. AD-A17@ 609

UNCLASSIFIED

PATTERN RECOGNITION BASED ON SCALE INVARI

DISCRININANT FUNCT IONS
FOR NULTIYARIATE ANALY

ANT
(U) PITTSBURGH UNIV PA CEHTER

TR-86-89 AFOSR-TR- 86-85?5 F49620 BS-C-OOOB F/l 12/1




o e

ol 1
fuo fE N

== k.
— lle=

== s s

b A S P g

ot G %

N S S S S R e s
. 2:5} A. i\:ﬁ\l‘r..‘u\.. u‘m\fn sf'-*" RSN .-.-.‘rs



wrma - -

AFOSR-TR. 868-057%

ila and C. Radhakrishna Rao F49620~85-

ANIZATION NAME AND ADDRESS 10. PROGRAM E
. . . AREA & WOF
ltivariate Analysis

Hall W,///;} -

Pittsburgh, Pittsburgh, PA 15260

AD-A170 809

flCE NAME AN.D ADD';_E_SS h 12. REPQRT DA
ice.of Scientific Researc April 198
the Air Force 7 NUMBER OF

orce Base, DC 20332 (‘\Y‘y~\‘

NCY NAME 8 ADORESS(il dillerent (ron Controlling Qllice) 1s. SECURITY C

OCC s AN | Jelassif

Approved r,

r pub
@1striduty Public release,

onunlimiteq

Center for Multivariate Analysis

University of Pittsburgh

OTIC FILE COPY



StCuN.l Tv WLASYEIL AVION OF TrHIS PAGL (When Date Futerauy

B REPORT DOCUMENTATION PAGE ,,”.!oﬁ-;gggggggg,f,;gN,.som L

1. REPHRT NUMBER . 2 GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
FOSR.TR. R2e.( 87k
4. TITLE [and Subtitie) $ TYPE OF REPORT & PERIOD COVERED

Pattern Recognition Based on Scale Invariant

Discriminant Functions Technical Report - Aprill986

6 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) . 8 CONTRACT OR GRANT NUMBER(3)
-
; Tarmo M. Pukkila and C, Radhakrishna Rao F49620-85~C~-0008
9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

R AREA & WORK UNIT NUMBERS
Center for Multivarjiate Analysis "

515 Thackeray Hall- %-//ﬂ} pa 230 ywﬂj-

University of Pittsburgh, Pittsburgh, PA 15260

11. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
Air Force Office,of Scientific Research April 1986

' Department of the Air Force T NUUBER OF FAGES
Bolling Air Force Base, DC 20332 (\QC\~\_

14 MONITORING ACENCY NAME & ADORESS(II ditlerent from Controlling Otlice) 18, SECURITY CLASS. (of this repogt)

Unclassified
3C\N C \S N\ ™Y _Lr.‘;.'o‘ec—LA‘s's'.'.:‘r'c‘x'rméaa”‘c'amma‘

SCHEDULE

16. DISTHIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. ODIST RIGHTlON STATEMENT (of the abetract entered in Block 20, it different from Report)

e

18. SUPPLEMENTARY NOTES

T

19 KEY WORDS (Continue un reverae side /{ necessary and identity by block number) ‘1

Angular Gaussian Distribution, Compositional Gaussian Distribution,
Discriminant function, Scale free methods.

—
20 ABLTRACT (Cantlnue on reveree side If neceseary and idenitly by block aumber)

Some probability models for classifying individuals as belonging to one of
two or more populations using scale invariant discriminant functions are con-
sidered. The investigation is motivated by practical situations where the
observed data on an individual are in the form of ratios of some basic ‘
measurements or measurements scaled by an unknown non-negative number. The
probability models are obtained by considering a p-vector random variable X with
a known,distribution and deriving the distribution of the random vector Y =
[G(X)]) "X, where G(X) is a non-negative measure of size such that G(3X) = \G(X)

F ORM
DD , .7 1473 Uniclassified

1
n
J
} SECURITY CLASSIFICATION OF THIS PAGE /When Dare Entecey)
I
i

Nt L N

e, -.'.-.'.o.' RS R SRS SR TSRy
(.A'L'-“Lq..\ A N .\“‘L\‘.'n\'.'\ - o '-{'.‘.\-' W -,'.L' x"\_‘\.\'-‘¢- L A



BRI TR TE E ", W WIS VI LWL W S AU s

- Lnalaesified . ' ‘
SECURITY CLASSIFICATION OF THIS PAGE(Whe Date Enrered) )

a®a

for A>0. Explicit expressions are obtained for the densities of what -afe .
called Angular Gaussian, Compositional Gaussian, Type 1 and Compositional
Gaussian, Type 2 distributions.

[, Sdar = P AMINITE s Sl RS
4

I3

a_m_e

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Dots Bntered)

[ Tl
(Y

R B N B B ey N R




)
® -y

PRty

PATTERN RECOGNITION BASED ON SCALE
INVARIANT DISCRIMINANT FUNCTIONS*
by
Tarmo M, Pukkila
Department of Mathematical Sciences
University of Tampere
P.0. Box 607
SF-33101 Tampere, Finland
. and
C. Radhakrishna Rao
Center for Multivariate Analysis
University of Pittsburgh
Pittsburgh, PA 15260

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DTIC

This technical report has been reviewed and is
~pproved for public release IAWAFR 190-12,
Distridbution isunlimited.

M*TTHEW J. KERPER

Chief, Technical Information Division

DTIC
R ELECTEE
Technical Report No. 86-09 Yoo AUG 121986 o
LY P
Wl -

B

LB

Center for Multivariate Analysis
515 Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260

#*Research sponsored by the Air Force Office of Scientific Research (AFSC) under
Contract F49620-85-C-0008. The United States Covernment is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding

any copyright notation hereon.

.

0 0 O X PO 08 PG RGNS




T b N % S
ot

ABSTRACT
Some probability models for classifying individuals as belonging to one
of two or more populations using scale invariant discriminant functions are
considered. The investigation is motivated by practical situations where the
observed data on an individual are in the form of ratios of some basic measure-
ments or measurements scaled by an unknown non-negative number. The probability
models are obtained by considering a p-vector random variable X with a known

’

distribution and deriving the distribution of the random vectog Y = [G(X)]-IX,

caned e S

where G(X) is a non-negative measure of size such that G(AX) = AG(X) for A>0.
Explicit expressions are obtained for the densities of what are called Angular
Gaussian, Compositional Gaussian, Type 1 and Compositional Gaussian, Type 2

distributions. VA

{\

Key words: Angular Gaussian Distribution, Compositional Gaussian Distribution,
Discriminant function, Scale free methods,
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1. INTRODUCTION b:

We consider the problem of classifying an individual as belonging to one of two or

more populations using scale invariant discriminant functions. The investigation is motivated
L)
by practical situations where the observed data on an individual are in the form of ratios
of some basic measurements or measurements scaled by an unknown non-negative number. ,
. {
In this paper we derive some probability models for applications to such data.
If X' = (xI, "-,xp) is a vector of p basic measurements which may be known apart ‘
from a positive scaling factor, then we may consider transformed measurements
-1 ':'
(psermy)’ = ¥ = [GO] X (1.1 |
which are scale free if G is some non-negative measure of size such that G(XX) = XG(X) =
n
for » > 0. Some typical examples of G(X) are ¢
2 .
cx) = [Ix]| = (in)k, (1.2)
= . 1.3
[1x, | (1.3)

LT I UL I ]

We call the corresponding transformed variables Y = X/ [|X||. X/|[x | as directional. and
compositional data respectively. We note that the term compositional data is usually
applied to a set of non—negative proportions (see Aitchison (1985)), but our definition is '-:
more flexible. However, we refer to Y = X/|in| as compositional data of type 1 and Y

= X/ Xxi as of type 2, even when x are not non-negative. X

It is also interesting to note that when we have compositional data with non- "
negative propartions, (yl,"',yp) such that Eyi = 1, then we may transform them into
directional data by considering (F s, /-) and use appropriate probability models
for directional data (with non-negative components) for statistical analysis as suggestec‘
by Stephens (1982). :

One way of generating prebability models for directional and compositional data is to
consider a probability distribution for the basic measurements X and then derive the

induced distribution for Y = [G(X)]-’X. In this paper we assume that X"‘Np(u,E), e, as S

($ “ v ... .. \f “p ('.. -’.‘ - \'\ N ..‘ .\ ‘.. ..-..:-._.\--,’-.\- ., ~'...'.\,' ) ‘ L. .’:-‘,‘- "~('-_.-'~.' ‘;'!- '_-." ..',- v
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p-variate normal with mean vector yu and variance—covariance matrix I, and derive the

distribution of Y for different size functions G.

Once an appropriate probability model is chosen, the problem of discrimination can

be handled in the usual way.

We also comment on non-parametric methods for estimation of density for

directional and compositional data.

2. CLASSES OF DISTRIBUTIONS FOR DIRECTIONAL DATA

2.1 Angular Gaussian Distribution (AGD)

- 1
Let X~Np(u,2) and define Y = R*'X where R = (1X|] = (X'X) 2 so that Y is the
vector of direction cosines with the condition Y'Y = 1. The marginal distribution of Y on

the p-dimensional unit sphere Qp is called the AGD (Angular Gaussian Distribution). For the

special case when I = ozl, Bingham obtained the distribution of Y in the form of an
infinite series (see Watson (1983), p. 226). In this section, we obtain the distribution of Y

in the general case in a closed form involving a finite number of terms.

Consider a polar transformation from X to (R,8), where 8 is a vector of p-1 angles

in which case the Jacobian is of the form

D(X)
D(R,6)

- R L), (2.1)

The transformed p.d.f. (probability density function) is

| 2w 2| “agP-lg e)exp[-z"1 (R2Q3-—2R02+Ql)] (2.2)

where

2 e N g e A T T T T e T e e e
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1 1

Q, = Y'Z-IY, Q, = u'z" Y, Q, = u't"

and Y is a function of 8 only. Changing from R to r = R/ﬁs, the p.df (2.2) transforms to

|2nz| ™%, ™ Flolexp[-2” '@,-a3a;"

-1/2,2

p-
3 )].

xr 1exp -2~ 1 (r-QzQ

Integrating out for r from 0 to o, the p.d.f. at Y wer.t., to the surface element

deé on 0 is
p p

pCtlu,2) = |2nz] 70, %1 (0,03 expl-27 (0,305 1))

I (a) = S rp-lexp[-Z-l(r-a)z]dr.
P 0

The function Ip satisfies the recurrence relation
Ip(a) = (p-2) Ip—Z(a) + a Ip—l(a) for p>2
with the initial values

—a2/2

I,(@) = e +al (@), I,(a) = V27 8(a)

where dl(a) is the distribution function of Nl( o,1).
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It may be noted that the p.d.f. (2.4) remains unchanged if u and I are replaced by
au and azz for any a>0. However, we can make the parameters unique by imposing the

condition i||u|l = 1.
2.2 Longevin Distribution

We can generate other distributions for Y from (2.2) and- (2.3) as suggested by
Fisher (1953) by considering conditonal instead of marginal distributions. Thus, from the

expression (2.3), the conditional p.d.f. of Y on Qp givenr = 1 is

-p/2 -1/2
const. Q, exp(Q2Q3 )
= const.' (Y'Z-IY)-p/Zexp(u"Z-lY/ 'Z-IY) 2.7)
where we may impose the restriction. ]|u|[ = 1. When ¢ = 021 we have the Longevin
(1905) - von Mises (1918) — Fisher (1953) distribution
const expku'Y., (2,8)

on the surface of a p-dimensional sphere.

From the exnression (Z2), we find that the conditional p.df. of Y on Qp given R =1
with respect to dnbp is

const. expf-2" (Y-w'Z (Y-l (2.9)

where ||ulfl = 1.
We add two other classes of distributions found to be useful in practical |

applications as possible models for directional data
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-1 )
Scheideggar-Watson p.d.f. [bp(K)] exp (x'V)7. (2.10)
~1
Bingham p.d.f. [b(k)] " expY'KY, where K is pxp symmetrie matrix. (2.11)

2.3 Estimation of Parameters

The model (2.4), which is the angular normal distribution, can be used to construct
scale invariant discriminant functions provided the parameters yu and I are known. If they
are unknown we may have to estimate them from past observations Yl,'",Yn_on Y. Using
the density function (2.4), the likelihood based on past data is

n
n pW}hLZ)
i=]
with the restriction |u|| = 1. The method of maximum likelihood for estimation of

parameters can be implemented without much difficulty since the derivatives of all the
expressions involved in (2.4) with respect to u and I can be easily evaluated However,
there are too many parameters to be estimated and a very large sample may be necessary

to obtain reasonably good estimators.

We may consider an alternative method by considering the marginal bivariate

distributions of Y, where Y = (x1/”x”,---,xn/||x”) and X & NP(D.Z). 1f v, and y,

are the first two components of Y, then it is easily seen that

Py = P(y1 < ayz) = P(xl-cnx2 <0

= ¢f (auz—ul)/(azc —2a012+011);§] (2.13)

22

where § is the distribution function of N1(O,‘l). If we have a sample of size n on Y with

the first two components (y,.,v,.), 1 = 1,***,n, we can estimate p_ for any given
14’724 a '
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50‘ = proportion of i's such that Y,
|

Say, (2.14)
Then we have the observational equations
ollon,~w Via’0,,-2a0 +0 )1 = p_¥ a. (2.15)
or
(auz-u1)2 = [¢—1(5a)]2(a2022—2ao12+o11)Va. (2.16)

plp-1)/2 families of equations of the kind (2.15) or (2.16) are available involving all the
elements of y and I by considering every pair of components in Y. From the equations
{2.15) or (2.16) it is clear that only ratios of the parameters can be estimated They can
be made unique by using a restriction like Uu” = 1. An appropriate method may be
used to combine the equations (2.15) or (2.16) to produce the requisite number of

consistent equations to estimate the parameters.

We describe one of the methods. First, we note that by smoothing Ba in (2.15), we

can estimate o ey o such that P, = 1/4, Py = 1/2 and Py = 3/4  Writing
1 0 1

vy =, vt =0, 07l e/) = q (2.17)

the equations (2.16) for a_, o, a can be written as

(aouz—ul) =0 (2.18)
Ao~ 2 2 2
- = (_2 3 = -

(a uy=up) Qg (a =20 Tate )y s I, 1. (2.19)

There are p equations of the kind (2 18) obtaned by considering all pars of the




to satisfy the restriction ||u|| = 1. Then we have plp—1) equations of the type (2.19)

involving the p(p+1)/2 parameters in I. Observing that the equations are linear in g , we
1

may combine them by least squares method to produce p(p+1)/2 equations by solving

which we obtain the estimates of ¢ .
0

. The estimates obtained by the above method may still require large samples. Other

methods of combining the equations (2.15) or (2.16) have to be explored.

3. CLASSES OF DISTRIBUTIONS FOR COMPOSITONAL DATA

3.1 Compositional Gaussian Distribution, Type 1, [CGD(1)]

Let X~ N (15) and define Y = |Zx | 'X so that |IY| = 1. We call the distribution
| |

. of Y on the set

S=1{Y:|Iy] =1 (3.1)
A the Compositional Gaussian Distribution, Type 1. We distinguish two sets
) s, = {v: Zyi= 11,8 = {r: Zy, = -1} (3.2)
a
; and note that S US_ = S and
P(Y € S+) = P(Zxi > 0) and P(Y € S_) = P(Zxi < 0, (3.3)

In S+ we consider the transformation

X

i Ryiﬂ i-= 1"'°’p-1

X = R(l—yl-...—yp—l) = Ryp (3;4)

and in S_,

y

B Bt o T e e e , e T T T T T,
hl » - 3



x, = =Ry, i=1,°",p-1

x, = R(1+y1+'°°+yp_1) = -Ryp.

The Jacobian of the transformation in either case is

D(xl’...’*p) ) Rp_l

)

D(Rsyly..',yp_l

The pdf. of X in S+ transforms to

(2m) P2 |2 TP Lexp (271 (R%-20,R+Q)) ]

qQ, = vz} Yy, g = w'r

= 3ty

Making the transformation r = RQ;/? the expression (3.6) changes to

-p/2 _a~1 _A2A-1
Q_"expl[-2 @ -a.Q, )]

-p/2|
3

-1/2
|

(2m) X

-1/22

xrp"exp[-z"w-ozo 2. (3.8)

Integrating out with respect to r from 0 to =, the p.df of Y in S+ with respect to the

volume element dy1...dyp_1 is

-p/2| . =Ys.-p/2 ~5 -1 2 -1
(2m) 7 2] 7R3 L (005 ) exp (=277 (01050, 7))

where Ip(a) is as defined in {2.5).

In § _, under the transformation (3.4), the expression corresponding to (3.8) is




e A A &

e » &

-

o

\
J4l

.‘ (

1/2 \-p/2

-p/2 -
12"

-1 . 2.-1
2m exp(-2"(@,-Q7Q_ ]

- 1122
7]

x |r)"  exp[-27 'r+Q,Q; (3.10)

Integrating out with respect to r from - to 0, we obtain the same expression as in (3.9)
for the pdf of Y in S .

It may be noted that in the expression (3.9), we can impose a suitable restriction on

U to make the parameters identifiable.
[}

3.2 Compositional Gaussian Distribution, Type 2, [CGD(2)]

Let X~Np(u,2) and define Y = (in)-1X. For this we consider the transformation

xi = Ryi’ i=1,°*°,p-1
= R(l=vy, =*se = R 3,11
x5 (1-y, Yp-1) o ( )

so that Zlyi = 1. We define the marginal distribution of Y on the simplex

1}

S ={y: Xyi
as the Compositional Gaussian Distribution, Type 2. Making the transformation (3.11),

proceeding as in Section 3.1 and integrating the expression corresponding to (3.8) with

respect to r from ~= to @ we obtain the pdf of Y with respect to the volume element

dy , ...dyp_ , @




) 1 5,-p/2 5 s Sl 21
@m | z] 37 T, (Q,23) + T (=Q,Q3 ) Jexpl-277(Q;-0503))

- .f

where 01, Cl2 and Q3 are as in {3.7) and Ip is as defined in (2.5).

As in the other cases, the pdf remains unchanged if u and I are replaced by a

and azz respectively for any scalar a > 0.

As in (2.7), the conditional distribution of Y given r = ¢ (a constant) is

const Q-p’zexp(ch 0-1/2) (3.13)
3 2 3 .

which could be used as a probability model for compositional data.

1f we define Y = x;IX, then the distribution of yl’".’yp-—l is the same as

in (3,13). In the computation of Q2 and Q3, we substitute the value 1 for yp. A

natural way of normalizing the parameters y and T is to consider
-1 -2
|u | wand "5 (3.14)

3.3 Logistic Gaussian and Related Distributions
Let Y be a vector of non-negative componenes:yl,:u,yp such that Eyi = 1, Then,

one possible model which has been studied in detail is the logistic Gaussian
distribution which assumes that

t = LR = -1 LN} -1
X (xl, ’xp-l) (log Y1Yp o s log Yp-1Yp ) (3.15)

has a (p-1)-variate Gaussian distribution (see Aitchison-and Shen (18980), Aitchison (1982)).

In such a case the pdf of Y can be written in the form {




e?a v a A &

o s & b

7 ¥ e s a & ¥

cp

1"

1

<2wlZl)'*(yle--yp)'lexp[-z‘l(x-u)'z‘ (X-u)] (3.16)

where X can be expressed in terms of Y as in (3.15).

In building a model for Y we could have used other transformations from the basic

{(p— 1) dimensional Gaussian variable X such as
-1 b\ )
xl = A [(y’/yp)—‘l]' | = l,ooc’p_l (3.17)

which is the Box and Cox (1964) transformation, or more generally any appropriate

transformation

X = h{Y), i = 1,°**,p-1 (3.18)
|

suggested by data

A well-known distribution for compositional data with non-negative proportions is

the Dirichlet class Dp(B) with the typical density function

, 81 B

tagn 'y | . yp" (3.19)

1
where
A(B) = I‘(Bl)' *°T (Bp)/l“(81+"'+8p) .

Aitchison (1985) considered a mixture of a Dirichlet and a logistic Gaussian distributions,
but impoéing some relationship between the parameters y and B to reduce the number
of free parameters in the model. He also provided a computational procedure for
obtaining the maximum likelihood estimators of the parameters in such a mixture of

distributions.

T e o
. ER L R

A g T e g o L 8y e S et T L A T

.~ T

ot i B

R Rl G




4. ESTIMATION OF THE DENSITY FUNCTION

Let Yl’.”’Yn be independent observations on a random variable Y defined on Qp’
the p~dimensional unit sphere, If a suitable model for the distribution of Y is not -
available, we may use non-parametric methods and estimate its p.,d.f. based on Yl,"-

For this purpose we define a window function defined on Qp, which is indexed by two

parameters x and 8, x ¢ Qp and 0 < 8 < /2,

1 1f x'Y > cos 8,
¢x’e(Y) = (4.1)

0 dtherwise.

The set of points Y satisfying the first equation in (4.1) defines a cup on Qp with x as a

central point, whose area is

8
J sin ¢ d . , (6.2)
0

The number of points falling on. this cup is

Lo gy (4.3)
L9y,

By choosing a small value of 6§ = en an estimate of the p.df of Y at x may be obtained

as

n
_ =1 -1
p (X =n 1Z[a(eﬂ)] L )

n

More generally we could use any suitable p.d.f. on Qp as a window function. In

particular we suggest the use of the Longevin density (2.8)

cik Jexp(x'Y/k )
n n

and estimate the p.d.f. of Y as




RO

P

13
-13
pn(x) = n ;c(Kn) exP(x'Yi/Kn)' (4.6)

We can choose Kn by the method of Hebbema et al (1974) as the value k at
which the pseudo-likelihood

n
i (n—l)-1 2 c(x) exp(YiY./K) (4.7)
i=1 j# 1

is maximized., Further work on density estimation will be reported elsewhere.
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