AD-A179 840 EXPERIMENTATION IN SOFTHARE ENGINEERING(U) MARYLAND
UNIV COLLEGE PARK DEPT OF CONPUTER SCIEN
¥ R BSSILI ET AL. 20 NOV 85 TR-157?5 AFOSR-TR-86-0389
UNCLASSIFIED F49620-86-C-0001 F/G 9/2

e A A AR S AL Y e rad RIS, £ TN T N e e s AL A R B s o

S

T

I
I

2 s e

FFEEEERE
F===1
'N
N

EEEE

rr
=
W.N
(@]
"
s

— ———
. - 3
—

3

rr

=
li=
.
Y
,.,.—
2
-"‘

L R]

—
———
-—
.
o))
"
»,

.
MICROCOPY RESOLUTION TEST CHART . \
NATIONAL BUREAU OF STANDARDS ~1963~ &

A ;
TETOTETR A A SO
a »

"
o

‘.
ﬂ'.

.- - . e .-

.'f f\d‘: N ‘ﬁ--;'f:'f.‘r:‘-"'-'.v*' ".fvf a 0 ‘. :f“.-

IJ‘&“J‘J‘IJ‘I.‘V;_'-" A
AT o N

A AN NS0,

’ LR R A AR

O q
L N R N N

ONC FILE COPY

AFOSR.TR- 8R =0 580

TR-1575

EXPERIMENTATION
IN
SOFTWARE ENGINEERING

Victor R, Basili,

Richard W. Selby, Jr.,

-David H. Hutchens

Nov. 20, 1985

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

Approved for publie
b rolease
distridution unlimitoq ’

UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND Tlc
20742 c\ ELECTE
%y, AUG 121085

J

w “.. 3,

b ?'LL

UNWPASE")/ -

te. AEPORT SECURITY CLASSIFICATION

UNCLASSIFIED Ap 470 o

1b. AESTRICTIVE MARKINGS

2a SSCURITY CLASBIFICATION AUTHORITY

5. OECLASBIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION ARPORT NUMBENS)

Ga NAME OF PERFORMING ORGANIZATION] 5. OFFICE SYMBOL

3. DISTRIBUTION/AVAILABILITY OF REPOAT
Approved for public release; distribdbution
unlimited.

8. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR. 86~-0580

7s. NAME OF MONITORING ORGANIZATION

(I applicadle)
University of Maryland Adir Force Office of Scientific Research
6s. ADORESS (City, State end Z1P Code) 75. ADORESS (City, Statv end ZIP Code)
Department of Computer Science Directorate of Mathematical & Information
8, Boll -
College Park, Maryland 20742 Sciences, Bolling AFB DC 20332-6448
So. NAME OF FUNDING/BPONSORING rO'FFlCl SYMBOL 9. PROCUREMENT INSTAUMENT IDENTIPICATION NUMBER
ORGANIZATION (11 applioadie)
APOSR | APOAR-F49620-80ew86i ~ C_COO0 L

8s. ADORESS (City. Siste and ZIP Cods)

10. SOURCE OF FUNDING NOS.
#

PROGRAM PROJERCT TASK WORK UNIT
SLEMENT NO. NO. NO. NO.
61102F 2304 A3

Bolling AFB DC 20332-6448

7). TITLE (nciude Security Classifiestion)
EXPERIMENTATION IN SOFTWARE ENGINEERING

12. PERSONAL AUTHOR(S)

Victor R. Basili, Richard W. Selby, Jr. and David H. Hutchens

13b. TIME COVERED
FROM TO

13a TYPE OF REPONT
reprint

16. CATE OF REPORT (7., Mo.. Dey) 15. PAGE COUNT

1985 Nov. 20 32 t.

5. SUPPLEMENTARY NOTATION

7. COBATI CODES 18 SUBJECT TERME (Continue on reverse if necessery end idendlfy by block aumber)
FIgLD GROUP SUS. GA.
19. ABBTRAC™ ~ ~— ‘'~ ~ == conarse i/ asnosaarv sad iden tify by block number)

Experimentation In software engineering supports the advancement of the fleid

through an Iterative learning process. In

Ing most of the experimental work performed In software engineering over the past

this paper we present a framework for analyz-

several years. We describe a varlety of experiments In the framework and discuss their

contribution to the software engineering

discipllne. Some useful recommendations for

the application of the experimental process in software englineering are Included.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassiFito/uncimMiTeo K same as mer. O oTic usens O

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

220. NAME OF RESPONSIBLE INDIVIDUAL

Captain John P. Thomas
DD FORM 1473, 83 APR

EOITION OF 1 JAN T3

Tw T gTe T

RO

723& OFFICE SYMSOL
NM
UNCLASSIFIED

220. TELEPHONE NUMBER
{Include Ares Code)

(202) 767-5026

1S OBSOLETE.

' SECURITY CLASSIFICATION OF THIS PAGE

RPN

‘4 g Ba ds b g ¥ AT

TR~1575 Nov. 20, 1985

EXPERIMENTATION
IN
SOFTWARE ENGINEERING

Victor R. Basili,
Richard W. Selby, Jr.,
-David H. Hutchens

lﬁl FORTE OFF(CE C? SCIENTIFIC RESEARCH (AFSC)

' 1C
T OF TRANSHTTTAL TO pT
“;igcfechnical report has been revievseod- :;d is
;nprovedtorpublicreleasoIAWAFRl .

Distridbution is unlizited.

MATTHEW J. KERPER
Chief, Technical Information Division

DTIC

ELECTEW
AUG 121986

B

Research supported in part by the Air Force Office of Scientific
Research Contract AFOSR-F49620-80C-001 and the National Aeronautics and
Space Administration Grant NS§G-5123 to the University of Maryland. Com-

puter support provided by the Computer Science Center at the University of
Maryland.

(‘bmm"u'non STATEMENT K
Approved tot public releasef &
\ Distribution Unlimited . =%

»
~
*
\
S

L % 7 .'v

v
n
R¥ . o

2"
A

& 13

v

oy KNy P A

3

2o

Experimentation in Software Engineering

Victor R. Baslll !, Richard W. Selby, Jr. 2
and David H. Hutchens 3

! Department of Computer Sclence. Unlversity of Maryland. College Park. MD 20742
(301) 454-2002

2 Department of Information and Computer Sclence, Unlversity of Callfornla, Irvine, CA
92717 (714) 856-7403; was with the Department of Computer Sclence, University
of Maryland, College Park, MD 20742

3 Department of Computer Sclence, Clemson Unlversity, Clemson, SC 29631 (803) 854~
4464

KEYWORDS:
software technology measurement and evaluation, data collectlon and analysls, soft-
ware metrics, controlled experiment, experlmental design, empirical study

o
Research supported In part by the Air Force Office of Scientific Research Contract AFOSR-F49020-80-C-001 and Lhe National
Aeronsautics sad Space Administration Grant NSG-5123 to the University of Maryland. Computer support provided In part by the
Computer Science Center a¢ the University of Maryiand.

YN] PR,

Vatevssd e

! u Ny

oy Fo ol
))

Pl)

ABSTRACT
u
Experimentation In software engineerlng supports the advancement of the fleld
N i

l ’* ¢ A
through an lteratlve learning process. jsia thls paper'we present,a framework for analyz-
Ing most of the experimental work performed In software engineering over the past
several years. We describe a varlety of experiments In the framework and discuss thelr

contributlion to the software englneering dlscipllne. Some useful recommendations for

the application of the experimental process in software engineering are included.

~
N

\-‘h"—"" f‘
| B
{
. —
by]

S et

. PR T A T T e st .tap Th Ve - N A S R N SRS
o q’~f\f o, ,"'..I ."‘\ P ({ <, (S < “" ‘(_ .“n“- . « L. S ,

‘u .('w‘.; o N

Table of Contents

1 Introductlon ..cccccciiiciiisieesencenessnncencssancens ecsresansneanns cneenesresaerne ceensnesne ceernerestnssesrnenae

' 2 ObJectives sesetscnsersansrssesasrasnse vesseseessracanns ceesestsresanaess crvensensessscasseranses vecsssnsrsracanne

X 3 Experimentation FrameworKccccccunes terreraeseetuatteeessesaretatanesesessssesssrrrarseaneesnesesen
: 3.1 Experiment Deflnltlonc...c.... ehes sensssrsestressrssnasuerensrersesnsanss cevseesansoncansrsornse

' 3.2 Experiment Planningcceeceerreennrnnnene eeeranesncesassenesasnsnseens teeettesrnneseresrnrnavesnnns
, 3.3 Experiment Operationccc.cceeeeveeeens vesveeessansons cerresseessmnenans reeeesteenesnesannessnaann

[- R T AT N - I

‘ 3.4 Experlment Interpretatlon eteesesrsesssannns cesasens cetesernteensetatennstrecrasarencnesane
. 4 Classification of Analyses sserereteteestesnssrettttastesisassssnnsanannessasssss tesssensenvannnnnnes .
L 4.1 Blocked Subject-Project Studlescccceeerencrennaees trenseressensstarens ereesreorenenssnes
4.2 Replicated Project Studles ceasansnen resens ceeseasas ceessestantneessernsanennnne conrene 1
4.3 Multl-Project Varlation Studles veesernes veaneons cresteisas esserenssecnssansanann 16
4.4 Single Project Studles reesencretanens ceeseecteesasanase cesneasanss seeresnsnnane cesrsesrnscnse 19
p 5 Problem Areas In Experlmentationcc...... eeeresnsentanestisrntsnsaniontetsrrssesnesresserenararsee 22
5.1 Experimentation Overallcc.ccccvrveereicrencecnrrecernecencoressnncens reesseresnsasererssenssnanes 23
5.2 Experiment Deflnition cesertscencaseaasas ceraesenss Cretessesetiasnstattttittestatesttereesnsenas 23
5.3 Experiment PlannINE ..ccccccicencsnencenseeoereecns eesssrcorenstesaassasastrersarsasce cesvesesnae 23
5.4 Experiment Operationc.ee. censencee ceresasens cressnnee sresestcsenssaaanns ereesassentaanenes 24
5.5 Experiment Interpretatlon cecevenenens cetreerarcerssnanenne Creeesaastrtenesteacanernanananene 24
6 Concluslon ceaetnsacencanss csrsntsesesansresnanesascene sresscsnsessscanss ceeecsessnsnertaneatateerssraneses 25
7 References sesescsenns cesenne cesseesarnsesnanes sevssetesesttetectntesasasatestasastacasnesnsans ceeestrasnsaenne 26

'.‘_ e A T B A N A T P AT Tt et e N L e e NN N .'\\‘ PN LY N e et e T L \\1_' ._'--_'...\\‘
- W ¥ A - B A . W A% AX) : - A el el ¥ ’ ¥ 8 . . ¥

1. Introduction

As any area matures, there Is the need to understand Its components and thelr rela-
tlonships. An experimental process provides a baslis for the needed advancement In
knowledge and understanding. Since software englneering 1Is In 1ts adolescence, 1t IS cer-
talnly a candldate for the experlmental method of analysis. Experimentation 1s per-
formed In order to help us better evaluate, predlct, understand, control, and !mprove

the software development process and product.

Experimentation in software engineering, as with any other experimental procedure,

involves an Iteration of a hypothesize and test process. Models of the software process

Padta e

or product are bullt, hypotheses about these models are tested, and the Informatlon
learned 1s used to reflne the old hypotheses or develop new cnes. In an area llke soft-

ware engineering, this approach takes on speclal Importance because we greatly need to

lmprove our knowiedge of how software Is deveioped, the effect of various technologles,

e s

and what areas most need Improvement. There 18 a great deal to be learned and Intul-

) tlon Is not always the best teacher.

2 In this paper we lay out a framework for analyzing most of the experlmental work
that has been performed in software engineering over the past several years. We then
discuss a variety of these experiments, thelr resuits, and the impact they have had on

our knowledge of the software engineering disclipline.

2. Objectives

b There are three overall goals for this work. The first oblective 1s to describe a

framework for experimentation In software englneering. The framework for experlmen-

1

N VLN A ISR P L R A = -.--. LAy \.'.'-' L T T R e S P S L Ny :

‘g : SNy
P W i T e ML N [(A A Xl . N) 3

<

e e

oW

Vo

o ee 8 8 P

D A

! ’l‘.‘..‘ s &

- g

e

s s/

«VaVava ?

"2 s s,

o
o
o
&

-

«

tatlon is Intended to heip structure the experimental process and to provide a

classification scheme for understandlng and evaluating experimental studles. The
second objective 1s to classify and discuss a varlety of experlments from the literature
according to the framework. The descriptlon of several software englineering studles Is
intended to provide an overview of the knowledge resulting from experimental work, a
summary of current research directlons, and a basls for learning from past experlence
with experimentation. The third objective Is to ldentlfy problem areas and lessons
learned In experimentation In software englneering. The presentation of problem areas
and lessons learned Is Intended to focus attention on general trends In the fleld and to
provide the experimenter with useful recommendatlons for pc formling future studles.

The following three sectlons address these goals.

3. Experimentation Framework

The framework of experlmentatlon, summarized In Figure 1, conslsts of four
categories corresponding to phases of the experlmentation process: I) deflnitlon, II) plan-
ning, II1) operation, and IV) Interpretation. The following sections discuss each of these

four phases.

3.1. Experiment Definition

The first phase of the experlmental process I1s the study deflnitlon phase. The
study definitlon phase contalns six parts: A) motivation, B) object, C) purpose, D) per-
spective, E) domaln, and F) scope. Most study definitions contain each of the six parts;

an example definition appears in Flgure 2.

.............

- -

o s 8 2 8> e a-a 0 0 a &

Ll D Ry B b D 3

« e @ 8 o 8

o
o
"

RATh 5 oG QR

There can be several motlvatlons, objects, purposes, or perspectives In an experl-
mental study. For example, the motlvatlon of a study may be to understand, assess, or
Improve the eflect of a certaln technology. The *‘object of study™ Is the primary entity
examlined In a study. A study may examlne the flnal software product, a development
process (e.g., lnspection process, change process), a model (e.g., software rellablilty
model), etc. The purpose of a study may be to characterize the change in a system over

time, to evaluate the effectiveness of testlng processes, to predlct system development

cost by using a cost model, to motivate! the validity of a theory by analyzing emplrical
evidence, etc. In experimental studles that examlne *‘software quallty,” the Interpreta-
tion usually Includes correctness If 1t Is from the perspective of a developer or rellability
If 1t Is from the perspectlve of a customer. Studles that examline metrics for a given pro-
Ject type from the perspective of the projJect manager may interest certaln project
managers, while corporate managers may only be interested If the metrics apply across

several project types.

Two important domalins that are consldered In experimental studles of software are
1) the Indlvidual programmers or programming teams (the ‘‘teams”) and 11) the programs
or prolects (the ‘‘prolects™). '‘Teams™ are (possibly slngle-person) éroups that work
separately, and ‘‘projecis™ are separate programs or problems on which teams work.
Teams may be characterized by experlence, size, organization, etc., and projects may be

characterized by slze, complexity, application, etc. A general classification of the scopes

! For clarification, the usage of the word ‘‘motlvate” as a study purpose Is distinct
from the study ‘‘motivation.”

YA AR LY, & L SN R C IS R O 1)

PN Tl

P IR e S J -l

e "
Qe wCarChrcam

»
0

LA i e

FY I BV W A

-.'C ..I‘

-t .

IS

of experimental studles can be obtalned by examlning the slzes of these two domalns
consldered (see Figure 3). Blocked subjlect-project studles examine one or more objlects
across a set of teams and a set of projects. Replicated project studies examine object(s)
across a set of teams and a single project, whlle multl-project varlatlon studlies examine
objJect(s) across a single team and a set of projects. Single project studles examine
obJect(s) on a single team and a single proJect. As the representativeness of the samples
examined and the scope of examination Increase, the wlder-reaching a study’'s conclu-

slons become.

3.2. Experiment Planning

The second phase of the experlmental process Is the study planning phase. The fol-
lowing sectlons dlscuss aspects of the experiment planning phase: A) design, B) criterla,

and C) measurement.

The design of an experiment couples the study scope with analytical methods and
indicates the domaln samples to be examlned. Fractlonal factorial or randomized block
deslgns usually apply In blocked sublect-project studles, while completely randomlized or
incomplete block deslgns usually apply In multl-project and replicated project studles
[33, 40]. Multlvariate analysls methods, Including correlatlon, factor analysls, and re-
gresslon (75, 80, 89|, generally may be used across all experlmental scopes. Statlstlcal
models may be formulated and customlzed as appropriate [89]. Non-parametric
methods should be planned when only llmlited data may be avallable or distributional

assumptlons may not be met [89]. Sampilng technlques [41) may be used to select

representative programmers and programs/projects to examine.

Different motlvations, objects, purposes, perspectives, domalns, and scopes require

the examination of different criterla. Criterla that tend to be direct reflectlons of

cost/quallty Include cost [111, 108, 88, 4, 28|, errors/changes [49, 14, 109, 2, 81, 18], rell-

ability, (42, 64, 58, 70, 89, 76, 77, 95}, and correctness [51 61, 88]. Criterla that tend to
be Indirect reflectlons of cost/quality Include data coupling (62, 48, 102, 78], information
visibllity (85, 83, 55], programmer understanding (98, 100, 107, 110|, executlon coverage

(108, 21, 24], and size/complexity [17, 59, 71].

The concrete manlfestatlons of the cost/quality aspects examined in the experiment
are captured through measurement. Paradigms assist 1n the metric definltlon process:
the goal-questlon-metric paradigm [20, 22, 25, 93] and the factor-criterla-metric para-
dlgm (39, 72]. Once approprlate metrics have been detined, they may be valldated to
show that they capture what Is Intended [12, 18, 44, 50, 108, 113]. The data collection
process Includes developlng automated collectlon schemes [15] and designing and testing
data collectlon forms (22, 10]. The required data may !nclude both oblectlve and sub-
Jectlve data and differents levels of measurement: nomlnal (or classlficatory), ordinal (or

ranking), interval, or ratlio (99].

3.3. Experiment Operation

The third phase of the experimental process Is the study operation phase. The
operation of the experlment comnslsts of A) preparation, B) executlon, and C) analys!s.
Before conducting the actual experlment, preparatlon may lInclude a pllol study to
conflrm the experimental scenarlo, help organlze experimental factors (e.g., sublect ex-

pertise), or Inocuiate the subjects [44. 43, 83. 24, 110, 73|. Experimenters collect ind

. - .

o .'-“’.;.q .. ‘,_"‘. ~p e .. sCe .._:(C o e :

B 'S S I me aAte A Tt S e A Se Alae dde Bite S bt ieci e]
A ah” Basa) Y X > iy W) A DA A L Sl A el ML A . A AN - e

3
‘: valldate the defilned data durlng the execution of the study (18, 109]. The analysis of
\ the data may Include a combination of quantitative and qualitatlve methods [30]. The
~
: preliinlnary screening of the data, probably using plots and hlstograms, usually proceeds
the formal data analysls. The process of analyzing the data requires the Investigation of
| any underlying assumptlons (e.g., distributional) before the applicatlon of the statistlcal
models and tests.
* 3.4. Experiment Interpretation
-
E The fourth phase of the experlmental process s the study Interpretation phase.
The Interpretatlon of the experiment conslsts of A) Interpretation context, B) extrapola-
:\", tlon, and C) impact. The results of the data analysls from a study are Interpreted In a
\ broadening serles of contexts. These contexts of Interpretation are the statistical frame-
v work 1n whilch the result 1s derlved, the purpose of the particular study, and the
knowledge In the fleld of research (15]. The representativeness of the samplilng analyzed
. In a study quallfles the extrapolation of the results to other environments [20]. Several
. follow-up activitles contribute to the impact of a study: presenting/publishing the
results for feedback, replicating the experiment [33, 40|, and actually applylng the
! results by modifying methods for software development, malntenance, management, and
-.'.j research.
4. Classification of Analyses
Several Investigators have published studles In the four general scopes of examina-
S
; tlon: blocked subject-project, replicated project, multl-project varlation. or single pro-
. Ject. The followlng sectlons clte studles from each of these categorles. Note that sur-
. 6
:
v

i A

\

o,

PR

op " LI I-"
TR

veys on experimental methodology In emplrical studles Include [35, 98, 74}. Each of the

sectlons first discusses one experiment In moderate depth, using ltallcized keywords from
the framework for experimentation, and then chronologlcally presents an overview of

several others In the category.

4.1. Blocked Subject-Project Studies

WIith a motivation to Improve and better understand unit testing, [24] conducted a
study whose purpose was to characterize and evaluate the processes (l.e., objects) of code
readlng, functional testing, and structural testing from the perspective of the developer.
The testing processes were examined In a blocked sublect-project scope, where 74 stu-
dent through professional programmers (from the programmer domasn) tested four unit-
size programs (from the program domain) In a replicated fractional factorial design. Ob-
Jectlve measurement of the testlng processes was In several crileria areas: fault detectlon
effectlveness, fault detectlon cost, and classes of faults detected. Experiment prepara-
tion included a pllot study [83], ezecution Incorporated both manual and automated
monitoring of testing actlvity, and analysis used analysis of varlance methods (33, 90].
The malor results (In the interpretation context of the st,ﬁdy purpose) included 1) with
the professtionals, code readlng detected more software faults and had a higher fault
detection rate than did the other methods; 2) with the professionals, functlional testing
detected more faults than did structural testing, but they were not different in fault
detection rate; 3) with the students, the three technlques were not different In perfor-
mance, except that structural testing detected fewer faults than did the others In one

study phase; and 4) overall, code reading detected more Interface faults and functional

RN -_.‘-,.'*,._,' AT '.‘.'.' oA \\.‘ \;.x‘_‘-'_.\:.x'.\:‘-.' ORI A SR N

-

n

\ <,

‘ -'(* 8 o

B N e

ey N

- -

A

Rl adil Y

Y .‘Q"',-. -a

testing detected more control faults than did the other methods. A major result (In the
interpretation context of the fleld of research) 1s that the study suggests that non-
executlon based fault detectlon, as In code readlng, s at least as effectlve as on-llne
methods. The particular programmers and programs sampled qualify the extrapolation
of the results. The smpact of the study Is an advancement In the understanding of

effectlve software testing methods.

In order to understand program debugging, {57] evaluated several related factors,
Including effect of debugging alds, effect of fault type, and effect of particular program
debugged from the perspective of the developer and malntalner. Thirty experlenced
programmers Independently debugged one of four one-page programs that contalned a
single fault from one of three classes. The major results of these studles were 1) debug-
ging is much faster If the programmer has had previous experience with the program, 2)
assignment bugs were harder to find than other k!nds, and 3) debugging alds did not
seem to help programmers debug faster. Conslstent results were obtained when the
study was conducted on ten additlonal experienced programmers (58]. These results and
the ldentificatlon of possible ‘‘principles” of debugglng contribute to the understanding

of debugging methodology.

In order to Improve experimental methodology and Its application, [110] evaluated
programmers’ abllity to understand and modlify a program from the perspective of the
developer and modifler. Varlous measures of programmer understanding were calculat-
ed, In a serles of factorlal deslgn experiments, on groups of 16 — 48 unlversity students
performing tasks on two small programs. The study emphasized the need for well-

structured and weil-documented programs, and provided valuable testimony on and

8

T R ' [N ARSI AL PSR T T N R G T
) A

Ja aVE fa J98 o84 53 oW

- .

a5 8 0 8

worked toward a sultable experlmentatlon methodology.

In order to assess the impact of language features on the programmlng process, [53]
characterized the relationshlp of language features to software rellablilty from the per-
spective of the developer. Based on an analysls of the deficlencles In a programming
language, nine different features were modifled to produce a new version. Fifty-one ad-
vanced students were dlvided Into two groups and asked to complete Implementatlons of
two small but sophlisticated programs (75-200 ilne) In the original language and Its
modified version. The redesigned features In the two languages were contrasted in pro-
gram fault frequency, type, and persistence. The experiment Iidentified several
language-design decislions that signlficantly affected rellabllity, which contributes to the

understanding of language deslgn for rellable software.

In order to understand the unit testing process better, {80] evaluated a reading
technique and functlonal and ‘‘selective” testing (a composite approach) from the per-
spectlve of the developer. Thirty-nlne unlversity studenté applled the techniques to
three unlt-size programs In a Latln square design. Functlonal and ‘‘selective’’ testing
were equally effectlve and both superior to the reading technique, which contributed to

our understanding of testing methodology.

In order to improve and better understand the maintenance process, [43) conducted
two experiments to evaluate factors that Influence two aspects of software malntenance,
program understanding and modlificatlon, from the perspectlve of the developer and
malntalner. Thirty-six Junior through advanced professional programmers In each ex-
periment examined three classes of small (36 — 57 source line) programs In a factorial

design. The factors examined Include control flow complexity, varlable name mnemoni-

9

city, type of modificatlon, degree of commenting, and the relatlonshlp of programmer

performance to various complexity metrics. In {44] they continued the Investigation of

how software characteristics relate to psychologlcal complexity, and presented a third
experiment to evaluate the abllity of 54 professional programmers to detect program
bugs In three programs In a factorial design. The serles of experiments showed that
software sclence [50] and cyclomatic complexity [71] measures are related to the

difficulty experienced by programmers In locating errors In code.

Spmear oy

In order to lmprove and better understand program debugging, (108] evaluated the
theory that *‘programmers use ‘slicing’ (strlpplng away a program's statements that do
not Influence a glven variable at a glven statement) when debugging™ from the perspec-
tlve of the developer, malntalner, and researcher. Twenty-one unlversity graduate stu-
dents and programming staff debugged a fault In three unit-size (75 - 150 source llne)
programs Iln a non-parametric design. The study results supported the slicing theory,
that is, programmers during debugging routinely partitioned programs into a coherent,
discontiguous plece (or slice). The resuits advance the understanding of software debug-

ging methodology.

In order to Improve design techniques, [87] evaluated flowcharts and program
design languages (PDL) from the perspectlve of the developer. Twenty-two graduate
students designed two small (approximately 1000 source Ilne) projects, one usling
flowcharts and the other using PDL. Overall, the results suggested that design perfor-

mance and designer-programmer communlcation were better for prolects using PDL.

10)

- - L - P N e Tt UL N et et . R LI I U P L I S T S SR S
VIR0 DC N N NN R ST GV AT M T N N A 8 N RO A D G ‘ Y

RY L R

eI,

In order to valldate a theory of programming knowledge, [101] conducted two stu-
dles, using 139 novices and 41 professional programmers, to evaluate programmer
behavior from the perspectlve of the researcher. The theory was that programming
knowledge contalned programming plans (generlc program fragments representing com-
mon actions sequences) and rules of programming dlscourse (conventlons used In com-
posing plans Into programs). The resuits support the exlstence and use of such plans

and rules by both novice and advanced programmers.

Other blocked subj)ect-project studles Include (82, 112].

4.2. Replicated Project Studies

WIth a motivation to assess and better understand team software development
methodologles, [15] conducted a study whose purpose was to characterize and evaluate
the development processes (1.e., objects) of a a) disciplined-methodology team approach,
b) ad hoc team approach, and c) ad hoc individual approach from the perspective of the
developer and projJect manager. The development processes were examlned in a repli-
cated prolect scope, In which advanced unlversity students comprising seven three-
person teams, six three-person teams, and six Individuals (from the programmer domatn)
used the approaches, respectively. They separately developed a small (800 - 2200 line)
compller (from the program domasin) In a non-parametric design. Objectlve measure-
ment of the development approaches was In several crileria areas: number of changes,
number of program runs, program data usage, program data coupling/bindlng, static
program size/complexity metrics, language usage, and modularity. Experiment prepara-

tion Included presentation of relevant materlal [68, 7, 34], ezeculion Included automated

11

P T P R g A T A A A P AR NI ST B R T R E RN A

i

A AP

R %t Ty v

-

[ACRS

&

o

LI W R DR R I IR 4

P

I’

P RES k¥

A

v

monitoring of on-line development actlvity and analysis used non-parametric comparison
methods. The major results (In the tnterpretation contezt of the study purpose) includ-
ed 1) the methodological discipline was a key Influence on the general efliclency of the
software development process; 2) the discipllned team methodology significantly reduced
the costs of software development as reflected In program runs and changes; and 3) the
examlnation of the effect of the development approaches was accomplished by the use of
quantitative, objectlve, unobtrusive, and automatable process and product metrics. A
maJjor result (In the inierpretation contezt of the field of research) Is that the study sup-
ports the bellef that Incorporating disclpline 1n software development reflects posltively
on both the development process and final product. The particular programmers and
program sampled quallfy the ezirapolation of the results. The impact of the study Is an

advancement In the understanding of software development methodologles and thelr

evaluation.

In order to Improve the design and Implementation processes, [84] evaluated system
modularity from the perspectlve of the developer. Twenty unlversity undergraduates
each developed one of four different types of Implementatlons for one of five different
small modules. Then each of the modules were combined with others to form several
versions of the whole system. The major results suggested that minor effort was re-
quired In assembllng the systems and that major system changes can be conflned to
small, well-defined subsystems. The results support the ldeas on formal specificatlons
and modularity discussed In (83, 85] and advance the understanding of deslgn methodol-

ogy.

12

1.».{- AT ."f'-"l'{_".:", ‘

0 -
A ofis R WS SR P

y ¥ Vv

In order to assess the Impact of static typing of programming languages In the de-
velopment process, [54] evaluated the use of a statically typed language (having Integers
and strings) and a ‘‘typeless” language (e.g., arbltrary subscripting of memory) from the
perspective of the developer. Thirty-elght students programmed a small (48 - 297
source llne) problem In both languages, with half dolng It In each order. The two
languages were compared 1ln the resuitlng program fauilts, the number of runs contalning
faults, and the relatlon of sublect experience to fault proneness. The major result was
that the use of a statlcally typed language can increase programming rellabllity, which

assists In the design and use of programmIing languages.

In order to improve program compositlon, comprehension, debugging, and
modification, [98] evaluated the use of detalled flowcharts In these tasks from the per-
spective of the developer, malntalner, modlifier, and researcher. Groups of 53 — 70 no-
vice through Intermedliate subjects, In a serles of flve experiments, performed varlous
tasks using small programs. No significant differences were found between groups that
used and those that dld not use flowcharts, questioning the merlt of using detalled

flowcharts.

In order to Improve and better understand the unit testing process, [79] evaluated
the techniques of three-person walk-throughs, functional testlng, and a control group
from the perspectlve of the developer. Fifty-nlne junior through advanced professlonal
programmers applled the technlques to test a small (100 source line) but nontrivial pro-
gram. The technlques were not different In the number of faults they detected, all palr-
Ings of techniques were superior to single technlques, and code reviews were less cost-

effect!ve than the others. These results assist in the selectlon of approprilate software

13

L
atata"ad

testing technlques.

In order to valldate a particular metric family, [17] evaluated the ability of a pro-
posed metric famlly to explaln differences In system development methodologles and sys-
tem changes from the perspective of the developer, project manager, and researcher.
The metrics were applied to 19 versions of a small (800 - 2200) compller, which were
developed by teams of advanced unlversity students using three dlfferent development
approaches (see the first study [15] described In thls sectlon). The malor results lnclud-
ed 1) the metrics were able to differentiate among prolects developed with dlifferent de-
velopment methodologles; and 2) the differences among Individuals had a large effect on
the relatlonshlps between the metrics and aspects of system development. These results

suggest 1nsights Into the formulation and appropriate use of software metrics.

In order to Improve the understaading of why software errors occur, [85] character-
ized programmer misconceptions, cognltive strategies, and their manifestatlons as bugs
In programs from the perspectlve of the developer and researcher. Two-hundred-four
novice programmers separately attempted lmplementations of an elementary program.
The results supported the programmers’ intended use of *‘programming plans” [100] and
revealed that most people preferred a read-process strategy over a process-read strategy.
The results advance the understanding of how Individuals write programs, why they

sometimes make errors, and what programming language constructs should be avallable.

In order to understand the effect of codlng conventlons on program comprehensiblll-
ty, {73] conducted a study to evaluate the relatlonship between indentation leveis and
program comprehension from the perspectlve of the developer. Elghty-six novice

through professional subjects answered questions about one of seven program varlatlons

14

ot L VA

.
LN

“a e
-
v

NP 0 DU N SO A DI TN AN

’ N ... ~l

with different level and type of indentation. The major result was that an indentation

level of two or four spaces was preferred over zero or slX.

In order to lmprove software development approaches, [29] characterized and
evaluated the prototyping and specifying development approaches from the perspective
of the developer, proJect manager, and user. Seven two- and three-person teams, con-
sisting of university graduate students, developed verslons of the same appllcation soft-
ware system (2000 - 4000 line); four teams used a requlrement/design specifylng ap-
proach and three teams used a prototyping approach. The systems deveioped by proto-
typing were smaller, requlired less development effort, and were easler to use. The sys-
tems developed by speclfylng had more coherent designs, more complete functlonallity,
and software that was easler to \ntegrate. These results contribute to the understanding

of the merits and appropriateness of software development approaches.

In order to validate the theoretical model for N-version programming (66], (67, 3]
conducted a study to evaluate the effectlveness of N-version programmling for rellabllity
from the perspective of the customer and user. N-version programming uses a high-level
driver to connect several separately deslgned versions of the same system, the systems
"vote” on the correct solution, and the solution provided by the majority of the systems
is output. Twenty-seven graduate students were asked to Independently deslgn an 800
source line system. The factors examlined Included individual system rellabllity, total
N-version system reilability, and classes of faults that occurred in systems slmuitaneous-
ly. The major result was that the assumptlon of Independence of the faults In programs
1s not Justified, and therefore, the rellabllity of the comblned "voting™ system may not

be as high as given by the model.

15

I Ry VRS T PR Ty L LD T S (et

. el gy e Ave e B gea ey . ' " v Lo At Nl S M A Al e el bt B B S -Shd R i S
[e k = - Wat, - Y.L e e e T T Ny Ty TR VROV ESE R AT R R T RO R ST T T RO AT AR P N

In order to Improve and better understand software development approaches, [94]

: characterized and evaluated the Cleanroom development approach [47, 48], In which
)

S' software 1s developed without executlon (l.e., completely off-line), from the perspectlve
) of the developer, proJect manager, and customer. Fifteen three-person teams of ad-
vanced university students separately developed a small system (800 - 2300 source line);
\~ ten teams used Cleanroom and five teams used a tradlitlonal development approach ln a
N non-parametric deslgn. The major results Included 1) most developers using the Clean-
\. room approach were able to bulld systems without program execution; and 2) the Clean-
: room teams’ products met system requirements more completely and succeeded on more
j : operational test cases than dld those developed with a traditional approach. The results
.

\; suggest the feasiblilty of compiete off-llne development, as In Cleanroom, and advance
% the understanding of software development methodology.

: Other replicated project studles Include [37, 5, 83].

N

Y.

B 4.3. Multi-Project Variation Studies

<

3 With a motivation to ilmprove the understanding of resource usage durlng software
) development, [4] conducted a study whose purpose was to predict development cost by
- using a partlcular model (l.e., object) and to evaluate 1t from the perspective of the pro-
; Ject manager, corporate manager, and researcher. The particular model generatlon
, method was examined In a multl-prolect scope, with basellne data from 18 large (2500 -
: 100,000 source line) software projects 1n the NASA S.E.L. production environment (from
3 the program domain), In which teams contalned from two to ten programmers (from the
o\

)

programmer domain) [10, 11, 38, 91]. The study design Incorporated multivarlate

4
¢
¥ 16
h¢

s aa. &

28 8 a8 &

oV o Rt r &

h A, A

methods to parameterize the model. Objective and sublective measurement of the pro-

Jects was based on 21 criterig® In three areas: methodology, complexity, and personnel
experience. Study preparation Included prellmlnary work [52], execution Included an es-
tablished set of data collection forms {10}, and analysis used forward multlvariate regres-
slon methods. The major results (In the inlerpretation context of the study purpose) In-
ciuded 1) the estimation of software development resource usage lmproved by conslder-
Ing a set of both base-line and customlization factors; 2) the appllcation In the NASA
environment of the proposed model generatlon method, which considers both types of
factors, produced a resource usage estimate for a future project within one standard de-
viation of the actual; and 3) the confirmation of the NASA S.E.L. formula that the cost
per line of reusing code Is 209 of that of developlng new code. A major result (In the
interpretation contezt of the fleld of research) 1s that the study highlights the difference
of each software development environment, which Influences the use of resource estima-
tlon models. The particular programming environment and projects sampled qualify the
extrapolation of the resuits. The tmpact of the study 1s an advancement In the under-

standing of estimating software development resource expendlture.

In order to assess, manage, and Improve multl-project environments, (28, 28, 108,
13, 36, 18, 62, 109, 97, 105] characterized, evaluated, and/or predicted the effect of
several factors from the perspective of the developer, modifler, proJect manager, and

corporate manager. All the studles examined moderate to large projects from produc-

2 Twenty-one factors were selected after examinlng a total of 82 factors that possi-
bly contributed to project resource expenditure, Including 36 from [106] and 18 from
[28].

17

P R TR PR R AT IR L I

- R R PR L e R R R R S LT RO Tl S T - IR ~ . TN R et v
P R N T S G T S I T S RN IS Sy Oy - - '~".-‘----‘~".-".~" M S i TR T R s

o>

> ~‘. n~_ -

!

FEFE LI

a

el aTa e

| 2P A

tlon environments. The relatlonshlips Investigated were among various factors, Including
structured programmling, personnel background, development process and product con-
stralnts, pro)ect complexity, human and computer resource consumption, error-prone
software ldentification, error/change distributlons, data coupling/blnding, project dura-
tlon, staff slze, degree of management control, and productivity. These studles have
provided Increased project vislbllity, greater undersianding of classes of factors sensltive
to project performance, awareness of the need for project measurement, and efforts for
standardlzation of defilnltlons. Analysls has begun on Incorporating project varlatlon 1n-

formation into a management tool [18, 23].

In order to Improve and better understand the software malntenance process, {104]
conducted an experlment to evaluate the relationshlp between the rate of malntenance
repalr and varlous product and process metrics from the perspectlve of the developer,
user, and the project manager. A total of 447 small (up to 600 statements) commercial
and clerical Cobol programs from one Australlan organization and two U.S. organiza-
tlons were analyzed. The product and process metrics Included program complexity,
programming style, programmer quality, and number of system releases. The major
results were 1) In the Australlan organlzatlon, program complexity and programming
style significantly affected the malntenance repalr rate; and 2) in the U.S. organlzations,

the number of times a system was released significantly affected the malntenance repalir

rate.

In order to Improve the software malntenance process, [1}] evaluated operational
faults from the perspectlve of the user, customer, project manager, and corporate

manager. The fault history for nilne large productlon products (e.g.. operatlng system

18

“Pavs s & B

releases or thelr major components) was emplrically modeled. He developed an ap-

proach for estimating whether and under what circumstances preventively fixing faults
in operational software In the fleld was appropriate. Preventlvely filxing faults consists
of installing flxes to faults that have yet to be discovered by partlcular users, but have
been discovered by the vendor or other users. The malor result 1s that for the typlcal
user, corrective service Is a reasonable way of dealing with most faults after the code has
been In use for a falrly long period of time, while preventively flxing high-rate faults Is

advantageous during the time Immedlately following release.

In order to assess the effectlveness of the testing process, [31] evaluated estlmatlons
of the number of resldual faults In a system from the perspective of the customer,
developer, and proJect manager. The study was based on fault data collected from
three large (2000 — 6000 module) systems developed In the Hughes-Fullerton environ-
ment. The study partltloned the faults based on severity and analyzed the differences In
estimates of remalnlng fauits accordlng to stage of testing. Insights were galned Into re-

latlonships between fault detectlon rates and residual faults.

4.4. Single Project Studies

With a motivation to Improve software development methodology, [8) conducted a
study whose purpose was to characterize the process (l.e., object) of lteratlve enhance-
ment In conjunction with a top-down, stepwlse refilnement development approach from
the perspective of the developer. The development process was examlined !n a single
project scope, where the authors, two experlenced Indlviduals (from the programmer

domazin), bullt a 17,000 line compller (from the program domain). The study design n-

19

corporated descriptlve methods to capture system evolution. Oblective measurement of
the system was In several criterig areas: slze, modularity, local/global data usage, and
data binding/coupling {62, 102]. Study preparation Included language design (9], ezecu-
tion lncorporated statlc analysls of system snapshots, and analysis used descriptive
statlstics. The results (1n the interpretation context of the statistical framework) Includ-
ed 1) the percentage of global varlables decreased over tlme while the percentage of ac-
tual vs. possible data couplings across modules Increased, suggesting the usage of global
data became more appropriate over time; and 2) the number of procedures and func-

tlons rose over time whlile the number of statements per procedure or function de-

creased, suggesting Increased modularity. The major result of the study (In the in-

terpretation context of the study purpose) was that the teratlve enhancement technlque
encouraged the development of a software product that had several generally deslrable
aspects of system structure. A malor result (In the interpretation context of the fleld of
research) 1s that the study demonstrates the feaslblllty of lteratlve enhancement. The
particular programming team and project examlned quallfy the eztrapolation of the
results. The impact of the study Is an advancement In the understanding of software

development approaches.

In order to Improve, better understand, and manage the software development pro-
cess, [8] evaluated the effect of applylng chlef programming teams and structured pro-
grammlng In system development from the perspectlve of the user, developer, project
manager, and corporate manager. The large (83,000 llne) system. known as ""The New
York Tlmes Project,” and was developed by » team of professionals organlzed as a chlef

programmer team, using structured code, top Jdown deslgn, walk-throughs, and program

20

R T T ST P ST .
TN A T Y e T e T DA IACTR R RN
2 T e T e RIS

R

g et - -

[P o* ¥ s u

libraries. Several beneflts were 1dentifled, Including reduced development time and cost,
reduced tlme In system integration, and reduced fault detection In acceptance testing
and fleld use. The results of the study demonstrated the feasibliity of the chlef pro-
grammer team concept and the accompanying methodologles In a productlon environ-

ment.

In order to Improve their development environments through Increased understand-
Ing, (49, 14, 2, 81, 19] each conducted single project studles to characterize the errors
and changes made during a development project. They examlined the development of a
moderate to large software project, done by a multl-person team, In a production en-
vironment. They analyzed the frequency and distribution of errors durlng development
and thelr relatlonshlp wlith several factors, includlng module slze, software complexity,
developer experience, method of detection and lsolation, effort for isolation and correc-
tlon, phase of entrance Into the system and observance, reuse of existing design and
code, and role of the requirements document. Such analyses have produced fault
categorization schemes and have been useful In understanding and Improving a develop-

ment environment.

In order to Improve design methodology, [55, 27) examlned a ground-support sys-

tem written In Ada® to characterize the use of Ada packages from the perspective of the
developer. Four professional programmers developed a prolect of 10,000 source lines of

code. Factors such as how package use affected the ease of system modification and

3 Ada Is a trademark of the Department of Defense.

21

Bl
o a el A KA

YR AN FEXNE -

% ‘- '. .'

Tt o,

Ll it B¢ R J

T A A

'JJI

how to measure module change resistance were identifled, as well as how these observa-

tlons related to aspects of the development and training. The maj)or results were 1)
several measures of Ada programs were developed, and 2) there was a Indlcatlon that a
lot of tralning will be necessary If we are to expect the facliltles of Ada to be properly

used.

In order to assess and Improve software testing methodology, (21, 88] characterized
and evaiuated the relationshlp between system acceptance tests and operational usage
from the perspective of the developer, pl:oject, manager, customer, and researcher. The
execution coverage of functlonally generated acceptance test cases and a sample of
operational usage cases was monltored for a medlum-size (10,000 line) software system
developed In a production environment. The results calculated that 849% of the pro-
gram statements were executed durlng system operation and that the acceptance test
cases corresponded reasonably well to the operational usage. The results glve insights
Into the relationshlps among structural coverage, fault detection, system testing, and

system usage.

5. Problem Areas in Experimentation

The following sectlons tdent!fy several problem areas of experimentation in software
engineering. These areas may serve as guldelines In the performance of future studles.
After mentlonlng some overall observations, cautions In each of the areas of experiment

deflnitlon, planning, operation, and Interpretation are dlscussed.

22

5.1. Experimentation Overall

There appears to be no *‘unlversal model” or ‘‘sllver bullet” In software engineering.

There are an enormous number of factors that differ across environments, in terms of

desired cost/quality goals, methodology, experience, problem domaln, constralnts, etc.

(108, 28, 4, 13, 28]. This results In every software development/malntenance/... environ-

Another area of wide varlatlon Is the many-to-one differentlal In

ment belng different.

human performance [17, 45, 24]. The particular Individuals examined 1n an empirical

study can make an enormous difference. Among other conslderatlons, these varlations

P ALPIY

suggest that metrics need to be valldated for a particular environment and a particular

person to show that they capture what Is Intended {17, 18]. Thus, experimental studles

should conslder the potentlally vast differences among environments and people.

5.2. Experiment Definition

In the deflnitlon of the purpose for the experiment, the formulation of Intuitive

problems Into precisely stated goals Is a nontrivial task (20, 22]. Defining the purpose of

a study often requires the articulatlon of what s meant by ‘software quallty.” The

many interpretations and perceptions of quality [32, 39, 72| highlight the need for con- °

sldering whose perspectlve of quzallty Is belng examined. Thus, a preclse specificatlon of

the problem to be Investigated Is a major step toward Its solution.

5.3. Experiment Planning

Experimental planning should have a horizon beyond a first experiment. Con-

-

trolled studles may be used to focus on the effect of certain factors, while thelr results

may be confirmed 1n replications (92, 98, 101, 110, 57, 58, 44, 43, 24] and/or larger case

23

- oy % o o v at et g
NI R YA “ A ML TR TN IR

ML LN Y

N XA AN

i |

o

‘;\'-'\\" h% e]

P30y

studles [4, 15]. When designing studles, conslder that a combination of factors may be
effectlve as a ‘‘critlcal mass,” even though the partlcular factors may be lneffectlve when
treated In Isolatlon (15, 105]. Note that formal deslgns and the resultlng statlstlcal
robustness are deslirable, but we should not be driven exclusively by the achlevement of
statistical signlficance. Common sense must be malntalned, which allows us, for exam-
ple, to experlment just to help develop hypotheses (19, 109]. Thus, the experimental
planning process should Include a serles of experiments for exploration, verlficatlon, and

applicatlon.

5.4. Experiment Operation

The collection of the required data constltutes the primary result of the study
operation phase. The data must be carefully deflned, validated, and communlcated to
ensure 1ts consistent interpretation by all persons assoclated with the experiment: sub-
Jects under observatlon, experimenters, and literature audience [18]. There have been
papers 1In the literature that do not deflne their data well enough to enable a comparison
of results across many projects and environments. We have often contacted the experi-
menter to dlscover that we are measuring different thlngs. Thus, the experimenter
should be cautlous about the definition, valldatlon, and communication of data, since

they play a fundamental role in the experimental process.

5.5. Experiment Interpretation

The appropriate presentation of results from experlments contributes to thelr
correct Interpretation. Experimental results need to be quallfied by the partlcular sam-

ples (e.g., programmers, programs) analyzed [20]. The extrapolation of results from a

24

‘ -. . '.\".\:" -,

partlcular sample must conslder the representatlveness of the sample to other environ-

ments (41, 111, 106, 86, 4, 28]. The visiblilty of the experimental results In professional

forums and the open literature provides valuable feedback and constructive criticism.
Thus, the presentation of experimental resuits should Include appropriate qualification

and adequate exposure to support thelr proper Interpretation.

8. Conclusion

Experimentation In software engineerlng supports the advancement of the fleld
through an lteratlve learnlng process. The experlmental process has begun to be applled
in a mulitiplicity of environments to study a varlety of software technology areas. From
the studles presented, It Is clear that experimentation has proven effective In providing
Insights and furthering our domaln of knowledge about the software process and pro-
duct. In fact, there I1s a learning process In the experimentation approach Itself, as has

been shown In this paper.

We have descrlbed a framework for experimentation to provide a structure for
presenting previous studles. We also recommend the framework as a mechanism to fa-
cllitate the definitlon, planning, operation, and Interpretation of past and future studles.
The problem areas dlscussed are meant to provide some useful recommendations for the
application of the experimental process In software englneering. The experimental
framework cannot be used In a vacuum; the framework and the lessons learned comple-
ment one another and should be used In a synergistic fashion. This work contributes to

the understanding and advancement of experimentation in software engineering.

- -
"

B

. .‘I.‘ &

‘L’L -~

T

NN

'.’\

L =t Y

iy d

e
I
i
s
g
b
S
’

7. References

(1}

2]

(3]

(4]

(8]

(el

(7]

(st

9}

[10]

(11]

[12)

(13}

(14]

(18]

e

E. N. Adams, Optimizing Preventive Service of Software Products, /IBM Journal of Research and
Development 28, 1, pp. 2-14, Jan. 1984.

J.-L. Albin and R. Ferreol, Collecte et analyse de mesures de logiciel (Collection and Analysis of
Software Data), Technigue ¢t Science Informatiques 1, 4, pp. 207-313, 1982. (Rairo ISSN
0752-4072)

A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse. K. S. Ts0. and U. Voges.
The UCLA Dedix System: A Distributed Testbed for Muitiple-Version Software. Digest Fi-
Jeenth Int. Sym. Fault-Tolerant Computing, Ann Arbor, MI, June 19-21, 1985.

J. W. Bailey and V. R. Basili, A Meta-Model for Software Development Resource Expenditures,
Proec. Fifth Int. Conf. Software Engr., San Diego, CA. pp. 107-1186, 1981.

J. W. Balley, Teaching Ada: A Comparison of Two Approaches, Dept. Com. Sci.. Univ. Maryland.
College Park, MD, working paper, 1984.

F. T. Baker, System Quality Through Structured Programming, AF/PS Proc 1972 Fall Jomt
Computer Conf. 41, pp. 339-343, 1072.

V. R. Basili and F. T. Baker, Tutorial of Structured Programming. Eleventh [EEE COMPCON
IEEE Cat. No. 75CH1049-8, 1975.

V. R. Basili and A. J. Turner, Iterative enhancement: a practical technique for software develop-
ment, J[EEE Transactions on Software Engineering SE-1, 4, Dec. 1975,

V. R. Basilli and A. J. Turner, SIMPL-T: A Structured Programming Language, Paladin House
Publishers, Geneva, IL, 1976.

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr.. W. F. Truszskowski, and D. L.
Weiss, The Software Engineering Laboratory, Software Eng. Lab., NASA/Goddard Space
Flight Center, Greenbelt, MD, Rep. SEL-77-001, May 1977.

V. R. Basili and M. V. Zelkowitz, Analyzing Medium-Scale Software Developments, Proc. Third
Int. Conf. Software Engr., Atlanta, GA, pp. 116-123, May 1978.

V. R. Basili, Tutlorial on Models and Metrics for Software Management and Engineering, IEEE
Computer Society, New York, 1980.

V. R. Basili and K. Freburger, Programming Measurement and Estimation in the Software En-
gineering Laboratory, Journal of Systems and Software 2, pp. 47-57, 1981.

V. R. Basilli and D. M. Weiss, Evaluation of a Software Requirements Document By Analysis of
Change Data, Proc. Fifth Int. Conf. Software Engr., San Diego, CA, pp. 314323, March 9-12,
1981.

V. R. Basili and R. W. Reiter, A Controlled Experiment Quantitatively Comparing Software De-
velopment Approaches, /[EEE Trans. Software Engr. SE-7, May 1081.

28

D A T RTINS o

-

(18]

(17]

[18)

(19]

[20}

(21]

(22)

(23]

(24]

(28]

(28]

(27)

(28]

(29]

(30]

(31]

V.

R. Basili and C. Doerflinger, Monitoring Software Development Through Dynamic Variables,
Proc. COMPSAC, Chicago, IL, 1983. -

. R. Basili and D. H. Hutchens, An Emplirical Study of a Syntactic Metric Family, Trans. Soft-

ware Engr. SE-9, 6, pp. 664-672, Nov. 1083.

. R. Basili, R. W. Selby, Jr.,, and T. Y. Phillips, Metric Analysis and Data Validation Across

FORTRAN Projects, [EEE Trans. Software Engr. SE-9, 6, pp. 652-663, Nov. 1983.

. R. Basili and B. T. Perricone, Software Errors and Complexity: An Empirical Investigation,

Communications of the ACM 27, 1, pp. 42-52, Jan. 1984.

. R. Basili and R. W. Selby, Jr.,, Data Collection and Analysis in Software Research and

Management, Proceedings of the American Statistical Association and Biometric Society Joint
Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

. R. Basilli and J. R. Ramsey, Structural Coverage of Functional Testing, Dept. Com. Sci., Univ.

Maryland, College Park, Tech. Rep. TR-1442, Sept. 1984,

. R. Basill and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Datas,

Trans. Software Engr. SE-10, 8, pp. 728-738, Nov. 1984.

. R. Basili and C. L. Ramsey, Arrowsmith-P — A Prototype Expert System for Software En-

gineering Management, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep., 1985.
(submitted to the Symposium on Ezpert Systems in Government, Mclean, VA, Oct. 1985)

. R. Basili and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strategies,

Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep., 1985. (submitted to the /[EEE
Trans. Software Engr.)

. R. Basili and R. W. Selby, Jr., Four Applications of a Software Data Collection and Analysis

Methodology, Proc. NATO Advanced Study Institute: The Challenge of Advanced Computing
Technology to System Design Methods, Durham, U. K., July 29 - August 10, 1985.

- R. Basili and R. W. Selby, Jr., Calculation and Use of an Environment’s Characteristic Soft-

ware Metric Set, Proc. Eighth Int. Conf. Software Engr., London, August 28-30, 1985.

. R. Basili, E. E. Katz, N. M. Panlilio-Yap, C. L. Ramsey, and S. Chang, A Quantitative Char-

acterization and Evaluation of a Software Development in Ada, JEEE Computer, September
1985.

. W. Boebm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.

. W. Boehm, T. E. Gray, and T. Seewaldt, Prototyping Versus Specifying: A Multiproject Ex-

periment, /[EEE Trans. Software Engr. SE-10, 3, pp. 290-303, May 1984.

. C. Bogdan and S. K. Biklen, Qualitative Research for Education: An Introduction to Theory

and Methods, Allyn and Bacon, Boston, MA, 1082.

Bowen, Estimation of Residual Faults and Testing Effectiveness, Seventh Minnowbrook
Workshop on Software Performance Evalugtion, Blue Mountain Lake, NY, July 24-27, 1984.

27

(32]

(33)

[34]

(3]

(38]

(37)

(38)

(39}

(40]
(41]

[42]

(43]

(44]

[45]

(46}

(47]

(48]

T. P. Bowen, G. B. Wigle, and J. T. Tsai, Specification of Software Quality Attributes, Rome Air
Development Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-85-37 (three
volumes), Feb. 1985.

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters, John Wiley & Soi.s,
New York, 1978.

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley Publishing Co., Reading, MA, 1975.

R. E. Brooks, Studying Programmer Behavior: The Problem of Proper Methodology, Communica-
tions of the ACM 23, 4, pp. 207-213, 1980.

W. D. Brooks, Software Technology Payoff: Some Statistical Evidence, J. Systems and Software 2,
pp. 3-8, 1981.

F. O. Buck, Indicators of Quality Inspections, IBM Systems Products Division, Kingston, NY,
Tech. Rep. 21.802, Sept. 1981.

D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili, The Software Engineering La-
boratory, Software Eng. Lab., NASA/Goddard Space Flight Center, Greenbeit, MD Rep.
SEL-81-104, Feb. 1982.

J. P. Cavano and J. A. McCall, A Framework for the Measurement of Software Quality, Proc. y
Software Quality and Assurance Workshop, San Diego, CA, pp. 133-139, Nov. 1978.

W. G. Cochran and G. M. Cox, Ezperimental Designs, John Wiley & Sons, New York, 1950.

W. G. Cochran, Sampling Techniques, John Wiley & Sons, Inc., 1953.

P. A. Currit, M. Dyer, and H. D. Mills, Certifying the Reliability of Software, IBM Corp., Federal
Systems Division, 6600 Rockledge Dr., Bethesda, MD, 20817, Tech. Rep., March 1985. (sub-
mitted to the JEEE Trans. Scftware Engineering)

B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, Measuring the Psychological
Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics, [EEE
Trans. Software Engr., pp. 96-104, March 1979.

B. Curtis, S. B. Sheppard, and P. M. Milliman, Third Time Charm: Stronger Replication of the
Ability of Software Complexity Metrics to Predict Programmer Performance, Proc. Fourth Int.
Conf. Software Engr., pp. 356-360, Sept. 1979.

B. Curtis, Cognitive Science of Programming, Sizth Minnowbrook Workshop on Software Perfor-
mance Evaluation, Blue Mountain Lake, NY, July 19-22, 1983. f

M. Dyer and H. D. Mills, Developing Electronic Systems with Certifiable Reliability, Proc. NATO "
Conf., Summer, 1982,

M. Dyer, Cleanroom Software Development Method, IBM Federal Systems Division. Bethesda. -
MD, October 14, 1982.

T. Emerson, A Discriminant Metric for Module Cohesion, Proc. Seventh Intl. Conf. Software ' .
Engr., Orlando, FL, pp. 294-303, 1984.

28

o

A. Endres, An Analysis of Errors and their Causes in Systems Programs, I[EEE Trans. Software
Engr., pp. 140-149, June 1975.

A. R. Feuer and E. B. Fowlkes, Some Results from an Empirical Study of Computer Software,
Proc. Fourth Int. Conf. Software Engr., pp. 351-355, 1979.

R. W. Floyd, Assigning Meaning to Programs, Am. Math. Soc. 19, ed. J. T. Schwartz, Provi-
dence, RI, 1967.

K. Freburger and V. R. Basili, The Software Engineering Laboratory: Relationship Equations,
Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep. TR-764, May 1979.

J. D. Gannon and J. J. Horning, The Impact of Language Design on the Production of Reliable
Software, Trans. Software Engr. SE-1, pp. 179-191, 1975.

J. D. Gannon, An Experimental Evaluation of Data Type Conventions, Communications of the
ACM 20, 8, pp. 584-505, 1977.

J. D. Gannon, E. E. Katz, and V. R. Basili, Characterizing Ada Programs: Packages, The Meas-
uwrement of Computer Software Performance, Los Alamos National Laboratory, Aug. 1983.

A. L. Goel, Software Reliability and Estimation Techniques, Rome Air Development Center,
Griffiss Air Force Base, NY, Rep. RADC-TR-82-263, October 1982.

J. D. Gould and P. Drongowski, An Exploratory Study of Computer Program Debugging, Human
Factors 16, 3, pp. 258-277, 1974.

J. D. Gould, Some Psychological Evidence on How People Debug Computer Programs, Interna-
tional Journal of Man-Machine Studies 7, pp. 151-182, 1975.

M. H. Haistead, Elements of Software Seience, North Holland, New York, 1977.

W. C. Hetzel, An Expermental Analysis of Program Verification Methods, Ph.D. Thesis, Univ. of
North Carolina, Chapel Hill, 1976.

C. A. R. Hoare, An Axlomatic Basis for Computer Programming, Commaunscations of the ACM
12, 10, pp. 576-583, Oct. 1969.

D. H. Hutchens and V. R. Basill, System Structure Analysis: Clustering With Data Bindings,
IEEE Trans. Soft. Engr. SE-11, 8, Aug. 1985.

S-S. V. Hwang, An Empirical Study in Functional Testing, Structural Testing, and Code
Reading/Inspection*, Dept. Com. Se¢i., Univ. of Maryland, College Park, Scholarly Paper 362,
Dec. 1981.

Z. Jelinski and P. B. Moranda, Applications of a Probability-Based Model to a Code Reading Ex-
periment, Proe. [EEE Symposium on Computer Software Reliability, New York, pp. 78-81,
IEEE, 1973.

W. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification Scheme Must Take the
Programmer into Account, Proc. Workshop High-Level Debugging, Palo Alto. CA, 1983.

J. P. J. Kelly, Specificatfon of Fault-Tolerant Multi-Version Software: Experimental Studies of a
Design Diversity Approach, UCLA Ph.D. Thesis, 1982.

LTS DI AR AR AT SR AP ON
IP. .l‘ .. - ..(sf‘f'

o

(67]

(e8]

(69]

(70]

{71]

(72)

(73]

(74]

(7]

(76]

(77]

(78]

(79]

(s0]

[81)

(82]

(83]

(84)

. Knight and N. Leveson, A Large Scale Experiment in N-Version Programming, Proc. of the

Ninth Annual Software Engincering Workshop, NASA/GSF~, Greenbelt, MD, Nov. 1984.

. C. Linger, H. D. Mills, and B. 1. Witt, Structyred Programming: Theory and Practice,

Addison-Wesley, Reading, MA, 1979.

. Littlewood and J. L. Verrall, A Bayesian Reliability Growth Mode! for Computer Software,

Applied Statistics 22, 3, 1973.

. Littlewood, Stochastic Reliability Growth: A Model for Fault Renovation Computer Programs

and Hardware Designs, /[EEE Trans. Reliability R-30, 4, Oct. 1981.

. J. McCabe, A Complexity Measure, IEEE Trans. Software Engr. SE-2. 4, pp. 308-320, Dec.

1976.

. A. McCall, P. Richards, and G. Walters, Factors in Software Quality, Rome Air Development

Center, Grifliss Air Force Base, NY, Tech. Rep. RADC-TR-77-369, Nov. 1977.

. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman, Program Indentation and

Comprehensibility, Commaunications of the ACM 28, 11, pp. 861-867, Nov. 1983.

. Moher and G. M. Schneider, Methodology and Experimental Research in Software Engineering,

International Journal of Man-Machine Studies 16, 1, pp. 65-87, 1982,

. A. Mulaik, The Foundations of Factor Analysis, McGraw-Hill, New York, 1972.

. D. Musa, A Theory of Software Reliability and Its Application, IEEE Trans. Software Engr.

SE-1, 3, pp. 312-327, 1975.

. D. Musa, Software reliability measurement, Journal of Systems and Software 1, 3, pp. 223-241,

1980.

. J. Myers, Composite/Structured Design, Van Nostrand Reinhold, 1978.

. J. Myers, A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections,

Communications of the ACM, pp. 760-768, Sept. 1978.

. Neter and W. Wasserman, Applied Linear Statistical Models, Richard D. Irwin, Inc., Home-

wood, IL, 1974.

. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Error Data in an Indus-

trial Environment, Dept. Com. Sci., Courant Inst. Math. Sci., New York Univ., NY, Tech.
Rep. 47, August 1982 (Revised May 1983).

. J. Panzl, Experience with Automatic Program Testing, Proc. NBS Trends and Applications,

Nat. Bureau Stds., Gaithersburg, MD, pp. 25-28, May, 28 1981.

. L. Parnas, On the Criteria to be Used in Decomposing Systems into Modules, Communitcations

of the ACM 18, 12, pp. 1053-1058, 1972.

. L. Parnas, Some Conclusions from an Experiment in Software Engineering Techniques, AFIPS

Proc. 1972 Fall Joint Computer Conf. 41, pp. 325-329, 1972.

30

D. L. Parnas, A Technique for Module Specification With Examples, Communications of the ACM
15, May 1972.

L. Putnam, A General Empirical Solution to the Macro Software Sizing and Estimating Problem,
IEEE Trans. Software Engr. 4, 4, 1978.

H.R. Ramsey, M.E. Atwood, and J.R. Van Doren, Flowcharts Versus Program Design Languages:
An Experimental Comparison, Communications ACM 286, 6, pp. 445-449, June 1983,

J. Ramsey, Structural Coverage of Functional Testing., Seventh Minnowbrook Worksiop on Soft-
ware Performance Evaluation, Blue Mountain Lake, NY, July 24-27 1984.

Statistical Analysis System (SAS) User's Guide, SAS Institute Inc., Box 8000, Cary, NC, 27511,
1982.

H. Schefle, The Analysss of Variance, John Wiley & Sons, New York, 1959.

Annotated Bibliography of Software Engineering Laboratory (SEL) Literature, Software Eng.
Lab., NASA/Goddard Space Flight Center, Greenbelt, MD Rep. SEL-82-008, Nov. 1982.

R. W. Selby, Jr., An Empirical Study Comparing Software Testing Techniques, Sizth Min-
nowbrook Workshop on Software Performance Evaluation, Blue Mountain Lake, NY, July 19-
22, 1983.

. W. Selby, Jr., Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
Dept. Com. Sci., Univ. Maryland, College Park, Ph. D. Dissertation, 1985.

. W, Selby, Jr., V. R. Basili, and F. T. Baker, CLEANROOM Software Development: An Empir-
ical Evaluation, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep. TR-1415, Febru-
ary 1985. (submitted to the I[EEE Trans. Software Engr.)

. G. Shanthikumar, A Statistical Time Dependent Error Occurrence Rate Software Reliability
Model with Imperfect Debugging, Proc. 1981 National Computer Conference, June 1981.

B. A. Sheil, The Psychological Study of Programming, Computing Surveys 13, pp. 101-120, March
1981.

V.Y. Shen, T.J. Yu, S.M. Thebaut, and L.R. Paulsen, ldentifying Error-Prone Software - An Em-
pirical Study, [EEE Trans. Soft. Engr. SE-11, 4, pp. 317-324, April 1985.

B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, Experimental Investigations of the Utilj-
ty of Detailed Flowcharts in Programming, Communications of the ACM 20, 8, pp. 373-381.
1977.

S. Siegel, Nonparameltric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1955.
E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, What D~ Novices Know About Program-
ming?, in Directions in Human-Computer Interactions, ed A. Badre and B. Shneiderman,

Ablex, Inc., 1982.

E. Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge, Trans. Software Engr.
SE-10, 5, pp. 595-609, Sept. 1984.

» ey 3 Tt Bk AR i A s e S e Al ahe ghe S

\

" [(102] W. P. Stevens, G. J. Myers, and L. L. Constantine, Structural Design, /[BM Systems Journal 13,
2. pP. 115-139, 1974.

O

W (t03] L. G. Stucki, New Directions in Automated Tools for Improving Software Quality. in Current

' Trends in Programming Mecthodology, ed. R. T. Yeh, Prentice Hall, Englewood Clifls, NJ,

) 1977.

v [104] 1. Vessey and R. Weber, Some Factors Affecting Program Repair Maintenance: An Empirical
Study, Communications of the ACM 286, 2, pp. 128-134, Feb. 1983.

; [108] J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben, and Y. Liu, Productivity

oY Factors and Programming Environments, Proc. Seventh Int. Conf Software Engr.. Orlando,

N FL, pp. 143-152, 1984.

- (108] C. E. Walston and C. P. Felix, A Method of Programming Measurement and Estimation, /BM
Systems J. 18, 1, pp. 54-73, 1977.

-~

-

. (107] G. Weinberg, The Psychology of Computer Programming, Van Nostrand Rheinhold Co., 1971.

N

: (108] M. Weiser, Programmers Use Slices When Debugging, Communications ACM 25, pp. 446-452,

) July 1982.

- {100f D. M. Weiss and V. R. Basili, Evaluating Software Development by Analysis of Changes: Some

:: Data from the Software Engineering Laboratory, /[EEE Trans. Software Engr. SE-11, 2, pp.

> 157-168, February 1985.

-

< (110] L. Weissman, Psychological Complexity of Computer Programs: An Experimental Methodology.,

2 SIGPLAN Notices 9, 6, pp. 25 - 36, June 1974.

. (111] R. Wolverton, The Cost of Developing Large Scale Software, I[EEE Trans. Computers 23, 6, 1974.

A {112] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, The Effect of Modularization and Comments

- on Program Comprehension, Dept. Com. Sci., Arizona St. Univ., Tempe, AZ, working paper,

- 1981.

. (113] J. C. Zolnowski and D. B. Simmons, Taking the Measure of Program Complexity. Proc. National

N Computer Conference, pp. 329-336, 1981.

<

)

2

32

B N G R S T A T P A O N AN

- W

Flgre 1. Summag of the framework of egerimentation.

I. Definition

Motivation Object Purpose Perspective Domain Scope
Understand | Product Characterize | Developer Programmer Single project
Assess Process Evaluate Modifler Program/project |Multi-project
Manage Model Predict Maintainer Replicated project
Engineer Metric Motivate Project manager Blocked subject-project
Learn Theory Corporate manager
Improve Customer
Validate User
Assure Researcher
II. Planning
Design Criteria Measurement

Experimental designs
Incomplete block

Randomized block
Fractional factorial
Multivariate analysis

Completely randomized

Direct reflections of cost/quality
Cost
Errors
Changes
Reliability
Correctness

Metric definition
Goal-question-metric
Factor-criteria-metric

Metric validation

Data collection
Automatability

Correlation Indirect reflections of cost/quality Form design and test

Factor analysis Data coupling Objective vs. subjective

Regression Information visibility Level of measurement
Statistical models Programmer comprehension Nominal/classificatory
Non-parametric Execution coverage Ordinal/ranking
Sampling Size Interval

Complexity Ratio
III. Operation
Preparation Execution Analysis

Pilot study

Data collection
Data validation

Quantitative vs. qualitative

Preliminary data analysis
Plots and histograms
Model assumptions

Primary data analysis

S Model application
IV. Interpretation
Interpretation context Extrapolation Impact
Statistical framework Sample representativeness Visibility
Study purpose Replication
Field of research Application

;

Figure 2. Study definition example.
s

Definition element example
Motivation To improve the unit testing process,

Purpose characterize and evaluate

Object the processes of functional and structural testing
Perspective from the perspective of the developer

Domain: programmer | as they are applied by experienced programmers
Domain: program to unit-size software

Scope in a blocked subject-project study.

Flgure 3. Exgerimental scopes.

#Teams per #Projects
project
more than one

Single project Multi-project
variation

more than Replicated Blocked
one project subject-project

o AN T) N W e e .

L2 AT ACH

e T A s

RERE

1

-2

DR

