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SECTION I

INTRODUCTION

During the last three decades, the research and development in finite

element method have grown from infancy to maturity and this method has

revolutionalized the methods of structural analysis and design. Such de-

velopment has been well documented in the texts by, for example, Martin (11,

Zienkiewicz [2], and Gallagher [3].

During the last decade, the development of calculators and desk-top

mini-computers has grown at an explosive rate and it becomes an obvious

trend that more simple daily structural designs will be performed using

microcomputers. To cope with such trend in the rapidly growing use of micro-

computers, works have currently been underway to convert some general purpose

finite element programs suitable for microcomputers.

During the last two decades, the research and development of laminated

composite structures has grown at an extremely rapid pace and it becomes

an obvious trend that more and more composite material will be used in

the design of structures when the weight and strength are of primary consid-

eration. The fundamental development in the mechanics of composite m~aterials

has been documented by, for example, Tsai [4] and Jones [5]. The basic

theory of the mechanics of composite materials, particularly for laminated

plates, has been widely used in finite element formulations. Thus, it

is common that existing isotropic and homogeneous finite elements also

* have the capability of treating laminate composite materials. A discussion

on the use of finite element method in the study of composite laminated

plates can be found in, for example, Reference 6. An evaluation of finite-

element software for stress analysis of laminated composites was given

in Reference 7.



In view of the trend of growing use of microcomputers in the common

engineering office, it appears that there is a definite need for research

and development work to tailor and simplify the basic formulations for

laminated composite finite elements into a form suitable for programming

using microcomputers. As a first step to respond to this need, in this

paper, a simplified symmietrically laminated beam-type finite element is

developed and programmed for a microcomputer. The element is assumed to

have six degrees of freedom at each of the two ends: transverse deflection

and slope due to bending and shear, respectively; and a twisting angle

and its derivative with respect to beam axis.

This program implemented in a microcomputer is capable of performing

stress analysis of symmetrically laminated beam structures with a single

or combined effect of bending moment, twisting moment, and shear deformation,

and with arbitrary loading and boundary conditions. It is also capable

of performing free vibration analysis without shear deformation. For static

analysis, the program has the capability of providing both numerical data

and graphical plots of the distributions of displacements, bending and

twisting moments, ply stresses, and the portions contributed by shear deforma-

tion. For free vibration analysis, the program gives the natural frequencies

and mode shapes.

The simple homogeneous and isotropic beam finite element formulation

is essentially the same as that traditionally formulated by the slope-deflec-

tion equations for beams. Such an element was extended by, among others,

McCalley [8], Archer [9], and Kapur [10], to include the effect of shear

deformation. Archer's element has two degrees of freedom at each of the

two nodes: total transverse deflection due to combined effect of bending

and shearing deformations and its derivative with respect to beam axis.

* 2
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On the other hand, Kapur developed a beam element where the bending and

shearing deformations were considered separately with separate associated

degrees of freedom. Thus the element has four degrees of freedom at each

of the two nodes: transverse deflection and its derivative with respect

to the beam axis due to bending and shearing deformations, respectively. For

th6 present laminated composite beam finite element, Kapur's type of approach

was used to account for the effect of sheer deformation. The homogeneous

anisotropic beam theory which considered the coupling between bending and

torsion was given by Lekhnitskii [11]. Such coupling was incorporated

in the present formulation. A beam finite element formulation for laminated

composite material with a single fiber orientation and shear deformation

was given by Teh and Huang [12] for free vibration analysis. In that

element, six degrees of freedom were assumed at each node: total deflection;

total slope; twist derivative of bending slope with respect to beam axis;

second derivative of bending slope with respect to beam axis; angular displace-

ment and angle of twist. This paper differs from Reference 9 in that different

types of degrees of freedom are assumed aiming at performing static and

free vibration analyses using a microcomputer in a simpler, more efficient

and general fashion.

To evaluate the present formulation, solution procedure, and program

developed in this study, a series of examples, all with existing solutions

for comparison, were performed using a desk-top microcomputer. For static

analysis, these evaluations include: (1) an example of an isotropic,

homogeneous beam with the effect of shear deformation; (2) an example of

an orthotropic cross-ply laminated beam including the effect of shear de-

formation; (3) an example of an anisotropic laminated beam with no effect

of shear deformation; and (4) an example of a quasi-isotropic laminated

3
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beam. For free vibration analysis, the evaluations include: (1) an example

of an isotropic homogeneous cantilever plate in free vibration without

shear deformation; and (2) examples of anisotropic plates with varying

stacking sequences in free vibration without shear deformation.



SECTION II

SYMMETRICALLY LAMINATED BEAM FINITE ELEMENT FORMULATION

In this formulation, a symmetrically laminated composite beam was

considered. The beam is made of layers of orthotropic material in which

the orthotropic axes of each layer may be oriented at an arbitrary angle

with respect to the beam axis. In Figure 1, the positive ply orientation

angle and the various parameters are defined.

2.1 Description of Element

The present symmetrically laminated beam element is described in Figure

2. The element possesses 6 degrees of freedom at each of the two nodes:

the deflections due to bending W the deflection due to shear deformation

Ws, and their respective derivatives with respect to the x-axis -b=(-dWb/dx)

and 6s=(-dW s/dx),and the twisting angle 0 and its derivative do/dx. The

displacement functions for Wb, Ws, and 0 are assumed as,

Wb(x) = fl(x)Wb +f2 (x)b +f3 (x)Wb 2+f4 (x)b2
Ws1(X) fl(x +f2(x (x )s2 (a)

OW = )Wf )s~f )W2f(
f1(x)TIf 2 (x) +f3(x)W2+f 4 (x) 2

where the shape functions are in terms of

fl(x) = l+2(x/t)3-3(x/t) ,

f2 (x) = -x+2x2/ -x / (,
(lb)

f3 (x) = 3(x/t)2-2(x/t)

f4 (x) = -x
3/t2+x2 It.

* 5
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Figure 1. Positive ply orientation.
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Figure 2. The 12 d.o.f. element with the effect of shear deformation.
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2.2 Formulation

The stress-strain relation due to bending deformation only can be

written asB; [Q1 Q12 Q16  1x
ay Q2 Q22  Q26 j':y (2a)

Q16  Q6 Q66  cx

where the a's are the stress components, c's are the strain components,

and the Qij's are the inplane ply stiffnesses.

The stress-strain relation due to transverse shear deformation is

given by

Gxz = Q44 cxz (2b)

The moment-curvature relations for an anisotropic plate due to bending

deformation are given by

Mx I=D11  D12  016  k
M iy LD16 D22 D26 ii I (3a)

I~~ ~ ~ Ix 1 2 6xyl

where Mx, My, and Mxy are the bending and twisting moments; kx, ky, and

kxy are the curvatures due to bending deformations alone; and Dij's are

the flexural moduli. For the case of the beam, no bending moment My exists.

It is noted, however, that the curvature ky is assumed to be nonzero.

Thus, the moment curvature relation may be rewritten as

8



D 2  D 26. D 12 D12D 26
x 11 T_ 16- 22

D D 2 (3b)

1 r D16D26  Di 26x D16- D2 2  66- D22  kxy

The transverse shear force-strain relation is given by

Qx = cDS 44Yx (4)

where Qx is the transverse shear force, a is the shear coefficient, yx

is the transverse shear strain, and DS44 is the transverse shear stiffness.

The strain energy expression is given as

U u b k{Mkx+M xyk x}dArea + jf{QxYx}d Area (5)

where

kx  a 2W b/dx2 , kxy = 2a /dx,-yx =aWs/dx, and

b = width of the beam.

The kinetic energy expression for a plate can be written in the general

terms as

T = J (xyt)dxdydz (6)

where p is the mass density per unit volume. The dot represents derivative

with respect to time.

For the case of the beam and in the absence of shear deformation, the

deflection function may be written as, from Equations (1),



W(x,y) - Wb(x) + y *(x) (7)

Substituting Equation (7) into Equation (6) and performing integration

result in,

L 1

T ;'(x) dx + j(x) dx (8)
0 0

where A = cross-sectional area of the beam, and J = polar mass moment of

inertia about the centroidal axis.

Substituting the kinetic energy expression Equation (8) and the strain

energy expression Equation (5) into the Lagrange's equation

d dT dU (9a)
1 - i qi

yields

Fj = [k](q}+ [m]{4} (9b)

where [k1 is the stiffness matrixf [m] is the consistent mass matrix, (which

can also be derived in other form such as "lumped"); and {q} is the vector

for the six nodal degrees of freedom.

Assuming free vibration with simple harmonic frequency w, Equation

(9b) becomes

{[k] - 2 [m)I {q} = 0 (10)

The stiffness matrix and the consistent mass matrix are given as follows.

10



MASS MATRIX

Mil M12 M15 M16

M22 M25 M26

M33 M34 M37 M38

M44 M47 M48

M55 M56

* M66

*SYMMETRIC M77 M78

M88

WHERE

M11 = 156 F; M12 = -22L F; M15 = 54 F; M16 = 13L F; M22 =4L2 F; M25 =-13L F;

M26 = -L2F; M33 =156 G; M34 =-22L G; M37 = 54 G; M38 = 13L G; M55 156 F;

M56 = 22L D; M66 = 4L12 F; M77 =156 G; M78 = 221 G; M88 = 4L12 G; G =JL/420;

F = m1/420.

J = mass polar moment of inertia per unit length of the element;

m = mass per unit length of the element.



STIFFNESS MATRIX INCLUDING SHEAR DEFORMATION

Kll K12 K16 K17 K18 KIC

K22 K25 K26 K27 K28 K2B K2C

K33 K34 K39 K3A

K44 K49 K4A

K55 K56 K58 K5B K5C

K66 K67 K68 K6B K6C

K77 K78 K7C

K88 K8B K8C

K99 K9A

KAA

SYMMETRIC KBB KBC

KCC

where

Kll = -417 = K77 = 12 D11*/L3 ; K12 = K18 = -K27 = -K78 = -6 Dl1*/L
2;

K22 = K88 = 4 D11*/L; K28 = 2D11*/L; K16 = -KIC = -K25 = K2B = K58 = -K67 =

K7C = -K8B = 6 D66*/5L; K56 = K5C = -K6B = -KBC = -D66*/10; K66 = KCC =

2 D66* L/15; K6C D66* L/30; K33 = -K39 = K99 = 6 S/5L; K34 = K3A = -K9A =

-K49 = -A/10; K44 = KAA = 2L S/15; K4A = -L S/20; S =cxDS44; Dl1" = b

(D11-D122/D22); D16* = b(D!6-D12 D26/D22); D66* = b(D66-D262/D22)

1" 12
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SECTION III

MICROCOMPUTER PROGRAM

The formulation of the present 12 d.o.f. symmetrically laminated com-

posite beam finite element has been coded into a microcomputer in Basic

language. For static analysis, the program computes the transverse deflec-

tions and its slope distributions due to bending and shearing deformation

along the beam axis, respectively, and twist distributions due to bending

deformation along the beam axis. It then cmnputes the moment, shear force,

and torque distributions along the beam axis. It finally computes the

*" inplane normal and shearing stresses, and transverse shearing stress dis-

tributions through the laminate thickness. For free vibration analysis,

the program computes the natural frequencies and the corresponding mode shapes

along the beam axis.

For the static case, the program uses a symmetrically banded matrix

solver which reduces both computing time and memory storage. The program

also has a graphics routine which-plots the distributions of the various

aforementioned quantities on the microcomputer monitor screen. There are

several devices which can be used to accelerate the computational speed.

The first method is to compile the program using the available compilers

on the market. The second method is to use a machine-dependent arithmetic

chip which accelerates the computing of numbers, functions, etc. The pro-

gram also allows the user to store the results in a file, which can be

printed later. Similarly, the plots may be stored in a file and recalled,

and a hard copy of the plot can be obtained using available "screen dumps."

For the free vibration, the program uses a Jacobi eigenproblem solver.

It computes the natural frequencies and plots the mode shapes.

13
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SECTION IV

EVALUATIVE ANALYSIS

The formulation, solution procedure, and program have been evaluated

by performing the following examples with the alternative solutions for

comparison.

4.1 Static Analysis

4.1.1 Homogeneous, Isotropic Cantilever Beam Under End Load P

To test the portion of the formulation which accounts for the effect

of shear deformation, an example of a homogeneous, isotropic cantilever

beam under end load P was first analyzed. The results obtained using one

12 d.o.f. element for the end deflection due to the effect of shear deforma-

tion only are given in Table 1 for two different values of shear coefficient

a, as defined in Reference 13. For a = 0.667, an alternative exact solution

available in the text by Timoshenko [14] and a one-element solution by

Archer [9] are shown in the Table. The four values for the end deflection

by the four different methods are seen to be in excellent agreement. For

= 0.867, a one-element by Archer [9] and a solution based on the energy

method by Popov [15] are also shown in the table; the present solution

is 4% lower than that by Popov and 17% lower than that by Archer. It is

noted that the difference between the present solution and that by Archer

may be due to the difference in the boundary conditions at the fixed end.

In the former, it is assumed that dWs/dx J 0, and in the latter, it is

assumed that dW/dx + q = 0, where W is the deflection due to shear deforma-
Ss

tion; W is the total deflection; and W is the shear angle.

14
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Table 1 Maximum deflection Wsin Ph2/4E1 due to shear deformation only

for a homogeneous isotropic cantilever beam under end load.

Shear Coefficient a

(defined in Ref. 13)

cx=O.667 J a=0.867
Exact Solution (14) 

1.33- 
-One 12 D.O.F. Element 1.33 1.0

Archer (9) 1.34 1.17

Based on Strain Energy (15) -- 1.04

4.1.2 Simply-Supported Rectangular 3 Layer (0/90/0) Cross-ply Laminated

Plate with Infinite Aspect Ratio (Wide Beam) with Shear Deformation

The second example chosen was a simply supported rectangular 3 layer

(0/90/0) cross ply laminated plate with infinite aspect ratio (wide beam)

subjected to a sinusoidally distributed load,

p = p0 sin irx (11)0

where t is the length and x is the coordinate along the span. Due to symmetry,

only half of the beam need be modeled; and 1, 2, 4, 6, and 8 elements were

used, respectively. The work equivalent loads based on the integration

of the products of the shape functions and the distributed load were used.

The center deflection due to the effect of shear deformation only was ob-

tained and given in Table 2.

15



An alternative aralytical solution provided by Pagano and Whitney

[16] is also shown in Table 2. It is seen that the present solution prac-

tically converged to the correct answer at the 6 element level.

Table 2 Non-dimensionalized maxinum deflection due to shear deformation

only of a simply-supported rectangular 3 layer (0/90/0) cross-ply

cross-ply laminated plate with infinite aspect ratio (wide beam)

under a sinusoidal load P = P sin 7x

Pagano and
Number of Elements Non-dimensionalized max- Whitney (16)
for half of beam imum deflection

wscc DS44  W s DS44

0 0

1 0.3599

2 0._463

4 0.4014 0.4053

6 0.4057

8 0.4056

4.1.3 Anisotropic 16 Layer 454/-45 4) Laminated Cantilever Beam Under End

Load P

The third example chosen was an anisotropic 16 layer laminated cantilever

beam under an end load P without the effect of shear deformation. The

results for the distributions of twisting angle and deflection due to bend-

ing, respectively, along the beam length were obtained using one element

only and were plotted in Figure 3. With the use of the displacement functions

in Equations (1), the displacement can be interpolated anywhere within

16
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Figure 3. Distribution of deflection and twisting angle' due to bending

for a 16 ply (454/-454)s anisotropic laminated cantilever beam

under end load P.

17

*** ~ ~ A

-d .5~.s .. i ~ aP..a., -



the element. The twisting angle and the deflection were nondimensionalized

as (4T/ptI2d16) and (3W/pt3d11 ), respectively, where T = twisting angle;

t = length of the beam, d11, d16 are the flexural compliances; and W =

deflection.

An alternative analytical solution for this problem treating the beam

as homogeneous and anisotropic by Lekhnitskii [11] is also plotted in Figure

3 for comparison. The agreement is good.

The normalized inplane ply stress (axx, Oxy , and yy) distributions

through the laminate thickness were plotted in Figure 4. It is noted that

force equilibrium is satisfied, and the bending moment due to end load

P is recovered from summing the moments due to Oxx" It is also noted that

the summation of the moments due to a xy and ayy, respectively, give zero

resultant moment.

4.1.4 Quasi-Isotropic (0/90/±45) Laminated Beam Under Four Point Bending

The fourth example chosen was a quasi-isotropic (0/90/±45)s laminated

beam under four point bending. The results for the distribution of the

transverse shear stress through the laminate thickness were obtained using

two elements, and were plotted in Figure 5. The shear stress has been

non-dimensionalized as (xz I/Qx h2 ). The resultant shear force calculated

from under the shear stress curve is 1.03, 3% higher than unity. The result

given by Whitney [17] is also shown in the figure.

4.1.5 Anisotropic 16 Layer (454/-454)s Laminated Cantilever Beam Under End

Load P with Shear Deformation

The final example chosen was the same as the previous ones but with

the effect of shear deformation. The results for the distributions of

18
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twisting angle and deflection due to bending as well as shear deformation

along the length of the beam were obtained using one element and were plotted

in Figure 6. Again, the twisting angle and the deflections were nondimen-

sionalized the same way as were those done in Figure 3. The ply stresses

are the same as those in Figure 4.

4.2 Free Vibration Analysis

4.2.1 Homogeneous, Isotropic Thin Cantilever Plate Without Shear Deformation

* To test the portion of the formulation which accounts for the special

case of the homogeneous, isotropic materials, an example of an aluminum

cantilever plate without shear deformation was first analyzed. The results

obtained using four present elements are given in Table 3. The experimental

results used for comparison are given by Crawley (18]. The present solution

shows good agreement for the bending frequencies. The discrepancy in tor-

sional frequencies is due to the p-resent modeling of the two-dimensional

plate as a one-dimensional beam.

Table 3. Natural frequencies of anisotropic homogeneous aluminum canti-

4 lever plate (wide beam) without shear deformation.

Mode Natural Frequency (Hz)

IFour Elements 1 Experimental___________I J Results [18]

First Bending 38.26 37.6

First Torsion 139.47 158.3

Second Bending 240.43 234.9

Second Torsion 418.42 518.8

Third Bending 673.21 658.1
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4.2.2 Thin Anisotropic Laminated Cantilever Plates Without Shear De-

formation

Anisotropic laminated plates with [62/0]s and [90/-45/45/0]s stacking

sequences were analyzed. The results obtained for [O2/0]s stacking

sequence laminated plates using a variety of numbers of the present

elements are given in Table 4, for both consistent and lumped mass for-

mulations. In Table 5, the results obtained for a [90/-45/45/0]s stacking

sequence laminated plate using four elements are given, for consistent

mass formulation. The experimental results used for comparison are

given by Crawley [18,19]. The present solution is seen to reasonably

converge at the four element level and are well converged at the eight-

element level. The present solution is in good agreement with the exper-

imental results for the bending frequencies. The percentage of dis-

crepancies between the presently obtained torsional frequencies and

the experimental values are within the approximate range of 10-20%.

Again, this discrepancy may be due to the present modeling of the two-

dimensional plate as a one-dimensional beam.
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Table 5. Natural Frequencies of an Anisotropic 8-Layer [90/-45/45/0]s

Cantilever Plate

Natural Frequencies (Hz)

Mode Four Elements Experimental Results (18]

First Bending 52.407 48.6

First Torsion 138.92 169.0

Second Bending 327.73 303.0

Second Torsion 417.59 554.0
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SECTION V

CONCLUDING REMARKS

In this paper, a 12 d.o.f. symmetrically laminated beam fini . element,

the associated solution procedure, and a computer program have been developed

for the stress and vibration analyses using microcomputers. The simplicity

and efficiency of this development have been evaluated through a series

of examples. The effect of shear deformation for a homogeneous and isotropic

beam, the effect of shear deformation for an orthotropic (0/90/0) laminated

beam, the effect of bending deformation for an anisotropic laminated beam

have all been verified through comparison of results with alternative exist-

ing solutions. The distribution of transverse shearing stress through

the thickness for a quasi-isotropic laminated beam has also been compared.

The natural frequencies of an isotropic homogeneous plate and those of an

anisotropic symmetrically laminated cantilever plate have been compared.

The program was written in Basic language and matrices were stored

in the form of half-band for the static analysis. For the free vibration

analysis, the Jacobi eigenproblem solver was used. To expedite the compu-

tation, the program can be compiled using a compiler. A hard copy of the

plots can be obtained using the available "screen dumps". For static anal-

ysis, the program can be used to obtain numerical data and graphical plots

of the distributions of deflections, twisting angles, shear force, bending

moment, twisting moment along the beam, ply stresses through the thickness,

and the portions contributed by shear deformation. For free vibration,

the program computes the natural frequencies, and plots the mode shapes.

The main goal of the present development is to promote the use of

composite materials in an easy and efficient manner by the daily practicing

engineers using desk-top microcomputers.
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Further developments in microcomputers to analyze two dimensional

truss and frame type structures, including the effects of buckling and

dynamics, are currently underway.
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