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ABSTRACT

Some probability models for classifying individuals as belonging to one

of two or more populations using scale invariant discriminant functions are

considered. The investigation is motivated by practical situations where the

observed data on an individual are in the form of ratios of some basic measure-

ments or measurements scaled by an unknown non-negative number. The probability

models are obtained by considering a p-vector random variable X with a known

distribution and deriving the distribution of the random vector Y = [G(X)]' X,

where G(X) is a non-negative measure of size such that G(AX) = XG(X) for X>O.

Explicit expressions are obtained for the densities of what are called Angular

Gaussian, Compositional Gaussian, Type 1 and Compositional Gaussian, Type 2
S

distributions. ..

Key words: Angular Gaussian Distribution, Compositional Gaussian Distribution,
Discriminant function, Scale free methods.
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1. INTRODUCTION

We consider the problem of classifying an individual as belonging to one of two or

more populations using scale invariant discriminant functions. The investigation is motivated

by practical situations where the observed data on an individual are in the form of ratios

of some basic measurements or measurements scaled by an unknown non-negative number.

In this paper we derive some probability models for applications to such data

If X -= (xI, -.-,Xp) is a vector of p basic measurements which may be known apart

from a positive scaling factor, then we may consider transformed measurements

(yl,0',y) Y [G(X)]-1 X (1.1)
pr

which are scale free if G is some non-negative measure of size such that G(XX) = XG(X)

for X > 0. Some typical examples of G(X) are

G(X) = Ilxll (1.2)

(1.3)

We call the corresponding transformed variables Y = X , X/ .x, as directional, and

compositional data respectively. We note that the term compositional data is usually

applied to a set of non-negative proportions (see Aitchison (1985)), but our definition is

more flexible. However, we refer to Y = X/ .xiI as compositional data of type 1 and Y

= X/.x as of type 2, even when x are not non-negative.

It is also interesting to note that when we have compositional data with non-

negative proportions, (yl,'..,yp) such that lYi . 1, then we may transform them into

directional data by considering ( yip,, ) and use appropriate probability models

for directional data (with non-negative components) for statistical analysis as suggeste

by Stephens (1982).

One way of generating probaibility models for directional and compositional data is to

consider a probability distribution for the basic measurements X and then derive the

induced distribution for Y = [G(X)] IX. In this paper we assume that X- N P(, i.e., as
p

Is 1 Is -........................................................................



2

p-variate normal with mean vector U and variance-covariance matrix Z, and derive the

distribution of Y for different size functions G.

Once an appropriate probability model is chosen, the problem of discrimination can

be handled in the usual way.

We also comment on non-parametric methods for estimation of density for

directional and compositional data.

2. CLASSES OF DISTRIBUTIONS FOR DIRECTIONAL DATA

2.1 Angular Gaussian Distribution (AGD)

Let X-N p(U,.) and define Y = R 1X where R = JJXJJ = (X'X) 1 , so that Y is the

vector of direction cosines with the condition Y'Y = 1. The marginal distribution of Y on

the p-dimensional unit sphere S is called the AGD (Angular Gaussian Distribution). For the
p

special case when Z = o 2T, Bingham obtained the distribution of Y in the form of an

infinite series (see Watson (1983), p. 226). In this section, we obtain the distribution of Y

in the general case in a closed form involving a finite number of terms.

Consider a polar transformation from X to (R,O), where 8 is a vector of p-1 angles

in which case the Jacobian is of the form

D(X) - Rp- f(e). (2.1)

D (R,e)

The transformed p.d.f. (probability density function) is

I2 1- 1Rp-If(8)exp[-2 - (R 2Q3-2RO 2+Q) 1 (2.2)

where

.1
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Q3 -'l 'I- Y 2 = 11V'Z 1Y, Q1 = iz1

and Y is a function of 8 only. Changing from P to r = R/Q-3 ' the p.d.f. (2.2) transforms to

I27wE 1- 1/2Q -p/2f(e)exp C-2 1 (a - 2 Q-1)

3 1 2 3

x r P1expE-2- (r-Q Q- / ) 2 (2.3)

* Integrating out for r from 0 to ~,the p.d.f. at Y w.r.t. to the surface element

de, on n is
p p

p(YTli,z) = Trj*1Q 3p/ I (Q2Q3 11 x[21(Q 1-Q 2Q- 1] (2.4)

where

I(a) - r -ep21(r-ci) 2Jdr. (2.5)

The function I satisfies the recurrence relation
p

I(a) = (p-2) I p2 (a) + a I P-.1 (a) for p>
2  (2.6)

with the initial values

-a22
1 2 (a) -e / + aI1 (a), I 1 (a) V2 v'T (Q)

where 0(a) is the distribution function of N 1 (011).
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It may be noted that the p.df. (2.4) remains unchanged if 1i and . are replaced by

a1U and a 2Z for any a>0. However, we can make the parameters unique by imposing the

condition ;ll l = 1.

2.2 Longevin Distribution

We can generate other distributions for Y from (2.2) and, (2.3) as suggested by

Fisher (1953) by considering conditonal instead of marginal distributions. Thus, from the

expression (2.3), the conditional p.dcf. of Y on 2 given r = 1 is
p

const. Q P/
2 exp(Q 2Q; 1/2)

- const. YE -1Y)-p/2exp(i V-Y/) (2.7)

where we may impose the restriction. = 1. When Z = o2I we have the Longevin

(1905) - von Mises (1918) - Fisher (1953) distribution

const. expi±'Y.., (2.8)

on the surface of a p-dimensional sphere.

From the expresrion (Z.2), we find that the conditional p.d.f. of Y on C2 given R = 1
p

with respect to do, isP

const, expf[-2- 1(Y- I. Z(Y- )] (2.9)

where :ri l[! = 1.

We add two other classes of distributions found to be useful in practical

applications as possible models for directional data

i
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Scheideggar-Watson p.d.f. [bp (K)] exp (K'Y)2 . (2.10)

Bingham p.d.f. [b(k)]- l expY'KY, where K is pxp symmetrie matrix. (2.11)

2.3 Estimation of Parameters

The model (2.4), which is the angular normal distribution, can be used to construct

scale invariant discriminant functions provided the parameters U and Z are known. If they

are unknown we may have to estimate them from past observations Y,°O°,Y on Y. Using

the density function (2.4), the likelihood based on past data is

n
IT p(YI IIZ)
it-i

with the restriction j1 11 = 1. The method of maximum likelihood for estimation of

parameters can be implemented without much difficulty since the derivatives of all the

expressions involved in (2.4) with respect to -g and I can be easily evaluated. However,

there are too many parameters to be estimated and a very large sample may be necessary
* to obtain reasonably good estimators.

We may consider an alternative method by considering the marginal bivariate

distributions of Y, where Y - (x 1 /1[xI,.o.,xn/11x1) and X w N (,E). If y, and Y2

are the first two components of Y, then it is easily seen that

Pa = P(yl <- ay2 ) = P(xl-ax 2 < 0)

( J2 -ij 1 ) a 22 11) ] (2.13)

where 0 is the distribution function of N (0,1). If we have a sample of size n on Y with
the first two components (yli'Y2i), i - 1,°°°,n, we can estimate pa for any given

a by
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p = proportion of is such that y 2, (2.14)

Then we have the observational equations

2 1/2 A (2.15)

2 1 22 12 11 P

or

2 2((2 ) -2ao 0 )Va. (2.16)
2 1 p, 22 12+ 11

p(p-1)/2 families of equations of the kind (2.15) or (2.16) are available involving all the

elements of U and Z by considering every pair of components in Y From the equations

(2.15) or (2 16) it is clear that only ratios of the parameters can be estimated They can

be made unique by using a restriction like II II = 1. An appropriate method may be

used to combine the equations (2.15) or (2.16) to produce the requisite number of

consistent equations to estimate the parameters,

We describe one of the methods. First, we note that by smoothing Pa in (2.15), we

can estimate a-. ' a a such that p = 1/4, pa = 1/2 and p = 3/4. Writing
1 0 1

0|

-1 -1
'D 1(1/4) = q_ 'D (1/2) = 0 , (- (3/4) = q (2.17)

the equations (2.16) for a_ 1. a0' a I can be written as

(ao12-1 = 0 (2.18)

A A 2 2 2
S2-U = q (cx 0 - 2+, ? (I -1,1. (2.19)

*There are p equations of the kind (2 18) obtained by considering all pairs of the

* . a. - -. ,.' .'+ . - - .. *-.*-'," * *, ..'.' ','- ,. - ."-- a
"-

.
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components of Y. They yield estimates of the ratios of 11 1. P, which can be standardised

to satisfy the restriction ;J1"ill = 1. Then we have p(p-1) equations of the type (2.19)

involving the p(p-.l)/2 parameters in Z. Observing that the equations are linear in 0 , we
Ij

may combine them by least squares method to produce p(p+l)/2 equations by solving

which we obtain the estimates of a.

The estimates obtained by the above method may still require large samples Other

methods of combining the equations (2.15) or (2.16) have to be explored.

3. CLASSES OF DISTRIBUTIONS FOR COMPOSITONAL DATA

3.1 Compositional Gaussian Distribution Type 1, [CGD(1)]

Let X- N (i,.) and define Y = 1Zx <X so that ITYI = 1. We call the distribution

of Y on the set

S = Y Y = 1} (3.1)

the Compositional Gaussian Distribution, Type 1. We distinguish two sets

S = {Y .y = 1}' S = {Y .y = -1} (3.2)+ I -

and note that S US = S and+ -

P(Y e S+) = P(Ex. > 0) and P(Y e S ) = P(Ex < 0). (3.3)+ - 1

In S we consider the transformation
+

x= Ryi s i = I ... 1

x= R(1-y 1 -..- Y_ 1 ) = Ry (3,4)

and in S-,
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X,= -Ry , i -= *.-

xP = R(l+y 1+-+y~ P-1 =R (3.5)

The Jacobian of the transformation in either case is

D~ 0..9 P) = R P 1  
(3.6)

The p.df. of X in S +transforms to

(2T p2 E jPV**xp [-2-1(Q 3R 
2 _2Q 2 RIQ 1  (3.7)

wherq

Q3 -IE 1 YQ I-, Q - I- j

Making the transformation r =RQ 12the expression (3.6) changes to
3

-p/2 - 1/2 -p/2 - 1 2 - 1
(2 7) I2I Q 3exp [-2 (Q 1-Q 2

x r - expE-2- (r-Q Q- / ) 2. (3.8)2 3

*Integrating out with respect to r from 0 to ~.the p.d.f. of Y in S with respect to the

volume element dy 1..dy P1is

(2,) p/21E, Q 3p/2, (0 Q3 ep- 1( -' 2 Q-1 (3.9)
3 ~,*Q pl2 ( 1- 2Q3 )

where I (a) is as defined in (2.5).
p

In S- under the transformation (3.4), the expression corresponding to (3.8) is

%* %
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-- (/2 -1/2 P2 -1 _ Q 2 -1
(2w)2-- /2expE-2r  ( 1- )]

-I -/2

x Jrj P1exp[-2- (r+QCl 1/2 ) 2. (3.10)
Q4 3

' Integrating out with respect to r from -c to 0, we obtain the same expression as in (3.9)

for the pdf of Y in S_.

It may be noted that in the expression (3.9), we can impose a suitable restriction on

ti to make the parameters identifiable.

3.2 Compositional Gaussian Distribution, Type 2, [CGD(2)]

Let X-N P(U) and define Y = (Ex )-X. For this we consider the transformation

X = Ry i , i = i,

x = R(l-yj--yy P (3.11)

so that y. = 1. We define the marginal distribution of Y on the simplex

S = {Y :y = 11

as the Compositional Gaussian Distribution, Type 2. Making the transformation (3.11),
proceeding as in Section 3.1 and integrating the expression corresponding to (3.8) with

respect to r from -co to cc we obtain the pdf of Y with respect to the volume element

dy 1...dy 1 as

1 N. a
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(2r)I 3QP/ 2 tI(Q2 Q33) + Ip(-Q2Q )3]exp[-2-1 (Q-Q 2 Q 1)] (3.12)2-1

where Q 1 Q2 and Q3 are as in (3.7) and I is as defined in (2.5).2 3 p

As in the other cases, the pdf remains unchanged if IL and Z are replaced by a I

and a 2. respectively for any scalar a > 0.

As in (2.7), the conditional distribution of Y given r = K (a constant) is

const Q p/2exp(I Q2 1/2 (3.13)
3 2 3

which could be used as a probability model for compositional data

If we define Y = x1 X, then the distribution of yl,--.,yp 1 is the same as

in (3.13). In the computation of Q2 and Q3 ' we substitute the value 1 for y p. A

natural way of normalizing the parameters p and Z is to consider

Fi1i i and U 2 . (3.14)

3.3 Logistic Gaussian and Related Distributions

Let Y be a vector of non-negative componentS--Yl,,!*,y p such that IYi = 1. Then,

one possible model which has been studied in detail is the logistic Gaussian

distribution which assumes that

X- - (x 1 ,.. .x )p- (log y1y -,.
-.,log yp-ly I ) (3.15)

has a (p-1)-variate Gaussian distribution (see Aitchison-and Shen (1980), Aitchison (1982)).

In such a case the pdf of Y can be written in the form

N I,.. . .*
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(27T - ( -i e x p [ - 2 - 1 (X-1) E- I1(X-u) ] (3.16)

where X can be expressed in terms of Y as in (3.15).

In building a model for Y we could have used other transformations from the basic

(p-1) dimensional Gaussian variable X such as

-1=

x= X-1 DyI/yP X)-1, i = 1 ...,P-1 (3.17)

which is the Box and Cox (1964) transformation, or more generally any appropriate

transformation

x. = h(Y), i = l,.--,p-1 (3.18)

suggested by data

A well-known distribution for compositional data with non-negative proportions is

the Dirichlet class D ( ) with the typical density function
p

-} 1 .yp (3.19)

where

A(W) = ()'or(6p)Or( I+'-'+p

Aitchison (1985) considered a mixture of a Dirichlet and a logistic Gaussian distributions.

but imposing some relationship between the parameters ji and a to reduce the number

of free parameters in the model. He also provided a computational procedure for

obtaining the maximum likelihood estimators of the parameters in such a mixture of

distributions.

-V. -*
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4. ESTIMATION OF THE DENSITY FUNCTION

Let Y ,'*',Yn be independent observations on a random variable Y defined on n

the p-dimensional unit sphere. If a suitable model for the distribution of Y is not

available, we may use non-parametric methods and estimate its p.d.f. based on Y1 n'' '
s.

Y n "

For this purpose we define a window function defined on Q , which is indexed by two
PS

parameters x and 8, x e al and 0 < 0 < n/2,

1 if x'Y > cos 8,
x'e (Y) = (4.1)

0 ctherwise.

The set of points Y satisfying the first equation in (4.1) defines a cup on z with x as a

central point, whose area is

2Tr (p- 1)/2
a(e) 1 - sin dip. (4.2)

2

The number of points falling on. this cup is

,I,
°" " n

(Y (4.3)

By choosing a small value of e = e an estimate of the p.d.f. of Y at x may be obtained
n

as

n
p nX) = n [[a(en 1 I (4 4)

*" 1 n.,

More generally we could use any suitable p.d.f. on n as a window function. In
P

particular we suggest the use of the Longevin density (2.8)

c(c )exp(x'Y/< )c (4.5)

*and estimate the p.d.f. of Y as

Ne-(
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P (X) 1 n c(K) exp(x'YiK)° (4.6)
1

* We can choose K by the method of Hebbema et al (1974) as the value K atn _

which the pseudo-likelihood

IT (n-1)- 1  c(c) exp(Y'Y /K) (4.7)
i-i j~i

is maximized. Further work on density estimation will be reported elsewhere.

A *...'* .q- *.** I~~. *..
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