
RD-AS 96 A ESIGN BY EXAMPLE: REGULAR STRUCTURE GENERATORCU) 2
MSSACHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAG OF

ELECTRONICS C S BANJI FEB 85 TR-597 RFOSR-TR-86-8591
7UNCLSSIFIED 1F49620-84-C-04 F/G 9/2 ML

smhhhhhhhhhhh
somhhhmhhhhhu
mhhhhhhhhhhhhl
mhhhhhhhhhhhhl
mhhhhhhhhhhhhl
mhhhhhhhhhhhhl



2.2.

' ' " "''-4

L

L~ - -

.1 .84'

1111.25 111111111 II II.- - J-

MICROCOPY RESOLUTION TEST CHART
NAIONAL 6AREAU OF SrANU0R0 - 1963 A

%% %

',;, - .)-+-<,+--+-..-,- . ++...._.. . %,_ - . ++. . .'::: t:.: ,-; ,......, .. ,



AFOSR.TR. 8A-501

(0 A Design by Example
CV) Regular Structure Generator
00

0 Cyrus S. Barn/i

Technical Report 507

February 1985

Approved f or publitc release;
distribution unlimited. '..*i

Massachusetts Institute of Technology 
h...

Research Laboratory of Electronics
Cambridge, Massachusetts 02139

C) DTIC
ELECTE

CAUG12 1986

a~~~ 4 ' 
.0



UN CLA TTI. , 1 -

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I* REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTIONiAVAILABILITY OF REPORT

Approved for public release;

W 6OECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
aIfapplicable) e-

Mass Int. of Terh A A
6c. ADORESS (City. Stott and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

RLE Contract Reports Building 410
RLCambridge, MAepor3Bolling AFBCambridge, MA 02139 Washington, DC 20332-6448

G. NAME OF FUNDING/SPONSORING 8Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I Applicable)

AFOSR J NE C
SL ADDRESS (City. State mnd ZIP Code) 10. SOURCE OF FUNDING NOS.

Building 410 PROGRAM PROJECT TASK WORK UNITELEMENT NO. NO. NO. NO.
Bolling AFB Washington, DC 20332-644E

11. TITLE (Include Securty Cleamlnltion) 61102F D
"A Design By Example Regular Structure Generator"

12. PERSONAL AUTHOR(S)
Cyrus S. Bamji

13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. DA) lB. PAGE COUNT
507Technicai Reportl FROM TO , Ij BR,@Y 1985 111

10. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (Contfinue on muerar it necemary and Identify by block number)

FIELD GROUP SUS. GR. Delayed binding, Complete decoupling,

Generation, VLSI systems, Macro abstraction.
19. ABSTRACT (Continue on revere if neceseary mid idenify by block number)

This thesis investigates technical issues concerning the automated genera-
tion of highly regularVLSl circuit layouts (e.g. RAMs, PLAs, systolic arrays)
that are crucial to the designability and realizability of large VLSI systems
The key is to determine the most profitable level of abstraction, which is
accomplished by the introduction of true macro abstraction, interface inher-
itence, delayed binding, and the complete decoupling of procedural and graph-
ical design information. These abstraction mechanisms are implemented in the
Regular Structure Generator, an operational layout generator with significant
advantages over first generation layout tools. Its advantages are demonstra-
ted by a pipelined array multiplier layout example. A leaf cell compactor
that can make the RSG technology transportable is also investigated.

2a DISTRISUTION/AVAILABILITV OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UtNCLASSIF IED/UNLIMITED 0 SAME AS RPT. OTIC USERS C UNCLASSIFIED

22& NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Include Area Code)

Lt Col Harry Winsor 202-767-4933 E
DO FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. TIr T.A qRTET rD

SECURITY CLASSIFICATION OF THIS PAGE

.. -.- :.,...-.. , L'v,. ...



AIRFO-S - , rrc EEJE '$H (AFSC)

This t 001h:lc ll r.poi' .'0r ! r'Vie .ed P.d iS

n 1 '~lA F 19)-12.O-  St.ihbt io.- I.S unliite~j
' TTHEW J. eER
Chief, Toch:i,,al Informjtion Divisoa0

A Design by Example
Regular Structure Generator

Cyrus S. Bamji"

Technical Report 507 '

February 1985 i
s..?I

Massachusetts Institute of Technology

Research Laboratory of Electronics
Cambridge, Massachusetts 02139

This work has been supported in part by the U.S. Air Force Office of Scientific Research Contract

F49620*84*C*0004.

DTIC
AUG 1 2 1986

%"

-'S

B ,.,::.oy
'5...,

- *vI *
'S '[ 'V %" \'W * 5,. . ..L.; , ." ' .. ".""/ € , " ': f .*'..S....',.*.

" "..,'$ * ',2 2 ': '.'€ 2* .'":'%?



A DESIGN BY EXAMPLE
REGULAR STRUCTURE GENERATOR

by

Cyrus S. Bamjl i

Submitted to the
Department of Electrical Engineering and Computer Science

on February 28, 1985 in partial filfillment of the requirements
for the degree of Master of Science.

Abstract

Ths thesis investigates technical issues concerning the automated gen-
eration of highly regular VLSI circuit layouts (e.g. RAMs, PLAs, systolic

arrays) that are crucial to the designability and realizability of large VLSI
systems. The key is to determine the most profitable level of abstraction,
which is accomplished by the introduction of true macro abstraction, inter-
face inheritance, delayed binding, and the complete decoupling of procedural

and graphical design information. These abstraction mechanisms are imple-
mented in the Regular Structure Generator, an operational layout generator
with significant advantages over first generation layout tools. Its advantages

are demonstrated by a pipelined array multiplier layout example. A leaf cell
compactor that can make the RSG technology transportable is also investi-
gated.

Thesis Supervisor: Jonathan Allen
Title: Professor of Electrical Engineering and Computer Science

V

%.

t

"qq.% - . . % k % . % . . , * .. 4. % . . . .. *v• .• • .* . -*



1. 

Acknowledgments

I would like to thank Professor Jonathan Allen whose insight and guidance

have helped put this work in the right perspective and have given it the right

direction. It has been my privilege to work with him.

I thank Charles Hauck for substantially contributing to the form as well

as the content of this thesis. I have learned a great deal from our teamwork.

I would like to thank Robert Armstrong, Don Baltus, Paul Bassett and

Steven McCormick for their many ideas and often needed help.

I especially want to thank my parents whose love and support have been

the backbone of my education.

This work was supported by the Air Force Office of Scientific Research,

Air Force Systems Command, USAF, under Contract Number

AFOSR F49620-84-C-0004

-- .

4.

i r

.
.... .. V

. .. p . ., .J . . . .- , . #- .ll ' - . ,* - . , . , .- .* . . ' .- - . ,- - . .- . .- .," - , .- . .- . . ,. , . .- '.4

. . , i "',- " "., , , -. - - . . . . -, - . , -. . .- . - - . . - - , -. - - , . -C- . . .(, , ., . --. ,,.

!'' ," ¢ '-• , '. ,..V.,r ,.'.... 42,'....'. '. ','2£> <. ., '.'. ' ,.,'.. '-'_'.'.',., ,.,,., ,,4,



Contents

1 Introduction 8

1.1 Motivation .. .. .. .. ... .. ... ... .... .. .. ..... 8

1.2 Comparison with other layout generators. .. .. .. .. .... 11

1.2.1 Module generators and Silicon Compilers. .. .. .... 11

1.2.2 RSG as a suiperset of HPLA. .. .. .. .. .. .. .... 13

1.2.3 The description file verses the interface table. .. .. ... 16

1.3 Thesis organization .. .. .. .. .. .. ... .. ... ... ... 17

*~ Interfaces 1

2.1 Cells and Instances .. .. .. .. .. .. ... ... .. ... .. 18

2.2 Interface Definition .. .. .. .. .. .. ... ... .. ... .. 19

2.3 Advantages of uhmn~g interfaces .. .. .. .. .. .. ... .. .. 22

2.4 The Interface Table .. .. . ..... .. .. .. .. .. . .. .... 24

2.5 Interface Inheritance Relations .. .. .. .. ... .. ... .. 25

2.6 An efficient representation for orientations .. .. .. .. .. ... 28

2.6.1 Inverting two orientations .. .. .. .. .. .. .. .. .. 31

2.6.2 Composing two orientations. .. .. .. .. .. ... ... 32

3 The Algorithm 36

3



3.1 Algorithm Overview ....................... 36

3.2 Advantages of the method. .. .. .. .. .. .. ... ... ... 39

3.3 Limitations. .. .. .. .. .. ... ... .. ... ... .. .. 40

3.4 Connectivity Graphs in Greater Detail .. .. .. .. .. .. .. 41

4 The Language 48S

4.1 Interfacing the parameter Wie to the design file. .. .. .. ... 49 .
4.2 Macros and Functions .. .. .. .. .. ... .. ... ... .. 50

4.3 Data Structures .. .. .. .. .. .. ... .. ... .. ... .. 53

4.4 Primitive operators for connectivity graphs. .. .. .. .. ... 55

4.4.1 mk..instance operator. .. .. .. .. .. .. ... .. .. 55

4.4.2 connect operator .. .. .. .. .. .. ... ... .. .. 55

4.4.3 mk..cell operator. .. .. .. .. .. ... ... .. .... 56

*4.5 Implementation .. .. .. .. .. .. ... .. ... ... .. .. 57

5 Example: Pipelined Array Multipliers 62

6 Compaction 71

6.1 Motivation .. .. .. .. ... .. ... ... .. ... .. .... 71

6.2 Defining a cost function. .. .. .. .. .. ... ... .. .... 76

6.3 Constraint Representation. .. .. .. .. .. .. ... ... .. 78

6.4 Experiments in compaction .. .. .. .. .. ... .. ... .. 83 6

6.4.1 Constraint generation. .. .. .. .. .. ... ... ... 84

6.4.2 Solving the Constraint System. .. .. .. .. ... ... 89

6.4.3 Dealing with layer Interaction. .. .. .. .. .. .. .. 91

6.5 Summary and new directions. .. .. .. .. ... .. ... ... 92

7 Conclusion 94

4



Appendices

A BNF Grammar .. . . . . . . . . . . . . 96

B Multiplier Design File......................... 100

C Multiplier Parameter File....................... 103

D Adder Cell Schematic......................... 105

E Adder Cell Layout............................ 107

:5-

5



List of Figures

1.1 RSG Layout Generation. .. .. .... .. .. ..... .. .... 10

1.2 Comparison with other layout generators. .. .. .. .. .. ... 13

2.1 Instance of cell B in cell A. .. .. .. .. .. ... .. ... ... 19

*2.2 Interface between two cells. .. .. .. .. .. ... .. ... ... 21

2.3 Different Interfaces between two cells. .. .. .. .. .. .. ... 25

2.4 Interface Inheritance. .. .. .. .. .. ... ... .. ... .. 26

2.5 Coordinate mapping for the 4 basic rotations .. .. .. .. ... 35

3.1 RSG algorithm. .. .. .. .. ... .. ... ... .. ... ... 37

3.2 Graph and Layout Equivalents .. .. .. .. ... .. ... ... 37

3.3 Graph Connectivity Requirements. .. .. .. .. ... .. ... 39

3.4 Different routing configurations. .. .. .. .. .. ... ..... 41

3.5 Interface ambiguity in undirected graphs. .. .. .. .. .. ... 43

3.6 Layout ambiguity for undirected Graph. .. .. .. .. .. .... 45

3.7 Resolving layout ambiguity with a directed graph. .. .. .... 46

4.1 Environment lookup. .. .. .. .. .. .. .. ... ... .. .. 51

4.2 Celldefinition Data Structure. .. .. .. .. .. .. ... .. .. 53

4.3 Instance Data Structure. .. .. .. .. .. .. .. ... .. .... 54

6



4.4 Node Data Structure. .. .. .. .. ... .. ... ... .. ... 54

4.5 mk-Instance operator. .. .. .. .. ... .. ... .. ..... 56

4.6 connect operator. .. .. .. .. .. ... ... .. ... ..... 57

4.7 mnk.cell operator. .. .. .. .. ... .. ... ... .. ..... 58

5.1 Combinational Baugh-Wooley Multiplier. .. .. .. .. ..... 63

5.2 (a) Bit-Systolic Multiplier; (b) Pipelined Multiplier. .. .. .. 64

5.3 Multiplier Cell Maskings .. .. .. .. .. ... ... .. ..... 66

5.4 Design File for a Systolic Multiplier .. .. .. ... .. ..... 68

5.5 Layout File for a Systolic Multiplier .. .. .. ... .. ..... 69

5.6 Bit-Systolic Multiplier Layout .. .. .. .. .. ... ... .... 70

6.1 Defining a cost function. .. .. .. .. .. ... .. ... .. ... 77

6.2 Tradeoff between pitches .. .. .. .. .. ... ... .. ..... 79

6.3 Constraint representation. .. .. .. .. .. ... .. ... .... 82

6.4 Constraint for hidden edges .. .. .. .. ... ... .. ..... 86

6.5 Fragmented Layout .. .. .. .. .. ... ... .. ... ..... 86
6.6 Constraint between partially hidden edge .. .. .. .. ..... 88

6.7 Correct scan line method .. .. .. ... ... .. ... .. ... 89

6.8 Worsening of a layout Jog. .. .. .. .. ... ... .. ..... 90

6.9 Contact layer Expanded .. .. .. .. ... .. ... ... .... 92

47



Chapter 1

Introduction

* 1.1 Motivation

Circuit designs with highly regular and repetitive layouts are an effec-

tive solution to the VLSI design bottleneck, and therefore occur quite often

in large VLSI systems. Familiar examples of regular circuit structures are

R"A3, ROMs, PLAs, and array multipliers. In addition, recognition of the

importance of regularity in VLSI systems has given rise to a large and con-

tinually growing collection of new regular structures for applications in signal

processing, image processing, data structures, and CAD, to name a few. Since

these designs are computationally powerful and widely applicable, there is a

preat demand for circuit design tools that make these structures generally ac-

cessible. This thesis describes a CAD tool, the Regular Structure Generator

(RSG), that helps meet this demand by performing automatic generation of

regular structure layouts and providing the means to efficiently capture, in

all their richness and variety, most practical regular circuit designs.

Despite the uniform and repetitive appearance of their layouts, effective

8

A)~ ~~ ~~e P ? 1. ~ *-



regular structure circuits are not simply bland arrays of identical, abutting

cells. In practice, there is always some degree of complexity along the edges of

a regular array, and each design instance must be parametrically personalized

with respect to problem size and functionality. This requires the placement of

a variety of cell maskings that implement such options as transistor and bus

sizing, cell interfacing, clock assignment, and functional encoding - a task

which cannot be accomplished by the simple array generating commands

found in graphics editors. Although regularity does permit most regular

* structures to be personalized in an algorithmic manner, a* high degree of

flexibility is still required in the placement and orientation of the cells and

cell maskings. Insofar as first generation VLSI layout tools lack this high

* degree of flexibility, there is an opportunity for developing more advanced

module generators that fulfill this need.

The RSG was developed with this approach to regular circuit layout in

mind. The input language used for the procedural specification of circuit

architecture is a subset of Lisp. Consequently, abstraction mechanisms are

* available to support a highly functional set of primitives for defining regular

structures and evaluating the complex conditionals required by personaliza-

* tion and edge effects. Personalization is further supported by the ability to

arbitrarily place and orient cells according to interfaces defined- by- exam ple

in the graphical domain. All design information is efficiently partitioned into

procedural and graphical form.

A circuit layout is generated from the following inputs (Figure 1.1): a

design file, which is a parameterized, procedural description of the archi-.

tecture; a layou~t file, which is a graphical specification of cell layouts and

interfaces, and a parameter file, which provides the size and functional speci-

9



Layout GFile

inlel s o ie

Lefc ciayout g

FiT e .s : RSG Layout Generation c

fications for the particular case. By completely decoupling the graphical and

procedural domains, a level of modularity is obtained which achieves local

efficiency in layout generation, and global e fciency in the management of

new architectures, layouts, and interfaces to other CAD too .
The lRSG also supports macro ,abtraction, i.e. the specification of macro- ".

cells as interconnections of smaller cells whose binding to actual layouts can :.

As a result, macrocells can be used to specify even more complex cells in an

entirely procedural manner with no need for additional layout.

At this stage of the discussion, all of the RSG's functionality appears to

exist in other layout generators. For instance, procedural specification of

circuit layouts is as old as silicon compilation itself, and essentially defines it.

The novelty of the RSG is not its use of procedural specification, but rather I

10V



471.

the level of abstraction at which it is used. Failure to choose an optimal

level of abstraction complicates the user interface, and forces the designer

to concentrate as much on the internal constraints of the generator as on :.

the functionality of the circuit being designed. Examples of this are layout

generators that require placement of cells by strict abutment, or that do not

support true hierarchical macro abstraction.

The significant contribution of the RSG is efficiency, not computability,

of design. That is, the RSG does not produce any circuit layouts which,

given unlimited effort, could not be produced by other layout generators.

The result of this efficiency, however, is a tool that performs well in practice,

not just in principle, in a realistic VLSI design setting.

h.o

1.2 Comparison with other layout generators

1.2.1 Module generators and Silicon Compilers
4'

Specialized VLSI module generators produce layouts of a particular ar-

chitecture to implement a specific logic function such as PLAs, ROMs, or .4.

Weinberger arrays. These module generators produce layouts of a specific

style of implementation in a specific technology. For example a PLA gener-

ator might generate PLA's with a standard NOR/NOR architecture, imple-

mented with CMOS precharged gates. Such specialized module generators

are capable of generating highly optimized layouts within the restricted class

they are designed for. This is because these generators can incorporate spe-

cific knowledge about the details of their particular implementation. For
iwl

instance a PLA generator which incorporates knowledge about the particu-

4- 4



lax process technology and type of circuitry used can be made to size power

busses and transistors according to some speed and power criteria. The dis-

advantage of these specialized module generators is that their scope is limited

to the applicability of the specific function they implement and to the specific

process technology they use. Other module generators such as HPLA also

generate a single architecture but allow freedom in the implementation and

choice of technology. All of these module generators take as their input a

configuration specification (in the case of a PLA this would be the number

of inputs, outputs, product terms and the truth table) and not a high level

functional specification, or an architecture specification because functionality

of the output layout is implicit in the single architecture they implement.

Silicon compilers start with a functional specification as their input. How-

ever current silicon compilers are not capable of determining and implement-

ing the optimal architecture for a given functional specification and tech-

nology. These programs use a single canonical architecture into which most

functional specifications can be compiled to implement all functional specifi-

cations. Their success depends on how well the canonical architecture they

* use is suited to the functional specification at hand. Macpittst29l uses a data

path implemented with registers, adders, and shifters, and a control path

* implemented with a Weinberger array as the canonical architecture. While

such an architecture may be suited for some applications it clearly is not

suited for applications in signal processing which require an efficient imple-

mentation for multiplications. Hence even if the program succeeds in keeping

the transistor density high by packing a lot of circuitry in a small area, the

functional density measured by how much silicon it takes to implement a

* given functionality is low. This is due to the inappropriate implementation

12



Generality Efficiency

1 Canonical Multiple 1 1 Architecture

Architecture Architectures per Function

1Framework
* Macpitts R RSG * HPLA[6]

" Bristle blocks(14 " Multiplier Gen.[5

" F.P. ALU Gen.[4]

Figure 1.2: Comparison with other layout generators.

architecture where many more transistors are required than would be the

case with a suitable architecture. Early versions of Macpitt. required about

5 times the area than would be the case for layouts generated by hand.

Unlike specialized module generators and today's silicon compilers the

RSG can generate many different architectures with just one framework. By

matching the architecture to the functionality a level of generality greater

than that of specialized generators can be achieved without the loss of effi-

ciency incurred in current silicon compilers by a mismatched target architec-

ture. Another big difference between silicon compilers and the RSG is that

silicon compilers start with a function description of the problem whereas the

RSG starts with user-defined primitive cells and cell connectivity information

(as shown in Figure 1.1). Figure 1.2 shows how the RSG is moving toward

greater generality than specialized compilers without the loss of efficiency

incurred in todays silicon compilers.

1.2.2 RSG as a superset of HPLA

The RSG expands the scope of HPLA by allowing many different archi- ,

13

"2 Z Z" Z"' " " " " ' " " " ' " " . . . . . . " . - , - . . - . -. . . . . . . . . . . . ." . " - " - . ' . " - " ., ! "



tectures to be generated with the same benefits as in the case of HPLA, but

with just one framework. Though many of the features of the RSG can be

explained and justified independently of HPLA, HPLA ideas have inspired

and motivated the design of the ESG. HPLA does not support many of the

key features of the RSG such as macro abstraction, inheritance and macro

cell abstraction. Also the algorithms and software techniques used in the
,.

RSG are totally different from those used in HPLA. HPLA uses a cell reloca-

tion scheme whereas the RSG uses interfaces and an interface table. However

both the RSG and HPLA use the idea that adjacent (primitive) cells in the

final layout interface in the same way as they do in the sample layout. Hence

in both programs the (primitive) cell definitions and spacing parameters are V

extracted from a sample layout.

In HPLA the sample layout was an actual assembled PLA and hence had

the same architecture as the final layout. This constraint that the sample

layout be a fully assembled PLA is actually superfluous. Using the same

methods as those used in HPLA (i.e. relocation) it is possible to achieve the

same results from a sample layout consisting of the PLA cells with the only

other constraint being that all possible interfaces that might occur in the

final layout be present in the sample layout. The fact that the sample layout

was a two input, two output, two product term PLA was simply a way to

ensure that all the required cells and interfaces between them be present in
the sample layout because the architectural specification for PLAs is already.-

hard coded in the HPLA program itself and is not extracted from the sample IV

layout.

In the RSG this constraint is relaxed. This not only reduces the size and

complexity of the sample layout, but it also allows the same sample layout

14

p
I



V

to be used in output layouts of various different architectures because the

implicit architecture always present in the sample layout does not constrain

the architecture of the final layout. The sample layout in HPLA was actually

larger than necessary and contained redundant information. For example

the sample layout for HPLA contained 2 (identical) instances of the and-sq

connect-ao interface when only one was required. In so doing it increased

the number of instances of and-sq and connect-ao making the sample layout

larger than necessary. The cells in many PLA sample layouts can also be used

to generate other layouts besides PLAs such as decoders and multiplexors

(decoders can be built from an AND plane with appropriate output buffers).

Hence requiring that the sample layout look like the finished product is not

only an unnecessary restriction it also reduces the scope within which any

given sample layout may be used.

The method (relocation) HPLA uses to generate new cels does not eas-

ily lend itself to cell hierarchy. This did not matter in HPLA because the

architecture that HPLA generates (i.e. the architecture for standard PLAs) " *-i

does not make use of cell hierarchy. Making use of cell hierarchy entails gen-

erating a macro cell from the primitive cells in the sample layout replicated

according to some parameter, and then calling the new macro cell in an even

higher order cell several times according to some other parameter. In the

relocation scheme the cell definitions for subcells of a higher order cell are

actually modified to suit the needs of the calling cell. This worked fine in

HPLA because there was only one calling cell, i.e. the complete layout of the

PLA. In a scheme which uses hierarchy there may be many higher order cells

(which can possibly be called in even higher order cells), that call the same

subcell. Each of these cells may request that the called subcell be modified in

%r. ' '- . ' ' ".' ' -.-
. 

, ,P W*" " '. ""'*'" .- .°."".'o .- '. * .- " '. -- -. .".-.. -. .* -, .- . . . i, . • - 7-'

', ' ,',, , ,,., , ,,,'.<.. .-,.',.,',._ ,'. ,. ,,,....., ..... . :.-.:.'. ; ,.- . . . .15. ,,,
- - - -- ' m - m- lo

o
|" - " " ' ' "*= T ' ',-"," ' ' ',' ' ' ' ' q ~ 'V



w-- W.W -- A x. -c- X

some particular fashion to suit its specific needs. These modification requests

can be conflicting. One way to solve the problem would be to create a copy of

the subcell for each of the calling cells. Hence each calling cell can modify its

copy of the subcell without conflicting with the modifications requested by

the other calling cells. The RSG however uses a simpler and more powerful

technique where this problem does not occur.

1.2.3 The description file verses the interface table.

Before HPLA can make a PLA from a sample layout it must first compile

the sample into a special file called the description file. This description file

contains the definition of all the. key cells where the cell definitions have been

modified as prescribed by the relocation scherue. It also contains the spacing

parameters (pitches) for the various cells. In HPLA, for the users convenience,

the process of making a PLA is divided into three parts each of which occur

at different times in the design cycle. This division of the generation process

allows delayed binding of the specifics of the PLA encoding until after the

PLA is fully installed into the rest of a layout. The description file is accessed

at each of these three phases, hence it makes sense to create the description

file just once and refer to it in each of the three phases of the PLA design.

In the case of the RSG the data structure corresponding to the description

file would be the interface table. However since the RSG produces the whole

layout all at once, it does not make sense to store the data structure into a

file and load it back immediately into the workspace and use it during just

one session. Therefore no temporary file is created.

The R.SG can generate any PLA that HPLA can. It can also generate

16

n

... .o...... o . o° • •..-.-, .o... ... .... ,.. ... .•.... .o _

,. .,.'.-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-.,t. . . . . . . . . . ..",- - •".. P " " ' " r . -" "- " " " , "" •: " -":



more complex PLAs such as PLAs with folded rows or columns. However

in HPLA the division of the generation process into three parts facilitates

recoding the PLA (or postponing its encoding) and speeds up the plotting of

the chip by leaving out the PLA's crosspoints until required, making HPLA

a little more convenient to use.

1.3 Thesis organization

* Chapter 2 lays down the mathematical foundations of interfaces, the

method the RSG uses for local placement constraints.

* Chapter 3 gives the overall RSG algorithm.

* Chapter 4 Describes the Language for specifying design files and de-

scribes in more detail the specifics of the underlying data structures.

" Chapter 5 Describes the design of a class of pipelined multipliers using

the RSG.

" Chapter 6 Is concerned with issues relating to building a special type

of compactor for use with the RSG.

Each chapter is organized so that the first Sections lay down the concept and

the foundations of the method and the last sections go into the details of

some important facet of the problem.

17
', -- # -- i .*_-, ,- ". .,' #" .. " , _, - .' . . ,,'',-' ' ", ": . \ - -" --. ".- ',. -.- . .-. .- '.. '- '- -. .'- '.,. ' -, ". . "" ''-. ." • -.

° - . u t t d r r !' %' ' " " "/ ' ' " '' '#' " t" '' .'d " - "--'' ' -- " " -°'-.



Chapter 2

Interfaces

2.1 Cells and Instances

The RSG requires user-defined cells to hierarchically build larger cells. A

cell A consists of objects whose locations in the cell are defined in terms of

a local coordinate system C. with origin S.. The objects in A can be boxes

of various layers, points, and instances of other cells. An instance of a cell

Bis the triplet (L'P, 0", (cell definition)) where L" is the point of call of
.(cel defnitin) i

* ~~the cell B, 0' is the orientation in the call of B and (eldfnto)i

pointer to the cell definition of B (the superscript ' means that the location

or orientation is relative to a calling coordinate system). The effect of having

an instance of B in A with point of call L" and orientation 0" is that of .

performing the isometry' 0' on B (0' is an isometry that leaves 3b, the

origin of the coordinate system within B unchanged), placing the origin S'

of B at location L" within the coordinate system of A, and finally adding to

'An Iisometry is either a rotation or a reflection.



4:4

I

B Sb

South Ob

A the collection of objects in B (see Figure 2.1).

2.2 Interface Definition

A key notion in the RSG is the interface. If instances of cells A and B

(the cells A and B do not necessarily have to be distinct) are to be called

within the same coordinate system, then cells A and B have an interface

between them. The interface between two cells A and B is the ordered pair

Ij = (V., O) (I.b 0 b.) where V. is the interface vector and Ob is the

interface orientation. Vb is the vector whose starting point is the point of

call of A and whose endpoint is the point of call of B, if the instance of A is

held at orientation north (identity transform). 0.6 is the orientation that B

would have if the instance of A were held at orientation north.

Treating the orientations as operators with "o" being the operator com-

19

* ,','. -'.4.-. -. _. :: °. .-.-. . ..-.. - .'. .... .. . .-..... . -. .-.- ,-.. - ., ... . . . . . . '



position rule we have2:

= o (2.1)

0 - L() 2.2) "

The interface vector Vd and interface orientation Ob are obtained by

deskewing the relative orientation of B i.e. O and the vector (Lr - La) by

the inverse orientation of A (Or)-.

Figure 2.2(a) shows an instance of A and an instance of B called together

in a same higher order cell (characterized in the Figure 2.2(a) by it's coordi-

nate system (0, i, f)). The point of call Lr (respectively L,) of A (respectively

B) is the location where the origin of A (respectively B) is placed in the call-

ing coordinate system (0, i, j). In order to obtain the interface Idb between A

and B we must first perform an isometry on the calling ccl (the one with the

(0,i,j) coordinate system in Figure 2.2(b)) such that the new orientation

for the instance of A will be North. Since A is initially oriented South the

calling cell must be reoriented by South-' South (because 180 = -180*)

so that A will ultimately be oriented North. Figure 2.2(b) shows the result

of the transformation of the calling cell. The interface vector is now the vec-

tor whose starting point is at the new point of call A and whose endpoint

is at the new point of call of B. The coordinates of the interface vector are

computed in terms of the new basis (i', j') which is the same as the old basis

(i, j) of the calling cell before the transformation was performed. The inter-

face orientation is now the the new orientation of B after the transformation

was performed.

The existence of an Iab interface between A and B automatically gives

20-1 i3 defined by O o 0 =0 o 0- dentity.

20

,.'. " ". ", " - ", -. "."• " : . .". ', . " ". :' - .". " . ,' -,." " " "- " " - ,-" ,- "_v ,, " -



A south

8 East Sr

bS

(a)

* -12

0 a South

* 0 ..

*.S..V4

* Vlainterfaco vector

ws,ainterfacs orientation 4

A north

0 i'

Fig e 2.2: Interface between two cells.

21

INA.' . . . . . . . . . . .



.4.

rise to an interface Ib between B and A. The expression for the Ib. interface

can be obtained from equations 2.1 and 2.2.

Ob, = 0- O0. .

= (01 o Ob) -  (2.3)

= O =-L6

= (o; o (o 0 o;'))(L. -Lb)

= (COb' o (0) O) '))(L -Lb)

= (Ob. o o0')(L., - Lb) (2.4)

= (0- o o0;)(L. - b)

-- '(o;'(L -L.))
= -Oab-V b

Therefore b = (Vb, Ob.) = (-0'Va, 0-).

2.3 Advantages of using interfaces

Interfaces are a natural way of defining the relative placement and orien-

tation between instances of cells. Hence knowing the callig information of

a cell A in a cell C and knowing the interface between A and B it is pos-

sible to determine the calling information of B in C. The RSG allows the

user to specify the primitive cells and interfaces between them graphically,

by providing a layout file which will henceforth be referred to as the sample

layout. The sample layout contains the definitions of all primitive cells as

well as interfaces between them. An interface between cells A and B can be
44*

defined by calling A and B together in a higher order cell C with the appro-

22
.4.

i. .4.4.4- .** * .... .. ., r....,.L.. .-.-. ..-..-....-..... ... . ..--....-....... ,-,.. ,..



4Y7,- .P.q nI r

priate relative placement and orientation between them. In practice when

new cells are created by the layout designer they are assembled together in

order to verify that the different new cells that have been designed, do in

fact interface properly to each other. The simple fact of assembling the cells

together requires calling them both in one cell (same coordinate system) and

therefore automatically defines an interface between them. Hence interfaces .-

can be designed at almost no extra cost to the designer.

By virtue of the design- by- example feature of the RSG, the relative place-.

ment of neighboring cells in the ainal layout is such that each' interf ace in the

final layout is an instance of an interf ace in the sample layout.

Since the relative placement of cells in the final layout is performed using

:nterface., between cells and not by using the sizes and shapes of the bounding

boxes of those cells, the cells can be designed according to their functional

boundary constraints and without regard to abutment constraints. Not only

does this make cells easier to design and design rule check (because instances

of cells can overlap, each cell can be made design rule correct3 ), the fact that

cells are not cut at artificial boundaries helps reduce the proliferation of cells

of essentially the same functionality but different abutment constraints. Us-

ing interfaces also allows cells to be easily encoded by superimposing several

cells in order to modify the functionality of a basic cell. This too helps in

reducing the proliferation of different cell types since the number of different

* encoding configurations is roughly exponential in the number of independent

* encoding decisions.

Cell encoding can also simplif the personalization process since instead

of combining all the encoding decisions together to select a single cell of the

'Somne hierarchical design nr- ceckers require that instances do not overlap. 4

23

PwN



appropriate type we can use each independent encoding decision to perform

a simple encoding masking of one basic cell. An encoding cell may lie well

within the bounding box of the cell it encodes and hence placement by abut-

ment would be cumbersome since it would cause a proliferation of (spacing)

cells that have nothing to do with functionality. By simply specifying an

interface the relative orientation of the cells as well as whether the cells are

side by side, one on top of the other, or one inside the other, is handled

automatically.

2.4 The Interface Table

The RSG program maintains an interface table of all legal (user specified)

interface. between cells. This table is first initialized with interfaces from the

sample layout and can be augmented as new cells axe created by the system.

Since there can be several different legal interfaces between two cells there

can be a family of legal interfaces between two cells A and B. Figure 2.3

shows two different possible interfaces for a pair of cells A, B.

If the set of legal interfaces between any two cells is indexed over the

integers then the interface table can be described as a mapping from triplets:

((cellname1), (celiname2), (interface index number)) (2.5)

to interfaces:

((interface vector), (interface orientation)) (2.6)

If I" is an interface in the interface table, then Ij., the corresponding interface

between B and A, is also loaded in the interface table. Hence knowing the

24



VI. interface vector

Interface#l west-interface orientation

A• nort.h

B south VWeinterface vector

southainterface orientation

Interface#2 V2

A north

Figure 2.3: Different Interfaces between two cells.

placement of A one can determine the placement of B and vice versa. This

bilaterality of the interface table is very important. We will see in section 3.4

that it may not be possible to determine in advance which of the two instances A

A or B has a known placement and which one will have its placement derived

from the other.

2.5 Interface Inheritance Relations

In order for any cell to be used in the RSG it must have an interface with

some other cell, otherwise there is no way to place it. When new cells are

built up hierarchically by the system, in order to take full advantage of cell

hierarchy, interfaces for new cells can be specified in terms of existing ones.

In this way cells built up by the system can be used to build even larger cells

25

5.,-

5--



S.

Icd ,
noww

C
Iab.

existing

Figure 2.4: Interface Inheritance

in exactly the same fashion as were the primitive cells of the sample layout.

If A (respectively B) is a subcell of a new cell C (respectively D), it is

then possible to define a new interface I, between C and D in terms of

an existing interface Ib between A and B. I, is the interface that C and

D would inherit if the subcells A and B within C and D were placed and

oriented with interface Ia (see Figure 2.4). The RSG allows the user to

define a new interface (and load it into the interface table) by specifying

the two cells C and D, the instances of A and B in C and D, the interface
b4

number of the interface between A and B and an interface number for the

newly defined interface between C and D.

The rest of this section is concerned with finding an algebraic expression

for the interface vector and interface orientation of the new interface I

between C and D in terms of the existing interface Ib between A and B and

the calling parameters of the instances of A and B in C and D. Let" (L, O),

(respectively (L'd, Obd)) the calling information of A (respectively B) in C

(respectively D) and (V.b, Oab) (respectively (Vd, Od)) be the interface vector

'The superscripts (respectively 'd) mean that the locations and orientations are relative

to the coordinate system of C (respectively D).

26

..................................................



and interface orientation of Iob (respectively Id). Also let L' (respectively

L;,L',L;) be the location of the origin of A (respectively B,C,D) in the

implicit calling coordinate system (i.e. as they appear in Figure 2.4) and

let 0. (respectively Or, 0", 0") be the orientation of A (respectively B, C, D)

in the implicit calling coordinate system (which can be for argument sake

considered to be the absolute coordinate system) then:

and

0 = + (2.17)

Replacing 2.7 and 2.9 in 2.1 we get: '"

.

= (o+) - 2. o8

and

= (o. o9))- 0 O O

C a~ +OLd (210

Ooo(Or)-I = (or O )-1or

or 0 o o (Ord ) - 1 = (or) - oa or
= O)OLd

So
f.,'A%

Ocd = 0 o 0° (o 0') -  (2.11)

Replacing equations 2.8 and 2.10 in equation 2.2 we get:

27

%N
I.f

"° "-'" "" " -' "' " ' "' -' """" " " "° " " " "" " ~' " " " " " " " " "" "" "" -' " -% ," ." '," J """" % .- % "% "."- % % "" "' '" ' %"" "N" .ft



•_Vb (0'1 (L' :))

= (o)- [L + OlLrb - - O'")

-L - LT = OVa - O'Llb + OL"

(o0)-(L- L') = ((o;)-'o o)Va- ((O)-' o o )L"+ (O)-, o (OoL.)

Using equations 2.2 and 2.1 with different subscripts, equation 2.7 and

the previous result we get:

vd = (O)-'(LLdJ)
; ((oQ)-' o o)V-((o;)-' o Od)L" + ((o;)-l od)L:' (2.12)

- o:eva - (O;)-Lrb + Lr.

2.6 An efficient representation for orientations

Whereas interface vectors can be straightforwardly represented by a pair

* of real numbers, orientations require a slightly more complex data structure.

The purpose of this section is to find an efficient representation for orien-

tations in terms of memory, computation and ease of manipulation. Recall

from Section 2.1 that calling an instance of B in A consists of performing an

affne isometry to the objects in B and then adding the collection of objects

in B to A. A layout editor needs to be able to perform affine isometries on

the various cells. If A is called in a cell B which is in turn called in a higher

order cell C then two affine isometries get applied to the objects in A. The

first isometry I, corresponds to the calling parameters of A in B and the

second isometry 12 corresponds to the calling parameters of B in C. For an

object 06 in A the corresponding component in C would be 12(I(Ob)). I, is

first performed on Ob and then 12 is performed on the resulting object.

Another way to perform isometry composition is to first compose the

two operators and then apply the resulting operator to the object. Since

28

''.

-. .- * *. *.



42(11(Ob)) = (12 o I1)(Ob) it is possible to first compute (12 o I,) and then

apply this new transformation to Ob. This method of first computing the

resulting isometry and then applying it to the object can be computationally

more efficient as the resulting isometry is computed only once and hence

effort is not duplicated over the various objects on which this transformation

is to be performed.

In layout editors the preferred way of composing operators could be

12(1, (Ob)) because this method is easier to implement 5. If there is already a
method for performing isometry on objects then, since the result of applying

an isometry to an object is an object of the same type no extra mechanism

is needed to successively perform several isometrics on the object. In the
case where only a finite set of legal isometries are implemented this method

can lead to more efficient methods for applying single isometrics to objects.

For example one could index the set of available isometries over the integers.

In that case, in order to apply a isometry known by its index number to a

given object, one could use the index number to lookup a table of procedures

(there is one procedure per isometry) to get the procedure that implements

that particular isometry and then apply it to the object6 . This method elim-
inates the interpretive overhead associated with the decoding of the isometry

representation. For example isometries can be represented as matrices, and
a program that can apply any matrix transform to an object would be slower

than one that performs an unique fixed linear operation. However this in-

dexed representation does not lend itself to symbolic composition. If the
number of implemented indexes is n then (assuming that the set of imple-

5However HPEDIT uses the 12 o 41 method.eHPEDIT umes this method.

29
%!

U

. . .,- -. . . ... .;,"-"-'." -. -..-... ....... . .......-... .. .. .... .- '-. .. '. " . . . .- - - -[ d[2 ~~~~ ~~~... ,,. .,,,e ,.. . . , . . , , . .. -, . . , '-e -' -. .],. -" ."" "." '" - "" ''" ' "
'



mented isometries is closed under isometry composition rules) knowing the

index of 12 and the index of It in order to compute the index of (12 o I,) a

mapping table from n * n to n integers is required. Another table from n to

n integers is also required to invert the isometries (assuming the set is closed

under inversion). Hence this method becomes cumbersome in the case where

there is a large number of implemented isometries. It also requires a large

number of procedures; one for each implemented isometry.
.,J.

In the RSG at times it is necessary to obtain expressions for new trans-

formations and therefore operations for symbolic composition and inversion

of transformations are required. Recall equations 2.11 and 2.12 from Sec-

tion 2.5. In order to compute the new inherited interface vector and interface

orientation, we need to obtain expressions for the composition and inversion

of orientations. It is therefore necessary to hav-e a representation for orienta-

tions that allows them to be easily applied as operators and also allows them

to be easily composed and inverted.

One possible way to implement all orientations is to use 2 * 2 matrices of

real numbers. 2 * 2 matrices of real numbers can however represent all the

different linear transformations in the vectorial plane out of which isometries

(which are orientations) are only a very small subset. As a result they require

storage and manipulation of much more information than is needed. Matrix

composition and inversions are also relatively costly computationally.

There are more compact representations for orientations. We can rep-

resent all the vectorial rotations in the plane with a real number between

[0, 2r r. The rotation can be expressed by the complex number e' where j

belongs to 10, 27r[ and i2 = -1. Orientations are either rotations about the

origin or reflections about an axis passing through the origin. All the reflec-

30

" ." . -..................



tions about an axis passing though the origin can, however, be generated by

composing the reflection about the y axis (or any other axis passing though

the origin) with a rotation about the origin. If M is the interval [0, 2[r( and

B is the set of Booleans, it is then possible to represent an orientation by the

pair (j", k) E M * B where j represents the rotation, and k indicates whether

or not a rotation about the y ais is to be performed before the rotation (the

composition of rotations and reflections is not commutative). If + (respec-

tively -) is the induced addition (respectively subtraction) modulo 27r from

M to M and if R is the rotation about the y axis. Than any orientation can

' be written as: e" o R where (j,k) •M*B and i =-1.

2.6.1 Inverting two orientations.

Let 0 = e o R k  ,

and 0 - ' = e'j' o Rk'

eIf k = 1, then 0 is a reflection. Therefore 0 o 0 1 where r is the

Identity transform and hence

0-1=0 :

= o M (2.13)

so j =?j' and k =l

e If k = 0, then 0 is a rotation and hence

0-1 -eii

-1 (2.14)

ei(-D)

, ,o j' = -j and k = k'

31

s-



Hence If k =1 then j =j', k' k k otherwise j -j', le = k

2.6.2 Composing two orientations

Let
01 = eijd o R kh

02 = C 2 0 R kh (2.15)

0 = 02001

= ei oRk

Then
0 = [e'3, o Rh)0 (ij 0 ,) (2.1)

= ei4 o (Rk3 0 eiji) 0 R k

because of the associativity of linear operators.

* .*If k2 =1 then

R a e'jI is a reflection and hence (Rh: o e'3') o (Rh: o e'") = I therefore

Rh: 0 aie = (Rk3 0 elu)-"'

= (';')-' 0 ~)~R)1 (2.17)
= e(-0)oR"

(ei-(,)) o (R,)

because Rk, is a reflection (or identity) and e'3 is a rotation.

therefore

0 = eih 0 (Rh: o eij )oRh"

= e6 o (ej'-) 0 (Rh:)) o Rh. k:

= (eh 0 ei(- )) o (Rk' o R k') (2.18)

= e'(',-,,')0 (RoO ') l

32



M..'

where e is the XOR operator.

hence j = j2 - j, and k =

* If k2 = 0 then

0 = e i 2 o (R ) o R"

= C4 (eil) o Rk (2.19)
= 0eiiole') o Rk

- u +j2 0 Rb,

hence j=j2+ ji and k =kl

So Hence If k2 = 1 then j = j2 - jl, k = T, otherwise =j1 + 2, k = ki

We have seen that we can represent an arbitrary orientation (isometry) by

the pair (j, k) E M * B and .using the associativity of linear operators we can

compute any expression involving composition and inversion of orientations.

It is computationally expensive however to apply an operator represented in

this form to actual objects, because a sin an a cos must be computed. Due

to numerical inaccuracies an object (say a box) with vertical and horizontal

edges can be transformed by a quarter turn rotation into a object whose edges

are not precisely aligned with the axis. Adding and subtracting elements of

M can also lead to numerical inaccuracy as elements of M are represented in

the computer by real numbers and a modulo 2w operation has to be performed

on the result of every real addition (or subtraction) to ensure that the result

is an element of M.

In the RSG the choice therefore was made not to support arbitrary ro-

tations and reflections. Most VLSI circuit layouts are built using boxes of

various layers where the boundaries of the boxes are vertical or horizontal
'a%

lines i.e. parallel to one of the coordinate axis. Hence in most cases it is

33

........



3w 
-%W M MW 39 "% 'I' I " 

~ ~ ~ .W N N ~ . ~ ~ U. -

sufficient to support all orientations that transform vertical and horizontal

lines into vertical and horizontal lines.

The four multiples of the quarter turn rotation are the only rotations that

have this property. The only reflections that can have this property are those

that transform vertical edges into vertical dges and horizontal edges into

horizontal edges which are the two reflections about the axis. And reflections

that transform vertical edges into horizontal edges and vice versa which are

the reflections about 45 degree lines passing through the origin. These 4

reflections can be generated by first reflecting about the y axis and then

applying one of the four quarter turn rotations.?

Just as arbitrary orientations can be represented by an element of M * B,

these eight basic orientations can be represented by z, an element of jZ

={0, 1,2, 3)), and a boolean k, hence by an element of *B. This

would correspond to the orientation eiiz o R* in the previous notation. Using .1

the induced addition and subtraction on -L the miles for composing and

inverting orientations are the same as previously described using the M * B

representation. Orientations can now easily be applied to vectors and boxes

since performing a reflection about the y axis corresponds to changing the x

coordinate of an object to -x. The four quarter turn rotations require only

permutations and negations of the two coordinates. For instance the one

quarter turn rotation maps the x coordinate into the y coordinate and the

y coordinate into the -x coordinate. The Figure 2.5 shows the mapping of

coordinates for each of the four basic rotations.

?these are the 8 orientations also suipported by HPEDIT.

34



kI-

4'-

"4.3

Orientation x coordinate y coordinate

North x y

South -Z - 4.

East y-Z

West -z y

Figure 2.5: Coordinate mapping for the 4 basic rotations

354"

j ",.'

'p.'

'

35. .

4.
" . , . . . - . - . . . . . . . . .. . . . . . ., . . . . ., , ,'.'
", " ,, ' -." ".' "-" ..' -." - -., -. ... ,,,' V , -' " -, '-. ... '-' .- ' '-'. .'. - '. - . '. " "" " " " -" -" ' -'- " :' ': '" '-' '-' '-" .'- :' - :'-" ,'. ' " - -'- -'- ". • " -" --- .'" " - S.'"



n0- -P

Chapter 3 N.

..

The Algorithm

3.1 Algorithm Overview

The RSG algorithm (see Figure 3.1) consists of first reading in the sample

layout in order to define the primitive cells and build up the initial interface

table. ""

New cells are then created in a two step sub-algorithm. The fist step in Y

the sub-algorithm consists of building a connectivity graph for the new cell.

The connectivity graph for the new cell is a graph whose vertices represent

partial instances whose cell type is known but whose location and orientation

are as yet unspecified.

The edges between vertices represent interface. between instances and the

weights assigned to them are the interface indez numbers. The connectivity

graph need only be a spanning tree since cycles L the graph contain redundant

information. For a given sample layout, each connectivity graph gives rise

to a unique layout (see Figure 3.2). Interfaces provide the local placement ""

constraints between (two) cells. The connectivity graph provides information

36

V9%

.4-.- -. -.- - - - - -



Initialize Interface Table

C rest# Connectivity Graph

Expad aph to Layou

Defin nowInteface

(if reuired

Figure 3.1: RSG algorithm

about the global placement of all the subcells in a macrocell. The graph sets

up an implicit system of linear equations whose unknowns are the placements

4 and orientations of the (pseudo) instances in the graph and where the given

parameters are the interfaces between the various cells.

Interf acl

4=4

Fiue32 rp n Laou Eqiens

P IA~37

4..I A"BJN



The second step consists of converting the connectivity graph into a layout.

This is done by first selecting a root node in the graph and arbitrarily placing

and orienting the corresponding instance. The graph is then traversed, and

each of the nodes in the graph (which initially are all partial instances) gets

expanded into a complete instance with a location and an orientation. The

location and orientation Lb and Ob of a partial instance B can be computed

from the location and orientation L. and 0. of one of its already traversed

neighboring nodes A using the formula,

ObO=0.Oa ~ (3.1)

Lb = O,Vab + L (3.2)

where (Vk, Obj) is the in terface between A and B. Finally once a new cell

* is created, if it is to be used in a larger cell, it is necessary to define new

interfaces between it and the already existing cells.

Since the connectivity graph need only be a spanning tree many of the

interfaces that occur in the final layout need not be present in the sample

layout. Figure 3.3 shows a cluster of instances of A, B, C and D assembled

together. The corresponding connectivity graph is also shown. The labels

inside the nodes of the connectivity graph correspond to the nodes a well

as the instances they are contained in. Since the connectivity graph need

* only be a spanning tree, it does not have to contain edges between A and

* D, A and C, or B and D. This is because with or without those edges the

graph remains a single connected component (i.e. one can reach any node

starting from any node by walking along edges in the graph). Since the

three described edges are not present in the graph the Id~ (or I ), I4 (or

I,.), and Iw (or Idb) are never accessed by the RISG, and therefore need not

* 38

zW



Figure 3.3: Graph Connectivity Reureet

be present in the sample layout. Hence the creation of both design file and

sample file is simplified by requiring that the graph be only a spanning tree.

3.2 Advantages of the method

This (augmented) two step process of first determining connectivity and

'I then using the connectivity information along with cell definition and cell

interface information to build a layout, provides a clean separation between

the graphical and procedural information. The procedural information in
the design file is used to build the connectivity grasph and remains constant

over different implementations of the design as given by the sample layout.

The graphical information from the sam ple layout is used to transform the

connectivity graph into a physical layout of a particular implementation of the

design. Cell spacing parameters which relate to the graphical information are
never accessed or manipulated in the design file. This delayed binding on the

39

.. . . . . . .



j:- -- V. . 1. V W7 -Lip

location and orientation of instances allows for clean macro abstraction in the

design file. Since in the design file, partial instances are connected together

without assigning actual locations and orientations to them, it is possible to

build subgraphs without prior knowledge of where and with which orientation

the instances in the subgraph will be used. It is easier and cleaner to write

and compose macros for sub-graphs, because the state of a calling macro does

not side-effect the called macro by imposing a starting location and a starting

orientation at which to start assembling the subcells (i.e. the called macro

returns the same subgraph regardless of how the calling macro will choose

to connect the subgraph and regardless of the final calling parameters of the

instances of the subgraph). Macro abstraction suppresses details of how and

where a macro for generating a subgraph gets called and allows the designer

to concentrate only on the connectivity of the subgraph.

3.3 Limitations

The two step process as described in the previous section provides a high

level of separation between the graphical and procedural part of the layout

process. Since geometrical parameters are not accessed in the design file,

however, decisions based on the size and shape of the final layout such as

placement and routing are difficult to make. For example the choice between

the two routing configurations in Figure 3.4 requires knowledge of the sizes

and shapes of the two cells A and B as well as the size of the routing channels.

40

" ~~~~~~~~~."..".."."... ... ...... ".""".....-.'..... .,....- .... .. .. . .I)



A A

B

B

Figure 3.4: Different routing configurations

3.4 Connectivity Graphs in Greater Detail

The purpose of this section is to investigate some of the properties of

connectivity graphs both in terms of data structures as well as in terms of

their mathematical properties. The previous section described an equivalence

between connectivity graphs and physical layouts. Actually (for a given sam-

pie layout) to each connectivity graph there corresponds a whole equivalence

class of layouts. All the layouts in an equivalence class are such that any ele-

ment in the class can be transformed into any other element in the class by an

affine isometry i.e. all elements in an equivalence class are identical modulo

an affine isometry. By selecting a root node in the graph and by placing and

orienting the corresponding instance a particular element in the equivalence

class is identified, namely the one where the instance corresponding to the

root node has the chosen placement and orientation.

Connectivity graph data structures must have bilateral edges. If there is

an edge between nodes A and B then in the data structure of A there must be

* a pointer to the data structure of B and in the data structure of B there must

a.. be a pointer to the data structure of A. This is because when a connectivity

41



graph is being created, the root node of the graph (which is arbitrarily chosen,

placed and oriented) which is the starting point for traversing the graph (in

order to convert the graph into a layout) may not be known. Macros for

generating subgraphs of a layout have no knowledge of how the subgraphs

they generate will be connected together by their calling macros in order to

make larger graphs. For example if a macro M for creating graphs were to

return the subgraph of Figure 3.2, either node B or node A could be a leaf

node in the graph (i.e. a node with only one connection to it) depending on

whether node A or node B was connected to the rest of the connectivity graph

by the macro that called M. Hence even if the graph is a spanning tree the

parent-son relationship between directly connected nodes in the graph is not

known until the graph is traversed. This is why during the graph traversal '-.

one must be able to get to node B from node A and also get to node A from

node B because we do not know which of the two nodes will be visited first.

The bidirectionality of the graph is essentially a data structure problem

that is constrained only by the graph traversal requirements and not by the

abstract mathematical properties of the graph. This requirement does not

constrain whether or not the graph is directed or not. A graph C = (N, E)

where N is a nonempty set of nodes and E is the set of edges is said to be

directed if the edges are ordered pairs (v, w) where (t, o) 6 N * N. That is

to say there is a privileged direction for the edges of the graph. A graph

G ({A,B},(A, B)) (a graph with nodes A and B and an edge from A to

B) can have a bilateral data structure which means that from node A we can ".
go to node B and vice versa, and can at the same time be directed which

means that the (A, B) edge has a privileged direction (i.e. the (B, A) edge

may not exist).

42

... .~' . . ..

% LA
_.°-; ."o" ."-" . -" ". """. " . "" .""" .' % " ."% '' " '% .' . - .-. .. .- * --.. . '



ASI'A

(0,G)S

A

Interface#1 a

A A1

(0.01

IFigure 3.5: Interface ambiguity in undirected graphs.

We now need to decide whether or not connectivity graphs for the .SG

" ~should be directed graphs or non-directed graphs. What is needed is a graph ,i

i that for a given sample layout uniquely defines an output layout (modulo an

a(0e isometr). If the cellt.ypes of nodes A and B are distinct then knowing

the locations and orientations of node A it is always possible to determine the "

placement and orientation of node B because the right hand side of equations

2.1 and 2.2 are well defined. Hence at first it would seem that an undirected

graph would suffice. However, in the cae of Figure 3.5, if we know the

location and orientation of the left node, there are two possibilities for the

placement and orientation of the right node.

If Ib = (Va, Oab) is an interface between A and B then using equations

2.1 and 2.2

43

1%-



A,. = (V.,O,.)

- V")- (3.3)

= q- (o.L '.Vh(o 40 )

is an interface between B and A.

Therefore if I = (V., O.A) is an interface between A and A then

= (V., Y.)
= (.)- (3.4)

= ((o,)-, vW, (o..)-,
is also an interface between A and A. In equation 2.1 and 2.2 it is not clear

whether V. and 0. or V. and O,. should appear on the right hand side

of those equations. The problem here is not that of determining the right

interface index (interface number) so as to choose the right interface from

the interface table. The real problem is determining which instance the left

*node in Figure 3.5 refers to. Another problem which we will deal with later

is that we do not know which of the two interfaces I. or r. gets loaded into

the interface table. The two interpretations of Figure 3.5 can lead to non

equivalent layouts as shown in Figure 3.6. If the edges are undirected then

there is no way to discriminate between these two cases. In the first versions

* of the RSG this problem caused the final layout to depend on how the graph

was actually traversed. What is needed is a way of discriminating between

the two nodes of Figure 3.5 which are directly connected together and have

the same celitype. This can be done by giving privileged directions to the 4.

edges in the graph (making the graph a directed graph).

If we are able to characterize interfaces according to some criteria so as

to discriminate between the two possible interfaces I and I. and select one

S44

.. . .;.. 4



Interf &c.#

_jp

A Cp

-Interfacel

C.-

Fiue3B aotabgiyfrudrce rps

45~

7i l



4V

Aii

.4,

p.

Figure 3.7: Resolving layout ambiguity with a directed graph.

of them (which I will refer to as r.) then with the convention that if there

is a directed edge in Figure 3.7 from A, to A2 (A, and A2 have the same

celltype: the indices are just to distinguish between the two of them) then, ;

it is A, that serves as the reference instance i.e. A, refers to the instance in

the interface (see Figure 3.7) that is deskewed to orientation North and at '

whose point of call the interface vector begins. Knowing the placement and .

orientation of A, we can determine the placement and orientation of A2 usingk''

and orientation of A2 we can determine the placement and orientation of A, .

using the interface (1,0J-'. The main problem has been to determine when 'S

to use (1.) and when to use (.)-l and this problem has been solved by

...

making the edges of the graph directed., -

The problem that now remains to be solved is that of selecting 1,0 from ,,"

1,. and I;,.. One possible way to perform the selection process is to math- .

ematically characterize a property that is possessed by only one of the two ", %.

interfaces 1. or I.. This property cannot depend on the interface vec-

46

,""-



tors alone because it is possible to have IA 1 .' with V.= V. making

the selection between I. and r. using V.. and V' impossible. Foe exam-

pie if I. = (O, East) then I. = (I.)-' = (0, West) hence V. = V. and

1. # I . Similarly the property cannot depend on the interface orientation

alone because it is possible to have I. 96 . with 0.. = 0.. As an example

Let I. = (V.,North). Then I- = (-V.,North). Hence O. = o, and

Since any reasonable mathematical criterion for selecting between r. and

I . depends on both the interface vector and the interface orientation, chances

" for finding a simple user understandable selection criteria are seriously jeop-

ardized. The user does in fact need to know which of the two interfaces gets

loaded into the interface table , because the effect of loading (Jo)-1 in the
I.'

table instead of Io is that of inverting the direction of all the edges (with the
appropriate interface number) between nodes of ceiltype A.

The RSG solves this problem by allowing the user to specify (in the sam-

ple file) the right interface by graphically discriminating between the two

instances of Figure 3.7 (which might occur in the sample file). If it is pos-

sible to graphically identify A, in the sample file then it is possible to force

. (V, 00 ) (see Figure 3.7) to be the interface that gets loaded into the
GSt

interface table by forcing A, to be the reference instance at whose point of

call the interface vector begins and whose orientation is deskewed to North.

We have seen that the connectivity graph data structure must have bilat- ..

eral edges but that the graph itself must be directed. Only the edges between

nodes of the same celltype need to be directed as direction information on

edges between nodes of different celltype is not used.

47

47:



Y, TV W11 WYVVY V wm V11M.7 .j1WFP r ' W

ko

Iu ,W

Chapter 4

The Language

In order to make efficient use of the framework of the RSG we must be

able to build large and complex connectivity graphs easily and efficiently. It

is therefore imperative that the language for specifying design files supports

good abstraction and powerful decision making. The design file interpreter

has been embedded inside a Lisp interpreter so that the full power of a struc-

tured programming language is available to the designer. The interpreter

provides a variant of the Lisp Programming Language (a subset of it) with

a few special primitives for building and manipulating connectivity graphs

as well as for converting connectivity graphs into layouts (a BNF grammar

for the language can be found in Appendix A). Primitives for manipulating

encoding tables (such as PLA truth tables) have also been added.

The design of the language was instrumental in defining the underlying

mechanisms in the RSG. It allowed me to get a users perspective on what

should be the right abstraction mechanisms even before I had an understand-

ing of how these mechanisms could be implemented. Besides the fact that

the language contains special features specific to the HSG, the language dif-

48

4S ,,!%



fers from standard LISP (for example MACLISP [27]) in two ways. First the 7.

Language does not support LIST structures. Instead it provides primitive

facilities for arrays because arrays are more suited to array-like regular struc-

tures. Lists are not used (see Section 3.4) to implement connectivity graphs

since these graphs are more than simple linked lists. The seLond difference

is that procedures are not first class objects. I.e. it is not possible to pass a .-,

procedure as a parameter to another procedure. This decision was made to

simplify the design of an efficient parser and interpreter.

4.1 Interfacing the parameter file to the de-

sign file "S

The parameter file to design file interfacing is done through variable scop-

ing rules. The parameter file sets up parameters values in the global envi-

ronment of the design file interpreter. Theses parameters can be accessed

through variable scoping rules. A form of lexical scoping proves to be the

simplest and most efficient way to do the scoping. A variable lookup during

execution of the design file first causes that variable to be searched for in the

environment of the procedure being executed. If the search fails a new search

is then performed in the global environment of the interpreter. Should this

search fail too it is assumed that the variable is a cell name and a search is .

performed on the table of available cells.

For example if the variable corecell in Figure 5.4(a) is meant to refer to a

cell, since corecell is not assigned in the environment (it is not a formal or a

local variable of the macro). The interpreter knows that it is either a variable

49 %5

*5.--

' A ! , ' , / ,'- , . .. , - .,',". ..-,", " -. - --. ' • -.'.---'.. .. ... .... .. ,'.--" • . .. - . .''



defined in the global environment or a cell name and initiates a search in the

global environment and then in the cell table. This scoping methodology

allows variables to be handled uniformly whether they are calling parameters

of the macro, parameters set up in' the parameter file, or just cells. Hence a

powerful coupling between the parameter file and the design file is achieved

by immersing the design file evaluation in a (global) environment set up by

* the parameter file.

Personalization of the variable names in the design file according to the

cell names used in a sample file can also be achieved using the parameter '-

file and scoping rules. A statement of the form corecell = basiccell in the
S°-"

parameter file would cause the variable named corecell in Figure 5.4 to now

refer to the cell named basicell in the sample layout (or to be more general

the cell n-amed basice!l in the current cell definition table which contains new

cells as well as the primitive cells in the sample layout).

The sequence of steps taken by the interpreter to evaluate the variable

coreceil during execution of the design file is summarized in table 4.1. Dynamic ,,

scoping was considered and rejected because many of the variables in a macro

refer to cell names defined in the cell table or variables defined in the global

environment and often the whole current chain of environments would have

to be searched needlessly.

4.2 Macros and Functions

In Lisp and other languages that support procedural abstraction a pro-

cedure can return a single object (or a pointer to it). Connectivity graphs

used in the RSG have several nodes in them and what can be returned by a

50

- . . . A . .. -. .,. :::

.5 
1

.s, ,*.



Action Taken Result

Lookup corecell in the environment of mcell Failed

Lookup corecell in the global environment A variable named basiccell
% -%~

Lookup basiccell in the environment of mell Failed

Lookup basiccell in the global environment Failed

Lookup corecell in the cell table. (celldefinition of basiccell).

Figure 4.1: Environment lookup.

procedure is a pointer to one of them. A pointer to a single node in a sub-

graph, however, may not be sufficient to efficiently manipulate the subgraph.

In the process of building graphs from subgraphs a calling macro may need

to identify several key nodes in the subgraph returned by the called macro

in order to connect these key nodes to nodes in other subgraphs. Since all

nodes look alike except for their celltype (a subgraph may even contain only

one celltype) it is extremely difficult to determine the nodes of interest (the

ones which are to be connected to other nodes) by performing a tree walk .

through the graph (starting from the node for which we have a pointer to). In

the case where the calling macro was in fact sufficiently smart to identify the

nodes of interest in a subgraph that macro probably contains a large part of

the information needed to build the subgraph, defeating the spirit of macro

abstraction and information hiding.

A mechanism is needed whereby a macro can return several objects at a

time. To further enhance information hiding and at the same time enhance

generality the calling macro should not know how many objects and how the

51
J!

.. .. . .... ' ,- .'.'', 't.' - .'. . .'
"

4 ." - . '- - -.. • . .. • . .....-* .- . -. -. - ... * 4... - ..



, It

objects (in what order) are returned by a called macro. The caling macro

should be able to pick from a menu of available objects the nodes of interest

to it. The way this is achieved in the RSG is by making macros return the

whole environment frame that was used during their execution. This method

provides great flexibility since any variable bound during the execution of

the called macro can be accessed using the subcell command. The subeLl .

command provided by the interpreter allows the selection of a particular

variable in a user-specified environment. If E. is an environment (returned

by a macro) and V is a variable bound in that environment then (subcell E

V) returns the value to which V is bound in the environment E.

As an example, in Figure 5.4(b) the 4th statement of macro mall assigns'"

the variable tregs to the object returned by the macro call to mtopregs.

Macro mtopregs is assumed to create a cell named topregistername and

returns an environment in which one of the instances of topregistername

(one for which it useful to get a handle on) is bound to the variable ref.

Statement 5 of mall which defines a new interface between cells topregis-

tername and arrayname requires the instance (of topregistername) bound

to the variable ref in the environment tregs. The (subcell tregu ref)

expression in statement 5 returns the appropriate instance.

The RSG has two classes of procedure types. The first type are functions

which operate just as in LISP and return a single value which is the value

of the last statement executed in the body of the function. Their syntax is

almost identical to that of MACLISP (a variant of LISP).

The second class of procedure macros, are identical to functions in every

respect except that they return their evaluation environment instead of the

value of the last statement executed. Their syntax is the same as for func-

52

* < .. * . .' -%!



I.-.

<name) ob1

<celldefinition> 
<obji>

<obj2>

£ <obJn>

mp.,

Figure 4.2: Celldefinition Data Structure.

tions except that the LISP function header deun is replaced by macro. The

interpreter also requires to know ahead of time whether a statement of the

form (( function or macro name) (argi) ..(argn)) is a function call or a macro

call and hence the interpreter requires that the macro name begin with an

Mn.

4.3 Data Structures

This sections describes in detail the data structures used in the RSG by
spelling out each-of them. Its purpose is to give the reader a concrete feel

for implementation issues of the abstract data types described in the previ-

'9 ous chapters and serves as an introduttion to the next section. Three data

structures; the cell definition, the instance and the node will be examined. ,

Figure 4.2 shows the cell definition data structure which consists of a name %.

(the name of the cell) and list of objects in the cell.

Figure 4.3 shows how the instance data structure builds on the cell deft.;

nition data structure by adding calling parameters (a location and an orien-

tation ) to it.

Figure 4.4 shows how the node data structure is in turn built from the

instance and a list of edges to other nodes. The location and orientation

4 53

e.'.e

T ,% ,

.1m



--.

(location>
<instance>

(orientation>

,______ _ <celldefinition> .p

Figure 4.3: Instance Data Structure.
edge> •<direction of edge>

<weight of edge>

<edge list> < L (node>

4 4

0 ..........

<node> "

3. (instance>

Figure 4.4: Node Data Structure.

fields of the corresponding instance data structure may or may not be blank

depending on whether or not the graph (which contains the node) has been ,.

traversed. Each edge in the edge list of the node has a bit to indicate whether

the edge is emanating or terminating at the current node, an integer for the'

weight of the edge, and a pointer to the other node attached to the edge'.

'RecaU from Section 3.4 that the graph must be directed and that the data structure must do

be bilateral. :-

54

:.,..



rum,"YJ.

4.4 Primitive operators for connectivity graphs

This section describes mk-instance, connect and mikcell the three primi-

tive operators provided in the RSG for building and manipulating connectiv-

ity graphs. Mutation of the data structures described in the previous section

under these operators is also shown.

4.4.1 mk-instance operator

The basic create operator for creating connectivity graphs is the mk-instance

operator. The purpose of this operator is to create a pseudo instance connec-

tivity graph node (the node data structure of the previous section). Figure 4.5

shows in large font (the top line) a call to the mk.instance operator as it would

appear in the design file. The data structures before the operator is executed

appear in unbroken line and in normal font. The data structures created or

modified after the operator is executed appear in broken line and in italics.

The edge list of the created node is the empty set and the fields for the call-

ing parameters of the corresponding instance are blank. (return value) is the

value for the calling expression (the top line in Figure 4.5) that is returned

by the design file interpreter.

4.4.2 connect operator

The primitive operator for connecting two nodes together by an edge is

the connect operator. Figure 4.6 shows the effect of the connect statement

with the same conventions as in Figure 4.5. Notice that the edge of the node

corresponding to (arg1) (pointing to (arg2)) has a 1 as its direction bit which

means that the edge emanates from (ar9I1. Similarly the corresponding edge

S55

&.. ..... .-



(mk instance <argl> <arg2>)
II a

/

,, <celldefinition>
Oreturn vlue>

/0

II. iI

I • I

L-SI l

(Instance), - - / ,

Figure 4.5: mkjnstance operator.

in (arg2) has 0 as its direction bit which means that the edge terminates at

(arg2).

4.4.3 mk-cell operator

The primitive operator for traversing and transforming a connectivity

graph into a layout is mk.celL. Figure 4.7 shows the effect of calling the

mk.cell operator in a design file. For simplicity sake nodes have been rep-

resented by circles instead of expanding their internal data structures. Each

of the nodes has a pointer to the instance to which they correspond to. The

calling parameters of the instances are initially blank and are filed in as

the graph is traversed. The root of the graph is the node < arg2 > and

its nstance is called at ((O,O), North). As each new node is visited and

its instance's calling parameters are filled in, a pointer to the completed in-

stance is pushed on the list of objects of the new cell being built. When the

graph traversal is complete the object list of the cell definition of the new

56

.

_' a



(connect <argl> (arg2> <arg3>)

<interface#>

(node> I/ <, node>

-. -- <insttacce>

(return ialue) -

--- --- --- --- -- -----------------

Figure 4.6: connect operator.

cell contains a pointer to al] the instances. Not sihown in the figure is the

update of the cell definition table which after execution contains the binding

* ((newa cell name), (new cell definition)).

4.5 Implementation

Implementation of the RSG was rather straightforward. Roughly two

thirds of the code was overhead. Building and maintaining the layout database

represents a sizable portion of the code. The single largest Part Of the code

however is the design file interpreter which parses the design file (and pa-

rameter file) aud then executes the commands in it. Writing a reasonable

design file parser and interpreter was also the most time consuming task as

Lv, 57



(mk cell (argi> <argV.)

II

<nowcel dfItnton I cllobjtl>><sldfniln
a Ij2

<o-3 -- -- - -- -

Fiue47 k-e prtr



the language supports full recursion, reasonable error handling and high ex-

ecution speed. Embedding the RSG in a VLSI database type system such

as Magic [261 or Schema [321 would have drastically reduced this overhead.

Furthermore the availability of a suitable parser and iterpreter which could

support macros and functions (as they are described in Section 4.2) would

have reduced the code by perhaps one half. In order to embed the RSG in a

VLSI database type scheme, such as the two systems described above, facili-

ties must be provided to create the design file language by performing minor

alterations to a standard programming language such as LISP from where

the whole layout database could be accessible.

The RSG program is written in OLtI (21] and consists of approximately

6000 lines of source code. The program is highly modularized and consists of

roughly a dozen major parts (OLtI clusters), one for each major data type.

The code trades memory for greater execution speed. The interpreter makes

extensive use of CLU variants 2 and hence reduces the design file instruction

decode overhead. The interface table, the cell definition table and even the

interpreter environment frames are all implemented with hash tables Ill
which makes lookup extremely fast. While walking though a connectivity
graph the system accesses the interface table once for each node hence it is

imperative that interface lookup be fast. While building large array struc-

tures the graph may be built by a tight loop in one of the design file macros.

At each loop all the variables have to be resolved by the interpreter. Also due
to the scoping rules described in Section 4.1 several environments (and the

cell definition table) may have to be looked up to resolve a variable binding

2A variant is an object which haa a special tag. Program flow can be dispatched according

to thisatag.

59

h -



(especially since variables often refer to cells like in Table 4.1). It is theae-

fore imperative that variable lookup also be extremely fast. Hash tables have

the unfortunate property of consuming a lot of memory (memory concerns

will become clearer in the next paragraph) and becoming inefficient as the

number of bindings grows beyond their individual capacity which is fixed at

the time the , are created. Care must be taken while creating these tables to

make them large enough to handle the required number of bindings but not

too large in order not to waste too much memory.

The design file interpreter which uses hash tables to implement environ-

* ments pays particular attention to this by first computing the number of

formal and local parameters in a called procedure and then accordingly allo-

cating a hash table of the right size for the environment. Unlike a classical

LISP interpreter which disposes of the environment frame when a procedure is

exited, environments in design files may have a much greater lifetime. Macros

return their calling environment. This environment may in turn be held an to

by the calling macro in its own environment. This environment may in turn

be retained by an even higher order macro. It is possible to write a design

* file which holds on to too many environments (several thousand) at a time

and exhausts the memory of a DEC-20. On the VAX this problem shows up

in the form of a substantial decrease in speed due to excessive page faults.

However it is almost always possible to decrease the memory requirements

(by orders of magnitude) to within manageable limits by writing the design

file in such a way so as not to hold on to many unneeded environments.

The RSG maintains it's own database and as such it is layout file format

independent. The RSG can be made to accept any file format by providing Wt

an appropriate parser for the file format (this procedure requires that the

60

7V



code be recompiled). The user can in the parameter file select the layout file

format from a list of available file formats. Two layout file formats (CIF [25]

and DEF [2]) are supported. Plans for supporting HPDRAW [3] files are

also under way. Primitive functions can easily be added to the design file

interpreter provided they fulfill some input output requirements.

The execution time is divided into roughly three equal parts: reading in

the source file and building up the initial interface table, parsing and executing

the design and parameter file, and writing the output file. A 32 x 32 Baugh-

Wooley multiplier as discussed in Chapter5 is generated in 5 seconds on a

DEC-2060.

The basic RSG mechanisms can be easily implemented in any language

that supports good primitives for manipulating pointers and heaps (Pascal, C

and Lisp would be suitable candidates). Memory management for the design

file interpreter (a variant of Lisp) which supports heap storage and garbage

collection is automatically handled by the underlying CLU runtime system.

Implementing the interpreter in a language which does not support automatic

garbage collection might require restricting the power of the design file inter- :

preter or implementing some form of automatic garbage collection. Lexically

scoped Lisp with some primitive mechanisms for manipulating arrays would

be very suitable as many of the primitive operators provided by the design

file interpreter are also Lisp primitives. The Lisp closure mechanism could

perhaps be used to implement the macro' mechanism in the RSG.

P%

3CLU supports heap storage and garbage collection.

'Recall from Section 4.2 that macros return their environment.

:.,.1



Z w-7 -7

do

Chapter 5

Example: Pipelined Array

Multipliers

A pipelined array multiplier provides a good illustration of the RSG's

ability to generate layouts for the kind of nontrivial regular structures that

typically arise in practice. Figure 5.1 shows a purely combinational 6x6

signed two's complement multiplier based on the Baugh-Wooley algorithm

[131. The multiplier consists of an array of two types of carry-save adders

that reduce the product to the sum of two words, which are then added in

a final row of cells connected as a carry-propagate adder. (The two diagonal 4-

connections have been condensed to one for clarity). Each cell type contains

an AND gate and a full adder: cell type I adds the bit-product ajbi to its sum

and carry inputs; and cell type I3 adds to its sum and carry inputs. The

carry-propagate adder consists of type I cells which are drawn as polygons to

distinguish them from the carry-save cells.

Using retiming transformations [18], the multiplier can be pipelined to

any degree in a manner that preserves the regularity of the inner array, but

62

. .°-. I "
-r • • . ° • ° • . . o .-.. * °*~ ~ * . *.. . . . , b. . . .



S°j a ,

ai/ci n

bj joUtb j 0 ... I I I .I

3 P3

PI I PlO P P P7 -

Figure 5.1: Combinational Baugh-Wooley Multiplier

* adds irregularity to the periphery of the array in the form of input and output

register stacks. Figure 5.2 illustrates two pipelined versions of the multiplier.

(An integer near a dot represents the number of registers on the corresponding

connection). The first version (2a) is a bit-systolic multiplier that has at most

one full adder combinational delay between any two registers, and represents

the highest possible degree of pipelining given the choice of the full adder

", as the largest indivisible cell. The second version (2b) implements a lower

degree of pipelining, allowing at most two combinational delays between any

pair of registers. From a circuit perspective, the optimal degree of pipelining

is application and technology dependent, so it is necessary to be able to

automatically generate any degree of pipelining. ,t

A pipelined multiplier of given size and level of pipelining can be con-

structed by personalizing an array of basic cells which has been sized accord-

63

,'t

:i -'" .:- 2-- -.' - -? ." - .-':: . ,.'- ..'" "'..';.. ," ;.'" :',2 .'. ... ,.. .'., , T . "..., . . ........-.. '-.-. .,. .," . . .. ......



- .-.. - - % -W- - S~ 7 V_ j 77. -7 .- V, .Wk

.46

.5 0 4 0 4 dt

7 t Pt P P

coretl imleen the sins two' copems algrim Type s P

cnote ocumbr oftin the letundbotmlege ofd mthicandy.av may, ecepti

rthecl atra h e oersonlef th rser. Aoecfteflloreaiing ooctions qiecl

* 2'. Cell iterf:ac: Tol obt neaprly me idnias cieithtploicl types p 1t

coandectuseimpleent te inptw' levelsFremloratme oTpt

lortel ae aeted the am ef ontr of riemining loerefosrire cell

interface is determined by the type of cells being connected and the

nmbe of registers on the connection.

64 
t

A'i 
N.* .



7 .. 7 W 1. R.•7

3. Register assignment: The placement of registers on connections be-

tween cells depends on the degree of pipelining and the locations of the

cells being connected.

4. Clock assignment: Pipelined systems generally require several clocks

which must be assigned to registers according to their location in the

array. Clock assignment is further complicated by the need to em-

ploy such circuit techniques as precharging to reduce area and power

requirements.

In addition to the internal array configuration, there are "edge effects" to

consider as well:

1. Peripheral registers: In order to properly skew the inputs and deskew

the outputs, registers must be placed along the periphery as determined

by the retiming transformations. -,

2. Input assignment: Ones and zeros must be assigned to the unused

inputs along the top and left edges as prescribed by the Baugh-Wooley

algorithm.

Cell masking is used extensively to convert an array personalization to

actual layout. A basic cell is created which contains the layout features

common to all cell personalities and which can accommodate the variations in

layout necessary to implement all design options. Mask cells are instantiated

on the basic cell to activate particular options by adding objects to the various

layers. Figure 5.3 illustrates this with a basic cell designed to specifically

optimize the electrical performance of the bit-systolic multiplier of Figure

5.2a. This cell contains input inverters, full adder circuitry, and six output

65

.......................................~ . ... ... .... ...

*a*4* ~ ~ V ~ ~ , ..-. ? :-



Carl

€ai-Ipmll-$ 4

tt Of
basic-call

Figure 5.3: Multiplier Cell Maskings

registers. In this example, the basic-cell is programmed to type I by the

mask-cell typeI, its carry input inverter is programmed by mask-cell carl

to interface with a type II cell, and it is assigned the clock 01 by mask-cells

phil-1, phil-2, phil-3, and phil-4. The inner array of the multiplier is

built up one cell at a time by first personalizing a copy of basic-cell, and

then adding it to the array. Then the multiplier is completed by adding

registers to the periphery of the array.

Figure 5.4 shows two sections of the design file written to generate a bit-

systolic multiplier for any m-by-n case, and demonstrates the use of macro

abstraction, delayed binding, and interface inheritance. The mcll macro

of Figure 5.4a executes the personalization of basic-cell as a function or

array size and cell index, and is used to hierarchically build the macrocell

innerarray (the inner array of the multiplier). Delayed binding on the abso-

lute location of each personalized cell greatly simplifies the definition and use

of cedl in the creation of larger macrocells like innerarray. The code in

Figure 5.4b constructs the complete multiplier from innerarray and three

boundary macrocells, tregs, rregs, and bregs, whict are constructed from

66
, . .

.'.,,, V ~ . ; V . V*...-**



a single register cell. The three boundary cells are connected to innerarray

using interfaces that are inherited from an interface between the basic cell

and register cell. This example is cited to emphasize that macrocdila can be

manipulated with absolutely no need to enter the graphics domain and man-

ually define interfaces or add spacing cells, as required by layout generators

with restricted powers of abstraction.

The input layout file in Figure 5.5 demonstrates the ease and generality

with which cell interfaces are specified in the RSG. One merely provides an ex-

ample of the interface, and places a numerical label in the overlapping region,

as for example, interface number 1 (the only interface) between basic-cell

and typeI. The RSG then creates an interface vector and orientation from

this graphical specification, and uses it to implement all instances of this

interface "'hat occur in the final circuit layout. The layout file provides a nat-

ural means for the user specification of cell layouts and interfaces and greatly
reduces the amount of redundant information needed to characterize regular

circuit layouts. This can be appreciated by comparing Figure 5.5 with. the

6x6 systolic multiplier layout shown in Figure 5.6. This layout also illus-
trates the amount of complexity that exists in practical regular structures,

even though this design has been simplified by omitting the register mask-

ing option. Register placement can be easily achieved by requiring that the

user provide a register configuration table in the parameter file. Ultimately

a subprogram to perform the retiming can be embedded in the multiplier de-

sign file. The program would take as input the parameter # which specifies

the degree of pipelining and produce as output a register configuration table

consistent with the multiplier size.

The optimum 0 for circuit performance within this class of pipelined mul-

67



* (macro mcell (xsIze ysize xioc yloc)
(locals e temp)
(mk...nstance c basiccell)
(cond ((u( ysize 1) yloC) (connect c (mk-.instance temp typel) tinum))

((U ize XIOC) (cond ((an YSiZe yloC) (Connect c (mk-.inStC@ tamp typel) tinum))
(true (connect c (mk-instance temp type2) t~lnum))))

(true (cond ((a yulzo yloc) (connect c (mk..instanco temp type2) t~inum))
(true (connect c (mn..instance temp typal) tinum)))))

(cond ((a (mod iloc 2) 0)
(prog (connect c (mk-i.nstance temp phil-1.) ciklinum)

(connect c (mk..instance temp phil-.2) ciklinum)
(Connect C (Mk-..nStanCe temp phil..3) ciklinum)

(ue (connect c (mk-i.nstance temp phil-4) ciklinum)))

(prog (Connect C (mnk..nstance temp phlZ..l) clk~inum)
(Connect C (mk...nStance temp ph12-.2) clk21num)
(Connect C (mk-i.nStance temp Phi2..3) clkzinuu)
(connect c (mk-.instance temp phlZ_.4) clk2inum))))

(cond ((a yloc yslzo) (connect c (mk-instance temp car2) car2inum))
'4 ((a yloc (+ ysize 1))

(cond ((a xioc xsize) (connect c (mk-.instance temp carl) carLinum))
(true (connect c (mk..instance temp cAr2) car2inum))) .

(true (connect c (mk...nstance temp carl) carlinum)))))

(a) Cell personalization

(macro mall (xsize ysiz*)
(locals innerarray tregs brags rregs trl arrayl bri Fri)
(setq rregs (mrigfttrogs ysize))
(setq Dregs (moottoaregs xsizt))
(setq innerarray (marray xsize yulz*))
(setq tregs (mtopregs xsIze))
(declare..lnterface topregistername arrayname I

(subcell tregs ref) (subcell innerarray topright)
cel l.to..topreglnum)

(connect (mk-.instance tri topregisterneme) (mk-.instance arrayl arrayneme) 1)
(deClare-i.nterface arrayname bottomroglsternamne I

(subcell innerarray bottomright) (subcell brags ref)
cel l..tobottomroginum)

(connect (mk..lnstance bri bottomregistername) arrayl 1)
(declare-ilnterface arrayname rightregistername I

(subcell innerarray topright) (subcoll rregs ret)
cel l..to..rghtreglnum)

(Connect (nk..lnStance Fri rlgltregistername) arrayl 1)
* (mk..cell *tho..whole-.thtng* arrayl))

(b) Multiplier Construction

Figure 5.4: Design Fie for a Systolic Multiplier

68

% '4.

sa,



I12- phl-3

phI

basic-coll baiIci

Fiur 5.:Lyu iefraytlcM lile

tilesms edtrie epircly hoghrpatdiertos fml

tiplier laout geneaion ici xrcin.adeetia iuain h

lain Peii arysim-ulatossgettallc drsiv-e loc kw n /

pad ~igr 5.5ve l fhc ayouith File fore a f Systoli Multiplierersiz

-til bute detearylmitadn emircal throught reae itertionie ofizes-

gaioonbdting e ryca reparayusta can be gsdtleviaeated qomuticlyald

rintets by thIES.Astdoftecrutissdtrmngppene

araymutplerprfrmnc[21isnw ndrayusngte SGfr6ayu

geeraton EXCL. [2]frcrutetrcinn.PC 30 o iciiu
lain rliiaysmuain ugetta cokdiecoksew4n /



I ~~~~~~~~~. ........... .... ..... .... . l, 1. _ i~ l l= t . .;

J4

Ca a a a 3,, 13

aPC CIg d=g

0P a 1013 0 0

0 1 03 a 03 0

- -

FiCr C36 Bi-ysoi Mutple rLayout

0M [ 0 0 0 0a

7T3
,3 rC r .- " C C C ." a

-

Fiur 5. Bi-ysoi 0utple Laou

5.70



Chapter 6

Compaction -

6.1 Motivation

Despite the fact that the RSG is technology, implementation and archi-

tecture independent, the RUSG by itself is not technology transportable (The

RSG cannot be made to produce designs in a new technology simply by pro-

viding a new design rule ifie). A library of cells for the RSG designed in

an older technology can quickly become obsolete a.s new process technologies

with smaller geometries become available. Another problem with the RSG

is that highly electrically optimized layouts require fine tuned optimization

of the bus and device sizes. These optimiuations depend on the particular

configuration (size) of the final layout. Therefore cells designed for small con-

figurations may not be suited for larger ones which might require larger buses

and larger transistors to drive them. Since the RSG cannot modify the prim-

itive cells specified in the sample file one solution to the layout optimization

problem would be to design several cells for each functionality where each

cell is designed for a different configuration range. For example one might

71



design three different input buffers for a PLA. One type of buffer would be

designed for use in PLAs with a large number of product terms, another for

use in PLAs with an average number of product terms and one for use in

PLAs with a small number of product terms. This method of choosing the

right set of primitive cells according to the replication factors , requires the

substantial layout investment of having to design a large number of cells.

Also the method lends itself to only a coarse grained optimization due to the

approximation of the electrical optimization requirements by one of the cells

already defined in the library. The appropriate device sizes given some speed

and power constraints could be derived from Macromodeling Optimization .

techniques[221.

The problem of making the RSG technology transportable and allowing

generatiuu of electrically optimized layouts could be achieved by using a spe-

cial kind of compactor which I will refer to as a leaf cell compactor. I believe

* that this kind of compactor has not yet been seriously investigated because

* of the significant difficulties encountered in straightforward compaction, and

* also because the usefulness of this kind of compactor is closely related to

an RSG type design methodology whose benefits have only recently been

* established.

A leaf cell compactor is a compactor capable of compacting cells from a

library while taking into account how the cells in the library may potentially

interface together. For example if cells A and B can potentially interface

as in Figure 2.3 then while compacting cell A we have to take into account

the constraints generated by its connection to B. If cell B cannot be com-

pacted further then it is possible that due to the constraints between A and I

B, A cannot be compacted further although A if compacted by itself on a

72



* classical compactor could stand to be further compacted. Context sensitive

compaction is different (probably simpler) than hierarchical compaction [8]

which starts with a complete final layout but does the compaction hierarchi- *~

cally.

The advantages of a leaf cell compactor are that by compacting only the

primitive cells in a library instead of fully assembled structures the corn-

paction effort is not duplicated over the various replication factors in the

layout. For example if a cell A appears a hundreds time in a layout, a corn-

pactor operating on the final layout (where A appears one hundred times)

would be more computationally expensive than one which cleverly compacts

the cell A only once. Also the compaction may only be performed once for

a given set of design rules (and other constraints such as bus and device six-

* ing) instead of running the compactor on each new structure created (by the

RSG). These two factors (i.e. the compaction effort not being duplicated over .

the various replication factors and also the compaction being performed only

once and not on each structure generated) can lead to orders of magnitude

improvements in computation costs, perhaps allowing implementations previ-%

ously thought of as too computationally costly (such as for instance simulated

annealing[161).

The costs associated with a leaf cell compactor are:

1) Perhaps a more complex compactor.

2) After compaction all instances of a cell A in the final layout have exactly

the same geometry. In the case of a classical compactor which first fattens 17
the layout (gets rid of the cell hierarchy) before compacting it, circuitry

* ~Which Used to belong to instances of A may end up having different layout

*geometries. N

73

.1*



The relaxation of the constraint that all instances of A have the same

geometry can potentially lead to more optimal layouts. However in the case

of highly regular structures with large replication factors, what goes on along

the boundary of arrays of cells has a negligeable impact on the total size

of the layout. Most of the cells in a large structure are far away from the

boundaries of the array (assumed for simplicity sake to be an array of identical

cells) anyway and hence geometrical constraints on each of them can be nearly

identical since the constraints caused by the boundary of the array can be

attenuated. Hence the constraint that the layout of all the instances of A be

identical after compaction may not be too restrictive. Furthermore assuming .J.

that compactors are not perfect and do from time to time produce legal but

electrically poor layout, quality control of the compactor output can more

easily be performed on a library of a few cell than on each of the large

layouts generated by an RSG type generator.

At this point let us take a step back and examine the real motivation be-

hind a leaf cell compactor and the motivation behind a classical compactor,

since they differ in essence. A good classical compactor should be able to

start with a stick diagram or a very poorly designed starting layout. From

this poor starting point the compactor should be able to investigate differ-

ent compaction options in order to find an optimal (or satisfactory) layout.

Unfortunately for a given electrical functionality, the space of legal layouts in
not convex. This means that if we use a model where we continuously deform

the starting layout in search of a more optimal one (while keeping the layout

legal at all times) we might have to shrink as well as expand the layout as

we move along a path leading to an optimal solution. Therefore a greedy,

algorithm which looks only for a local minima can fail to find very profitable

74



optimizations which require hill climbing (moving temporarily in a direction

leading to to a less optimal layout). One dimensional compactors which com-

pact in one dimension at a time are an example of greedy optimizations which

do not lead to the optimal solution. A one dimensional compaction algoritim

tries to greedily optimize one dimension at a time and misses out on the op-

timizations that require a more careful analysis of the interaction between

the two dimensions. Besides the fact that the space of legal layout may not

be convex it may also not be connected. In order to reach an optimum by a

continuous deformation from the initial layout one might have to deform the

layout along a path parts of which do not correspond to legal layouts. 1

The motivation behind a leaf cell compactor is to be able to transform

cells from one technology to another and also to be able to size busses and

devices. The cells already existing in the library can be assumed to be highly

optimized for the technology in which they are designed and there is a good

chance that the topology of the initial layout can be used as a good starting

point for the target technology into which we are going to compact the cells.

Under these assumptions the minima (of the objective function) has a better

chance to be reached by a greedy type algorithm that searches for a local

miima. Hence some of the inherent difficulties in leaf cell compaction can

be offset by the previous simplifying assumptions on the initial starting layout

(namely that the cells in the library can be assumed to be designed carefully

and the easier quality control of the output) making the task of designing

such a compactor a more manageable one.

75



6.2 Defining a cost function

The purpose of this section is to show the importance and raise some of

the issues related to defining a layout cost function for a leaf cell compactor.

The cost function is an evaluation of the goodness of the layout and the

compactor's goal is to produce the layout with the lowest cost subject to a%

set of constraints. Defining a cost function for a leaf cell compaction scheme

is not as straightforward as it is in the case of a simple compactor. Also the

impact of the chosen cost function on the final layout (variations in the final

layouts produced using different cost functions) may be greater than would

be the case in simple compaction.

Figure 6.1 shows a structure consisting of a linear array of cells. The M
rightmost cells are of type A and have pitch A., the n leftmost cells are of

type B and have pitch Ab. It can be shown that in the general case (if there

are constraints between A and B other than those shown in Figure 6.1) there

are tradeoffs between minimizing A, and Ab. A. can be minimized to a greater

extent at the cost of increasing Ab and vice versa. Let us consider an extremely

simple cost function for simple compaction and try to find a corresponding

cost function in the case of leaf cell compaction. Let the cost function be

X, the z dimension size of the layout (for simplicity sake assume that the y

coordinates are fixed). Finding an optimal A. and Ab (given the geometric

constraints) so as to minimize X, depends on the replication parameters n and

m. However in a leaf cell compactor na and m are not known at compaction

time. Hence the user has to explicitly provide a cost function in terms of A.

and Ab (as well as other parameters) based on empirical estimates of what

ni and m are expected to be. In the case where n and mn are large numbers

76



- -- \

A A

n U

Figure 6.1: Defining a cost function.

X nL-.+mAb, therefore minimizing A. and Ab is much more important than

mniimzing the sizes of the cells themselves. For a given A. and Ab (assume

for simplicity sake that the Ibj interface is ffixed) reducing the size of A and

B has only a marginal impact on X because it effects only the extremities

of the array, since its impact is independent of the replication factors n and

m. Hence the cost function should depend essentially on A. and Ab and to a

much lesser extent on the physical sizes of the cells themselves.

The remainder of this section describes a layout example where the pitches

Aj, between the cells do in fact have to be traded off. Figure 6.2(a) shows three

instances of a same cell A. The cell A consists of two horizontal bars. Since

the three instances are all of the same celltype the pitch between them is the

x distance between the left edges of their bounding boxes. This is because the

z distance between their respective points of call and the left edges of their

bounding boxes is the same and hence cancels out in the pitch calculation.

One can reduce the A, pitch by moving the top bar of the top instance toward

the left. This causes the layout to deform to the configuration of Figure 6.2

77 ,-J.

p.:.

~. . . . . . . .



(b). Moving the top bar of the topmost instance to the left causes the bottom

bar of the middle instance to move to the right increasing the pitch A2 in so

doing.
Choosing an appropriate cost function can be facilitated by the knowledge

of the replication parameters in the structure to be built from the leaf cells.

4' An optimal cost function for a given set of replication parameters may not

be optimal for another set of parameters. In practice, however, tradeoffs

between the pitches may not be as extreme as in Figure 6.2. Experimental

* resu.lts are needed to determine just how much interaction there is between

* the pitches of leaf cells that occur in practice. Making the cost function linear
in the A, and the box edge locations can substantially simplify the problem

* of solving the constraint system i.e. finding a minimum for the cost function

subject to the constraints.

6.3 Constraint Representation

The purpose of this section is to propose a representation of the constraint

system in leaf cell compaction. It is assumed that the reader is somewhat

familiar with graph based constraint systems. We will restrict ourselves to one
dimensional compaction in the x dimension. Compacting in the x dimension

entails determining the abscissas of all the vertical edges of the boxes in a

* layout. Horizontal edges play no role in the constraint representation and are

assumed to shrink or expand in response to the displacement of the vertical

edges. In the case of leaf cell compaction the unknowns of the problem are

the abscissa of the vertical edges of boxes in the leaf cells, as well as the

A, which are the z dimension pitches between the various cells. The known

4 78



jA]

Figue 6.: Tadeof bewee pithes

* L~i79



parameters are the design rules of the process, the sizing constraints that arise f
from electrical considerations and the electrical network implicit in the initial

layout. The constraints that arise from the interaction of the parameters can

be represented by a constraint graph whose vertices correspond to vertical

edges of boxes in the layout. The edges between the vertices in the graph

correspond to minimum spacing constraints between the objects represented

by the vertices. The weights on the edges of the graph are the actual values

of the minimum permissible distances between the vertices.

A possible strategy for leaf cell compaction is to build a constraint graph

for each of the leaf cells and then include the constraints arising from the

interaction of the cells by adding new edges between the graphs. The resulting

graph (formed by the union of the leaf cell constraint graphs and the new

edges) has 2 kinds of constraints: intra cell constraints (constraints within

a cell) and inter cell constraints (constraints from the interaction between

cells). Both intra cell and inter cell constraints can be extracted from an

RSG sample layout. The intra cell constraints can be extracted from the cell

definitions of the leaf cells in the sample layout. Inter cell constraints can be

det~ermined from the various cell interfaces present in the sample layout. After

the compaction is completed, it is possible to build a new sample layout for .:
the new technology and electrical constraints, from the new cell definitions of

the leaf cells and the new pitch parameters (both of which were the unknowns

of the initial compaction problem). Recall from Section 3.1 that the sample

layout does not necessarily have to contain all the possible interfaces that

might occur in a final layout (because the R.SG connectivity graph need only

be a spanning tree). However if a sample layout is to be used for leaf cell

compaction, then in order for the compactor to generate all the required

80



inter cell constraints it is imperative that all possible interfaces that might

arise in the final layout be present in the sample layout. The next paragraph

describes how these constraints can be generated in the very simple case

where the sample layout contains 1 cell and 1 interface.

Figure 6.3 shows two instances of A interfaced together. A is a cell con-

* taining four vertical (box) edges. The left (respectively right) instance of A as

* well as the corresponding 1, 2, 3, 4 (respectively 1', 2', T', 4') constraint graph

and the edges in the graph are shown in solid (respectively dotted) line. In-
I.

ter cell constraints between the two instances arising from the existence of

the I.. interface are shown in broken line. If compaction was performed on

* the 1, 2, 3, 4, 11, 2', 3', 4' graph, the compacted layouts of the two instances of

A may not be identical. The unknowns of the problem are the abscissa of
the four vertical edges in the cell (and not the instances of) A and the pitch

* A, after compaction. We must express the constraint system in terms of a

graph where the vertices are the vertical box edges of A and the weights are

functions of A.. This wil ensure that both instances of A in the compacted 5

* layout have the same geometries. Since the pitch between the two instances

is A. the distance between the 1 and the 1' node is necessarily A.. Hence

since node 4 must be X4 to the left of node 1' it must be z.4 - A. to the left

* of 1. Therefore we can replace the dashed edge weighted by X4 by an edge

from node 4 to node 1 weighted by xj - A.. Similarly we can replace the

edge between node 4 and node 3' weighted by x5 by an edge between node

4 and node 3 weighted by x5 -A,. Once this edge replacement is complete

we can discard the 1', 2', 3', 4' graph and all edges terminating on vertices of

that graph. We are then left with the 1, 2,3, 4 graph where the edges drawn

with straight lines are intra cell constraints and edges drawn with arcs are the

81

Le,



X4-

XI

1 2
xt

4 ...x ...... .

A 4

; . . .. . . . . . . . . . ............ q

A x .. x

4'
-7A

Figure 6.3: Constraint representation.

inter cell constraints. The new constraint system ensures that both instances

of A will have the same geometries and at the same time reduces the number

of unknowns from 8 (the abscissas of 1, 2, 3, 4, 1 , 2', , 4) to 5 (the abscissas

of 1,2,3, 4 and A.). In the case of larger cells and multiple interfaces, the

* reduction in the number of unknowns can be be much more substantial since

only one new unknown (a Ai pitch parameter) is added for each new interface.

This graph constraint system cannot be solved by shortest path algo-

rithms such as Bellman Ford17] because the weights on the edges are not

all constants. Some of the weights depend on the A1 which must also be de-

termined. Algorithms such as the Bellman Ford algorithm are used to solve

a system of linear equations where there are only (at most) two unknowns

per equation. Such systems can be represented by a constraint graph with

constant weight edges. However (if the abscissas of the vertices 1,2,3,4 are

X 1 ,X, X X3 ,X 4 ) in the resulting graph of Figure 6.3 the edge between node 4

82

& A',,-a

i"

4%.

,.-,/.s . _'_.J L,-,o"..%.'_'.%'"' ........ - .. .-..o .... '.~.-. .-..-.....,.. .2,, .



and node 1 represents the equation X, - Xj :5 zi - A. where XI, X4 and A.

are unknowns. A simple minded way to solve the system would be to convert

the graph to a system of linear equations and solve the system of equations

using a linear programming algorithm like Simplex (101. Since we know that

there are tradeoffs between the Ai we will have to define a cost function that

is to be minimized subject to the above set of constraints.

6.4 Experiments in compaction

Over one hundred and thirty kilobytes of code have been written in order

* to build an experimental compactor with the intent of modifying it to uilti-

mately do leaf cell compaction. One third of the compactor code deals with

maintaining and manipulating the data structures (such as scan lines sorted

lists etc..) required by the constraint generation process. This is where most

of the CPU time is spent. One fourth of the code embeds the decision mak-

ing process of determining what type of constraint is appropriate between

a pair of box edges. This part of the code proved to be the most convo-N
luted, the hardest to write and debug and also the most error prone. The

actual constraint solving routine (a modified Bellman Ford Algorithm: see

Subsection 6.4.2) is only slightly over a page in length. The' rest of the code

is overhead and consists of layout manipulating routines, design rule tables

etc.. The speed of the compactor compares favorably with other compactors

and the output quality can, depending on the input layout, be reasonably

good. However for a large complex layout the compactor will often produce

a legal layout where small regions of the layout are electrically poor, making

hand checking (and minor modifications) of the result a necessity.

83

. . . . . .. . .



While the general methods and mathematical foundations of the corn-

paction problem are well understood they seem inadequate to deal with the

myriad of special cases encountered in practice. Whether commercial com-

pactors function properly in a realistic VLSI setting is still an open question

for me as I did not have a compactor with which to compare results readily

available to me. However I believe that my compactor would compare fa-

vorably on many of the examples found in compaction papers. Rather than

lab oriously go through the quagmire of designing and implementing a rea-

sonable compactor, I will skim through some of the salient difficulties and

in some cases propose solutions to the problems I encountered. Many of the

classical difficulties of compaction are explained in [31).

The rest of this section is for the benefit of whomever continues the corn-

pactor project. it describes three major difficulties (encountered during the

compactor project) which can be corrected by a more appropriate choice of

strategy. Its intent is not to give an overview of the compaction problem. The

compactor used a one dimensional graph-based constraint method where the

vertices in the graph represent layout box edges'. Other one dimensional

techniques include shear line compaction [9].

6.4.1 Constraint generation

One of the purposes of the compactor is to perform device and bus sizing.

Device and bus sizing requires the ability to tag (identify) the particular

devices (or buses) to be sized in the layout. This can be accomplished by

making the bus (or the gate and channel of the device) to be sized, a cell.

'the edges are vertical1 since it is assumed throughout this section that compaction zs being

performed in the z dimension.

84

z.-



The compactor can then size all instances of that cell according to some

user defined specification. In some processes transistor gates must be wider

than the minimum poly width. This can be achieved by making the gates of

transistors instances of a particular cell. The compactor must then make all

instances of that cell a certain minimum size. Finally there may be critical

A parts of the layout (such as sense amplifiers) which must be left unchanged

by the compactor. This also can be achieved by making those portions of the

layout (to be kept frozenz), out of cells which the compactor will know how

to handle.

Many compactors first perform a preprocessing phase on the layout, Dur- V

ing this preprocessing phase boxes of the same layer are merged together. For

example EXOL uses a merging technique (although not for compaction) which

4 gcts rid Of redundant vertical edges of boxes. After the merging process is

complete each layer of the layout consists of nonoverlapping boxes such that

each box has the largest possible z dimension size (as a result of this there

are no hidden2 or partially hidden vertical edges).

Merging boxes considerably reduces the constraint generation problem.

Figure 6.4 shows two boxes of a same layer (in solid line). The existence of a -

minimum spacing constraint between the right edge of the left box and the

left edge of the right box depends on the presence of the middle box (shown in

broken line) whose presence masks the two previous edges. Always generating

the constraint between those two edges (regardless of the presence of the

middle box) can substantially overconstraiu the system. Consider a piece of

diffusion fragmented into nt abbuting boxes as in Figure 6.5. Indiscriminately

2A hidden box edge is an edge that does not actually correspond to an actual boundary of

a layer since material from the layer is present an both sides of the edge.

85



IV -. -- - C. I - . K - 7 . . .

...........................

.. . ... . .... ... ....... .. ..

Figure 6.4: Constraint for hidden edges

Figure 6.5: Fragmented Layout

generating constraints between left edges end right edges would force the x

size of the final layout be at least nA where A is the minimum spacing for

diffusion. Merging the boxes into one box would get rid of the fragmentation
and allow the layout to shrink to the minimum width for diffusion.

I,

Unfortunately, due to the device and bus sizing mechanism in the com-

pactor, it is not possible to perform merging on the boxes. Merging boxes

causes loss of information relating to which cells the boxes came from. A

long bus might require to be wider in certain regions. These regions can be

identified by the compactor as being part of certain cells. Merging the boxes

in the bus of Figure 6.5. would cause the loss of that information since after

the merging process there is only one box for the whole bus. This constraint

(i.e. merging being unacceptable) combined with the wrong constraint gener-

ation technique made constraint generation an extremely hard problem. The

main problem is to generate enough constraints so that the result is a legal

layout without overconstraining the system, which degrades the quality of

86

.- . - - •1

*~a*.~ *~S.*S S ~ .. *-*. o



-W-p

* the result.

The minimal constraint set is not unique (A minimal constraint set is

such that removinug any constraint from it may cause the resulting layout to

become illegal) and therefore it is not possible to reach the optimal constraintP

set simply by removing overconstraining constraints. Generating a good con-

straint set is a particularly hard problem. Substantial gain in output quality

can be made by simply making the constraint generator smarter without

having to go to a more complex compaction strategy as in two dimensional

compaction [15].

* Most graph based compactors use a scan line technique for the generation

* of constraints. Other reasonable ways of generating constraints include walk-

ing through a layout database as in MAGIC where each box (tile) has pointers

to its neighbors (comner stitching). There a.ee essentially two possible ways

* to perform scanning. The way it was performed in the compactor was using

a scan line which represents a slice through the layout3. Constraints in the

x dimension are generated with a horizontal scan line that moves vertically.

At any given time the scan line holds the part of the layout that intersects

its current Vj position". Only objects that were in the scan line at the same

time can have a constraint between them. If the current scan line location

intersects the piece of di~ffusion in Figure 6.5 then all the boxes in the Figure

are simultaneously present in the scan line. The constraint generator must

then examine each pair of vertical edges and determine what constraint to

put between them. In order to determine the appropriate constraint between

5EXCL uses this method.

'In practice the scan line is actually a band. It contains objects that intersect a band centered

at it s current y location. J

87



-7 VIC .

.4 Figure 6.6: Constraint between partially hidden edge

a pair of edges, the constraint generator has to shuffle through the objects in

the scan line to examine the relevant neighboring objects. This turns out to

be one of the most difficult and critical parts of the compactor. A smart com-

pactor must at least notice that some of the edges might be hidden and that

it may not be appropriate to put a constraint between them. Deciding on an

appropriate constraint is not a straightforward task. In Figure 6.6 the right

* edge of the leftmost box and the left edge of the rightmost box are hidden

when the scan line is at location yi. However when the scan line reaches y2

the edges are no longer hidden and therefore the constraint generator must

* place a constraint between the two edges.

P ~By selecting a more appropriate scanning technique it is possible to elim-

inate part of the hidden edge problems. The scan line can be a vertical line

* that sweeps from -oo to +00 (we are still generating constraints for the z

dimension). The scan line contains information of what a viewer on the scan

line looking toward the left would see. In Figure 6.7 the viewer on the scan

line would see the Z2, X3 segment of the left box and will see the z1, z, segment

as belonging to the insides of the right box. Constraints are placed between

what the viewer can see in the scan line and the objects that currently inter-

sect the scan line. More details on this scan line technique and relevant data

88



'A.,.[,

I X2

Figure 6.7: Correct scan line method

structures can be found in ill] and [24] '. The advantage of this method is

that hidden edges are automatically taken care of because they do not show

up in the scan line. Hence merging of boxes is implicitly taken care of.

6.4.2 Solving the Constraint System

The Bellman Ford algorithm [17] was used to solve the graph based con-

straint system. The Bellman Ford assigns to each vertex the lowest possible

abscissa subject to the constraints. The algorithm proved to be extremely

fast, especially if the edges are traversed in sorted (according to their ab-

scissa) order, i.e. a preliminary sort on the edges according to their abscissa

in the initial layout is performed. This is because the initial ordering of the

edges is a good estimate for the final ordering. Going through the edges in

a suitable order considerably reduces the number of Bellman Ford relaxation

5[281 uses this method.

89

%9

* .



-,V 77

Fiue68 Wreigomalyu mo
stp.Intecaewee h niilodeigispeereJ nthL iallyu
exctyon elxtinstp sreure nsed teIE IeeIEith

numbr-o verice in he onsrain grph) equredin te wrst ase U-

fortnatly hileBelmanFor doe a oodjob f m-ninizng te ttalsiz

(boundin bo)o h-aotia eeae lcrclypo aot.Ti
isbeaue ltoghth agoihmmiimze teloget at t anacual

inres telegh foterpth upt telegt f h lnes at)

to te lyou ofFigure 6.8: Woerselting o layout ogr .()dvlp

* ~ jo step. Ai thcae whreprite inalorderm isul beserned ina thie toin alu

nubjercoe vete i they onsre ap) ronequied bn tube wr case in-a

ofncrease the legthoe aths (up toie let of the nge path).d y

toate layout of Figue .8()tersliglyu fFgr .()dvlp

90

%..



6.4.3 Dealing with layer Interaction

Some design rules such as those for contacts or gates are hard if not

impossible to express in terms of minimum spacing constraints between the

mask layers of a layout. These kind of constraints often occur due to the

interaction of several layers at a time. For example the width of poly may

be 3A except over diffusion (gate of a transistor) where it might have to be 1

5A. Not knowing beforehand where in the compacted layout poly will end up

over diffusion it is hard to determine which regions of poly should have a SA

width constant on them. This is because constraints are generated based on

the initial layout whose topology will change during compaction.

One way of solving this class of problems is to create new layers that do not

correspond to actual mask layers in the lithographic process. This method is

already used in editors such as Magic [261. For example Magic has a special

layer called contact which has design rules similar to those of any other layer.

This special layer is comprised of metal, poly and the actual contact cut (or

cuts) between them. At mask creation time the contact layer is converted

into actual lithographic mask layers which may contain one or several contact

cuts depending on the size of the contact layer. The appropriate metal and

poly overlaps as well as the size and spacing of the contact cuts can be looked

up in a table. Figure 6.9 shows an example of what this translation process

when applied to a large contact layer might look like. The same type of

strategy can be used for transistors, buried contacts, etc.. The benefit of this

strategy is that often the new layers that result from the interaction of several

primitive layers can be characterized by simple design -rule constraints while

as the interaction of the different layers often can not.

91



metal

ii F7 contact-cut

L ----------------------------------------

Figure 6.9: Contact layer Expanded

6.5 Summary and new directions

In this chapter some of the benefits and difficulties of leaf call compaction

have been explored. A constraint representation for leaf call compaction has

also been proposed. Difficulties encountered during the design and imple-
mentation of an experimental compactor (a flat layout compactor) have been

described and improvements have been suggested. The rest of this section

describes a plausible sequence of steps leading to the implementation and

* evaluation of an efficient leaf cell compactor.

Section 6.4.3 relates the problems of dealing with layer interaction. This

* problem occurs because design rules arising from layer interaction cannot be

described in terms of minimum spacing constraints. A successful compactor

must be built on top of underlying mechanisms for transforming a set of

* physical mask layers into special layers as prescribed by Section 6.4.3, and

transforming these special layers back into physical layers. A flexible con-

straint generator (for glat layout compaction) implementing the right kind of

scanning technique and a carefully constructed set of constraint generation

rules must be built. The ultimate goal is to modify the constraint generator

92



t~o do leaf cell constraint generation. Provisions for interfacing the constraint

generator to a device sizing tool such a~s 1221 must be considered. Care must

be taken not to underestimate the difficulty inherent in constraint generation,

and a carefully charted course must be generated before any actual code is

written. Testing the constraint generator for larger than simple test cases

cannot be accomplished without building a throw-away test constraint solver."0

(for flat compaction). The constraint solver's purpose will be to facilitate

testing of the constraint generator by outputting actual compacted layouts

instead of constraint graphs. Once testing is completed the constraint genera-

tor must be modified to do leaf call compaction and an appropriate constraint

solving algorithm for leaf cell compaction must be selected or developed. The

effects of different cost functions on the new leaf cell compactor must be ecml-

uated and catalogued. Finally an exploration of how the compactor and the

RSG can together constitute an efficient layout module in a larger silicon

compilation system must be investigated.

Ikg

93

NM

. . ~ . -- .0



RD-A170 936 R DESIGN BY EXANPLE: REGULAR STRUCTURE GENERRTOR(U) 2/2
"ASSRCHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAB OF

.1 ELECTRONICS C S BANJI FEB.95 TR-39? RFOSR-TR-66-05S1
UNCLRSSIFF96F-409E2-G 6IF/O 9/2 NL

monsoo"



11111.2 122

MICOCPY ESLUTO TES36 AR

NAINL8R L fS~#~VS-6

MIS "P.-0

ImonSiAh



Chapter 7

Conclusion

The push to design larger and more complex VLSI chips has spurred the

creation of more sophisticated design tools. By restricting the target ar-

chitecture to designs that are regular and can be algorithmically described,

efficient and flexible layout generators that function well in a realistic VLSI

setting can be built. Regularity, however, does not exclude complexity in I

the personalization of these structures. This thesis has demonstrated the

importance of the appropriate abstraction mechanisms - macroceila, inter-

faces, and interface inheritance - in generating layouts for realistic regular

structures. The RSG is an operational tool that supports true macro ab-

straction and inheritance. Due to the flexible target architecture, greater e

generality than specialized module compilers can be achieved without the

loss of efficiency incurred in silicon compilers with a fixed target architec-

Wue. The RSG presents a convenient interface to the user by separating the

graphical and procedural description of a circuit along a natural boundary,

making it an extremely easy tool to utilize, extend, and upgrade. Information

is efficiently partitioned into a design file which describes the global layout

94



connectivity and a sample file which specifies the local placement constraints

and the specifics of the primitive cells. Tangible proof of the efficiency and

applicability of the RSG method to intricate regular structures that arise

in meaningful applications was demonstrated by the design of a (class of)

pipelined multiplier. The RSG's power can be further enhanced by a special

kind of compactor which will make the RSG technology transportable and

allow it to perform device and bus sizing. The simple mechanisms used in

the RSG can be easily embedded in a complete VLSI design system. Such

a design system would include placement and routing and also compilation

from a functional specification. The RSG could then be an efficient link in

the design chain from functional specification to silicon.

95

-,ee

%

4 5

'

5%



Appendix A

BNF Grammar

(procedure definition) (function definition)

(macro definition)

(function definition) (defun (hfnction name) (formaals) (locals) (body))

(macro definition) (macro (macro name) (formals) (locals) (body))

'i.(formals ((variable ist))

(locals) = (local (variable list))

(variable list) (variable) (variable list)

(empty)

(variable) (simple variable)

(indexed variable)

(2indexed variable)

(body) .= (statements)

(statements) (Statement) (statements)

(empty)

(statement) (conditional)

(do loop)

96

• .... p .. .. . . . , . . . . . . '



: - (assignment)

(function call)

(macrocall)

(primitive function call)

(print statement)

(read statement)

(prog statement)

(variable)

- (connect statement)

(make instance)
:= (subcel1) i

(make cell)

(declare interface)

(conditional) (cond ((cond expra)))

(cond exprs) (cond expr) (cond exprs)

(empty)

(cond expr) (it part) (then part)

(if part) (statement)

(then part) (statement)

(do ((simple variable) (initial value)

(do loop) (next value)(exit conditional))

(body))

97
.%**. ~ * ~ .. ,-',



(initial value) (statement)

(next value) (statement)

(exit statement) (statement)

(assignment) (assign (variable) (statement))

(function call) ((function name) (variable list))

(macro call) ((macro name) (variable list))

(primitive function call) ((primitive function name) (variable) (variable))

(print statement) (print (statement))

(read statement) (read)

(prog statement) (prog (statements))

(connect statement) (connect (variable) (variable) (statement))

(make instance) (mk.instance (variable) (statement))

(subcell) (subcell (variable) (statement))

(make cell) (mkcell (simple variable) (statement))

(declare-interface (statement) ( statement)

(statement) (statement)

(statement) (statement))

(2indexed variable) (simple variable). (statement). (statement)

98

...- .. ... ,...' . ,.. - .-. ,'.. .. " .',. , -. - ...-..- ... ,',. .. " .-. .. ;...." .-.....-.. .,........'. - . .. - ...- - - ,- -' .- .. ,? .," .., .-



(indexed variable) (simple variable). (statement)

(simple variable) (string of chars)

(function name) mr(string of chars)

(macro name) m(string of chars)

(string of chars) a string of charecters

(empty)4

-4
I-

99

-S,



Appendix B

Multiplier Design File

(macro mcali (xsize ysize xioc yloc)
(locals c too)
(mk..instazice c coreceli)
(cond (.xeize xiec)

(cond (aysize yloc)(connect c. (inkjinstace foo typel)-tiinum))
(tru1e (connect c (mk..instance too type2) t21num))))
(true (cond ((s ysize yloc)

(connect c (ink-instance foo type2) t2inum))
(true (connect c (mk~instance too typel) tlinua)))))

(cond (C= (mod xioc 2) 0)
(connect c (mk..instaruce too ciockl) cikilnin))

(true (connect c (mk-.instance too ciock2) cik2inum)))
(cond ((- yloc ysize) (connect c (ak..instance f oo top2) top21num))

(true (connect c (mkinstance too topl) toplinum))))

(macro aline (xii:. ysize curntiine)
(locals I. ref)
(assign 1. 1 (mceli xsize ysize I currentline))

(s~t ra (sbcoil 1.1 W)
(do1 (+1 i) (> i xsii:))

(assign l1i (mceli xsize ysize ± currentline))
(connect (subcell 1.C- 1 1) 0) (subceil i c) hinum)))

(macro m2darray (xii:. ysize)
(locals ci.. topright bottoaright)
(assign c1.1 (aline xsii: ysize )
(:otq topright (subcall cl.1 ret))
(do Ui 2 (+ I i) (> i ysize))

(assign CIA (aline XS12G ysiZe W)
(connect Csubcail c1.C- 1 1) ret) (subcall cIA rot) vinna))

(setq bottoinright (subcull elysize ret))
(mk..cail aularrayname bottouright))

(macro meopregs (size)
(locals 1. ret)
(assign 1.1 .(array topreg 1 topregvinun))
(setq ret (subcell 1.1 c.1))
(do Ui 2 (+ 1 0) (> i size))

(assign 1.i1 (array topreg i toprmgvinun))
(connect (subcell 1.(- 1 1) c.1) (subcell IA1c.1) topreghinum))

100



77J

(mk..cell topregisters ret))

(macro mbottomrogs (size)
(locals 1. ref)
(assign 1. 1 (array bottoureg9 size bottomregvinum))
(setq ref (subcell 1.1 c-size )
(do Ui 2 C+ I i) C> ± size ))

(assign 1Ai (array bottomreg (- (+ I size) i) bottamregvinum))
(connect (subcoll 1.(- 1 1) c.(- (+ size 1) C- i M)
Csubcoll li c.C- (+ I. size) iW bottonroghinum))

(ak-.cll bottoiregisters ret))

(macro mrightregs (size)
(locals 1. rot length regnum)
(setq regnum (+ 1 (* 3 size)))
(setq length U1/ regnum 2))
(cond ((- (mod regnum 2) 1) (motq length (+ 1 length))))
(assign 1. 1 (array rightrog length rightreghinum))
(asadirection 1. 1 1 length regnum)
(setq ret (subcell 1.1 c.1 )
(do Ci 2 C+ I i) C> i size )

(assign 1. 1 (array rightreg length rig'troghinum))
(asedirection 1-i ± length regnum)
(connect (subcoll 1.(- ± 1) c.1)
(subcoll l.i c.1) rightregvinum))

Cmk-.cll rightregistors ret))

(detun asadirection (rarray index length regnum)
(locals ins outs bi too doublereg)
Csetq ins (*index 2))
(setq onts (-regnum ins))
(setq bi (imin ins outs))
(cond ((> ins outs) (prog (setq doublereg inward)

(setq singlereg sinward)))
(true (prog (setq doublereg outward)

(setq singlereg *outward))))
(do U I (+ I±) (>1i bi))

(connect (ak-instance too bidirectional)
subcell rarray c.i) rtoregsinu))

(connect (.Jc..instance too singlereg)
(subcell rurray c.(+ bi M) rtoregsinum)

(connect (.k-.instance too doublereg) (sucol rarray c.i) rtoregsinum)))

101

*v L



"S d

(macro mall .xsize ysiz.)
(locals arrayfoo tregs brags rregs tri arrayi bri rri)
(aetq rregs (mrightregu ysl:.))
(setq bregs (mbottaoe xmi:))
(setq azzaytoo (m2darray xsize yuize))
(s.:q tregs (utopzegs xsi:>))
(declare-.interface topregisternaae arrayname 1 (subcell treg. ref)

(subcell1 azraytoo topright) call..to.topregnm)
(connect (ak-.instance tri topregistermus)

(uk-.istance arrayi arrayname) 1)
(declare-.interf ace arrayname bottomregisternam* 1

Csubcall arrayfoo bottomright) I

(subcell brags ref) call-to-.bottourogina)
(connect Cmk.instance bri bottomrogistername) arrayi 1) 1

(declare-.interfac e arrayname rightregistername 1
(subcall arrayioo topright)
Cuubcell r.; ref) call-to.rightreginum)

(connect (mk.instance rri rightregistername) arrayi 1)
(ak.,cell mall" arrayi))

(defum Thin (z y)
(locals)
(cond ((> x y) y)

(true x)))

(mall zeIze ysize)

Z,

102



Appendix C

Multiplier Parameter File

* exampl...ile /u/bamj i/damo/mult .de
* concept..iile /u/bamj i/demo/mult. con
* outpiit..f us /u/bamj ±/demo/multout . sf

vinuzin2

t 1inuult
t21num-1t

mularrayziameu array"
axraynafe-arzay p

core cell-c ell
typeluti
type 2-t2
clk2±.numal

clkluciki
clocki-clk2

toplotopi cai

top21numal

toprevinum n 2
toproghinum a 1
topreg - tr
topregisteru - "topregs"
topregistername a topregs

bottomrsgvinum n 2
bottomroghiuum a 1
bottourog a *
bottomregisters a "bottoursgs"
bottomrsgisternams a bottourogs

rightrevinu a 2
rightreghinum a 1
rightreg a rr
rightrocisters a "rightregs"
rightrogistername *rightrogs .p

103



bidirectional= goboth
inward-goleft
outwardagoright

soutwardagoaoeigt

rtaregsiuml

xeizeuauize
ysize-auize

call-to..toproginmal

cell-to-r.ightroginumnl

asizes1G

10



Appendix D

Adder Cell Schematic

0 0

.

Co so

I~~ I 

,...'

*'1

Type Iel

10.



op

v Do

elk-c elk-c

clkH S-S

ci-

Type IIel

106S



AppendixE

Adder Cell Layout

11

107

7:,h A I.

EC31

hR. P- --

S J f



Bibliography

[1] A. Aho, J. Ullman and J. Hopcroft, The Design and Analysi of Com-

puter Algorithms, Computer Science Press, pp. 111-113.

[2] R. Armstrong, "HPEDIT Reference Manual", MIT Research Laboratory

of Electronics, MIT, 1982. .

[3] R. Armstrong, "HPDRAW Reference Manual", MIT Research Labora- ..,.
tory of Electronics, MIT, 1982.

[41 R. Armstrong, "Procedural Design of a high speech Floating Point Arith-

metic Unit", S.M. thesis, NT, Febuary 1985. '.4

[51 D. Baltus, "Design of an Assembler of NMOS Fast Parallel Fractional

Multipliers", S.B. thesis, NIT, May 1983. #4!

[61 C. Ba ,ji, "Design by example PLA generator", S.B. thesis, MIT, Febru-

ary 1984.

[7] C. Bamji, C. Hauck and J. Allen, "A Design-by-Example Regular Struc-

ture Generator", A CM IEEE 22"d Design Automation Conference, Las

Vegas, Nevada, 1985.

108

, .° , %. ".. .'o. .. "..., ."-'.. - . - -. ,. . -% . *.*.- . . . . .--.7 -.- -. t -. ..- .. 2.. - - . %-. .. - - .. ., •.4 - *. -%
4,tK ° '[ %-, ', " %" - - , - " 4 44" % 4 • '4- % . * '4 '"~~

t IIri "t , i , ' d .. ... .. . .... . . ....



II

[81 J. Bentley and T. Ottmann, M'Te complexity of manipulating hierarchi-

cally defined sets of rectangles", Carnegie-Mellon University, Computer

Science Department, Technical Report CMU-CS-81-109, April 1981.

(91 A. Dunlop, "SLIP: symbolic layout of integrated circuits with com-

paction", Computer Aided Design, Vol.10, No.6, November 1978, pp.

387-391.

[101 F. Ficken, The Simplez method of linear. programming, Holt, Rinehart

and Winston, New-York, 1961.

Ii] L. Guibas and J. Saxe, Problem 80-15, Journal of Algorithms, Vol.4, .

1983, pp. 177-181.

[12] C. Hauck, C. Bamji, J. Allen, "The Systematic Exploration of Pipelined

Array Multiplier Design", ICASSP, 1985.

[13] K. Hwang, Computer Arithmetic, John Wiley and Sons, New York, 1979.

[14] D. Johannsen, "Bristle Blocks: A Silicon Compiler", ACM IEEE 10'

Design Automation Conference, June 1979, pp. 310-313.

[151 G. Kedem and H. Watanabe, "Optimization techniques for IC layout

and compaction", Technical Report 117, Computer Science Department,

University of Rochester, September 1982.

[16] S. Kirkpatrick, C. Gelatt, Jr. and M. Vecchi, "Optimization by Simu-

lated Annealing", Science, V. 220, number 4598, May 1983, pp. 671-680.

[17] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart and Winston, New York, 1976 , pp. 74.

109

'.,



[18] C. Leiserson, F. Rose and J. Saxe, "Optimizing Synchronous Circuitry

by Retiming, Third Caltech Conference on VLSI, Pasadena, California,

March 1983.

[191 T. Lengauer, "Efficient Algorithms for the Constraint Generation for

Integrated Circuit Layout Compaction, Proceedings of the 9"' Workshop

on Graphtheoretic Concept in Computer Science, June 1983.

(201 T. Lengauer, "The complexity of compacting hierarchically specified lay-

outs of integrated circuits", Proceedings of the 23" Anaual Symposium

on Foundation.s of Computer Science, November 1982, pp. 358-368. 6:.

[21] B. Liskov, et al., CLU Reference Manua, Springer-Verlag, New York,1981. 
!:

(22] M. Matson, "Macromodeling and Optimisation of Digital MOS VLSI

Circuits", PhD. thesis, MIT, January 1985.

[23] S. McCormick, "EXCL: A Circuit Extractor for IC Designs", A CM IEEE

21' Design Automation Conference, Albuquerque, New Mexico, 1984,

pp. 616-623.

(24] E. McCreight, "Priority Search Trees", Xerox Corporation Palo Alto

Research Centers Technical Report, CSL-81-5, January 1982.

[25] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,

Menlo Park, California, 1980.

[26] J. Ousterhout, G. Hamarchi, R. Mayo, W. Scott and G. Taylor, "Magic:

A VLSI Layout System", ACM IEEE 21" Design Automation Confer-

ence, pp. 152-159.

110

.?.(..'...-'-'..p.... FIN.



[27] K. Pitman, "The Revised Maclisp Manual", Report TR-295, Laborarory

for Computer Science, MIT, June 1983.

[281 S. Sur, "Resizing in Automated VLSI Layout Design" S.M. thesis, MIT,

February. 1985.

[291 J. Suskind, J. Southhard and K. Crouch, "Generating Custom High

Performance VLSI Designs from Succint Algorithmic Descriptions" Pro-

ceedinga Conference on Advanced research in VLSI, January 1982.

(301 A. Vladimirescu, and S. Liu, "The Simulation of MOS Integrated Cir-

cuits Using SPICE2", Electronics Research Lab, University of California

Berkely, ERL Memo No. M80-7, February 1980.

(31] W. Wolf, "Two-Dimentional Compaction Strategies", PhD. thesis, Stan-

ford University, 1984.

[321 R. Zippel, "An Expert System for VLSI Design", IEEE International

Symposium on Circuits and Systems, 1983.

% .

111

.4

" " % "N -. ''.--. '' '\*' , '-...-.*.,..- ' " -,' '. . "-. . : . : . "... - . -. -*.*. % .i

- , , , ,. ,. , ,., ., , .. . , , ., ,. , . . ,,. , .. . .- ,,. ... .i.-.. -.



4 a zm i


