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computing Optimal Sequential Allocation Rules In Clinical Trials*

by

Michael N. Katehakis and Cyrus Deruan
SUNY at Stony Brook Columbia University

Abstract

The problem of assigning one of several treatments in clinical
trials is formulated as a discounted bandit problem that was studied
by Gittins and Jones. The problem involves comparison of certain
state dependent indices. A recent characterization of the index is
used to calculate more efficiently the values of these indices.

1. Introduction: We consider the well known problem of optimal allocation of

treatments in clinical trials. A simple version of the problem is as follows.

There are several possible treatments for a given disease. When a particular

treatment n is used it is either effective with unknown probability en or

not effective with probability 1 - On . The problem is to find a sequential

sampling procedure which maximizes a measure of the expected total number of

treatment successes. When the planning horizon is infinite, prior distri-

butions are assigned to the unknown parameters, and one takes the expected

total discounted number of successes as the relevant measure of peformance of

a sequential sampling procedure, the problem can be put into the form of a

discounted version of the bandit problem treated successfully by Gittins and

Jones (1974). The original formulation of the multi armed bandit problem and

the sequential clinical trials problem is due to Robbins (1952). Gittins and

Jones showed that there is an index associated with each state of each bandit

Nork supported by USAF Contract AFOSR 840136, NSF Grants DtMS-84-05413,

BCS-85-07671 and ONR Contract N00014-84-K-0244.
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such that an optimal procedure always uses the bandit with the largest current

index value. Recently, Katehakis and Veinott (1985) have obtained a new chara-

cterization of the index which allows the index to be more easily calculated.

The purpose of this paper is to illustrate the calculation of the index in the

context of the clinical trials problem using this new characterization.

2. Coputing Dynic Allocation Indices: Suppose N treatments are available

for treating patients with a certain disease. Let Yn(k) = 1 (Yn(k) =0 )

denote the outcome that the nth treatment has been successful (unsuccess-

ful) the kth time it is used. At times t = 1,2,..., based on past

observations, one has to decide which treatment to allocate to the next patient.

At the start of the experiment we assume that On is a random variable with

Beta prior density with parameter vector (an, bn); i.e., On  has the prior

density

(1) gn(e) = r(a )(bn)mf(a n+ bn)}-l an-l( 1 -6..)bn - - 1 & 0

where in (1) an , bn are strictly positive constants. Furthermore, we assume

that 81,...,On are independent. If after k trials using treatment n we

let xn(k) = (s (k), f (k)) , where s (k) (f (k)) denotes the number ofnn n n n

successes (the number of failures) then, the posterior density of On given

x(k) is also Beta with parameter vector (an + Sn(k)' b + fnW) - Thus,

the information obtained during the first k trials from treatment n is

summarized by xn(k) . Furthermore, (xn(k), kal) is a Markov chain on

S = {(s,f) , s,f = 0,1,2,... with transition probabilities given by

(2) P(xn(k+l) = (s+l,f) I xn(k) = (s,f))

= I- P(xn(k+l) (s,f+l) I xn(k) = (s,f))

= P(Yn(k+l) = 1I xn(k) = (s,f))

% + bn + + f

2



The problem is to determine a policy w which maximizes the expected

discounted number of successes; i.e., to maximize w(ir,4)

(3) Wita) =.. ( Et at - Y (t) gl(d@l)...gN (dON)

where YU(t) is Yn(k) if at time t treatment n(t) is used for the kth

time and a e (0, 1) is a discount factor. An interpretation of the discount

factor a is that I - a is the probability that at any given time the

entire experiment will be terminated. Stated otherwise, there are N Markov

chains; the problem is to sequentially activate one of them, leaving the

others inactive, in order to maximize the expected total discounted reward.

In this case the expected reward at any time is the expected posterior proba-

bility of success associated with the state of the activated Markov chain;

i.e., if the nth chain is activated for the kth time when xn(k) = (s,f) ,

then, the corresponding reward is

(4) rn(s,f) = E(Yn(k+l) I xn(k) (s,f))

a + s
n

a +b +s+f
n n

Within the context of this formulation, Gittins and Jones (1974) showed that

this problem can be reduced to N one dimensional problems. Each of the

latter problems involves a single Markov chain and its solution is the

calculation of a dynamic allocation index mn(s,f) associated with the current

state (s,f) of the Markov chain. Then, at each point of time an optimal po-

licy for the original problem is such that it activates the chain with the

largest current index value. Based on an earlier characterization of

(-a)- Imn(s,f) , Gittins and Jones(1979) used an algorithm for computing opti-

Mal policies. Recently, Katehakis and Veinott (1985) have obtained a different

characterization of the index. This characterization casts the calculation of

the index into the form of a familiar replacement problem, e.g., see Derman

3
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(1970, pp. 121). Namely, if C is the class of policies R for controlling

(xn(k) , kbl} by either allowing it to continue or to instantaneously restart

it at its initial state xn(l) = (s,f) , then,

(5) n(s,f) sup (E( a k-lrn(xn(k)) I Xn(l) = (s,f))) .
Rp R k=l"

We next show that (5) can be used to evaluate mn(s,f) with sufficient

accuracy. In the sequel we will be concerned with a single treatment; for

notational simplicity we will drop the subscipt n . Since computing m(s,f)

is essentially the same as computing m(0,0) - it only involves changing the

prior vector from (a,b) to (a + a, b + f) - it suffices, without loss of

generality, to discuss only the computation of m(O,0) . It is well known that

solving (5) for a fixed initial state (0,0) involves solving the dynamic

programming equations

a a b(6) V(s,f) =max a+b +  a +b V(1,0) + V(,1)]
a + b

a+s a ++ b+f (sf+l)a a+f a + b + a + f a~~f + b s+fal)]}f

V (s,f) 6 S

That the above equation (6) is for computing m(0,0) is reflected in the

appearance of the terms V(1,0) and V(0,1) in the right side of (6). Given

the solution (V(s,f), V (s,f) e S} of (6) then m(O,O) = V(0,0)

Equation (6) is of the form V(s,f) = TsfV or equivalently

(7) V = TV

where in (7) V is the vector of values (V(s,f)) and T is a contraction

operator on a complete metric space. Thus, it has a unique bounded solution.

In computing the solution of (7) we consider the finite subset

SL = ((sf) e S a + f a L} and the two system of equations

4



(8a) uL(e,f) = TsfuL , if 8 + f & L,

(8b) UL(Sf) = a + if s + f L,

(9a) U L(S~f) = TfUL  ,if s + f L,

1
(9b) UL(s~f) = 1 if a + f =L.

We will use the following more compact notation for (8) and (9)

(8c) uL = T1U L

(9c) UL = TU

The transformations T , T T2  are monotone contractions, thus, succes-

sive approximations will converge to their unique fixed points for any initial

points V(0), uL) U(L0) That is,

(10) lim V( n ) = lim T1V( n - 1) = VU,
_-f (n-)ftL

(12) i (n) Lin T 1 (n-1)

*(12) (0) U - (n-1) U (

Moreover, if the points V (0 ), U(L) U( ) are chosen propitiously, the con-

vergence in (10), is from below or above as desired and from below (above) in

; (11) ((12)).

An algorithm to compute V(0,0) based on (10) involves an infinite number

of variables; however, propositions 1 and 2, below, allow us to use (11) and

(12) which involve only a finite number of variables. The proof of proposition

I is easy and it is omitted.

Proposition 1: For equations (7), (8) and (9) we have

(13) ab + S (I - X) • V(s,f) A (I - a)- for all (s,f) e S ,

and

5



(14) uL(s,f) A V(s,f) A UL(s,f) , for all (s,f) such that s + f ' L

Propositiou 2: For any s 0 there exist an L = L(e) such that

(15) UL(0,0 ) - uL(O,O) •c , for all L h L0 .

Proof: Because of (14) it suffices to show that for any positive constants

C1 and r2 there exist L1 = L(e1) and L2 = Us 2 ) such that

(16) UL(O,O) - V(0,0) e I , for all L b L1

and

(17) V(O,0) - uL(O,0) ' f2 , for all L a L2 .

We only prove (16) since the proof of (17) is analogous.

If we take U(O) = V(0 ) = (1 -*)-1  in (10) and (12) then, for any L and all

n & L we obtain that

(8 (n)(0,O) = v(n)(010) ,
(18) uL

and the convergence in (10), (12) is from above; thus, using (10) and the fact

that V(s,f) & 0 we have

(19) V(n)(o,o) - V(0,0) A ansup{ V()(sf) - V(s,f) an( -a)-

(s,f)

It follows from (18), (19) that for any L and for all n • L

(20) U(n )(O,O) - V(0,0) . an(, _a)-1

L

Similar arguments using (12) imply that for all n b 1

(21) U (n ) (0,0) - UL(OO) ' n (In -a)- I

Thus, using (20) and (21) it in now easy to complete the proof of (16).

Remark: It was assumed that each clinical trial resulted either in a success

or in a failure. The methodology described here extends straightforwardly to
5%

the case where the outcome of a trial can be classified into c , c b 2 ,

classifications. Then the parameter 0 , is a vector (01 . . . , c) where oi
n n n

400
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is the probability of the trial resulting in the ith classification. The

Beta prior is replaced by a Dirichlet prior and the state space becomes

S = (s ,  , c ) , si = 0,1,... ) , where a. denotes the number of trials

resulting in classification i ( I d i ' c ) . The reward is a given function

of the classification; see ,also, Glazebrook (1978).

3. Computations: For a given (a,b) in order to compute n(0,0) = V(O,O) we

use transformations T and T2  starting from

(0) a+s 1U ' a + b + s + f - a'

and

U(0) ( )= 1
UL I - a ,

We choose L sufficiently large according to proposition I and iterate until

the difference: U((n) (0,0) - is small . We, then, take as our
L uL

approximation to V(0,0) the mid point of the final interval.

Since there is always an error in computing the indices, the possibility

of not using an optimal policy always exists. In our context, here, this can

be overcome by doing enough computations to guarantee that in computing the

indices the bounding intervals do not overlap. However in general, Katehakis

and Veinott (1985) have shown that if the computed indices are close to the

exact indices then the expected discounted return of the policy based on the

computed indices will be close to the optimal expected discounted return.

In the following tables the results of some calculations are tabulated.

There is a separate table for each value of a = .5, .75, .9 . An entry in

cell (a+s,b+f) is the index for a treatment having prior (a,b) and in

state (s,f)

Note that the numbers in table 2 (for a+s, b+f = 1,2,...5) are consistent

with those published by Gittins and Jones (1979).
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Table 1 (a = .5)

b+f 1 2 3 4 5 10 20 30 40 150 1008+6

1 1.118 .751 .560 .444 .367 .194 .099 .066 .049 .039 .019

2 1.411 1.071 .859 .715 .6111 .351 .188 .128 .097 .078 .039

3 1.554 1.257 1.051 .902 .7891 .482 .269 .186 .142 .115 .058

4 1.639 1.379 1.187 1.040 .925 .592 .342 .240 .185 .150 .077

5 1.697 1.466 1.288 1.147 1.032 .688 .410 .291 .226 .184 .096

10 1.829 1.683 1.558 1.449 1.354 1.017 .677 .507 .405 .337 .183

20 1.908 1.824 1.747 1.675 1.609 1.344 1.008 .807 .672 .575 .335

30 1.937 1.878 1.822 1.769 1.720 1.507 1.207 1.005 .862 .754 .463

40 1.952 1.906 1.863 1.821 1.781 1.605 1.338 1.148 1.004 .892 .573

50 1.961 1.924 1.888 1.854 1.820 1.670 1.433 1.254 1.115 1.003 .668

100 1.980 1.961 1.942 1.923 1.9051.819 1.668 1.540 1.430 1.335 1.001

Table 2 ( = .75)

b+f 1 2 3 4 5 10 20 30 40 50 100
a+s

1 2.484 1.702 1.272 1.007 .829 .428 .212 .139 .104 .083 .040

2 2.986 2.303 1.856 1.548 1.322 .754 .397 .267 .201 .161 .080

3 3.224 2.642 2.221 1.909 1.672 1.018 .563 .386 .293 .236 .119

4 3.367 2.863 2.476 2.174 1.935 1.240 .712 .497 .381 .308 .157

5 3.463 3.019 2.663 2.378 2.143 1.429 .848 .600 .463 .377 .194

10 3.689 3.410 3.16412.948 2.758 2.076 1.383 1.034 .824 .685 .370

20 3.827 3.666 3.516 3.375 3.245 2.715 2.039 1.631 1.358 1.163 .676

30 3.880 3.766 3.667 3.554 3.456 3.033 2.431 2.026 1.737 1.519 .933

40 3.908 3.819 3.734 3.652 3.574 3.224 2.691 2.308 2.020 1.795 1.153

50 3.925 3.853 3.783 3.715 3.649 3.351 2.877 2.519 2.240 2.016 1.343

100 3.961 3.923 3.886 3.849 3.813 3.643 3.342 3.087 2.867 2.676 2.008

8
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Table 3 (a =.9)

a8b+f 1 2 3 4 5 10 20 30 40 150 100I a+sb~

1 7.028 5.001 3.796 3.021 2.488 1.269 .608 .391 .287 .226 .110

2 7.999 6.346 5.163 4.342 3.721 2.117 1.099 .732 .545 .433 .212

3 8.541 7.071 6.001 5.184 4.562 2.785 1.526 1.0391 .784 .629 .313

4 8.721 7.538 6.578 5.809 5.179 3.333 1.906 1.322 1.008 .813 .411

5 8.904 7.868 6.996 6.276 5.676 3.800 2.249 1.585 1.219 .989 .506

10 9.341 8.694 8.103 7.572 7.iOl 5.373 3.582 2.674 2.129 1.767 .951

20 9.620 9.243 8.883 8.543 8.223 6.905 5.197 4.160 3.462 2.964 1.718

30 9.729 9.461 9.201 8.950 8.710 7.664 6.157 5.135 4.403 3.851 2.363

40 9.789 9.580 9.375 9.177 8.985 8.121 6.792 5.830 5.102 4.537 2.912

50 9.827 9.655 9.486 9.322 9.161 8.426 7.246 6.349 5.647 5.082 3.387

100 9.907 9.816 9.726 9.637 9.549 9.128 8.382 7.745 7.196 6.719 5.042
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