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1. Introduction

Conceptual clustering involves grouping objects into conceptually similar
classes and producing a characterization of those classes. In recent years
there has been active research in the area of conceptual clustering. For a
survey of several conceptual clustering systems, see [2]. All of these systems
have focused on feature descriptions of the objects, such as color or size,
to form a coherent classification. Only Stepp & Michalski [8] have left this
narrow domain and used structural description of objects, i.e., attributes of
object components and the relationship among these components to form
classes.

However, no system thus far has used relational information to classify
the set of objects. This paper describes a system called OP US imple-
mented in Prolog, which addresses this issue by using relations over the set
of objects (and not simply object components as in structural description),
as well as features of objects, to form classes. We thus extend the definition
of conceptual clustering [6] to include relational information. Accession For Z
Given: NTIS OCR&I

DTIC TA']

* A set of objects f]

* A set of features describing the objects
Bvy_________

* A set of relations between the objects Di-trii-uton/
A'ailability Codes

* Criteria to evaluate the quality of a classification
Av'i ti and/or

Find: tDist Special

. A hierarchy of classes and a characterization of the classes

Using relational information, the 0 P US system eliminates a deficiency
of previous conventional clustering systems; unlike the other systems, this
system is able to distinguish between objects which have the same features K >
but different relations. For example, in the domain of genetics, OPUS
is able to classify peas not only in terms of their color but also in terms 4

of their offspring, effectively defining the class of hybrids and purebreds.
Another deficiency of other conceptual clustering systems is the inability
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to create new attributes; all attributes used to characterize objects have to
be given to such systems. In contrast, OPUS is able to generate attributes
if it determines that the current description of the objects is not sufficient.
New attributes are defined as chunks formed from relations and features.

In the next section we describe the OPUS system, detailing the use
of relations to form a classification and the generation of new attributes.
In the third section we give two applications to illustrate the system. We
conclude with two proposals for extending this work.

2. The OPUS System

The input to the O P U S system consists of the objects to be classified, a set
of features describing the objects, and a set of relations over the object set,
such as eat or parent. The system generates a hierarchical tree of classes,
each class having a unique conceptual description. The system divides the
object set into mutually exclusive classes, and recursively divides the classes
until a final partitioning is found. At first, features such as color or size
are used as attributes to form classes. After the list of current attributes
is exhausted (i.e., all members of a given class have the same value for the
given features), new attributes are generated. Using these new attributes,
the clustering algorithm refines the previously formed classes until all mem-
bers of the classes have the same value for all current attributes. OPUS
continues the cycle of generating attributes and refining classes until new
attributes cannot be used to further divide classes. 0 P US consists of two
distinct parts, the clustering algorithm and the attribute generator, these
are described in detail in the following sections.

2.1 The Clustering Algorithm

The OPUS clustering scheme is based on the RUMMAGE clustering
algorithm [1). The goal of the algorithm is to build a hierarchical tree of
mutually exclusive classes (clusters) for a given object set. Each object of
the set has associated attribute/value pairs for a list of attributes. The
hierarchy tree is built in a top-down fashion. At each node in the tree, the
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algorithm selects an attribute which best partitions the object set according
to some clustering criteria.

After an attribute has been selected, the object set is divided into mu-
tually exclusive classes whose members have the same value for the chosen
attribute. An arc in the hierarchy tree is labeled with the value for the
chosen attribute at that node, and any other value for attributes which are
common to all members of that class. The procedure is called recursively
until the classes cannot be further divided using the given attributes. At
this point OPUS once again defines new attributes and applies the clus-
tering algorithm to refine the classes. If the new attributes cannot further
divide the classes, OPUS decides that it has determined the final classes

and terminates.

2.1.1 The selection of an attribute

Given an object set and a list of attributes, we want to select that attribute
which best partitions the set over the remaining attributes. In order to
measure the quality of a proposed clustering, 0 P U S forms a complex for
each value of an attribute. A complex is the logical implication for the
value of an attribute over the remaining attributes [6]. Suppose that we
have the object set {K, L, M, N, O} with associated attribute/value pairs
for attributes A. B. and, C as follows1 :

K = { A = [a], B [zj, C = [m,n]}
L = {A =[a], B =[y], C = [m]}
M= {A =[bl, = [i, C [m]}
N= {A = [bl,B =i,C = [n]}
0 = { A = [a], B = [y], C [n]}

Given this data, the complexes for attribute A for values [a] and [b] over
attributes B and C are:

(1) [a,]*= {(B -[y V [z]) A (C = [m, nV (im] V [ni)}
(2) (b]* {(B = [z]) A (C = [in] V [ )}

That is, if an object has a value of [b] for attribute A, it implies that it has a
value of [zJ for attribute B, and a value of [n] or [im] for attribute C. O P U S

*In the OPUS system, values of attributes are sets. (See iection 2.2)

3
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forms these complexes for all values of all attributes. The complexes are
used to determine the quality of an attribute. OPUS uses two cluster-

ing criteria, the simplicity of the cluster description and the inter-cluster
difference, which we now discuss.

2.1.2 The clustering criteria

The simplicity criterion is used to choose a partitioning attribute which
forms a simple description, so that it is easy to characterize and differen-
tiate classes. A second criterion is used to avoid the trivial and arbitrary
classification which might occur if the above criterion were used alone [6];
the inter-cluster difference measures the disjointness of two complexes. The
less values overlap among the remaining attributes, the higher this degree of
disjointness will be. A good classification has simple class descriptions and
a high degree of inter-cluster difference to maximize the distance between
classes.

The simplicity measure is a normalized value of the number of terms
in the complexes of an attribute. A complex consists of a logical product
of selectors. Each selector is a list of elements from the possible values of
an attribute linked by internal disjunction. The complexity of a selector
is the number of terms of the selector divided by the number of terms the
selector could have, i.e., the number of domain elements for the attribute of
the selector. The complexity of an attribute is the average of the complexity
values of all of the selectors of that attribute. The simplicity of an attribute
is defined to be the negative of the complexity 161. The complexity of the

second selector of complex (2) in our example is f, because that selector has
two elements, ([n] and [in]), and there are three possible values ([n], [m],
and [m, ni) that attribute C can have. In complex (1), the second selector

has a complexity value of 1 = 1. The value of complexity for attribute A is

the average of 1, 1, and a which is L. Thus the simplicity for attribute2h e3er24
is 19A is -- .

The computation of the inter-cluster difference of two complexes is more
involved. We define a selector element to be an element of a selector-that
is, an element of the domain of an attribute. (Values of attributes in the
OPUS system are sets.) The similarity between two selector elements, el
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and e2, is defined to be sim(el, e2)= *. The maximum similarity of

a reference element e of a selector S to selector Si is max(sim(e, et)), for
all e% E S. The value Pq is the average of the maximum similarities of all

selector elements of selector S to selector Si. Now, the degree of similarity
of complex C, to CI, denoted Simti, is the average over all Pq, where i and
j are all the selectors of identical attribute parts. The degree of difference
of complex C, to complex CI, denoted DifkI, is just 1 - Sim,.5 . Finally, the
inter-cluster difference degree of an attribute X is the average of all Dift

values, k A 1, where k and I are complexes of all values of the attribute X.

Referring again to the example, we calculate the following values for

the various computations to calculate the inter-cluster diffLence degree
for attribute A:

For the selectors of attribute B, we compute values

max{.im([yl,[xl])+max(sim(fxl,xlf)
_a{Oax}+maxf 1) 2 _

- 2 2
P2 =,ax(si'([xI, 1yJ),sim([zl, [xJ)}

=M(o, 1} = 1

For the selectors of attribute C, we compute in a similar manner

max{',j)+max{0,1+max(1,O}_ 5
P12 = 36P"-max( .0.1}+max{ l.0}2 = 1

2

Thus we have a degree of degree of similarity of complex (1) to complex

(2) of attribute A of (I + !)/2 = 1 and a degree of similarity of complex

(2) to complex (1) of 1 = 1. Therefore the degree of differences are

and 0 respectively. The inter-ciluter difference degree for attribute A is

(I + 0)/2=
This computation of the inter-cluster difference for an attribute makes

use of the fact that, in the 0 P U S system, values of attributes are partially

ordered. That is, value [a,b] is further from value [b,c,dl than it is from

value [a,b,c], and therefore sim([a, b], [b, c, d]) is less than sim([a, bJ, [a, b, c]).

2 1e n e2l denotes the cardinality of the intersection of set el and set e2 , while Ie U e2 l
denotes the cardinality of the union of the two sets.

5
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Class descriptions should be as distinct as possible to ensure classes with
different properties. Maximizing the inter-cluster difference will promote
such classes.

The idea of an asymmetric similarity measure may seem counterintuitive
at first. However, Tversky [9) supports an asymmetric similarity measure,
and he provides evidence that humans "tend to select the more salient
stimulus ... as a referent, and the less salient stimulus ... as a subject."
Referring once again to the complexes in the example, any object satisfying
the conditions of complex (2) also satisfies the conditions of complex (1),
but not vice versa. Therefore Simr2 has a higher value than Sim1 2 .

O P US maximizes a trade-off between the inter-cluster difference and
the simplicity of a class description. At each level in the expanding hierar-
chy tree, a quality value for each attribute is computed. This value is the
sum of

u * simplicity + v* inter-cluster difference

for some user specified coefficients u and u. The user can thus weigh the
importance of these two criteria. OPUS maximizes the quality value of
the attributes selected at each node in the expanding tree.

2.2 Generating Attributes

New attributes have to be defined when current attributes are not sufficient
to distinguish between members of the same class. New attributes are
chunks composed of relations and features. For this purpose, we define a
complez relation rif(X,.,Z) to be the composition of a relation r(XY)
and a feature f (Y. Z). For example in the food chain domain animals could
be described by the feature size and the relationship eat. Thus the relation
eat(X.Y) and the feature size(Y.Z) are composed to form the complex
relation aat-aize(XYZ), describing that X eats Y and Y is of size Z. Note
that the first and second argument of a complex relation are members of
the object set, while the third is a value of the feature. Complex relations
will be used as attributes.

The value of an attribute is defined as follows. Given a complex rela-
* tion rf (X,Y.Z), the value of the attribute rf for the object X is the set

(Z, 3 Y 9 r-f(X,Y,Z)}. That is, the set of all Z's, such that r.f(X.YZ)

6
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is satisfied for some Y. For example, the value of eat-size for snakes in the
food chain domain is [small. medium], because eat-size(snakes. Y.
small) is satisfied for Y bound to mice and insects, and eat-size (snakes.
Y. medium) is satisfied for Y bound to snakes. Thus, the attribute eatsizo
has a value of [small. medium] for snakes, because snakes eat small and
medium sized animals.

The system is supplied with a small set of binary relations such as eat
or parent. These primitive relations involve only two objects, and there is
a direct "link" between the two objects. In order to define more involved
attributes, relations consisting of several primitive relations are formed. We
define a level n relation as a relation using n primitive relations between
two objects. A primitive relation is a relation supplied to the system or
the inverse of that relation. The relation eaten(X.Y) describes the level
one relation eaten, meaning X is being eaten by Y, while eat.eat(X.Z)
describes the level two relationship of X eats some Y and Y eats Z. Relations
are defined in increasing levels of order, starting at level one. Now, a
level n attribute is defined from a complex relation composed of a level
n relation and an existing feature. Each time new attributes have to be
defined the current level k is increased and level k+l relations are defined.
These level k+l relations are composed with features to define complex
relations and thus level k+l attributes. Relations are not directly used in
the clustering process, but rather used to define attributes. Only attributes
are used to cluster objects. Thus, objects are first classified based upon their
features, then based upon attributes with increasing complexity. If at any
time new relations cannot define attributes which refine classes, the system
terminates having reached a final classification.

At each level k, new level k relations are defined. A level k-I relation is
composed with a level one relation to form a level k relation. All inverses of
relations are defined. To limit the combinatorial explosion of the number
of possible relations which can be defined at each level, only a limited
number of the k-i relations are considered to define new relations. Only
the relations which defined attributes used to refine classes at level k-1 are
used at the next level to define new relations.

The chunks formed differ from the concepts defined in the MARVIN
system [7]. In that system, concept formation is data-driven. Examples

7
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are presented and MARVIN generalizes examples into concepts by asking
questions. In contrast, chunks in the OPUS system are formed in a model-
driven fashion. Higher level relations consist of several primitive relations,
and these are tested against the input data. If no object satisfies the rela-
tion, that relation is discarded; otherwise, it is used to define an attribute.

3. Two Examples

O P U S has applications in any domain where objects are described by a set
of features and a set of binary relations. Two examples of such domains are
presented in the following sections: the food chain domain and the genetics
domain.

3.1 The Food Chain Domain

In the food chain domain, we characterize animals using two features, size
and locomotion, and relation, cat. For example, we describe songbirds using
the following facts: size( songbirds, medium). locomotion(songbirds.
fly). eat(songbirds, worms), eat(songbirds, insects), and eat(
hawk. songbirds). All fourteen objects are characterized by the same two
features. Fifty-one relational facts are asserted to describe the relationship
eat over the objects set.

At first, OP US uses features as attributes to classify the objects. size
has the same simplicity value as locomotion, but a higher inter-cluster
difference value. Therefore size is chosen as the first attribute to divide
the object set in the hierarchy tree. For example, a class of medium-sized
objects is created with the following members: hawks, owls, songbirds, and
snakes. After the system has used locomotion to refine classes, there are
no attributes left and new attributes have to be defined.

In response to that 0 P US defines all possible level one relations. The
following complex relations and attributes are formed: eat-size.
*at-locomotion, eaten-size, eaten-locomotion. The first two describe
the size and locomotion of animals eaten by an object, the latter two de-
scribe the size and locomotion of the animals that eat that object. These
four attributes are used to divide the existing classes. For example, the

8
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class of medium-sized flying objects is refined using the attribute eat-size.
Hawks and owls eat medium and small animals, while songbirds only eat
small animals.

After the current attributes have been used to refine the classes, there
are only two classes with more than one object left, the class of frogs and
toads, and the class of hawks and owls. The level two relations eat-eat.
eat-eaten, eaten-eat and their inverses are formed, and concatenated
with the features to define level two attributes. Frogs and toads have
the same values for these new attributes, therefore that class is not re-
fined. However hawks and owls have different values for the attribute
eat.eatensize, namely [large. medium] and [large. medium, small].
That is, hawks eat animals which are eaten by large and medium sized an-
imals, while owls eat animals which are eaten by large, medium, and small
animals. Thus, the attribute eat-eaten-size is used to divide that class.
The next level relations cannot define attributes which refine the class of
frogs and toads, so the system terminates. The resulting hierarchy tree is
shown in Figure 1.

3.2 The Genetics Domain

Let us now consider an example from the field of genetics. The clustering
problem in genetics consists of classifying objects based not only on their
observable features, but also on features of their descendants and their
ancestors. Gregor Mendel, the founding father of genetics, observed that
when a yellow garden pea was crossed with a green garden pea the resulting
offspring pea was yellow [4]. When he self-fertilized that pea, it produced
both yellow and green offspring. After he continued to self-fertilize peas,
he discovered that some of the yellow peas had yellow and green offspring
while other yellow peas only produced yellow offspring. Green peas consis-
tently had green offspring. Mendel thus hypothesized the class of purebreds,
peas which produce offspring with exactly the same features as the parent,
and the class of hybrids, peas which produce some offspring with the same
features and other offspring with features different from their parent.

When 0 P U S is provided with information about the color of each pea
and the offspring each pea produces, it defines the classes of hybrids and

9
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Figure 1 Classification tree for food chain domain
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purebreds. At first, the feature color is used as an attribute to distin-
guish yellow and green peas. Next, the attributes off spring-color and
parent-color are defined. For the class of yellow peas, the inter-cluster
difference and the simplicity value for these attributes are equal. In the
running system parent-color was picked to refine the class of yellow peas.
At this point all peas are correctly identified as either a yellow or green
purebred or a (yellow) hybrid. Furthermore, the characterization of these
classes corresponds with Mendel's characterization. For example, the class
of green purebreds only has green offspring, while the class of hybrids con-
tains only yellow peas which have both yellow and green offspring. 0 P US
continues to refine the classes--distinguishing, for example, between pure-
breds with hybrids as parents and purebreds with purebreds as parents.

Mendel continued his experiments, crossing peas with two different
traits, color and shape. He observed nine different classes, all having dif-
ferent dominant and recessive traits. We supplied the O P US system with
the color and shape of each pea and asserted the relations over the ob-
ject set. Again OPUS correctly defined and characterized as intermediate
classes all nine classes which Mendel identified as the various hybrids and
purebreds. For example, O P U S defines two different classes of round green
peas; one class has members which only have round green peas as offspring,
while the other class has members which produce round green and wrinkled
green offspring.

4. Summary and Further Research

In this paper, we presented a conceptual clustering system which uses rela-
tions over the object set to define a hierarchy of classes. Using the relational
information, this system is able to find classifications not possible with con-
ventional methods of conceptual clustering. We presented an example from

the domain of genetics where the system is able to form the classes of hy-
brids and purebreds. Furthermore, we introduced a method to define new
attributes used in the classification process.

This work can be extended in two ways. It is unrealistic to assume that
all the information describing objects is available initially. An incremental
version of OPUS would build the hierarchy tree using partial informa-

l1



tion, predicting missing properties of objects an well as missing objects. As
more data becomes available, predictions can either be confirmed, in which
case the belief in other similar predictions is reinforced, or they can be
disconfirmed, in which case a revision of classes occurs.

The present version of OPUS can handle only binary relations. An
extension of the system working with n-ary relations would greatly enhance
its power. For example, in the domain of chemistry, some compounds are
classified as acids, alkalis and salts depending on (among other properties)
their reactive behavior. For example, alkalis react with acids to form salts.
Using ternary relations, these classes could be formed in a way similar to
GLAUBER [31, yet in a more efficient manner. At the moment, we are
actively engaged in working in these directions.
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