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Computing Optimal Sequential Allocation Rules In Clinical Trials®
: by

: Michael N. Katehakis and Cyrus Derman
SUNY at Stony Brook Columbia University

Abstract

The problem of assigning one of several treatments in clinical
trials is formulated as a discounted bandit problem that was studied
by Gittins and Jones. The problem involves comparison of certain

. state dependent indices. A recent characterization of the index is
used to calculate more efficiently the values of these indices.

1. Introduction: We consaider the well known problem of optimal allocation of

treatments in clinical trials. A simple version of the problem is as follows.

There are several possible treatments for a given disease. When a particular
treatment n is used it is either effective with unknown probability 6, or
» not effective with probability 1 - 8, . The problem is to find a sequential
sampling procedure which maximizes a measure of the expected total number of
treatment successes. When the planning horizon is infinite, prior distri-

butions are assigned to the unknown parameters, and one takes the expected

'a A A &N\

total discounted number of successes as the relevant measure of peformance of
a gequential sampling procedure, the problem can be put into the form of a
discounted version of the bandit problem treated successfully by Gittins and
Jones (1974). The original formulation of the multi armed bandit problem and

the sequential clinical trials problem ia due to Robbins (1952). Gittins and

Jones showed that there is an index associated with each atate of each bandit

-

¥work supported by USAF Contract AFOSR 840136, NSF Grants DMS-84-05413,
ECS-85-07671 and ONR Contract N00014-84-K-0244.

PN

(NN B AN RN A2 VRS Y O, A e A

P ¥t
LAY LN,

L)



" s a8

such that an optimal procedure always uses the bandit with the largest current

index value. Recently, Katehakis and Veinott (1985) have obtained a new chara—
cterization of the index which allows the index to be more easily calculated.
The purpose of this paper is to illustrate the calculation of the index in the

context of the clinical trials problem using this new characterization.

2. Computing Dynamic Allocation Indices: Suppose N treatments are available

for treating patients with a certain disease. Let Yp(k) =1 ( Yp(k) = 0)
denote the outcome that the n'h treatment has been successful (unsuccess-
ful) the kth time it is used. At times t = 1,2,.., based on past
observations, one has to decide which treatment to allocate to the next patient.
At the start of the experiment we assume that 8, is a random variable with
Beta prior density with parameter vector (ap, byp); i.e., 8p has the prior
density

(1) g.(8) = [(a )l(b ){T(a+b)} 6% la-aPnl | yga0,

where in (1) a. bn are strictly positive constants. Furthermore, we assume
that 0},...,0n are independent. If after k trials using treatment n we
let xn(k) = (sn(k), f‘n(k)) » where sn(k) (fn(k)) denotes the number of
successes (the number of failures) then, the posterior density of 68 given
xn(k) is also Beta with parameter vector (an + sn(k), bn + fn(k)) . Thus,
the information obtained during the first k trials from treatment n is
summarized by xp(k) . Furthermore, ({xn(k), kal} is a Markov chain on
8 = {((s,f) , s,f =0,1,2,...} with transition probabilities given by

(2) P(xp(k+l) = (s+1,f) | xn(k) = (s,f)) e ““"’V

1 - P(xp(k+1) = (s,f+1) | xg(k) = (s,1)) :

P(Yp(k+l) = 1 | xp(k) = (s,f))
a, +s

an+bn+s+{ *
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The problem is to determine a policy ®n which maximizes the expected

discounted number of successes; i.e., to maximize w(mw,x)

3 wmao = [ BOED &y ) g 0d0)). . ayde)

where Yy(t) is Yp(k) if at time t treatment w(t) is used for the kth
time and a € (0, 1) is a discount factor. An interpretation of the discount
factor a is that 1 - « is the probability that at any given time the
entire experiment will be terminated. Stated otherwise, there are N Markov
chains; the problem is to sequentially activate one of them, leaving the

others inactive, in order to maximize the expected total discounted reward.

In this case the expected reward at any time is the expected posterior proba-
bility of success associated with the state of the activated Markov chain;

i.e., if the nth chain is activated for the kth time when xn(k) = (8,f) ,

then, the corresponding reward is

(4) rp(s,f) = E(Yp(k+l) | xp(k) = (s,f))

a +s8
n

a +b +s+f
Within the context of this formulation, Gittins and Jones (1974) showed that
this problem can be reduced to N one dimensional problems. Each of the
latter problems involves a single Markov chain and its solution is the
calculation of a dynamic allocation index mp(s,f) associated with the current
state (s,f) of the Markov chain. Then, at each point of time an optimal po-
licy for the original problem is such that it activates the chain with the
largest current index value. Based on an earlier characterization of

(1-) "}

mp(s,f) , Gittins and Jones(1979) used an algorithm for computing opti-
mal policies. Recently, Katehakis and Veinott (1985) have obtained a different

characterization of the index. This characterization casts the calculation of

the index into the form of a familiar replacement problem, e.g., see Derman




(1970, pp. 121). Namely, if C is the class of policies R for controlling
{xp(k) , kal} by either allowing it to continue or to instantaneously restart

it at its initiel state xp(1l) = (s,f) , then,

(5) mp(s,f) = sup {ER(I:::lak—lrn(xn(k)) | xp(l1) = (8,f))} . .

We next show that (5) can be used to evaluate mp(s,f) with sufficient
accuracy. In the sequel we will be concerned with a single treatment; for
notational simplicity we will drop the subacipt n . Since computing m(s,f)
is essentially the same as computing m(0,0) - it only involves changing the
prior vector from (a,b) to (a + 8, b + f) - it guffices, without loss of
) generality, to discuss only the computation of m(0,0) . It is well known that
H solving (5§) for a fixed initial state (0,0) involves solving the dynamic

programming equations

- a a b '
b (6) V(s,f) —max{a+b+a [a+bV(1,0) +a—+-E-V(0,1)] , !
a8 o (—2 S oy, f) + —2 2ty )
a+b+s+f a+b+s+f ' a+b+a+f ’ i

¥ (s,f) eS .

That the above equation (6) is for computing m(0,0) is reflected in the {
appearance of the terms V(1,0) and V(0,1) in the right side of (6). Given
the solution {V(s,f), ¥ (s,f) € S} of (6) then m(0,0) = V(0,0) .

Equation (6) is of the form V(s,f) = TgfV or equivalently
(7 V=1V
where in (7) V is the vector of values (V(s,f)} and T is a contraction

operator on a complete metric space. Thus, it has a unique bounded solution.

In computing the solution of (7) we consider the finite subset

’L = ((s,f) € 8: 8+ f 6L} and the two systems of equations
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(8a) uL(l.f) = rsf“L , if s+ f 6L,
_ a+s 1 . -

(%a) UL(s,f) = TstL » if s+ f 6L,

(%) U (s,f) = 7 , if s+ £ = L.

We will use the following more compact notation for (8) and (9)

(8c) u

A L A

(9c) U

L= Y -

The transformations T , Tl , Té are monotone contractions, thus, succes-

sive approximations will converge to their unique fixed points for any initial

points V(o). uio), Uéo) . That is,
(10) %i: v® %3: we D _y ,
ay  lis w® = lin Tl oy
12)  lis ol® = lim o™ =g .

Moreover, if the points V(o). “£0)’ Uéo) are chosen propitiously, the con-

vergence in (10), is from below or above as desired and from below (above) in
(11) ((12)).

An algorithm to compute V(0,0) based on (10) involves an infinite number
of variables; however, propositions 1 and 2, below, allow us to use (11) and
(12) which involve only a finite number of variables. The proof of proposition

1 is easy and it is omitted.

Proposition 1: For equations (7), (8) and (9) we have

1

(13) ats 7l G vis,t) 6 (1 -a)”

a+b+ts st (1l -« for all (s,f) ¢ 8 ,

and
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(14) un(s.f) 6 V(s,f) & UL(s.f) , for all (s,f) such that s + f 6 L .

Proposition 2: For any € > 0 there exist an LO = L(e) such that

(15) UL(O,O) - uL(O,O) 6 ¢, forall La L0

Proof: Because of (14) it suffices to show that for any positive constants
€ and €, there exist L1 = L(t—:l) and I.2 = L(ez) such that

(16) UL(O.O) - v(0,0) s € o for all L a L1 ,
and

(17) v(0,0) ~ uL(O.O) & € for all L a L2 .
We only prove (16) since the proof of (17) is analogous.

If we take U£°) =v(® - (1 0! in (10) and (12) then, for any L and all

n € L we obtain that
a8y ui™0,0) = v®(0,0) ,

and the convergence in (10), (12) is from above; thus, using (10) and the fact

that V(s,f) a 0 we have

(19) v(®(0,0) - v(0,0) « asup{ V(¥ (s,f) - V(s,f) } ¢ (1 o)L .
(s,f)

It follows from (18), (19) that for any L and for all n & L
200 u{™(0,0) - v(0,0) & ™1 -a)7) .

Similar arguments using (12) imply that for all n a1l
(n) n ~1
(21) UL (0,0) - UL(O.O) &« x (1 -a) .

Thus, using (20) and (21) it is now easy to complete the proof of (16).

Remark: It was assumed that each clinical trial resulted either in a success
or in a failure. The methodology described here extends straightforwardly to

the case where the outcome of a trial can be classified into ¢ , ¢ » 2 ,

1

classifications. Then the parameter On , is a vector (on,....eﬁ) where 6;
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is the probability of the trial resulting in the ith clagsification. The
Beta prior is replaced by a Dirichlet prior and the state space becomes

S = {(sl,...,sc) » 85 = 0,1,... } , where s, denotes the number of trials
resulting in classification i ( 1 € i €§ ¢ ) . The reward is a given function

of the classification; see ,also, Glazebrook (1978).

3. Computations: For a given (a,b) in order to compute m(0,0) = V(0,0) we

use transformations Tl and 'l'2 starting from
(0) _ a+s 1
u, () Ty T s v FflI-a
and
(0) 1
UL (s,f) = l-a

We choose L sufficiently large according to proposition 1 and iterate until
the difference: 0.™(0,0) ~ u{™(0,0) is small . We, then, take as our
approximation to V(0,0) the mid point of the final interval.

Since there is always an error in computing the indices, the possibility
of not using an optimal policy always exists. In our context, here, this can
be overcome by doing enough computations to guarantee that in computing the
indices the bounding intervals do not overlap. However in general, Katehakis
and Veinott (1985) have shown that if the computed indices are close to the
exact indices then the expected discounted return of the policy based on the
computed indices will be close to the optimal expected discounted return.

In the following tables the results of some calculations are tabulated.
There is a separate table for each value of &« = .5, .75, .9 . An entry in
cell (a+s,b+f) is the index for a treatment having prior (a,b) and in
state (s,f) .

Note that the numbers in table 2 (for a+s, b+f = 1,2,...5) are consistent

with those published by Gittins and Jones (1979).

e B
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Table 1 (ax = .5)
b+f 1 2 3 4 5 10 20 30 40 50 | 100
at+s
1 1.118| .751] .560| .444) .367| .194| .099]| .066] .049{ .039{ .019
2 1.411{1.071( .859| .715f{ .611| .351]| .188| .128{ .097{ .078{ .039
3 1.554|1.257|1.051| .902| .789| .482| .269| .186| .1l42| .115] .058
4 1.63911.379|1.187|1.040| .925{ .592| .342| .240| .185§ .150| .077
5 1.697|1.466}1.288}1.147|1.032] .688| .410| .291| .226] .184| .096
10 |1.829(1.683|1.558{1.449}1.354|1.017| .677| .507| .405( .337| .183
20 |1.908/1.82411.747]|1.675{1.609|1.344{1.008| .807] .672| .575| .335
30 11.93711.878)1.822}1.769/1.720{1.507|1.207]|1.005} .862| .754| .463
40 [1.952|1.906{1.863}1.821]1.781{1.605/1.338|1.148]1.004] .892| .573
50 {1.961|1.924{1.888|1.854{1.820(1.670{1.433/1.25411.115]1.003} .668
100 |1.980(1.961}1.942|1.923}1.905]/1.819{1.668|1.540{1.430|1.335{1.001
Table 2 (x = .75)
b+f 1 2 3 4 5 10 20 30 40 50 | 100
at+s
1 2.48411.70211.272]1.007( .829} .428| .212| .139| .104| .083} .040
2 2.986]2.303]|1.856{1.548|1.322] .754| .397} .267] .201} .161| .080
3 3.22412.64212.221|1.909{1.672|1.018| .563| .386| .293f .236| .119
4 3.367}2.863]2.476]2.174§1.935]1.240| .712] .497| .381| .308| .157
5 3.46313.019|2.663)2.378)2.143]1.429} .848| .600| .463| .377| .194
10 {3.689(3.410(3.164}2.948(2.758{2.076{1.383|1.034| .824] .685| .370
20 |3.827)3.666}3.516{3.375{3.245|2.715|2.039{1.631|1.358{1.163| .676
30 }3.880|3.766{3.65713.554|3.456[3.033{2.431{2.026/1.73711.519| .933
40 |3.908|3.819|3.734|3.652|3.574|3.224{2.691|2.308|2.020{1.795]|1.153
50 |3.925]3.853|3.783|3.715|3.649|3.351|2.877|2.519{2.240{2.016}1.343
100 |3.961]3.923{3.88613.849|3.813|3.643|3.342]3.087|2.867|2.676]2.008
8
e N e ot e T et T S T e et O e R e TSN N
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1 7.028|5.001|3.796{3.021]12.488(1.269| .608( .391}| .287| .226] .110
2 7.999|6.346|5.163}4.342(3.72112.117|1.099{ .732]| .545| .433] .212
3 8.541|7.071|6.00115.18414.56212.785|1.526{1.039| .784} .629| .313
4 8.721|7.538!6.578{5.809|5.179/3.333|1.906{1.322]|1.008) .813] .411
5 8.904|7.868|6.996{6.276{5.676{3.800{2.249[1.585]1.219] .989| .506
10 [9.341(8.694{8.103(7.572(|7.101{5.373|3.582(2.67412.129(1.767| .951
20 [9.620§9.243{8.883|8.543[8.223{6.905{5.197|4.160]3.462|2.964|1.718
30 |9.72919.461}9.201}8.950|8.710{7.664]16.157]|5.135/4.403]3.851]2.363
40 |9.789]9.580]9.375]|9.177|8.985|8.12116.792|5.830}5.102{4.537|2.912
50 [9.827]9.655|9.486|9.322]/9.161|8.426(7.246]6.34915.647(5.082]3.387
100 |9.907]9.816}9.726|9.637|9.549|9.128(8.382|7.745{7.196|6.719|5.042
References.

Derman, C. (1970). Finite State Markovian Decision Processes. Academic Press,
New York.

Gittins, J. C. and D. M. Jones (1974). A Dynamic Allocation Index for the
Sequential Design of Experimenta. In J. Gani, K. Sarkadi and I. Vince
(eds.), Progress in Statistics, North Holland, 241-266.

Gittins, J. C. and D. M. Jones (1979). A Dynamic Allocation Index for the dis-
counted multiarmed bandit problem. Biometrica, 66, 561-565.

Gittine, J. C. (1979). Bandit Processes and Dynamic Allocation Indices. J. Roy.

Statigt. Soc. Ser. B 41, 148-164.

Glazebrook, K. D. (1978). On the optimal allocation of two or more treatments

in a controlled clinical trial. Biometrica, 65, 335-340.




- o« -

P

RS

‘l"'

1 o Lt

e a s 4

[P AL BN

Katehakis M. N. and A. F. Veinott Jr. (1985). The Multi-Armed Bandit Problem:
Decomposition and Computation. Department of Oper. Rea., Stanford Univ.,
Technical Report, 13pp.

Robbins H. (1952). Some Aspects of the Sequential Design of Experiments.

Bull. Amer. Math. Monthly. 58, 527-586.

10




N R U UL A R AL S Rt ‘w4 p E A A A EAR A A AL A At 4 R A N, B AL AR Y% )

v
-

PN

&

'y,

>

Dy

- - -
L

=
~

L g Py




