relative to an arbitrary point, and include variables like temperature and elevation.

Binary-level variables have values of either zero or one. These variables have a value of 0 for an observation at standard condition such as "concrete pumped" (as opposed to "direct chute" or "crane and bucket"), and a value of 1 when conditions are other than standard.

3.3 Standardization

Often the construction manager is interested in the effect deviation from the standard condition has on a process. This is some standard was caused by an external force. In the analysis of the data presented in this thesis, deviation from the average condition of the interval-level variables will be examined. The standardization equation which will be used is:

$$X(S) = (X - \bar{X}),$$
 (3.1)

where X(S) is denoted as X-standardized;

X is the interval-level variable; and

X is the arithmetic mean, or some standard value of X.

By definition, an interval-level variable has an arbitrary zero point, thus standardization will change the intercept and not the slope.

3.4 Draft Model Formulation

Independent variables can be chosen and combined into a draft model. The first consideration is to search for intercept combinations. The intercept term is confounded and comprised of mobilization, demobilization, and a contingency buffer. Interpretation of the intercept term is further complicated because ratio-level variables, when equal to zero, are in most cases outside the data range. The intercept term is a defined constant when all ratio-level variables are zero, i.e., no concrete has yet been poured. Interval-level variables must be adjusted when standard conditions do not exist. This is most easily done by standardizing the variables; hence all interval-level variables will be standardized using Equation 3.1.

Adjustments to the intercept term are accomplished by adding all binary and interval-level variables thought to affect the intercept. The generic formula is:

 $A=A_{o}+\Sigma B_{i}\Delta_{i}+\Sigma C_{i}(X-\overline{X}), \qquad (3.2)$

where A is the adjusted intercept term;

A is the defined constant;

 ${\tt B}_{|\Delta|}$ are the products of the binary-level variable

and its coefficients; and

 $C_{j}\left(X-\overline{X}\right)$ are the products of the interval-level

variable and its coefficients.

This equation can be transformed into the form:

 $A=A_{a}[1+b_{\Delta_{1}}+c_{1}(X-\overline{X})].$ (3.3)

The coefficients of Equation 3.3 are not the same as the coefficients in Equation 3.2.

Development of the independent variables is similar to the approach used in developing the intercept form. Ratio-level variables are combined with binary and interval-level variables in the form:

 $D = \Sigma \left(E_{1} * Z_{m} \left[\sum_{n} * \Delta_{n}^{+} \Sigma G_{p} \left(X - \overline{X} \right) \right] + E_{1} Z_{m} \right), \qquad (3.4)$ where D is the adjusted coefficient;

 E_i is the coefficient of Z_m ;

Cardina and

 Z_m is the ratio-level variable being developed;

 $F_n \Delta_n$ are the binary-level variables affecting $Z_m;$ and

 $G_{p}(X - \overline{X})$ are the interval-level variables affecting Z_{m} .

Transformation is accomplished by dividing Equation 3.4 by each $E_1 Z_m$. It should be emphasized that the binary-level and interval-level variables used in Equation 3.4 are variables which are considered by the analyst to affect each ratio-level variable chosen. This does not preclude the use of other variables by themselves.

The final draft model combines Equations 3.3 and 3.4 and other chosen variables to take the form of:

$$Y = A_{a} + \Sigma B_{i} \Delta_{i} + \Sigma C_{i} (X - \overline{X}) + Z_{a} E_{i} + \Sigma (F_{a} \Delta_{a} * Z_{a}) + \Sigma [G_{a} (X - \overline{X}) * Z_{a}].$$
(3.5)

This equation requires transformation in order to ease interpretation. The transformed equation is:

$$\mathbf{Y} = \mathbf{A}_{\mathbf{o}} [\mathbf{1} + \boldsymbol{\Sigma} \mathbf{b}_{\mathbf{i}} \boldsymbol{\Delta}_{\mathbf{i}} + \boldsymbol{\Sigma} \mathbf{c}_{\mathbf{i}} (\mathbf{X} - \boldsymbol{\overline{X}})] + \mathbf{E}_{\mathbf{i}} * \mathbf{Z}_{\mathbf{m}} [\mathbf{1} + \boldsymbol{\Sigma} \mathbf{f}_{\mathbf{n}} \boldsymbol{\Delta}_{\mathbf{n}} + \boldsymbol{\Sigma} \mathbf{g}_{\mathbf{p}} (\mathbf{X} - \boldsymbol{\overline{X}})].$$
(3.6)

Summarizing the alternate approach, the analyst must choose from available data the variables which may be helpful in explaining or predicting a particular construction process. All interval-level variables are then standardized using Equation 3.1. Under standard conditions, all binary-level variables are set at zero. The intercept is developed using interval and binary-level variables which intuitively influence the mobilization, demobilization, and contingency buffer. Equation 3.2 is used to develop the intercept term. After the independent variables are chosen, they are combined with any influencing variables in accordance with Equation 3.4. The draft model is then transformed to facilitate interpretation.

3.5 Example Model Formulation

Three independent variables are of concern to the construction manager of this project. The laborer workhours, cement finisher workhours, and fixed overhead models will be developed to demonstrate the concepts introduced in this chapter.

Table 3.1 illustrates the variables chosen to be formulated for the prediction of LABORWH. These variables were chosen from this writer's experience and knowledge of concrete operations. DAY is chosen because "learning affect" is often discussed in the literature. The elevation may be significant because the laborers must construct and disassemble the pumping pipe. EL and ASSLEN are thus included in

Table 3.1 Chosen Variables for the Prediction of LABORWH

VARIABLE	TYPE	CONTRIBUTES TO	LABEL
NEWDAY	INTERVAL	INTERCEPT	STANDARDIZED TIME
ELSTAND	INTERVAL	INTERCEPT	STANDARDIZED ELEVATION
TEMP	INTERVAL	INTERCEPT	STANDARDIZED TEMPERATURE
PRECIP	BINARY	INTERCEPT	PRECIPITATION
KOD	BIHARY	INTERCEPT	KODIAK POUR
ATR	BINARY	INTERCEFT	ATRIUM
PLACBUGY	BINARY	INTERCEPT	BUGGY PLACEMENT
TRUKPUMP	BINARY	INTERCEPT	TRUCK PUMP USED
VOLGROSS	RATIO	WORK DONE	GROSS VOLUME
VOLKOD	PRODUCT	WORX DONE	VOLGROSS TIMES KOD
VOLATR	PRODUCT	WORK DONE	VOLGROSS TIMES ATR
VOLDAY	PRODUCT	WORK DONE	VOLGROSS TIMES NEWDAY
TVOLGROS	PRODUCT	WORX DONE	TEMP TIMES VOLGROSS
PVOLGROS	PRODUCT	WORK DONE	PRECIP TIMES VOLGROSS
VOLBUGY	PRODUCT	WORK DONE	PLACBUGY TIMES VOLGROSS
VOLTRUCK	PRODUCT	WORK DONE	TRUKPUMP TIMES VOLGROSS
ASSLEN	RATIO	WORK DCNE	PIPE ASSEMBLY LENGTH
ELASSLEN	PRODUCT	WORK DONE	ASSLEN TIMES ELSTAND
TASSLEN	PRODUCT	WORK DONE	ASSLEN TIMES TEMP
PASSLEN	PRODUCT	WORK DONE	ASSLEN TIMES PRECIP
AREAVOL	PRODUCT	WORX DONE	AREA TIMES VOLGROSS

والمعالمة والمحافظ والم

the draft model. MINTEMP and PRECIP were chosen because weather is often the cause for delay. The binary-level variables were chosen to test the affect of abnormal conditions. Since the laborers work with volume, VOLGRCSS is imput into the initial model.

and compared constant assessed whereas a backweek

The interval-level variables DAY, EL, and MINTEMP have been standardized and appear as NEWDAY, ELSTAND, and TEMP respectively. The draft model form of the intercept term is LABORWH = INTERCEPT +NEWDAY +ELSTAND +TEMP +PRECIP +KOD +ATR +PLACBUGY +TRUKPUMP. Each of the variables in this equation (excluding the intercept) have a coefficient associated with them. - These variables are thought to have an effect on mobilization, demobilization and the contingency buffer. This draft form can be transformed to read: INTERCEPT *(1+NEWDAY +ELSTAND +TEMP +PRECIP +KOD +ATR +PLACBUGY +TRUKPUMP). The transformed variables have a transformed coefficient equal to the draft coefficient divided by the intercept value. The transformed coefficients represent a rate of intercept change. The transformation is done to facilitate interpretation.

The two ratio-level variables when combined with contributing factors take the form of (VOLGROSS +VOLKOD +VOLATR +VOLDAY +TVOLGROS +PVOLGROS +VOLCRAN +VOLBUGY +VOLTRUCK) +(ASSLEN +ELASSLEN +TASSLEN +PASSLEN) +AREAVOL. The variable combination forms are defined in Appendix B. AREAVOL was included above and beyond the intercept and ratio-level forms because it was thought it may contribute to the prediction of labor workhours. These variables are then transformed by dividing all VOLGROSS interactions by the coefficient of VOLGROSS. ASSLEN is treated similarily. AREAVOL is then added to the

transformations to form the complete transformation. The total transformation form is accomplished by adding the intercept and ratio-level transformations to other predictor (AREAVOL in this case) variables which may effect the response variable. The complete model including the transformation form is included in Appendix D. The response variables FINISWH and FIXEDOH are developed and transformed in similar fashion. The complete models are included in Appendices E and F respectively.

3.6 Summary

The recommended approach to formulating regression models accomplishes two things: 1. It proposes a standardized method of model formulation; and 2. The proposed formulation method eases the interpretation of the regression results. The predictor variables can be broken into three groups necessary to accomplish the proposed model formulations. The independent variable LABORWH was developed as an example. Similar procedures were used, though not illustrated, for the development of FINISWH, and FIXEDOH.

CHAPTER 4

MODEL TESTING

4.1 Introduction

Once the models have been formulated, the deadwood or useless variables should be removed. The goal of regression analysis is to build a simple yet meaningful model. Model testing is used to accomplish this goal. Some model testing methods and statistics which are in common use: stepwise regression; t-test; F-test; R^2 ; R^2_{ADJ} ; Mallow's Cp statistic; collinearity diagnostics; and influence diagnostics. Important imformation can also be extracted from residual plots. Ludolph (6:31) discusses the use of residual plots in his MS thesis. All of the above tests and statistics are indicators of lack of fit of a model. It is important to note that lack of fit is a relative concept. Standard software packages exist which will perform the tests necessary to run a regression analysis. SAS (1) will be used throughout this study.

4.2 Traditional Approach

Traditional hypothesis testing procedures proposed by statisticians involve selecting variables and their forms (exponential, logrithmic. etc.) through experience, or upon suggestion. This entails: 1. Choosing independent and dependent variables; 2. Selecting "in-place" values (observations with values of x and y) versus selecting random assignment (find a value of y from an assigned x value); 3. Choosing a number of observations to use; and 4. Formulating a hypothesis. Parameters are then estimated and the hypothesis is tested.

A hypothesis formulated before analysis, based on theoretical ideas is refered to as an <u>a priori</u> hypothesis. After testing an <u>a</u> <u>priori</u> hypothesis through regression, the regression results can be used to formulate a new hypothesis, or an <u>a posteriori</u> hypothesis (9). A new data set is required to test the <u>a posteriori</u>. This procedure is repeated until the "best" model is formed. There may not be a best model. The traditional approach requires much data to satisfy the assumptions of regression.

A hypothesis formed by the traditional approach on this data set is illustrated in Appendix C of this thesis. The dependent variable being tested is LABORWH.

4.3 Testing LABORWH

The computer output for the analysis of LABORWH is attached in Appendix D. The thought process used in developing the final model will be discussed in this section; a tableau of test results is provided in Table 4.1. The subsequent response variables will be briefly presented with inclusion of a tableau similar to Table 4.1.

Due to the large number of variables formulated in the draft model for predicting labor workhours, the data was screened using stepwise regression. An α level of 0.25 was chosen. Thirteen variables met the 0.25 significance level and were input into a regression run. The initial regression run yielded a R^2_{ADJ} of 0.6732, and a mean square error of 148.874. The predictor variable PASSLEN is the least

REGRESSION RUN	VARIABLE REMOVED	MSE	R ²	R ² . RADJ
1	-	148.374	0.7049	0.6732
2	PASSLEN	149.443	0.7013	0.6719
3	AREAVOL.	149.927	0.6979	0.6708
*4	ELSTAND	150.293	0.6947	0.6700
5	KOD	155.003	0.6825	0.6597

Table 4.1 Summary of Tests on LABCRWH

* INDICATES "BEST" MODEL

significant in the t-test, and is thus removed in the second regression run. Run two shows a slight drop in the R^2_{ADJ} and a small rise in the MSE. By the t-test criteria, AREAVOL is removed and the regression is run again. The R^2_{ADJ} and MSE again experiences a slight drop and rise respectively. These changes have been slight thus far which indicates an insignificance of the removed variables. ELSTAND is removed and a fourth regression is run. The results of this run are similar to previous runs. The fifth run with KOD removed results in significant changes in the indicators used to this point; the model chosen is thus that tested in regression run four.

The collinearity diagnostics indicate the degree of multicollinearity present in the model. Table 4.2 illustrates the results of collinearity diagnostics on the final model for the prediction of LABORWH. Of particular interest is the conditional index. When the conditional index is large, estimates of the response variable may have considerable amounts of numerical error. It has been suggested that a bottom line conditional index less than 30 indicates an acceptable model (9). The conditional index of 16.432 in Table 4.2 indicates the final LABORWH model is fair.

The influence diagnostics provide a measure of the influence each observation has on the parameter estimates of the model. Appendix D contains the influence diagnostics for LABORWH. The important diagnostics are provided by examining the DFBETAS. This statistic indicates the effect the removal of a particular observation has on each of the parameter estimates, scaled by the standard error. A value for a DFBETA of 0.5 or more is cause for some concern.

Table 4.2 Collinearity Diagnostics of LABORWH Model

COLLINI	EARITY DIAG	NOSTICS	VARIANCE	PROPORTION	5	
NUMBER	EIGENVALUE	CONDITION INDEX	POHTION Intercep	PORTION P TERP	NCITHO	PORTION VOLGROSS
1	4.600	1.000	0.0006		0.0005	0.0009
2	2.873	1.265	0.0042		0.0013	0.0050
3	1.802 0.942879	1.598	0.0003		0.0309	0.0329 0.0010
5	0.272347	4.110	0.0193		0.0000	0.0056
6	0.217178	4.602	0.0087		0.0034	0.0047
7	0.102940	6.684	0.0391		0.2113	0.1268
9	0.072460 0.057462	7.967 8.947	0.0570 0.0183		0.0107	0.0037 0.0464
10	0.043434	10.291	0.2071		0.0720	0.6217
11	0.017034	16.432	0.6454	0.1534	0.0268	0-1922
	PORTION	PORTION PORT	CION PONTIC	N PORTION	PORTI	OK PORTION
NUMBER	VOLKOD	VOLDAY TVOLO	GROS VOLTRUC	K ASSLEN	ELASSL	EN TASSLEN
1	0.0005	0.0063 0.0	0.000	0.0007	0.00	39 0.0030
2	0.0014		025 0.012			
3	0.0353 0.0006)002 0.005)077 0.187			
5	0.0020		055 0.115		0.21	
6	0.0031	0.7804 0.0	0.150	1 0.0006	0.02	32 0.0128
7	0.3635		700 0.000		0.00	
8 9	0.0130 0.5536		0.133 0.002 0.002		0.09	
10	0.0216		3472 0.000		0.00	
11	0.0054	0.0006 0.0	002 0.392		0.57	

Č.

State and the second second

Several steps may be taken when a point with large values is encountered. The first step in dealing with these data points is to check data entry for accuracy. Next, the observations should be examined to ensure that they are part of the population of the study. Observation 25, 97, and 102 were scrutinized in this manner due to large values of "DFBETAS". No data entry error was noted, and the observations belong to the population outlined in Section 2.2. There is a possibility that the data was recorded incorrectly at the job sight. The fate of highly influential observations lies in the hands of the analyst; they should not be dropped without much thought and good reason. In the present case, the observations were retained.

The final test of the model chosen as the "best" model is the Extra Sums of Squares Test. An alpha level of 0.05 is chosen for this test. The full model consists of the variables singled out in the final stepwise regression step. The reduced model consists of the variables present in the "best" model. The removed variables are being tested for significance. The removed variables are PASSLEN, KOD, AREAVOL. With $v_1 = 13-10$ or three, and $v_2 = 135-13-1$ which equals 121, the $F_C = 2.68$. The observed F, F_O is:

 $F_{O}^{=}(43021.12-42398.63)*121/[18013.8*(13-10)]=1.39$. Because $F_{C} > F_{O}$, none of the removed variables contribute anything above and beyond those in the "best" model. Thus the ten variables tested in regression run three make up the final or "best" model.

4.4 Testing FINISWH

The variables thought to have an impact on the cement finishers workhours are ELSTAND, TEMP, KOD, VOLGROSS, VOLKOD, VOLDAY, TVOLGROS,

VOLTRUCX, ASSLEN, ELASSLEN, TASSLEN, PASSLEN, and AREAVOL. Due to the relatively low number of variables, a stepwise regression is not run. Applying the various lack of fit tests results in the sixth regression run on Table 4.3 being chosen as the "best" model. Removal of AREAVOL may also be considered. The small changes in the MSE, R^2 , and adjusted R^2 indicate that the variables removed are insignificant. An overall R^2 of 0.7826 is very good for this type of data. Over 78% of the variability in FINISWH is explained by these five variables.

4.5 TESTING FIXEDOH

Stepwise regression resulted in 13 variables meeting the significance level of entry of 0.25. The model with NEWDAY and FINISWH removed had an R^2_{ADJ} of 0.6614. The removal of PASSLEN resulted in a drop of over one-tenth in the adjusted R^2 . PASSLEN is thus left in the model, and no further regressions are run. Eleven variables remain in the model. It is desireable to have less than eleven variables in the final model, but significant changes occur in the three tests in Table 4.4 with the removal of the next viable variables, PASSLEN then KOD. The regression runs are included in Appendix F of this thesis.

4.6 Summary

The model testing tools reviewed in this chapter provide indicators to the lack of fit of the model being tested; however no one test is conclusive in itself. By combined use of the tests a "best" model can be chosen. This may not be the best model, indeed there may not be a best model (2:85). If blessed with an abundant amount of data, the analyst is urged to use accepted means of hypothesis testing. This is rarely the case in the construction industry.

RFGRESSION RUN	VARIABLE REMOVED	MSE	R ²	R ² ADJ
1	-	125.290	0.8063	0.7907
2	PRECIP	124.308	0.8063	0.7924
3	TEMPAREA	123.343	0.8063	0.7940
4	PRECAREA	123.242	0.8049	0.7941
5	FLOTAREA	124.954	0.8006	0.7913
*6	NEWDAY	127.364	0.7952	0.7873
7	AREAVOL	130.127	0.7891	0.7826

Table 4.3 Summary of Tests on FINISWH

Table 4.4 Summary of Tests of FIXEDOH

REGRESSION RUN	VARIABLE REMOVED	MSE	R ²	R ² ADJ
1	-	15586.113	0.6980	0.6656
2	NEWDAY	15664.113	0.6940	0.6639
*3	FINISWH	15781.347	0.6892	0.6614
4	PASSLEN	16423.050	0.6739	0.6476

a da ser a Nota da ser a da ser a

* INDICATES "BEST" MODEL

strong strong statedy booksed strongs sourced success strategy with strong strategy strategy strategy success

CHAPTER 5

INTERPRETATION OF RESULTS

5.1 Introduction

P

In a simple, first-order model (no higher order or interaction terms), a one unit change in an independent variable with coefficient B will result in a mean change in the dependent variable by B, all other variables held constant. Productivity is defined as output/input (quantity/manhours). When the dependent variable is manhours, the coefficient of independent variables with units of quantity of work (cubic yards poured, square feet painted, etc.) is the inverse of productivity. It is suggests these be labeled "unit time" when manhours is the response variable, and "unit cost" when cost is the response variable (5).

Multicollinearity can cause very confusing results. If multicollinearity exists between two independent variables, each variable may seem insignificant based on individual t-tests, but when the F-test is used at least one of the two variables may be significant.

When an interaction is present in the model, keeping one variable constant, both the slope and the intercept change as the second variable in the interaction changes. The slope of a variable depends on the other interaction variable. For example, given the model Y=A +B*X+C*Z+D*X*Z, the slope of Z equals C +D*X at a given X (7:199).

The coefficients of the transformed models represent rates of change. By transforming the model equations, it is possible to identify the effects certain variables have on the intercept and ratio-level variables. The intercept cannot be broken down into its three components (mobilization, demobilization, and contingency buffer) using the techniques proposed.

An interpretation of the results of the LABORWH will be discussed in this chapter. Then the goals of the study as addressed in Section 1.3 will be completed. The chapter will close with some applications of the results.

5.2 Interpretation of LABORWH

The "best" model as identified in Chapter 4, can be transformed to ease interpretation. The intercept term has the transformed form of 28.23*(1 -0.02*TEMP -0.96*KOD). Both ratio-leve! variables are also transformed. VOLGROSS takes the form 0.222*VOLGROSS*(1 +2.64*KOD +0.0038*DAY -0.018*TEMP +0.74*TRUKPUMP). Likewise, ASSLEN is transformed as 0.061*ASSLEN*(1 -0.004*EL +0.039*TEMP).

The coefficients of the "best" model for the prediction of LABORWH identify interesting implications of the pouring operations. The intercept term indicates over 28 hours of work are required when no work is done and operations are at standard conditions. A proportional increase to the intercept is caused by temperatures below the average. This indicates more manhours are required for mobilization, demobilization and contingencies when the temperature is low. Kodiak pours cause a proportional decrease in the intercept. This is most likely due to the fact that Kodiak pours are smaller in volume than the

norm. They consist of areas which were blocked out (not poured when rest of slab was poured) to accomodate the tiebacks which supported a crane system.

The Kodiak pours cause a proportional increase in the overall manhours of the pour. The Kodiak pours are small, but somewhat specialized due to their location. The day of work and fact that truck pumps are being used have the same effect. Work tends to slow down as the job nears conclusion. Correcting punchlist items combined with the fact that the workers will be out of work when the job is done may explain this. Since concrete sets faster in warmer weather, it is expected that manhours and temperature have a negative relation, which is reflected in the regression results. The proportional effects of elevation and temperature on the assembly length are confusing. At lower elevations it tends to require more work to assemble the pipe. Equally confusing is the fact that at higher temperatures the manhours used to assemble the pipe increase.

Based on the results of the regression runs, managers have more insight into the construction process. Providing protection from the environment is something which should be examined. The cost of the protection may outweigh the savings in labor costs. Avoiding the use of the truckpump is another item which could save money. Other items such as the effects of time and Kodiak pours are important for planning purposes. Schedules can be made reflecting these effects.

Plots of the regression residuals versus each of the independent variables of the final model for LABORWH appear in Appendix D. The plots appear to be homoscedastic. There are no strong trends. The

Table 5.1 Descriptive Statistics of LABCRWH Model

N 8.4"4.".

VARIABLE=RESID RESIDUALS

Ē

HOMENTS

N	135	SUM WGTS	135
MEAN	-1.1792-14	SUN	-1.592E-12
STD DEV	11.7931	VARIANCE	139.077
SKEWNESS	0.546949	KURTOSIS	0.309896
055	18636.3	CSS	18636.3
CV	-1.000E+17	STD MEAN	1.01499
T:MEAN=0	-1.1622-14	PROB> T	1
SGN RANK	-280	PROB> S	0.539311
NUM -= 0	135		

QUANTILES (DEF=4)

100%	IAI	34.5541	99%	33.0548
75% (23	6.51257	95%	23.4307
50%	ED	-0.287526	90%	16.5639
25% 0)1	-7.93424	10%	-14-2713
0% 1	IN	-24.2865	5%	-19.259
			15	-23.5976
RANGI	2	58.8406		
23-01	l	14.4468		
NODE		-24.2865		

EXTREMES

LOWEST	HIGHEST
-24.2865	28.4747
-22.373	29.0173
-21.9575	29.3252
-19.7387	30.3895
-19.6507	34.5541

27

plot of the residuals versus VOLGROSS hints that less variability in manhours appears with larger pours (greater than 200 cubic yards). Descriptive statistics of the residuals make it possible to choose a crew size for average conditions. By replacing the variable names with the desired (proper) numerical values, the mean labor workhours required can be predicted. Being the mean, roughly 50% (assuming a nearly symmetrical distribution) of the time more labor than is predicted will be required. Table 5.1 contains the descriptive statistics for the residuals of the "best" model for prediction of LABORWH. The descriptive statistics indicate 16.56 manhours should be added to the mean prediction in order to reach a 90% confidence level of completing the job in the predicted time. The job of the manager is to choose the confidence level. The additional manhours required to be added to the mean can then be derived. The crew size can be chosen using the simple analysis described above.

5.3 Summary

There are two major concerns of interpretation of the results. The first is one of validity. Are the results useful? If not, all is not lost. Important insights into the operations can be gained through analysis. The deficiency of a single, precise lack of fit test is the second concern.

Having found the results valid, the construction manager has many uses for them. Manhours can be predicted, decisions on methods of construction can be made, and crew size can be chosen. By multiplying the manhours for both laborers and finishers by their respective rates of pay, and adding the cost of the fixed overhead, a cost estimate can

be derived. Regression analysis can also be used in claims cases. Costs can be calculated for the way a project should have been. This can be compared to the way it actually was. The claim can then be based on this difference.

CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

In Chapter 1 of this thesis, four areas of confusion were discussed, and the three major goals of the study were given. The data set for this research was described in Chapter 2. Chapter 3 dealt with the formulation of regression models. The models were tested in Chapter 4, and interpreted in Chapter 5. The major conclusions of this study and recommendations for future research are given hereafter.

6.2 Major Conclusions of Confusion Areas

The major conclusions based on the four confusion areas presented in Section 1.1 of this thesis are:

> 1) Data aquisition in the construction industry needs improvement in order to facilitate various analytical techniques. Construction managers and accounting personnel need to develop data forms together to satisfy both of their needs. It is less expensive, and more accurate, to collect the right data as the job is in progress than to try to extract it from records after the job is complete.

> 2) The thrust of this study is in the methodology proposed. A nine step approach to the analysis of construction data has been introduced: 1. Data

collection; 2. Choose response variables; 3. Break independent variables into ratio, interval, and binary-levels; 4. Develop initial regression model(s); 5. Model coding; 6. Identify independent variables in coded form and calculate transforms; 7. Run regression, find parameters, and select best model; 8. Decode best model; and 9. Interpret decoded model. This nine step approach provides a standard methodology in lieu of a capricious approach. The regression results achieved by this method on the data set used in this study are within the region of results one would expect to find in the industry.

3) Many of the assumptions of regression are violated in these, and most construction data. Because construction data are few and far between, random sampling is often not done. This is the case in this study. Additionally, the random error associated with any one dependent variable is not always independent of the error associated with any other point. The question to be resolved by the analyst is one of validity; "Is regression analysis useful for a particular construction process?" The violations of assumptions tend not to loom as big if the methodology is valid (useful).

4) The value of regression analysis lies in the interpretation of the results. Improvements to a

process, and/or identifications of problem areas in the process can be achieved through proper interpretation of the regression results. This interpretation can aid in decision making. Descriptive statistics of the residuals of a model provide for such things as the selection of crew size.

6.3 Satisfaction of Goals of This Study

The three goals of this study presented in Section 1.3 have been satisfied:

1) A Methodology was developed in this thesis and is summarized by the nine step approach presented in the second section of this chapter;

2) Examples of how one can use the parameter estimates
to make such decisions as whether to use weather
protection or not is presented in Section 5.2; and
3) A demonstration of how a manager can use the
descriptive statistics of the model residuals to choose
a crew size, based on a percentile dictated by
management, is included in Section 5.2 of this thesis.

6.4 Recommendations for Future Research

Four areas offer potential for future research. The first is to continue applying the techniques discussed in this study to to other data sets. An opportunity to analize data, then use the results to predict an actual job, would provide for an interesting study. Analysis of data from various contractors with similar specialties may identify aspects common to all the data. Modification of the methodology may improve the results and validity of them.

Ż

Deconfounding the intercept term provides the second area of future research. It may only be possible to accomplish this through time-lapse study. The time-lapse equipment is available at The Ohio State University.

The third area for future research is to test and further develop the nine step approach introduced in this thesis.

The final suggested research subject is to evaluate the benefits and desirability of using a confidence interval approach to sizing of crews given daily point estimates of manhour requirements.

REFERENCES CITED

- 1. Allen, Alice. <u>SAS User's Guide: Statistics, 1982 Edition</u>. Cary, NC: SAS Institute Inc., 1982.
- Daniel, Cuthbert and Wood, Fred S. <u>Fitting Equations to Data</u>. New York: Wiley-Interscience, 1971.
- Diekmann, James E. and Kruppenbacher, Timothy A. "Claims Analysis and Computer Reasoning," <u>Jounal of</u> <u>Construction Engineering and Management</u>, Dec. 1984.
- 4. "ENR Market Trends," Engineering News Record, 27 June 1985.
- 5. Larew, Richard E. Discussions and conferences, The Ohio State University, 1985.
- 6. Ludolph, Douglas Edward. "Unit Cost Estimating." Master's thesis. The Ohio State University, 1979.
- 7. Mendenhall, William and McClave, James T. <u>A Second Course</u> <u>in Business Statistics: Regression analysis</u>. San Francisco: Dellen Publishing Co., 1981.
- 8. Rao, Potluri and Miller, Roger LeRoy. <u>Applied Econometrics</u>. Belmont, CA: Wadsworth Publishing Co., 1971.
- 9. Thompson, Paul. Class notes from Business Management 801.05, Regression Analysis. The Ohio State University, 1985.
- 10. United States Air Force. AF FORM 561, May 1978.

APPENDIX A

DATA USED IN STUDY

This section contains the data used in this study. Some variables made available to this writer are not included in the following list because they were not used in this study. Additionally, no transformed values such as AREAVOL are listed in these pages.

Table A.1 List of Data

EVENING COMPANY STORED STATES CONT

and and see

0 B S	D A T E	D A Y	E L	А Н Е А	V O L G R O S S	H I N T E H F	F R E C I P	P L A C B U G I	T A U K P U M P	FLOTFIN	K D	A T R	X S L P N	F I X E D O H	L B D R W H	P F O I U N R I C S O V S H T
1	112283	260	0	17300	345	55	0	0	1	1	0	0	75	1483	100.5	51.0 4.36
23	112883 121383	266	0	7214	135	45	1	0	1	1	0 0	0	85	776 1009	64.0	51.0 2.94
24	121583	281 283	36 36	7600 2587	158 50	43 40	0	0	1	1	0	0	96 96	587	106.0	78.5 4.95
5	121683	284	18	10200	150	27	ŏ	ŏ	i	i	ŏ	ŏ	138	837	111.0	42.5 3.63
6	122183	289	18	7480	150	13	ī	ō	i	i	õ	ō	78	1004	138.0	56.0 4.89
7	122283	290	18	6350	100	19	1	Ŭ.	1	1	0	0	88	673	65.5	32.0 2.48
8	10384	302	36	7200	104	32	0	0	1	0	0	0	121	882	81.5	65.5 3.76
9	10484	303	36	8600	160	34	0	0	1	0	0	0	131		104.0	64.5 4.38
10	10684	305	67	4800	60	32	1	0	1	0	0	0	102	1104	70.0	51.0 3.69
11 12	11084 11184	309	67	5800	138	10	0	0	1	0 0	0	0	152 142	1070 905	108.0	83.5 5.03 86.5 4.78
13	11284	310 311	67 67	7620 5590	80	e 7	0	0	1	0	0	0	97	625	76.0	59.5 3.17
14	11784	316	54	8700	130	21	ŏ	ŏ	i	ŏ	ŏ	ŏ	109	942	96.0	75.0 4.25
15	11884	317	54	8500	144	13	ĭ	ŏ	i	ō	ō	ō	164	841	96.5	77.0 4.35
16	12384	322	54	6525	111	13	0	0	1	0	0	0	134	765	116.0	65.5 4.15
17	12584	324	93	10370	160	34	0	0	1	0	0	0	243	938	107.5	93.0 5.17
18	12684	325	0	2400	45	30	0	1	0	1	0	0	0	f. 6	30.0	19.0 1.01
19 20	12684	325	93 93		110	30	0	0	1	0	0	0	253 263	893 431	121.0	66.5 4.58
21	12784 13084	326 329	9 3	8000 5235	100 90	22 28	1	ŏ	0	0	ŏ	ŏ	145	683	62.0 84.0	64.0 2.73 57.5 3.61
22	13184	330	60	10370	160	12	ò	ŏ	ŏ	ŏ	ŏ	ŏ	180	749		102.5 5.25
23	20184	331	80	8630	130	9	ō	ō	ō	ō	ō	ō	355	635	99.0	85.5 4.30
24	20284	332	80	7300	100	23	0	0	Ō	Ō	0	0	225	477	83.0	63.5 3.17
25	20284	332	0	2330	60	23	0	1	0	1	0	0	0	277	30.0	14+0 1+19
26	20384	333	0	3000	60	30	1	0	0	1	0	0	0	601	44.0	23.0 1.79
27	20784	337	107	11130	230	13	1	0	0	1	0	0	207		103.0	56.0 3.60
28 29	20684 21084	336 340	107 140	15300	280 240	14 30	1	0	0	1	0 0	0	402 320	862 657	133.5	67.5 4.79 68.0 3.81
30	21484	344	140	15300	259	40	ŏ	0	õ	i	ŏ	ŏ	435	714	102.5	51.0 3.52
31	21784	347	54	2376	114	41	ĭ	ĭ	ŏ	ò	ŏ	ŏ	249	836	85.0	46.0 3.44
32	22084	350	153	13950	207	34	ò	ò	Ō	Ō	Ō	Ō	448	815	104.0	85.5 4.70
33	22184	351	153	9750	160	34	0	0	0	0	0	0	333	754	94.5	74.0 4.01
34	22384	353	166	5915	100	35	0	0	0	0	0	0	541	660	75.5	63.0 3.15
35	22484	354	166	7800	139	30	0	0	0	0	0	0	356	630	67.0	58.5 3.01
36	22784	357	166	8290	178	28	1	0	0	0	0	0	356	1081	117.0	85.5 5.34
37 30	30184 30684	360 365	178 192	9984 12280	206 180	12	0	0	0	0	0	0	343 382	1013 835	110.0	100.0 5.76
39	30764	366	192	3600	66	14	ŏ	ŏ	ŏ	ŏ	5	ŏ	352	498	63.0	34.0 2.21
40	30884	367	205	14820	216	Ģ	ĭ	õ	ŏ	õ	ō	ō	500	910	98.0	91.5 4.97
41	30984	360	205	9430	170	ģ	ò	ō	ō	ō	Ō	0	395	755	103.0	88.0 4.57
42	31 384	372	218	10250	170	29	0	0	0	0	0	0	533	774	95.5	72.0 3.99
43	31484	373	210	9515	140	29	0	٥	0	0	0	0	413	717	91.5	79.0 4.01
44	31584	374	218	7205	95	28	1	0	0	0	0	0	353	541	64.0	54.5 2.75
45 46	31684 32084	375 379	107 107	12190	150	32 30	1	0	0	0	0	0	352 282	968 735	101.5	108.0 5.53
40	32284	379	231	10395	169	30	0	0	0	0	0	0	566	795	81.5	73.5 3.74 83.0 4.11
46	32364	382	231	16800	237.		ò	ŭ	ŏ	ŏ	Š	ŏ	396	821		106.0 5.29

Table A.1 List of Data (cont'd)

112 11 10 10 10

10.00

- 5

Island Internet

0 8 5	D A T E	D A Y	E L	A R E A	V O L G K O S S	H I N T E H P	PHECIP	P L A C B U G Y	T R U K P U H P	FLOTFIN	K O D	A T R	L S L N	F I Z D U H	L A B O R M H	- F I N I S H H	P D U R C O S T
49 50	32684 32704	385 386	244 244	14900	230 169	24 23	0 0	0	0	0	0	0	489 419	815 795	95.5 91.0	92.0 82.5	4.65 4.18
51	46264	392	257	13660	216	34	ŏ	ð	ů	ŏ	ŏ	ŏ	502	835	96.0	82.0	4.52
52	40364	393	257	11260	167	30	0	ō	Ō	ō	Ō	0	432	661	89.5	76.5	3.80
53	40984	399	270	15305	230	34	0	0	0	0	0	0	515	821	100.0	94.0	4.79
54	41004	400	270	12715	180	34	0	0	0	0	0	0	445	774	102.0	84.5	4.40
55	41154	401	283	15365	236	31	Ú O	Ű	0	0	0	0	528 458	861	94.0	91.5	4.65
56 57	41284	402	263 140	12715	179 210	30 44	0 0	0	0	0	0	ŏ	315	601 801	90.0	86.5 94.5	4.35 4.87
58	41684	406	140	11980	175	35	ŏ	ŏ	ă	ů	ŏ	ŏ	385	914	103.0	91.0	4.98
59	41764	407	296	8315	161	32	ī	ō	õ	õ	ō	ō	631	727	86.5	76.0	3.73
60	41964	410	296	14865	188	32	Û	0	0	0	0	0	491	861	87.0	84.5	4.23
61	42664	410	296	4915	65	40	0	0	0	0	0	0	521	596	60.0	43.0	2.45
62	42384	413	309	9490	160	37	0	0	0	0	0	0	644	764	72.0	72.5	3.51
63	42564	415	309	13760	211	44	0	0	0	0	0	0	474	827	99.0	104.0	5.18
64 65	42684	416	322 322	15740	230 178	52 63	0	0	0	0	0	0	567 497	821 710	98.0 76.0	91.5 81.0	4.81 3.94
66	50264	422	328	15915	230	44	0	õ	ŏ	Ő	ŏ	ŏ	573	947	99.0	102.5	5.53
		423	348	11365	190	41	ō	õ	õ	ŏ	ō	ŏ	523	852	97.5	90.5	4.92
	50784	427	335	15915	234	46	Ō	Ö	Ō	Õ	0	Ō	580	934	95.0	115.0	5.77
	50884	428	335	6565	100	46	1	0	٥	0	0	0	555	960	62.0	77.0	4.05
	50964	429	257	3900	58	41	0	1	0	0	1	0	452	1037	90.5	81.5	4.61
71	51064	4 30	309	2400	39	37	0	1	0	0	1	0	449 475	592	61.0	48.0	3.09
	51064 51184	430 431	335 361	4800 14875	71 220	37 50	0	0	0 0	0	0	0	606	525 897	60.0 91.0	42.0 91.0	2.74 4.87
74	51484	434	18	10480	154	37	ŭ	0	1	ĭ	õ	ĭ	113	1012	99.0	40.5	3.82
	51464	434	361	9599	140	37	ō	ŏ	ò	ò	ō	ò	536	1105	76.5	62.5	4.07
76	51584	435	93	4880	86	38	0	1	Ō	0	1	0	363	1105	107.0	50.0	4.34
77	51564	435	18	8409	120	38	0	0	1	1	0	1	98	1025	107.0	48.0	4.31
	51664	436	36	8363	156	37	0	0	1	0	0	1	121	1339	102.0	64.0	5.19
79	51684	436	361	14635	225	37	0	0	0	0	0	0	606	1147	108.5	98.5	5.98
80 61	51764	437 437	36 361	6899 11615	130	38 38	0	0 0	1	0	0	1	111 536	968 993	78.5 75.0	46.0	3.46
	51884		80	1575	30	52	ŏ	ŏ	ŏ	0	ő	0	160	620	37.0	8.5	1.43
83	52184	441	54	7133	169	51	ŏ	ŏ	ĭ	ŏ	ŏ	ĭ	129	1177	95.0	64.5	4.71
84	52284	442	367	17300	256	64	ō	õ	Ó	ŏ	Ō	Ó	632	1104	110.0	77.0	5.23
85	52284	442	54	7288	108	64	0	0	1	0	0	1	129	986	77.0	48.5	3.55
86	52484	444	67	7212	106	57	0	0	1	0	0	1	142	844	55.5	43.0	2.81
87	52484	444	387	11500	170	57	0	0	0	0	0	0	582	858	75.5		3.48
88	52584	445	374	1145	35	61	0	0	0	0	1	0	569	798	46.5	25.5	2.21
89	52584	445	67	7212	100	61	0	0	1	0	0	1	142	1044	74.0	50.5	3.06
90 91	53084	450 451	80 400	6789 16780	100	44	1	0	1	0	0	1 0	145 645	1105 1388	70.0	36.0 90.5	3.33 5.94
	60164	452	80	6789	97	59	0	0	ĭ	0	ŏ	1	145	923	67.5	45.5	3.16
93	60164	452	400	12110	178	59	ō	ō	ò	ō	ō	ò	575	1038	103.0	60.5	4.51
94	60464	455	93	14000	154	54	Ō	0	0	0	0	1	343	1252	106.5	69.3	4.96
95	60584	456	426	14825	234	59	0	0	0	0	0	0	671	1198	90.5	101.5	5.53
96	60684	457	426	11805	160	66	0	0	0	0	0	0	601	976	81.5	89.0	4.45

Table A.1 List of Data (cont'd)

сV?

54 E.U.S.

12

المتعتقديني

÷.

D O A B T S L	D A Y	E L	A R E A	¥ U L G K O S S	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P f E C I P	PLACBUG Y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F L O T F I N	K O D	A T R	A S L E N	7 I I I I I I I I I I I I I I I I I I I	L B O R U H	F I N I S H	P U R C J S T
	$\begin{array}{c} \textbf{Y} \\ \textbf{4} \textbf{4} \textbf{4} \textbf{4} \textbf{4} \textbf{4} \textbf{4} \textbf{4}$		-						-							
130 60584 131 61484 132 81584 133 61764 134 82084 135 62184	527 528 530 533	573 93 93 599 122 107	14320 8185 6907 13450 4482 5328	260 111 60 188 45 63	70 71 67 67 67 61 49	000000000000000000000000000000000000000	000000	0 1 0 0 0	1 0 0 0 0	000000	0 1 1 0 1	793 378 413 804 322 337	758 1174 1005 850 597 705	103.0 116.0 96.0 109.0 73.0 75.0	59.5 59.5 56.0 66.0 33.5 46.5	4.02 4.60 3.96 4.42 2.60 3.09

APPENDIX B

VARIABLE LABLES

This section labels or defines the variables used in this study. Due to field length limitations in SAS, the labels are short and concise. Table B.1 Variable Labels

LABEL AREA=AREA FINISHED BY CEMENT FINISHERS ATR=ATRIUM VECTOR KOD=KODIAK VECTOR POURCOST=COST OF THE POUR IN THOUSANDS DAY=DAY OF WORK WITH MARCH 8,1983 AS DAY 1 EL=ELEVATION OF POUR ABOVE GROUND VOLGROSS=GROSS VOLUME OF CONCRETE POUR NINTEMP=THE DAILY MINIMUM TEMPERATURE ASSLEN=ASSEMBLY LENGTH OF PIPE PUMPTRUK=TRUCK PUMPVECTOR TIMES AREA TRUKPUMP=TRUCK PUMP VECTOR PRECIP=PRECIPITATION VECTOR PLACBUGI=BUGGI VECTOR FLOTFIN=PLOAT FINISH VECTOR FILEDOH=COST OF SUPERVISION, POLICE, OPERATORS LABORNH=LABORERS WORK HOURS FINISHE=CEMENT FINISHERS WORK HOURS NEWDAY=STANDARDIZED DAYS ELSTAND=STANDARDIZED ELEVATION TEMP=STANDARDIZED MINIMUM TEMPERATURE VOLKOD=VOLGROSS TIMES KODIAK VECTOR VOLCRAN=VOLGROSS TIMES CRANE VECTOR VOLTRUCK=VOLGROSS TIMES TRUCKPUMP VECTOR VOLATR=VOLGROSS TIMES THE ATRIUM VECTOR TVOLGROS=VOLGROSS TIMES THE STANDARDIZED TEMP PVOLGROS=VOLGROSS TIMES THE PRECIP VECTOR VOLBUGI=VOLGROSS TIMES THE BUGGY VECTOR PASSLEN=ASSEMBLY LENGTH OF PIPE TIMES PRECIP PRECAREA=AREA TIMES THE PRECIPITATION VECTOR TEMPAREA=TEMPERATURE TIMES THE AREA FLOTAREA=AREA TIMES THE FLOAT VECTOR ELASSLEN=EL TIMES ASSLEN TASSLEN=TEMP TIMES ASSLEN AREAVOL=AREA TIMES VOLGROSS

a La calenda a la calenda de la calenda de

APPENDIX C

TRADITIONAL TEST OF LABORWH

C.1 Introduction

A traditional approach to formulating and testing the LABCRWH model is presented in this section. The testing of the model is similar to the testing of the models discussed in Chapter 4 of this thesis; the formulation of the models is much different than the approach proposed in this study.

C.2 Hypothesis

It is thought that MINTEMP, VOLGROSS, EL, AREAVOL, ASSLEN, PRECIP, KOD, ATR, PLACBUGY, AND TRUKPUMP contribute something to the prediction of LABORWH. The null hypothesis, $H_0 : B_0 = B_1 = \dots B_N = 0$, indicates no variables contribute to LABORWH. The alternate hypothesis, $H_A : B_0 = 3_1$ =... $B_N = 0$, indicates at least one B is not equal to zero.

C.3 Testing the Model

The first regression run with all considered variables included has an R_{ADJ}^2 =0.5854 and MSE of 188.836. Removal of PRECIP results in a slight rise in the R_{ADJ}^2 (0.5867) and a slight decrease in the MSE (188.274). The R_{ADJ}^2 lowers to 0.5829 and the MSE rises to 189.961 when PLACBUGY is removed. These adjustments are small enough to be considered insignificant however. After removing the variable ATR, the R_{ADJ}^2 decreases a bit more, and MSE shows a larger increase. Hence, the model with ATR included is considered the best.

The last test to be used in qualifying this model is the F-test on the excluded variables. An alpha value of 0.05 results in an F_C of 3.07. $F_O = (37619.231 - 37099.812) *124$ divided by 2*23415.384. Hence, F_O equals 1.37. Since $F_C > F_O$, it is 95% certain that none of the removed variables contribute significantly to the prediction of LABORWH. The final model is a good model.

C.4 Interpretation of Results

The mobilization/demobilization/contingency buffer (intercept) is 33.4 hours. Labor workhours decreases 0.22 hours for every degree increase in temperature. Maintaining a constant area of pour, the manhours required increases with volume. Elevation remains confusing. The manhours tends to decrease as the elevation increases. Thinner slabs at the higher elevations may be an answer. Kodiak pours tend to require 15 more hours to complete, and atrium pours nearly eight more. Using a truck pump increases the time by 12 1/2 hours on the average.

C.5 <u>Summary</u>

.

Many testing techniques are covered in the literature. The testing methods used in the body of this study was used in this appendix. The "best" model should be tested again with a new set of data, an additional variables perhaps added.

Table C.1 Traditional Approach Regression Run 1

0.1212222

DEP VARIABLE: LABORUH LABORERS HORK HOURS

PROB>F	0.0001		PROB > T	000-	1000°0	-007	. 429	.107	.124	ŝ	0.0030
F VALUE	19.922	0.6164 0.5854	T FOR HO: Parameter=0	3.851 -1.980	5.497 -3.750	-2.712	-0.792	1.621	1.549	1.491	3.029
MBAN Square	3761.923 188.836	R-SQUARE ADJ R-SQ	STANDARD Error	7.898800 0.113161	0.077590	9942	3.579561	.5026	.1050	.14944	4.561132
SUM OF SQUARES	37619.231 23415.684 61034.915	13.741767 87.162963 15.7656	PARAMETER BSTIMATE	30.418670 -0.224088	0.426547 -0.104731			•	•	•	13.814883
DF	10 124 134	MSE Ean	DF			• •			-	-	-
SOURCE	MODEL Error C Total	R00Т DEP М C.V.	VARIABLE	INTERCEP MINTENP	VOLGROSS El.	AREAVOL	PRECIP	KOD	ATR	PLACBUGY	TRUKPUMP

Table C.2 Traditional Approach Regression Run 2

S
HOURS
H O
B
NORK
æ
3
5
LABORERS
1
H
B
BC
LABORNH
 ш
JL
×
RI
VARIABLE:
OEP
~

•

	PROB>F	0-0001		PROB > T	0.0002 0.0519 0.0519 0.0003 0.0003 0.1407 0.1470 0.0030
HOURS	P VALUE	22.131	0.6144 0.5867	T FOR HO: Parameter=0	3.013 -1.962 -1.962 -3.686 -2.628 4.227 1.654 1.654 3.027
LABORERS NORK HOU	MRAN Square	4166.747 188.274	R-SQUARE ADJ R-SQ	STANDARD Error	7.870134 0.112950 0.076953 0.027680 0.003836791 0.003836791 6.488454 5.043103 6.133970 4.554183
LABORNH	SUM OF SQUARES	37500.723 23534.192 61034.915	13.721280 87.162963 15.7421	PARAMETER Estimate	30.009374 -0.221645 0.419433 -0.102024 -0.010083 0.095222 10.730969 8.494203 8.950987 13.785563
VARIABLE:	DF	9 125 134	NSE Iean	DF	
DEP VARI	SOURCE	NODEL Error C Total	R00T DEP H C•V•	VARIABLE	INTERCEP MINTERP VOLGROSS EL AREAVOL ASSLEN ASSLEN KOD ATR PLACBUGY TRUKPUMP

44

.2

.

1.

Table C.3 Traditional Approach Regression Run 3

DEP VARIABLE: LABORNH LABORERS NORK HOURS

	PROB>F	0-001		PROB > T	0.0554 0.0554 0.0005 0.0139 0.0139 0.1254 0.1254	
	P VALUE	24.413	0.6078 0.5829	T FOR HO: Parameter=0	4.418 -1.934 -1.934 -2.593 4.057 4.057 2.543 2.543	
LABURERS WURK HUURS	NEAN Square	4637.477 189.961	R-SQUARE ADJ R-SQ	STANDARD Error	7.556533 0.113445 0.076509 0.00383821 0.00383821 5.818968 5.041615 4.485787	
	SUN OF SQUARES	37099.812 23935.102 61034.915	13.782639 87.162963 15.81249	PARANETER Estinate	33.383081 -0.219402 0.403430 -0.099719 -0.00957786 14.995486 7.778109 12.482777	
1976:	DF	в 126 134	M S E I E A N	DF		
URP VANLABLE: LABONNE	SOURCE	MODEL Error C Total	ROOT DEP M C.V.	VARIABLE	INTERCEP MINTERCEP VOLGROSS EL AREAVOL ASSLEN KOD ATR TRUKPUMP	

Table C.4 Traditional Approach Regression Run 4

•

	PROB>F	0.0001		PROB > T	0.0001	0.0001	0.0001	0.0001	0.0226 0.0017	
HOURS	AALUE	27.264	0.6004 0.5784	T FOR HO: Paraneter=0	4.217-1.255	5.231	-4.653 -2.578	4.461	2.308 3.200	
LABORERS NORK HO	N E A N S Q U A R E	5235.382 192.026	R-SQUARE Adj R-SQ	STANDARD Error			0.025309 0.003852081	•		
LABORNH LAB	SUM OF SQUARES	36647.672 24387.243 61034.915	13.857328 87.162963 15.89818	PARAMETER Estinate	31.704606 -0.114789	0.402371	-0.117769 -0.0099353	0.098388	13.242173 14.056211	
DEP VARIABLE:	SOURCE DF	NODEL 7 Error 127 C Tofal 134	ROOT MSE DEP MEAN C.V.	VARIABLE DF	INTERCEP 1 Mintemd 1	s 	~ ~	ASSLEN 1		

Table C.5 Traditional Approach Regression Run 5

and a second second a second and second as a second s

La la carte

DEP VARIABLE: LABORUN LABORERS NORK HOURS

	PR08>F	0.0001		PROB > T	0.0001 0.0001 0.0001 0.0001 0.0001 0.0039
	F VALUE	31.404	0.5765 0.5765	T FOR HO: Parameter=0	4.183 6.449 6.449 1.3.339 4.328 2.378 2.940
LABUNERS NONE HOURS	NEAN Square	6057.512 192.889	R-SQUARE Adj R-SQ	STANDARD Error	6.377231 0.069049 0.024990 0.003546966 0.021933 5.741425 4.113335
DEP VARIABLE: LABORNE LAB	SUN OF SQUARES	36345.074 24689.841 61034.915	13.888462 87.162963 15.9339	PARANETER Estinate	26.677331 0.445315 -0.123217 -0.011642 0.094936 13.651740 12.093022
ABLE:	DF	128 134	N N N N N N N N N N N N N N N N N N N	DF	
DEP VARI	SOURCE	MODEL Error C Total	R00T DEP 1 C.V.	VARIABLE	INTERCEP Volgross El Areavol Asslen Kod Trukpump

APPENDIX D

LABORWH COMPUTER OUTPUT

Ē

The regression runs used to formulate the model for the prediction of LABORWH are included in this section. The final step of the stepwise regression run is presented first, followed by the individual runs. Residual plots are included to complete the output. The draft model is: LABORWH= INTERCEPT +NEWDAY +ELSTAND +TEMP +PRECIP +KOD +ATR +PLACBUGY +TRUKPUMP +VOLGROSS +VOLXOD +VOLDAY +TVOLGROS +PVOLGROS +VOLCRAN +VOLBUGY +VOLTRUCK +ASSLEN +ELASSLEN +TASSLEN +PASSLEN +AREAVOL. This model transforms to : LABORWH= INTERCEPT (1+NEWDAY +PRECIP +ELSTAND +TEMP +KOD +ATR +PLACBUGY +TRUKPUMP) +VOLGROSS*(1+VOLKOD +VOLDAY +TVOLGROS +PVOLGROS +VOLCRAN +VOLBUGY +VOLTRUCK) +ASSLEN*(1+ELASSLEN +TASSLEN +PASSLEN) +AREAVOL.

Table D.1 Last Step of Stepwise Regression Run

FORMARD SELECTION PROCEDURE FOR DEPENDENT VARIABLE LABORNH

82 90	PR OB>F	0.0001	PROB>F	.164	.007	680.	•••	•000	-001	.000	.000	-002	• 00	.228	.185
= 0.704860E	*	22.23	64 164	• 96	•36	• 05	:-	•03	0.66	•00	5.41	.38	9	٢	11
R SQUARE C(P) =	MEAN SQUARE	3309.316918 148.874338	TIPE II SS			453.	1182.309441	535.	505.	126.	293.	397.	239.		
PASSLEN ENTERED	SUM OF SQUARES	43021.11993471 18013.79488011 61034.91481481	E STD ERROR	8E60#0*0 1	0.177666	2 13.187271 0.074402		0.000189	0.001144	0.031569	0.021056	00-00	111000-0	0.00	2 0.003644
VARIABLE I	DF	134 E1 134 E	B VALU	• •		n c	0.5609147	-	•	•	•	-0.000174	0.002074	-0.010657	-0.004854
STEP 13		REGRESSION Error Total		INTERCEPT Elstand	TEAP	KOD VOLGENSS	2	VOLDAY	OLGRO	VOLTRUCK	ASSLEN	ELASSLEN	TASSLEN	PASSLEN	AREAVOL

49

NO OTHER VARIABLES MET THE 0.2500 SIGNIFICANCE LEVEL FOR ENTRY

Table D.2 Regression Run 1

DEP VARIABLE: LABORNH LABORERS NORK HOURS

PROB>F	0-001		PR08 > 1	0.1800 0.1643 0.0077 0.00834 0.0001 0.0001 0.0001 0.0001 0.0001 0.2284 0.0001 0.2284
F VALUE	22.229	0.7049 0.6732	T FOR HO: Parameter=0	
NEAN Square	3309.317 148.874	R-SQUARE Adj r-SQ	STANDARD Error	9.790834 0.040938 0.177667 0.177667 13.187271 0.074492 0.0001144121 0.001144121 0.001144121 0.0011447902 0.0008803051 0.0008803051
SUM OF SQUARES	43021.120 18013.795 61034.915	12.201407 87.162963 13.99839	PARAMETER Estimate	13.202402 -0.057278 -0.481872 -23.024271 0.312330 0.312330 0.312330 0.312330 0.312330 0.312330 0.312330 0.0379808 0.144665 0.00374695 0.002074695 -0.002074695
DF	13 121 134	A S E	DF	
SOURCE	MODEL Error C Total	800T DEP M C.V.	VARIABLE	INTERCEP ELSTAND TEMP KOD VOLGROSS VOLGROSS VOLGROSS VOLGROSS VOLGROSS VOLGROSS VOLGROSS VOLTRUCK ASSLEN ELASSLEN TASSLEN PASSLEN PASSLEN

50

SCOOLS:

Table D.3 Regression Run 2

ľ

DEP VARIABLE: LABORNH LABORERS WORK HOURS

PROB>F	0.0001		PROB > T	0.1268 0.2115 0.2115 0.0054 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
F VALUE	23.868	0.7013 0.6719	T FOR HO: PARAMETER=0	
OF NEAN ES SQUARE	3566.911 149.443	R-SQUARE Adj R-SQ	STANDARD Error	9.705701 0.040698 0.177213 0.177213 12.959218 0.074338 0.193333 0.074338 0.193333 0.074388 0.193333 0.074388 0.193333 0.031580 0.031580 0.0004438202
SUN OF SUNARES	42802.928 18231.987 61034.915	12.224668 87.162963 14.02507	PARANETER Estinate	$\begin{array}{c} 14.922151\\ -0.051115\\ -0.051115\\ -0.502144\\ 0.304310\\ 0.501834\\ 0.501834\\ 0.501834\\ 0.501834\\ 0.01365652\\ 0.146800\\ 0.146800\\ 0.077957\\ -0.00180747\\ 0.002123283\\ -0.00428185\end{array}$
97	12 122 134	MSE Mean	DF	
SOURCE	MODEL Error C Total	R00T DEP 1 C.V.	VARIABLE	INTERCEP ELSTAND TEMP KOD KOD VOLGROSS VOLGROS VOLGROS VOLTRUCK ASSLEN ELASSLEN AREAVOL

sister and the second

~ **`**^

Table D.4 Regression Run 3

A CALLER AND A CALL

Sectors.

DEP VARIABLE: LABORNH LABORERS NORK HOURS

	PROB>F	0.0001		PROB > T	0.0295 0.0295 0.0028 0.0037 0.0037 0.0001 0.0001 0.0002 0.0002
U KS	F VALUE	25.827	0.6979 0.6708	T FOR HO: PARAMETER=0	
LABURERS WURK HOURS	MEAN Souare	3872.173 149.927	R-SQUARE Adj R-SQ	STANDARD Error	8.886542 0.040558 0.175325 12.440814 0.001879814 0.00187981 0.001123614 0.001123614 0.001123614 0.00018758
	SUM OF SQUARES	42593.904 18441.011 61034.915	12.244465 87.162963 14.04778	PARANETER Estinate	19.570741 -0.046287 -0.534852 -24.286076 0.221036 0.556734 0.556734 0.157938 0.157938 0.0392455 0.0392455 0.0392455 0.002214997 0.0
2 1 0 1	DF	11 123 134	MSE IEAN	DF	
Ver variable:	SOURCE	NODEL Error C Total	R001 DEP 1	VARIABLE	INTERCEP ELSTAND TEMP KOD Volgross Volgross Volgross Volgros Volgros Volgros Volgros Volgros Elasslen Elasslen

51.1.1.

Table D.5 Regression Run 4

A DISISTERNA D

Solding and the second second and the

		PROB>F	0.0001							PROB > 171	0.0001	0.0012	0.0284	0.0001	0.0021	0.0001	0.0006	0.0001	0.0001	0.0001	0.0001
HOURS		P VALUE	28.211			0.6947	0.6700		T FOR HO:	RANETER	6.090	-3.313	-2.218	9.288	3.138	4.477	-3.505	5.550	4.500	2	5.521
LABORERS UORK HOI	REAN	SQUARE	4239.863	150.293		R-SQUARE	ADJ R-SQ		STANDARD	BRRO			12.212032						0.01	0.00.0	0.000424
LABORNH	SUM OF	SOUARES	42398.629	-	61034.915	2.2593	.16296	14.06491	PARAMETER	ESTINATE	26.230037	-0.571671	-27.082274	0.221924	0.585369	0.0008387919	-0.00394214	0.164595	0.060727	-0.000241269	0.002341039
BLE:	1	50	10	124	134	ASE	IEA N			ÐF	-	-	-	-	-	-			-		
DEP VARIABLE:		SOURCE		ERROR	L	ROOT	DEP M	C. V.		VARIABLE	INTERCEP	TEMP	KOD	VOLGROSS	VOLKOD	VOLDAY	TVOLGROS	VOLTRUCK	ASSLEN	1	TASSLEN

Table D.6 Regression Run 5

and But Bat

	PROB>P	0.0001		PROB > T	0.0001 0.0007 0.0001	0.0001
HOURS	F VALUE	29.863	0.6826 0.6597	T FOR HO: Parameter≈0	5.915 -3.473 10.245	110-7
LABORERS NORK HOI	MEAN SQUARE	4628.831 155.003	R-SQUARE Adj R-SQ	STANDARD Error	4.703942 0.174515 0.023186	0.0001867414
VARIABLE: LABORNH LAI	SUM OF SQUARES	41659.480 19375.435 61034.915	12.450039 87.162963 14.28363	PARAMETER Estimate	27.823380 -0.606071 0.237551	0.0009184566
ABLE:	DF	9 125 134	MSE Jean	DF		
DEP VARII	SOURCE	HODEL Error C Total	ROOT MSE DEP mean C.V.	VARTABLE	INTERCEP TEMP Volgross	VOLDAY TVOT FROS

54

0.0001

5.414 4.110 -6.820

0.030112 0.013488

0.163036 0.055435 -0.000237762

ELASSLEN TASSLEN

ASSLEN

.00003486358 0.0004272343

0.002222851

0.0001867414 0.001132256

-0.00361091

TVOLGROS VOLTRUCK

وزور والرواب

5.203

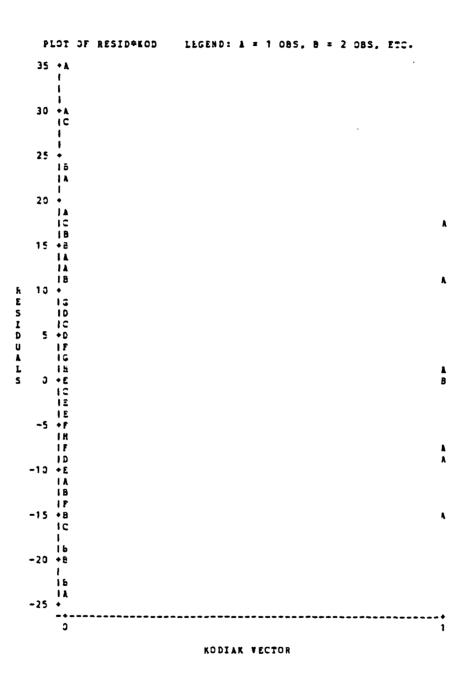
0.0001

0.0018

-3.189

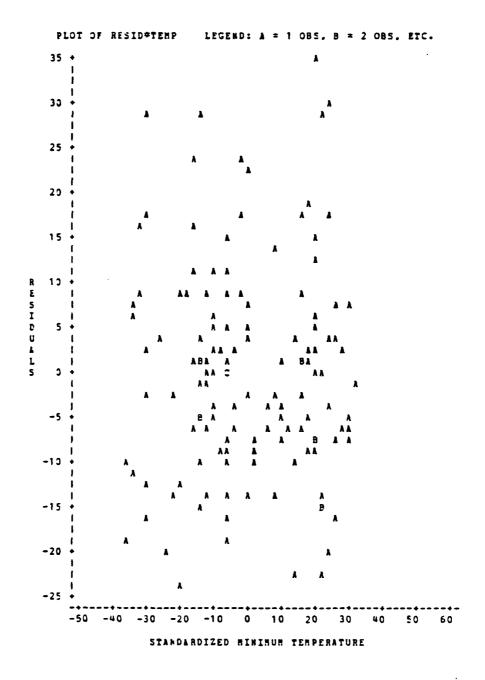
Table D.7 Influence Diagnostics Table D.7 Influence Diagnostics

a constant and a start as the


DFBETAS TASSLEN	0.2916	-0.1013	-0-5437	0.2072
DFBETAS Blasslen		-0.3251	0.6325	-0.3113
DFBETAS DFBETAS. DFBETAS Volday Tvolgros Blasslen	0.6096 -0.3455 -0.2004	-0.2081	-0.2112	0.2513 -0.3113
DFBETAS Volday	9609°0	0.1146	-0.0788	0.1279
DFBETAS Volkod	-0.0161	0.0167	0.0484	
BETAS DFBETAS Kod Volgross	-0.1603 -0.0279 -0.0979 -0.0161	-0.0459	0.0387	0.0744 -0.0777
DFBETAS DFBETAS Kod Volgross	-0.0279	0.3008 -0.0388	-0.0782	0.1296
DFBETAS Temp	-0.1603	0.3008	0.8414	-0.5655
DFBETAS Intercep	0.1140	-0.7104	0.8405	-0.5007
085	-	25	16	102

DFBETAS	-0.0128	0.5929	-0.6841	0.3322
DFBETAS Voltruck	-0.2015	0.5866	-0.3667	0.2516
085	-	25	57	102

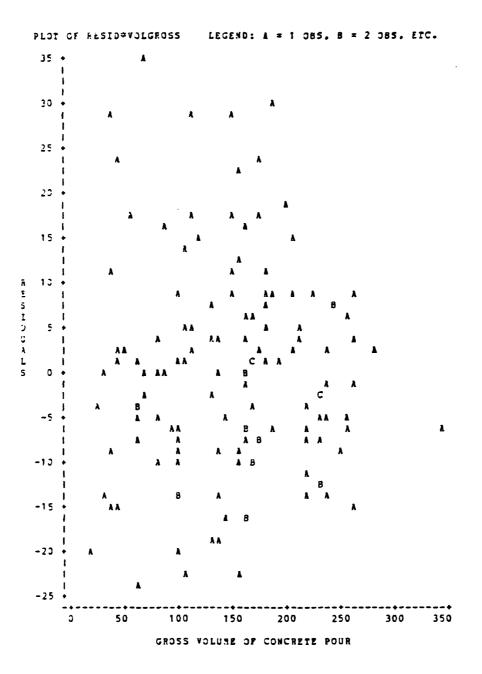
State States and States


55

مر مار مار مر مار مار

19-22-22

Figure D.1 Plot of Residuals Versus KOD



6000

ACCORDED AND THE REPORT AND THE PARTY AND A PARTY AND

5

Figure D.2 Plot of Residuals Versus TEMP

........

Figure D.3 Plot of Residuals Versus VOLGROSS

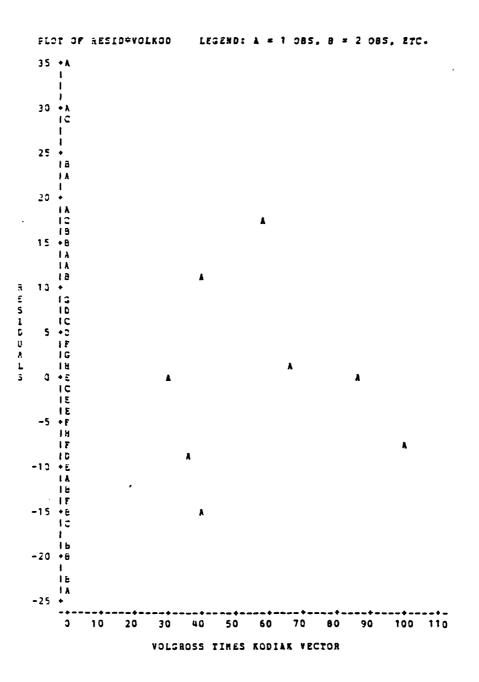


Figure D.4 Plot of Residuals Versus VOLMOD

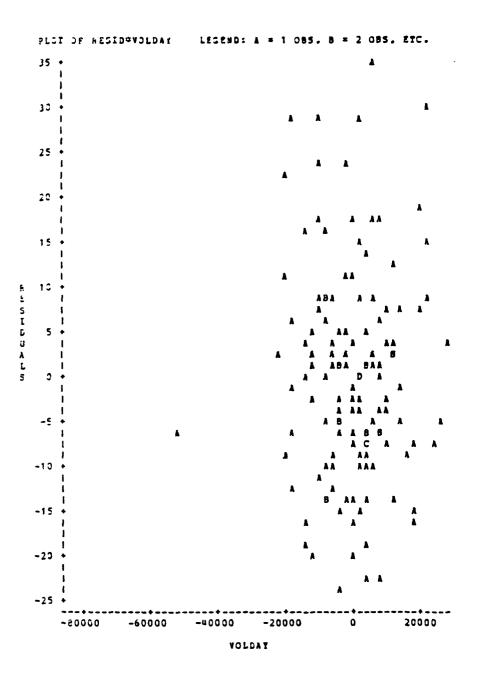
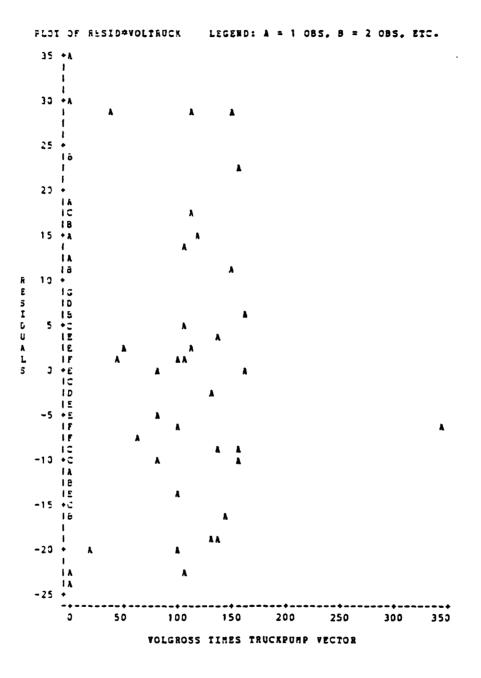



Figure D.5 Plot of Residuals Versus VOLDAY

There are a second and the second second and the

--

Figure D.6 Plot of Residuals Versus VOLTRUCK

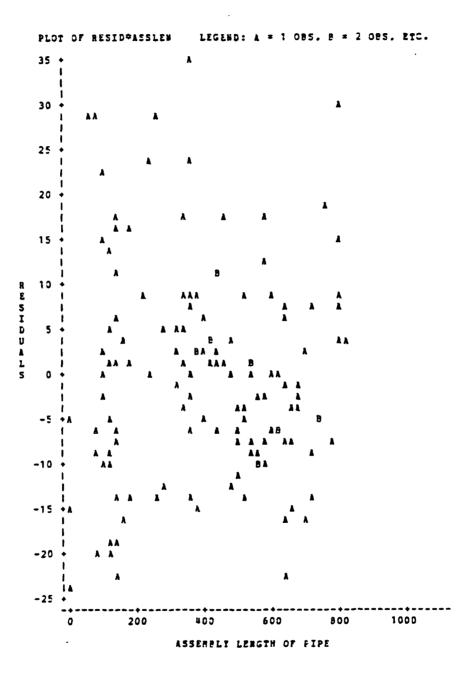
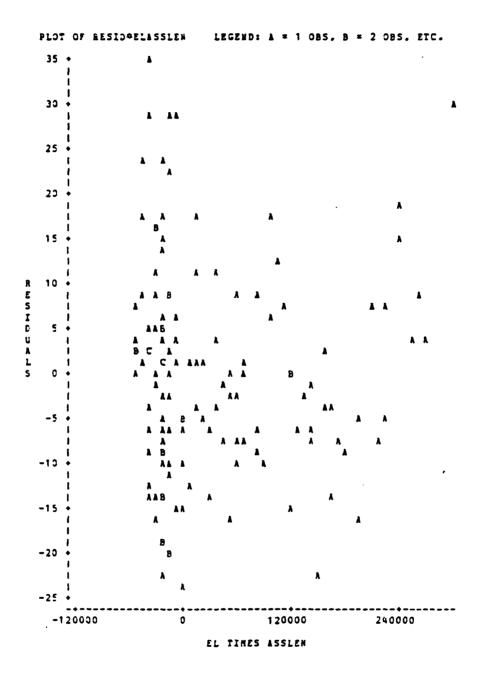



Figure D.7 Plot of Residuals Versus ASSLEN

T.P.P.P.D.

P

كك والالا والمسالية المستناتين

Figure D.3 Plot of Residuals Versus ELASSLEN

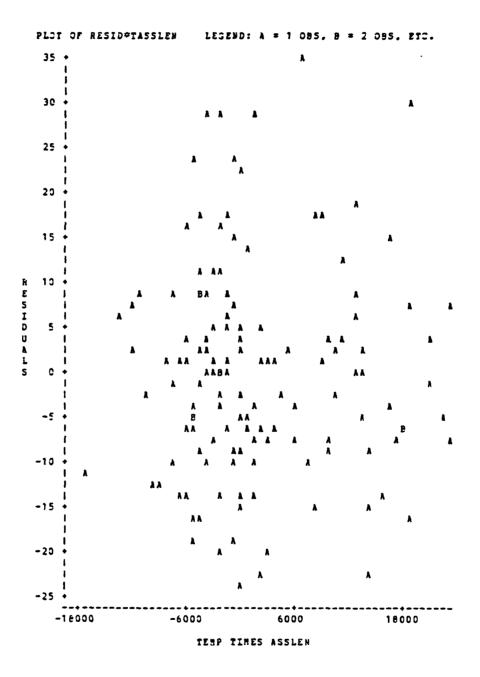


Figure D.9 Plot of Residuals Versus TASSLEN

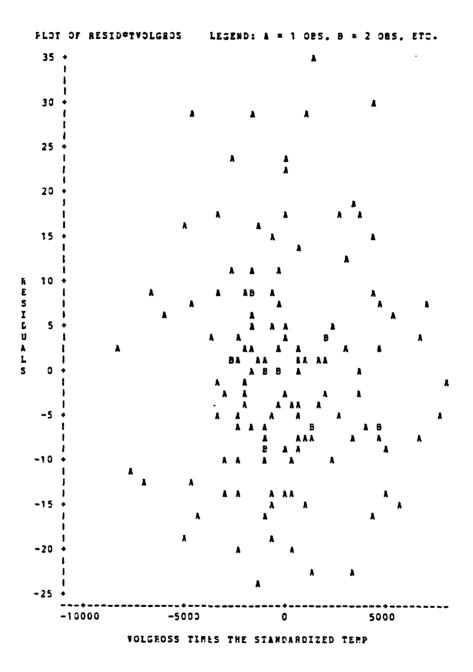


Figure D.10 Plot of Residuals Versus TVOLGROS

.

65

ういてたたたい

Decenter.

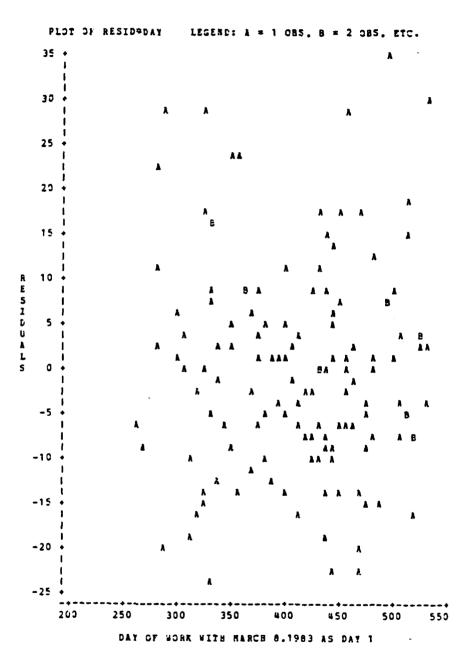


Figure D.11 Plot of Residuals Versus DAY

66

APPENDIX E

FINISWH COMPUTER OUTPUT

The regression runs used to formulate the model for the prediction of FINISWH are included in this section.

and and the faith

Table E.1 Regression Run 1

Internet and the second states of the

agente. ABBRER, SAMMA SAMBRICA DIGUNU

A CONTRACTOR OF

DEP VARIABLE: FINISWN CEMENT FINISHERS NORK BOURS

C. Same Caller and

₹.

.

	PROB>F	0.0001		PROB > [T]	0.0001 0.0861 0.2331 0.0001 0.0230 0.8869 0.08869 0.0743 0.6529	0.8283 0.0828
	F VALUE	51.631	0.8063 0.7907	T FOR NO: Parameter=0	5.927 -1.730 -1.198 6.471 2.302 0.142 -2.693 -1.800	0.217 -1.749
	MEAN Souare	6468.809 125.290	R-SQUARE Adj R-SQ	STANDARD Error	4.2876 0.0285 0.1730 0.1730 0.1730 0.1730 0.1730 7.5820 7.5820 7.5820 7.5820 7.5820 7.5820	0000
926 × 42469430 × 424782 932	SUN OF SQUARES	64688.086 15535.914 80224.000	11.193285 67.500000 16.58264	PARAMETER Estinate		0.0001866267 -0.00105633
1	DP	10 124 134	M S E I E A N	DF		
	SOURCE	MODEL Error C Total	R001 DEP H C.V.	VARIABLE	INTERCEP NEWDAY TEMP Area Elstand Precip Flotfin Temparea	PRECAREA FLOTAREA

68

Regression Run 2 Table E.2

SALAN CONTRACTOR

HORK HOURS	
HORK	
PINISHERS	
CEMENT	B C
HNSINIA	ac Mino
DEP VARIABLE: FINISHN	
DEP	

PR08>F	0.0001		PROB > T	0.0001 0.0778 0.2157 0.0001 0.0222 0.079 0.8809 0.3648 0.3648
F VALUE	57.818	0 • 8063 0 • 7924	T FOR HO: Parameter=0	6.174 -1.778 -1.778 6.513 6.513 2.315 -2.700 -1.811 -0.150 -1.776
MBAN SQUARE	7187.282 124.308	R-SQUARE Adj R-SQ	STANDARD Error	4.140538 0.028116 0.169943 0.0008576841 0.00936076 5.670920 0.00293658 0.00001348411 0.00001329337 0.0005992159
SUM OF SQUARES	64685.542 15538.458 80224.000	11.149335 67.500000 16.51753	PARAMETER Estimate	25.564269 -0.049993 -0.211473 0.005586176 0.021670 -15.310027 -0.000531735 -0.000020239 0.0002995416
DF	9 125 134	ASE IEAN	DF	*
SOURCE	MODEL Error C Total	ROOT DEP M C.V.	VARIABLE	INTERCEP NEUDAY TEMP AREA Elstand Flotfin Areavol Temparea Flotarea

69

Regression Run 3 Table E.3

With the second state in the second

good harves areas habadan general severe states areas sources areas areas areas areas areas areas areas areas a

CEMENT FINISHERS WORK HOURS DEP VARIABLE: FINISUN

CALLS STATES

PROB>F	0.0001		PROB > T	0.001 0.0716 0.0001 0.0001 0.0200 0.070 0.3457 0.0780
P VALUE	65 • 552	0.8063 0.7940	T FOR HO: Paraneter=0	6.242 -1.817 -2.519 6.548 2.356 -2.741 -1.816 0.947 -1.777
NEAN Square	8085.343 123.343	R-SQUARE Adj R-SQ	STANDARD Error	4.105260 0.026851 0.092429 0.008515462 0.009056745 5.617771 0.002924859 0.0003243124
SUM OF Squares	64682.742 15541.258 80224.000	11.106004 67.500000 16.45334	PARAMETER Estinate	25.624145 -0.048793 -0.232843 0.005575753 0.005575753 -15.399236 -15.399236 -0.003069892 -0.00105356
0F	8 126 134	MSE IEAN	DF	یے کو کی بی ہے ہے ہے ہے کے می می بی
SOURCE	NODEL Error C Total	R00T DEP M C.V.	VARIABLE	INTERCEP NEUDAY TENP AREA ELSTAND FLOTFIN PRECAREA PLOTAREA

1.1

Nini

70

tate to the total to the total

Table E.4 Regression Run 4

	PROB>F	0.0001		PROB > T	0.0001 0.0695 0.0070 0.00171 0.0171 0.0635 0.0635
HORK HOURS	P VALUE	74.849	0.8049 0.7941	T FOR HO: Parameter=0	6.311 -1.831 -2.740 6.597 -2.117 -1.872 -1.667
CEMENT FINISHERS	NEAN Square	9224.603 123.242	R~SQUARE adj R-SQ	STANDARD Error	4.096414 0.026837 0.090828 0.009037294 0.009037294 0.0002919188 0.0002919188
FINISUH CEN	SUM OF SQUARES	64572.223 15651.777 80224.000	11.101457 67.500000 16.4466	PARAMETER Estinate	25.853691 -0.049134 -0.248873 0.005610228 0.021841 -15.482392 -0.00546407 -0.00978925
DEP VARIABLE:	SOURCE DF	MODEL 7 ERROR 127 C TOTAL 134	ROOT MSE DEP MEAN C.V.	VARIABLE DF	INTERCEP NEWDAY TEMP AREA AREA ELSTAND FLOTFIN FLOTAREA 1

71

Table E.5 Regression Run 5

1.1.1.1

التصفي في المراجع الما

222300000 72240000

Ī

2.5

HOURS
NORK
FINISHERS
CEMENT
HMSINIJ
VARIABLE:

	PROB >F	0.0001		PROB > T	0.0001 0.0641	0.0097	0.0001	0.0115	0.0001	0.0229
NORK HOURS	P VALUE	85.671	0.8006 0.7913	T FOR HO: Parameter=0	6 • 4 6 8 - 1 • 8 6 8	-2.624	6.725	2.565	-7.021	-2.303
CEMENT FINISHERS	MEAN SQUARE	10704.977 124.954	R-SQUARE Adj R-SQ	STANDARD Error	4.103722 0.027011	0.091282	0.0008529189	0.000060339	3.289417	0.002860192
HNSINIJ	SUM OP Squares	64229.860 15994.140 80224.000	11.178292 67.500000 16.56043	PARAMETER Estinate	26.542491 -0.050445	-0.239527	0.005736147	0.023243	-23.093638	-0.0065859
P VARIABLE:	SOURCE DF	MODEL 6 Error 128 C Total 134	ROOT MSE Dep Mean C.V.	VARIABLE DF	INTERCEP 1 Neuday 1	1 J	EA 1	LSTAND 1	LOTFIN 1	REAVOL 1
DEP	sol	040		A N	N N N E	3	AR	EL	FL	A R

Regression Run 6 Table E.6

CEMENT FINISHERS NORK NOURS DEP VARIABLE: FINISUB

	PROB>F	0.0001		PROB > T	0.0001 0.0001 0.0526 0.0001 0.0528
	F VALUE	100.176	0.7873 0.7873	T FOR HO: Parameter=0	6.423 -5.615 6.475 1.956 -6.766
CENTER LEAST CALLS CALLS CALLS	MBAN Square	12758.812 127.364	R-SQUARE Adj R-SQ	STANDARD Error	4.142945 0.0643837281 0.008537281 0.008534992 3.290569 3.29059999
	SUM OF SQUARES	63794.058 16429.942 80224.000	11.285561 67.500000 16.71935	PARAMETER Estinate	26.609234 -0.361500 0.005528116 0.016334 -22.264153
270	DF	5 129 134	NSE Mean	DF	
USC TALADIC: L'ANDUC	SOURCE	MODEL ERROR C &OTAL	ROOT DEP H C.V.	VARIBRLE	INTERCES TEMP Area Elstand Flotfin Areavol

Table E.7 Regression Run 7

DEP VARIABLE: FINISUH CEMENT FINISHERS WORK HOURS

PROB>F	0.0001		PROB > T	0.0001 0.0001 0.0001 0.0001 0.0004
F VALUE	121.627	0.7891 0.7826	T FOR HO: PARANETER=0	12.084 -5.702 15.199 1.762 -8.177
NEAN Square	15826.882 130.127	R-SQUARE Adj R-SQ	STANDARD Error	2.712479 0.064923 0.0002589915 0.008402869 3.041176
SUM OF SQUARES	63307.527 16916.473 80224.000	11.407310 67.500000 16.89972	PARAMETER Estimate	32.778303 -0.370179 0.003936442 0.014805 -24.868434
DF	4 130 134	MEAN	10	
SOURCE	MODEL Error C Total	ROOT MSE DEP MEAN C.V.	VARIABLE	INTERCEP TEMP Area Elstand Flotfin

APPENDIX F

でんたくぶとう

100000

FIXEDOH COMPUTER OUTPUT

The regression runs used to formulate the model for the prediction of FIXEDOH are included in this section. The final step of the stepwise regression run is presented first, followed by the individual runs. Initial model tested in the stepwise procedure is: FIXEDOH= NEWDAY +ELSTAND +TEMP +PRECIP +KOD +ATR +FLOTFIN +LABORWH +FINISWH +PLACBUGY +TRUKPUMP +VOLGROSS +VOLKOD +VOLATR +VOLDAY +TVOLGROS +PVOLGROS +VOLBUGY +VOLTRUCK +ASSLEN +ELASSLEN +TASSLEN +PASSLEN +AREAVOL. Table F.1 Last Step of Stepwise Regression Run

Managera

FORMARD SELECTION PROCEDURE FOR DEPENDENT VARIABLE PIXEDON

.69799713 .65228210	P PROB>F	21.51 0.0001	F PROB>F	5 1 0.	18 0.	•0 Ee	78 0.	•0	18	26 0.	0.	.0 61	38 0.	0.	32 0.	•
= 0. 7.		21		-	19.1	13	ŝ	0	4	26	2.(15	35	12	2	2
R SQUARE C (P) =	MEAN SQUARE	335291.4021 15586.1132	TYPE II SS	25102.0634	303626.2994											
NENDAY ENTERBD	OF SQUARES	358788.227196 885919.698730 244707.925926	STD ERROR	0.415309	-	61.886367	57.099670	101.872996	47.262379	0.787518	0.948186	0.704534	0.287416	0.003941	0.160371	0.015726
VARIABLE NEH	NDS 40	13 43 121 18 134 62	B VALUE	336.414339 0.527056	8.505632	-	-	u ,	-103.358294	4.035807	1.350122	2.799644	1.709574	-0.013671	-0.448450	0.022955
STEP 13		REGRESSION Error Total		INTERCEPT Nenday	TEMP	PRECIP	KOD			LABORNH	FINISURA	VOLATR	VOLTRUCK	TASSLEN	PASSLEN	AREAVOL

76

NO OTHER VARIABLES MET THE 0.2500 SIGNIFICANCE LEVEL FOR ENTRY

* • •

Regression Run 1 Table F.2

í

DEP VARIABLE: FIXEDON COST OF SUPERVISION, POLICE, OPERATORS

PROB>F	0.0001		PROB > T	0.0001 0.0001 0.0003 0.0003 0.0044 0.0044 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.00001
F VALUE	21.512	0 • 6980 0 • 6656	T FOR HO: Parameter=0	5.5684 5.5684 5.5684 5.5684 5.57869 5.7899 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.7999 5.79990 5.79990 5.79990 5.79990 5.79900 5.79900 5.79900000000000000000000000000000000000
N E A N SQUARE	335291 15586.113	R-SQUARE Adj r-SQ	STANDARD Error	60.274954 0.415309 1.927107 61.886367 57.099670 101.873 47.262379 0.787518 0.948186 0.787518 0.948186 0.787518 0.287416 0.287416 0.00394065 0.160371
SUM OF SQUARES	4358788 1865920 6244708	124.844 845.741 14.76154	PARAMETER Estimate	336.414 0.527056 8.505632 230.993 137.256 -295.327 -103.358 4.035807 1.350122 2.799844 1.709574 1.709574 -0.013671 -0.013671
DF	13 121 134	MSE Ean	ÐF	
SOURCE	MCDEL Error C total	R00T DEP M C.V.	VARIABLE	INTERCEF NEWDAY TEMP Precip Kod Atr Floryin Laboruh Floryin Volatr Volatr Volatr Volatr Passlen Areavol

11

BULLEDO

CLANN'S C

تشتيد فيشتعه فالمنافع فالمنافع فالمنافع المنافع المن

Personal Second

.....

VALLE COLON

المشريب يناعكما

مينينينينينيني

Table F.3 Regression Run 2

COST OF SUPERVISION, POLICE, OPERATORS DEP VARIABLE: FIXEDON

PROB>F	0.0001		PR08 > {T	0.0001		0.0076	0.1683		0.0856 0.0856
P VALUE	23.055	0 • 6 6 4 0 0 • 6 6 3 9	T FOR HO: Paraneter=0	5.437 4.459 2.53	2.937	-2.707	1.386 3.821	6.685	
NEAN SQUARE	361141 15664.113	R-SQUARE Adj R-SQ	STANDARD Error	59.707024 1.930250	54.401803 69.331922	45.049534 0.788912	0.698853	0.220653	0.015469
SUM OF SQUARES	4333686 1911022 6244708	125.156 845.741 14.79843	PARAMETER Estimate	324.653 8.607385 212.080	159.800 -232.670	-121.940 4.073924	1.316818 2.670394	1.475009 -0.011448	-0.40058
DF	12 122 134	MSE Ean	DF						• ••• •••
SOURCE	MODEL Error C Tofal	йоо т DEP M C.V.	VARIABLE	INTERCEP Temp Drfctd	KOD ATR	FLOTFIN LABORUH	FINISNH Volath	VOLTRUCK Tasslen	PASSLEN Areavol

Table F.4 Regression Run 3

Contraction of the second

د، کند

COST OF SUPERVISION, POLICE, OPERATORS DEP VARIABLE: FIXEDON

PROB>F	0.0001		PROB > T	0.0001 0.0001 0.0007 0.0001 0.0001 0.0004 0.0004 0.0004 0.0004 0.0004
F VALUE	24.791	0 • 6892 0 • 6634	T FOR HO: Parameter=0	6.898 4.298 4.298 4.66 4.5712 6.252 6.252 7.331 7.458 7.2.458 7.2.458
REAN SQUARE	391237 15781.347	R-SQUARE Adj R-SQ	STANDARD Earor	52.753282 1.920367 60.574838 53.595487 89.656172 35.007038 0.722945 0.722945 0.722945 0.722945 0.722945 0.722945 0.722945
SUM OF SQUARES	4303602 1941106 6244708	125.624 845.741 14.8537	PARAMETER Estimate	363.916 8.252836 209.958 145.370 -230.875 -161.456 4.520017 2.547024 1.442951 -0.384260 0.037566
DF	11 123 134	NSE IEAN	DF	
SOURCE	NODEL Ekror C Total	R00T DEP H C.V.	VARIABLE	INTERCEP TEMP PRECIP KOJ ATR ATR Ilaboruh Volatr Vo

Table F.5 Regression Run 4

T

See Carlowed

AND A REAL PROPERTY AND A

Sec. 2

S. C. Wards in Start

COST OF SUPERVISION , POLICE, OPERATORS DEP VARIABLE: FIXEDON

	PROB>F	0.0001		PROB > T	0.0001 0.0125 0.0172 0.0172 0.0001 0.0001 0.0001 0.0001 0.0117
	F VALUE	25.624	0.6739 0.6476	T FOR HO: PARAMETER≠0	
5	NEAN SQUARE	420825 16423.050	R-SQUARE Adj R-SQ	STANDARD Error	53.690899 1.914892 33.465022 54.360150 91.408651 35.143363 0.709672 0.709672 0.003504353 0.013678
	SUM OF SQUARES	4208250 2036458 6244708	128.152 845.741 15.15269	PARAMETER Estinate	372.722 7.256570 84.785609 .131.268 -223.433 -146.166 4.366004 2.521160 1.524414 2.521160 1.524414
	DF	10 124 134	MSE Ean	DF	
	SOURCE	MODEL Error C <i>total</i>	8001 DEP M C.V.	VARIABLE	INTERCEP TEMP PRECIP KOD ATR FLOTFIN LABORWH Volatr Volatr Volatr Volatr

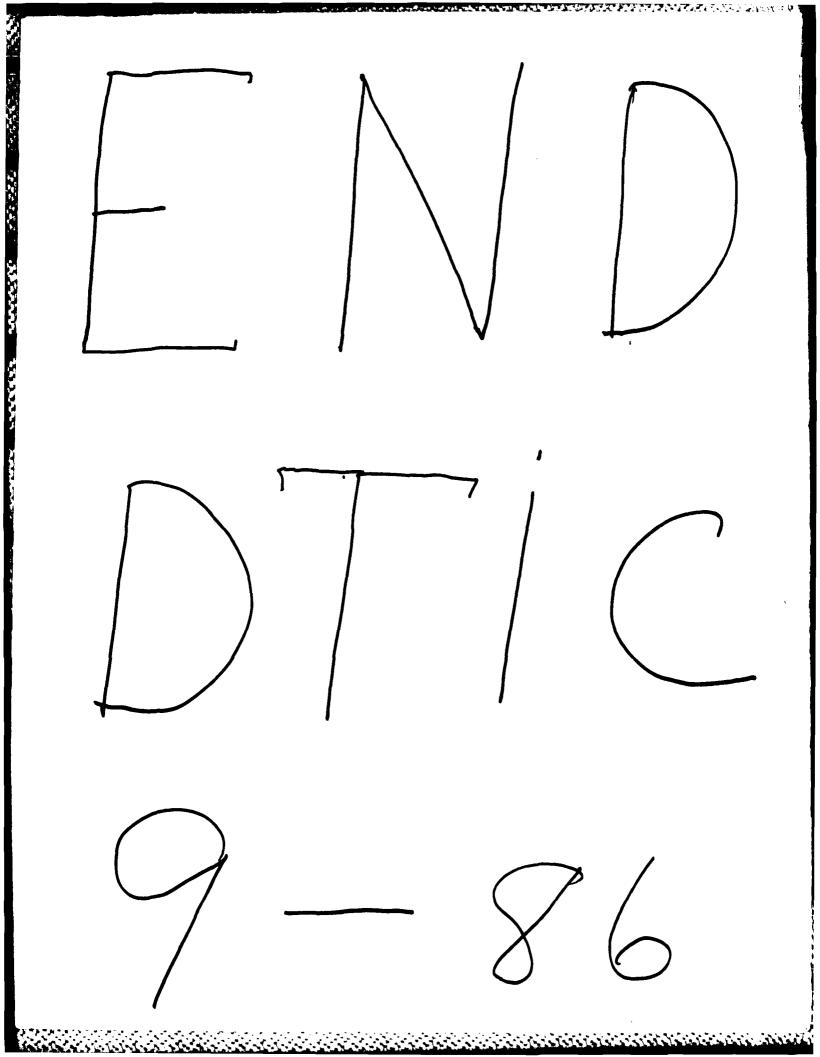

80

Table F.6 Regression Run 5

Alexander

DEP VARIABLE: FIXEDOM COST OF SUPERVISION , POLICE, OPERATORS

	PROB>F	0.0001		PROB > T	0.0013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013	C180.0
	F VALUE	26.788	0.6586 0.6340	T FOR HO: Parameter=0		10/-1
	NEAN Square	456943 17057.790	R-SQUARE ADJ R-SQ	STANDARD Error	.0395 .05504 .5503 .73954 .73954 .73954 .73954 .73455 .73954 .73455 .73503 .73503 .73503 .73503 .73503 .73503 .73503 .73504 .735004 .735004 .7350400000000000000000000000000000000000	0.012553
	SUM OF Squares	4112484 2132224 6244708	130.605 845.741 15.44273	PARANETER Estinate	393.08 .69796 .53637 .53637 .53637 .53637 .591.99 .142.38 .49732 .49732 .49732 .49732	0.021347
	DF	9 125 134	N S E E A N	DF	ا من حو مو مو مو مو مو مو مو مو	-
DJF VRGADDAG LALDON	SOURCE	MODEL Error C total	R00T DEP M C•V•	VARIABLE	NURFJ4004 FEBECEJJN:	AREAVOL

