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complex-Mach reflection (CMR) and double-Mach reflection (DMR), were
observed. These were studied with infinite-fringe interferograms using a23-cm dia field of view Mach-Zehnder interferometer. The isopycnics

obtained and the density distributions along the wedge surface are presented
for the various reflection processes. Four experimental results in argon,
air, carbon dioxide and sulfur hexafluoride with the same wedge angle and
similar Mach numbers are compared.

The analytical transition boundaries betleen the four types of
shock-wave reflection were established up to MS= 10.0 for frozen and
vibrational equilibrium sulfur hexafluoride. The examination of the
relaxation length under the present experimental conditions indicated that a
vibrational-equilibrium analysis is required. In general, the
equilibrium-gas analytical transition boundaries agree with the experiments.
However, RR persists beyond the RR termination boundary determined by the
detachment criterion, and several Mach reflections (MR) lie outside their
analytically predicted domains. Experiments substantiate that the CMR to
DMR transition line approaches the SMR to CMR transition line and merges at
a single point on the RR termination line. The analytical results are
compared with the experimental data for the reflection angles 6 and W', and
the triple-point trajectory angles X and X', and it is verified that the
shock-wave reflection systems were in vibrational equilibrium. It is found
that negative values for the angle w' are possible under certain conditions
of Mach reflection. The angle between the two triple-point trajectories
(x'-x) is also discussed and the pattern of DMR with x' = 0 was obtained
experimentally. There is little doubt that new criteria for the transition
lines are required in order to improve the agreement between analysis and
experiment.

The numerical results of the second triple-point system $how that for a
given incident shock Mach number, the highest pressure is achieved through a
DMR instead of a RR., The data show that when the transition of RR4-DMR
occurs, no significant pressure change results in the region behind the
reflection point P in RR, nor in the region behind the second triple point i
T'. Numerical simulation of pressure histories as functions of M and w at
the RRI-*DMR transition boundary is required to substantiate tAhe present
analyticaland experimental results.

An application of reflections in pseudo-stationary flow to theinteraction of spherical blast waves with a planar surface is shown and

discussed..
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Summary

Pseudo-stationary oblique-shock-wave reflections in sulfur hexafluoride
were investigated experimentally and numerically. Over 150 experiments were
conducted in the UTIAS 10 x 18 c'n Hypervelocity Shock Tube in the range of
incident shock wave Mach number 1.25 < Ms < 8.0 and wedge angle 40 < ow <470
with initial pressures P ranging from 4 to 267 torr (0.53 to 35.60 kPa) and
initial temperatures To near 300 K. The four major types of shock-wave
reflection, ie., regular reflection (RR), single-Mach reflection (SMR),
complex-Mach reflection (CMR) and double-Mach reflection (DMR), were
observed. These were studied with infinite-fringe interferograms using a
23-cm dia field of view Mach-Zehnder interferometer. The isopycnics
obtained and the density distributions along the wedge surface are presented
for the various reflection processes. Four experimental results in argon,
air, carbon dioxide and sulfur hexafluoride with the same wedge angle and
similar Mach numbers are compared.

The analytical transition boundaries between the four types of
shock-wave reflection were established up to Ms = 10.0 for frozen and
vibrational equilibrium sulfur hexafluoride. The examination of the
relaxation length under the present experimental conditions indicated that a
vibrational-equilibrium analysis is required. In general, the
equilibrium-gas analytical transition boundaries agree with the experiments.
However, RR persists beyond the RR termination boundary determined by the
detachment criterion, and several Mach reflections (MR) lie outside their
analytically predicted domains. Experiments substantiate that the CMR to
DMR transition line approaches the SMR to CMR transition line and merges at
a single point on the RR termination line. The analytical results are
compared with the experimental data for the reflection angles 6 and w', and
the triple-point trajectory angles x arid X', and it is verified that the
shock-wave reflection systems were in vibrational equilibrium. It is found
that negative values for the angle w' are possible under certain conditions
of Mach reflection. The angle between the two triple-point trajectories
(x'-x) is also discussed and the pattern of )MR with x' = 0 was obtained
experimentally. There is little doubt that new criteria for the transition
lines are required in order to improve the agreement between analysis and
experiment.

The numerical results of the second triple-point system show that for a
given incident shock Mach number, the highest pressure is achieved through a
DMR instead of a RR. The data show that when the transition of RR,-,DMR
occurs, no significant pressure change results in the region behind the
reflection point P in RR, nor in the region behind the second triple point
T'. Numerical simulation of pressure histories as functions of M and 0 at
the RR4-DMR transition boundary is required to substantiate the present
analytical and experimental results. ]

An application of reflections in pseudo-stationary flow to the
interaction of spherical blast waves with a planar surface t os shown and

discussed. By
D U.At. ib.-tio."
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Notation

a speed of sound

Ar atomic argon

C explosive charge

CMR complex-Mach reflection

CO2  carbon dioxide

DMR double-Mach reflection

h specific enthalpy, Planck constant, height of burst

He helium

I incident shock wave

K kink, degrees Kelvin, Gladstone-Dale constant, Boltzmann constant

L distance between reflection point and wedge corner,
distance between Mach stem and wedge corner,
depth of test section

L* horizontal distance between incident shock and wedge corner

horizontal distance between kink and wedge corner

,Z* horizontal distance between incident shock and kink

M, M' Mach stems

M. flow Mach number in state (i)*1

M incident shock wave Mach number

M2K flow Mach number in region (2) relative to kink

M2p flow Mach number in region (2) relative to reflection point

M2T flow Mach number in region (2) relative to triple point

MR Mach reflection

NR no reflection

N2  molecular nitrogen

" iv



02 molecular oxygen

P reflection point

Pi pressure in state (i)

P ij ratio of pressure in state (i) to pressure in state (j)

R universal gas constant

R, R' reflected shock waves

RR regular reflection

r shock radius

S, S' slipstreams

SF6  sulfur hexafluoride

SMR single-Mach reflection

T, T' triple points

Ti  temperature in state (i)

t time

U4  flow velocity in state (i) with respect to pseudo-stationary
coordinates

- UIl flow velocity in region 1 relative to laboratory frame

SsZ velocity of incident shock wave relative to laboratory frame

W explosive charge weight

x distance from reflection point or Mach stem along wedge surface,
x-coordinate in physical plane, ground range

YT height of first triple point

y y-coordinate in physical plane

• Z compressibility factor

A angstrom, 10-10m

y specific heat ratio

A difference between successive values

v
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angle between incident shock wave and reflected shock wave at the
triple point

0-)d displacement angle of boundary layer

0 i  angle of flow deflection in state (i)

0 w  actual wedge angle

O'w effective wedge angle (0 w + X)

0l second confluence angle (0 + X')
w w

02M maximum deflection angle from state (1) to state (2)

02s sonic deflection angle from state (1) to state (2)

X wavelength of light source

micro

Pi density in state (i)

-relaxation time

incident wave angle for state (i)

1K incident wave angle to reflected shock wave from frame attached to
kink (upstream side of kink)

1K incident wave angle to reflected shock wave from frame attached to
kink (downstream side of kink)

X first triple-point trajectory angle

X second triple-point trajectory angle

W1 reflection angle

Superscripts

C secondary, effective

n normal component

vi



Subscripts

0 initial or referenced value

1 - 5 thermodynamic regions

cal calculated value

d according to detachment criterion

upstream of a shock wave

j downstream of a shock wave

K with respect to the kink

m according to mechanical equilibrium criterion, maximum

NR no reflection

P with respect to the reflection point

s shock, according to sonic criterion, sonic

T with respect to the first triple point

w wedge

vii
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1.0 INTRODUCTION

Shock waves appear when particles in a fluid approach and compress ore
another with a velocity larger than the local sound speed. The thlickness of
a shock front is of tie order Of d few molecular Mean free paths. The
occurrence of shock waves is found in processes that generate abrupt
compression fronts such as explosions eIectric discharges and supersonic
flight. Shock waves become important in the practical applications of fluid
mechanics due to the nearly d i scontinuous changes in fluid velocity and
pressure they create, and the challenging analysis of the nonlinearity of
the equations of motion [I].

Current interest in the problem of shock-wave diffraction is
orientdted to the investigation of the nuclear blast fields around derospace
vehicles and around flush-mounted surface structures for their vulnerability
and survivability studies [2]. The valuable accumulated data can be
utilized to determine the nonuniform shock loading to be applied 4n

structural analysis for the design of aerospace systems. When a spherical
blast wave interacts with a planar surface, the complete ranye of shock
reflections result. Regular reflection (RR) occurs from 0' incidence of
the blast wave with the surface, and at higher incidence angle Mach
reflection (MR) occurs up to 90' incidence (Fig. 1).

The study of oblique-shock-wave reflection has been carried out for
more than a century by many experimentalists and theoreticians. Although
the phenomenon of regular reflection and single-Mach reflection (SMR) were
first observed by the distinguished physicist, Ernst Mach [3], back in 1878,
it was not until the early 1940's that von Neumann [4,5] reinitiated the
problem and explored it systematically. Under the supervision of Bleakney
[6] at Princeton University, Smith L7 ] discovered complex-Mach reflection
(CMR) in 1945, and White [8] identified double-Mach reflection (DMR) in
19bl, while they were investigating experimentally nonstationary
oblique-shock-wave reflections. SMR, CMR and DMR, as a group, are called
Mach reflection. The four types of reflections are illustrated
schematically in Fig. 2.

With these four types of reflection being identified, it became
necessary to establish their transition criteria and delineate their regions
on a transition map. The simplest laboratory experiment designed for the
study of shock-wave diffraction consists of a two-dimensional sharp wedge
mounted on the wall of a shock tube. When a planar shock wave collides with
a sharp compressive corner in a frozen gas, the type of reflection which
occurs as a result of the shock-wave reflection and the deflection of the
nonstationary flow behind it depends on the incident shock Mach number Ms
and the corner wedge angle > , For the case of an imperfect gas where
nonequiliibriuin and equilibrium flows occur, the initial pressure P and the
initial temperature T 0 are also important. An analytical transition
criterion for the termination of RR in a two-dimensional , pseudo-stationary,
inviscid perfect gas flow was suggested by von Neumann [4,5] and is
referred to as the "detachment" criterion.

Smitn [7] found in his experimental results that RR persisted beyond
the iimi t of detachment criterion and MR did not occur inme(1iately when the
theoretical RR limit was exceeded. Mleakney and his students [6,8,9]
further stud ied the d sa yreement tound hy Smi it h [7], but no fruit ful

- .
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explanation was given. This persistence of RR in the MR region is called
the "von Neumann paradox". Henderson and Lozzi L10] investigated the
transition problew from RR to MR experimentally, both in a wind tunnel and
in a shock tube. They proposed an alternative criterion for non-stationary
flow, which is referred to as the "mechanical equilibrium" criterion.
Instead of reducing the disagreement between theory and experiment found by
Smith [7], the mechanical equilibrium criterion made it even worse [see 11].
Hornung and Kychakoff [12] suggested another criterion called the "sonic"
criterion. However, the transition boundaries predicted by the sonic and
detachment criteria are almost identical and cannot be resolved
experimentally.

When RR terminates, three types of Mach reflection can occur in
nonstationary flows, and they are SMR, CMR and DMN. White L8] investigated
the reflection patterns of CMR and DMR in addition to SMR, and suggested a
termination criterion for SMR. Henderson and Lozzi [Ii] proposed the
criteria for the termination of SMR and CMR. However, their proposal was
neither analytically nor experimentally substantiated. The criteria for
transition from SMR to CMR and from CMR to DMR, whicn were initiated by Law
and Glass [15], were established by Ben-Dor LIIi anu Ben-Dor dnd Glass [13,
14]. An additional criterion between SMR and CMR was later appended by
Shirouzu and Glass [16].

When an incident shock wave impinges a convex or a concave wedge
instead of a sharp wedge, the flow is truly nonstationary since the wedge
angle varies along the wedge and the entire flow process is transient.
Ben-Dor [111 and Ben-Dor and Glass L13] hypothesized that in truly
nonstationary flows, the transitions from RR to MR and from MR to RR are
different. Ben-Dor et al [17] and Itoh et al L18] investigated and
confirmed that a hysteresis loop exists in the transition phenomenon of RR
and MR in truly nonstationary flows. The existing criteria for the
transition of RR and MR, which are for pseudo-stationary flows based on

stationary flow analyses, cannot be applied to the truly nonstationary case.
The flow is pseudo-stationary if it maintains a constant shock configuration
and grows linearly with time from the instant when the incident shock wave
encounters the leading edge of the wedge. ,Jones et al [19] transformed the
equations of motion of an unsteady flow into those of a steady flow. Since
the shock waves in nonstationary flow are usually curved, the steady state
analysis is applicable only in the vicinity of the reflection point for RR
and the triple point in MR. iiazhenova et al [20] were the first attempting
to map out the transition boundary lines experimentally. However, only
small ranges of incident shock wave Mach number and wedge angle were
covered. Ben-Dor [11] was the first who provided transition maps for
perfect and imperfect monatomic and diatomic gases (Ar and N2 ) of all the

major types of reflection in the range of I < Ms < 10.

Real gas effects in shock waves due to the excitation of the internal
degrees of treedom (vibration, dissociation, electronic excitation and
ionization) have been studied by some researchers. Mach reflections in
perfect argon and nitrogen, oxygen vibrational ly excited air and
vibrationally excited carbon dioxide were studied at initial pressures of 12
torr (1.60 kPa) by Gvozdeva et al [21]. They found that while the incident
shock velocity increases, the reflection angle decreases, and under certain
conditions, becomes negative. Naboko et al [22] investigated the flow
parameters behind a moving shock wave in relaxing gases. Their results

-2-
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revealed that the vibration of cdrbon dioxide molecules does not yet
completely excited for 4.5 < M < 11; nitrogen is not vibrationally excited
and oxygen molecules are in equilibrium for 3.7 < Ms < 7.5.

Hornung et al [23] studied the transition to Mach reflection in steady
and pseudo-steady flow with and without relaxation for dissociating nitrogen
and carbon dioxide. Besides real-gas effects, they explained that the von
Neumann paradox is due to the displacement effect of the boundary layer on
the wedge surface in pseudo-stationary flow. Ben-Dor [11] and Ben-Dor and
Glass 113, 14] analyzed the domains and boundaries of nonstationary oblique-
shock-wave reflections in dissociating nitrogen and ionizing argon under
equilibrium conditions. They showed that real-gas effects play an
important role in the size of the regions and their boundaries, and the
analytical imperfect boundary lines are different from the perfect boundary
lines depending on the initial thermodynamic state of the gas. A wide range

of Mach number and wedge angle were covered in their shock-tube experiments,
however they were directed well in the regions instead of to the transition
boundaries. From the comparison between their experiments and calculations
in the trdnsition-boundary maps, Ben-Dor and Glass erroneously suggested
that nitrogen snoul( be considered as an equilibrium gas and correctly

treated argon as a frozen gas in the range of their experiments. Ando [24]

computed the transition-boundary maps in carbon dioxide, using five
ditferent tnermodynamic state model s from dissociational-vibrational

equilibrium to a perfect (frozen) gas. Ando concluded from his experimental
results that real-gas effects played no role in the prediction of the
transition boundaries, ano therefore the transition boundaries are best
determined by the perfect (frozen) gas model . Shirouzu and Glass [16]
maintained that, although the perfect (frozen) CO2 transition-boundary map

provides very useful information for practical applications, the agreement
with Ando's results is accidental and the perfect-gas model is fictitious.

In their studies, Shirouzu and Glass showed that CO2 should be treated as an

equilibrium gas. Lee and Glass L2b] carried out an analytical and numerical

study of pseudo-stationary oblique-shock-wave reflection in air and

established the transition boundaries up to Mach number 20 for both perfect
and imperfect air. No crossings of transition lines were found, and hence

they removed the conjecture of possible triple-Mach reflection.
Deschainbault [2b] investigated the transition boundaries in nitrogen and air

for 1.1 < MS < 10. He also studied the pressure histories on and above a

specially constructed 40 ° wedge U) obtain more insight of the complex flow
fields. In the range of Ben-Dor's L11] and Deschambault's [26] experiment,
Lee and Glass L2b] reported that air and nitrogen are frozen, or nearly
frozen, regarding vibrational excitation and dissociation, and Shirouzu and

Glass [16] showed that for their range of experiments and initial

conditions, the air and nitrogen data conclusively support the frozen gas
model at lower Mach numbers (Ms < 6) and tend towards equilibrium at higher

Mach numbers (Ms > 6).

To substantiate the claims made by the previous researchers that
real-gas effects do play an important role in nonstationary shock wave

systems, an investigation of a polyatomic gas with many internal degrees of
freedon becomes ideal. Because polyatomic gas sulphur hexafluoride SF6 has

15 modes of vibrational degrees of treedom, a low specific heat ratio of
1.093 at room conditions, and the merit of not being toxic with a high index
of refraction useful for optical studies, it is thus chosen as the test gas

for this study.

S.
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The present work is a continuation of the program of studying
oblique-shock-wave reflections at the University of Toronto, Institute for
Aerospace Studies (UTIAS) by Molder [27], Weynants [28], Law and Glass [15],
Ben-Dor [11], Ben-Dor and Glass [13,14,29], Ando [24], Ando and Glass [30],
Lee and Glass [25], Shirouzu and Glass [16], Hu and Shirouzu [31],
Deschambault [26], and Deschambault and Glass [32]. The objectives of the
present work were as follows:

(1) To predict the domains and transition boundaries of the various
types of reflection for frozen and vibrational equilibrium sulfur
hexafl uoride.

(2) To investigate the various transition criteria by conducting
experiments close to the transition boundaries.

(3) To study the density distribution of the flow fields using
infinite-fringe interferometric technique.

(4) To clarify the contribution of real-gas effects to the shock wave
system by comparing the analytical results with the experimental
data.

(5) To solve the second triple-point system and determine the type of
reflection that attains the highest pressure.

In this study, over 150 experiments were performed in the 10 cm x 18 cm
UTIAS Hypervelocity Shock Tube in sulphur hexafluoride at initial pressures
ranging from 4 to 267 torr (0.53 to 35.60 kPa) and an initial temperature
near 300 K in all cases. The incident shock wave Mach number range was
1.25 < M < 8, over a series of sharp steel wedges ranging from 4' to 47" .

Dual wave~lenyth laser interferograms as well as shadowgramns were used to
record the reflection process and were obtained with a 23-cm diameter
field-of-view Mach-Zehnder interferometer. The shock shapes and geometries,
density field (isopycnics) and the density distribution along the wedge

surface and through the bow shock wave in detached cases were ascertained
from the corresponding interferograms. However, from the shadowgrams, only
the shock shapes and geometries could be ascertained. The experimental data
was then compared with the numerical analyses.

2.0 PSEUDO-STATIONARY OBLIQUE-SHOCK-WAVE REFLECTION

2.1 Classification of Types of Reflection

When a planar incident shock wave encounters a sharp wedge in a shock
tube, it moves with constant velocity along the wedge surface. The entire
reflection problem can be considered pseudo-stationary in a frame of
reference attached to the confluence point of the shock waves. Hence,
instead of three independent variables x, y and t, the phenomenon becomes
describable in terms of x/t and y/t, and the flow problem is self-similar
[19]. The variable x and y may be measured relative to any point moving
with constant velocity with respect to the wedge corner. The concepts and
definitions correlated to regular reflection, single-Mach reflection,
complex-Mach reflection, and double-Mach reflection are stated below [13].

-4-



2.1.1 Regular Reflection (RR)

The regular reflection shock-wave configuration as shown in Fig. 3a
denotes the state ahead of and behind the incident shock wave I by (0) and
(1), respectively, and the state behind the reflected shock wave R by (2).
The frame of reference is attached to the two shock confluence point P which
is moving parallel to the surface of the wedge with angle Ow at a constant
velocity U0n- Us cosec 60 or a Mach number Mo = Ms cosec ¢o' where €o is the
incident angle between the flow Uo and the incident shock wave I which is
given as

¢o = 900 - ow (2.5)

When the flow Uo passes through the incident shock wave I, it is
deflected towards the wedge surface by an angle 01 from its original
direction. The flow has a new value U1 and the thermodynamic properties are
changed. This supersonic flow U is redeflected by the reflected shock wave
R through an angle 02 = 0 , so tsar the flow U2 is now parallel to the wedge
surface, thus satisfying the required boundary condition. With the frame of
reference attached to the reflection point P, the flow configuration becomes
stationary and the two-shock theory [4,6] may be used to find the flow
properties of the regions around the reflection point P. The method of
calculations is discussed in Appendix A.

If the flow U2 behind the reflected shock R is sonic or subsonic, the
corner signal can reach the point P and affect the reflected shock R.
Consequently, R can be curved near point P (Fig. 3b). Since the velocity
with which the point P moves along the wedge surface is very high for a
small incidence wave angle o09 the flow U2 is generally supersonic relative
to point P. Therefore the corner signal cannot reach P and there will be a
region behind R in which the thermodynamic state of the gas is uniform and
a portion of the reflected shock R is straight near P (Fig. 3c). The
reflected shock R can be attached to, or detached from, the wedge corner,
depending on the flow Mach number M, behind the incident shock wave and the
wedge angle ow [11, 15] (Fig. 3d to f).

2.1.2 Mach Reflection (MR)

As the wedge angle 0w is decreased, the flow behind the incident shock
cannot negotiate the wedge surface through just the reflected shock R. An
additional shock is necessary to alter the flow so that it can negotiate the
wedge surface again by turning subsonically. This additional shock
protrudes forward into state (0) at the lower part of the incident shock
wave I and is known as the Mach stein M. The resulting irregular reflection
configuration is called Mach reflection. It is characterized by a
confluence of the three shocks and a fourth discontinuity, across which
entropy, density, temperature and flow velocity are discontinuous, but
pressure and the flow direction are continuous, and is referred to as the
contact surface or slipstream S [33]. The confluence of the four
discontinuities is called the first triple point T.

Three types of reflection can occur in nonstationary flows, depending
on the flow Mach number behind the reflected shock wave R, namely,
single-Mach, complex-Mach, and double-Mach reflections. One major
difference between these Mach reflections and regular reflection is that
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they all produce a subsonic flow near the wedge surface behind the Mach
stein M, while in RR the flow is usually supersonic near the wall behind the
reflection point P. Like the regular reflection, the reflected shock R can
be attached to or detached from the wedge corner.

2.1.3 Sinqle-Mach Reflection (SMR)

When the flow U2 behind the reflected shock R is subsonic relative to
the triple point T and the reflected shock R is curved over its entire
length up to the triple point T, this is identified as a single-Mach
reflection (Fig. 4). The frame of reference is attached to the triple point
T and it moves along a straight line at an angle X (first triple-point
trajectory) with a constant velocity Uo = U cosec top where t is the
incident angle between the incident shock wave sl and the oncoming fow, and
is given as

to = 900 - )'w (2.2)

The angle y is defined as the angle between the first triple-point
trajectory and the wedge surface, and is referred to as the effective wedge
angle. They are related by

ow +x (2.3)

The Mach stein M lies in front of the incident shock wave I and is normal to
the wedge surface, but not necessarily straight.

The flow in state (0) can reach the region bounded by the shock waves R
and M by passing through two shock waves I and R if it is above T, or only
one shock wave M if it is below T. From stability consideration, the gas
must be compressed to the same pressure, and must move in the same
direction. Consequently, this gives rise to a slipstream S dividing the
two regions of equal pressure and flow velocities. The reflected shock wave
R, therefore, needs to redeflect the flow so that 03 = 01 - 02.

With the frame of reference attached to the triple point T, the flow
configuration becomes stationary and the three-shock theory [4,6] may be
used to find the flow properties around the triple point T. The method of
calculations is discussed in Appendix A.

2.1.4 Complex-Mach Reflection (CMR)

When the flow U2 behind the reflected shock R is supersonic relative to
triple point T, i segment of the reflected shock R near T becomes straight,
and the flow behind it is uniform, whereas the rest of R has continuous
curvature until it finally terminates at the surface. The resulting Mach
reflection configuration is referred to as complex-Mach reflection (Fig. 5)
which is similar to single-Mach reflection except that instead of a curved
reflected shock over its entire length, here the reflected shock wave R
develops a reversal of curvature discontinuously. In some cases, a smooth
reversal of curvature takes place. The reversal of curvature happens
because of the existence of a band of compression waves behind the reflected
shock wave [10,11,21] and as a result, a kink K is formed in the reflected
shock wave R. The method of calculations used for SMR applies to CMR.
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2.1.5 Double-Mach Reflection (DMR)

When the band of compression waves at the kink K of a complex-Mach
reflection converges to form a new shock wave M', the kink becomes the
second triple point T' and the flow Mach number M' oehind the reflected
shock wave R, in a frame of reference attached to the second triple point
T', exceeds unity. Consequently, two systems of the three-shock
interactions exist in the flow, hence this configuration is termed
double-Mach reflection (Fig. 6). In the second three-shock interaction
system, the flows behind the second triple point T', states (4) and (6), can
be obtained from state (1) by passing through either the second reflected
shock wave R' or through the reflected shock wave R and the second Mach stem
M'. A second slipstream S' is formed at the second triple point T', and the
second triple-point trajectory angle x' is defined as the angle between the
wedge surface and the line extending from the wedge corner to the triple
point T'. The method of calculations used for SMR applies to the first
triple point of JMR. Since an analogy can be made Detween the first and
second triple points, the three-shock theory may also be used to find the
flow properties around the second triple point T' [Il].

2.2 Transition Criteria

With the existence of the four different types of nonstationary
oblique-shock-wave reflection, it Decomes necessary to determnine tie
transition criterion for one type of reflection to terminate and another
type of reflection to occur. Establishment ;)f tie transition criteria
requires the understanding of the physics of the flow fields, and it is
important in the mapping of the transition boundaries.

2.2.1 Transition from Rk to MR

There are three most 4uoted termination criteria for RR in the
literature, von Neumann L4J proposed that the transition from RR to MR
takes place when the wedge angle is lowered to an extent where the flow
deflection condition > - (see Sec. 2.1.1) can no longer be
satisfied. This violation occurs when the flow deflection angle ',, through
the incident shock wave I exceeds the maximum flow deflection angle
through the reflected shock R. Tis criterion is referred to as te
detachment criterion, and the term detachment stems from steady flows where
the oblique shock wave detaches at this angle. The detachment criterion is
sometimes called the von Neumann criterion and has the analytical form

2I +  2 0 (2.4)

The criterion can be best illustrated by using the pressure-deflection
(P - -) shock polars as shown in Fig. 7, where the I and R polars represent

the incident and reflected shock waves, respectively. Through an RR, the
net deflection angle is zero, hence state (2) is at the point where the R
polar intersects the P/P0 axis, say point A on R Fig. 7). As thie wedge
angle 'w decreases, the deflection angle ', through tie incidrit shock wave
I increases, and the R polar moves away from the P/P axis until it is
tangent to the P/P axis (point 6). decreasing tne wedge angale w any

0.further, the R polar no longer intersects the P/P0 axis and R4 is not

possible, ana MR occurs. Therefore, the detachment criterion corresponds to
the reflected-shock polar Rd where the pressure of state (2) behind tie
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reflected shock wave jumps from point B (RR state) to point C (MR state).
Note that there is a discontinuous pressure jump during transition according
to the detachment criterion.

An alternative criterion was proposed by Henderson and Lozzi [10] based

on the assumption that the system should remain in mechanical equilibrium
during transition. They argued that a system which develops a pressure
discontinuity during transition cannot be in mechanical equilibrium. In
order to enable the system to remain in mechanical equilibrium, the
transition between RR and MR should occur at point D (Fig. 7) where the R
polar intersects the I polar (MR state) at the same point where it meets the
P/P 0 axis (RR state). Consequently, the mechanical equilibrium criterion is
illustrated by the reflected-shock polar Rm , and analytically expressed as

01 + 02 = 03 = 0 (2.5)

where 0, is the flow deflection through the Mach stem (Fig. 4)

Consider figure 7 now, according to the mechanical equilibrium
criterion, MR will take place for all reflected shock polar R above point
U, since the transition criterion described by polar Rm has been exceeded.
Yet, according to the detachment criterion, RR will take place for all shock
polar R below point B, since the transition criterion described by polar R
has not been satistied. Therefore, RR and MR are theoretically possible for
all reflected shock polar R lying between polars Rd and Rm .  The
dual-solution region in the (MS -0 ) plane is shown for a perfect gas with
specific heat ratio y = 1.4 in Fig. 8, and it can be seen that the area of
disagreemet between these two criteria is very large. However, experimental
results showed that the mechanical equilibrium criterion made agreement
between experiment and theory worse for nonstationary oblique-shock-wave
reflection. The detachment criterion is the limit for the two-shock theory
to have solutions. The mechanical equilibrium criterion is the limit for
the three-shock theory to have solutions which corresponds to X = 00.

Hornung and Kychakoff [12] suggested another criterion in which they
argued that in order for a MR to form, a length scale must be available at

the reflection point; that is, pressure signals must be communicated to the
reflection point. They argued that the transition between RR and MR takes

place at the sonic deflection angle 02s, the deflection angle at which the
flow behind tne reflected shock R is just sonic relative to the reflection
point P. In the (P - 0) shock polar diagram of Fig. 7, the transition
occurs when the reflected-shock polar intersects the P/Po axis at the sonic
point E. Consequently, this criterion is referred to as the sonic criterion
and is expressed by the relations

0 1 + n U2S = 0 , M2P = 1 (2.6)

where M2 p is the flow Mach number in state (2) in a frame of reference fixed
to the reflection point P. The sonic criterion is illustrated by the
reflected-shock polar R . The state behind the reflected shock wave jumps
from point E (RR state) o point F (MR state) during transition. However,
the sonic criterion results in a transition boundary which is too close to
the detachment criterion so that the differences are experimentally
unresolvable.

-8-
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Experimental results of nonstationary oblique shock-wave reflection

show that the detachment criterion is the correct one, although it has takenthirty-five years to confirm this. Experiments also show that MR does not

occur immediately when the theoretical RR limit is exceeded. This
persistence of RR in the MR region has been called the von Neumann paradox.
Hornuny et al [23], and Shirouzu and Glass [16] discuss this paradox in
terms of boundary-layer displacement effects, and Shirouzu and Glass
suggests that this can explain it. However, more experimental data is
presently being obtained at UTIAS to substantiate these findings [43].

2.2.2 Transition from SMR to CMR

In SMR, the flow behind the reflected shock wave R is subsonic in a
frame of reference attached to the triple point T, and it can negotiate the
wedge surface subsonically. However, when the incident shock wave Mach
number is increased, or in some cases when the wedge angle is raised, the
flow Mach number behind the reflected shock wave R is also increased and
eventually it exceeds unity. Subsequently, a SMR is no longer sufficient,
because there exists again a supersonic flow directed towards the wedge
surface. Theoretically, this supersonic flow has to be made either parallel
to the wedge surface or subsonic before it reaches the wedge by means of a
compression wave or a shock wave, so that it can negotiate the wall
subsonically. The flow Mach number M2 behind the reflected shock wave R
appears to be reduced by passing through a compression wave and a CMR is
formed. As the flow Mach number M2 increases, the compression wave gets
stronger and finally this compression wave becomes a shock wave and CMR
terminates. Henderson and Lozzi [i0] were the first to suggest that a band
of compression waves must exist in a CMR and can converge to a shock wave.
Unfortunately, they put forth neither analytical nor experimental
substantiation for their suggestion. Ben-Dor and Glass [13,14] suggested
that the transition between SMR and CMR occurs when the flow behind the
reflected shock wave R is sonic with respect to the triple point T.
Consequently, the criterion for the termination of SMR and the formation of
CMR is

M2T =1 (2.7)

Recently, Shirouzu and Glass L16] studied the problem of whether a flow
is in equilibrium or frozen from a more fundamental assessment through the
appropriate relaxation length as related by the angle 6 between the
incident and reflected waves (see Fig. 9a) rather than by the (M5 - 0 )
plots. During the course of their studies, they came up with an additional
condition for the exsistence of CMR. They argued using the results of Law
and Glass [15] that the kink K moves with a horizontal flow velocity as for
state (1). This means that the flow in state (I) moves parallel to the
incident shock wave I and downward with the frame of reference attached to
the kink K, as shown in Fig. 9a. Since the flow properties upstream on
either side of the kink K are the same, the exsistence of a band of
compression wave in CMR implies that P2 < P and 1¢1K - 900 1 < 1$ - 9001
(or 1I1 < tal) as shown in Fig. 9b. Of the four possible cases illustrated
in Fig. 9c, only configurations A and B satisfy the condition HI < jal, and
also the angle 6 is larger than 90' in both cases. Hence, 6 > 900 is a
necessary condition for the exsistence of a band of compression waves which
is required for the formation of CMR. This is only a necessary condition
because configuration C also has F > 900, although it does not satisfy HI
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< ja. Consequently, the transition from SMR to CMR takes place when both

the former criterion Eq.(2.7) and the new necessary condition are
satisfied. The new transition criterion from SMR to CMR can be expressed
as

M2T > 1 and 5 > 9U°  (2.8)

Shirouzu and Glass [16] showed that the transition boundaries based on this
new transition criterion have improved the agreement with experiments in Ar,
N2 , air and CO2.

2.2.3 Transition from CMR to DMR

L w and Glass [15] proposed that the onset of the second triple point
T' in OMR, which resulted from the supersonic flow in state (2) trying to
negotiate a compressive wedge when striking the wall, started when the flow
U2 in a laboratory frame of reference was supersonic with respect to the
wedge surface. Gvozdeva et al [34] suggested that DMR is formed as a result
of the excitation of the intern.l degrees of freedom, which leads to the
increase of the density ratio across the incident shock front. Hence, the
flow Mach number M2 becomes supersonic at lower incident shock wave Mach

number and smaller wedge angle for real gases than for perfect gases.
According to Semenov et al [35], DMR is formed due to the curling of the

primary slipstream S into a vortex. In Mach reflection, the slipstream S

can either lie along the wedge surface or curl into a large vortex near the

wedge surface and the Mach stem M. However, Bazhenova et al [20] indicated

that experiments show that DMR can occur when slipstream S does not curl

into the vortex but extends over the wedge surface at large wedge angles.

Therefore, the curling of the slipstream S does not establish the onset of

DMR as proposed by Semenov et al [35]. Bazhenova et al [20] and Gvozdeva

et al [21] used piezo-gauges to measure pressure histories on the wedge

surface and found that their results did not agree with the formation

criterion of UMR suggested by Law and Glass [15]. They considered that the

flow U2 behind the reflected shock R becomes supersonic with respect to the

triple point T as the necessary but not sufficient condition for the

exsistence of DMR. They argued that when CMR takes place, there is a small

secondary rise on the wall, and it is more pronounced for DMR with the

second confluence.

Ben-Dor and Glass F13.141 suggested that the transition from CMR to DMR

occurs when the flow U behind the reflected shock R becomes supersonic in a

frame of reference attached to the kink K (Fig. 5). Their transition

criterion is expressed analytically as

M 1 F 1 (2.9)

Comparisons between the transition riomndaries based (n this criterion and

experiments in nitrogen [13] aid air [26] in the (M - R' plane show good
agreement except at lower Ms and higher I., near ihe R boundary line. In

the case of argon [14], the predicted transition line has to be lowered to
take into account the DM that penetrated into the CMR region. However, for

CU2 [16,30], the calculated boundiry line fai!s to include many CMR points
that lie in the ')MR region, and the boundary line must be shifted upward.
These discrepanciLs can be considered Is inappropriate for a transition

criterion. The criterion M , I is only one of the necessary conditions
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arid the exsistence of other necessary conditions may improve the agreement.

3.0 EXPERIMENTAL INVESTIGATION

3.1 Experimental Instrumentation

The UTIAS 10 cm x 18 cm Hypervelocity Shock Tube [36] was used to
perform the experiments for the present work. Bristow [37] reported on
further modifications and improvements. An updated and detailed
documentation of the shock tube and other associated facilities as well as
their maintenance and operation procedures can be found in Ben-Dor and
Whitten L38]. Therefore, only a brief discussion of the facilities relevant
to the present study will be given.

Cold-gas runs were used to generate the range of incident shock wave
Mach numbers required for the present study. The diaphragm used for these
cold-gas driven shock runs consisted of several different thickness layers
of Mylar polyester film. Initially, a diaphragm of the calculated thickness
to give the required pressure ratio P30 across the diaphragm was inserted to
separate the driver from the channel. The channel was then evacuated down
to a vacuum of b to 10 millitorr (0.66 to 1.33 Pa) by the mechanical, roots
and diffusion pumps, which were connected in series, and the vacuum level
was measured by a Pirani vacuum gauge (Type GP14O). Concurrently, the
driver section was evacuated by a vacuum pump.

The test gas used for the present work was commercial grade SF with a
purity rating exceeding 99.8%. Relatively high initial pressures, 4 to 267
torr (0.53 to 35.60 kPa), were employed in the experiments to meet the
triggering threshold of the shock wave velocity measuring pressure
transducers, to intensify the density contours for the case of
infinite-fringe interferometry, as well as to preserve the reproducibility
of shocks. Carbon dioxide and helium were employed as the driver gases to
generate incident shock wave Mach numbers Ms in the range 1.25 < Ms < 8.0 in
SF

The initial pressure Po in the channel section was monitored by Wallace

& Tiernan type FA 160 dial pressure gauges (0 - 50 torr, 0 - 200 torr, 0 -
400 torr, and 400 - 800 torr). The accuracy of measurement using these
gauges was listed below:

Gauge Overall Error Absolute Error

W & T 0 - 50 ±0.1 torr (13 Pa) 0.2 torr (26 Pa)
W & T U - 200 ±0.5 torr (66 Pa) 1.0 torr (133 Pa)

W & T 0 - 400 41.0 torr (133 Pa) 2.0 torr (266 Pa)
W & T 400 - 800 41.0 torr (133 Pa) 2.0 torr (266 Pa)

The pressure of the driver gas P3 admitted into the driver section was
monitored by Heise type HI/507C dual pressure gauge (0 - 500 psi),
calibrated in 0.5 psi (3.45 kPa) intervals. The bursting driver pressure P3
was interpolated to the nearest 0.25 psi (1.72 kPa) with an estimated
overall error of t0.25 psi (1.12 kPa), and an absolute error of 0.5 psi
(3.45 kPa).
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The leak rate of room air into the shock tube was found to be 6.1 torr
(0.81 kPa) in a typical day. Since most of the experiments were conducted
at relatively high initial pressures, P > 4 torr (0.53 kPa), and the period
between the admission of the test gas o the bursting of the diaphragm was
about 15 minutes. the worst possible increase of the initial pressure due
to leakage would be 0.08 torr (10.61 Pa), or no more than 2% of the measured
initial pressure.

The initial temperature of the test gas T0 was measured by a mercury
bulb thermometer calibrated in 0.1 C intervals which was embedded in the
midsection of the channel. The temperature of the test gas was assumed to
reach a thermal equilibrium state in the shock tube within 5 minutes after
the admission of the test gas. The initial temperature was interpolated to
the nearest 0.0bC with an estimated overall error of -+0.05°C, and an
absolute error of 0.I'C.

The shock speed was calculated from the measured traverse time interval
between several stations in the channel (Fig. 10). Three Hewlett-Packard
(Type 3734A) and two Racal (Type SA.45) digital counters were connected to a
common, external, 1 MHz oscillator providlng all counters a uniform time
base with a one microsecond resolution. When the shock wave arrived at
station D (5./ m upstream of the test section), all five counters were
simultaneously triggered. Each counter was then stopped in succession as
the shock wave travelled past subsequent pressure transducers at stations F,
G, H, I and J. Atlantic Research LD - 25 piezoelectric pressure transducer
flush mounted in the shock tube were used to detect the arrival of the shock
wave. The absolute error in calculating the incident shock wave Mach number
is outlined by Ben-Dor and Whitten L38j. For SF6 , the absolute error is
0.01 at Ms = 1.25 while the absolute error is 0.11 at Ms = 8.0.

To study the reflection process, a 23-cm dia field of view Mach-Zehnder
interferometer was used. Details of the design and operation of this
interferometer were given by Hall L39_I. A detailed description of the
spatial resolution and alignment of the interferometer can be found in
Ben-Dor and Whitten L38 1. The adjustments for the infinite-fringe
interferograms were very difficult in order to obtain just one fringe over
the entire no-flow field of view. Fortunately, only a few residual fringes
remained far from the wedge surface, and their effects on the quality of
the infinite-fringe interferograms were negligible. The shapes of the
density contours were initially set almost identical before each run, and
all the photographs were taken under that condition. The infinite-fringe
interferometric technique not only provides excellent isopycnic contours, it
also is a very sensitive method of measuring density values. The
shadowgrams taken in the present study used the same equipment with the
light path of the lower arm blocked by a cardboard which was placed in front
of a mirror.

The interferometric light source used was a giant-pulse ruby laser
consisting of a IRG model 104A laser head and power supply, and an
integrated TRG model 2113-1 harmonic generator and TRG Pockels Q-switch. It
was found experimentally that the Pockels cell shutter opened at a time of
900 microseconds into the flash lamp pumping cycle gave an output pulse
width of 30 nanoseconds, which was sufficiently fast to freeze the shock
motion during the recording of the interferogram. The pulsed laser provided
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a monochromatic light at a wavelength of 6943.0 A (first harmonic) and
3471.5 4 (second haritonic).

Both the interferograins and shadowyrams were recorded on Koddk Ruyal-X
pan (1250 ASA) 10 cm x 13 cm sheet films. The fi lin was developed in
dilution A of HC-11O developer for 9 minutes for the first harmonic
interferograms and shadowyrams, and 12 minutes for the second harmonic
interferograms. The control of the laser light source operation ;s shown
in Fig. 10. The laser flashlamp capacitor bank was triygered by the shuck
arrival at station F, correctly delayed by a Tektronic type 555 oscilloscope
to get 900 microseconds of energy pumping by the time the Pockels cell
shutter opened. The Pockels cell Q-switch was triggered from station 1, and
delayed suitably in a delay unit to take the interferogra of the shock wave
at a desired location with respect to station I.

In the present work, wedges with angle 0w of 40, 100, 200, 30 ° 37/,

400, 42° , 450 and 470 were used, with a tolerance of +10 minutes of arc.
The wedges were constructed of mild steel, bolted to the bottom of and
mounted flush with the inside shock tube walls at the test section (Fig.
Ila). This arrangement was adopted due to the simplicity in design and
stability during impact of a strong shock wave. However, it has a drawback
of producing a boundary layer interactions at the wedge corner which is not
of important in the present work. Gvozdeva et al L40] used the elevated
wedge model in Fig. Ilb to eliminate the boundary-layer interaction at the
corner, but a more serious gasdynalnic problem arose. In the case of a
detached bow shock at the wedge corner, the flow field beneath the wedge
will influence that above, thus disturbing the region of interest. A
symmetric wedge (Fig. 11c) would be freed of the above problems, but it
occupies a larger volume, consequently generating greater disturbances that
could choke the flow and even raise the temperature high enough to cause
damage to the window surfaces. An asymmetrical wedge (Fig. Ild) with two
wedge angles Owl and rW2 has the merit of producing two sets of results for

each run, however, it has all the disadvantages of both models b and c.

3.2 Evaluation of Interferograms

Using infinite-fringe interferometric technique, very small density
changes can be recorded on an interferogramn. The density difference Ap
between any two consecutive isopycnics is determined by the relation [30]

p (3.1)
KL

where N is the wavelength of the light source, K is the Gladstone-Dale
constant, and L is the depth of the test section of the shock tube. The
values of K for several gases listed in reference [26] is reproduced in
Table 1.

By using a light source of shorter wavelength, the density contours
become more numerous, and d more sensitive density distribution is achieved.
Compare Fig. U2a with Fig. Pb, which were obtained simultaneously in the
same experiment. The wavelength of the 1 ight source for Fig. 12a is 6943 ?.,

(first harmoric) while the wavelength of the light source for Fig. 12b is
3471.5 A (second harmonic). Although there are twice as many isopycnics
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visible with the second harmonic than with the first har;nonic, this
technique suffers from the limitations of the optics and photographic
emulsions used, hence large losses in intensity and improper exposure of
the interferograms. An alternative to achieve more sensitive measurements
of the density contours is to increase the initial pressure of the test gas,
for a fixed Mach number. There will be larger relative pressure changes,
and larger density changes, thus giving rise to more detailed and accurate
isopycnics. Deschambault [26] reported a case where a CMR observed at lower
initial pressure needed to be reclassified as a DMN when the same experiment
was repeated with the initial pressure threefold higher. Ths 'met.hod also
has its practical limits, as the incident Mach number is governed by the
required driver pressure and burning of the window may occur at high Mach
numbers and high wedge angles. Experimentalists should be aware of the
limitations of the equipment and how the initial conditions can change the
state of a real gas and affect the classification of a reflection.

The incident shock wave is regarded aS stable if the "nterferougri-
shows it to be planar and unstable if it is non-planar. In the present
experimental work, a light driver gas such as helium is required to produce

> 5.5. With a light driver gas driving the heavy SF6 , buoyancy-driven
turbulent mixing would take place between the driver and driven gases. The
instability of the contact surface could cause pressure fluctuations and
nonplanarities or bulges at the shock front (see Fig. 12c). Any shock wave
reflection produced from a non-planar shock front would provide erroneous
data, hence, the analysis would only be done for experiments with planar
shock waves.

Since it is not possible to analyze and discuss each interferogram
obtained in the present study in detail, only several interesting cases will
Oe presented. Table 2 is a record of all the experiments performed
ncluding the initial conditions and important measurements of each

experiment. In the following sections, examples of attached and detached
RR, SMR, CMR and DMR are presented, including their interferometric data.

3.2.1 Regular Reflection

Case 1 : Ms = 1.82, Ow= 470, Po = 149 torr (19.87 kPa), To = 23.1
0C

An infinite-fringe interferogram of a detached RR is shown in Fig. 13.
In the same figure, the evaluation of the density field is also presented.
Note how clearly the isopycnics appear in the interferogram. The density
contours are enhanced due to the relatively high initial pressure of the
test gas used for the experiment. There exists a small uniform supersonic
region inmediately behind the reflection point and the reflected shock wave
is straight just in this region. As one moves away from the reflection
point toward the wedge corner, the flow decreases in strength and becomes
s'ubsonic. Since the corner signals are able to influence the flow up to the
region where it just hecomes supersonic, the reflected shock wave in the
subsonic region becomes curved throughout the rest of its length and
terminates on the bottom wall of the shock tube (detached).

In Fig. 14, the wall-density distribution o/p plotted against the
normalized distance L is shown for this example. For regular reflection, L
is defined to be the distance from the reflection point P to the wedge
corner (see Fig. 15a). For Mach reflection, L is defined as the distance
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from the foot of the Mach stein M to the wedge corner (Fig. 15b). The points
on the wall-density distribution plot were measured from the
interferograins. The wall-density plot also indicated a small constant
region behind the reflection point before the density drops continuously.

Near the corner of the wedge surface, the density increases slightly and
then drops sharply but continuously behind the corner. The sharp decrease
iii density is seen in the interferogram as a small region at the corner
where the isopycnics converge, which may be caused by the interaction of the
shock wave with the boundary layer. If the interaction were stronger, a
lambda-shock configuration as shown later in case 4 would occur. Finally,
after another drop in density due to the reflected shock, the density in
state (1) is reached.

* Case 2 : Ms = 4.57, ow = 400, Po 7.5 torr (I kPa), To = 24.2 0C

An example of an attached RR is shown in the infinite-fringe
interferogram of Fig. 16. The corresponding wall-density distribution plot
is given in Fig. 17. The incident shock wave Mach number for this case is
approximately 2.5 imes higher than that in case 1. The flow in region (1)
is strong, thus forcing the reflected shock wave close to the wedge surface.
The region behind state (2) is uniform, hence the flow behind the reflected
shock is subsonic and there is communication of the corner signal
everywhere. Note that in the wall-density distribution plot, the density
near the reflection point is about the same as the density at the corner,
and a density drop in between of less than 10%. A weak disturbance ahead
of the reflected shock wave which had been observed previously by Ando [24]
4n CO and Deschambault [26] in air is also seen. This phenomena occurs at
high Mach number and Deschambault [26] tried to explain that the shock
bifurcation seen at the wedge corner continues along the window boundary
layer, gradually diminishing in strength and interaction.

3.2.2 Single-Mach Reflection

Case 3 : Ms  1 54, ow = 420, Po = 138 torr (18.40 kPa), To = 23.9 0C

A detached SMR infinte-fringe interferogram with the evaluation of the
density field is shown in Fig. 18. The well defined and numerous isopycnic
lines in the interferogram are the result of using relatively high initial
pressure. No uniform region is observed behind the triple point and the
reflected shock since the flow is subsonic in state (2). The corner signal
can propagate upstream to the triple point and influence the reflected shock
wave. As a result, the reflected shock shape is curved throughout its
entire length from the triple point to the bottom of the shock tube, where
it terminates as a detached shock. The straight slipstream clearly emanates
from the triple point and merges with the boundary layer on the wedge
surface. The wall-density distribution is plotted in Fig. 19. The density
decreases gradually behind the Mach stem and then increases slightly at the
corner. As one moves along the bottom wall of the shock wave away from the
wedge corner, the density is seen to be dropping again, and the sharp
discontinuous drop in density across the reflected shock to state (1) is

clearly shown.
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Case 4: Ms = 2.11, ow = 200, Po = 29.4 torr (3.92 kPa), To = 23.8%

In Fig. 20, an example of an attached SMR is shown. Compare the
interferogram of this case to the previous case (Fig. 18). The isopycnics
shapes are still clearly shown in the interferogram, but note that in this
case there are fewer isopycnics recorded. This is due to the relatively
lower initial pressure used and a smaller compressive wedge angle, although
the incident Mach number is slightly higher in the present case. Since the
triple point trajectory angle x is larger for smaller wedges and the
i.terferograin was taken when the shock system almost reached the crest of
the wedge, the Mach stem is much longer and clearer than in the previous
case. The slipstream is seen to be straight from the triple point and then
it curls up into a vortex structure near the wedge surface. Also seen
clearly in the interferogram is the shock-wave boundary-layer interaction at
the corner. The reflected shock wave is curved and attached to the wedge
surface at the corner. Another shock which is running ahead of the
reflected shock at the wedge corner and this system is referred to as a
lambda-shock configuration, which will not be studied in this work. The
portion of the reflected shock immediately behind the triple point is fairly
straight before it curves downward. It can be expected that this
experiment is close to the transition boundary from SMR to CMR since the
reflected shock is straight at the triple point and the closeness of the
angle 5 to 90'.

The wall-density distribution is presented in Fig. 21. The density has
an increase as it crosses the slipstream from state (3) to state (2), and it
remains steady over a large region. As one approaches the wedge corner, the
density increases rapidly and drops suddenly when crossing the stem of the
reflected shock. Then the density increases sharply again before it drops
discontinuously back to the value of state (1) as one crosses the outer stem
of the lambda-shock configuration.

3.2.3 Complex-Mach Reflection

Case 5 : Ms = 1.72, 0w = 400, Po = 226 torr (30.13 kPa), To = 24.9%

An excellent infinite-fringe interferogram of a detached CMR is shown
in Fig. 22. The clear and enhanced isopycnics are the result of a high
initial pressure and a large wedge angle. Note the shallow kink is situated
at the intersection of the straight reflected shock and the curved reflected
shock. The flow behind the reflected shock between the triple point and
the kink is supersonic relative to the triple point, causing the reflected
shock to be straight in that region. Note the spreading of the straight
slipstream and its termination at the wedge surface without curling up. The
boundary-layer behind the slipstream can also be seen in the interferogram.
The isopycnics near the wall on the upstream side of tne slipstream slant
down to the left, whereas those on the downstream side slant down to the
right. The boundary layer profile changes shape between the isopycnics 'f'
and 'g' because the highest density occurs right behind the slipstream. The
wall-density distribution is plotted in Fig. 23. The density jumps behind
the Mach stem and rises up gradually till one passes the slipstream and then
it decreases to a minimum slowly. Close to the corner on the wedge surface,
the density rises to a maximum and it drops at the vortex. Finally, the
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density has a sharp discontinuous drop as one goes through the reflected

shock back to state (1).

Case 6 : Ms = 3.14, Ow = 10., Po = 7.95 torr (1.06 kPa), To = 24.30C

An example of an attached CMR along with the evaluation of the density
field is presented in Fig. 24a. The number of isopycnics in the first
harmonic interferogram is dramatically reduced because of the relatively low
initial pressure used. Therefore, the second harmonic interferogram is
also being analysed in Fig. 24b, due to the fact that it provides twice as
many isopycnics as the first harmonic. There is a smooth reversal of
curvature of the reflected shock wave and it is difficult to locate exactly
the position of the kink. The slipstream is straight emanating from the
triple point and is pushed forward near the wedge surface toward the Mach
stem by the higher pressure behind the curved reflected shock. The Mach
stem is seen slightly curved in this picture. The bow shock wave
terminates at the corner straight and attached, and no lambda shock occurs.
The wall-density distribution is shown in Fig. 25. The density jumps
behind the Mach stem and has a slight rise across the slipstream before it
increases gradually to a fairly constant density region near the wedge
corner. The density then increases at the corner and drops sharply as one
goes through the reflected bow shock back to state (1).

3.2.4 Double-Mach Reflection

Case 7 : Ms = 2.18, 0w = 370 , Po = 35.2 torr (4.69 kPa), To = 23.70C

An infinite-fringe interferogram for the case of an attached DMR is
shown in Fig. 26. The sharp kink now becomes the second triple point. The
band of compression waves, as indicated by the enhanced isopycnics emanating
from the second triple po4,nt to the wedge surface interacting with the
slipstream, converges and merges with the curved reflected shock forming a
minute second Mach shock. The slipstream develops instabilities, forming
small ripples before it rolls up at the wedge surface. Since the second
Mach shock is weak and not yet fully developed, the second slipstream is
not recorded in the interferogram. At the wedge corner, the intense
lambda-shock interaction is prominent. In Fig. 27, the corresponding
wall-density distribution is presented. After the increase of density
across the Mach stem, the density remains steady in state (3) before it
jumps rapidly to a maximum density across the slipstream. Then it decreases
gradually and remains constant till one moves further down closer to the
wedge corner where the density increases almost back to the maximum value
again. The strong shock-wave boundary-layer-interaction effect at the
corner is also clearly indicated in the wall-density profile. As one
crosses the two shocks of the lambda shocks on the wall, the density
experiences a sharp decrease reaching a minimum at the wedge corner, and
then the density rises slightly and falls sharply back to state (1).

Case 8 : Ms = 2.59, Ow = 30°, Po = 11.2 torr (1.49 kPa), To = 24.2C

A good example of attached DMR with the evaluation of the density field
is shown in Fig. 28. Although the experiment was performed with relatively
low initial pressure, there is sufficient information in the interferogram
to study the density field. Two fairly uniform regions are seen behind the7 _ Istraight reflected shock and behind the Mach stem. Ti.e straight slipstream
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gradually develops turbulence and is pushed forward to curl up toward the
Mach stem. A few isopycnics behind the curled up slipstream can be seen
clearly converging to form a short second Mach shock which merges with the
curved reflected shock at the second triple point. The second slipstream is
again too weak to be recorded in the interferogram. Note how sharp and
detailed the isopycnics are recorded of the lambda-shock interaction at the
wedge corner. The wall-density distribution for this case appears in Fig.
29. The effect of the rolling up of the slipstream and the compression wave
is illustrated in the wall-density profile as a sharp density jump after the
initial density increase across the Mach stein. The effect of the
lambda-shock interaction is more dramatic in this c se. As one moves along
the wedge surface down to the corner, the density rises to a maximum and
then drops sharply as one crosses the inner lambda shock. The density then
rises again before it drops sharply back to state (1) as one crosses the
outer lambda shock.

3.2.5 Mach Reflections in Ar, air, CO 2 and SF6

Extensive research of shock wave reflection in various types of gases,
such as monatomic argon, diatomic 0 N and air, triatomic CO2 and
polyatomic SF have been carried on at2UTIA for more than a decade. Lee
and Glass L2] did some numerical work in showing the effects of the
specific heat ratio y on the transition boundaries and the shock-wave
configuration. Their calculations show that the transition boundary shifts
downward significantly with decreasing y, and that a decrease in y lowers
the value of the reflection angle w'. It became necessary to compare some
experiments done in gases with different y. Four experimental results of MR
in four different types of gases with the same wedge angle of Qw = 200 and a
Mach number of MS = 3.4 ± 0.2 are gathered for a comparison of their types
of reflection, shock shapes, wall-density distribution profiles, the
differences in the lambda-shock interaction, and the shape of the slipstream
and its effect on the Mach stein. The initial conditions of the four runs
are listed below.

Case 9:
Monatomic Ar, M5 =3.20, ow=20.O, Po=100.O torr (13.3 kPa), T^=24.70 C [32]
Diatomic air, M5 =3.60, tw= 20.O 0 , PU= 60.0 torr (8.0 kPa), T0=25.1

0 C [26]
Triatomic CO , M_=3.43, ,=20.3', PU= 30.0 torr (4.0 kPa), Tu=20.8°C [24]
Polyatomic S?6 , M 3.51, (Q=20.0°, Po: 4.6 torr (0.6 kPa), To:24.0°C

The first and second harmonic infinite-fringe interferograms for the
run in Ar are shown in Figs. 30(a) and 30(b), respectively. The type of
reflection is a detached SMR. Because the reflected bow shock is curved
throughout its entire length, the corner signals are able to propagate
upstream all the way to the triple point. No significant shock-wave
boundary-layer interaction near the corner is observed. The slipstream is
seen to extend from the triple point and is laminar. Near the wedge
surface, the slipstream is pushed ahead slightly and curls upstream because
of the high pressure behind the bow shock. Since the slipstream terminates
at the wall well behind the Mach stern, it does not disturb the flow in
region (3). Hence, the Mach stem is straight and perpendicular to the wall.
The wall-density distribution is plotted in Fig. 31(a) for this run. There
is a small density jump across the Mach stem and the density behind the Mach
stem is fairly constant along the wall, except for the slight increase and
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then gradual fall of the density before crossing the bow shock near the
corner into state (1).

The second run is an attached CMR in air as shown in Fig. 30(c). The
reflected shock near the triple point is fairly straight and then it curves
up with the bow shock terminating at the wall. The kink is not well defined
in this run. The bow shock wave in the air run is not as bulged as in the
Ar run and a shock-wave boundary-layer interaction at the corner is
beginning to occur. The slipstream is still laminar but the curling
upstream is more apparent. The gap between the Mach stem and the slipstream
has decreased. The Mach stein remains straight and perpendicular to the
wedge surface. The wall-density distribution is plotted in Fig. 31(b). The
relative density jumps across the Mach stem and across the slipstream are
higher in the air run than in the Ar run. The fairly constant density
region near the center diminishes and near the corner, the density increases
swiftly to a maximum before it drops rapidly to state (1) across the bow
shock with a shock-wave boundary-layer interaction.

The third run is an attached CMR in CO2 with the finite-fringe
interferogram shown in Fig. 30(d). The vibrational relaxation behind the
incident shock is clearly seen in the picture and the relaxation length is

comparatively much shorter than the straight portion of the reflected shock

near the triple point and the flow is in equilibrium behind the relaxation
zone. The bow shock has moved closer to the wedge. The kink is inore
distinct here than in the air run. The shock-wave boundary-layer
interaction is strong and the lambda-shock configuration is more well
defined. The slipstream curls up at the wedge surface in a vortical flow,

influencing the flow in region (3) pushing the Mach stem further upstream,
thus the Mach stein becomes curved. Because the interferogram was not taken
in the infinite-fringe mode, the wall-density profile cannot be obtained

direcLly. Analysis would require the reduction of the finite-fringe
riterteroyranI which was not done for the present study.

Tne tirst and second harmonic interferograms for the fourth run of an
tti no ;)MR in SF6 are shown in Figs. 30(e) and 30(f), respectively. The

r,'tlecteJ shock is seen closer to the wedge surface when compared to the CO
W * d visible uniform region (2) behind it. There is a very strong anj
+ rii flow region close to the corner behind the bow shock and the

,ter-iftun of the boundary-layer with the straight attached bow shock is

rt !d rd)le here. The outer-most shock of the lambda-shock system slants out
tirtner and lies closer to the wall here than in the previous runs of air

dnki e)>. The bow shock wave also lies closest to the wedge among all four
rurns. The curl ing up effect of the laminar slipstream is the greatest here

also. The strong vortical flow of the slipstream is situated very close to

the Macn stem. It pushes the Mach stein further upstream with a bulge

clearly seen in the interferogram. Figure 31(c) illustrates the

wall-density distribution of this run. The first jump of density across the

Mach stem and the second jump across the slipstream are much larger than in

the air run. Then it increases gradually as one moves toward the wedge

corner reaching a uniform region at the corner, with the maximum density

occuring there. Finally, there is a very sharp jump across the lambda

shocks back to state (1).

Some statements can be made from the observations taken of the four

runs in the various gases with the same wedge angle and approximately the
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same Mach number. Firstly, the statement of Lee and Glass [25] that the
transition boundary lines shift downwards significantly and w' decreases
with decreasing y are supported by the comparison. The flows in Ar and air
are both frozen, the flow in CO2 is almost in equilibrium, whereas the flow
in SF6 is in equilibrium under the run conditions given above. For frozen
Ar, y = 1.667; frozen air, y = 1.400; nearly equilibrium CU2, 1.143 < y <
1.290 and equilibrium SF6 , 1.056 < y < 1.093. Ar has the largest y and the
type of reflection here is SMR. Air has a smaller y than Ar and the type of
reflection becomes a CMR. This implies that the transition line of SMR
CMR has shifted down in the transition map with decreasing y as shown in
Fig. 31(d). If CO2 is used, y is further lowered. However, the type of
reflection remains as CMR but is a stronger one than in the air run. In
SF6 , y is the smallest and the type of reflection is a DMR. This

corresponds to the CMR*-DMR transition boundary is lowered as y is decreased
as shown in Fig. 31(e).

Secondly, the claim of Lee and Glass [25] that w' decreases with
decreasing y is also substantiated here. Listed below are the measured
physical quantities for the four runs.

Gas 6 ' X (angles are in degrees)

Ar 83.4 40.9 14.3

Air 99.5 23.1 12.6
CO2  110.8 10.5 11.0
SF6  127.0 - 5.0 10.4

The angle 6 behaves just the opposite to '. Therefore lowering y will
increase 5 but decrease w'. The angle x is also found to be a decreasing
function of y. The behaviour of these measured angles in different -Y gases
is similar to increasing Cw at the same Mach number for a given y gas.

Thirdly, the wall-density profiles show more drastic changes as y is
lowered. The density jumps across the Mach stem, slipstream, bow shock or
lambda shocks at the corner, and the maximum density ratio attained behind
the slipstream and at the corner are all increased with decreased y. Since
pressure is directly related to density, the pressure profiles would behave
in a similar manner. Therefore the lower the y of the gas is, the stronger
the pressure behind the how shock will be, and this is evidenced by the
shape of the bow shock and where it terminates at the wall.

Fourthly, the strength of the shock-wave boundary-layer interaction is
observed to increase with decreasing y. In the Ar run, only the boundary
layer is observed near the corner. However, definite shock-wave

boundary-layer interactions at the corner with the attached CMR is observed
in the air run. The interaction turns into the lambda-shock configuration
in both the CU2 and SF6 runs, with the SF6 run being the stronger one.

Lastly, the curling effect of the slipstream and the curving of the
Mach stem are enhanced with increasing y. The laminar slipstream curls up
slightly in the Ar and air runs. It curls into a vortical flow in the CO

run and is more pronounced in the SF6 run. The distance between the Mach
stem and the slipstream decreases with lowering y. The Mach stems are found
straight for both the Ar and air runs. The slipstream is getting closer to
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the Mach stem in the CO2 and SF6 runs and as a result the Mach stein is
pushed out and curved with the SF6 run being the more drastic example.

4.0 RESULTS AND DISCUSSIONS

For the present experimental investigation of pseudo-stationary oblique
shock-wave reflections in SF over 150 experiments were performed in the
UTIAS Hypervelocity Shock Tute. A listing of the initial conditions for
each experiment performed in this study can be found in Table 2. Since
several postulates were raised on transition criteria as described in
Sec. 2.2, it is necessary to compare them with experimental results and
justify their validity. The transition boundary maps in the (M - 0w ) and
the (Ms - OW) planes for the case of frozen and vibrational equiibriumn SF6
were computed according to the criteria proposed by Ben-Dor and Glass
[13] and Snirouzu and Glass [16]. To verify the contribution of real-gas
effects and the validity ot the transition criteria, experiments were done
well inside the transition region. Comparisons of some physical phenomena
of shock-wave reflection between experimental and numerical results will be
presented and discussed.

4.1 Transition Boundaries

The computation of the transition boundaries in this study uses the
equations ' state for frozen SF6 (Y = 4/3) and vibrational equilibrium SF6 .
The thermodynamic states of SF6 used in the calculation are considered in
more detail in Appendix B. In analyses of gasdynamic phenomena including
shock waves, relaxation effects are very important. At room conditions, SF
is already partially vibrationally excited. By examining the vibrational
relaxation lengths behind the shock waves, analysis shows that the flow
states behind the shock fronts under the present experimental initial
conditions are in vibrdtional equilibrium. The vibrational relaxation
effect in SF6  is discussed in Appendix C. It will be seen that relaxation
lengths play an important role in the interpretation of the transition
boundaries and the regions they enclose.

The experimental results are classified into the four possible types of
reflection and are plotted in their transition naps for comparison. The
Lomparisons are twofold: first, to determine whether the experimental
results agree with the frozen-gas or the equilibrium-gas analysis; second,
to verify the val idity of the transition criteria. The transition
boundaries for frozen SF6 in the (M - c) ) and (Ms - o') planes are shown in
Figs. 3?(a) and 32(b), respectively. In these transition boundary plots,
the transition between SMR and CMR is represented by two lines. The dashed
line shows the former criterion M2T = 1 while the solid line shows the new
additional criterion 1, = 900 (see Sec. _.2.2). Transition from SMR to CMR
will occur when both the former dnd the new additional criteria are
satisfied. Note that the two SMR*-CMR lines cross over. The new transition
criterion to the left of this cross-over point is the dashed line; whereas
to the right of the cross-over point, the solid line is the new transition
criterion. In (Ms  - nw) plane, there is an additional boundary line in the
SMR region. It corresponds to the state of M, = 1.0, below which no
reflection NR can occur. It can be seen in both figures that there is no
agreement between the analytical and experimental results. However, there
is definite agreement with the equilibrium SF6 model as shown in Figs. 33(a)
and 33(b).



The comparison of the RR*-MR boundary should be done in the (N.
plane since there exists a multi-valued portion near this boundary int,,e
(M n ) plane (see Sec. 4.2). It is noted in Fig. 33(a) that several RR
points lie in the domain corresponding to NR at Ns ' 2.11 and 45°" On
the other hand, three of the DMR points lie in the domain of RR, at
NI= 3.45 (3 runs) for ') = 420, and M = b.48 (I run) and 7.9b (2 runs) for
(w= 370. Note that te RR*4'1R boundary is predicted by the detachment
criterion and is the limit for the two-shock theory to have solutions.
Therefore, any RR which exists beyond this boundary limited by the
two-shock theory is a persistence of RR or is known as the von Neumann
paradox. Furthermore, the mechanical equilibrium criterion is the limit fur
the three-shock theory to have solutions, thus any MR lying above the RR- 'MR
boundary into RR domain, on the contrary, is not a persistence of MR because
it has not exceeded the limit of the three-shock theory for a MR to
exist. However, the three DMR points lying in the RR domain are in the
transition region and very close to the RR -IR boundary line. Therefore,
they become very sensitive to any conditions affecting their type of
reflection. It can be seen that the termination of RR line, according to
the detachment criterion, is in general very good for engineering
applications, however, improvement is still necessary.

In the (M s -O,) plane, the results for nw.do not require the
measurement of -. Transition boundaries in the MR region are more accurate
in te (M - pln than in the (MS - ,Cw) plane. In Fig. 33(b), there
are two S R points lying in the CMR according to the former criterion
M2T = 1. But according to the new SMR-CMR criterion, there is only one CMR
data point lying below the transition line, at Ms = 3.47 and QoJ = 19.50.
Therefore the new criterion for SMR4-CMR transition agrees best with
experiment. There are also some discrepancies in the transition boundaries
between CMR and DMR. At low Mach numbers and high wedge angles M < 1.95
and C' > 420, there are several DMR points lying beyond the CMR-+DMR
transition line (M2K = 1.0) into the CIR region. On the other hand, there
is one CMR point just lying above the transition line in the DMR domain, at
MS = 5.5 and o' = 17.80. Generally, except for low Mach numbers and high
wedge angles, tAe CMR-DMR transition criterion is reasonable, though not
precise.

In some cases, the disagreement between experiments and the transition
boundary of CMR and DMR are due to experimental impreciseness through the
use of interferograms. An interferogram responds to changes in density
whereas a shadowgram responds to the second derivative of the density
changes. Thereby, a shock-wave-reflection configuration is much easier to
interpret in a shadowgram than in an interferogram, although it is true that
an interferogram provides more quantitative information. Consequently, it
is advisable to employ shadowgram near the transition region of CIR and DMR
to give more precise configurations for the classification of the type of
reflection.

As mentioned earlier, the transition of RR -41R should be compared in
the (Ms-)V) plane, whereas the SMR I -CMR and CMR4-*DMR transitions should be
compared in the (M5 - r') plane. If an accurate prediction of X can be
found in the future, then the (M - w  plane could be used throughout for
comparison of all trdnsition bounaries. Note that the (Ms - w') plane has
another disadvantage, beside the multi-valued portion near the RR+*MR
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boundary, that the transition boundary lines being too close together,
expecially at high Mach numbers, and it becomes difficult to determine if
experiment and analysis of the various domains are in good agreement. In
Fig. 33(t)), former SMR*-,CMR transition line approaches the NR line fur
Ms > 5. This means that the flow Mach number MI behind the incident shock
wave diminishes to nearly unity and the reflected shock occurs as a very
weak shock wave. Also in the same figure, it can be seen todt the CMR-*DMR
and the new additional SMR-CMR transition lines approach the NR and level
off at Ms > 8, thus narrowing the domains of SMN and CMR, and any comparison
in this range would be difficult.

It is evident from Fig. 32(a) to 33(b) that real-gas effects shift
every boundary line downwards in both the (M - r) ) and the (Ms - 0w)
planes. The equilibrium boundaries begin to drop Yrom their frozen-gas
values even at very low Mach numbers, due to vibrational excitation. The
divergence between the frozen and equilibrium boundaries becomes greater
with increasing Mach number. At higher Mach numbers, Ms > 5, the frozen
RR - MR boundary line levels off so that it is almost independent of the
incident shock Mach number. However, the equilibrium RR4-MR transition line
strongly depends on the incident shock Mach number due to real-gas effect.
Both the SMR+-*CMR and the CMR+-*DMR transition boundaries drop rapidly with
increasing Mach number in the case of equilibrium SF6. Thus, for
equilibrium SF6, the domains of SMR and CMR are diminished while the domains
of RR and DMR are enlarged. The behaviour of the boundary lines due to
real-gas effects is analogous to the results for gases with lower values of
specific heat ratio y as reported by Lee and Glass [25].

4.2 Persistence of Regular Reflection

Several previous experimental studies (Smith [7], Bleakney and Taub
[6], White [8], Kawamura and Saito [41], Henderson and Lazzi LIO]) have
observed that RR exists beyond the detachment criterion. This is referred
to as the persistence of RR or von Neumann paradox and the phenomenon has
not been clearly understood or explained. Recently, Shirouzu and Glass [16]
analysed the data of Ando and Glass [30] and Matsuo et al [42] in CO2 and
noted the same trend. Experimental results of Deschambault L26] in air show
that RR persists not only at low incident shock Mach numbers, but also at
extremely high Mach numbers.

Consider a transition map in the (Ms - n') plane (see Fig. 8). At theRR boundary of the MR domain, 7 has afinite value not equal to zero. Thus

0 = Ow + X has a greater value than rw at the boundary. On the contrary,
w is equivalent to ()w in the RR domain. Therefore, the RR'-+MR transition
boundary corresponds to two different lines, ie. q and nw + X, in the
(Ms - 0) plane. Consequently, a point lying between tese two lines in the
(Ms ) w) plane corresponds to two physical points, one in RR and the other
in MR. In order to avoid this multi-valued portion near the RR -+MR
boundary, the transition between RR and MR is best studied in the (Ms -

plane. The persistence of RR has also been found in the present study at
ow = 45' and low incident shock wave Mach number Ms = 1.52, 1.66, 2.07 and
2.11 in Fig. 33(a).

Henderson and Lozzi [10] tried to explain the anomaly as the apparent
persistence of the RR system is really due to a DMR system that has not
developed sufficiently to he observable as such. However, Ando [24]
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disagreed and remarked that the resolution of the interferograms (0.2 mm)
would enable the angle X of the range encountered in his experiments (1.50
to 2.50) to be clearly seen. Deschambault [26] showed that very small
triple-point trajectory angles of less than 10 (far smaller than those of
the nascent DMR) were observed. In the present work, the values of x less
than 10 were also observed. For example, the infinite-frinye interferogram
in Fig. 34 shows a double-Mach reflection with -x = 0.70 and part of the
first slipstream can be seen clearly as a white line along the wedge
surface. Deschambault [26] indicated that persistence in some cases, may
only be a limitation of the resolution of the experimental apparatus. He
reported one case where the reflection was classified as RR when the
incident shock wave was only 60% up the wedge, and a run under similar
initial conditions with the incident shock wave 80% past the wedge corner,
the reflection was a DMR. It becomes desirable to catch the incident shock
wave as far up the wedge as possible to observe fine details of the flow
field more clearly.

Hornung et al [23] conducted experiments in dissociating gases and both
the pseudo-steady and the steady flow experiments yielded results which
indicate that the equilibrium transition conditions apply. They showed that
the finite relaxation length was not sufficient enough to resolve the
discrepancy between the analytical and experimental transition angle from RR
to MR. They then suggested that viscous boundary layer effect could be used
to resolve the persistence of RR. Analytically, the boundary layer imposes
a negative displacement thickness and causes the displaced wedge to have a
larger inclination, although the wedge angle in front of the incident shock
wave is still equal to the actual wedge angle 0w (see Fig. 35). With the
displaced wedge being further away, the deflection through the reflected
shock necessary to direct the flow parallel to the displaced wall is
therefore less than that required in the inviscid flow. The displacement
angle Od thus formed enables RR to persist to lower wedge angles. In
response to the displacement effect, the angle made by the reflected shock
with the wedge, w' should decrease. Hornung et al [23] observed the
opposite behaviour of w' in their results. However, Shirouzu and Glass [16]
analysed the previous experiments in CO2 and air, and obtained results which

- support the viscous boundary-layer theory. More experiments are required
for further analysis of this problem, not only at the transition boundary
but around the transition reyion also to provide information on the
behaviour of some reflection quantities such as w' in RR and X in MR. At
present, an investigation of the problem of persistence of RR due to the
viscous boundary-layer effect in air is being done (Wheeler [43]).

4.3 Transition Boundary Between CMR and DMR

In the calculation of the transition boundary between CMR and DMR, the
location of the kink K is necessary in order to obtain the flow velocity
behind the reflected shock wave R with respect to the kink. An assumption
was made by Law and Glass [15] that the kink K has the same horizontal
velocity as the flow velocity behind the incident shock wave U1 . As a
result, the ratio 9*/L* (see Fig. 9a) is equal to the density ratio across
the incident shock wave irrespective of the wedge angle, that is

= p /P (4.1)
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Bazhenova et al L20] investigated the ratio 9*/L* experimentally and found
that this ratio for a given Macn number decreased and approached zero as the
wedge angle increased. Since the ratio 9*/L* vanished at the critical wedge
angle corresponding to the kRR- MR transition, as a result, it can be
concluded on physical grounds that the transition boundaries of SMR-*CMR and
CMR-*DMR should merge at the RR boundary [16]. The trend of 9*/L* is
plotted against wedge angle q for three Mach numbers in Fig. 36 using the
present experimental results. Note that the ratio 9*/L* does approach zero
as the wedge angle approaches the critical value at the RR boundary.

Some interesting points are found in the behaviour of the ratio 9*/L*.
Dashed lines are used to link up data points corresponding to the same Mach
number range. All three curves are seen to behave in a similar fashion. At
lower wedge angles, the ratio 9*/L* increases with ', and reaches a maximum
then decreases with further increase in n. and eventually drops sharply to
zero at very high O. It is seen that as N5 increases, the curves shift to
the left and the relative maximum value becomes smaller. Refer to Fig.
33(a), with the incident shock wave Mach number fixed at M = 4, all four
different types of reflection will occur in the sequence of SMR, CMR, OMR
and RR as the wedge angle is raised. With SMR and RR, 2* and 9*/L* are both
zero. If an experimental transition boundary line is drawn between SMR and
CMR in Fig. 33(a), SMR will just terminate at Ms  2.1 and r = 200, Ms Z
3.0 and = 80, and Ms = 4.0 and n w 20. Since the transition from SMR to
CMR is smooth, the value of .*/L* will begin at zero and increase gradually
to the value corresponding to a CMR. If one extrapolates the curves of M =
3.0 and Ms = 4.04 at the lower wedge angle side, the ratio 9*/L* will be
zero at (w = 70 and 1.50, respectively, which agree well with the
termination conditions of SMR on the transition map found above. Consider
the curve of M = 4.04, the ratio Z*/L* is zero as SMR terminates at Ow =

1.5'. The value of the ratio increases as the wedge angle is increased, and
reaches a maximum at q = 200. Then it decreases and vanishes at 0 = 400
which corresponds to wmere the termination of DMR and RR occurs. In
general, the pressure in states (4) and (5) behind the reflected shock R' is
larger than that in states (2) and (3) behind the reflected shock R (see
Fig. 6), as evident from the pressure histories taken by Bertrand L44],
Merritt [45] and Deschambault L26]. With the increase in wedge angle, the
reflected shock R' becomes more and more normal to the induced flow behind
the incident shock I. The pressure in states (4) and (5) become higher and
the second triple point T' is pushed further upstream and hence the ratio
R*/L* decreases.

Several experiments were conducted at high wedge angle near the RR
boundary in the CMR region. Refer to Fig. 33(a) and 33(b), at % = 450,
Ms = 1.81 and 1.91, DMR is observed in the proposed CMR domain. Two DMR are
found penetrating into the CMR regime at Ms 

= 1.94, 1 = 400 and M = 1.93,
0w = 420. Hence the present results support the postulation that the
transition lines meet at a point on the RR boundary. However, the MR
transition boundaries computed using the criteria suggested by Ben-Dor and
Glass [13] terminate at the RN boundary at two separate points. Further
analysis for the prediction of the location of the kink K at higher wedge
angle is required to modify the transition line between CMR and DMR as shown
approximately using the experimental data by the (lot-dash line extending to
the triple point P on the RR+-,MR boundary lines.
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4.4 Comparison of Analytical and Experimental Results of Physical
Quantities in Mach Reflection

Analytical results based on the frozen-gas model is distinct from the
equilibrium-gas model. By comparing the experimental results with the
frozen or equilibrium-gas model for certain flow properties, the validity of
each model can be justified. From a practical point of view, the chosen
properties should be measured accurately and easily, and it is important
that they are fundamental quantities which are not affected by other
assumptions used in the computations. The angle 6 between the incident and
reflected shock waves, and the angle w' between the reflected shock wave and
the wall or the triple-point trajectory path are chosen as the fundamental

*. quantities to serve this purpose (see Fig. 37).

In the present comparison, the experimental values are compared with
the analytical results for the same n' , instead of 0 used in previous
comparisons [24,2b]. In the three-shock theory, the effective wedge angle
e plays an important role. With a given value of Ow at a fixed Ms , the
directions of the reflected shock wave and the Mach stem are determined
together with the flow variables. In this calculation, the Mach stem at the
triple point is assumed perpendicular to the wedge surface and a value of x
is predicted. The effective wedge angle 04 is related to x by 04 = + x.
This means that 0 is a function of 0w and the value of X is affectedby the
orientation of the Mach stem. The assumption of a perpendicular Mach stem
to the wedge surface is satisfied precisely at the foot of the Mach stem to
meet the necessary boundary condition that flows on both sides of the Mach
stem must be parallel to the wedge surface with an inviscid flow. It is
also valid at the triple point if the Mach stem is perfectly straight.
However, experimental results show that the Mach stem generally is curved.
Shirouzu and Glass L16i tried to take into account the effect of the curved
Mach stem in the prediction of y for several gases, but the discrepancies
are not minimized. It is important to recognize that comparison of
experimental results and analytical results which include the assumption of
a straight Mach stem are no longer accurate if they are based on the same
value of Ow. Therefore, the experimental data should be compared with
analysis based on the same value of 04.

Besides the comparison of the fundamental angles 6 and w', the
experimental first triple-point trajectory angle x and second triple-point
trajectory angle X' are also compared with analysis. In the following, the
angles, 5, w'and x' , are compared twice with and 0 as the parameter,
while the angle x is compared with % as the parameter for both the frozen
and equilibrium-gas models in the range of I < Ms < 5.5.

It is important to note that the physical quantities obtained in the
present work are measured from photographs. Consequently, there are errors
due to measurement and magnification of the prints. Errors involved in
measurements are +1.5' for 6 and w', and t1' for X and x'. A line from the
reflection point P or the first triple point T, which is tangent to the
reflected shock R, needs to be drawn before the angles 6 and w' can be
measured (see Fig. 37). Unless region (2) is supersonic relative to the
reflection point P or the first triple point T, or region (2) is fairly
uniform, the reflected shock is straight, otherwise the reflected shock R
curves continuously till it meets the incident shock wave I. This makes it
difficult to locate the tangent line to R, thus causing the error of
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measurement in 6 and w' nigher When 2' is used as the parameter for
wwcomparison, the numerical results are based on the measured q' and are

iterated within 0.1' of those values.

Table 3 presents the measured experimental data of6, ', y and 2"
(01 = 0 + X'). The frozen and equilibrium-gas analytical results at fixe
O)' are also given. Note thdt the calculated analytical wedge angle o is
different from the experimental v, and it can he obtained hy wc= 0w -

Xcal , where Xcal is the calculated analytical value of x. For example, in
experiiment no. 118, both the experimiiental and analytical results have the
same ' 45.7' .  The experimental value of 0= 4b, whereas the
equilibrium analysis has wclw 45.7' - 1.70 = 44', and the frozen analysis
has Owcal = 4b.70 - 2.90 .28'.

A numerical comparison of the physical quantities in MR between
experimental and analytical results at fixed 0w -is tabulated in Table 4.
Note that the analytical values of X are different from the experimental
ones, and so are the values of '. For example, in experiment no. 118, both
the experimental and analyti cal data have n.= 450. The experimentalj( 45' The experimental

S0.70, n w  45.7, whereas the equilibrium analysis has - = 1.50,
= 46.50 and the frozen analysis has X = 2.20 and ()w 47.20.

4.4.1 Angle Between Incident and Reflected Shock Waves 6

The comparison of 6 -is essentially equivalent to the comparison of w,
if an experimental result is compared with a calculated result which has the
same value of n' since they are related byw

6 = 900 + w (4.2)

as shown in Fig. 37. Nevertheless, the comparison of 6 has some advantages
over w' , for 6 is a monotonic function of C) and O' at fixed Ms, whereas t'
has a minimum point at a certain (w and nw Yor some part of the Mach nuiber
range [25]. Moreover, 6 is used as a new criterion for the transition
between SMR and CMR, it is necessary to check the agreement between measured
and calculated results of 6.

Figure 38 shows the experimental results for C)' plotted in the (Ms -

plane. The number beside each experimental point indicates the measured
value of 0,. The line that extends above or below a data point shows the
discrepancy of the analytical value from the experimental result. The
calculated results are shown in this figure for a vibrational equilibrium
gas for each fixed 1)' in sol id lines and are used only as a guide to

w
illustrate the behaviour of 6 in relation to M . It can be seen that the
maximum discrepancy found is less than 2. . hus, the agreement between
the experimental results and equilibrium-gas calculations is excellent. The
same good agreement is expected in the comparison of the angle (,)' since both
6 and w' are fundamental quantities.

The plot in Figure 39 uses r) instead of ()' for comparison. The
numerical results are shown for a vibrational equilibrium gas for each fixed
n as a sol id line. The experimental results at a fixed wedge Inge
supposedly should fall on top of the corresponding 0w analytical line. The
agreement is not as good as obtained in Fig. 38. in most cases, the
experimental 6 is larger than the calculated result at lower 'w. At
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high nw the numerical lines are closer to one another and d6/d w is small.
Therefore any discrepany at higher wedge angles is not easily seen in the
figure. The disagreement shown in this plot illustrates the additional
errors caused by x when using r rather than e\.

Figure 40 compares experimental results with the frozen-gas analysis in
'\. The values of w\ corresponding to each data point are identical to

those numbered in Fig. 38 and are not repeated in this plot. It is seen
that the numerical lines are all shifted lower to the right from the
vibrational equilibrium case. Thus, for a given Mach number and 8, 6 will
have a smaller value with frozen-gas analysis than with vibrational

% equilibrium analysis. For example, at Ms = 5.0 and = 400, 6 = 1500 with
equilibrium-gas analysis, while 6 z 126.70 according to frozen-gas
analysis. It is important to realize that because of such significant
difference between the frozen and equilibrium-gas calculations, it becomes
possible to conclude whether the frozen or equilibrium-gas model agrees best
with experiments. A similar trend of the constant (1, numerical lines is
seen in Fig. 41. Note that the agreement of the frozen-gas results with the
experiments is poor in both o' and Ow comparisons. Because of the large
disagreement with the frozen-gas model, the discrepancy lines are not drawn
here.

Since 6 > 900 is the additional necessary condition beside M2T > 1 for
the transition from SMR to CMR, it is essential to check the agreement
between the measured values of 6 and the type of reflection that occurs. A
plot of the experimental values of 8 with incident shock wave Mach number M
for the various types of reflections is shown in Fig. 42. There are two SM
points at nw = 420, Ms  1.52 and I.b4 with 6 = 90.80, and another two SMR
points at ')w = 20", Ms = 2.08 and 2.11 which have 6 of 90.10 and 90.6',
respectively, lie above the 8 =90' line. Any SMR points in the 6 > 900
region is not counterevidence of the new transition condition since it is

%only a necessary condition for the transition and not a sufficient
condition. On the other hand, all experimental CMR but one at rw = 40, M =
3.47 and F = 8/' lies below the 6 = 90' line. Note that a discrepancy of 30
is considered of the similar magnitude as an error in measurement. This
means that the experimental results satisfy the condition 6 > 900 and

. provide good evidence that this is a necessary condition. It is worth
mentioning that the results presented in Fig. 42 do not involve any
assumptions or calculations. They illustrate only the experimental relation
between the transition from SMR to CMR and the angle 6. Therefore this is a
direct comparison between the new necessary condition and the available
experimental data.

4.4.2 Angle Between Reflected Shock Wave and Triple-point Trajectory w'

The angle )' is sometimes called the reflection angle as shown in Fig.
37 and is given for both RR and MR as

r - - ,(4.3)

where t is the incident flow angle to the reflected shock wave, and -) is
the flow deflection angle behind the incident shock wave (see Fig. 3a, 4).
Gvozdeva et al [21] calculated the reflection angle w' as a function of the
incident shock velocity Uo, and the angle of incidence tO for several gases.
They discovered that the increasing of incident shock velocity leads to the
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decrease of the reflection angle and its sl iding into the negative area
under certain conditions. Recently, Lee and Glass [25] studied the
variation of ,)' and concluded that it is always positive for RR, SMR and
CMR. The shift of o' from a positive to a negative value with higher Mach
numher occurs only in the i)MR domain for imperfect air and gases with low

Y.

Figure 43 shows the (M - o' ) plot with ')w as the paraieter. The
measured value of ') is inlicated beside each experimental point and the
sol id 1 ines are the Wcalculated )' for equl ibrium SF6 . The discrepancy of
analytical value from experimentar value -is shown by the extended vertical
line from the data point. No more than a discrepancy of 3.6' is found in
this plot. Thereby showing that the experiments agree very well with the
equilibrium-gas results.

A similar plot is given in Fig. 44 with 0 w used as the comparing
parameter. Each solid line corresponds to a fixed experimental wedge angle
for an equilibrium gas. In general, the experimental data of high wedge
angles lie slightly above the analytical line; whereas for low wedge angles,
experimental results lie under the analytical line. The maximum discrepancy

obtained by using () rather than 0' is 110. It seems from the figure that
wo' for high -w agree well with numerical lines. However, numerical lines
are so close to one another that d(w'/dnw is small and the discrepancy is
not obvious. It is evident from thie figure that W' is a decreasing function

of M s. At low MS, the numerical lines are close to vertical which implies
that is a very sensitive function of Ms . Thus a small error in M s may
cause a large discrepancy in t' at low Ms .

As discussed earlier, nw is not an adequate parameter to be used in a
comparison until Y can be predicted accurately. A comparison in Fig. 44
should use o' as the parameter instead of Cw [46]. As an interpretation of
an experihjiental point at M 5.5 and 0 w = 4  (' = U.O°) , for example,
should not I)e compared witJ numerical result which has )W of 40, Dut with
thdt which has ,,' of U. 0 . The discrepancy for the point is not A) 110 ,

but Arw 20. When comparing the results in this way, -it cannot be
concluded absolutely that the discrepancy is large at low (-, and small at
high -,w" However, the discrepancy of A- - 20 can be read at low q since
dw,'/ d is large, but becomes difficuWlt at high qw This is one of the
reasons why has advantage over w' in a comparison. The same method of
comparison can he applied to in Fig. 39.

It is seen in both Figs. 43 and 44 that at higher MS, ' shifts into
the negative region. The higher the wedge angle is, the sooner is the
shift. At low M the value of .,' is smaller for higher or )' After0 w w
the shift of ,,, into the negative region, the high w or q) numerical lines
begin to merge and cross over. Hence ,' has a minlmum va ue at certain qw

or f' for some range of M That is, for d given MS, there exist two values
of or 0' which have t4e same value of Figure 45 and 46 show the (Ms
o,, plots for a frozen-gYas analysis using "w and {w as parameter,
respectively. The experimental v' values are not marked in Fig. 4b but
they are identical to those shown in Fig. 43. Note that the numerical lines
in both figures are shifted up and to the right fromi the equilibrium-gas
results. The reflection angle ,,' stays always positive and no cross-over of
the nuerical lines is observed with 'I in Fig. 4b. The numierical lines in

Fig. 46 all lie in the positive region but merging and crossing over of
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the lines is observed with Ow as parameter. There are many experimental
data in the negative w' region, however, no frozen-gas analytical line
exists in the negative w' region. Thereby, the frozen-gas analysis gives
poor agreement with experiments and the discrepancy lines are therefore not
indicated here.

4.4.3 First Triple-Point-Trajectory Angle X

When applying the three-shock theory to a MR it is necessary to give a
value of x as an initial condition in order that the system of equations be
closed. Law and Glass [15] proposed an empirical method for predicting the
value of X based on experimental observations that the Mach stem is straight
and normal to the wedge surface, and introduced an additional independent
geometrical relation

03 = 900 - X (4.4)

where is the incident flow angle to the Mach stem (see Fig. 4). At Q# =
0 , X as its maximum value for a fixed Ms . if MS is fixed, X.i a
decreasing function with Ow increasing and approaches zero at the critical

wedge angle for the transition from MR to RR. The plot of X as a function
of Ms, with the actual wedge angle 0 w as a parameter for equilibrium SF6 is
shown in Fig. 47. For a given wedge angle Ow, X is a decreasing function
with increasing Mach number M5, except for high 0 at low M . With Ow > 370
and Ms > 2.0, the value of X becomes almost constant over ihe entire region
of MS , implying that X is a simple function of 0w. The experimental points
are also plotted in the figure. The agreement between the analytical
results and experiments is good in general , with discrepancies of the same
order of magnitude as the error in measurement. However, the experimental
points of 0 = 100, 200 and 300 have the same trend as the higher 0w results
that they level off and become independent of the Mach number M The
maximum discrepancy found in X is 3.40 at M = 3.76 and ow = 20g. The
relation between the angles 6, w' and X is given sby

6 + W, = 900 + Ow + x (4.5)

For a fixed Ow the following applies

A6 + Aw' = Ax (4.6)

Consider the experimental point at Ms = 3.76 and ®w = 200. The
differences between the analytical results from the experimental results are
A6 = -5.4°  (Fig. 39), Aw' = +2.0' (Fig. 44) and AX = -3.4' (Fig. 47). This
illustrates the point that if a discrepancy exists in X for a data point,
each of the (Ms - 6) and (M - w' ) plots will not display the same
discrepancy, but their sum wiil. In the above example, the (M - 6) plot
shows a larger discrepancy in 6 than in x, while the (Ms - ') p~ot shows a
smaller discrepancy in w' than in X.

Figure 48 shows the experimental data in the (Ms - x) plot with 0w as
the parameter for the frozen-gas analysis. Note that the analytical lines
are shifted up from the equilibrium values and X becomes nearly independent
of MS at high Mach numbers, even for low 0 . In all cases, the analysis
gives a much larger value than the experimental value. Therefore there is
poor agreement between the frozen-gas analysis and the experiments.
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As described in Section 4.4, experimentally, the Mach stem at the
triple point is not perpendicular to the wedge surface because it has
curvature. This discrepancy affects the analytical three-shock theory
solutions, especially the value of x. Besides, the bow shock wave has an
effect on the position of the triple point. The reflected shock wave is the
result of two processes; one is a reflected shock wave emanating from the
triple point and the other is the bow shock wave caused by the

. flow-deflection process of the flow induced by the incident shock wave over
| the wedge corner [13]. In the three-shock theory, the interaction of these

two processes has not been taken into account. At low Mach numbers or wedge
angles, the reflected shock wave from the triple point becomes weaker more
rapidly than the bow shock wave. Hence, the position of the entire
reflected shock wave is governed by the bow shock wave. In the limit when
the bow shock is a Mach wave, the intersection point of the bow shock
wave and the incident shock wave is at rwN' [16]. Thus at low Ms and small
r.w, the intersection point of the extension of the bow shock wave and the
incident shock wave is closer to a point where it has n. This results in
a smaller value of X than that is given by the three-shock theory.
Therefore a better method for the prediction of y which takes into account
the curvature of the Mach stem and the effects of the bow shock wave is
necessary.

4.4.4 Second Triple-Point-Trajectory Angle x'

The best available analytical method to date for the prediction of y'
wa- developed by Ben-Dor [11]. He assumed in the analysis that the second
triple point T' with respect to the first triple point T, moved with the
same horizontal velocity as the induced flow behind the incident shock wave
I and deduced an empirical relation based on an approximation for the
relative motion of the second triple point as

o= 90 - r', - tan -1  , 1]__ _ _ _ _ _ (4.7)w cotto" -no/ n1 cot(1t - 7o - I

This method of predicting ,' is applicable for a DMR as well as for a
CMR in which X' is defined as the kink trajectory angle.

Unl ike the angles ' and , the comparison of y' based on the same
value of rw is affected by the calculated wedge angle n wcI since x' has to
De measured from the wedge surface. From Section .4.3, it has been
described that the present method of predicting y is not accurate. In order
to obtain the same as the experiment, the calculated solution will giveW
values of wc aand Ycal which are different from the measured 'w and y.
Consequently, if the value of Ycal is compared with the measured )' from
experiment, effectively, this means that the comparison is done on two
different wedge angles. To avoid this ambiguity, the comparison should be
done on the second confluence angle ", which is measured from the wedge
base instead of the wedge surface and is defined as

" = ow +  (4.8)
T s

Figure 49 -hows the (M w) plot with ()w as the parameter for
uquilibrium-gas analysis. The experimental data are shown with their
measured Q' indicated also. As revealed by the solid lines, (" is generally
a decreasing function with increasing Mach numbers and decreasing
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except at high Mach numbers and )w where a slight increase in 0w is
observed, and n" becomes nearly independent at high Mach numbers. Note the
large discrepancies of the analytical result from the experimental result at
relatively low Mach numbers for a set of fixed wedge angle experiment. The
analytical qw are much larger than the measured value at lower Mach
numbers.

The disagreement is due to the assumption that the distance 1* between
the two triple points T and T' remains finite (see Fig. 9a). However, the
length ,z* should decrease from a certain CMR value with decreasing Ms and
eventually when SMR occurs, * = 0. That is, experimentally, the second
triple point T' approaches and merges with the first triple point T with
-*/L* = 0, x'= X and ' ; = w'. This will be discussed later in more detail.
The agreement improves significantly as M is increased. Thus it can be
concluded that the prediction of X' works weal for strong CMR and DMR, and
the experiments agree well with the equilibrium-gas results.

Figure 50 shows a (M, x) plot using ow for the equilibrium-gas
model. It can be seen that is a decreasing function with increasing Mach
number and wedge angle. At high wedge angles, ow = 370, 40 0 and 420, the
values of x' are shown as predicted by the analysis that they decrease with
increasing Mach number and eventually equal to zero.

The discrepancies in this figure can be due to two causes. One is that
analytical solution does not meet the requirement that Z*/L* approach zero
as the Mach number decreases. The other is that even though 2*/L*
approaches zero is taken into account, and x' approaches x, x' still cannot
be predicted accurately since x itself is not well known.

The (Ms - 0w) plot using O as parameter and the (Ms - x') plot using
ow for the frozen-gas model are shown in Fig. 51 and 52, respectively. In
both of these figures, the frozen analytical lines are seen to be all
shifted up from their equilibrium values. The measured value of (D for each
data point is identical to that given in Fig. 49 and is not repeated in Fig.
51. Since the disagreement between experiments and frozen-gas analysis is
large, the discrepancy lines are not drawn in Fig. 51. In the (Ms - x')
plot of Fig. 52, the frozen gas analytical results are all too much larger

* than the measured experimental values and the agreement is poor.

The other angle that is worth discussing is the difference between x
and X, that is (X' - x), since it indicates the position of the second
triple point relative to the first triple point. A [Ms - ( -)] plot of
the experimental results is shown for five wedge angles (\ = 420, 370, 200,
100 and 40 in Fig. 53. A dashed line is used to approximate the profile of
(X - X) for each fixed wedge angle. As SMR just terminates (e.g. at Qw =
420 and Ms. = 1.55), (X' - X) = 0, and w' is positive indicating that the 'two
triple points merge as one at the first triple point. When CMR and DMR
begin to form, the value of (' - x) increases with Mach number Ms. It then
reaches a maximum and decreases in value. In the positive region of
(x' -), w'is positive as shown in Fig. 54(a). As Ms increases further,
(' - y) crosses zero and goes into the negative region. In this case of
(' - x ) = 0, w is zero as shown in Fig. 54b meaning that the second
triple point lies at a finite distance away from the first triple point and
both have the same trajectory direction. It is seen in Fig. 53 that the
higher the wedge angle, the sooner (x' - y) goes negative. When (' - X)
goes negative, w' is also negative and the reflection pattern is illustrated
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in Fig. 54c. At higher wedge angle and Mach number, x' = 0, (X' - X) -x
and w' is negative as shown in Fig. 54d. Lee and Glass [25] studied this
last case analytically for a perfect gas with y = 1.093 and reported that
X' = 0 may only be hypothetical and it does not exist in practice. However,
in the present study, the experimental results confirmed the equilibrium-
gas analysis that the case of y' = 0 does occur. This means that the second
triple point T' attaches to the wedge surface and the reflected shock wave R
strikes the wedge surface and is reflected like an RR. A shadowgram of a
DMR with x'= 0 taken at M= 7.96 and 0w= 370 is shown in Fig. 55. Note
the small triangular region bounded by the Mach stem, the reflected shock
wave and the wedge surface. The second reflected shock wave is lying low on
the wedge surface and terminates at the corner as an attached straight bow
shock wave showing that the state behind the second reflected shock wave is
supersonic. Consequently, this pattern of DMR is different from the other
three patterns shown in Fig. 54(a) to (c). A DMR with x' = 0 has two
confluence points, two reflected shock waves, but only one Mach stem, one
slipstream and the region behind the second reflected shock wave is
supersonic instead of subsonic. Figure 56 shows an interferogram of a DMR
with p'c 0 at Ms = 4.20, ()w = 370. The second slipstream is clearly seen in
this picture.

The behaviour of X' relative to x can be explained by the following
physical interpretation. For a given wedge angle, when SMR just
terminates, the kink K is at the first triple point T and (x' - X) = 0.
With a slight increase in M , CMR occurs. Now, 6 is slightly larger than
900, the kink K moves to a finite distance on the reflected shock R away
from the first triple point T, and in such circumstances (X' - X) > 0. CMR
continues to occur with further increase in Ms, K moves further away from T,
the value of 5 gets larger and (x' - x) also increases slightly. At the
onset of DMR, the portion of the reflected shock R between T and K has to
bend further down, ie. the angle 6 has to increase, to have greater
density change across the kink. When the densities p > P2 as shown in Fig.
9(b) become large enough, DMR occurs. Because the reflected shock R drops
(6 increases) and the pressure in regions (4) and (b) pushes the second
triple point T' upstream, )y' is getting closer to X and (X' - x) decreases.
If Ms is increased further, y' will overlap x and (x' - X) = 0 again,
however, in this circumstance, T and T' are at a distance apart and not
merged at a point. At higher Ms, the flow in region (1) is getting stronger
and stronger, driving the second reflected shock R' down closer to wedge
surface and the pressure in regions (4) and (5) pushing the second triple
point T' further upstream, thus making (x' - X) < 0. For certain wedge
angles, it is possible to have the flow in region (1) be so strong that it
presses T' to the wedge surface and X' = 0 or (x' -)

4.5 Comparison of Analytical and Experimental Results of Physical
Quantities in Regular Reflection

For regular reflection, there is no need for the prediction of x,
because x = 0 and =)' = nw, thus only the comparison of the angles 6 and w'
with nw as a parameter for frozen and equilibrium-gas analyses is necessary.
In fact, a comparison of 6 is essentially equivalent to a comparison of w'
since the two are related by

+ ' = 90° + Ow  (4.9)
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as seen from Fig. 31. Comparisons of both angles are shown here. Table 5
presents the measured and analytical results of and (j' in RR.

A plot of (M -) plane with the experimental results is shown in Fig.
57. The solid _ines are the calculated analytical ow for equilibrium SF6 .
The dashed line is tne transition boundary between RR and MR below which no
analytical solution of 5 in RR exists. The angle 6 is seen as an increasing
function with increasing Mach number and wedge angle, apart from the low
Mach number range at n = 450. Except for a bit of scattering of data point
at nw = 400 and Ms about 4.1, the agreement between experiment and
equilibrium-gas analysis is very good. It is seen that for n = 450, as the
Mach number decreases from Ms = 2.38, the experimental 6 drop more gradually
than the analytical values. There are four RR persistent data points shown
in the range of 1.5 < M < 1.7 of the same wedge angle. Note that these
persistent RR points exist in the range where no two-shock theory solution
can be obtained.

Figure 58 shows a plot of the experimental results in the (Ms - ')

plane with the n) equilibrium analytical lines drawn in solid. The dashed
line is the transition boundary of RR and MR. On the contrary, here the
angle w' is a decreasing function with increasing Mach number and wedge
angle, besides the low Mach number range for n = 45' where an increase in
U) is observed. The same good agreement is found here between experiments
and equilibrium gas analytical results. At higher Mach numbers, the
analytical lines of w' are getting closer and begin to level off. It is
expected that with ever increasing Mach number or raising the wedge angle

closer to 900, the values of 5 and (o' will approach their limits, and the
reflected shock will be seen lying closer and closer to the wedge surface.
For Ms- ', the pressure in region (1) becomes so large that it forces the
reflected shock R to lie on the surface of the wedge in steady flow as well
as nonstationary flow, thus L'+O. This illustrates the fact that the
reflection angle -' is always positive and can be zero for RR, whereas W' is
positive for all gases and can be zero or even negative for some low y gases
in the case of MR [25].

Consider the transition boundary map for frozen SF6 in Fig. 32(a). All
the experimental RR results lie well inside the MR domain. Therefore no
two-shock theory solution for frozen-gas case can be obtained and no
agreement between experiments and the frozen-gas analysis is seen.

It can be observed from both Figs. 57 and 58 that the behaviour of the
analytical 5 and )' for "w = 450 at Ms < 1.4 do not have the same trends as
in the high M range. Refer to Fig. 3 for the flow system and consider 0
is fixed at 40 (#( also). The flow deflection angle 0 and the flow
velocity U in region (1) are both increasing functions of LF or M If M
and o are given, n 1 and U can be determined. Now, the reflecteT shock R
needs to be positioned so tat the flow U is deflected by an angle 0 = 0
across the reflected shock R and is parallel to the wall. At nw = 4 ° an
Ms < 1.4, increasing Ms will not be able to set up U1 large enough to meet

the boundary condition if 4 o remains constant. To obtain 0 2 , one can either
fix (1 and change U1 or fix U1 and change ,. However, with Ms and 40 being
given, U1 is fixed and so the angle ct has to be increased. R becomes more
normal to U1 and 02 can now be achieved. As the value of $1 increases,
physically, R propagates further away from the wedge surface, thus decreases
,i and increases ,)1 .
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At M > 2.2 for the same 1w= 450, U1 increases at a much faster rate
than it does at low Ms . U1 is getting large and R needs to be more tangent
to it. As the wave angle 4, decreases, R lies closer to the wall and as a
result increases 6 and decreases w'.

4.6 Pressure Behind Second Triple Point

Three-shock theory has been used to analyze flows around the vicinity
of the first triple point and for the prediction of the transition lines
between RR and MR. Ben-Dor [11] was the first to analyze the second
triple-point system and set up an analytical formulation using three-shock
theory and by applying an analogy with the first triple-point system as
shown in Fig. 59. However, no known publication has ever shown any
numerical results for the physical quantities at the second triple-point
system. It is well-known from the transition maps that the most probable
type of Mach reflection which will occur at high M when RR terminates is a
DMR, since the RR*-+DMR boundary is the dominant fine, especially for y <
1.4, that covers a large range of Mach numbers in the RR-+MR region. It is
known from experiments that the flow regions behind the first triple point T
are uniform, thus the assumption of two uniform states behind T in the
analysis of the first triple-point system is well justified. However, the
flow regions behind the second triple point T' are not uniform owing to the
fact that the second Mach stein M' is nonuniform (for example, see Figures 26
and 28). In order to analyze the second triple-point system numerically,
regions (4) and (5) behind T' have to be assumed as two uniform states. Of
course, if a numerical solution of the Euler equations is obtained for the
entire flow, such an assumption is not necessary. Since the growth of
second Mach stem M' contradicts the assumption of uniform states behind T',
tnerefore the results can only be applied in the vicinity of the second
triple point. A method of calculating the second triple point flow fields
is given in Appendix A.

Since RR occurs at higher wedge angles than MR for any given flow Mach
number in region (0), after the passage of incident I ana reflected R
shocks, P2 acquires a high pressure. In MR the highest pressure would be
achieved by a DMR since the flow in region (2) becomes supersonic relative
to the second triple point T' and a shock wave (second Mach stem M') is
required to turn the flow subsonically. Behind the second triple point T',
the pressures are raised to P4 and P5. Hence, it is only necessary to
compare the highest pressure attained by RR and DMR, and determine which
type of reflection would give the highest pressure.

The highest pressure in RR occurs behind the reflected bow shock R at
point E immediately behind the reflection point P as illustrated in Fig.
60(a). In DMR the highest pressure occurs in region F immediately behind
the second Mach stem M' and the primary slipstream S as illustrated in Fig.
60(b). Two-shock theory can be used to calculate pressure P2 in the
vicinity of the reflection point P in RR, thus the highest pressure at E
takes the value of P2. However, three-shock theory can only be used to
calculate pressures around the two triple points and not elsewhere. Due to
this limitation, only the pressure behind the second triple point in DMR,
shown as point G in Fig. 60(b), can be compared with the highest pressure in
RR. Although such comparison is not ideal, it does provide a general trend
and an approximation of the highest pressure in these two types of
reflection. The maximum pressure in DMR occurs on the wedge surface in
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r~gion F as indicated by the numerical results of Glaz et al [631, Booen and
Needham [64], and Fry et al [65]. The location of maximum pressure on the
wedge surface is also consistent with the experimental density contours from
the present work.

To study the behaviour of the pressure behind T' in RR and DMR a series
of computational runs at a fixed Mach number of M = 6 (M = 6 is chosen
arbitrarily as it cuts across the RR-ADMR transition Roundary line; other Ms
can also be used instead) over a wide range of 0w was done in perfect Ar to
avoid any real-gas effects. The results are plotted in Fig. 61. When

W90 P2 approaches the value given by the relation for a normal shock
wave reflection P2 t 

= ( a + 2 - P0 1)/(1 + a P01 ) where a = (y+l)/(y-1) and
P01 is the strength of the incident shock I. As % is decreased from 900,
P2 decreases and reaches a minimum value before it increases to much higher
values near the transition angle. Such behaviour can be explained as
follows: since the incident shock Mach number is fixed, the velocity
component normal to the incident shock I (with respect to the reflection
point P) and the pressure P are constant regardless of Ow . As 0w is
decreased, the flow across the incident shock is deflected to a lesser
extent and U, gets smaller. To satisfy the boundary condition that the flow
behind the reflected shock must be parallel to the wall, ie. 02 = 01, the
wave angle J increases and causes the flow U1 to become more normal to the
reflected shock. The pressure P2 depends on Un - the normal component of U1
to the reflected shock. Decreasing U will ' reduce Un, whereas increasingthe wave angle will increase the value of Un With U decreasing and g1

increasing, a minimum value of Un and P would be obtained.

The highest pressure of P2 in the RR domain is obtained at the
transition angle (point X in Fig. 61). Note that this P2 is even higher
than the head-on collision value. With a slight decrease of QCw at the
transition angle, DMR begins to form. The pressure P. and P5 behind T'
right after transition (point Y in Fig. 61) is slightly higher than P2 in RR
just before transition. However, that is not always the case. The
pressure P2 in RR and P4 and P. at point G in DMR (see Fig. 60) at the
transition angles for 4 < M 10 are presented in Table 6. It is shown
that at lower M5 , P2 in RR is larger than P4 and P5 in DMR; at higher Ms, P4
and P5 in DMR become greater than P2 in RR. Once DMR is formed, P and P
are decreasing functions of ( w, as shown in Fig. 61. It is surprising that
the flow problem is non-linear, yet P,, and P5 in DMR behave almost linearly
with ,0w* The bow shock which terminates on the shock-tube wall near the
wedge corner C moves outward at a very much slower rate than the incident
shock I. By assuming that the bow shock wave near the corner C is
stationary, the stagnation pressure at the corner C can be computed and the
results are also presented in Table 6. Although the stagnation pressure at
corner C is high, its effects are localized. However, the pressure P2 in
RR, and the pressures P4 and P, in DMR propagate up the wedge along with the
incident shock wave. Therefore, the compressive pressure they exert is not
a local effect and becomes of major interest. There is a certain range of
pressure in which a required pressure can be obtained with more than one 0w
at point E in RR or at point G in DMR, e.g., point A and B in the RR domain,
and point C in the DMR domain all give the same pressure for three different

OW.

The following conclusions can be made. Although at lower Ms the
pressures P. and P, in DMR are lower than P2 in RR, the highest pressure in
region F is higher than P and P,) at point G as indicated by experimental
and numerical results. Therefore, the highest pressure in DMR can be higher
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than the highest pressure in RR. At higher MS, P4 and P, at point G in
DMR are already higher than P in RR, thus the highest pressure in region F
in DMR is even higher than the h.ghest pressure in RR. It can be stated
with confidence that with a strong incident shock wave (Ms > 5 for y = 5/3)
the highest pressure is achievable by a DMR. With weaker incident shock
wave (Ms < 5 for y = 5/3) it can only be surmised that the highest pressure
can be attained by a DMR as well. Data from complete numerical simulations
will provide better answers. Due to the uncertainty of how good the
analysis of the second triple-point system predicts the flow properties
behind T', comparisons of the experimental pressure history of DMR in air
[26] with the numerical simulation by Glaz et al [63] and with the numerical
results of this work are given by Hu and Shirouzu [31]. From a practical
point of view more field testing and shock tube experiments should be
directed at studying the transition regime between RR and L)MN to verify the
numerical results obtained from the computer program developed during the
course of this work.

4.7 Application of Reflections in Pseudo-Stationary Flow to the
Interaction of Spherical Blast Waves with Plana Sur7fa&e ..

With the knowledge of blast wave flows and oblique-shock-wave
reflections gained in recent years, it is now possible to trace the path of
a spherical blast wave that is detonated in free air on a transition map in
the (Ms - 0w) plane. It is true that in an explosion, the flow field near
the charge is very complicated and very difficult to analyze. But when the
blast wave front outruns the fireball and starts to interact with the ground
surface, the flow can be reasonably treated as two-dimensional at any
instant of time. Hence, the analysis used here for pseudo-stationary flow
can be applied to the interaction of a blast wave with a planar surface. It
becomes possible to predict the type of reflection, the incident shock Mach
number and the corresponding wedge angle that a target at a known distance
away from the explosion may encounter. This information is of great value
to researchers and experimenters in the field.

The flow field associated with a free-air explosion is shown in Fig.
62. To demonstrate how the study of oblique-shock-wave reflection can be
applied to the interaction of a spherical blast wave with a planar surface,
a typical charge of TNT detonated in free air off a perfect reflecting
planar surface in a standard atmosphere of 760 torr (101.33 kPa) and 288 K
is considered. Sadek and Gottlieb [66] obtained an equation to describe the
spherical blast-wave front in a surface explosion for a 1 kg TNT. Their
results were reduced to the case of a I kg TNT height-of-burst (HOB)
explosion using Sach's scaling laws with a geometric factor of 2 for a
perfect reflecting surface. The scaled equation would then give the shock
radius r from the charge C as a function of the shock arrival time ts . For
a given HOB h, the ground range x and the corresponding wedge angle o(f are
related geometrically with the radial distance r in the case of RR.
However, in the case of MR, the computation of the ground range x and the
corresponding wedge angle ( w are complicated by the introduction of the
first-triple-point trajectery. Since the Mach stem M usually occurs bulged
out in real -,plosions or large-scale field-tests, the ground range x is
simply estimated by assurning that the Mach stem M is an arc of a circle with
the radius being the distance between zero ground range and the first triple
point T, which is shown (s rM in Fig. 62(b). Details of the method of
calculating tne blast-wave-trajectory pdth are given in Appendix A. Since
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the spherical-blast-wave flow can be treated as two-dimensional at any
instant of time, the merging of the two triple points at the RR++DMR
transition boundary applies, and there exists a blast-wave-trajectory path
which crosses the point where all three transition lines meet on the
transition map.

The computed results of the blast-wave-front trajectory path for
various HOB cases are presented graphically in Fig. 63 on the transition map
.n the (M. - Ow) plane. Contours of ground range x and height of the firsttriple point YT are also plotted. Height of burst h and ground range x in

the figure are scaled to the weight of the charge W and the ambient pressure
PO by introducing a non-dimensionalized scaling factor of (W/Wo . Po/P)- 1 / 3

where Wo and Po are taken as 1 kg and 1 atm, respectively. Height of the
first triple point YT is also shown as a fraction of the HOB h.

Assume that a charge of 1 kg TNT is detonated at a HOB of I m with the
a7"hient pressure being 1 atm. When the blast wave front just hits the
planar surface directly under the charge, x = 0 m, Ow = 900 and Ms = 4.4.
As the blast wave front propagates outward further, the incident shock wave
collides with and is reflected off the planar surface resulting in regular
reflection RR, which occurs up to a ground range of x = 0.82 m and Ms
diminishes to 3.5. When DMR just occurs, the height of the first triple
point YT is zero at the transition line and DMR continues in the range of
0.82 m < x < 1.19 m. At the transition point from DMR to CMR, Ms decreases
to 2.9, YT increases to 0.022 m, and CMR occurs in the ground range of 1.19
in < x < 1.9 m. At the termination of CMR, Ms drops to 2.3, YT grows to

L almost 0.1 rm, and SMR begins to form at a ground range x > 1.9 m.

With a given charge weight W, ambient pressure P, HOB h and ground
range x, one can read off from Fig. 63, Ms , YT and the type of
reflection that is going to occur. With Ms and Ow, the flow properties
behind the blast wave front at the ground range x can be predicted using
the numerical results presented in tabular and graphical forms by Hu and

Shi;rouzu [31]. These results are essential in predicting the dynamic
response of structures in the vicinity of a blast wave. For a different
explosive charge and height of burst, a different blast-wave-front path has
to be constructed on the transition map in order to predict what type of
reflection would occur for a certain ground range. Figure 63 also shows
the effect of changing the height of burst and charge weight on the blast
wave front trajectory path. The trajectories of 12 different HOB cases are
calculated and plotted on the same figure to show the effect of changing the
HOB.

There are several interesting points that can be made about Fig. 63.
First, increasing the HOB for a given charge will decrease the incident
shock wave Mach number Ms of the blast wave as it interacts with the planar
surface. Second, let Ax be defined as the difference between the ground
ranges when a specific type of reflection begins and terminates. For
example, on the scaled line h = 1.0 m, x increases from 0 m for Ow = 9 0 ' to
0.82 rn when 0 w50' at the RR.- DMR line and Ax = 0.82 m. In RR region, Ax
increases withwHOB. For example, at a scaled h of 0.7 m, Ax = 0.58 m; at h
= 1.00 m, Ax = 0.82 m; at h = 2.00 m, Ax = 1.7 in and at h = 3.00 m, Ax = 2.8
in. However, in both DMR and CMR regions, there is a HOB h which gives an
optimum Ax. This is because at small h, Ax increases with HOB. As h
becomes large, the domains of both DMR and CMR diminish and so their Ax also
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decrease. For instance, in the DMR region, at a scaled h of 0.5 m, Ax -

(0.83-0.41) = 0.42 m; at h 0.80 m, Ax = (1.10-0.67) = 0.43 m; at h = 0.9
m, Ax = (1.15-0.75) = 0.4Dm; at h = 1.00 m, Ax = (1.19-U.82) = 0.37 m and at
n = 1.25, Ax = (1.28-1.01) 0.27 m. Due to the increasing and decreasing
behaviour of Ax, a maximum Ax exists in the DMR domain and this also applies
to the CMR domain. In the SMR region, Ax is an increasing function of HOB
since the SMR donan enlarges at low M_ Third, theoretically, the
interaction of a blast wave front with te ground may result in three
possible series ot reflections: (1) RR- DMR- CMR+SMR, (2) RR+C lMRSMR, or (3)
RR+SMR. However, experiments have shown that the CMR to DMR transition line
approaches the SMR to CMR transition line and merges at a single point on
the RR termination boundary (see Sec. 4.3) as shown by the dotted line in
Fig. 63. Therefore, only two possible series of reflection can occur: (1)
RR+DMR-Cr1N +SMR or (2) RR+SMR. The second possibility occurs if the
inc'dent shock Mach number of the blast wave M. < 1.52 when RR terminates.
Fourth, from Fig. 63 it can be seen that owing to the steepness of the
RR*-SMR transition line compared to the blast-wave paths in the (Ms - w)
plane, RR cannot reoccur when M.+1. Lastly, increasing the charge weight W a

has the same effect as decreasing the HOB, whereas an increase in the
ambient pressure P has results similar to increasing the HOB.

The method used in this work to study the interaction of a blast wave
with a planar surface for the explosive TNT can be used for other types of
explosives in predicting the blast-wave-front-trajectory path on the
transition map, and in calculating the corresponding ground range and height
of the first triple point for the HOB case. For a spherical flow, the
growth of the reflected spherical shock cannot be determined from a
two-dimensional analysis. Consequently, the second triple point T'
trajectory is indeterminate using this analysis. It would be important to
verify these results experimentally in the labortory or in field tests.

5.0 CONCLUSIONS

An experimental and numerical investigation was made of
pseudo-stationary oblique-shock-wave reflections in polyatomic SF6 gas. The
domains and transition boundaries between the various types of reflection
(RR, SMR, CMR and DMR) were established in the (Ms - Ow) and (Ms -e5  )
planes for both frozen and vibrational equilibrium SF6 . The transition
boundaries predicted on the basis of an equilibrium flow agreed well with
the experimental results. The new criterion [ib] 6 > 90' was verified by
the present work that it is an additional necessary condition for the
transition from SMR to CMR. However, RR persists beyond the boundary line
determined by the detachment criterion. A start has been made to explain
the persistence of RR in terms of the induced viscous boundary layer on the
wedge surface [16,23]. A continuation of the investigation of the
persistence of RR with its boundary-layer-displacement effect is presently
under way [43].

Experimental results show that the CMR to DMR transition line

approaches the SMR to CMR transition line near the RR termination boundary
and they eventually merge at the RR boundary. The fact that the ratio */L*
approaches zero as the wedge angle comes near to the RR termination boundary
was also verified in this experimental study. A better analytical method to
determine the position of the kink or the second triple point near the RR

boundary is required in order to predict accurately the behaviour of the
merging of the three trdnsit~on lines at a single point on the RR

" 39 -



termination line. It is also clear from the present study that improved
analytical criteria must be found for the SMR-*CMR-*DMR transitions in order
to have better agreement between analysis and the experimental data. Since
it is difficult to distinguish CMR from DMR in an interferogram, a
shadowgram is required in the transition region of CMR and DMR to provide
additional evidence.

Several infinite-fringe interferograms of the density fields were

evaluated and their wall-density distribution were plotted. It has been
shown that the use of higher initial pressure enhanced the details and
accuracy of the isopycnics significantly. The present experimental results
provide invaluable data for computational fluid dynamicists in testing and
improving the numerical codes that predict various flow properties in

nonstationary oblique shock-wave reflections.

The comparison of experimental results in Ar, air, CO2 and SF6 at w =

200 and Ms = 3.4±0.2 substantiate the claims of Lee and Glass [25] thatthe
transition boundaries are shifted downwards and the reflection angle w'
decreases with decreasing y. There are higher density jumps across the Mach

stem, slipstream and the bow shock or lambda shocks at the wedge corner for
smaller y. The shock-wave boundary-layer interaction (lambda-shock
interaction), rolling up of the slipstream and curving of the Mach stem are
all prominent with a lower y gas, because a stronger shock can be produced
by a lower y gas as given by the strong shock wave limit p/po -(Y+1)/(y-1)
and the density ratio is large as y + 1.

The large differences in the analytical physical quantities between
frozen and equilibrium SF6 permit a definitive conclusion regarding which
model is valid. Comparisons of the fundamental angles 6 and w', and Q" ( I

+ x') in Mach reflection using 0w as the parameter, and the
comparisons of 6 and w' in RR using ow as the parameter, justified the
validity of the equilibrium SF6 analysis. The measured angles 5, ,' , i and
X' in MR are also compared with the analytical results using 'w as the
parameter. Nonetheless, the agreement with the equilibrium-gas analysis
using Ow is secondary to that of using ( , due to the inadequate prediction
of X, by assuming that the Mach stem is straight and perpendicular to the
wedge surface. An improved method of predicting x which takes into account
the Mach-stem curvature and the interaction of the bow shock wave with the
reflected shock wave is necessary. It has been verified that the reflection
angle w' is positive in RR and can be positive or negative in MR [25]. The
angle between the first and second-triple-point trajectories (y - ') was
discussed and a DMR with x' = 0 was obtained experimentally.

The second triple-point system was analyzed numerically for argon (y =
5/3) at Ms = 6 over a large range of o.. When the transition of RR to DMR
occurs, the pressure behind the second triple point T' (regions 4 and 5) in
DMR is almost equal to the pressure behind the reflection point P (region 2)
in RR. Numerical results show that for a given Mach number, the highest 7
pressure is achieved by means of a DMR, and not by a RR. This may be
because the flow in region (0) has to experience two or three shock waves
before it can reach region (4) or (5). Pressure histories as functions of
M and 0w obtained by numerical simulation at the RR*+DMR transition
boundary are required to substantiate the present experimental and
analytical results.
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A typical explosive charge (TNT) detonated at various heights-of-burst
above a perfect reflecting planar surface in air was considered. The
variations of the incident shock Mach number of the spherical-blast-wave
front as it decays and the corresponding wedge angle were plotted on a
transition map in the (M, - o) plane. It shows that all four types of
shock-wave reflection can occur in a free air explosion. However, if the
height of burst is increased past a certain limit, only two types of
shock-wave reflection, RR and SMR, can occur.

The collision of a Mach stern from a spherical explosion with various
types of buildings is of practical importance. This is presently being
simulated at UTIAS [62] by investigating the collisions of the three types
of Mach reflection with a 90Q ramp fixed to the wedge surface.

4"
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Table I

Gladstone-Dale Constants for Several Gases [261

Gas K (m3/kg)

air 2.274 x 10- ( 5896 A)

Ar 1.574 x 10 - ( 6943 A)

Ar 1.629 x 10- 4 ( = 3472 A)

CO2  2.266 x 10- 4 (X = 5896 A)

H2  7.870 x 10- 5 (A - 5896 A)

He 2.017 x 0-  (X 5896 A)

N2  2.376 x -O-  (A 6943 A)

N2  2.460 x,1Q74 (= 3472 A)

N 3.280 x I0-  (X = 6943 A)

N 3.310 x 10-4 (X - 3472 A)

SF6  1.182 x I (- 5896 A)

S02  2.344 x 10 (X = 5896A)
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Table 2

Initial Conditions for SF6 Experiments

EXP Ow Ms Type PO P3  To  Driver
(deg) (torr) (kPa) (psi) (kPa) (C)

1 47 1.82 RR 149.00 19.9 49.0 337.8 23.1 C02

110 45 1.25 RR 267.00 35.6 14.0 96.5 24.3 C02

ill 45 1.43 - 177.80 23.7 14.4 99.3 22.4 C02

112 45 1.52 RR 130.58 17.4 13.8 95.1 23.0 C02

113 45 1.64 RR 88.80 11.8 13.6 93.8 23.8 C02

122 45 1.64 RR 88.80 11.8 13.5 93.1 23.6 C02

123 45 1.66 RR 144.00 19.2 22.0 151.7 23.7 C02

118 45 1.81 DMR 101.20 13.5 22.0 151.7 23.9 C02

117 45 1.91 DMR 78.00 10.4 21.6 148.9 23.3 C02

120 45 2.07 RR 55.80 7.4 21.3 146.9 25.2 C02

119 45 2.11 RR 50.50 6.7 20.3 140.0 24.9 C02

115 45 2.17 RR 44.08 5.9 20.5 141.3 24.1 C02

114 45 2.25 RR 35.20 4.7 19.6 135.1 23.8 C02

116 45 2.38 RR 29.00 3.9 19.6 135.1 24.5 C02

121 45 8.22 - 19.10 2.5 300.0 2068.4 24.6 HE

17 42 1.52 SMR 157.00 20.9 25.0 172.4 23.2 C02

18 42 1.54 SMR 138.00 18.4 21.5 148.2 23.9 C02

19 42 1.73 CMR 226.00 30.1 50.2 346.1 24.6 C02

20 42 1.84 CHR 176.50 23.5 48.7 335.8 25.3 C02

21 42 1.93 DMR 143.00 19.1 48.5 334.4 25.4 C02

30 42 2.73 DHR 14.20 1.9 20.0 137.9 24.3 C02
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Table 2 (continued)

Initial Conditions for SF6 Experiments

EXP Ow  Ms Type PO P3  To Driver
(deg) (torr) (kPa) (psi) (kPa) (C)

29 42 2.74 - 14.00 1.9 20.0 137.9 24.2 C02

31 42 2.82 RR 23.85 3.2 35.0 241.3 24.3 C02

108 42 2.84 DMR 42.90 5.7 63.5 437.8 24.0 C02

107 42 3.00 DMR 31.97 4.3 64.5 444.7 24.4 C02

76 42 3.01 DMR 70.90 9.5 64.5 444.7 24.2 C02

25 42 3.02 RR 70.90 9.5 137.5 948.0 25.8 C02

28 42 3.10 - 109.00 14.5 145.0 999.7 24.7 C02

77 42 3.10 - 49.00 6.5 110.0 758.4 23.8 C02

27 42 3.12 - 78.70 10.5 125.0 861.8 24.8 C02

106 42 3.14 DMR 25.86 3.4 62.0 427.5 24.0 C02

74 42 3.14 DHR 50.00 6.7 115.0 792.9 23.2 C02

24 42 3.16 RR 55.80 7.4 136.0 937.7 25.8 C02

26 42 3.20 - 56.00 7.5 132.0 910.1 25.8 C02

105 42 3.21 DMR 23.30 3.1 62.0 427.5 23.9 C02

23 42 3.21 RR 50.00 6.7 136.0 937.7 25.2 C02

22 42 3.26 RR 49.00 6.5 136.0 937.7 25.6 C02

78 42 3.26 DMR 49.00 6.5 136.0 937.7 24.2 C02

75 42 3.27 DMR 49.00 6.5 135.0 930.8 23.5 C02

104 42 3.43 DMR 16.73 2.2 63.5 437.8 24.2 C02

79 42 3.44 - 37.00 4.9 136.5 941.1 22.8 C02

85 42 3.45 DMR 17.35 2.3 60.5 417.1 23.7 C02
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Table 2(continued)

Initial Conditions for SF6 Experiments

EXP ew  M s  Type PO P3 To Driver
(deg) (torr) (kPa) (psi) (kPa) (0C)

86 42 3.45 DMR 15.95 2.1 61.5 424.0 23.4 C02

100 42 3.47 RR 15.95 2.1 61.5 424.0 22.8 C02

84 42 3.48 DMR 15.95 2.1 62.5 430.9 23.3 C02

81 42 3.57 DMR 23.87 3.2 105.0 723.9 24.7 C02

32 42 3.63 RR 11.70 1.6 59.5 410.2 24.5 C02

83 42 3.64 RR 11.65 1.6 62.5 430.9 26.0 C02

103 42 3.65 DM1 12.10 1.6 64.5 444.7 23.9 C02

80 42 3.66 DMR 27.00 3.6 136.5 941.1 22.9 C02

102 42 3.66 DMR 12.18 1.6 65.5 451.6 22.0 C02

109 42 3.67 RR 11.65 1.6 63.5 437.8 24.1 C02

82 42 3.73 RR 10.34 1.4 61.5 424.0 25.4 C02

16 42 5.63 RR 4.20 0.6 317.5 2189.1 23.6 C02

101 42 8.23 RR 3.70 0.5 59.5 410.2 24.6 HE

11 40 1.49 SMR 166.80 22.2 25.5 175.8 25.1 C02

12 40 1.53 SMR 138.00 18.4 23.0 158.6 24.8 C02

10 40 1.72 CMR 226.00 30.1 49.5 341.3 24.9 C02

143 40 1.90 CUR 46.18 6.2 12.5 86.2 24.6 C02

8 40 1.94 DMR 143.00 19.1 49.0 337.8 24.6 C02

2 40 2.07 DMR 100.00 13.3 47.0 324.1 23.7 C02

177 40 2.08 DMR 30.05 4.0 14.0 96.5 24.0 C02

176 40 2.15 DMR 56.20 7.5 27.0 186.2 24.2 C02
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Table 2 (continued)

Initial Conditions for SF6 Experiments

EXP Ow Ms Type Po P3  To Driver
(deg) (torr) (kPa) (psi) (kPa) ( 0c)

148 40 3.77 - 7.12 0.9 45.8 315.8 23.9 C02

146 40 3.80 DMR 11.43 1.5 44.7 308.2 21.5 AIR

4 40 3.88 - 19.20 2.6 138.5 954.9 23.5 C02

5 40 3.90 - 27.50 3.7 140.5 968.7 23.8 AIR

147 40 3.99 DMR 16.48 2.2 142.0 979.1 23.2 C02

145 40 4.07 RR 4.42 0.6 44.0 303.4 24.1 C02

144 40 4.07 RR 4.89 0.7 47.0 324.1 24.5 C02

9 40 4.14 RR 12.00 1.6 126.5 872.2 25.3 C02

3 40 4.15 - 19.15 2.6 172.0 1185.9 23.5 C02

149 40 4.15 RR 3.98 0.5 45.5 313.7 24.2 C02

179 40 4.18 RR 12.30 1.6 139.0 958.4 24.8 C02

6 40 4.21 RR 11.95 1.6 135.5 934.2 23.0 C02

178 40 4.22 RR 5.60 0.7 69.5 479.2 25.4 C02

7 40 4.56 RR 7.50 1.0 133.0 917.0 24.2 C02

14 40 5.35 - 21.39 2.9 138.0 951.5 25.2 HE

15 40 5.74 - 5.00 0.7 188.5 1299.7 25.4 AIR

13 40 6.59 - 14.70 2.0 144.0 992.8 25.2 HE

60 37 1.43 SMR 114.00 15.2 11.8 81.4 24.8 SF6

59 37 1.49 SMR 78.50 10.5 10.5 72.4 23.4 C02

33 37 1.52 SMR 150.70 20.1 22.0 151.7 24.1 C02

34 37 1.61 SMR 112.50 15.0 20.5 141.3 24.0 C02
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Table 2 (continued)

Initial Conditions for SF6 Experiments

EXP 8w  H s  Type Po P3  To Driver
(deg) (torr) (kPa) (psi) (kPa) (C)

35 37 1.70 CHR 91.00 12.1 20.6 142.0 23.6 C02

36 37 1.86 CMR 62.45 8.3 20.0 137.9 23.5 C02

37 37 2.07 CMR 42.65 5.7 19.8 136.5 23.3 C02

61 37 2.13 DMR 47.80 6.4 45.0 310.3 24.3 C02

41 37 2.18 DMR 35.20 4.7 19.0 131.0 23.7 C02

63 37 2.23 DM1R 50.70 6.8 45.0 310.3 23.4 HE

42 37 2.31 DMR 28.90 3.9 19.3 133.1 24.0 C02

39 37 4.07 - 4.00 0.5 319.0 2199.4 23.3 AIR

67 37 4.14 - 17.60 2.3 177.5 1223.8 24.2 C02

68 37 4.14 - 17.60 2.3 179.0 1234.2 24.2 C02

62 37 4.14 DMR 17.60 2.3 179.0 1234.2 24.9 C02

69 37 4.15 - 17.60 2.3 180.5 1244.5 24.4 C02

70 37 4.18 - 11.95 1.6 132.5 913.6 24.6 C02

59 37 4.18 - 11.95 1.6 132.5 913.6 23.3 C02

64 37 4.20 DMR 11.97 1.6 133.0 917.0 23.7 C02

58 37 4.21 - 11.95 1.6 133.5 920.4 24.2 C02

71 37 4.22 DMR 11.95 1.6 136.0 937.7 24.4 C02

56 37 5.19 DMR 4.19 0.6 285.5 1968.5 23.8 C02

73 37 5.52 DMR 5.42 0.7 364.0 2509.7 23.7 C02

57 37 5.55 DMR 4.18 0.6 277.0 1909.8 23.4 C02

43 37 5.78 DMR 5.00 0.7 182.5 1258.3 24.3 N2
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Table 2 (continued)

Initial Conditions for SF6 Experiments

EXP ew  Ms Type Po P 3  To Driver
(deg) (torr) (kPa) (psi) (kPa) (*C)

171 37 5.95 DMR 2.82 0.4 378.0 2606.2 24.1 C02

172 37 6.48 DMR 15.10 2.0 94.0 648.1 24.3 HE

40 37 6.73 - 3.95 0.5 310.5 2140.8 23.4 AIR

66 37 6.76 - 4.18 0.6 316.0 2178.7 25.1 C02

53 37 7.65 - 3.63 0.5 59.0 406.8 23.5 HE

54 37 7.66 DMR 4.17 0.6 288.0 1985.7 23.5 C02

55 37 7.72 DMR 4.17 0.6 281.0 1937.4 22.7 C02

50 37 7.75 - 3.63 0.5 60.8 419.2 22.8 HE

65 37 7.89 DMR 4.21 0.6 306.0 2109.8 24.5 C02

72 37 7.96 DMR 11.05 1.5 184.0 1268.6 23.4 HE

173 37 7.99 DMR 6.36 0.8 92.0 634.3 24.8 HE

174 37 8.11 - 6.36 0.8 94.0 648.1 24.5 HE

52 37 8.34 - 3.00 0.4 59.5 410.2 23.0 HE

51 37 8.45 DMR 3.00 0.4 62.5 430.9 23.0 HE

38 37 8.81 - 3.95 0.5 316.0 2178.7 23.3 AIR

124 30 1.76 SMR 116.70 15.6 22.0 151.7 23.9 C02

126 30 1.81 CMR 101.20 13.5 22.0 151.7 23.6 C02

128 30 1.93 CMR 78.00 10.4 22.4 154.4 23.7 C02

127 30 2.19 CMR 44.10 5.9 21.5 148.2 23.5 C02

125 30 2.30 CMR 23.80 3.2 20.5 141.3 23.8 C02

142 30 2.35 CHR 17.95 2.4 12.5 86.2 22.9 C02

140 30 2.59 DMR 11.17 1.5 12.1 83.4 24.2 C02
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Table 2 (continued)

Initial Conditions for SF6 Experiments

EXP ew  Ms  Type P0  P3  
To Driver

(deg) (torr) (kPa) (psi) (kPa) (0C)

141 30 2.72 DMR 8.70 1.2 12.0 82.7 24.4 C02

131 20 2.08 SMR 30.00 4.0 12.5 66.2 23.3 C02

135 20 2.11 SMR 29.40 3.9 12.1 83.4 23.8 C02

129 20 2.13 CMR 50.50 6.7 21.5 148.2 23.2 C02

130 20 2.83 DM1 13.30 1.8 20.6 142.0 23.6 C02

132 20 2.84 DMR 13.30 1.8 20.5 141.3 23.6 C02

133 20 2.97 DMR 10.70 1.4 20.7 142.7 23.8 C02

134 20 3.02 DMR 9.70 1.3 20.2 139.3 23.6 C02

136 20 3.15 DM1 7.90 1.1 20.2 139.3 24.0 C02

137 20 3.51 DMP, 4.58 0.6 20.6 142.0 24.0 C02

138 20 3.76 DMR 7.39 1.0 46.5 320.6 23.6 C02

139 20 4.08 DMR 4.82 0.6 47.5 327.5 23.8 C02

175 10 2.60 SMR 11.17 1.5 12.1 83.4 25.1 C02

150 10 2.86 CMR 13.33 1.8 23.0 158.6 23.1 C02

151 10 3.00 CMR 9.70 1.3 21.6 148.9 23.8 C02

153 10 3.14 CMR 7.95 1.1 23.1 159.3 24.3 C02

154 10 3.45 DMR 11.43 1.5 46.5 320.6 23.9 C02

155 10 3.65 DMR 12.08 1.6 63.0 434.4 24.3 C02

152 10 3.73 DMR 10.42 1.4 62.5 430.9 24.2 C02

156 10 4.06 DMR 6.44 0.9 63.0 434.4 24.0 C02

157 10 4.25 DMR 4.95 0.7 64.5 444.7 23.9 C02
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Table 2 (continued)

Initial Conditions for SF6 Experiments

EXP ew  Ms  Type PO P3 To Driver
(deg) (torr) (kPa) (psi) (kPa) (C)

158 10 4.43 )MR 10.18 1.4 159.0 1096.3 24.6 C02

169 4 3.37 SMR 13.55 1.8 49.5 341.3 24.1 C02

161 4 3.47 CMR 15.95 2.1 67.5 465.4 23.5 C02

160 4 3.74 CMR 10.40 1.4 64.0 441.3 23.5 C02

159 4 4.05 CMR 5.00 0.7 49.0 337.8 23.2 C02

170 4 4.28 CMR 4.98 0.7 67.5 465.4 24.1 C02

166 4 4.36 CMR 10.15 1.4 151.0 1041.1 24.3 C02

162 4 5.50 CMR 5.42 0.7 388.0 2675.2 23.8 C02

165 4 5.94 - 6.70 0.9 383.0 2640.7 24.1 AIR

164 4 5.94 - 2.78 0.4 386.0 2661.4 25.1 C02

163 4 6.01 - 13.52 1.8 63.5 437.8 24.9 HE

167 4 6.26 - 17.50 2.3 95.5 658.4 24.6 HE

168 4 6.65 - 15.10 2.0 101.0 696.4 23.9 HE

Note Where data are blank, unstable shock fronts
or no interferograms are obtained.
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Table 5

Comparison for RR in SF6

Experiments Equilibrium
Analysis

Exp ew  Ms  6 16 W1

1 47. 1.82 104.3 32.7 103.9 33.1

110 45. 1.25 88.7 46.3 87.9 47.1

112 45. 1.52 91.0 44.0 - -

113 45. 1.64 93.8 41.2 -

122 45. 1.64 93.5 41.5 -

123 45. 1.66 94.5 40.2 -

120 45. 2.07 98.8 36.2 -

119 45. 2.11 100.0 35.0 -

115 45. 2.17 102.0 34.0 - -

114 45. 2.25 103.7 31.3 102.8 32.2

116 45. 2.38 106.6 28.4 106.4 28.6

31 42. 2.82 102.0 30.0 -

25 42. 3.02 103.0 29.0

24 42. 3.16 105.0 27.0 - -

23 42. 3.21 106.0 25.0 103.1 28.9

22 42. 3.26 106.0 24.2 105.5 26.5

100 42. 3.47 109.4 22.6 109.0 23.0

83 42. 3.64 112.0 21.0 111.0 21.0

109 42. 3.67 111.2 20.8 111.2 20.8

82 42. 3.73 111.2 20.8 111.8 20.2
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Table 5 (continued)

Comparison for RR in SF6

Experiments Equilibrium
Analysis

Exp 6w Ms 6 w' 6 wt

16 42. 5.63 121.0 11.0 119.8 12.2

101 42. 8.23 124.2 7.8 123.0 9.0

145 40. 4.07 104.8 25.2 - -

144 40. 4.07 107.3 21.8 - -

9 40. 4.14 105.0 24.8 105.5 24.5

149 40. 4.15 106.4 24.0 105.6 24.4

179 40. 4.18 107.0 23.0 106.3 23.7

6 40. 4.21 106.0 24.0 106.7 23.3

178 40. 4.22 107.0 23.0 106.9 23.1

7 40. 4.56 110.0 20.0 110.3 19.7

Note Where data are blank, no analytical solutions exist.
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Table 6

Numerical Results of Pressure
at RR Z DMR Transition Boundary

for y - 5/3 at P0 - 15 torr (2 kPa) , To - 300 K

Ms Type Region Pressure * % Stagnation Pressure
at Corner C

torr (kPa) torr (kPa)

4 RR 2 1547.1 (206.3) -5.51 1283.6 (171.1)
DMR 4,5 1461.9 (194.9)

5 RR 2 2570.0 (342.6) -0.43 2595.7 (346.1)
DMR 4,5 2558.9 (341.2)

6 RR 2 3831.1 (510.8) 1.82 4311.1 (574.8)
DMR 4,5 3900.7 (520.1)

7 RR 2 5328.5 (710.4) 3.03 6401.5 (853.5)
DMR 4,5 5490.1 (732.0)

8 RR 2 7058.6 (941.1) 3.80 8850.9 (1180.0)
DMR 4,5 7326.9 (976.8)

9 RR 2 9018.6 (1202.4) 4.35 11650.0 (1553.2)
DMR 4,5 9410.8 (1254.7)

10 RR 2 11212.1 (1494.8) 4.72 14793.6 (1972.3)

DMR 4,5 11741.1 (1565.4)

• Pressures for RR and DMR correspond to point X and point Y

in Figure 61, respectively.
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a) Regular Reflection

S HOC K
FRONT

X/

FIREBALL

b) Mach Reflection

SHOCK
FRONT,

-.,SLIPSTREAM - MACH
STEM

Fig. 1 Interaction of spherical explosion
with planar surface.



a) Regular Reflection

(RR) I

(0) (I)

P (2

b) Single-Mach

Reflection (SMR)

(0) (I)

Se.

* Fig. 2 Schematic diagrams of four types of
oblique-shock-wave reflection in
pseudo-stationary flows.
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c) Complex-Mach
Reflection (CMR)

M (30

d) Doub le-ach~i

Reflection (DMR)

(0) (I)

4,T.

7,7 7 / 7 7 /- A

_ ..... . .

Fig. 2 (continued) Schematic diagrams of four types of

oblique-shock-wave reflection in pseudo-stationary
flows.
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a) Regular Reflection
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Fig. 3 Schematic diagram of regular reflection.
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b) Curved reflected shock R influenced by corner signals.

I

P

M2_ I5

~e1

c) Straight reflected shock R under supersonic conditions.

0w

Fig. 3 (continued) Schematic diagram of regular reflection.
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d) Straight and attached

bow shock

-R

M,> , < Ow < Os OW

e) Curved and attached bow shock

R

M > I, Os < Ow < em O

f) Curved and detached bow shock

R

'2- 
\

M, < I, 0 < Ow < 900

MI ? I, 8 mn<Ow < 90 0

eO sonic deflection angle

Gm maximum deflection angle

a
Fig. 3 (continued) Schematic diagram of 

regular reflection.
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Fig. 4 Schematic diagram of single-Mach reflection.
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Fig. 5 Schematic diagram of complex-Mach reflection.
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PIo

B

" Rd

0 R,

II

0 Deflection Angle 6

Fig. 7 Shock-polar illustrating three different RR termination criteria.
I - incident shock wave;
Rj- reflected shock wave of RR at A;
Rm, Rs, Rd - reflected shock wave at RR termination

( Rm - mechanical equilibrium criterion at D,
Rs - sonic criterion at E -- F,

Rd - detachment criterion at B + C).



70- R R

Y4.4

RR or MR

50-
Detachment Criterion

(two shock theory)

910 + 82 0

40- MR

30

Fig. 8 Detachment and mechanical equilibrium criteria
for RR(MR) termination, y 1.4.



flow vector in region I

in laboratory frame U,,

flow velocity in
region I from kink

velocity vector of kink
T ,in laboratory frame~ Kor T'

M
some as

UlR

M

f7

Fig. 9(a) Schematic diagram illustrating assumption of
position of K or T' and flow direction in
region (1) relative to K.
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Fig. 9(b) Definitions Of lk, ik P2 and P2'.

a>Os <0O~>

M(A) (C

II a<O/3<o

aa<I3 R a

(B) M (D)

Fig. 9(c) Four possible geometric configurations
of reflected shock wave.
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DelayUn4 g .rFlash Lamp
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5 4 3 2 Tin* Base
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Q) Atlantic LD-25 Pressure Transducer P Preomplifier A Amplifier

Fig. 10 Basic instrumentation setup for recording

shock wave reflection process.
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MODEL WINDOW SHOCK TUBE
10. WALL

I.N

a) Present model b) Elevated wedge model

c) Symmetric wedge model di) Asymmetric wedge model

Fig. 11 Schematic diagram of possible models for studying

shock wave reflection in a shock tube.



Fig. 12(a) Example of an infinite-fringe interferogram
for DI4R taken with a light source of 6943 .

(first harmonic) in SF6
M= 2.97, Olw 200, P1n 10.7 torr,

To = 297.0 K.
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Fig. 12(1b) ,Ii xi nfnintL:-trlnge iterferogram
for lri) In tkcn with a light sourcc of 3471.5X

I on Ia unonin) inS
W a 20%, 1), 10.7 tour,
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Fig. 14 Wall-density distribution for case 1 of a
detached regular reflection in SF 6.
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a) Regular Reflection

IL
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b) Mach Reflection
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Fig. 15 Definition for the distance L.
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Region p/p 0

(0) 1.000
(1) 12.134 A/ 0 =099

(2) 69.771 A/O 099
a 68.792
b 67.812 Region P (torr) T (K) p (kg/rn3)

*c 66.833 ()7.5 297.4 0.0590
d 65.853 (0) 164.5 537.6 0.7165
e 64.874 (2) 1150.7 653.9 4.1200

*f 63.894
g 62.915

*h 61.935
S60.956
j 59.976

* Fig. 16 Infirfite-fringe interferogram of an attached
*regular reflection ill SF 6

Ms=4.57, -, = 40-, P 7.5 torr,

*~T = 297.4 K, A 6943 X
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Fig. 17 Wall-density distribution for case 2 of
an attached regular reflection in SF6 .
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Region pp

(0) 1.000
(1) 2.236
(2) 4.084
(3) 3.951
a 4.031 mr
b 3.978
c 3.925
d 3.872
e 3.819
f 3.766
9 3.712
h 3.659
i 3.606
j 3.553
k 3.500
1 3.447

n 3.394 Ap 0 = 0.0532
n 3.247
p 3.234 Region P (torr) T (K) p (kg/rn3)
q 3.181 (0) 138.0 296.9 1.0882
r 3.128 (1) 335.7 323.0 2.4334
s 3.075 (2) 648.6 341.7 4.4446
t 3.021 (3) 648.6 353.2 4.2997
u 2.968
v 2.915
w 2.862

Fig. 18 [n fin it,.-frige [it r trogram ofT a detached
Sil) ilt'1-M{chreW lt iii SF -

' .54, 4 P I13h 0 torr,
1,

296.9 K, 69= h-3 A
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Fig. 19 Wall-density distribution for case 3 of a
detached single-Mach reflection in SF6.
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Fig. 21 Wall-density distribution for case 4 of an
attached single-Mach reflection in SF6.
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Fig. 23 Wall-density distribution for case 5 of

a detached complex-Mach reflection in SF6.
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(0) 1.000 Region P (torr) T (K) p (kg/rn3)
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a 9.029 (2) 91.4 421.7 0.5071

b 9.953 (3) 91 4 431.3 0.4959

c 10.878

Fig,. 2,. (,1) fHt-ri' itr.rra o n

t t i, o:.j x-Iaiu r, fI 2C't i On i n SF 6.
LI., 9 , P 7.9 torr,
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Fig. 56 Infinite-fringe interferogram showing a

double-Mach reflection with w' < 0 and

x I'< X.
s= 4.20, ew = 370, PO= 12.0 torr,

To = 296.9 K in SF6.

~~.7



deg '
Q

42

Q

9 0

% 40

* 0

0X
Q

0

9 .1 Experimental Data
CA - M 470

0 450
A 420

X 400

0 45' _ _ _ _ _

00.O 1'.50 2 .00 2.50 3.00 3.50 .00 4.50 5. 00 5.50

INCIDENT SHOCK WAVE MACH NO. Ms

Fig. 57 Variation of 6 vs M.at f ixed Ow for
vibrational equilibriuim SF6 in RR

with Po 15 torr, To 300 K.

~%



0 I|

LA I Vibrational
) 45 - EquilibriumS SF 6

deg 0 SFExperimental Data :
" l0 470

20 450AL 420
S\ _ i x 400

0

\ 10

m!°n 4 I

0 X

Iocu

1 ! degg _ _

.4

Sequilibrium SF6 in RR with Po 15 torr, To = 300 K.

voo

1.0 15 .0 25 .0 35 A0 45 .0 55

equilibriIm SF nR ihP 1 or 0 30K



a) First Triple Point T

N U1

(0) ()N

b) Second Triple Point Tv'U

ToI (4)

Fig. 59 Th nlg ewe hwrpepIntwv
sysemsin dobleMac relecion

09 1 (5



a) Regular Reflection

(0) (1)

b) Double-Mach I
Reflection (0) (1)

(3) T(2)

F\ "MI- T' R

Fig. 60 Location of highest pressure in RR and DMR near
the RR Z DMR transition boundary.
Point C - stagnation pressure at corner,

Point E - highest pressure in RR,

Region F - highest pressure in DMR,
Point G - pressure behind second triple point T'.

..-.., .';', , _'," " ', ., .. " .. .i , '. T . : ..... ' .- '.'.,",.,"-.,. . , .. , . < .. "". ., '- - .. "'e"- , .. ', t . . . .



4000- DRR
y

*0 3500-
C

0

C

* . 100

50 60 70 80g

Wedge Angle Ow (deg)

Fig. 61 Pressure behaviour at point E in RR and at point G in DMR
as a function of wedge angle. Ms 6.0, PO = 15 torr
(2 kPa), and To =300 K in argon.

JI- - , - . * *. * . * * : . S .~



a) Regular Reflection

b) Mach Reflection

Ms

r Triple-point

Fi .62 H i h o - u s f OW ie daoeacphe ica

I x

Fig. 62 Hegto-us flwfedo peia

blas wave. *



x hW F Pwow 1/3 M )O) 1/3(M
O ' P, d

90- ( I I I
S 0 LO L 0Oa

t -__co

.4N

80 .6-

.0\ \\
-- \ N -,

60 t5 \ / \\

e""" YT/h

(deg) 3-0 -/.oo
, .005

40 - "".025
DMR O .05

-- --/-3-4 5 6.0

20- M< R
/ \ z -: - .2.3

SMR 5/ ,

0 1 1 I8

Ms

Fig. 63 nteraction of a spherical blast wave with a planar

sirface in perfect air at standard ambient conditions.



__ Appendix A

Method of Calculations

Reflections Inside a Shock Tube

Since the planar incident shock wave moves with constant velocity along
the wedge surface, the entire reflection phenomenon can be considered as
pseudo-stationary in a frame of reference attached to a point which moves
with a constant velocity. Therefore, instead of three independent variables
x, y and t, the phenomenon is described in terms of x/t and y/t and the flow
is self-similar [19]. In a pseudo-stationary flow, the shock wave
configuration remains self-similar and grows linearly with time from the
moment the incident shock wave collides with the wedge corner. The
phenomenon is also assumed to be a two-dimensional inviscid flow.

The calculations for obtaining the flow properties of each region in
the angular vicinity of a shock confluence point require the formulation of
the oblique-shock-wave relations for each shock wave. The reference point
is the reflection point P in RR, and the triple point T in MR; the region
which are divided by shock waves and a slipstream are designated by 0 to 3
as shown in Fig. 3a and 4. The details of the analytical formulations can
be found in Law [47]. The physical quantities on both sides of each shock
wave in the vicinity of the reference point satisfy the following equations
of motion:

Conservation of tangential velocity

pitan~i pjtan( i - Gj) (A.1)

ContinuityC piUisin~i = pjUjsin( i - 0j) (A.2)

Normal momentum

Pi + piUi 2sin 2 , = Pj + pjUj 2sin 2( i - 0j) (A.3)

Energy

hi +_I U12sin 2 . = hj + 1 Uj2sin 2( i - 0j) (A.4)

where i and j refer to the states ahead and behind the shock, respectively.
The equations of state applied are

p = p(P, T), h = h(P, T) (A.5)

In RR, or the two-shock theory, there are two sets of equatio, s:

For incident shock I: i = 0, j = 1 (A.6)

For reflected shock R: i = 1, j = 2 (A.7)

-A.1 -
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These two sets of equations are solved under the boundary condition
that the flow deflections across the incident and reflected shocks be equal
and opposite with the direction of the flow behind the reflected shock wave
being along the wedge surface, i.e.,

01 = e2 (A.8)

The calculating procedures for the solution of equation (A.5) through (A.8)
are as follows [11]:

1. The initial conditions of the pressure P0, the temperature To, the
Mach number Ms and the wedge angle Ow are given.

2. The first set of equations (A.6) is solved for P,, T1, U1 , and 01.
Note that U0 = Us secew and ¢0 = 900 - ew.

3. Some initial guess for ¢i is made.

4. The second set of equations (A.7) is solved to obtain the values for
P2, T2, U2 and 02.

5. The calculated results are checked against the boundary condition
(A.8).

6. A new value of $1 is predicted.

7. The procedure is repeated until

101 - e21 < 1O-4

In the case of MR, or the three-shock theory, there are three sets of
equations for the first triple-point system:

For incident shock I: i = 0, j = 1 (A.9)

For reflected shock R: i = 1, j = 2 (A.10)

For Mach stem M : i = 0, j = 3 , (¢i is referred to as 43) (A.11)

The above three sets of equations are solved under the boundary
conditions that the flow deflection across the incident and reflected shocks
be equal to the flow deflection across the Mach stem and the pressure on
both sides of the slipstream be identical, i.e.,

3 = 01 - 02 (A.12)

P2 = P3  (A.13)

In MR, it is necessary to predict a value of the triple-point
trajectory angle X in order that the system of equations be closed. The
Mach stem is assumed normal to the wedge surface based on experimental
observations, and Law and Glass [15] introduced an additional geometrical
relation

- A.2 -
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¢3 = 900 " x (A.14)

The calculating procedures for the solution of equations (A.5) and
(A.9) through (A.14) are as follows L11] :

1. The initial conditions of Po, Tog Ms and 0w are given.

2. Some initial guesses for x and ¢, are made.

3. The first set of equations (A.9) is solved for Pi, T1, Ul and 01. Note
that Uo = Us cosec€ 0 and 4o= 90' - (Ow + x).

4. The second set of equations (A.I0) is solved for P2, T2' U2 and 02.

5. Using Eq. (A.14), the third set of equations (A.11) is solved for P3,
T3, U3 and 03.

6. The calculated results are checked against the boundary conditions
(A.12) and (A.13).

7. New values of x and ¢, are predicted.

8. The solutions are iterated until

103 - 01 + 021 < 10-4
and

I(P3 - P2 )/P 21 < 10-4

Details of the analytical formulation of the second triple point T' is
given by Ben-Dor li]. The flow fields around T' are shown in Fig. 59 with
the prime to denote that the properties are measured with respect to T'.
The three set of equations for the system are

For reflected shock R: i = 1, j = 2 (A.15)

For second reflected shock R': i = 1, j = 4 (A.16)
(¢i is referred to as 4)

For second Mach stem M': i = 2, j = 5 (A.17)

The above three sets of equations are solved under the boundary
conditions that the flow deflection across the reflected shock R and the
second Mach stem M' be equal to the flow deflection across the second
reflected shock R', and the pressure on both sides of the second slipstream
S' be identical, i.e.,

I I I

04 = 82 05 (A.18)

P4 = P5 (A.19)

The calculation involves a transformation of the already calculated
values of Uj and ¢I from a frame of reference attached to T to a frame of
reference attached to T'. Since thermodynamic properties do not depend on
the frame of reference, the prime is omitted from the thermodynamic
variables in the equations. The values of U' and are given as

-A.3 -
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II

= U [P + sin 2(00 - 2) sin( 00 - 01 )cOsl-1 1/2 (A.20)
sin2(, + 0o - 01) sin(Ol + 0o - e 1 )_J

0 =01 + 0- 91 (A.21)

The calculating procedures for the solution of equations (A.5) and
(A.15) through (A.21) are as follows:

1. The initial conditions of P1, T1, M1, 0, 0I and 01 are given.

2. Some initial guesses for 02 and 04 are made.

3. Using equations (A.29) and (A.21), the first set of equations (A.15) is
solved for P2, T2, U2 and 02.

4. The second set of equations (A.16) is solved for P4, T4, U4 and 04.
I I

5. The third set of equations (A.17) is solved for P5, T5, U5 and 05.

6. The calculated values are checked against the boundary conditions- (A.18) and (A.19).

7. New values of 02 and 04 are predicted.

8. The solutions are iterated until

I - 02 + ei <0 - 4

and
I(P 4 - P5)/P51 < 10-4

Ground Reflection of a Blast Wave

The curve fit that was reported by Sadek and Gottlieb [66] to represent
the shock trajectory for a 1 kg TNT ground explosion in a standard
atmosphere is

r = a sa2t5  + alt s + a3[Zn(I + a4ts)]I/ 2  (A.22)
I + a2 ts

where rs is the shock radius, ts is the shock arrival time, a = 0.72
m, a2 = 1.872 m/s, a3 = 1.29 m, e 4 = 0.3403 m/s and a, = 0o.303 m/ms.
Mach number of the blast front can be obtained by differentiating the above
equation and then dividing it by the speed of sound.

In the calculation of the blast-front-trajectory path on the (Ms -

Ow) transition map, an incident shock wave Mach number Ms  is first
chosen. The time of arrival t s is then determined and substituted into
equation (A.22) to obtain the shock radius rs. To obtain an equivalent
shock radius r for the case of HUB explosion above a perfect planar surface,

r. is multiplied by the factor 21/3.

- A.4-



For RR, at a given HOB h and Ms, the radius of the blast front r can
be calculated as mentioned above. Ground range x and the corresponding
wedge angle ow, as shown in Fig. A-1(a), can be determined from the
relations

X2 = r2 - h2  (A.23)

sinow = h/r (A.24)

For MR, at a given HOB h and Ms , the radius of the blast front r is
calculated the same way as for RR. To find the ground range x and the wedge
angle s0, it is essential to know the height of the first triple point
YT. As illustrated in Fig. A-1(b), x, h, YT and ow are related by

r 2 = x2 + (h - YT) 2  (A.25)

tanOw = (h - YT)/x (A.26)

and the slope of the first-triple-point trajectory is given by

dY tanx (A.27)

dx

If equation (A.26) is first differentiated, then substituted into

equation (A.27) and finally the result is integrated, the following two
relations are obtained [67]:

- 0 for 0w > 0d (A.28)
h 

d

T w tanX dO)

L = 1 - exp f for 0w < 0d (A.29)
h ed sin 2ow(1 + tanx/tanOw)

where ed is the RR+-)MR transition angle according to the detachment
criterion. Equation (A.28) is applicable to RR which states that no triple
point exists if Ow is above ed. Equation (A.29) is applicable to MR and
can be integrated if the relation between 0 w and x in a two-dimensional
shock tube flow is assumed valid here.

The following fix point iterative scheme is used to determine the value
Of YT :

1. The HOB h and the incident shock Mach number Ms are given.

2. Calculate the shock radius r with the given Ms .

3. Some initial guess of YT is made.

4. Calculate wedge angle ow from the relation obtained by substituting
equation (A.25) into (A.26)

ow = tan-{r r2  ]- 1 (A.30)
(h -VYT) 2
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5. With Ow calculate YT using equation (A.29).

6. Check if the difference of the new YT and the last YT is within the
tolerance of 10- 4 .

7. Steps 4 and 5 are repeated until the tolerance in step 6 is achieved.

Once YT is determined, x and ow can be calculated using equation
(A.25) and (A.26). In real explosions, the Mach stem M is not entirely
straight from the first triple point to the ground, but curved as shown in
Fig. A-1(b). Such bulging effect of the Mach stem is simply simulated by
assuming that the Mach stem M is an arc cutting the first triple point at T
and the ground at x' with its radius being rM . The ground range x in MR
then takes the value of x'.

A.
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Fig. A-I Flow field of a free-air explosion.
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Appendix B

Thermodynamic Properties of Sulfur Hexafluoride

Sulfur hexafluoride is a gaseous dielectric of great importance in the
electrical and communications industries as an insulating and quenching
medium in circuit breakers [48]. It alone or in a mixture with other gases
has the possibilities as a refrigerant. Its sysmmetric shape and the
presence of the six fluorine atoms make it of theoretical interest in the
study of intermolecular forces. Plasma environment studies of a body during
atmospheric reentry have created an interest in the effect of electrophilic
gases on high temperature plasmas. In particular, when SF6 is injected into
a supersonic plasma stream, a large eletron density reduction is observed
[49]. Recently, in the course of finding a method of simulating
blast-intercept loadings on full scale reentry vehicle models, the heavy gas
SF6 was used since it would produce high flow Mach numbers and high dynamic
pressures [50].

The polyatomic SF6 molecule has one sulfur atom surrounded by six
fluorine atoms in the form of a regular octahedron with 15 vibrational
degrees of freedom (see Appendix C). The characteristic modes of vibration
of SF6 with corresponding degeneracy factors and wave numbers [51] are
shown in Fig. BI.

The thermodynamic quantities are given by

P = pR T, a = VyP/p, U = Ma
m

In the frozen-gas model, only translational and rotational degrees of
freedom are excited to the new equilibrium state and the other degrees are
frozen at the initial state, thus

h - Yo RT
.Yo - 1 m

where
: Yo = 4 / 3

and

Y Yo

In the equilibrium-gas model, all vibrational, translational and rotational
modes are excited to the new equilibrium state immediately behind the shock
wave. The enthalpy and specific heats ratio are given by

h = Yo R T + nk Tk R
Yo - 1 m k exp(Tk/T-1) m

y/(Yo-1) + V

./(Yo-1) + V
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where

V = Y nkexp(Tk/T) Tk/T 2

k exp(Tk/T) - 1
and

Tk = hvk/K

with h being the Planck constant and K the Boltzmann constant.

The composition of SF6 has beeen computed by Frie [52] at atmospheric
pressure, including the chemical species of SF6, SF4, SF2, S2, F2, S, F, S

+ ,

S++ , F+, F- and e-. The variation of particle density with temperature for
SF6  is shown in Fig. B2. Minute amounts of SF4 and F begin to occur around
a temperature of 1000 K and the SF6 line drops from the total number of
particles (zni) line at a temperature about 1400 K, with the dissociation
reaching a peak slightly below 2000 K. The ionization of sulfur and
fluorine peaks at 12000 K and 17000 K, respectively. Frost and Liebermann
[48] have extended the computation of the composition of SF6 up to a
pressure of 16 atm and a temperature of 45000 K. Their results agree well
with the earlier calculation of Frie [52] at 1 atm. The compressibility
factor Z, which is an indicator of the number of moles of gas formed due to
dissociation and/or ionization from one mole of gas at room temperature, of
SF6 at various pressures and temperatures is reproduced from reference [48]
in Table BI. The value of Z in the temperature range from 1000 K to 2300 K
for several pressures is plotted in Fig. B3. It is seen in this figure that
the dissociation process is intensified with increasing temperature and
decreasing pressure as expected.

Using Table B1 and Fig. B3, the range of Mach number in which no
dissociation of SF6 occurs can be determined. In the discussions which
follow, larger than 5% of dissociation of the gas is considered significant.
According to the vibrational equilibrium-gas analysis at Ms = 11 with an
initial pressure and temperature P = 15 torr (2 kPa) and To = 300 K, the
pressure P1 = 2.53 atm, the temperature T1 = 1470 K with Z z 1.055 in region
(1) behind the incident shock front. Thus the vibrational equilibrium-gas
analysis predicts that dissociation will become significant at Ms > 11.
Since the comparison of the analytical and experimental results is done for
cases with Ms < 5.5, it is necessary to check if dissociation occurs
behind the reflected shock wave as well. As discussed in Sec. 4.6, for a
given Ms, the highest pressure obtained from reflection occurs at the RR
- DMR transition boundary. For M = 5.5, just before RR terminates, P2 =
5.11 atm and T2 = 790 K in region 2). However, this T2 is not high eno ugh
to cause significant dissociation to occur. Hence, in the range of Mach
number Ms < 5.5, no dissociation of the gas comes into play and only
vibrational excitation needs to be taken into account in the analysis.
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Mode k v k (cm- )  T k (K) n k

1 775 1114.5 1

2 644 954.8 2
3 960 1380.5 3
4 615 884.4 3
5 524 753.5 3

6 363 522.0 3

Fig. BI Characteristic modes of vibration of sulfur
hexafluoride with corresponding degeneracy
numbers, wave numbers and characteristic
vibrational temperatures.
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Table Bl

Compressibility Factor of Sulfur Hexafluoride [48]

T Z
(10 3 K) I atm 2 atm 4 am 8 atm 16 am

1.0 1.001 1.0001 1.0000 1.0000 1.0000

1.4 1.031 1.020 1.0133 1.0088 1.0059

1.7 1.669 1.4070 1.2490 1.1550 1.098

2.0 3.005 2.9050 2.6920 2.3040 1.8660

2.3 3.668 3.3340 3.1500 3.0410 2.9400

2.6 5.490 4.8100 4.1500 3.6280 3.3010

3.0 6.480 6.3000 5.9900 5.4810 4.8140

3.5 6.830 6.7360 6.6200 6.4720 6.2530

4 6.960 6.9220 6.8640 6.7790 6.6650

5 6.996 6.9920 6.9850 6.9700 6.9430

6 7.004 7.0020 6.9990 6.9950 6.9890

7 7.019 7.0130 7.0090 7.0050 7.0005

8 7.064 7.0450 7.0320 7.0230 7.0150

9 7.164 7.1190 7.0850 7.0610 7.0430

10 7.335 7.2500 7.1840 7.1340 7.0960

11 7.555 7.4370 7.3340 7.2500 7.1830

12 7.780 7.6500 7.5200 7.4040 7.3060

13 8.020 7.8700 7.7200 7.5850 7.4590

14 8.380 8.1400 7.9500 7.78400 7.6340

15 8.950 8.5500 8.2550 8.0250 7.8340

16 9.750 9.1600 8.7000 8.3500 8.0860

18 11.710 10.8b00 10.0700 9.4000 8.8660
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Table B1 (continued)

Compressibility Factor of Sulfur Hexafluoride [48]

T Z
(103 K) I atm 2 atm 4 atm 8 atm 16 atm S
20 13.150 12.5000 11.7100 10.8600 10.0650

22 13.940 13.5100 12.9500 12.2400 11.4200

26 14.770 14.5300 14.2200 13.8200 13.3100

30 15.780 15.3000 14.9400 14.6100 14.2600

35 19.010 17.8600 16.8000 15.9500 15.3000

40 21.230 20.5700 19.6600 18.5500 17.4000

i
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Appendix C

Vibrational Relaxation in Sulfur Hexafluoride

When a shock wave propagates through a gas, the translational and

rotational degrees of freedom of the gas molecules are excited to the new
equilibrium state in a few mean-free-path lengths. The other internal

degrees of freedom, on the other hand, require a much longer length to reach

their equilibria. Relaxation lengths play an important role in the analysis
of gasdynamic phenomena, In the case that the internal degree of freedom

whose relaxation length is much longer than a characteristic length of the
phenomenon, the internal degrees of freedom can be treated as frozen at the

" initial state. However, if the relaxation length of the internal degrees

of freedom is shorter than a characteristic length of the phenomenon, it can

be assumed to be in equilibrium behind the shock wave. If the relaxation

length and the characteristic length lie between the extreme cases of frozen

and equilibrium flow, the gas is in nonequilibrium. In the problem of

shock-wave reflection, a characteristic length of 1 mm is chosen [161.

Vibrational relaxation of the polyatomic molecule SF6  has been

extensively studied by ultrasonic methods [53, 54, 551 in the temperature

range of 200 K to 400 K. Vibrational relaxation times were determined by

time-resolved measurements of the post-shock density gradient using a laser

beam deflection technique over the temperature range of 450 K to 1050 K by

Breshears and Blair [56]. The vibrational relaxation time of SF6
attributable to SF6 - SF collisions is expressed as

, PT = 2.92 x 10- 3 exp(38.0 T /1 1 3)sec-atm

where P is the pressure in atm and T is the temperature in degree Kelvin.
Breshears and Blair also indicated that the ultrasonic data in the low

temperature range of 200 K to 400 K are in good agreement with their

relaxation time equation.

Using flow properties behind a shock wave and the vibrational

relaxation time equation, a vibrational relaxation length can be obtained.

The vibrational relaxation lengths behind a normal shock wave versus Mach

number are plotted in Fig. C1 for the diatomic gases N2 and 0 triatomic

gas CO2 and polyatomic gas SF6. rhese curves are for the initiai conditions

of PO = 15 torr (2 kPa) and T. = 300 K, and were obtained on the basis of

the theoretical and empirical analyses [56, 57, 58, 59]. It is clear from

Fig. C1 that for a given Ms , N2 has the longest vibrational relaxation

length, which is then followed by 0,, CO, and SF.. Among the four gases,
SF6 has the shortest vibrational reiaxation length. This ordering can be

explained in terms of the type of molecule (no. of vibrational degree of

freedom) and the vibrational characteristic temperature. To describe the

motion of N nuclei in a molecule, it needs 3N coordinates; there are 3N

degrees of freedom. For a diatomic and a linear triatomic molecule, there

are three translational and two rotational degrees of freedom. The number

of vibrational degrees of freedom becomes 3N-5. For a polyatomic molecule,

there are three rotational degrees of freedom instead of two, and thus there

are 3N-6 vibrational degree of freedom. Consequently, diatomic gases N2 and

02 have each one degree, linear triatomic gas CO, has four degrees and

polyatomic SF, has 15 degrees of freedom in vi!)ration. The vibrational
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characteristic temperatures Tk of these four gases are listed also in
Fig. C1. N2 has a much higher Tk than 02, therefore it needs a very high
temperature to get its vibrational mode excited. 02 can be excited at a
lower temperature, and it reaches equilibrium sooner than N thus for a
given Ms, its vibrational relaxation length is shorter than NV CO2 does
not only have more vibrational modes than 02, but also three of its four
TS are much smaller than that of 02. This implies that the first three
vibrational modes of CO2 are excited earlier, reaching equilibrium sooner
and have a shorter relaxation length than 02. Moreover, the last mode has
a TX that is higher than that of N2. It is expected that vibrational
excitation in CO2 will reach complete equilibrium at a temperature higher
than the other four gases.

The average T for SF6 is lower than for the other four gases and it
reaches vibrational equilibrium much faster than the others. Raising the
pressure at a given temperature enhances particle collisions and vibrational
equilibrium is reached more quickly. From Fig. A4, it is expected that
vibrational relaxation in SF6 at Ms < 1.7 with an initial pressure of 15
torr (2 kPa) and a temperature of 300 K will take place in less than 1 nmm.

However, at such a low Mach number, a relatively higher initial pressure is
required for the experiment. Increasing the pressure will shift the
vibrational relaxation length curve down, therefore no vibrational
relaxation length will be observed. Since the vibrational relaxation length
is less than 1 mm over the entire range of Mach number studied in this work,
it can be safely assumed that SF6 is in vibrational equilibrium.

C.
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100 -- \\Gas T k  n k

N2 3340.0 1

-002 2230.0 3

C02 960.2 2
1932.2 1
3380.3 1

10 SF6 522.0 3

753.5 3
884.4 3

"E 954.8 2

\\N2 1 1380.5 3

W 1.0

z

\ 2
,-

z

1 0 - -

z0 C02
-J

w

10- 2

S F6

I I I I I .
2 4 6 8 10

SHOCK MACH No. Ms

Fig. Cl Vibrational relaxation length behind shock wave

vs M at initial conditions of Po = 15 torr,
To = 300 K for various gases (after Refs. [56,

57, 58, 59] ). The characteristic vibrational
temperatures and degeneracy numbers for the
different gases are given in the table.
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