

S

& Sm Lts e

B I R N

ta_ e Y

»

"-.'\"s "~

P by e B e Ae e B D W A FuTAs aa¥ et KL e Vs

"“ =——-‘LQ s I 22
NI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS - 1963~ A

:’

(&)]
F——
W&

L s

= |||||

RO A Tl gt
“‘{".-"E(""‘P ""t
7

.,

AN '-

'h ;*\

SRR

.)\

Al

-.3’.-;

P N N OQONL I T

..............

AFOSR.TR. 8&-0 501 T &

(Lo} A Design by Example
™ Regutar Structure Generator ‘
0
ﬁ Cyrus S. Bamji
P
o
Technical Report 507
February 1985
lease;
Approved for public re
atstribution unlinited.
P
;.:::.._‘}
P,
Massachusetts Institute of Technology :f-}_;.\‘
Research Laboratory of Electronics -
Cambridge, Massachusetts 02139
\
& DTIC
(& ELECTE
‘_'J_'j AUG 12186
T
— 8
 casen- |

UNCLASSIFIED /7] y)
SECURITY CLASSIFICATION OF THIS PAGE .)) /7(/ ‘}/J—(
REPORT DOCUMENTATION PAGE
) 18 MEPOAT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
20 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
4 Approved for p
ublic release®
' 0. OECLASSIFICATION/DOWNGRADING SCHEDULE ’
distributionunlimited, J
4. PERFOAMING ORGANIZATION REPORT NUMBER(S) 3. MONITORING ORGANIZATION REPORT NUMBER(S)
. AFONR- TR -Bb-O0)
» 6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7e. NAME OF MONITORING ORGANIZATION
(If applicable) ~—~
' AT ATCSANE
: Ma s S 0 ech 1 :
. 6c. ADORESS (City. State and ZIP Code) 7b. ADDRESS (City, State end ZIP Code) o -

Building 410
Bolling AFB
Washington, DC 20332-6448

RLE Contract Reports
Cambridge, MA 02139

J
3 BGa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
" ORGANIZATION (11 applicebie)
S [FA\D0-%u~cooy.
L 8c. ADORESS (City, State and ZIP Code) 16. SOURCE OF FUNDING NOS.
Builld ing 410 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO.

: Bolling AFB Washington, DC 20332-6448

NO NO
J 31. TITLE (Inciude Security Classification) 61102F a 305 /B 3

"A Design By Example Regular Structure |Generator"

12. PEASONAL AUTHORA(S)
Cyrus S. Bamji

13a TYPE OF REPOAT 136. TIME COVERED 14. OATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

507Technical Report] From 10 FEBRVARY 1985 111
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identifty dy dlock numbder)
’ FI1ELD GROUP SUB. GR.

Delayed binding, Complete decoupling,

A Generation, VLSI systems, Macro abstraction.
¢ 19. ABSTRACT (Continue on reverse if necessary and identify by dlock numbder)
- This thesis investigates technical issues concerning the automated genera-
tion of highly regularVLSI circuit layouts (e.g. RAMs, PLAs, systolic arrays)
y that are crucial to the designability and realizability of large VLSI systems
The key is to determine the most profitable level of abstraction, which is
accomplished by the introduction of true macro abstraction, interface inher-

: itence, delayed binding, and the complete decoupling of procedural and graph-
ical design information. These abstraction mechanisms are implemented in the
. Regular Structure Generator, an operational layout generator with significant
. advantages over first genmeration layout tools. 1Its advantages are demonstra-
. ted by a pipelined array multiplier layout example. A leaf cell compactor
. that can make the RSG technology transportable is also investigated.
:\ 20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
: UNCLASSIFIEO/UNLIMITED [} samE as aer. G oTic usens O UNCLASSIFIED
\ 226 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
& (Inciude Area Code)

. H 2 Winso 202~-767-4
3 DD FORM 1473, 83 APR €DITION OF | JAN 73 1S OBSOLETE. UNCLASSIFIED
r. SECURITY CLASSIFICATION OF THIS PAGE
‘v

ST I T o N o T o N T O e NS R P S S N, ot .~'-‘*.~ T T T ey e L P I P I S NI I SR
5 LYy 2 X " .'01. . '-‘ -r'-' -“.-'-"d'.’ 1",.* .)v' N '.' .u".\\ \‘.3 '.‘-‘\s".\l‘.. = R A

i

A s Wa-—w ~ oA AR
f?- O r Of\?‘\‘,ﬂ-‘rrrﬁ RE A ’NH ,Ar“
T (\w- v . e e
RASON A N I'”";I" >0
x‘us techninng renart g«
;3'7"0 reg for auriin vr’ﬁ“' e IATAFR19)
Cistrihutior i5 uniicited, T
YATTHEN J. XERTER

nn\]"n jEVD"’ rhd is

Chief, Tech:; ical Information Division

A Design by Example
Regular Structure Generator

Cyrus S. Bamji

Technical Report 507

February 1985

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

This work has been supported in part by the U.S. Air Farce Oltice of Scientific Research Contract

F49620-84-C-0004.
{f;* Fi rCTE
ﬁ.'i i
:,-\ AUG 1 2 1986
AR AL SR SR TR T T AT AP A AR i R R R IR iR SR T ST N -.-,. - . S,
3o 5 R R R "-'t" "" ¢ o it o i Y NN 00, "N" Lo n OO "‘" *-l" TR

3
"b? |
e

a0
&

[RAARNS
AP

L4

PN
" e,
‘.

-

o

%y

-‘:.

PR A
.

: A DESIGN BY EXAMPLE ‘
) REGULAR STRUCTURE GENERATOR Ay
2 by :
Cyrus S. Bamji

Submitted to the
d Department of Electrical Engineering and Computer Science %
on February 28, 1985 in partial fulfillment of the requirements o
for the degree of Master of Science. -

| Abstract

This thesis investigates technical issues concerning the automated gen-
eration of highly regular VLSI circuit layouts (e.g. RAMs, PLAs, systolic
b, arrays) that are crucial to the designability and realizability of large VLSI <,
' systems. The key is to determine the most profitable level of abstraction,

which is accomplished by the introduction of true macro abstraction, snter-

face inheritance, delayed binding, and the complete decoupling of procedural
4 and graphical design information. These abstraction mechanisms are imple-
mented in the Regular Structure Generator, an operational layout generator
with significant advantages over first generation layout tools. Its advantages
are demonstrated by a pipelined array multiplier layout example. A leaf cell
compactor that can make the RSG technology transportable is also investi-

gated.
AN

Thesis Supervisor: Jonathan Allen
Title: Professor of Electrical Engineering and Computer Science

oINS

ae s P)

R & v 5 v e
.

A't'-‘.'r'
@ NN

s %2 ats ‘f“'

XN

U A N}
s y

-

............................
..................

o v
LR

Acknowledgments

- "o et Y
. v e s .
e A

N I would like to thank Professor Jonathan Allen whose insight and guidance ;r.._
*

have helped put this work in the right perspective and have given it the right

o5

’ direction. It has been my privilege to work with him.
I thank Charles Hauck for substantially contributing to the form as well
3 as the content of this thesis. I have learned a great deal from our teamwork.

p I would like to thank Robert Armstrong, Don Baltus, Paul Bassett and

RO

Steven McCormick for their many ideas and often needed help.

e

I especially want to thank my parents whose love and support have been

v .
Fas ."n‘a

X the backbone of my education.

This work was supported by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under Contract Number

Selpa e

AFOSR F49620-84-C-0004

A
PO @ 11

Y,
P
" l’.‘

N
0
|
|
L AR)

» 8 & a 8
Lo L
-’g’l.". S e N

’ ST
’4:‘" Y4 4 A

’, ’1.

e s s

.D
i
b

Contents

1 Introduction 8

1.1 Motivation e e e 8

1.2 Comparison with other layout generators 11

1.2.1 Module generators and Silicon Compilers 11

122 RSGasasupersetof HPLA............... 13

1.2.3 The description file verses the interface table. 16

g 1.3 Thesisorganizationt 17
2 Interfaces 18
21 CellsandInstances 18

2.2 Interface Definition 19

2.3 Advantagesof usinginterfaces. 22

2.4 The Interface Table. e e e e e e e 24

2.5 Interface Inheritance Relations 25

j 2.6 An efficient representation for orientations 28
’ 2.6.1 Inverting two orientations. 31
2.6.2 Composing two orientations 32

3 The Algorithm 36

3.1 Algorithm Overview 36 v

3.2 Advantagesofthemethed 39 :
3.3
3.4 Connectivity Graphs in Greater Detail

Limitations i it i ittt

The Language
4.1 Interfacing the parameter file to the design file 49

42 Macrosand Functions v v i v v v .. 50 S
4.3

DataStructures i e .,

4.4 Primitive operators for connectivity graphs 55 ""

44.1 mk.instanceoperator.,
‘ 4.4.2
: 443 mkcelloperator 56

connect operator

45 Implementation

Example: Pipelined Array Multipliers

Compaction
6.1

Motivation i i i i it e e e e e

_\ 6.2 Definingacostfunction 76 o
2 6.3 Constraint Representation 78
: 6.4 Experimentsin compaction 83 b
6.4.1 Constraint gemeration 84 -.
6.4.2 Solving the Constraint System 89 \
’ 6.4.3 Dealing with layer Interaction 91 ?‘:

6.5 Summary and new directions

7 Conclusion

L PRI RN
RN B4
WIIINT IS

P
.........

e T e R T e e P e Rttt e SR
{ ‘N' LA '..' ‘. PR e e X RO I I I R R >
R R .
o ¥ - y

il o K

Y FPEEA AL, AT WA P AT O

Appendices

A

B O O0Ow

BNF Grammar
Multiplier Design File . .
Maultiplier Parameter File
Adder Cell Schematic . .
Adder Cell Layout

100
103
105
107

- -

ST

=2

X |

' v ')f":\

ol

a
5,
»

e 8 _0_ s
R
\ ‘v{‘v 7y 4 A 4

XK o

A,

AR

?
»

LR
.
D

S
)

7

IR
L
l'&' '- l"" /7

£y

AN
DO0OS

. N
¢

)
X

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

RSG Layout Generation e e e e e e e e e 10
Comparison with other layout generators. 13
Instanceof cell Bincell A. 19
Interface between two cells. e e e e 21
Different Interfaces between twocells. 25
Interface Inheritance 26
Coordinate mapping for the 4 basic rotations 35
RSGalgorithm 37
Graph and Layout Equivalents 37
Graph Connectivity Requirements 39
Different routing configurations 41
Interface ambiguity in undirected graphs. 43
Layout ambiguity for undirected Graphs. 45
Resolving layout ambiguity with a directed graph. 46
Environment lookup. oL 51
Celldefinition Data Structure. 53
Instance Data Structure. 54

'_'.. X

UL TAN
Y
'“ AN

Pl o IR

O

- % R

. .

; 4.4 Node Data Structure. 54 'i
! 4.5 mk.instanceoperator. 56
y Y
%) 46 connectoperator. 57 2’
: 4.7 mkcelloperator. 58 3
y
1: 5.1 Combinational Baugh-Wooley Multiplier 63 S
() T
¥ 5.2 (a) Bit-Systolic Multiplier; (b) Pipelined Multiplier 64 ;
5.3 Multiplier Cell Maskings 66 =
5.4 Design File for a Systolic Multiplier 68 i
Cd "
'; 5.5 Layout File for a Systolic Multiplier 69 2
W A
b 5.6 Bit-Systolic Multiplier Layout 70
Ef 6.1 Defining a cost funetion., 7 X
;I 6.2 Tradeoff between pitches. 79 '
. 6.3 Constraint representation. 82 \
)~ 6.4 Constraint for hiddenedges 86
: 6.5 FragmentedLayout. 86 L\C.
~ 9
. 6.6 Constraint between partially hidden edge 88 '
W
. 6.7 Correct scan linemethod 89
g 6.8 Worseningof alayoutJog 90 ‘;:':
» 6.9 Contact layer Expanded 92 ‘
)
¢ ::\
3 :
J -
1 -
— ’q
: .
p! -:'
» Y
N
7
)

Chapter 1

Introduction

1.1 Motivation

Circuit designs with highly regular and repetitive layouts are an effec-
tive solution to the VLSI design bottleneck, and therefore occur quite often
in large VLSI systems. Familiar examples of regular circuit structures are
RAMs, ROMs, PLAs, and array multipliers. In addition, recognition of the
importance of regularity in VLSI systems has given rise to a large and con-
tinually growing collection of new regular structures for applications in signal
processing, image processing, data structures, and CAD, to name a few. Since
these designs are computationally powerful and widely applicable, there is a
great demand for circuit design tools that make these structures generally ac-
cessible. This thesis describes a CAD tool, the Regular Structure Generator
(RSG), that helps meet this demand by performing automatic generation of
regular structure layouts and providing the means to efficiently capture, in
all their richness and variety, most practical regular circuit designs.

Despite the uniform and repetitive appearance of their layouts, effective

8

Y
L

PSS

LRYNER RN

.'...'..."-" - -";

lﬂ. 1

. 9 8 &0

. 0
el

P I
e

A,

PN
(s e

~ee
PV,

'l"v/‘r :l

W o LA

r."r""""‘

by

. '.'c"l" .
PAD

..........

regular structure circuits are not simply bland arrays of identical, abutting
cells. In practice, there is always some degree of complexity along the edges of
a regular array, and each design instance must be parametrically personalized
with respect to proBlem size and functionality. This requires the placement of
a variety of cell maskings that implement such options as transistor and bus
sizing, cell interfacing, clock assignment, and functional encoding — a task
which cannot be accomplished by the simple array generating commands
found in graphics editors. Although regularity does permit most regular
structures to be personalized in an algorithmic manner, a high degree of
flexibility is still required in the placement and orientation of the cells and
cell maskings. Insofar as first generation VLSI layout tools lack this high
degree of flexibility, there is an opportunity for developing more advanced

module generators that fulfill this need.

The RSG was developed with this approach to regular circuit layout in
mind. The input language used for the procedural specification of circuit
architecture is a subset of Lisp. Consequently, abstraction mechanisms are
available to support a highly functional set of primitives for defining regular
structures and evaluating the complex conditionals required by personaliza-
tion and edge effects. Personalization is further supported by the ability to
arbitrarily place and orient cells according to interfaces defined-by-ezample
in the graphical domain. All design information is efficiently partitioned into
procedural and graphical form.

A circuit layout is generated from the following inputs (Figure 1.1): a
design file, which is a parameterized, procedural description of the archi-
tecture; a layout file, which is a graphical specification of cell layouts and

interfaces; and a parameter file, which provides the size and functional speci-

9

X

XA
'h..\ o

s's

rr NN) A

S "- .\.:l' ‘-“

‘./'.

‘l' -r' :

[\ !
o (%t
' N,
y W
p Layout
File ;
5 ;
4 .
K L o
b Design Parameter e
File RSG . File .
[I 3
N Circuit “t
) Layout <
P
A‘
Figure 1.1: RSG Layout Generation ,-E
) Y
* Q
fications for the particular case. By completely decoupling the graphical and il
2 procedural domains, a level of modularity is obtained which achieves local S
! o
efficiency in layout generation, and globai efficiency in the management of ;:‘{
new architectures, layouts, and interfaces to other CAD tools. 6
. The RSG also supports macro abstraction, i.e. the specification of macro- :',':
: :-(.
: cells as interconnections of smaller cells whose binding to actual layouts can)
: be delayed to any desired time. In addition, interface inheritance relations Y
v provide a procedural means for defining interfaces between any two macro- o8
J ."‘-
! cells: a new interface between two macrocells can he computed from any legal f
interface between a subcell in the first macrocell and a subcell in the second. ;
As a result, macrocells can be used to specify even more compiex cells in an s
X entirely procedural manner with no need for additional layout. u-}‘
. ..\
y At this stage of the discussion, all of the RSG’s functionality appears to ; \
exist in other layout generators. For instance, procedural specification of ey
&,
p circuit layouts is as old as silicon compilation itself, and essentially defines it. E" j
v »,
! The novelty of the RSG is not its use of procedural specification, but rather S 5
10 R
’\
] i
: >
e
[
e S S R L N R T N e e e e T

WM G E TRV ALiacA

the level of abstraction at which it is used. Failure to choose an optimal

level of abstraction complicates the user interface, and forces the designér
to concentrate as much on the internal constraints of the generator as on
the functionality of the circuit being designed. Examples of this are layout
generators that require placement of cells by strict abutment, or that do not
support true hierarchical macro abstraction.

The significant contribution of the RSG is efficiency, not computability,
of design. That is, the RSG does not produce any circuit layouts which,
given unlimited effort, could not be produced by other layout generators.
The result of this efficiency, however, is a tool that performs well in practice,

not just in principle, in a realistic VLSI design setting.

1.2 Comparison with other layout generators

1.2.1 Module generators and Silicon Compilers

Specialized VLSI module generators produce layouts of a particular ar-
chitecture to implement a specific logic function such as PLAs, ROMs, or
Weinberger arrays. These module generators produce la&outs of a specific
style of implementation in a specific technology. For example a PLA gener-
ator might generate PLA’s with a standard NOR/NOR architecture, imple-

mented with CMOS precharged gates. Such specialized module generators
are capable of generating highly optimized layouts within the restricted class :;:.'-
'

they are designed for. This is because these generators can incorporate spe- .
. . . » » * ~

cific knowledge about the details of their particular implementation. For P
‘ . DS

instance a PLA generator which incorporates knowledge about the particu- ;ﬁ‘-
11 ::::

-

-3

<

...... e
e it e o A S S L L e
» . e e e e e e

MRS

A T X T IV

4

ESC)
e 5

U

) lar process technology and type of circuitry used can be made to size power

busses and transistors according to some speed and power criteria. The dis- -

’ advantage of these specialized module generators is that their scope is limited .-E
: to the applicability of the specific function they implement and to the specific :

process technology they use. Other module generators such as HPLA also i

: " generate a single architecture but allow freedom in the implementation and :
choice of technology. All of these module generators take as their input a "
' configuration specification (in the case of a PLA this would be the number A
. of inputs, outputs, product terms and the truth table) and not a high level ;
E functional specification, or an architecture specification because functionality :_.
y of the output layout is implicit in the single architecture they implement. %
N Silicon compilers start with a functional specification as their input. How- ;'.‘
ever current silicon compilers are not capable of determining and implement- ‘-

1 ing the optimal architecture for a given functional specification and tech- :
nology. These programs use a single canonical architecture into which most Ty

functional specifications can be compiled to implement all functional specifi- ~:E

cations. Their success depends on how well the canonical architecture they .,'

- use is suited to the functional specification at hand. Macpitts(29] uses a data o3
x path implemented with registers, adders, and shifters, and a control path ..f‘:

implemented with a Weinberger array as the canonical architecture. While E

such an architecture may be suited for some applications it clearly is not NS

suited for applications in signal processing which require an efficient imple- ;

_ mentation for multiplications. Hence even if the program succeeds in keeping ’”

the transistor density high by packing a lot of circuitry in a small area, the

E functional density measured by how much silicon it takes to implement a ;:i

: given functionality is low. This is due to the inappropriate implementation \

12 N

{.,\

R

\
& ': & '.:‘.- AL A ARS R R I R '.:_:.-_::_:,—_:,-_:,- P R e e e e e e e e T R L, e e e e A s

- ramrnwﬂrwwmmmm,w
. ? ’ Lot At b1 RASK AN

3
Generality Efficiency .:: '
1 Canonical Multiple < 1 Architecture ;

Architecture Architectures per Function ":':.,

| 1 Framework - '.'7«:

o Macpitts « RSG o HPLA([6] L
e Bristle blocks(14] e Multiplier Gen.|5) '%
o F.P. ALU Gen.[4] Eéﬁ

. oK

Figure 1.2: Comparison with other layout generators. —
architecture where many more transistors are required than would be the E‘
case with a suitable architecture. Early versions of Macpitts required about }“

5 times the area than would be the case for layouts generated by hand.

Unlike specialized modt;le generators and today’s silicon compilers the E;
RSG can generate many different architectures with just one framework. By -
matching the architecture to the functionality a level of generality greater | '
than that of s?ecialized generators can be achieved without the loss of effi- ;
ciency incun;d in current silicon compilers by a mismatched target architec- ','1

ture. Another big difference between silicon compilers and the RSG is that

silicon compilers start with a function description of the problem whereas the ' ._:
RSG starts with user-defined primitive cells and cell connectivity information 2
(as shown in Figure 1.1). Figure 1.2 shows how the RSG is moving toward 2
greater generality than specialized compilers without the loss of efficiency ::
incurred in todays silicon compilers. E.;
&.:f
1.2.2 RSG as a superset of HPLA R
N
LY
N

The RSG expands the scope of HPLA by allowing many different archi-

13

tectures to be generated with the same benefits as in the case of HPLA, but
with just one framework. Though many of the features of the RSG can be
explained and justified independently of HPLA, HPLA ideas have inspired
and motivated the design of the RSG. HPLA does not support many of the
key features of the RSG such as macro abstraction, inheritance and macro
cell abstraction. Also the algorithms and software techniques used in the
RSG are totally different from those used in HPLA. HPLA uses a cell reloca-
tion scheme whereas the RSG uses interfaces and an interface table. However
both the RSG and HPLA use the idea that adjacent (primitive) cells in the
final layout interface in the same way as they do in the sample layout. Hence
in both programs the (primitive) cell definitions and spacing parameters are

extracted from a sample layout.

In HPLA the sawaple layout was an actuai assembled PLA and hence had
the same architecture as the final layout. This constraint that the sample
layout be a fully assembled PLA is actually superfluous. Using the same
methods as those used in HPLA (i.e. relocation) it is possible to achieve the
same results from a sample layout consisting of the PLA cells with the only
other constraint being that all possible interfaces that might occur in the
final layout be present in the sample layout. The fact that the sample layout
was a two input, two output, two product term PLA was simply a way to

ensure that all the required cells and interfaces between them be present in

the sample layout because the architectural specification for PLAs is already

hard coded in the HPLA prbgram itself and is not extracted from the sample

layout.

In the RSG this constraint is relaxed. This not only reduces the size and

complexity of the sample layout, but it also allows the same sample layout

14

BN v Y Y

-

\
NN S

to be used in output layouts of various different architectures because the
implicit architecture always present in the sample layout does not constrain
the architecture of the final layout. The sample layout in HPLA was actually
larger than necessary and contained redundant information. For example
the sample layout for HPLA contained 2 (identical) instances of the and-sq
connect-ao interface when only one was required. In so doing it increased
the number of instances of and-sq and connect-ao making the sample layout
larger than necessary. The cells in many PLA sample layouts can alsc be used
to generate other layouts besides PLAs such as decoders and multiplexors
(decoders can be built from an AND plane with appropriate output buffers).
Hence requiring that the sample layout look like the finished product is not
only an unnecessary restriction it also reduces the scope within which any

given sample layout may be used.

The method (relocation) HPLA uses to generate new cells does not eas-
ily lend itself to cell hierarchy. This did not matter in HPLA because the
architecture that HPLA generates (i.e. the architecture for standard PLAs)
does not make use of cell hierarchy. Making use of cell hierarchy entails gen-
erating a macro cell from the primitive cells in the sample layout replicated
according to some parameter, and then calling the new macro cell in an even
higher order cell several times according to some other parameter. In the
relocation scheme the cell definitions for subcells of a higher order cell are
actually modified to suit the needs of the calling cell. This worked fine in
HPLA because there was only one calling cell, i.e. the complete layout of the
PLA. In a scheme which uses hierarchy there may be many higher order cells
(which can possibly be called in even higher order cells), that call the same
subcell. Each of these cells may request that the called subcell be modified in

15

Y ~ g

b |F

RN RS
LA »“

AR S
NI
LA

some particular fashion to suit its specific needs. These modification requests
can be conflicting. One way to solve the problem would be to create a copy of
the subcell for each of the calling cells. Hence each calling cell can modify its
copy of the subcell without conflicting with tﬁe modifications requested by
the other calling cells. The RSG however uses a simpler and more powerful

technique where this problem does not occur.

1.2.3 The description file verses the interface table.

Before HPLA can make a PLA from a sample layout it must first compile
the sample into a special file called the description file. This description file
contains the definition of all the key cells where the cell definitions have been
modified as prescribed by the relocation scheme. It also contains the sp@cing
parameters (pitches) for the various cells. In HPLA, for the users convenience,
the process of making a PLA is divided into three parts each of which occur
at different times in the design cycle. This division of the generation process
allows delayed binding of the specifics of the PLA encoding until after the
PLA is fully installed into the rest of a layout. The description file is accessed
at each of these three phases, hence it makes sense to create the description
file just once and refer to it in each of the three phases of the PLA design.

In the case of the RSG the data structure corresponding to the description
file would be the interface table. However since the RSG produces the whole
layout all at once, it does not make sense to store the data structure into a
file and load it back immediately into the workspace and use it during just

one session. Therefore no temporary file is created.

The RSG can generate any PLA that HPLA can. It can also generate

16

AaCAACR A A M A AL A S A S A ki

; more complex PLAs such as PLAs with folded rows or columns. However
in HPLA the division of the generation process into three parts facilitates
recoding the PLA (or postponing its encoding) and speeds up the plotting of
the chip by leaving out the PLA’s crosspoints until require&, making HPLA

L ErrF

a little more convenient to use.

1.3 Thesis organization

N e Chapter 2 lays down the mathematical foundations of interfaces, the

method the RSG uses for local placement constraints.
o Chapter 3 gives the overall RSG algorithm .

o Chapter 4 Describes the Language for specifying design files and de-
scribes in more detail the specifics of the underlying data structures.

o Chapter 5 Describes the design of a class of pipelined multipliers using
the RSG.

i LS, A

o Chapter 6 Is concerned with issues relating to building a special type

of compactor for use with the RSG.

Each chapter is organized so that the first Sections lay down the concept and
! the foundations of the method and the last sections go into the details of

some important facet of the problem.

=W N NN

~

17

»

L%

1"4. -
NI

YA
.........................

........

’ Ay

m kB W 4

Chapter 2

Interfaces

2.1 Cells and Instances

The RSG requires user-defined cells to hierarchically build larger cells. A
cell A consists of objects whose locations in the cell are defined in terms of
a local coordinate system C, with origin S,. The objects in A can be boxes
of various layers, points, and instances of other cells. An instance of a cell
B is the triplet (L], O}, (cell definition)) where L} is the point of call of
the cell B, O] is the orientation in the call of B and (cell definition) is a
pointer to the cell definition of B (the superscript " means that the location
or orientation is relative to a calling coordinate system). The effect of having
an instance of B in A with point of call L; and orientation O] is that of
performing the isometry! O] on B (O is an isometry that leaves S, the
origin of the coordinate system within B unchanged), placing the origin S}
of B at location L] within the coordinate system of A, and finally adding to

!An isometry is either a rotation or a reficction.

18

o B L IS WY ~ e "
I ¥ ."'\‘.-.‘ .“. -

SRS ST SN

........... b Al Gul S A bl Sad et e el e Mo an s aoge o,
........ AR A el e tin i bt g ja At 2l le ST ST

AR A2 S e 2 A Alac b

ey

Figure 2.1: Instance of cell B in cell A.

A the collection of objects in B (see Figure 2.1).

2.2 Interface Definition

A key notion in the RSG is the interface. If instances of cells A and B
(the cells A and B do not necessarily have to be distinct) are to be called

within the same coordinate system, then cells A and B have an interface

between them. The interface between two cells A and B is the ordered pair
It = (Vass Oas) (Iap # Ita) Where V,, is the interface vector and O, is the

interface orientation. V,, is the vector whose starting point is the point of

call of A and whose endpoint is the point of call of B, if the instance of A is

held at orientation north (identity transform). O,, is the orientation that B

would have if the instance of A were held at orientation north.

Treating the orientations as operators with “o” being the operator com-

19

position rule we have?:

Ou = (0)) 0 O | (2.1)
Va = (07)7(L; - L) (2.2)

The interface vector V,, and interface orientation O,, are obtained by
deskewing the relative orientation of B i.e. O} and the vector (Lj — L}) by
the inverse orientation of A (Of)}.

Figure 2.2(a) shows an instance of A and an instance of B called together
in a same higher order cell (characterized in the Figure 2.2(a) by it’s coordi-
nate system (O, 1, 7)). The point of call L] (respectively L}) of A (respectively
B) is the location where the origin of A {respectively B) is placed in the call-
ing coordinate system (O, 1,). In order to obtain the interface [;, between A
and B we must first perform an isometry on the calling ccll (the one with the
(0,1,7) coordinate system in Figure 2.2(b)) such that the new orientation
for the instance of A will be North. Since A is initially oriented South the
calling cell must be reoriented by South™! = South (because 180° = —180°)
so that 4 will ultimately be oriented North. Figure 2.2(b) shows the result
of the transformation of the calling cell. The interface vector is now the vec-
tor whose starting point is at the new point of call A and whose endpoint
is at the new point of call of B. The coordinates of the interface vector are
computed in terms of the new basis (7', 5') which is the same as the old basis
(3,7) of the calling cell before the transformation was performed. The inter-
face orientation is now the the new orientation of B after the transformation
was performed.

The existence of an J,, interface between A and B automatically gives

30-1 is defined by 020 0 = O 0 0~! = Identity.

20

4

PR

Teva s a &

Ko Ta¥a'n o

o T e gtagh

- &

v
.
.
‘
J
N

A south
B tast s;
S, A/
(a) i /
Lu

0, = South

r
(d) L vi S,
S g/ 8 west

A north

j’

Vi=intearface vector

westsinterface orientation

Figure 2.2: Interface between two cells.

3

rise to an interface I, between B and A. The expression for the Iy, interface

can be obtained from equations 2.1 and 2.2.

Ok = O;'c0,
(071 o Oy)!
oz

Ob-l(Lo - Lb)
(05" 5 (0u 0 07)(Le - L)
(050 0,) 0 O7')(La — Ls)
(Ora 0 07%)(La = Ls)
(03 2 0;")(La - L)

=04 (071(Ls = La))
-0 Va

Therefore Ijy = (Via, Osa) = (=03 Vass O;bl')'

2.3 Advantages of using interfaces

Interfaces are a natural way of defining the relative placement and orien-
tation between instances of cells. Hence knowing the calling information of
a cell Ain a cell C and knowing the interface between A and B it is pos-
sible to determine the calling information of B in C. The RSG allows the
user to specify the primitive cells and interfaces between them graphically,
by providing a layout file which will henceforth be referred to as the sample
layout. The sample layout contains the definitions of all primitive cells as
well as interfaces between them. An interface between cells A and B can be

defined by calling A and B together in a higher order cell C with the appro-

22

hMCIRIEINCIL AR aAC e e A A g
»

priate relative placement and orientation between them. In practice when
new cells are created by the layout designer they are assembled together in
order to verify that the different new cells that have been designed, do in
fact interface properly to each other. The simple fact of assembling the cells
together requires calling them both in one cell (same coordinate system) and
therefore automatically defines an interface between them. Hence interfaces
can be designed at almost no extra cost to the designer.

By virtue of the design-by-ezample feature of the RSG, the relative place-

ment of neighboring cells in the final layout is such that each interface in the

final layout is an instance of an interface in the sample layout.

Since the relative placement of cells in the final layout is performed using
interfaces between cells and not by using the sizes and shapes of the bounding
boxes of those cells, the cells can be designcd according ¢o their functional
boundary constraints and without regard to abutment constraints. Not only
does this make cells easier to design and design rule check (because instances
of cells can overlap, each cell can be made design rule correct?), the fact that
cells are not cut at artificial boundaries helps reduce the proliferation of cells
of essentially the same functionality but different abutment constraints. Us-
ing tnterfaces also allows cells to be easily encoded by superimposing several
cells in order to modify the functionality of a basic cell. This too helps in
reducing the proliferation of different cell types since the number of different
encoding configurations is roughly exponential in the number of independent
encoding decisions.

Cell encoding can also simplify the personalization process since instead

of combining all the encoding decisions together to select a single cell of the

3Some hierarchical design rul. checkers require that instances do not overlap.

23

appropriate type we can use each independent encoding decision to perform
a simple encoding masking of one basic cell. An encoding cell may lie well
within the bounding box of the cell it encodes and hence placement by abut-
ment would be cumbersome since it would cause a proliferation of (spacing)
cells that have nothing to do with functionality. By simply specifying an
interface the relative orientation of the cells as well as whether the cells are
side by side, one on top of the other, or one inside the other, is handled

automatically.

2.4 The Interface Table

The RSG program maintains an interface table of all legal (user specified)
interfaces hetween cells. This table is first initialized with interfaces from the
sample layout and can be augmented as new cells are created by the system.
Since there can be several different legal interfaces between two cells there
can be a family of legal interfaces between two cells A and B. Figure 2.3
shows two different possible tnterfaces for a pair of cells 4, B.

If the set of legal interfaces between any two cells is indexed over the

integers then the tnterface table can be described as a mapping from triplets:
((cellnamel), (cellname2), (interface indez number)) (2.5)

to interfaces:
((interface vector), (interface orientation)) (2.6)

If I,, is an interface in the interface table, then Iy, the corresponding interface

between B and A, is also loaded in the interface table. Hence knowing the

24

I.-‘...-n '("* '.1"_-."_. B e IR . T T TP I St I T S S
A S AR

. 'g‘ S REA S e e \...-.~.-..~~...q. -
- ot . - c e e KA . U A " » ™
e G o SR T ety SR

Sy

]

G

A=Y,

L o 8 g A §

R

I AL AN |
Chm o

.

R
»

A

-

Sl P

‘e
YO

LA}

. ” ". ':- N
g

ey

A R
Y XA
""'&‘o"b‘r

T - x
-'l"'b‘

. s » .
' NN R

il
l AN

-~

el
A 44

-

n

z;ﬁéy i

ey

P
F

g GO 70N O PO O VAR YOS ¥ i . & TR R O P R Py ™)

3 ey

Visinterface vector
vt
Interface#l _/ west=interface orientation
1] 8 west
A north
8 3{"‘“ V2sinterface vector
southsinterface orientation
Interface#2 vz N
A north

Figure 2.3: Different Interfaces between two cells.

placement of A one can determine the placement of B and vice versa. This
bilaterality of the interface table is very important. We will see in section 3.4
that it may not be possible to determine in advance which of the two instances
A or B has a known placement and which one will have its placement derived

from the other.

2.5 Interface Inheritance Relations

In order for any cell to be used in the RSG it must have an interface with
some other cell, otherwise there is no way to place it. When new cells are
built up hierarchically by the system, in order to take full advantage of cell
hierarchy, interfaces for new cells can be specified m terms of existing ones.

In this way cells built up by the system can be used to build even larger cells

25

SECBTATAID A -‘_p._... ._;_.-.‘-._ e . " TR LS ..."__.-..--'-).._--_--‘.‘_-._.-._‘.‘.-..'.‘_ Ca TRt a T et AT AT ..,-. LFSLNY

\\5‘ -t T SO s S A Y Ay \".".""".x\\x

- ’. oot ¥l ‘..." W, o .Q’ﬂdhf

-

RTINSy

=4

-

. o -

. Y s & =
_“&'\f\’ i.-' L,

Y] - o
MY NS

B

N

PAARANN

-i*;&si\"

R X 3

R

lcd
new

A Iab
existing

Figure 2.4: Interface Inheritance

in exactly the same fashion as were the primitive cells of the sample layout.

If A (respectively B) is a subcell of a new cell C (respectively D), it is
then possible to define a new interface I.4 between C and D in terms of
an existing interface [,, between A and B. I is the interface that C and
D would inherst if the subcells A and B within C and D were placed and
oriented with interface I, (see Figure 2.4). The RSG allows the user to
define a new interface (and load it into the interface table) by specifying
the two cells C and D, the instances of A and B in C and D, the interface
number of the interface between A and B and an interface number for the
newly defined interface between C and D.

The rest of this section is concerned with finding an algebraic expression
for the interface vector and interface orientation of the new interface Iq
between C and D in terms of the existing interface I,;, between A and B and
the calling parameters of the instances of A and B in C and D. Let (L, OF),
(respectively (L{%, O;)) the calling information of A (respectively B) in C
(respectively D) and (Va,, Oas) (respectively (Veds Oca)) be the interface vector

4The superseripts "¢ (respectively "¢) mean that the locations and orientations are relative

to the coordinate system of C (respectively D).

26

TV IEYET T wIWY

vt

S e ¢

o Yl ™y

- o

{

i

and interface orientation of I,, (respectively I;). Also let L] (respectively

1, L7, L;) be the location of the origin of A (respectively B,C,D) in the

implicit calling coordinate system (i.e. as they appear in Figure 2.4) and
let OF (respectively O}, 07, 07) be the orientation of A (respectively B,C, D)
in the implicit calling coordinate system (which can be for argument sake

considered to be the absolute coordinate system) then:

O, =007 - (2.7
Ly=L,+O0LY (2.8)
and
0; = 0500 (2.9)
Ly =Ly+ 05 (2.10)

Replacing 2.7 and 2.9 in 2.1 we get:

Ow = (07)'0 0}
= (070 0) 000 Off
= (0F)"'o(01)to0f0Of
Owo (OF)"! = (05)" (0;)™' = 0;
0Fs0us (O = (01
= Oy
So
Ocd = OF 0 Ogy 0 (07%) ! (2.11)

Replacing equations 2.8 and 2.10 in equation 2.2 we get:

27

N R T
B s e]

’. '}Fﬁ‘f? -

] 14 ‘l’ - 'y Al "‘:'-v

PN

%y

RS

3

D .;;'

-
e % Y, o

R0’

— e T

Va = (07)7'(L; - L)
= (09)7'(Ly+ 0Ly - L; - O;LY)
Ly-L7 = OVu-OLLP+0Lr

(00 HLa- L} = ((05)™' 0 Of)Vas = ((02)~* 0 OZ)Li* + (02)~ (OILT)

Using equations 2.2 and 2.1 with different subscripts, equation 2.7 and
the previous result we get: A
Va = (07)7(Ly- L7)
= ((07)7' 0 Op)Vas = ((07)7' 0 O L + ((07) ' 0 Og) L (2:12)
= OiVa = (0L + L7 | |

2.6 An efficient representation for orientations

Whereas tnterface vectors can be straightforwardly represented by a pair
of real numbers, orientations require a slightly more complex data structure.
The purpose of this section is to find an efficient representation for orien-
tations in terms of memory, computation and ease of manipulation. Recall
from Section 2.1 that calling an instance of B in A consists of performing an
affine isometry to the objects in B and then adding the collection of objects
in B to A. A layout editor needs to be able to perform affine isometries on
the various cells. If A is called in a cell B which is in turn called in a higher
order cell C then two affine isometries get applied to the objects in A. The
first isometry I, corresponds to the calling parameters of A in B and the
second isometry [, corresponds to the calling parameters of B in C. For an
object Ob in A the corresponding component in C would be I,(I;(0b)). I, is
first performed on Ob and then [, is performed on the resulting object.

Another way to perform isometry composition is to first compose the

two operators and then apply the resulting operator to the object. Since

28 .

.....

b .'f.'.'

Ll LES N
f \‘;\'0

-
VAL S e

o

we
PO
o
"I

13
-~

?.-. o

.
72

L(1,(0b)) = (I o ,)(OW) it is possible to first compute (Iy o I,) and then
apply this new transformation to Ob. This method of first computing the

Y, O vy

resulting isometry and then applying it to the object can be computationally E:
more efficient as the resulting isometry is computed only once and hence ':
effort is not duplicated over the various objects on which this transformation A
is to be performed. :N
In layout editors the preferred way of composing operators could be
I,(1,(Ob)) because this method is easier to implement 3. If there is already a N
method for performing isometry on objects then, since the result of applying ~
an isometry to an object is an object of the same type no extra mechanism ;
is needed to successively perform several isometries on the object. In the E
case where only a finite set of legal isometries are implemented this method :
can lead to more efficient methods for applying single isometries to objects. i
For example one could index the set of available isometries over the integers. :
In that case, in order to apply a isometry known by its index number to a _ !
given object, one could use the index number to lookup a table of procedures : %
(there is one procedure per isometry) to get the procedure that implements ~
that particular isometry and then apply it to the object®. This method elim- N
inates the interpretive overhead associated with the decoding of the isometry E»
representation. For example isometries can be represented as matrices, and :
a program that can apply any matrix transform to an object would be slawer i
than one that performs an unique fixed linear operation. However this in- %

dexed representation does not lend itself to symbolic composition. If the

s
v i 'y 4,

number of implemented indexes is n then (assuming that the set of imple-

s .c' *ef

SHowever HPEDIT uses the I; o I; method.
SHPEDIT uses this method.

e e W e

mented isometries is closed under isometry composition rules) knowing the
index of I; and the index of I, in order to compute the index of ([0 ;) a
mapping table from n + n to n integers is required. Another table from n to
n integers is also required to invert the isometries (assuming the set is closed
under inversion). Hence this method becomes cumbersome in the case where
there is a large number of implemented isometries. It also requires a large
number of procedures; one for each implemented isometry.

In the RSG at times it is necessary to obtain expressions for new trans-
formations and therefore operations for symbolic composition and inversion
of transformations are required. Recall equations 2.11 and 2.12 from Sec-
tion 2.5. In order to compute the new inherited interface vector and interface
orientation, we need to obtain expressions for the composition and inversion
of orientations. It is therefore necessary to have a representation for orienta-
tions that allows them to be easily applied as operators and also allows them
to be easily composed and inverted.

One possible way to implement all orientations is to use 2 » 2 matrices of
real numbers. 2 * 2 matrices of real numbers can however represent all the
different linear transformations in the vectorial plane out of which isometries
(which are orientations) are only a very small subset. As a result they require
storage and manipulation of much more information than is needed. Matrix
composition and inversions are also relatively costly computationally.

There are more compact representations for orientations. We can rep-
resent all the vectorial rotations in the plane with a real number between
(0,2x[. The rotation can be expressed by the complex number ¢/ where 5
belongs to [0,27(and 12 = —1. Orientations are either rotations about the

origin or reflections about an axis passing through the origin. All the reflec-

30

(RS

AN

4 s
oy
y & 8 &

5”"" v

..,..
n

SELIINS

- g e o e

"-I;-l d

¢
L4
¢
v

tions about an axis passing though the origin can, however, be generated by

composing the reflection about the y axis (or any other axis passing though
the origin) with a rotation about the origin. If M is the interval [0,2x{ and
B is the set of Booleans, it is then possible to represent an orientation by the
pair (j,k) € M » B where j represents the rotation, and k indicates whether
or not a rotation about the y axis is to be performed before the rotation (the
composition of rotations and reflections is not commutative). If + (respec-
tively —) is the induced addition (respectively subtraction) modulo 27 from
M to M and if R is the rotation about the y axis. Than any orientation can

be written as: ¢/ o R* where (j,k) € M + B and i? = -1.

2.6.1 Inverting two orientations.

Let O =¢7 o R*
and O! = &7 o R¥
o If k =1, then O is a reflection. Therefore O 0o O = I where I is tke

Identity transform and hence

o-! o
eTo M (2.13)

= ¢’ M

soj=j and k=¥

o If k=0, then O is a rotation and hence
e
= .—},. (2.14)

O—l

07 =~jand k=¥

31

ey
s s B

‘o

.

A

v

Hence If k = 1 then j = 5, k' = k otherwise j = -7', k' =k

2.6.2 Composing two orientations
Let
= 1o RM
= ¢ o R
02 o 01

- es’j OR‘

O = (e oRk)o (e o RM)
= e o (Rkoe)oRM
because of the associativity of linear operators.
o If k3 =1 then

R* o0 ¢' is a reflection and hence (R*? 0) o (R*? 0 ¢'1) = I therefore

RFoen = (Rbo en)=!
(€)1 o (Rb)
et(=1) o R
= (ef(=1)) o (R?)

because R* is a reflection (or identity) and ¢ is a rotation.

therefore

¢ o (R* o &'t JoR:

% o (¢f(-71) o (RM)) o R
(¢72 0 ¢'(-71)) o (R¥2 o R®)
(¢5=21)) o (Rk20k)

¢fln-n) o (RMY)

32

where @ is the XOR operator.

hence j=jo—jyand k=k;
OIfk2=Othen

O = e&ho(R*MoeM)oRM

] - el”) el}[o Rkl ¥
3 "o (e (2.19) %
: - (e‘]’ o e‘Jl) o Rkl ::L
. e [

v = eili+n) o Rk f'

bence j = +j1and k =k,

. ’.
E. So Hence If k; =1 then j = j — j;, k = k; otherwise = j1 + 12, k = k; :
-
We have seen that we can represent an arbitrary orientation (isometry) by
- the pair (j, k) € M » B and .using the associativity of linear operators we can R
compute any expression involving composition and inversion of orientations. .\
:) It is computationally expensive however to apply an operator represented in ;
- this form to actual objects, because a sin an a cos must be computed. Due
-:\: to numerical inaccuracies an object (say a box) with vertical and horizontal
4 edges can be transformed by a quarter turn rotation into a object whose edges '.?-_
) are not precisely aligned with the axis. Adding and subtracting elements of
M can also lead to numerical inaccuracy as elements of M are represented in :E
the computer by real numbers and a modulo 27 operation has to be performed £2
on the result of every real addition (or subtraction) to ensure that the result]

is an element of M.
In the RSG the choice therefore was made not to support arbitrary ro-

tations and reflections. Most VLSI circuit layouts are built using boxes of

various layers where the boundaries of the boxes are vertical or horizontal

lines i.e. parallel to one of the coordinate axis. Hence in most cases it is

33

W)

e e, L T I W S N P A AP P LR Lt N T At AT s teT w “wT Rt ace
. RPN R FR PIA S R N LN .“--___‘.‘._‘- PR TS e S SR RSN SN I

............
.............. B e A T e e N e
PR ‘-_-.‘.\ LTS I LY TSR N RR RN

\ 5

sufficient to support all orientations that transform vertical and horizontal
lines into vertical and horizontal lines.

The four multiples of the quarter turn rotation are the only rotations that
bave this property. The only reflections that can have this property are those
that transform vertical edges into vertical dges and horizontal edges into
horizontal edges which are the two reflections about the axis. And reflections
that transform vertical edges into horizontal edges and vice versa which are
the reflections about 45 degree lines passing through the origin. These 4
reflections can be generated by first reflecting about the y axis and then
applying one of the four quarter turn rotations.’

Just as arbitrary orientations can be represented by an element of M = B,
these eight basic orientations can be represented by z, an element of _z_
({42- = {0,1,2,3}), and a boolean k, hence by an element of £ < + B. This
would correspond to the orientation e 7 o R* in the previous notation. Using
the induced addition and subtraction on .‘_zz_ the rules for composing and
inverting orientations are the same as previously described using the M + B
representation. Orientations can now easily be applied to vectors and boxes
since performing a reflection about the y axis corresponds to changing the z
coordinate of an object to —z. The four quarter turn rotations require only
permutations and negations of the two coordinates. For instance the one
quarter turn rotation maps the x coordinate into the y coordinate and the
y coordinate into the —z coordinate. The Figure 2.5 shows the mapping of

coordinates for each of the four basic rotaticns.

"these are the 8 orientations also supported by HPEDIT.

34

FaES 1'. - "n"‘«'.‘«-‘-"

OO o
ot TR

o '-.‘\‘ ‘;;‘: "&'}}hsl

".'-‘
IR P

2

LS

L8 e

s"}";h T

PR

T 6
Shh
At

3y

L
)

8 e, 8
)
I'D.

LU PP o
OO

ic rotations

-y
-z

Coordinate mapping for the 4 bas

-z

Orientation ' x coordinate | y coordinate
Figure 2.5

North
South
East

West

35

Sy e N N w v -
]

"

P

Chapter 3

The Algorithm

3.1 Algorithm Overview

The RSG algorithm (see Figure 3.1) consists of first reading in the sample
layout in order to define the primitive cells and build up the initial interface
table.

New cells are then created in a two step sub-algorithm. The first step in
the sub-algorithm consists of building a connectivity graph for the new cell.
The connectivity graph for the new cell is a graph whose vertices represent
partial instances whose cell type is known but whose location and orientation
are as yet unspecified.

The edges between vertices represent interfaces between instances and the
weights assigned to them are the interface indez numbers. The connectivity
graph need only be a spanning tree since cycles i the graph contain redundant
information. For a given sample layout, each connectivity graph gives rise
to a unique layout (see Figure 3.2). Interfaces provide the local placement

constraints between (two) cells. The connectivity graph provides information

36

, .'l "l .

Yy

“.l

LA AR AL A

ELPIEE IS

-".",,

s I

". "l.'.; "A."-

L 7.
,\‘.'S‘-f

coas
Y %5

VA '»‘ ® KRR

Ry

"
rs

R A
~ 'lsl.‘.

ad ."
4,0, %

RN

A
-

A
)
l"

> oy

PRIl X, A, &,

IR NIA

N A W A)

ML SN O

2,2.7.% .

Initialize Interface Table

Create Connectivity Graph

Expand Graph to Layout

Define new Interfaces
(if required)

Figure 3.1: RSG algorithm

about the global placement of all the subcells in a macrocell. The graph sets
up an implicit system of linear equations whose unknowns are the placements
and orientations of the (pseudo) instances in the graph and where the given

parameters are the interfaces between the various cells.

Interfacest

1
0= [

Figure 3.2: Graph and Layout Equivalents

37

AL 2\ SN oid AL L PR S R g

SRR

-

XXM

o, .
x % A by

-
-
PR

2L

PN

’ ‘.

by e e s e . e e aa a X
{ v.l" AR ~' .:.'.‘f' J.

2

g S A

: u",'sf\(.'t‘: \r"-

*a
P

N
-.\

. Aty b, B

AR A L G Ny N

Lo a2 s 0, &7,

The second step consists of converting the connectivity graph into a layout.
This is done by first selecting a root node in the graph and arbitrarily placing
and orienting the corresponding instance. The graph is then traversed, and
each of the nodes in the graph (whfch initially are all partial instances) gets
expanded into a complete instance with a location and an orientation. The
location and orientation L, and O, of a partial instance B can be computed
from the location and orientation L, and O, of one of its already traversed

neighboring nodes A4 using the formula,
Ob = O, =) O“ (31)

Ly =0,V + La (3.2)

where (Va,Og) is the interface between A and B. Finally once a new cell
is created, if it is to be used in a larger cell, it is necessary to define new
interfaces between it and the already existing cells.

Since the connectivity graph need only be a spanning tree many of the
interfaces that occur in the final layout need not be present in the sample
layout. Figure 3.3 shov)s a cluster of instances of A, B,C and D assembled
together. The corresponding connectivity graph is also shown. The labels
inside the nodes of the connectivity graph correspond to the nodes a well
as the instances they are contained in. Since the connectivity graph need
only be a spanning tree, it does not have to contain edges between A and
D, A and C, or B and D. This is because with or without those edges the
graph remains a single connected component (i.e. one can reach any node
starting from any node by walking along edges in the graph). Since the
three described edges are not present in the graph the I,4 (or Iy), I (or

I,), and Iyq (or Iy) are never accessed by the RSG, and therefore need not

38

WG W, Wy e

Figure 3.3: Graph Connectivity Requirements

Pt <L
AAR AL

be present in the sample layout. Hence the creation of both design file and

. sample file is simplified by requiring that the graph be only a spanning tree.

i

: 3.2 Advantages of the method :
Z)
This (augmented) two step process of first determining connectivity and '?
i then using the connectivity information along with cell definition and cell "
' interface mformation to build a layout, provides a clean separation between :‘_
» the graphical and procedural information. The procedural information in g;r‘
the destgn file is used to build the connectivity graph and remains constant s
: over different implementations of the design as given by the sample layout. "
Y The graphical information from the sample layout is used to transform the :.'i
_ connectivity graph into a physical layout of a particular implementation of the 'h ,
design. Cell spacing parameters which relate to the graphical information are .
. never accessed or manipulated in the design file. This delayed binding on the }

39

e

v)
Ak aalasa, oo S

PR

location and orientation of instances allows for clean macro abstraction in the
destign file. Since in the design file, partial instances are connected together
without assigning actual locations and orientations to them, it is possible to
build subgraphs without prior knowledge of where and with which orientation
the instances in the subgraph will be used. It is easier and cleaner to write
and compose macros for sub-graphs, because the state of a calling macro does
not side-effect the called macro by imposing a starting location and a starting
orientation at which to start assembling the subcells (i.e. the called macro
returns the same subgraph regardless of how the calling macro will choose
to connect the subgraph and regardless of the final calling parameters of the
instances of the subgraph). Macro abstraction suppresses details of how and
where a macro for generating a subgraph gets called and allows the designer

to concentrate only on the connectivity of the subgraph.

- 3.3 Limitations

The two step process as described in the previous section provides a high
level of separation between the graphical and procedural part of the layout
process. Since geometrical parameters are not accessed in the design file,
however, decisions based on the size and shape of the final layout such as
placement and routing are difficult to make. For example the choice between
the two routing configurations in Figure 3.4 requires knowledge of the sizes

and shapes of the two cells A and B as well as the size of the routing channels.

40

ALY

ENCANE R L

- D)
| AR o'-\'-."\.' .

X

NI

P2 7 ¢ A,

b X

Figure 3.4: Different routing configurations
3.4 Connectivity Graphs in Greater Detail

The purpose of this section is to investigate some of the properties of
connectivity graphs both in terms of data structures as well as in terms of
their mathematical properties. The previous section described an equivalence
between connectivity graphs and physical layouts. Actually (for a given sam-
ple layout) to each connectivity graph there corresponds a whole equivalence
class of layouts. All the layouts in an equivalence class are such that any ele-
ment in the class can be transformed into any other element in the class by an
affine isometry i.e. all elements in an equivalence class are identical modulo
an affine isometry. By selecting a root node in the graph and by placing and
orienting the corresponding instance a particular element in the equivalence
class is identified, namely the one where the instance corresponding to the

root node has the chosen placement and orientation.

Connectivity graph data structures must have bslateral edges. If there is

an edge between nodes A and B then in the data structure of A there must be
a pointer to the data structure of B and in the data structure of B there must

be a pointer to the data structure of A. This is because when a connectivity

41

ey o

DI

graph is being created, the root node of the graph (which is a.rl_aitrarily chosen,
placed and oriented) which is the starting point for traversing the graph (in
order to convert the graph into a layout) may not be known. Macros for
generating subgraphs of a layout have no knowledge of how the subgraphs
they generate will be connected together by their calling macros in order to
make larger graphs. For example if a macro M for creating graphs were to
return the subgraph of Figure 3.2, either node B or node A could be a leaf
node in the graph (i.e. a node with only one connection to it) depending on
whether node A or node B was connected to the rest of the connectivity graph
by the macro that called M. Hence even if the graph is a spanning tree the
parent-son relationship between directly connected nodes in the graph is not
known until the graph is traversed. This is why during the graph traversal
one must be able to get to node B from node 4 and also get to node A from
node B because we do not know which of the two nodes will be visited first.

The bidirectionality of the graph is essentially a data structure problem
that is constrained only by the graph traversal requirements and not by the
abstract mathematical properties of the graph. This requirement does not
constrain whether or not the graph is directed or not. A graph G = (N, E)
where N is a nonempty set of nodes and E is the set of edges is said to be
directed if the edges are ordered pairs (v, w) where (v,w) € N « N. That is
to say there is a privileged direction for the edges of the graph. A graph
G = ({A,B},(A, B)) (a graph with nodes A and B and an edge from A to
B) can have a bilateral data structure which means that from node 4 we can
go to node B and vice versa, and can at the same time be directed which

means that the (A, B) edge has a privileged direction (i.e. the (B, A) edge

may not exist).

B

‘ b
v

: (0.0) !
X North o'
A N
vi N
2 Interface#1 o
‘ A
A L

..

.

1
y
, 1

/' N\

.
S
1
. ~
[y, A :‘,: [
Interface#1 g
) .
Y A %
: (0.0 s
Nerth 3
T
¢ 3
& Figure 3.5: Interface ambiguity in undirected graphs. s
®
We now need to decide whether or not connectivity graphs for the RSG
should be directed graphs or non-directed graphs. What is needed is a graph >
‘ N
that for a given sample layout uniquely defines an output layout (modulo an e
b.. affine isometry). If the celltypes of nodes A and B are distinct then knowing :
3 the locations and orientations of node A it is always possible to determine the E
-)
¥ placement and orientation of node B because the right hand side of equations ;
' 2.1 and 2.2 are well defined. Hence at first it would seem that an undirected
v graph would suffice. However, in the case of Figure 3.5, if we know the "
3. location and orientation of the left node, there are two possibilities for the
, placement and orientation of the right node. H
2 -9
v If Iy = (Vas, Oas) is an interface between A and B then using equations >
v 2.1 and 2.2 3
'\
. 43 ¢

.
~ r

) ;-
le = (Vi) :
: = () (3)
= (~(0u)Var,(0w)™) 3
K is an interface between B and A. W
" Therefore if [,3 = (Vaa, Oaa) is an interface between A and A then e
N t
: La = (Ve Old) ny
. = (L) (3.4) -
: = (~(Oas) 'Vaas(Oaa)™?)
- is also an interface between A and A. In equation 2.1 and 2.2 it is not clear
whether V,, and O,, or V, and O, should appear on the right hand side
. of those equations. The problem here is not that of determining the right g
interface :ndex (interface number) so as to choose the right interface from E-.
Y the interface table. The real problem is determining which instance the left N
, node in Figure 3.5 refers to. Another problem which we will deal with later v:‘
} is that we do not know which of the two interfaces I, or I’ gets loaded into
) the interface table. The two interpretations of Figure 3.5 can lead to non :. f
equivalent layouts as shown in Figure 3.6. If the edges are undirected then
there is no way to discriminate between these two cases. In the first versions ﬁ
of the RSG this probiem caused the final layout to depend on how the graph '.
was actually traversed. What is needed is a way of discriminating between
the two nodes of Figure 3.5 yvhich are directly connected together and have 2_‘
the same celltype. This can be done by giving privileged directions to the 3.5.
edges in the graph (making the graph a directed graph). \
) If we are able to characterize interfaces according to some criteria so as
‘ to discriminate between the two possible interfaces [, and I, and select one h}
; “ "
. =3
E
x =
e e R e e L e e e P s 5 s e trs
B et e N e R e N e e N T e e T L e e e e e e e e T

A o
hn-.t-i;--- fﬁn.\f_x\h_.\f

-t
-4
S »
© L3
- (8]
T ©
o L
£ c
5 © g .
\ - ..m.
_]
© 3
_ 2
. ko]
(- 4 < um
- ,,
< S
Wu [T]
5 2
- |
3
- 3
L
[

Figure 3.6

Vi
0%
_ A,
1 Interfacesl
< > A
(0.0)
Nerth

Figure 3.7: Resolving layout ambiguity with a directed graph.

of them (which I will refer to as I,) then with the convention that if there
is a directed edge in Figure 3.7 from A; to A; (4; and A; have the same
celltype: the indices are just to distinguish between the two of them) then
it is A; that serves as the reference instance i.e. A; refers to the instance in
the interface (see Figure 3.7) that is deskewed to orientation North and at
whose point of call the interface vector begins. Knowing the placement and
orientation of A; we can determine the placement and orientation of A, using
equations 2.1 and 2.2 where the interface I, and knowing the placement
and orientation of A, we can determine the placement and orientation of A,
using the interface (I%,)~!. The main problem has been to determine when
to use (/) and when to use (/2,)~! and this problem has been solved by

making the edges of the graph directed.

The problem that now remains to be solved is that of selecting I, from
I, and I,. One possible way to perform the selection process is to math-
ematically characterize a property that is possessed by only one of the two

interfaces I, or I,. This property cannot depend on the interface vec-

46

.......................

oo m=pmas e pmp T T W TP T T RS LI SR S . TS P L A S A N P Y P SR S i S
e e T o e e e g e L -
w5t K

tors alone because it is possible to have I, # I, with V,, = V,, making
the selection between I,, and I, using V,, and V,, impossible. Foe exam-
ple if I,, = (0,East) then I, = (I,a)~! = (0,West) hence V,, = V, and
Ia # I,. Similarly the property cannot depend on the interface orientation
alone because it is possible to have I,, # I}, with O,, = O,,. As an example
Let I, = (Vaa, North). Then I!, = (—Vi,, North). Hence O, = O,, and
L # I,.

Since any reasonable mathematical criterion for selecting between I,, and
I, depends on both the interface vector and the interface orientation, chances
for finding a simple user understandable selection criteria are seriously jeop-
ardized. The user does in fact need to know which of the two interfaces gets
loaded into the interface table , because the effect of loading (I2,)~! in the
table instead of IC, is that of inverting the direction of all the edges (with the
appropriate interface number) between nodes of celltype A.

The RSG solves this problem by allowing the user to specify (in the sam-
ple file) the right interface by graphically discriminating between the two
instances of Figure 3.7 (which might occur in the sample file). If it is pos-
sible to graphically identify A, in the sample file then it is possible to force
I3, = (V3,09 (see Figure 3.7) to be the interface that gets loaded into the
interface table by forcing A; to be the reference instance at whose point of
call the interface vector begins and whose orientation is deskewed to North.

We have seen that the connectivity graph data structure must have bilat-
eral edges but that the graph itself must be directed. Only the edges between
nodes of the same celltype need to be directed as direction information on

edges between nodes of different celltype is not used.

47

-

A

o 4

-
-

W

N

»
L AL 3

.. .. " .l .l'.r ¢ t;":?

1 .' [P S
v k)

RAARAS

‘. iq’\"i °r *r Oy

o g -
2
."(’

"

"

[

-.—:-".- AT
\ o

R

Chapter 4

The Language

In order to make efficient use of the framework of the RSG we must be
able to build large and complex connectivity graphs easily and efficiently. It
is therefore imperative that the language for specifying design files supports
good abstraction and powerful decision making. The design file interpreter
has been embedded inside a Lisp interpreter so that the full power of a struc-
tured programming language is available to the designer. The interpreter
provides a variant of the Lisp Programming Language (a subset of it) with
a few special primitives for building and manipulating connectivity graphs
as well as for converting connectivity graphs into layouts (a BNF grammar
for the language can be found in Appendix A). Primitives for manipulating
encoding tables (such as PLA truth tables) have also been added.

The design of the language was instrumental in defining the underlying
mechanisms in the RSG. It allowed me to get a users perspective ;)n what
should be the right abstraction mechanisms even before I had an understand-
ing of how these mechanisms could be implemented. Besides the fact that

the language contains special features specific to the RSG, the language dif-

48

o .
)

kAl ot ¥ o8 4V ¢

2
L8 5

LA AR S
St A

ot .
SN

, 7

.,,'
Sy 4

o

o

KN

;' -

s

AARAAANX

? .1 '):.":}

a

Fa)

fers from standard LISP (for example MACLISP (27]) in two ways. First the
Language does not support LIST structures. Instead it provides primitive
facilities for arrays because arrays are more suited to array-like regular struc-
tures. Lists are not used (see Section 3.4) to implement connectivity graphs
since these graphs are more than simple linked lists. The second difference
is that procedures are not first class objects. Le. it is not possible to pass a
procedure as a parameter to another procedure. This decision was made to

simplify the design of an efficient parser and interpreter.

4.1 Interfacing the parameter file to the de-
sign file

The parameter file to design file interfacing is done through variable scop-
ing rules. The parameter file sets up parameters values in the global envi-
ronment of the design file interpreter. Theses parameters can be accessed
through variable scoping rules. A form of lezical scoping proves to be the
simplest and most efficient way to do the scoping. A variable lookup during
execution of the design file first causes that variable to be searched for in the
environment of the procedure being executed. If the search fails a new search
is then performed in the global environment of the interpreter. Should this
search fail too it is assumed that the variable is a cell name and a search is
performed on the table of available cells.

For example if the variable corecell in Figure 5.4(a) is meant to refer to a
cell, since corecell is not assigned in the environment (it is not a formal or a

local variable of the macro). The interpreter knows that it is either a variable

49

B

X
b S

A
Yy

e »
'.

b7y

LA

»ALES vY
<, e
- -

«

~ 3

‘#'l'l

.~’&;

W e e e .

defined in the global environment or a cell name and initiates a search in the
global environment and then in the cell table. This scoping methodology
allows variables to be handled uniformly whether they are calling parameters

of the macro, parameters set up in the parameter file, or just cells. Hence a

powerful coupling between the parameter file and the design file is achieved
by immersing the design file evaluation in a (global) environment set up by
the parameter file.

Personalization of the variable names in the design file according to the
cell names used in a sample file can also be achieved using the parameter
file and scoping rules. A statement of the form corecell = basiccell in the
parameter file would cause the variable named corecel! in Figure 5.4 to now
refer to the cell named basicell in the sample layout (or to be more general
the cell named basice!l in the current cell definiticn table which contains aew
cells as well as the primitive cells in the sample layout).

The sequence of steps taken by the interpreter to evaluate the variable
corecell during execution of the design file is summarized in table 4.1. Dynamic
scoping was considered and rejected becanse many of the variables in a macro
refer to cell names defined in the cell table or variables defined in the global
environment and often the whole current chain of environments would have

to be searched needlessly.

4.2 Macros and Functions

In Lisp and other languages that support procedural abstraction a pro-
cedure can return a single object (or a pointer to it). Connectivity graphs

used in the RSG have several nodes in them and what can be returned by a

50

i 3
‘ ~
. 3
. Action Taken Result ‘:
N Lookup corecell in the environment of meell Failed
S Lookup corecell in the global environment A variable named basiccell :
o Lookup basiccell in the environment of mcell Failed oY
oy Lookup bastccell in the global environment Failed i
: Lookup corecell in the cell table. (celldefinition of basiccell).
Figure 4.1: Environment lookup. N

O

procedure is a pointer to one of them. A pointer to a single node in a sub- P
: graph, however, may not be sufficient to efficiently manipulate the subgraph. _
In the process of building graphs from subgraphs a calling macro may need :
o to identify several key nodes in the subgraph returned by the called macro ‘
in order to connect these key nodes to nodes in other subgraphs. Since all }

- nodes look alike except for their celltype (a subgraph may even contain only r
- one celltype) it is extremely difficult to determine the nodes of interest (the :
. ones which are to be connected to other nodes) by performing a tree walk :‘Z
through the graph (starting from the node for which we have a pointer to). In h
- the case where the calling macro was in fact sufficiently smart to identify the

N nodes of interest in a subgraph that macro probably contains a large part of -
\ the information needed to build the subgraph, defeatix}g the spirit of macro "S
- abstraction and information hiding. y
p A mechanism is needed whereby a macro can retura several objects at a ‘_
::: time. To further enhance information hiding and at the same time enhance - ‘
3.: generality the calling macro should not know how many objects and how the :'-
: 51 .
4 "2
: >

e @ & & A

objects (in what order) are returned by a called macro. The calling macro
should be able to pick from a menu of available objects the nodes of interest
to it. The way this is achieved in the RSG is by making macros return the
whole environment frame that was used during their execution. This method
provides great flexibility since any variable bound during the execution of
the called macro can be accessed using the subcell command. The subcell
command provided by the interpreter allows the selection of a particular
variable in a user-specified environment. If E.is an environment (returned
by a macro) and V is a variable bound in that environment then (subcell E
V) returns the value to which V is bound in the environment E.

As an example, in Figure 5.4(b) the 4'* statement of macro mall assigns
the variable tregs to the object returned by the macro call to mtopregs.
Macro atopregs is assumed to create a cell named topregistername and
returns an environment in which one of the instances of topregistername
(one for which it useful to get a handle on) is bound to the variable retf.
Statement 5 of mall which defines a new interface between cells topregis-
tername and arrayname requires the instance (of topregistername) bound
to the variable ref in the environment tregs. The (subcell tregs ref)
expression in statement 5 returns the appropriate instance.

The RSG has two classes of procedure types. The first type are functions
which operate just as in LISP and return a single value which is the value
of the last statement executed in the body of the function. Their syntax is
almost identical to that of MACLISP (a variant of LISP).

The second class of procedure macros, are identical to functions in every
respect except that they return their evaluation environment instead of the

value of the last statement executed. Their syntax is the same as for faunc-

52

‘
)
L/
'I
[

vy *:*b

s

NN M

LA,

]

PO

“a

G, Y,

' A A

&

Ll
L Y

>
<celldefinition> = » (name r:- <obj1>
. <°bjz>
« <objnd

Figure 4.2: Celldefinition Data Structure.

tions except that the LISP function header defun is replaced by macro. The
interpreter also requires to know ahead of time whether a statement of the
form ((function or macro name) (argl) ..(argn)) is a function call or a macro
call and hence the interpreter requires that the macro name begin with an

m.

4.3 Data Structures

This sections describes in detail the data structures used in the RSG by
spelling out each.of them. Its purpose is to give the reader a concrete feel
for implementation issues of the abstract data types described in the previ-
ous chapters and serves as an introduction to the next section. Three data
structures; the cell definition, the instance and the node will be examined.

Figure 4.2 shows the cell definition data structure which consists of a name
(the name of the cell) and list of objects in the cell.

Figure 4.3 shows how the instance data structure builds on the cell defi-
nition data structure by adding calling parameters (a location and an orien-
tation) to it.

Figure 4.4 shows how the node data structure is in turn built from the

instance and a list of edges to other nodes. The location and orientation

53

_q'a R

-" Tt :

/

TXERRN A g A

R AR

L o m e

e A8

-y T S 9 ; aia - gar Halodud R et et Pl et At ol A A8 B Bl B L0 R d R AUl e dia dig g gra gb
N .

rﬂocation)

<{instance> = ,
. (orientation>

—> <celldefinition>

Figure 4.3: Instance Data Structure.

<edge> s o <direction of edge>
F - | . <weight of edge>
<adge list> s > <node>
ot rren el
<node> s -
. > <instance>

Figure 4.4: Node Data Structure.

fields of the corresponding instance data structure may or may not be blank
depending on whether or not the graph (which contains the node) has been
traversed. Each edge in the edge list of the node has a bit to indicate whether
the edge is emanating or terminating at the current node, an integer for the

weight of the edge, and a pointer to the other node attached to the edge’.

1Recall from Section 3.4 that the graph must be directed and that the data structure must
be bilateral.

R bad sol i B e &3 2
. . Sl Sl A

w2
.

o
l o
\ 4.4 Primitive operators for connectivity graphs 4

: s

' This section describes mk_instance, connect and mék_cell the three primi-
E tive operators provided in the RSG for building and manipulating connectiv- E \
‘ ity graphs. Mutation of the data structures described in the previous section '_',g‘t
' under these operators is also shown. ,

"‘.5

-

X 4.4.1 mk_instance operator

The basic create operator for creating connectivity graphs is the mk_instance

A

operator. The purpose of this operator is to create a pseudo instance connec-

tivity graph node (the node data structure of the previous section). Figure 4.5 i
i shows in large font (the top hne) a call to the mk.instance operator as it would T
3 appear ip the design file. The data structures before the operator is executed
3 appear in unbroken line and in normal font. The data structures created or r
modified after the operator is executed appear in broken line and in italics.
‘ The edge list of the created node is the empty set and the fields for the call- ;E
ing parameters of the corresponding instance are blank. (return value) is the ."J:
value for the calling expression (the top line in Figure 4.5) that is returned .
by the design file interpreter. :":‘
3
4.4.2 connect operator)
The primitive operator for connecting two nodes together by an edge is \ !
‘7: the connect operator. Figure 4.6 shows the effect of the connect statement ‘:
with the same conventions as in Figure 4.5. Notice that the edge of the node]
corresponding to (argl) (pointing to (arg2)) has a 1 as its direction bit which f
: means that the edge emanates from (argl). Similarly the corresponding edge ,
¢

N 55 "

(mk_instance <arg1l> <arg2)) bt

s ’ o

/ wivl)

1 ’ L "

o y) 2R,
[

’ -
<return value>) {celldefinition) R

s

2 / ¢
. S ’ ..
i N

i A

/’

) - \ moe

{
- <{node> =) . -
: ® Y
~ 4

-y
Fr=-=""=="

[\

A

! 3
J K
1

-

(]
-

]
)

{instance> =

Figure 4.5: mk_instance operator. A

in (arg2) has 0 as its direction bit which means that the edge terminates at =

. (arg2).

s p o A
"l

4.4.3 mk_cell operator

N YN
Lol A O '®

: The primitive operator for traversing and transforming a connectivity
graph into a layout is mk_cell. Figure 4.7 shows the effect of calling the

mk_cell operator in a design file. For simplicity sake nodes have been rep-

resented by circles instead of expanding their internal data structures. Each

(TN

of the nodes has a pointer to the instance to which they correspond to. The
calling parameters of the instances are initially blank and are filled in as
the graph is traversed. The root of the graph is the node < arg2 > and
its instance is called at ((0,0),North). As each new node is visited and

R P LR
XN

its instance’s calling parameters are filled in, a pointer to the completed in-

.

/

stance is pushed on the list of objects of the new cell being built. When the

4 ...,
WY,
-

graph traversal is complete the object list of the cell definition of the new

56

XA
bt

. ;v{m.‘ .
-~y ‘“')

™
L]
b

L.y iyt e e e et e ‘e RS - - e - e e - .
‘I.'n’,:'..-‘\-'.-'_.l'~.‘_'-‘_ ¥ '.. e A -~ :.' AP R R e AL '.". LR R TS S e e e
1P W W% W,

\

(connect' <argql> <arg2> <argd>) o

i t*
K C(interface# N

: r :
» Y Wt

' ; ;
. ° /\q 'l _:n
' e \ - ‘ .-\‘

y <n°d‘> s L Y -_~ \ : [1'/’ <n0d‘> s] [oo \ : : Prll ;\
' -7: k4 E_: -—’:’ " :.: <
p \\ .
! <mstanc¢> <instance> v %

) ; N
* |‘ ‘ 41
\ ! 5

- \\ ,’ ’ 'h
n"‘ ~-“_‘..~ - _»""' .J‘
. T T - 2
c T e 2
- <{return value> -=--=----- v Lt &
.; h)
Ol Y
2 Figure 4.6: connect operator. 0
o
Y
| cell contains a pointer to all the instances. Not shown in the figure is the ‘
. update of the cell definstion table which after execution contains the binding ;'-:
((new cell name),(new cell definition)). ‘.

x4 N
: N
: 4.5 Implementation N
" Implementation of the RSG was rather straightforward. Roughly two -
: thirds of the code was overhead. Building and maintaining the layout database f:f
v represents a sizable portion of the code. The single largest part of the code

= bowever is the design file interpreter which parses the design file (and pa-

" rameter file) and then executes the commands in it. Writing a reasonable 3
e _:
o design file parser and interpreter was also the most time consuming task as :
b

57 "

~0
N
o'
a
‘.
(N

Ve i la aip 28 PR ofi 4 g TN, W I NV IUT T RO W AR § OO 5 av .t oy bml nd adn bin B

Vil
LY
)
s b
° Y
: o
; 3
. o
4 (mk_cell <argl> <arg2>) :;:
03

¥ %
) S
. / | "

<new cell name>

|
-
-
~
~
M T Y
N YA

Iy
-
.

. s {logatjion> w
E&gﬁg . gg?gfrlgg%on) . $0853t13%0n> by
- L
/7t

1)
i
]
1
7] | -x | -m | ® =
. ! 7t) -~
' ’ ’ ’ ;
' ' I} '
. ' ’ l} '

\ { <celldefinitiond
]

4
”’
[
[}
[J
¢
[
[)
rd
’
’
s
/
’
q.g

!
'
A
-.f'

’
4
s
[
’

'
/

>~
"y " ¢
XA
AAAL

’
’
’
’
’
-
‘I

- r
v

) <new cell definition> s

Py

S - - -

n

. C0by2> =--=-" ;
o €OBJ3> oo’

s
W

v

o
vl N

e ’s
NN

55

Figure 4.7: mk_cell operator.

(-‘..--
Wty &]
'. '. ’ . '. I

d
g
]
g

5
&

I

%)

%,

AL, e .

‘n""‘f.fﬂ .&' -

K44 540

Chagt 2t)
XA

LA

R :’_ P

.-

Sl

1"(-\. d
APL s

874 LN
5l lele)e

-y

-

AR S

.-

X6

the language supports full recursion, reasonable error handling and high ex-
ecution speed. Embedding the RSG in a VLSI database type system such
as Magic (26] or Schema (32| would have drastically reduced this overhead.
Furthermore the availability of a suitable parser and interpreter which could
support macros and functions (as they are described in Section 4.2) would
have reduced the code by perhaps one half. In order to embed the RSG in a
VLSI database type scheme, such as the two systems described above, facili-
ties must be provided to create the design file la.nguake by performing minor
alterations to a standard programming language such as LISP from where
the whole layout database could be accessible.

The RSG program is written in CLU (21] and consists of approximately
6000 lines of source code. The program is highly modularized and consists of
roughly & dozen major parts (CLU clusters), one for each major data type.
The code trades memory for greater execution speed. The interpreter makes
extensive use of CLU variants? and hence reduces the design file instruction
decode overhead. The interface table, the cell definstion table and even the
interpreter environment frames are all implemented with hash tables [1]
which makes lookup extremely fast. While walking though a connectivity
graph the system accesses the interface table once for each node hence it is
imperative that interface lookup be fast. While building large array struc-
tures the graph may be built by a tight loop in one of the design file macros.
At each loop all the variables have to be resolved by the interpreter. Also due
to the scoping rules described in Section 4.1 several environments (and the

cell definition table) may have to be looked up to resolve a variable binding

3A variant is an object which has a special tag. Program flow can be dispatched according
to this tag.

59

e

e g by

(especially since variables often refer to cells like in Table 4.1). It is there-
fore imperative that variable lookup also be extremely fast. Hash tables have
the unfortunate property of consuming a lot of memory (memory concerns
will become clearer in the next paragraph) and becoming inefficient as the
number of bindings grows beyond their individual capacity which is fixed at
the time they are created. Care must be taken while creating these tables to
make them large enough to handle the required number of bindings but not

too large in order not to waste too much memory.

The design file interpreter which uses hash tables to implement environ-
ments pays particular attention to this by first computing the number of
formal and local parameters in a called procedure and then accordingly allo-
cating a hash table of the right size for the environment. Unlike a classical
LISP interpreter which disposes of the environment frame when a procedure is
exited, environments in design files may have a much greater lifetime. Macros
return their calling environment. This environment may in turn be held on to
by the calling macro in its own environment. This environment may in tarn
be retained by an even higher order macro. It is possible to write a design
file which holds on to too many environments (several thousand) at a time
and exhausts the memory of a DEC-20. On the VAX this problem shows up
in the form of a substantial decrease in speed due to excessive page faults.
However it is almost always possible to decrease the memory requirements
(by orders of magnitude) to within manageable limits by writing the design

file in such a way so as not to hold on to many unneeded environments.

The RSG maintains it’s own database and as such it is layout file format
independent. The RSG can be made to accept any file format by providing

an appropriate parser for the file format (this procedure requires that the

60

............
......
............................
................

Wy T P T e g

L3

o 5.,

B S 5 S o 3

A

N L AN

rd;
By %

s

-,

N -{. Y

Y)Y
l' ‘!

(e 1

<, v, 2, -'.‘- :

AL

1%

Yoo

T P T R
PR

l@!

y N

SR RATols
-

[y 4:;: "v o

oty

S
L

AT

OO

9 L
o

WD

A
AARA o

s 2 SN

L e e

P Dk S Tt S

code be recompiled). The user can in the parameter file select the layout file
format from a list of available file formats. Two layout file formats (CIF (25]
and DEF [2]) are supported. Plans for supporting HPDRAW (3] files are
also under way. Primitive functions can easily be added to the design file
interpreter provided they fulfill some input output requirements.

The execution time is divided into roughly three equal parts: reading in
the source file and building up the initial snterface table, parsing and executing
the design and parameter file, and writing the outpu‘t file. A 32 x 32 Baugh-
Wooley multiplier as discussed in Chapter5 is generated in 5 seconds on a
DEC-2060.

The basic RSG mechanisms can be easily implemented in any language
that supports good primitives for manipulating posnters and heaps (Pascal, C
and Lisp would be suitable candidates). Memory management for the design
file interpreter (a variant of Lisp) which supports heap storage and garbage
collection is automatically handled by the underlying CLU? runtime system.
Implementing the interpreter in a language which does not support automatic
garbage collection might require restricting the power of the design file inter-
preter or implementing some form of automatic garbage collection. Lexically
scoped Lisp with some primitive mechanisms for manipulating arrays would
be. very suitable as many of the primitive operators provided by the design
file interpreter are also Lisp primitives. The Lisp closure mechanism could

perhaps be used to implement the macro* mechanism in the RSG.

3CLU supports heap storage and garbage collection.

‘Recall from Section 4.2 that macros return their environment.

61

LA I X

PR

‘e te ., 9 Y .
BIVEY. R

- -

X

Chapter 5

Example: Pipelined Array
Multipliers

A pipelined array multiplier provides a good illustration of the RSG's
ability to generate layouts for the kind of nontrivial regular structures that
typically arise in practice. Figure 3.1 shows a purely combinational 6x6
signed two’'s complement multiplier based on the Baugh-Wooley algorithm
[13]. The multiplier consists of an array of two types of carry-save adders
that reduce the product to the sum of two words, which are then added in
a final row of cells connected as a carry-propagate adder. (The two diagonal
connections have been condensed to one for clarity). Each cell type contains
an AND gate and a full adder: cell type I adds the bit-product a;b; to its sum
and carry inputs; and cell type II adds a;5; to its sum and carry inputs. The
carry-propagate adder consists of type I cells which are drawn as polygons to
distinguish them from the carry-save cells.

Using retiming transformations [18], the multiplier can be pipelined to

any degree in a manner that preserves the regularity of the inner array, but

62

s

e

e
’

I
!

k{"t‘;%:"f{'l i.

A ALY
K;’;, ' “' e /?

VARPE
v,

s

g

L ALK

& }.‘.lJi_

Figure 5.1: Combinational Baugh- Wooley Multiplier

adds irregularity to the periphery of the array in the form of input and output
register stacks. Figure 5.2 illustrates two pipelined versions of the multiplier.
(An integer near a dot represents the number of registers on the corresponding
connection). The first version (2a) is a bit-systolic multiplier that has at most
one full adder combinational delay between any two registers, and represents
the highest possible degree of pipelining given the choice of the full adder
as the largest indivisible cell. The second version {2b) implements a lower
degree of pipelining, allowing at most two combinational delays between any
pair of registers. From a circuit perspective, the optimal degree of pipelining
is application and technology dependent, so it is necessary to be able to
automatically generate any degree of pipelining.

A pipelined multiplier of given size and level of pipelining can be con-

structed by personalizing an array of basic cells which has been sized accord-

63

.....

b

YN YN

8 L] 4

. 0 m 0 aq 0 0 0 0 0 0 0 ° 0 0 .
B '33'211 quqz'zqu'o 4

Figure 5.2: (a) Bit-Systolic Multiplier; (b) Pipelined Multiplier -

ing to the oumber of bits in the multiplier and multiplicand. Each cell i =

the array must be personalized with respect to each of the following options ,_
: depicted in Figures 5.1 and 5.2: ;;}_T
¢ o)
y '1. Cell type: Each cell must be programmed as either type I or type II to :;*

correctly implement the signed two's complement algorithm. Type II
cells occur on the left and bottom edges of the carry-save array, except

for the cell at the lower left corner. All remaining locations require cell

type L.

-
el o0
-‘:\‘v ‘-l'"":‘r '4.

2. Call interface: To obtain nearly identical circuit topologies, cell types
: I and II use different active input levels. Furthermore, active output
levels are affected by the amount of pipelining. Therefore, each cell
interface is determined by the type of cells being connected and the

Ly]

x ‘.lrlv
'-"c *e _}

number of registers on the coanection.

L

., ‘.
<, .;‘\-"v"

64

et Attt EYRITL IR S S - L T S e e e ., J N L
' . T et Lt T T e T L A N I
............. . S, e W

.................................
..................................

........

..

b
)

3. Register assignment: The placement of registers on connections be-
tween cells depends on the degree of pipelining and the locations of the

cells being connected.

4. Clock assignment: Pipelined systems generally require several clocks

which must be assigned to registers according to their location in the
array. Clock assignment is further complicated by the need to em-
ploy such circuit techniques as precharging to reduce area and power

requirements.

In addition to the internal array configuration, there are “edge effects” to

consider as well:

1. Peripheral registers: In order to properly skew the inputs and deskew
the outputs, registers must be placed along the periphery as determined

by the retiming transformations.

2. Input assignment: Ones and zeros must be assigned to the unused
inputs along the top and left edges as prescribed by the Baugh- Wooley
algorithm.

Cell masking is used extensively to convert an array personalization to
actual layout. A basic cell is created which contains the layout features
common to all cell personalities and which can accommodate the variations in
layout necessary to impiement all design options. Mask cells are instantiated

| on the basic cell to activate particular options by adding objects to the various
layers. Figure 5.3 illustrates this with a basic cell designed to specifically
optimize the electrical performance of the bit-systolic multiplier of Figure

5.2a. This cell contains input inverters, full adder circuitry, and six output

65

L el ¥)

~ e s u R

car

[113 L)

BAl1-1 prit-4

basic~col?

Figure 5.3: Muitiplier Cell Maskings

registers. In this example, the bagic-cell is programmed to type I by the
mask-cell typel, its carry input inverter is programmed by mask-cell cari
to interface with a type II cell, and it is assigned the clock ¢1 by mask-cells
phii-1, phii-2, phii-3, and phii-4. The inner array of the multiplier is
built up one cell at a time by first personalizing a copy of basic-cell, and
then adding it to the array. Then the multiplier is completed by adding
registers to the periphery of the array.

Figure 5.4 shows two sections of the design file written to generate a bit-
systolic multiplier for any m-by-n case, and demonstrates the use of macro
abstraction, delayed binding, and interface inheritance. The mcell macro
of Figure 5.4a executes the personalization of basic-cell as a function of
array size and cell index, and is used to hierarchically build the macrocell
innerarray (the inner array of the multiplier). Delayed binding on the abso-
lute location of each personalized cell greatly simplifies the definition and use
of mcell in the creation of larger macrocells like innerarray. The code in
Figure 5.4b constructs the complete multiplier from innerarray and three

boundary macrocells, tregs, rregs, and bregs, whicli are constructed from

66

P

M

N

"
‘I",""l'\tl

e o

PI%, S T
1A

."-_ -"-, “oae
USRS
4{' D‘)'o *

N
” ’l ‘l

4 g ™ 4

-« vee

Iy
.

.’
-

-
.

2 "
'
1S |
:',; a single register cell. The three boundary cells are connected to innerarray : :
M using interfaces that are inherited from an interface between the basic cell .
’;".:, and register cell. This example is cited to emphasize that macrocells can be !
::3: manipulated with absolutely no need to enter the graphics domain and man- _
i uvally define snterfaces or add spacing cells, as required by layout generators ?‘
::$ with restricted pow?rs of abstraction. . l
:\.: The input layout file in Figure 5.5 demonstrates the ease and generality ;
Y with which cell interfaces are specified in the RSG. One merely provides an ex- ¢
. ample of the interface, and places a numerical label in the overlapping region, R
as for example, interface number 1 (the only interface) between basic-cell :Z
and typeI. The RSG then creates an interface vector and ortentation from :Z
o, this graphical specification, and uses it to implement all instances of this ,
'-)": interface that occur in the final circuit layout. The layout file provides a nat- :
3 ural means for the user specification of cell layouts and interfaces and greatly
| ! reduces the amount of redundant information needed to characterize regular)
g: circuit layouts. This can be appreciated by comparing Figure 5.5 with the "
3': 6x6 systolic multiplier layout shown in Figure 5.6. This layout also illus- ~
. trates the amount of complexity that exists in practical regular structures,
'.:‘:\ even though this design has been simplified by omitting the register mask- E
"E: ing option. Register placement can be easily achieved by requiring that the -':
user provide a register configuration table in the parameter file. Ultimately
b a subprogram to perform the retiming can be embedded in the multiplier de-)
: sign file. The program would take as input the parameter 8 which specifies
"::‘ the degree of pipelining and produce as output a register configuration table }.
é.. consistent with the multiplier size.)
::.. _ The optimum S for circuit performance within this class of pipelined mul- 3
N :
. 67)
% x
. A

(macro mcell (xsize ysize xloc yloc)
(locals ¢ temp)
(mk_instance ¢ basiccell)
(cond ((= (+ ysize 1) yloc) (connect ¢ (mk_instance temp typel) tlinum))
{(* xsize x10¢C) (cond ((= ysize yloc) (connect ¢ (mk_instance temp typol) tifnum))
(true (connect ¢ (mk_instance temp type2) t2inum))))
{true {cond ({= ysize yloc) (connect ¢ (mk_instance temp type2) t2inum))
(true (connect ¢ (mk_instance temp typel) tiinum)))))
(cond ((= (mod xloc 2) 0)
(prog (connect ¢ (mk_instance temp phil_1) ¢lklinum)
(connect ¢ (mk_instance temp phil_2) clkilinum)
(connect ¢ (mk_instance temp phil_3) clkiinum)
(connect ¢ (mk_instance temp phil_4) clklinum)))

<
<
[
c

(true

(prog (connect ¢ (mk_instance temp phi2_1) ¢T1k2inum)
(connect ¢ (mk_instance temp phi2_2) clkZinum)
(connect ¢ (mk_instance temp phi2_3) clk2inum)
(connect ¢ (mk_instance temp phi2_4) clk2inum))))

(cond ((= yloc ysize) (connect ¢ (mk_instance temp car2) car2inum))

((= ytoc (+ ysize 1))

(cond ((= xloc xsize) (connect ¢ (mk_instance temp carl) cartlinum))
(true (connect ¢ (mk_instance temp car2) car2inum)))

(true (connect ¢ (mk_instance temp carl) cariinum)))))

(a) Cell personalization

mall (xsize ysize)
(locals innerarray tregs bregs rregs tri arrayi bri rri)
(setq rregs (mrightregs ysize))
(setq bregs (mbottomregs xsize))
(setq innerarray (marray xsize ysize))
(setq tregs (mtopregs xsize))
(decliare_interface topregistername arrayname 1
(subcell tregs ref) (subcell innerarray topright)
cell_to_topreginum)
(connect (mk_instance tri topregistername) (mk_instance arrayi arrayname) 1)
(declare_interface arrayname bottomregistername 1
{subcell innerarcray dottomright) (subcell bregs ref)
cell_to_bottomreginum)
(connect (mk_instance bri bottomregistername) arrayi 1)
(declare_intarface arrayname rightregistername 1
(sudbcell innerarray topright) (subcell rregs ref)
celli_to_rightreginum)
(connect (mk_instance rri rightregistername) arrayi 1)
(mk_cell "the_whole_thing" arrayi))

(d) Multiplier Construction

Figure 5.4: Design File for a Systolic Multiplier

68

) Y
Ay
X priz-2 pni2-3 ",
X 0 23
» ! 5
' KA
ol
phiz-1 :;
paid-4 by
1 o3
dastc-col? 1 .)
¢ ¥
3 c@ card
L) --'.
, ; tyeel phil-l : ‘
v: E]E E] [oms 3
" phe1-2 ',:‘
1
.g .
. paite1 C:'
: phil-4) ::::
1 : :::.
basic-col) basic-col Y
‘ 4
Figure 5.5: Layout File for a Systolic Muitiplier \
tipliers must be determined empirically through repeated iterations of mul- .
- tiplier layout generation, circuit extraction, and electrical simulation. The .,
structure of these pipelined multipliers facilitates such an empirical investi- :
)
N gation by admitting very regular layouts that can be generated quickly and -
; interactively by the RSG. A study of the circuit issues determining pipelined 2
3 array multiplier performance(12] is now underway using the RSG for layout ‘_
] generation, EXCL (23] for circuit extraction, and SPICE [30] for circuit simu-
lation. Preliminary simulations suggest that clock drive, clock skew, and I/O
: pad drive — all of which vary with the level of pipelining and multiplier size ’
* — will be the primary limitations to throughput. For large multiplier sizes, i
': macromodeling of critical paths can be used to alleviate the computational \
red
. requirements of SPICE. ;Q'.
. 5
N
. 69 -
Jj :\"
o ~
» o~
¢ -
» N
) >
Eﬁfl?*}ﬁ;«r&? CLTNE _;}.-._.—._«:, AR ‘..;_,_._,_-..‘.{.___..: L .',‘-:._.:-.:’_.:__‘:._.‘";_..._._‘_..:_é‘.‘_:“.
- s A T T

M XA TR | NHRLREE S LEAEm = O Y
SRR (AAAAS] ATl ARG RRRKAANH @ QOO0 XA

.........

BE B =5 —
o=
e
=
o
g

Figure 5.6: Bit-Systolic Multiplier Layout
70

a7 WY

A S

& R

-

AP

s ot v e 1 0
R]

Chapter 6

Compaction

6.1 Motivation

Despite the fact that the RSG is technology, implementation and archi-
tecture independent, the RSG by itself is not technology transportable (The
RSG cannot be made to produce designs in a new technology simply by pro-
viding a new design rule file). A library of cells for the RSG designed in
an older technology can quickly become obsolete as new process technologies
with smaller geometries become available. Another problem with the RSG
is that highly electrically optimized layouts require fine tuned optimization
of the bus and device sizes. These optimizations depend on the particular
configuration (size) of the final layout. Therefore cells designed for small con-
figurations may not be suited for larger ones which might require larger buses
and larger transistors to drive them. Since the RSG cannot modify the prim-
itive cells specified in the sample file one solution to the layout optimization
problem would be to design several cells for each functionality where each

cell is designed for a different configuration range. For example one might

n

‘a

-.‘:‘,.'.,'/;} 1.'

. ‘l

%% h

design three different input buffers for a PLA. One type of buffer would be
designed for use in PLAs with a large number of product terms, another for
use in PLAs with an average number of product terms and one for use in
PLAs with a small number of product terms. This method of choosing the
right set of primitive cells according to the replication factors , requires the
substantial layout investment of having to design a large number of cells.
Also the method lends itself to only a coarse grained optimization due to the
approximation of the electrical optimization requirements by one of the cells
already defined in the library. The appropriate device sizes given some speed
and power constraints could be derived from Macromodeling Optimization
techniques(22].

The problem of making the RSG technology transportable and allowing
generativu of electrically optimized layouts could be achieved by using a spe-
cial kind of compactor which I will refer to as a leaf cell compactor. I believe
that this kind of compactor has not yet been seriously investigated because
of the significant difficulties encountered in straightforward compaction, and
also because the usefulness of this kind of compactor is closely related to
an RSG type design methodology whose benefits have only recently been
established.

A leaf cell compactor is a compactor capable of compacting cells from a
library while taking into account how the cells in the library may potentially
interface together. For example if cells A and B can potentially interface
as in Figure 2.3 then while compacting cell A we have to take into account
the constraints generated by its connection to B. If cell B cannot be com-
pacted further then it is possible that due to the constraints between A and
B, A cannot be compacted further although A if compacted by itseif on a

72

ADASS

classical compactor could stand to be further compacted. Context sensitive
compaction is different (probably simpler) than hierarchical compaction (8]
which starts with a complete final layout but does the compaction hierarchi-
cally.

The advantages of a leaf cell compactor are that by compacting only the
primitive cells in a library instead of fully assembled structures the com-
paction effort is not duplicated over the various replication factors in the
layout. For example if a cell A appears a hundreds time in a layout, a com-
pactor operating on the final layout (where A appears one hundred times)
would be more computationally expensive than one which cleverly compacts
the cell A only once. Also the compaction may only be performed once for
a given set of design rules (and other constraints such as bus and device siz-
ing) instead of running the compactor on each new structure created (by the
RSG). These two factors (i.e. the compaction effort not being duplicated over
the various replication factors and also the compaction being performed only
once and not on each structure generated) can lead to orders of magnitude
improvements in computation costs, perhaps allowing implementations previ-
ously thought of as too computationally costly (such as for instance simulated
annealing{16)).

The costs associated with a leaf cell compactor are:

1) Perhaps a more complex compactor.

2) After compaction all instances of a cell A in the final layout have exactly
the same geometry. In the case of a classical ccmpactor which first flattens
the layout (gets rid of the cell hierarchy) before compacting it, circuitry
which used to belong to instances of 4 may end up having different layout

geometries.

.
e

g l" .ﬁ

i“nq |
O S 3 QR

IS4
»
2

T W
.',.‘.‘.I"-\‘-bpl *L'

"-
.

SR
l' 5')?.!

Ay Ay

i@ FARR

AR

Fs

P

,.
'l-.’!"

LA

o’

-": \"5(‘.(s(K

e, e "'l"l"."' .

(A

28 A A Al

s 3 505

L]
K
L)
)
L]
[}

The relaxation of the constraint that all instances of A have the same

geometry can potentially lead to more optimal layouts. Howeyer in the case
of highly regular structures with large replication factors, what goes on along
the boundary of arrays of cells has a negligeable impact on fhe total size
of the layout. Most of the cells in a large structure are far away from the
boundaries of the array (assumed for simplicity sake to be an array of identical
cells) anyway and hence geometrical constraints on each of them can be nearly
identical since the constraints caused by the boundary of the array can be
attenuated. Hence the constraint that the layout of all the instances of A be
identical after compaction may not be too restrictive. Furthermore assuming
that compactors are not perfect and do from time to time produce legal but
electrically poor layout, qu_ality control of the compactor output can more
easily be performed on a library of a few cell than on each of the large
layouts generated by an RSG type generator.

At this point let us take a step back and examine the real motivation be-
hind a leaf cell compactor and the motivation behind a classical compactor,
since they differ in essence. A good classical compactor should be able to
start with a stick diagram or a very poorly designed starting layout. From
this poor starting point the compactor should be able to investigate differ-
ent compaction options in order to find an optimal (or satisfactory) layout.
Unfortunately for a given electrical functionality, the space of legal layouts is
not convex. This means that if we use a model where we continuously deform
the starting layout in search of a more optimal one (while keeping the layout
legal at all times) we might have to shrink as well as expand the layout as
we move along a path leading to an optimal solution. Therefore a greedy

algorithm which looks only for a local minima can fail to find very profitable

74

e - -

optimizations which require ksl climbing (moving temporarily in a direction
leading to to a less optimal layout). One dimensional compactors which com-
pact in one dimension at a time are an example of greedy optimizations which
do not lead to the optimal solution. A one dimensional compaction algorithm
tries to greedily optimize one dimension at a time and misses out on the op-
timizations that require a more careful analysis of the interaction between
the two dimensions. Besides the fact that the space of legal layout may not
be convex it may also not be connected. In order to reach an optimum by a
continuous deformation from the initial layout one might have to deform the

layout along a path parts of which do not correspond to legal layouts.

The motivation behind a leaf cell compactor is to be able to transform
cells from one technology to another and also to be able to size busses and
devices. The cells already existing in the library can be assumed to be highly
optimized for the technology in which they are designed and there is a good
chance that the topology of the initial layout can be used as a good starting
point for the target technology into which we are going to compact the cells.
Under these assumptions the minima (of the objective function) has a better
chance to be reached by a greedy type algorithm that searches for a local
minima. Hence some of the inherent difficulties in leaf cell compaction can
be offset by the previous simplifying assumptions on the initial starting layout
(namely that the cells in the library can be assumed to be designed carefully
and the easier quality control of the output) making the task of designing

such a compactor a more manageable one.

7

¢ o
3
‘ 6.2 Defining a cost function v
\ "
': The purpose of this section is to show the importance and raise some of ::.
‘ the issues related to defining a layout cost function for a leaf cell compactor. ’ :’,:"
; The cost function is an evaluation of the goodness of the layout and the =
2 compactor’s goal is to produce the layout with the lowest cost subject to a E d
E set of constraints. Defining a cost function for a leaf cell compaction scheme ;
’ is not as straightforward as it is in the case of a simple compactor. Also the
N impact of the chosen cost function on the final layout {variations in the final ;
?;T layouts produced using different cost functions) may be greater than would ’
N be the case in simple compaction. :i'
E Figure 6.1 shows a structure consisting of a linear array of cells. The m .
> nghtmost cells are of type A and have pitch A,, the n leftmost cells are of X
type B and have pitch A;. It can be shown that in the general case (if there F
& are constraints between A and B other than those shown in Figure 6.1) there g_;
" are tradeoffs between minimizing A, and A,. A, can be minimized to a greater \;
R extent at the cost of increasing A, and vice versa. Let us consider an extremely :j
5 simple cost function for simple compaction and try to find a corresponding
:*:' cost function in the case of leaf cell compaction. Let the cost fanction be r
A X, the z dimension size of the layout (for simplicity sake assume that the y :::
e coordinates are fixed). Finding an optimal A, and A, (given the geometric =
' : constraints) so as to minimize X, depends on the replication parameters n and E
¥ m. However in a leaf cell compactor n and m are not known at compaction Q
time. Hence the user has to explicitly provide a cost function in terms of A,
A and A, (as well as other parameters) based on empirical estimates of what
2 n and m are expected to be. In the case where n and m are large numbers :
76 2

P -’
X
.
- - '
N >
v L)
[[
- -

Figure 6.1: Defining a cost function.

X = n)q+m),, therefore minimizing A, and), is much more important than

minimizing the sizes of the cells themselves. For a given A, and A, (assume

for simplicity sake that the I, interface is fxed) reducing the size of A and

B has only a marginal impact on X because it effects only the extremities
of the array, since its impact is independent of the replication factors n and
m. Hence the cost function should depend essentially on A, and A, and to a

much lesser extent on the physical sizes of the cells themselves.

The remainder of this section describes a layout example where the pitches
), between the cells do in fact have to be traded off. Figure 6.2(a) shows three
instances of a same cell A. The cell A consists of two horizontal bars. Since
the three instances are all of the same celltype the pitch between them is the
z distance between the left edges of their bounding boxes. This is because the
z distance between their respective points of call and the left edges of their
bounding boxes is the same and hence cancels out in the pitch calculation.
One can reduce the); pitch by moving the top bar of the top instance toward
the left. This causes the layout to deform to the configuration of Figure 6.2

7

[

>

[

or

L e Wy

"AL‘}JJ\:.

2 a7 A A &

| OO0

!

. Cat)
'«
At 8,0,

5455

.'
~l
o'
o)
>
.
vl

» TR W W S R i AN el

(b). Moving the top bar of the topmost instance to the left causes the bottom
bar of the middle instance to move to the right increasing the pitch A; in so
doing.

Choosiﬁg an appropriate cost function can be facilitated by fhe knowledge
of the replication parameters in the structure to be built from the leaf cells.
An optimal cost function for a given set of replication parameters may not
be optimal for another set of parameters. In practice, however, tradeoffs
between the pitches may not be as extreme as in Figure 6.2. Experimental
results are needed to determine just how much interaction there is between
the pitches of leaf cells that occur in practice. Making the cost function linear
in the A; and the box edge locations can substantially simplify the problem
of solving the constraint system i.e. finding a minimum for the cost function

subject tc the constraints.

6.3 Constraint Representation

The purpose of this section is to propose a representation of the constraint
system in leaf cell compaction. It is assumed that the reader is somewhat
familiar with graph based constraint systems. We will restrict ourselves to one
dimensional compaction in the z dimension. Compacting in the z dimension
entails determining the abscissas of all the vertical edges of the boxes in a
layout. Horizontal edges play no role in the constraint representation and are
assumed to shrink or expand in response to the displacement of the vertical
edges. In the case of leaf cell compaction the unknowns of the problem are
the abscissa of the vertical edges of boxes in the leaf cells, as well as the

A; which are the z dimension pitches between the various cells. The known

78

R N

.

.r ,(‘l‘ ‘: \r’- A

s wite . = vsnua AN AR (G4 .A-.-...- iy0-.. 2] .) . » A s vy 2ty P %
FRA RRRRRARI RS-~ L 1 ARV IO YASE e FERDMNCCNE - SRR . S ..Jn. ONEXAIC D Z iy a

0-.-\(A T be 2 £ ~\.\.l

9

A
A
Tradeoff between pitches.

M

A

A
A

€
1
Figure 6.2

Wl Y, W - , o, & e v v v, o DR) (IR T " - . S - - 2 . .

S e a a2 A A 5 - . ,

parameters are the design rules of the process, the sizing constraints that arise
from electrical considerations and the electrical network implicit in the initial
layout. The constraints that arise from the interaction of the parameters can
be represented by a constraint graph whose vertices correspond to vertical
edges of boxes in the layout. The edges between the vertices in the graph
correspond to minimum spacing constraints between the objects represented
by the vertices. The weights on the edges of the graph are the actual values

of the minimum permissible distances between the vertices.

A possible strategy for leaf cell compaction is to build a constraint graph
for each of the leaf cells and then include the comstraints arising from the
interaction of the ceils by adding new edges between the graphs. The resuiting
graph (formed by the union of the leaf cell constraint graphs and the new
edges) has 2 kinds of constraints: intra cell constraints (constraints within
a cell) and inter cell constraints (constraints from the interaction between
cells). Both intra cell and inter cell constraints can be extracted from an
RSG sample layout. The intra cell constraints can be extracted from the cell
definitions of the leaf cells in the sample layout. Inter cell constraints can be
determined from the various cell interfaces present in the sample layout. After
the compaction is completed, it is possible to build a pew sample layout for
the new technology and electrical constraints, from the new cell definitions of
the leaf cells and the new pitch parameters (both of which were the unknowns
of the initial compaction problem). Recall from Section 3.1 that the sample

layout does not necessarily have to contain all the possible interfaces that

might occur in a final layout (because the RSG connectivity graph need only

be a spanning tree). However if a sample layout is to be used for leaf cell '.:;'.‘-»
. . . R
compaction, then in order for the compactor to generate all the required ;-'({
A

80 Y

inter cell constraints it is imperative that all possible interfaces that might
arise in the final layout be present in the sample layout. The next paragraph
describes how these constraints can be generated in the very simple case

where the sample layout contains 1 cell and 1 interface.

Figure 6.3 shows two instances of A interfaced together. A is a cell con-
taining four vertical (box) edges. The left (respectively right) instance of A as
well as the corresponding 1,2, 3,4 (respectively 1',2',3',4') constraint graph
and the edges in the graph are shown in solid (respectively dotted) line. In-
ter cell constraints between the two instances arising from the existence of
the I,, interface are shown in broken line. If compaction was performed on
the 1,2,3,4,1,2',3',4 graph, the compacted layouts of the two instances of
A may not be identical. The unknowns of the problem are the abscissa of
the four vertical edges in the cell (and not the instances of) A and the pitch
Aq after compaction. We must express the constraint system in terms of a
graph where the vertices are the vertical box edges of A and the weights are
functions of A,. This will ensure that both instances of A in the compacted
layout have the same geometries. Since the pitch between the two instances
is A, the distance between the 1 and the 1’ node is necessarily A,. Hence
since node 4 must be z, to the left of node 1' it must be z, — A, to the left
of 1. Therefore we can replace the dashed edge weighted by z, by an edge
from node 4 to node 1 weighted by z, — A;. Similarly we can replace the
edge between node 4 and node 3' weighted by z5 by an edge between node
4 and node 3 weighted by z3 — A,. Once this edge replacement is complete
we can discard the 1',2',3',4' graph and all edges terminating on vertices of
that graph. We are then left with the 1,2,3,4 graph where the edges drawn

with straight lines are intra cell constraints and edges drawn with arcs are the

81

“

h _ow % o
LN

SRS
t - "f 5"':.'1":"

N

-
0y

Ny A A
* 0. .' '. l'

v{q

By % ry
| AARAR?

Figure 6.3: Constraint representation.

inter cell constraints. The new constraint system ensures that both instauces
% of A will have the same geometries and at the same time reduces the number
of unknowns from 8 (the abscissas of 1,2,3,4,1',2,3,4') to 5 (the abscissas
of 1,2,3,4 and A,). In the case of larger cells and multiple interfaces, the
reduction in the number of unknowns can be be much more substantial since

only one new unknown (a); pitch parameter) is added for each new interface.

L
L

This graph constraint system cannot be solved by shortest path algo-
rithms such as Bellman Ford(17]| because the weights on the edges are not
all constants. Some of the weights depend on the); which must also be de-
¥ termined. Algorithms such as the Bellman Ford algorithm are used to solve

of S i Il]

N a system of linear equations where there are only (at most) two unknowns
; per equation. Such systems can be represented by a constraint graph with
y constant weight edges. However (if the abscissas of the vertices 1,2,3,4 are

b X1,X,,X3,X4) in the resulting graph of Figure 6.3 the edge between node 4
, 82

/

s
A [
2l - - - .
RN L SN/ SN v-‘_.~_..-,.4-\.r..:\ O L B L i T TSI *

Dol N L S T L At Nt

and node 1 represents the equation X; — X < z4 — Aq where X, X and A,
are unknowns. A simple minded way to solve the system would be to convert
the graph to a system of linear equations and solve the system of equations
using a linear programming algorithm like Simplex (10]. Since we know that
there are tradeoffs between the A; we will have to define a cost function that

is to be minimized subject to the above set of constraints.

6.4 Experiments in compaction

Over one hundred and thirty kilobytes of code have been written in order
to build an experimental compactor with the intent of modifyirg it to ulti-
mately do leaf cell compaction. One third of the compactor code deals with
maintaining and manipulating the data structures (such as scan lines sorted
lists etc..) required by the constraint generation process. This is where most
of the CPU time is spent. One fourth of the code embeds the decision mak-
ing process of determining what type of constraint is appropriate between
a pair of box edges. This part of the code proved to be the most convo-
luted, the hardest to write and debug and also the most error prone. The
actual constraint solving routine (a modified Bellman Ford Algorithm: see
Subsection 6.4.2) is only slightly over a page in length. The rest of the code
is overhead and comsists of layout manipulating routines, design rule tables
etc.. The speed of the compactor compares favorably with other compactors
and the output quality can, depending on the input layout, be reasonably
good. However for a large complex layout the compactor will often produce
a legal layout where small regions of the layout are electrically poor, making

hand checking (and minor modifications) of the result a necessity.

83

.
Py &

b
While the general methods and mathematical foundations of the com- §
paction problem are well understood they seem inadequate to deal with the
myriad of special cases encountered in practice. Whether commercial com- ":
pactors function properly in a realistic VLSI setting is still an open question ‘
for me as I did not have a compactor with which to compare results readily 4
available to me. However I believe that my compactor would compare fa- 'f
vorably on many of the examples found in compaction papers. Rather than
laboriously go through the quagmire of designing and implementing a rea-
sonable compactor, I will skim through some of the salient difficulties and
in some cases propose solutions to the problems I encountered. Many of the :
classical difficulties of compaction are explained in [31]. :
The rest of this section i.s for the benefit of whomever continues the com- 3
pactor project. it describes three major diffculties (encountered during the :
compactor project) which can be corrected by a more appropriate choice of
strategy. Its intent is not to give an overview of the compaction problem. The 5
compactor used a one dimensional graph-based constraint method where the i ,
vertices in the graph represent layout box edges!. Other one dimensional
techniques include shear line compaction [9]. "
S
6.4.1 Constraint generation E
e
One of the purposes of the compactor is to perform device and bus sizing. .
Device and bus sizing requires the ability to tag (ideatify) the particular
devices (or buses) to be sized in the layout. This can be accomplished by ':-

making the bus (or the gate and channel of the device) to be sized, a cell.

lthe edges are vertical since it is assumed throughout this section that compaction is being

performed in the z dimension.

S pEYR S5 a0 N 4
- »

............

..................
.,

IR

-

4 - gls” M e

PSS e)

The compactor can then size all instances of that cell according to some
user defined specification. In some processes transistor gates must be wider
than the minimum poly width. This can be achieved by making the gates of
transistors instances of a particular cell. The compactor must then make all
instances of that cell a certain minimum size. Finally there may be critical
parts of the layout (such as sense amplifiers) which must be left unchanged
by the compactor. This also can be achieved by making those portions of the
layout (to be kept frozen), out of cells which the compactor will know how
to handle.

Many compactors first perform a preprocessing phase on the layout. Dur-
ing this preprocessing phase boxes of the same layer are merged together. For
example EXCL uses a merging technique (although not for compaction) which
gets rid of redundant vertical edges of boxes. After the merging process is
complete each layer of the layout consists of nonoverlapping boxes such that
each box has the largest possible z dimension size (as a result of this there
are no hidden? or partially hidden vertical edges).

Merging boxes considerably reduces the constraint generation problem.
Figure 6.4 shows two boxes of a same layer (in solid line). The existence of a
minimum spacing constraint between the right edge of the left box and the
left edge of the right box depends on the presence of the middle box (shown in
broken line) whose presence masks the two previous edges. Always generating
the constraint between those two edges (regardless of the présence of the
middle. box) can substantially overconstrain the system. Consider a piece of

diffusion fragmented into n abbuting boxes as in Figure 6.5. Indiscriminately

A hidden bax edge is an edge that does not actually correspond to an actual boundary of
a layer since material from the layer is present on both sides of the edge.

85

LY

P
>
A

X P 3 v A . oy . "
Iﬂ""*"%’* (.{.f"l“’l "l

o

s

l',A.l ;

rv

...............

Figure 6.4: Constraint for hidden edges
?

-
S
Y
p

I

7 Figure 6.5: Fragmented Layout

generating constraints between left edges end right edges would force the x
size of the final layout be at least n\ where A is the minimum spacing for
&iﬁusion. Merging the boxes into one box would get rid of the fragmentation
and allow the layout to shrink to the minimum width for diffusion.

- .
AL,

Unfortunately, due to the device and bus sizing mechanism in the com-

pactor, it is not possible to perform merging on the boxes. Merging boxes

)

causes loss of information relating to which cells the boxes came from. A

long bus might require to be wider in certain regions. These regions can be

N
'ata" AT SR

identified by the compactor as being part of certain cells. Merging the boxes
in the bus of Figure 6.5. would cause the loss of that information since after
the merging process there is oniy one box for the whole bus. This constraint

(i.e. merging being unacceptable) combined with the wrong constraint gener-

P AL

ation technique made constraint generation an extremely hard problem. The

main problem is to generate enough constraints so that the result is a legal

S84 N]

layout without overconstraining the system, which degrades the quality of

86

e - .

' v,
%
g the result. 5:-
The minimal constraint set is not unique (A minimal constraint set is
i such that removing any constraint from it may cause the resulting layout to E
: become illegal) and therefore it is not possible to reach the optimal constraint E:
set simply by removing overconstraining constraints. Generating a good con- “
;. straint set is a particularly hard problem. Substantial gain in output quality
: can be made by simply making the constraint generator smarter without h}
having to go to a more complex compaction strategy as in two dimensional
; compaction (15]. o
> Most graph based compactors use a scan line technique for the generation r\
of constraints. Other reasonable ways of generating constraints include walk- 5
ing through a layout database as in MAGIC where each box (tile) has pointers _-.‘
to its neighbors (cormer stitching). There ace essentially two possible ways }:\: :
‘ to perform scanning. The way it was performed in the compactor was using '
a scan line which represents a slice through the layout®. Constraints in the :
z dimension are generated with a horizontal scan line that moves vertically. E'f: ‘
At any given time the scan line holds the part of the layout that intersects '{‘;‘
its current y position!. Only objects that were in the scan line at the same 52
time can have a constraint between them. If the current scan line location
intersects the piece of diffusion in Figure 6.5 then all the boxes in the Figure ;.
are simultaneously present in the scan line. The constraint generator must .
then examine each pair of vertical edges and determine what constraint to
put between them. In order to determine the appropriate constraint between ,,.
) f
SEXCL uses this method. "
‘In practice the scan line is actually a band. It contains objects that intersect a band centered Ef;
at it’s current y location. EE:
Y
87 R
NS
:"-?. B e R o I :.;-:?'-:2'-:1--:?-?-:*-’-i?:-—$~:~-$:-:-:-'-$:-:-;-','-'g-;f-i

L T T S R R B e e i S ———

crcvacsewijecvescnosrcadeccsvscacavcoaduanssoecankhoseoee oo

Figure 6.6: Constraint between partially hidden edge

a pair of edges, the constraint generator has to shuffle through the objects in

the scan line to examine the relevant neighboring objects. This turns out to

be one of the most difficult and critical parts of the compactor. A smart com-

pactor must at least notice that some of the edges might be hidden and that

it may not be appropriate to put a constraint between them. Deciding on an

appropriate constraint is not a straightforward task. In Figure 6.6 the right

edge of the leftmost box and the left edge of the rightmost box are hidden

when the scan line is at location y;. However when the scan line reaches y;

the edges are no longer hidden and therefore the constraint generator must

place a constraint between the two edges.

By selecting a more appropriate scanning technique it is possible to elim-

inate part of the hidden edge problems. The scan line can be a vertical line

that sweeps from —oo to +oco (we are still generating constraints for the z

dimension). The scan line contains information of what a viewer on the scan

line looking toward the left would see. In Figure 6.7 the viewer on the scan

line would see the z;, z; segment of the left bax and will see the z,, z; segment

as belonging to the insides of the right box. Constraints are placed between

what the viewer can see in the scan line and the objects that currently inter-

sect the scan line. More details on this scan line technique and relevant data

el W7 LTE T TR e T e
1’\)' ~a -.’x'-.}'."\'. y

W WY

|.

]
\b'

Figure 6.7: Correct scan line method

structures can be found in {11] and [24] 5. The advantage of this method is
that hidden edges are automatically taken care of because they do not show

up in the scan line. Hence merging of boxes is implicitly taken care of.

6.4.2 Solving the Constraint System

The Bellman Ford algorithm [17] was used to solve the graph based con-
straint system. The Bellman Ford assigns to each vertex the lowest possible
abscissa subject to the constraints. The algorithm proved to be extremely
fast, especially if the edges are traversed in sorted (according to their ab-
scissa) order, i.e. a preliminary sort on the edges according to their abscissa
in the initial layout is performed. This is because the initial ordering of the
edges is a good estimate for the final ordering. Going through the edges in

a suitable order considerably reduces the number of Bellman Ford relaxation

$(28| uses this method.

M ::’:.A::_.'-
A o,

- -

- e

..............................

Hiain

|

Figure 6.8: Worsening of a layout Jog

steps. In the case where the initial ordering is preserved in the final layout
exactly one relaxation step is required instead of the | E | (where | E | is the
number-of vertices in the constraint graph) required in the worst case. Un-
fortunately while Bellman Ford does a good job of minimizing the total size
(bounding box) of the layout it can generate electrically poor layouts. This
is because although the algorithm minimizes the longest path it can actually

increase the length of other paths (up to the length of the longest path).

The Bellman Ford algorithm consists of pushing all the objects in a layout
as much to the left as they can go subject to the constants. When applied
to the layout of Figure 6.8(a) the resuiting layout of Figure 6.8(b) develops a
jog in it. A more appropriate algorithm would be one that tries to bring all
objects close together as if they were all connected by rubber bands instead

of trying to move them all to one side as if they are being attracted by a

large magnet on the left.

vvvvvvv

C i it N

6.4.3 Dealing with layer Interaction

Some design rules such as those for contacts or gates are hard if not
impossible to express in terms of minimum spacing constraints between the
mask layers of a layout. These kind of constraints often occur due to the
interaction of several layers at a time. For example the width of poly may
be 3\ except over diffusion (gate of a transistor) where it might have to be
5A. Not knowing beforehand where in the compacted layout poly will end up
over diffusion it is hard to determine which regions of poly should have a 5\
width constant on them. This is because constraints are generated based on

the initial layout whose topology will change during compaction.

One way of solving this class of problems is to create new layers that do not
correspond to actual mask layers in the lithographic process. This method is
already used in editors such as Magic (26]. For example Magic has a special
layer called contact which has design rules similar to those of any other layer.
This special layer is comprised of metal, poly and the actunal contact cut (or
cuts) between them. At mask creation time the contact layer is converted
into actual lithographic mask layers which may contain one or several contact
cuts depending on the size of the contact layer. The appropriate metal and
poly overlaps as well as the size and spacing of the contact cuts can be looked
up in a table. Figure 6.9 shows an example of what this translation process
when applied to a large contact layer might look like. The same type of
strategy can be used for transistors, buried contacts, etc.. The benefit of this
strategy is that often the new layers that result from the interaction of several
primitive layers can be characterized by simple design rule constraints while

as the interaction of the different layers often can not.

91

. ¥ "

R

25
v

--».-
OO

?{'v %

FXARRAS

4

LS

‘n
.

LR AR A S S B e At Al i A g GRS Bt dondingd NSNS A S A A St it et it S bt S fadt e i gl e

contact-cut

Figure 6.9: Contact layer Expanded
6.5 Summary and new directions

In this chapter some of the benefits and difficulties of leaf cell compaction
have been explored. A constraint representation for leaf cell compaction has
also been proposed. Difficulties encountered during the design and imple-
mentation of an experimental compactor (a flat layout compactor) have been
described and improvements have been suggested. The rest of this section
describes a plausible sequence of steps leading to the implementation and

evaluation of an efficient leaf cell compactor.

Section 6.4.3 relates the problems of dealing with layer interaction. This
problem occurs because design rules arising from layer interaction cannot be
described in terms of minimum spacing constraints. A successful compactor
must be built on top of underlying mechanisms for transforming a set of
physical mask layers into special layers as prescribed by Section 6.4.3, and
transforming these special layers back into physical layers. A flexible con-

straint generator (for flat layout compaction) implementing the right kind of

scanning technique and a carefully constructed set of constraint generation o
\'
d‘_.
rules must be built. The ultimate goal is to modify the constraint generator o~
~
92
w :~ ;{ -.‘ ----------- o .‘ '.-, e e RS e e, -, ...‘_..‘- “‘,: R e
RPN e . A L e o S N AN A SN S

2] l0eas
| AAN

A
O

o

to do leaf cell constraint generation. Provisions for interfacing the constraint

| 173

generator to a device sizing tool such as [22] must be considered. Care must

be taken not to underestimate the difficulty inherent in constraint generation, E"E
and a carefully charted course must be generated before any actual code is &:‘,‘
written. Testing the constraint generator for larger than simple test cases 1
cannot be accomplished without building a throw-away test constraint solver zfj
(for Alat compaction). The conmstraint solver's purpose will be to facilitate Eﬁj
testing of the constraint generator by outputting actual compacted layouts S
instead of constraint graphs. Once testing is completed the constraint genera- 'j
tor must be modified to do leaf cell compaction and an appropriate constraint -,-é
solving algorithm for leaf cell compaction must be selected or developed. The ’\
effects of different cost functions on the new leaf cell compactor must be eval- t"'
uated and catalogued. Finally an exploraticn of how the compactor and the EE
o

RSG can together constitute an efficient layout module in a larger silicon

compilation system must be investigated.

.
‘e

.

-
)
. '.g
!

NENEAY

ALK AL

x>

93

.‘r. »
RN

Py

.

T W e
o .

AR

,
ey

LY

AD-A170 836 ﬂ DESlGN BY EXAMPLE: REGULAR STRUCTURE GENERATOR(U) 272
ﬂSSﬂCHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAB OF
Bﬂ JI FEB .85 TR-507 AFOSR- TR-BS 05.1

UNCLRSSIFIED F4962O 84-0 0

4, el ™ g] LT

- o - g Lo 0 t, . v G ieg P 0.7
RIS R e e o O I N LI i JFe Ay Be del dsl Ve Ve s be P

.

o
r

ez et

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS - 196) - =

CCEFEEEE R
f .]
l.N
N
i

EEER

——

L]

———

r

T

re
E
IN

o

=
o

==
B

AN
25
i

“
L4 I.':i‘
5

<y
l4

")

o
-~

N
-

ol ST A .
P
7 /8
‘};’4' g
R8s
I

TG L 4, \l \ ;
YA . _
LY HERPETE A RET T PR L N G GG M R R

W ‘f \7 .. \(;gsf.’\’~ X “aThT 4 A, 0 DA ST G \-'\- 2" .-}‘. %‘. TN
Ot o, *) o,) 'y a & * \f~ f‘ ..(\l'\..-,‘.
, $\,~$\ SIS 23 O n.; iy NN NI A, CRgN

.
/ &
J >
5 2
-
Chapter 7
3 X
g 5
» ¥
[] LI 8
Conclusion -
-- %
The push to design larger and more complex VLSI chips has spurred the e
) creation of more sophisticated design tools. By restricting the target ar- e
chitecture to designs that are regular and can be algorithmically described, :g?
efficient and flexible layout generators that function well in a realistic VLSI "'
. setting can be built. Regularity, however, does not exclude complexity in '
L) :f
. the personalization of these structures. This thesis has demonstrated the :‘
‘ importance of the appropriate abstraction mechanisms — macrocells, snter- R
4’ faces, and interface inheritance — in generating layouts for realistic regular]
2 structures. The RSG is an operational tool that supports true macro ab- :"
’ ~
: straction and inheritance. Due to the flexible target architecture, greater
generality than specialized module compilers can be achieved without the
N loss of efficiency incurred in silicon compilers with a fixed target architec- ;‘
ture. The RSG presents a convenient interface to the user by separating the &
) graphical and procedural description of a circuit along a natural boundary, —
\ making it an extremely easy tool to utilize, extend, and upgrade. Information :*;
is efficiently partitioned into a design file which describes the global layout E ‘
94 ..
}_‘\
; %

d G e L e, T T e e T T RPN R A S U S RPN JRPC SR SR " -
<

e AR IS .\'.\..._ AL AR LS ...' S T e
-

» - . » . - > .
\ P K" ' et D0 ')0 AR M ‘1 . " ' o> e) h Tr Y y ~ b X R {'*.‘-'

5
f1 \":
" connectivity and a sample file which specifies the local placement constraints :'i
' and the specifics of the primitive cells. Tangible proof of the efficiency and ¥
;:‘j applicability of the RSG method to intricate regular structures that arise ':
gi‘ in meaningful applications was demonstrated by the design of a (class of) :::
‘ pipelined multiplier. The RSG's power can be further enhanced by a special '::
‘ kind of compactor which will make the RSG technology transportable and ‘.':
"4 allow it to perform device and bus sizing. The simple mechanisms used in E
' the RSG can be easily embedded in a complete VLSI design system. Such 3
3 a design system would include placement and routing and also compilation &
'-.: from a functional specification. The RSG could then be an efficient link in E;.
~ the design chain from functional specification to silicon. “
~:)
q s
>]
5 o
d 4
: X
¢ -\
4
'

: ~
: 2
: A
: 23
4 2
. N

.
4 &
(A

3 <,
¥ .

Ny

L) w)
N N
¥ \‘.
g »
[~'~

95

Al s 8 8

NN,

S
LN WAL,

D A I R
”-'\".}'-- \f... ‘-' g

'» 8%,

Appendix A

BNF Grammar

(procedure definition)

3 (function definition)
(macro definition)
(formals)
(locals)

(variable list)

(variable)

(body)

(statements)

(statement)

‘i

.o

(function definition)

(maczo definition)

(defun (fanction name) (formals) (locals) (body))
(macro (macro name) (formals) (locals) (body))
((variable Lst))

(local (variable List))

(variable) (variable list)
(empty)

(simple variable)
(indexed yariable)

(2indexed variable)
(statements)

(statement) (statements)
{empty)

"(conditional)

(do loop)

96

- _..a
i'o-
lw -

rla ey

4
d

4

RIS Y 5

NN

o S
- RO

LT

. o -

o A e pa
R)

L)
L)
)
'

(conditional)

(cond exprs)

(cond expr)
(if part)

(then part)

(do loop)

.o

.

.i

(Y R KRN AT 5 O NI

(assignment)

{function call)
(macrocall)

(primitive function call)
(print statement)

(read statement)

(prog statement)
(variable)

(connect statement)

(make instance)

declare interface)

(cond ({cond exprs)))

(cond expr) (.cond exprs)
{empty)

(if part) (then part)
(statement)
(statement)

(do ((simple variable) (initial value)
(next value)(exit conditional))
(body))

.......

WS MM M e
l'/*d’.:' f‘:‘.:

e
™
.l:v
(initial value) := (statement) }::
(next value) = (statement) o
(exit statement) = (statement) . .,é'
‘ (assignment) := (assign (variable) (statement)) }
; (function call) = ({(function name) (variable list)) 1_:¢
(macro call) = ((macro name) (variable list)) F: :
(primitive function call) := ((primitive function name) (variable) (variable)) Y
.\' &
\ (print statement) ;= (print (statement)) :.:5
l‘ (read statement) = (read) =
(prog statement) = (prog (statements)) i?'
s
‘ (connect statement) = (connect (variable) (variable) (statement)) '
L)
(make instance) := (mk.instance (variable) (statement)) &
(subcell) := (subcell (variable) (statement)) E‘
(make cell) := (mk.cell (simple variable) (statement)) _
.
(declare_interface (statement) (statement) ..;
= (statement) (statement) .
. (statement) (statement)) 3
(2indexed variable) = (simple variable).(statement).(statement) Y, <
b
;:‘,r
‘_h_ﬁ
98 "
::f‘

o g

)

a & A A A

AS A S A

A A YN

Sl N

s Sy ¥

(indexed variable)
(simple variable)
(function name)
(macro name)
(string of chars)

(empty)

(simple variable).(statement)
(string of chars)

M (string of chars)

m(string of chars)

a string of charecters Wi

e

y
¢

%
oy

'

N 4 e 0
A

n" (N

.

IAARTR

oy e
PR

)

-
YR

[

N

P o
(2 '

AR R R O O TR LR R R VLN
N RN St S .
DN >
Vv i Vol

.
~ AO‘

Appendix B

3 D~

Multiplier Design File

(macro mcell (xsize ysize xloc yloc)
(locals ¢ foo)
(mk_instance ¢ corecell)
(cond ((= xsize xloc)
(cond ((= ysize yloc)(connect ¢ (mk_instance foo typel) tiinum))
(true (connect ¢ (mk_instance foo type2) t2inum))))
(true (cond ((= ysize yloc)
(connect ¢ (mk_instance foo type2) t2inum))
(tzue (connect ¢ (mk_instance foo typei) tiinum)))))
(cond ((= (mod xloc 2) 0)
(connect ¢ (mk_instance foo clockl) clkiinum))
(true (connect ¢ (mk_instance foo clock2) clk2inum)))
(cond ((= yloc ysize) (comnect ¢ (mk_instance foo top2) top2inum))
(true (connect ¢ (mk_instance foo topi) toplinum))))

(macro mline (xsize ysize currentline)
(locals 1. re?)
! (assign 1.1 (mcell xsize ysize 1 currentline))
(setq ref (subcell 1.1 ¢))
(do ?i 2 (+11) (> 1 xsize))
y (assign 1.i (mcell xsize ysize i currentline))
(connect (subcell 1.(- i 1) ¢) (subcell 1l.i ¢) hinum)))

(macro m2darray (xsize ysize)

(locals ci. topright bottomright)
(assign ci.1 (mline xsize ysize 1))
(setq topright (subcell ci.1 retf))
(do (1 2 (+ 1 i) (1 ysize))

(assign ci1.i (mline xsize ysize i))

(connect (subcell ci.(- i 1) reg) (subcell ci.i ref) vinum))
(setq bottomright (subcell ci.ysize Tef))
(ak_cell mularrayname bottomright))

(macro mtopregs (size)
(locals 1. ref)
(assign 1.1 (array topreg i topregviaum))
(setq ref (subcell 1.1 c¢.1))
(do (1 2 (+ 1 1) (> 1 size))
(assign 1.1 (array topreg i topregviaum))
(connect (subcell 1.(- i 1) c.1) (subcell 1.i c.1) topreghinum))

100

L ™ DR e S)
0'.~.‘w\ -0 AP A N AR R R R LI S

AN NG A SE RS
- 'Q" O,.'

e 2 A

=.
-
-

JURLNP, A
W |f

“ .
L SN
>

Y

TR
gro e

(mk_cell topregisters Tref))

(macro mbottomregs (size)

(locals 1. ret)
(assign 1.1 (array bottomreg size bottomregvizum))
(setq ref (subcell 1.1 c.size))
(do (i 2 (+ 1 1) (> 4 size))

(assign 1.i (array bottomreg (- (+ 1 size) i) bottomregvinum))

(connect (subcell 1.(- i 1) c.(~ (+ size 1) (- 1 1)))

(subcell 1.i c.(- (+ 1 size) 1)) bottomreghinum))

(mk_cell bottomregisters ref))

(macro mrightregs (size)
(locals 1. ref length regnum)
(setq regnum (+ 1 (* 3 size)))
(setq length (// regnum 2))
(cond ((= (mod regnum 2) 1) (setq length (+ 1 length))))
(assign 1.1 (array rightreg lengthk rightreghinum))
(assdirection 1.1 1 length regnum)
(setq ref (subcell 1.1 ¢.1))
(do (1 2 (+ 1 1) (> 1 size))
(assign 1.i (array rightreg length rig-treghinum))
(assdirection 1.i i length regnum)
(connect (subcell 1.(- i 1) ¢.1)
(subcell 1.1 c.1) rightregvinum))
(mk_cell rightregisters ref))

(defun assdirection (rarray index length regnum)
(locals ins outs bi foo doublereg)
(setq ins (* index 2))
(setq outs (- regnum ins))
(setq bi (fmin ins outs))
(cond ((> ins outs) (prog (setq doublereg inward)
(setq singlereg sinward)))
(true (prog (setq doublereg outward)
(setq singlereg soutward))))
(do (1 1 (+ 1 4) (> 1 b))
(connect (mk_instance foo bidirectional)
(subcell rarray c.i) rtoregsinum))
(connect (mk_instance foo singlereg)
(subcell rarray c.(+ di 1)) rtoregsinum)
(do (4 (+ b1 2) (+ 4 1) (> i length))
(connect (mk_inatance foo doublereg) (subcell rarray c.i) rtoregsinum)))

101

... P wt g -
..... ._'..‘:.‘;.-:_:».‘ :'._‘.\': -._-.\-.._- ._.~.--
v o

P T PR M A S LA R Y

CRE
- o

-
-
N

(macro mall (xsize ysize) :
(locals arrayfoo tregs bregs rregs tri arrayi bri rri)
(setq rregs (mrightregs ysize))
: (setq bregs (mbottomregs xsize))
' (setq arrayfoo (m2darray xsize ysize))
: (setq tregs (mtopregs xsize))
‘ (declare_interface topregistername arrayname 1 (subcell tregs ref)
(subcell arrayfoo topright) cell_to_topreginum)
(connect (mk_instance tri topregistername)
! (mk_instance arrayi arrayname) 1)
(declare_interface arrayname bottomregistername 1
. (subcell arrayfoo bottomright)
(subcell bregs ref) cell_to_bdottomreginum)
(connect (mk_instance bri bottomregistername) arrayi 1)
(declare_interface arrayname rightregistername 1
. (subcell arrayfoo topright)
(subcell rregs ref) cell_to_rightreginum)
(connect (mk_instance rTi rightregisternmame) arrayi 1)
(mk_cell "all" arrayi))

(defun fmin (x y)
(locals)
(cond ((> xy) y)
(txrue x)))

(mall xsize ysize)

102

- f\.’ "

B e A A e TR P R B PPS A e - e
N s"'u" R R s KOS Y (S oy PO R AN LN SN (SRR,

L
. .

‘h
¥y, O (R 0 A] L':‘I.'.l'-‘-'. n\.

Appendix C

Multiplier Parameter File

.example_file:/u/bamji/demo/mult.def
.concept_file:/u/bamji/demo/mult.con
.output_file:/u/bamji/demo/multout.det

vinum=2
hinum=1
tiinum=1{
t2ipum=1

mularrayname="array"
arrayname=array
corecell=cell
typels=ti
typel=t2
clk2inum=1
clkiinunel
clocki=clki
clockl=clk2
topi=topicel
topl=top2cel
topiinumsi
top2inumsi

topregvinum = 2 s
topreghinum = 1 . RO

topreg = tr xkﬁ
topregisters = "topregs” ORI
topregistarname = topregs R

bottomregvinum = 2 .
bottomreghinum = 1 -
bottomreg = br 2
bottomregisters = "bottomregs" -

’

AR
bottomregistername = bottomregs e
XN
rightregvinun = 2 __
rightreghinum = 1 o
rightreg = rT N
rightregisters = "rightregs"” o
rightregistername = rightregs :{;
~.":.'
103 —_—
s
RSN
e
T

g i ik] LBt Hibaia i - Pl S T A A A i S a - V&
- - - P R S L

[N

P
[

f{l{‘

o ~ 4
»
b bidirectional= goboth N
inwvard=goleft
L outwardsgoright N
y sinvard=gosleft {x
a soutward=gosright 5&
" rtoregsinum=1i o
; xsize=asize .
)
N ysize=asize =
W i
4 cell_to_topreginum=i -
: cell_to_bottomreginumsi]
cell_to_rightreginum=1i .
.~ asize=168 w7
N :j
: NY
) _b
. A
v, 0
> N
“
> "
5 -‘
.J ‘e
g R
. r
2
; o
. Y
N B
] ‘L
Ll t' o
. R
[] ‘7’
o :’
L\ "
A S

104

L4

LKA

1]

.

"

. NG,
8 -~

- -‘!

. -

N

“

rlele

5

Appendix D 23
Adder Cell Schematic

oL
E_

“l
Y

A=
|
A
5

1

5
Type 1 ek o o

N
TR

ol

.l , -g'-l'-t'l
oy
A

l-.‘
A

e
‘l‘l‘lll
L ARy

105

<, : '\0 "f:‘

4 “c "!
Vi,

o m ey

o us o W

A

Pad P el e ™

[T

‘ ,"‘.J', -’ J'_,-P A af .: -'._d‘.hl' f\-\:
st 8

% y ‘

Type 11 clk -li

106

P e A e S s A A
' o 1'»"':-‘.*\ > "»'. i SRR AN SV OGN RN R bSO
BAL Y A o0 LY \'l v.‘n' ‘Q i N .‘ll N

A ARLLIFAL o'g of Ny

AT I I IR

I'I ’

Sans

~

o

]
i

-.,.
.fl‘u’r""‘\

‘-.
.

A% VAN Ao | RAAKNSTe) IS ARk re atss g K, % AL

L Ll Ll Ll Ll L LA

42
=
S

Ea

OML

T =

me
o

< 3

o)

<

PR R N R
h et

@///J
(Ll

I

AR NS

it

i

ﬂ"* ..f

. A%y
PR NS

)
PR
[N

et APRAARES

Bibliography

(1] A. Aho, J. Ullman and J. Hopcroft, The Design and Analysis of Com-
puter Algorithms, Computer Science Press, pp. 111-113.

[2] R. Armstrong, “HPEDIT Reference Manual”, MIT Research Laboratory
of Electronics, MIT, 1982.

[3] R. Armstrong, “HPDRAW Reference Manual”, MIT Research Labora-
tory of Electronics, MIT, 1982.

(4] R. Armstrong, “Procedural Design of a high speech Floating Point Arith-
metic Unit”, S.M. thesis, MIT, Febuary 1985.

[5] D. Baltus, “Design of an Assembler of NMOS Fast Parallel Fractional
Multipliers”, S.B. thesis, MIT, May 1983.

[6] C.Bamji, “Design by example PLA generator”, S.B. thesis, MIT, Febru-
ary 1984.

(7] C.Bamiji, C. Hauck and J. Allen, “A Design-by-Example Regular Struc-
ture Generator”, ACM IEEE 22™ Design Automation Conference, Las
Vegas, Nevada, 1985.

108

" " ..'v -
6o A, ﬁi& 4‘

L4
'-"\)
sp s

LN A AN VXX
.2. x-’-_'!'.'\“s{‘ ’~'-j“i

..,,.,.
o'y & s, '.';.:

LS
DX

yAA

."'s'o'n P
P s A]

» ey

g}

%
LA
A
'-.‘ -
v
:-.:‘
0
u"‘y

o

(8] J. Bentley and T. Ottmann, “The complexity of manipulating hierarchi-
cally defined sets of rectangles”, Carnegie-Mellon University, Computer
Science Department, Technical Report CMU-CS-81-109, April 1981.

[9] A. Dunlop, “SLIP: symbolic layout of integrated circuits with com-
paction”, Computer Aided Design, Vol.10, No.6, November 1978, pp.
387-391.

[10] F. Ficken, The Simplez method of linear programming, Holt, Rinehart
and Winston, New-York, 1961.

[11] L. Guibas and J. Saxe, Problem 80-15, Journal of Algorithms, Vol.4,
1983, pp. 177-181.

[12] C. Hauck, C. Bamji, J) Allen, “The Systematic Exploration of Pipelined
Array Multiplier Design”, ICASSP, 1985. '

(13] K. Hwang, Computer Arithmetic, John Wiley and Sons, New York, 1979.

(14] D. Johannsen, “Bristle Blocks: A Silicon Compiler”, ACM [EEE 10
Design Automation Conference, June 1979, pp. 310-313.

[15] G. Kedem and H. Watanabe, “Optimization techniques for IC layout
and compaction”, Technical Report 117, Computer Science Department,
University of Rochester, September 1982.

(16] S. Kirkpatrick, C. Gelatt, Jr. and M. Vecchi, “Optimization by Simu-
lated Annealing”, Science, V. 220, number 4598, May 1983, pp. 671-680.

(17] E. Lawler, Combinatorial Optimization: Networks and Matrosds, Holt,
Rinehart and Winston, New York, 1976 , pp. 74.

109

-

[18] C. Leiserson, F. Rose and J. Saxe, “Optimizing Synchronous Circuitry
y by Retiming”, Third Caltech Conference on VLSI, Pasadena, California,
March 1983.

At N

[19] T. Lengauer, “Efficient Algorithms for the Constraint Generation for
. Integrated Circuit Layout Compaction”, Proceedings of the 9* Workshop
on Graphtheoretic Concept in Computer Science, June 1983.

[20] T. Lengauer, “The complexity of compacting hierarchically specified lay-
outs of integrated circuits”, Proceedings of the 23" Annual Symposium

on Foundations of Computer Science, November 1982, pp. 358-368.

[21] B. Liskov, et al., CLU Reference Manual, Springer-Verlag, New York,
i 1981.

¢ (22] M. Matson, “Macromodeling and Optimisation of Digital MOS VLSI
Circuits”, PhD. thesis, MIT, January 1985.

[23] S. McCormick, “EXCL: A Circuit Extractor for IC Designs”, ACM IEEE
21% Design Automation Conference, Albuquerque, New Mexico, 1984,
pp. 616-623.

) [24] E. McCreight, “Priority Search Trees”, Xerox Corporation Palo Alto
Research Centers Technical Report, CSL-81-5, January 1982.

[25] C. Mead and L. Conway, Introduction to VLSI Systems, Addison- Wesley,
Mealo Park, California, 1980.

[26] J. Ousterbout, G. Hamarchi, R. Mayo, W. Scott and G. Taylor, “Magic:
J A VLSI Layout System”, ACM IEEE 21" Design Automation Confer-
ence, pp. 152-159.

110

(]
P P B A a e ne s mae s e . -
S SN AN NN A o . g

5 . . - * N . . *> -~
! . :
Lt b T NG SRS CY Oy \ P) ' T AT SO S S R R

.........

[27] K. Pitman, “The Revised Maclisp Manual”, Report TR-295, Laborarory
for Computer Science, MIT, June 1983.

(28] S. Sur, “Resizing in Automated VLSI Layout Design” S.M. thesis, MIT,
February. 1985.

[29] J. Suskind, J. Southhard and K. Crouch, “Generating Custom High
Performance VLSI Designs from Succint Algorithmic Descriptions” Pro-
ceedings Conference on Advanced research in VLSI, January 1982.

o N A

(30] A. Vladimirescu, and S. Liu, “The Simulation of MOS Integrated Cir-
cuits Using SPICE2", Electronics Research Lab, University of California
Berkely, ERL Memo No. M80-7, February 1980.

2N AT
'..' ‘:~.I~.I..' $. s.r.'

‘ .
-é [31] W. Wolf, “Two-Dimentional Compaction Strategies”, PhD. thesis, Stan- ‘-’:
. w7}
N ford University, 1984. :::;.
" \".
°

(32] R. Zippel, “An Expert System for VLSI Design”, IEEE International

" Symposium on Circusts and Systems, 1983.

00,

» . R
Pl “vte s e ety

%
LA

-

- o

RN XS

.
o

ﬁ“"'

LN
» 1Y

% % % s

Fa¥sl

A,

111

AR A AL RN s e e A
At ag oty AL

- -".x'. L l.‘.n-' », .
Yo " - .Q'-} . *J'\. O *c o
+ \ A U NN i N

R R LR AT AL R

L

PRy

T

~ 0

-

ta e C LAt X

