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1. Research Objectives and Summary

The objective of this phase of the research performed under AFOSR

Contract F49620-82 C-0044 (1/1/84 to 12/31/84) was aimed at furthering our

understanding and utilization of excitonic properties of semiconductors

containing magnetic elements at a low temperature and under varying amount

of impurity background. In particular, ultrashort pulses of laser

radiation were employed to study localization phenomena of excitons under

selected nonequilibrium conditions. The mixed crystal semiconductor

(Cd,Mn)Te has provided the material basis for our work. In the short pulse

experiments, photomodulated transient exciton spectra have been studied as

a fucntion of the excitation photon energy in order to distinguish between

localization by Coulomb centers (neutral and ionized impurities) and those

originating from random potential fluctuations due to alloy compositional

fluctuations. We have been succesfull in providing striking real-time

evidence for the presence of localization by compositional fluctuations.

The research results derived from this AFOSR sponsored research have

formed the basis of scientific publications, as enumerated below. In

addition to regular scientific meetings, the principal investigator has

been invited to present the research results in different scientific

forums.

AIRFort-mc.F'i( a or ~ETFI~iAO (AYSC)
NOTICE OF TTW1 4JTTAL To DTIC
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npproved for public release 1AW AR 190-M.
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2. Research Acccmiplishments and Results

On the Question of Exciton Localization in (Cd,Mn)Te by Alloy Disorder

Many of the recent studies of optical properties in the II-VI diluted

magnetic semiconductors (DNS) have involved near bandgap electronic

excitations such as free and impurity bound excitons. At the same time

there is an expected contribution to band edge broadening from alloy

potential fluctuations which are inherent to any mixed crystal due to

compositional disorder on microscopic scale. In particular, it has been

realized some time ago that excitons may localize in such random potential

wells at low temperatures (1). Experimentally, there have been reports in

several mixed crystals of evidence for such localization, obtained through

analysis of photoluminescence spectra (2), including recent transient

spectroscopy (3).

In this segment of the accomplishments under the AFOSR supported

research, we highlight results of time-resolved studies on subnanosecond

timescale of excitonic spectra in Cd lxMn xTe (x=.15) where picosecond

laser techniques have been applied to look for evidence of exciton

localization. The results are discussed below only in a qualitative way.

Golnik and Lavallard have also performed similar work recently (4). Since

Cdl _xMnxTe grows usually slightly p-type but with substantial

compensation, one expects (neutral) acceptors and alloy fluctuations to

compete with each other in the capture of free excitons injected to a

sample. At higher impurity concentrations (but below the Mott transition)

the formation of impurity bound excitons becomes the most likely event, as

shown by us recently in n-Cd1 xMnxSe through time resolved spectroscopy
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with the donor bound exciton (5). Localization by alloy potential

fluctuations might take on additional significance in the DMS because of

the possibility of a subsequent polaronic effect fran the exchange

interaction between the spins of the carriers and localized Mn-ion

magnetic moments. Much of the recent experimental evidence for the 'bound

magnetic polaron" (BWMP) has come from studies of impurity bound exciton

spectra (6). In that case, the electrostatic binding of a free carrier or

a free exciton to an impurity complex provides the necessary initial

confinement of the quasiparticle(s) in an effective Bohr volume.

Our experiments employed two picosecond dye lasers to excite and probe

the Cd1 xMnxTe samples. We have used such photomodulation spectroscopy in

several earlier occasions involving free and impurity bound excitons in

semiconductors (7). One advantage of this approach over time resolved

luminescence is the ability to distinguish spectral signatures between

free and bound (localized) excitons. This follows from the distinct

lineshape contribution which is made by exciton-exciton scattering to

collisional broadening in such spectra for free excitons. Another benefit

is the ability to apply resonant excitation without interference by

scattered pump light in a noncollinear geometry with the help of suitable

electro-optical modulation techniques (8).

In this work we concentrated selectively on Cd1 -xMnxTe samples (x=.15)

where cw-photoluminescence spectra did not show the strong emission

characteristic of the neutral acceptor bound exciton (A°X). (In samples

where such A°X emission daminates, we saw the large temperature dependent

shifts in the emission energy, associated earlier with the BMP effect by

Golnik et. al. (5).) Figure 1 shows luminescence spectra at three

i.~ *- ** *aa - - - . .*~. ~ j
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~Figure 1: Photolumineacence in (Cd,M)Te (x=- 0.15) at three different

temperatures in the absence of a strong AX emission. The arrow indi-
cates the position of the free exciton as deterined from reflectance
at T=- 2K. The inset shows the actual temperature dependence of the

luminescence amplitudes.
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different temperatures, where the peaks are typically 10 meV and more

above the known A°X energies. The free exciton energy as determined from

reflectance at T=2K is also indicated, together with the temperature

dependence of the amplitude. Note the blueshift of the peak energies with

temperature and the narrowing of the spectra (the shift is, however,

considerably less than that observed with the A°X emission). By T=30K the

high energy side of the spectrum has a width comparable to kT. The spectra

could suggest a (direct gap) material where close compensation has

sufficiently reduced the density of neutral acceptor sites so that low

temperature free exciton localization to near band edge states may have

become possible. At the same time, nonexcitonic emission from other

shallow impurity states is likely to add a contribution.

To test this possibility further, Figure 2 shows transient

photomodulated spectra in this energy region, initiated by picosecond

laser excitaticn in the same samples at T=2K. The absorbed photon density

per pu ;e was maintained below 1015 cm-3. The photon energy of excitation

in Fig. 2a corresponds approximately that of the free exciton (from

reflectance spectra) and that in Fig. 2b lies below it. Analysis of the

photomodulation approach shows that the spectra are qualitatively those

expected for a noninteracting exciton gas (in nonextended states), and can

then be thought as analogous to time resolved photoluminescence. We see a

pronounced difference between Figures 2a and 2b, with the rather narrow

and dis: inct peak appearing at the photon energy of excitation in the

latter. For photon energies of excitation varying over a range of nearly

10 meV below the free exciton energy such a peak was evident, tracking

well the energy of excitation. At delay times t>0 a distinct low energy

shoulder appeared, evolving while its spectral center of gravity moved to

• -- -"... " , . ,"--, . ." - "-. ",,.-..'-'-. -.k° -; ';n * - -.-
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lower energies. A time dependent shift is also seen in the broader

nonresonantly excited features of Fig. 2a, following the free exciton

injection at t--O. In all cases we also saw a long lived spectrally

stationary 'background ' contribution which is apparent at the longest

graphed delay times in Fig. 2. The lifetime associated with this

background was typically many nanoseconds.

With increasing temperature, the peaks and their associated shoulders

such as in Fig. 2b lost their distinctive shapes as well as decreased in

amplitude when sample temperatures reached T=10 K. This change was also

clearly seen through an increasingly rapid decay of the 'resonance' peaks

(e.g. about 100 psec at T=5 K for the peak in Fig. 2b). At the same time,

the long lived 'background' signals became relatively more dominant in

this energy region, while at higher photon energies we saw spectral

features which were suggestive of free exciton like behavior. The free

exciton photomodulation spectra is usually distinguishable from the

appearance of a sign change in the experimentally measured quantity dT/T

originating fram collision broadening of the exciton line (9). In our

samples we also measured a substantial redshift in the tail of the

absorption edge with _4ncreasing temperature. (For reference, at a value
-l

100 cm for the absorption coefficient, the redshift of the edge had an

average value of 1.5 meV/K in the range of 2 to 20 K).

We interpret these results in the following way, while using

qualitatively many of the ideas of Cohen and Sturge in Ref. 2. At the low

temperatures, data such as in Fig. 2 is taken to imply the direct

observation of localization of free excitons in alloy potential

fluctuations. We can crudely estimate (10) the range of energies for such

S '5 . -
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localized states below the free exciton edge to be approximately 10 meV,

if the Mn-ion distribution is statistical (there is uncertainty at present

about the degree of clustering which may take place in this alloy). The

relatively sharp structure which can be resonantly excited (Fig. 2b), is

central to this argument, together with its disappearance at higher

temperatures. The absence of a lower energy shoulder at t=0 and its

appearance only at t>0 is interpreted as originating from acoustic phonon

assisted tunneling to lower energy states in the continuum distribution of

localized states (the details of such density of states are difficult to

address from our data). An energy dependent tunneling cross-section

together with a particular density of states can give rise to the

appearance of a distinct shoulder as calculated in more detail by Cohen

and Sturge (2).

In this interpretation, nonresonant excitation to the free exciton

states above a 'mobility edge' (Fig. 2a) is followed by an initial capture

to most of the localized states and subsequent energy relaxation within

these states. From the time dependent data we infer capture rates

typically on the order of 1011 sec-1 at T=2 K, slower than those seen

earlier with impurity bound exciton formation (5). The low lattice

temperature is unlikely to permit a significant thermal ionization and

thus a multiple trapping like relaxation process should be less probable

than the phonon assisted tunneling. Frcm the observed spectral diffusion

9 -l1we extract tunneling rates which are on the order of 10 sec at T=2 K,

i.e. comparable to the exciton lifetime (among the approximations made in

this estimate is that of a constant optical matrix element within the

localized states). Thus, a complete thermalization would not be achieved.

At higher temperatures, the role of multiple trapping is expected to
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increase the thermal equilibriation rate within the localized states as is

qualitatively seen in our data. The amplitude of the cw-photoluminescence

signal decreases rapidly at temperatures above 10 K suggesting a

nonradiative trapping mechanism for free excitons. This behavior has also

been confirmed earlier by us in time resolved experiments for the free

exciton in Cdl Mn xTe (11).

The evidence that free exciton localization is being directly seen in

these experiments cannot be completely separated from the unavoidable

effects of impuritites and other defects in the presently available

Cdl xMnxTe. In particular, assuming a nearly compensated p-type (high

resistivity) material implies that the position of the equilibrium Fermi

level lies in the vicinity of the valence band edge at low temperatures.

In fact, we suggest that EF overlaps the valence bandtails which originate

from the compositional disorder (the usual impurity/vacancy acceptor

energy in CdTe is somewhat larger than the expected band edge smearing).

With increasing temperature some thermal ionization of electrons into the

unoccupied localized states takes place thus shifting EF deeper into the

gap and giving raise to the observed shift in the tail of the absorption

edge. This also makes possible single electron (nonexcitonic)

contributions in the photemodulated spectra, which follow the excitation

of an electron from a defect state into the conduction band tail states.

Any possible subsequent single carrier localization would be expectc3 to

result in longer lifetimes and is likely to be associated with the

'background' signal spectra observed by us.

In sumrmary, we have presented experimental results and arguments that

free exciton localization in alloy potential fluctuations can take place

-- ' . * * . *
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in Cd lxMnxTe when the competition by impurity bound exciton formation is

not dominant. However, we have not yet seen any magnetic polaron-like

effects under conditions of direct excitation to localized states although

additional tests using an external magnetic field are under way. We also

note that, in general, the real time spectral diffusion observed by us can

also be expected from an inhomogeneously broadened impurity band. Finally,

we would like to contrast these results with our recent work in

n-Cd lxMn xSe, where transient spectra associated with neutral donor bound

exciton was used to support arguments for the formation of an BNP (7).
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