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1.0 INTRODUCTION -
During the course of the past several years, a theory based S?
F on the variational method, along with associated computer codes, ‘;
has been developed at Panametrics for analyzing the electromagnetic 'E
scattering and absorption from thin conductive fibers of arbitrary ‘g
P size, conductivity and orientation.l [Extensions and refinements ‘.
of this theory have now been completed and programmed, as described 3
herein. ;f
We begin by summarizing the basic equatiﬁns used in the :E
.
variational computation for arbitrary fibers, The quasistatic g;
model appropriate at long wavelengths is then derived, followed :
by the infinite cylinder computation which should be accurate for ;E
wavelengths short compared with cylinder length. :?
®
In order that the computations may be extended into the g
infrared and visible regimes, it is necessary to incorporate the Ei
optical properties of the fibers. We do this by employing the l
Drude model for conductivity (or complex dielectric constant), and E
also introducing the dependence of conrnductivity on both fiber ;
diameter and electron mean free path. i
3
Numerical results are then presented for copper and lead -3

\

fibers, and the approximate methods are seen to agree very well

»
with the variatiomal computation in those limiting regions where :
they should apply. ‘j
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Curved fibers are considered in Section 4. An exact integral
equation is derived for the gemeral case, and some approximate
h results are them givenm for special fibers. In Section 5, we
consider the optimum conditions for target obscuration by a cloud
of particles from a mass efficiency standpoint., Finally, Section
h' 6 deals with particle optimization studies under varying require-

ments on absorption, reflection and transparency of the particle

cloud.

2.0 THEORY

2.1 The Variational Equations

The variational method has been discussed often;1'4 we will

simply summarize the important equations here. The basic integral

equation is

® 2n /2
i i k 0. - 1 ink . 92
Eo sin @jeldXZ €08 9y = I(z) Z + 75 == I(z') {1 + —»5——p
o _%/2 k“9z'

with surface impedance Z given by

g Io(ga)
Z = - (2)
2nkoa (e'" + ie') Ij(ga)

2 2
® 82 = kg° [(cos @y - €') + ie"l .

For the current I(z) one assumes

I = IO {fc(l) +Afs(2)]v
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where
fc(z) = cos kz cos gx - cos x cosqkz
fs(z) = sin kz sin qx - sin x sinqkz
qQ = cos ©; x = k//2.

For the constant A appearing in Eq. (3), the variational method

then gives

g (v, _ A))
gc(ys - ls)

»

in terms of the coefficients

2n /2y L2\ kR
Yc = 5= d@ fc(Z)fc(Z') 1 + 7 p) R dz 'dz
0 k™ oz’

-

=

~L129-012

2n 2/2 s
ok b , 1 92\ (IR
.Ys - -—ﬂ d‘ fs(z)fs(z ) 1 +? '2 R dz dz
0 8z

-02%-0/2

41 jzi rl/2
Ay = - fc (z)dz
—£/2

L&

4x jZi L2

ls = _—_T\— fs(z)dz
o
=412
bz ik os ©
c .
gc = k sinm OiJ‘ fc(z)eJ z S Fig,
-£12
212
. jkz cos ©4
8s = k sin 0j fg(z)e dz
-2

all of which can be evaluated explicatly.



The extinction, absorptiomn and scattering cross—-sections are

then given explicitly by

4n L s
0 (03) = Im — - =
L2 (‘rc ~ Y N

4n Re (2Z) s
ca (03) = - == _S—-r Iacl + P Iagl
k 1zl Ye c s s
4(1-p2) | { e cosq x
og (03, O0) = — 7= % )3 (sin x cospx~pcosx sinp x)
k \ c c (1-p7)
- —L08 X_ (4 singx cospx -pcosgx sinp x)
2 2
(g0 - p7)

. Es sin gx . .
+ j — 2 (p sinx cospx —-cosx sinpx)
Ts s

(1-p7)
sin x 2
S S (p singx cospx —-q cosqx sinpx) p=cos © x=kf{/2 (7)
(¢- - p7)

2.2 The Quasistatic Model

In the following, we re-derive the equatioms of Ref., 5 and 6
for absorption, scattering, and extinction worked out in 1965.
Although the previous equations are satisfactory at radar freque-
ncies, one must consider the relaxation effects of Sections
2.4 and 2.5 when calculating optical and infrared electromagnetic

interactions,
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N
First consider the electric field E; inside a long, thin R
'."4
spheroid, given by .'*
5

[
-
E; = E, - L 41 P, (8) ‘:
“
_ where L = depolarizing factor, P = polarization, and E, = homo- .
geneous applied field. In the case of a lomg, thin spheroid, o
which is a good approximation to our conductive filament, the 1
t. depolarizing factor is
2 :.:l
L= 42 ga(d)-11, (9) %
i a .
P'
. o)
where a = particle radius and (= particle length. -~
The definition of the polarization is =
o ®
(e-1) Ei
P = BT (10) :::
v
e : : . . ,
where ¢ = normalized dielectric constant. Combining (9) and (10) .
b
~
we see that the internal field is given by b
o E .
Ej 1 + L (e-1) (11) 'I'.:..
We next take ¢ to be complex, i.e., ¢ = e’ + ieg . The internal f:f:

o field then becomes
"o _ . — . 1] .::
E; = E, { 1 + L(e’'—-1) Le . iLe 112.,8} (12) %
[L(e’-1) + 11° + [Le"] v
. A
and we see that, in the gquasistatic approximation, we have both .:;:
o~
an in-phase and a quadrature component of the intermal field. -
5
e
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The electric dipole moment of our Rayleigh particle is

defined in terms of the polarization as

p(l) = PV, (13)

where Vp = particle volume. The polarizability a of the particle

is related (by definition) to the dipole moment as follows:

p(1) = a E, . (14)

Combining (12), (13), and (14), we obtain the needed expression

for the complex electric polarizability of the particle:

a =(‘12) {(8"‘1)[1 + L(C"‘l)] + Lg"22+ ien} (15)
)

4n [L(e’-1) + 112 + [Le"

The well known extinction theorem® relates the extinction
cross section of any scatterer to its normalized forward scattering

amplitude, S(0) by the following relation:

4n
Sext = —3 Re {8(0)}, (16)
k
where ogyt = extinction cross section, k = 2n/ky,, Ao = free space

wavelength of the incident wave. Correct to order k6, S(0) is

related to the polarizability by6

S(0) = ik3 ¢ + -§- k6 a2, (17)

where the complex polarizability is givem by Eq. (15).
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The absorptionm and scattering cross sections are, respec-

tively, given by

4n k Re (-ia) (18)

"

Cabs

8
and O'sca = 3- ﬂk4 Ialzp (19)

where a is given by Eq. (15). After comnsiderable manipulation,

the following expressions for the cross sections emerge:

3
k°V

Sext = kVpIB + —g=X (B2 + A2)] (20)
Sabs = kVpB (21)

4. 2

v
Csca = Eg;z' (A2 + B2) (22)
(e’'-1) + L[(e'-1)2 + ¢''2)

A o) — (23)

[1 + L(e'-1)]1" + [Le"]
B = £ (24)

[1 + L(s'—1)]2 + [Ls"]~2

and, in summary from the preceding sections plus Sec. 2.4 and 2.5,

et =1 - oI [____l____ (25)
£o 1 + (mr)2
e = =L [ 1 ] (26)
“Eo |1 + (wr)?
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L = 4(5—‘) fencd) -13 (27)
a
o =0, [1~3 (1-c) (D) (28)

In an attempt to amalyze the effects of Eqs. (25) and (26)
on the absorptiom cross section, we have substituted these
expressions into Eq. (24), and then inserted Eq. (24) into
Eq. (21). The resulting expression for absorption cross section
is too complicated for easy amalysis. However, there is no doubt
that in the regime of (wt)2 <« 1, the absorptiom cross section
is, in general, diminished from its value without the inclusion
of relaxation effects. It turns out that, for copper, wt = 1

corresponds to A, =2 30 micronmns.

We have recently shown that (at least, for the filament
types of interest here), we cam greatly extend the regionm of
applicability of the quasistatic theory by letting L= n/k, in the
kof > 1 regime. We do this only in the depolarizing factor, L',

given by

2
koa) .
L' = 4 (—r‘— [f{n (i':;) -1] (29)

Note that this substitution cannot be used to predict the scat-

tering cross section when k {> n, and is good onl for absorption.
o) g y P

We will comment shortly on the use of this formula.

8
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2.3 The Infinite Cylinder Approximation

Using the results of Wait7.8 for scattering by infinitely
% long cylinders of arbitrary dielectric comstant, we have derived
the expression for absorptionm c¢ross section per unit length of
the infinite cylinder. The general expression, obtained by
b considering the inward radial component of the Poynting vector on

the lateral surface of the cylinder, is

Bo 3
o 2n af \/e sin2 6 Re [(~—%) T (k®s)T '(ka)]

a - k a sin 6 . 3z (30)
2 0 0 in ’
Jo(ka) - (=) sin” 65 [fn (—————) + v + 7=1(ka)J, (ka) ,

k2 = pe ky2

Yy = .5772

We have compared the results of our high frequency asymptotic
gquasistatic expression for the absorption cross section with this
expression, The results in all (six or seven) cases were in
close (= 20%) agreement, as will be shown below. This close
agreement was both surprising and gratifyinmg to us. It is now
evident that we have & quasistatic theory which camn predict the
absorption cross section of thim conductive filaments over a very
wide range of kf/, and which predicts the scattering cross section

in the region kof ¢ 1.

2.4 The Drude Model

Our early work35,6 jin the area of target obscuration was

restricied to the microwave range of incident electromagnetic




a5 ¥ u

energy. We did not at that time anticipate that the infrared and
visible regions of the spectrum would be applicable to the
absorbing particle cloud techniques which we developed. Although,
during our theoretical programs with the U,S., Army Chemical
Systems Lab, such applications were being explored, we were
so involved in developing a compre¢hensive theory that we did not
include the optica]l properties of the (metallic) filaments whose
cross sections we were calculating., Indeed, it has not been
until the present AFOSR program that we have included these
properties. In this and the following sub—sectibn we deal with
(1) the inclusion of the optical properties in both theories, and
(2) the inclusion of the dependence of electrical comnductivity

upon particle radius and the electron mean-free—path.

In a recent paper by Ordal, et alf, the application of the
Drude model for the prediction of complex optical dielectric
constant was compared with measured values of the real and
imaginary parts of the optical dielectric constant for a number
of metals (Al, Cu, Au, Pb, Ag, and VW). Tabular experimental
results are also givem for Fe, Pt, Co, Ni, Ti and Pd. This
model, which is based on the free electron theory of metals, is
in surprisingly good agreement with the observed experimental
results. We realize, that, for certainm transition elements such
as Fe, the model has drawbacks. For such cases, one must resort
to the use of tabular experimental data. For our present discus-
sion, we will choose Cu as the substance comprising our fibers,
and will utilize the Drude model im the calculation of the

various electromagnetic cross sections. A good exposition of
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this is givem in Wooten's bookl0, jip which the normalized complex

dielectric constant is derived {(note that Eq. (32) corrects a

mistake on p. 53 of Wooten's book):

e = g' + ie'" (31)
w 2 2
erom1 - —B (32)
1 + (wt)
w 2 ¢
s P (33)

wll + (0x)?)

Using MKS wunits, the plasma frequency @p is given by

2
wp2 = NS (34)

me,
in which N = electron density (m™3), e = electronmic change, m =
effective mass of the electron, and e, = permittivity of free

space = (1/36n) x 10~9 farads/m.

The quantity v is the electron relaxatiom time, which is the
time required for randomization of the momentum vector of an
electron in the (metallic) lattice. For our purposes, it is
instructional to cast the dielectric constant in terms of the

low frequency electrical conductivity, o, given by

(35)
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From (34) and (35), we obtain &

f\

"

r.ﬂ

b 8
2 = S .

¥p Teg (36) ..::"

o

i

\:_

Using Eq. (36) inm (31) and (32), we have :

-
et =1 - 2E (—L——E) (37)
o 1 + (wx) <4
g = o 5 (38) (N
weg [1 + (wT)'] . =
w
Typical values of the relaxationm time T are omn the order of D
10-14 sec. "
&)
RS
L
It is easily shown that Eq. (37) can be written in terms of
8” ‘:\.:
o
e
A
~
'_"l
e’ =1 - ¢'"(wz) . (39) P
N
This equation shows us that, for all frequencies significantly :"
‘-.‘
below the visible and infrared (i.e. the microwave region), lerl -
<< le"l. And, from Eq. (38), we see that €' goes to its low :-',.
.
~
frequency value &' = o/wey, for (wr)? << 1. -:_‘:
The reason for the above anmalysis is to determine whether or ;
-
not the Drude model cam be utilized at low frequencies. Although s$
)
o
A Y
P the low frequency asymptotic value of e’ differs significantly .
from a value of unity, which is normally assumed for metals at low j:
o
frequency, the ratio le'"/e’l will always be very large when (wt)2 ';\
L4
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<< 1. Therefore, the use of the Drude model throughout the
region 10=6 m ( Ay, ( 10”1 m appears to be justified, and we feel
® confident in using Eqs. (37) and (38) in the derivatiom of the

electromagnetic cross sections throughout this entire wavelength

range.
-»
2.5 The Reduced Conductivity
When one or more dimensions of a conductive material (metal
- or semiconductor) are om the order of the mean free path of the

conduction electroms, electron collisions with the surface will

significantly reduce the mean free time, and hence the mean free

) path A given by

/\ = VFt (40)

where VEF = Fermi velocity and t = relaxation time discussed
previously. Since the electrical comductivity is proportiomnal to

- t (Eq. 35), the conductivity will be reduced.

The classic work on this subject was done in 1938 by Fuchs,11

- In a more recent paper, Dinglel2 reviews the subject and provides
some useful numerical computations. The key equation in Dingle's

paper is his Eq. (2.3) which relates the effective conductivity o

e to the bulk conductivity o,, as a function of the mean free path
A, the wire radius, a, and the quantity € that is the probability

of an elastic collision at the surface:

13
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o = oo [1 -3 (1-¢) (] . (41)

A value of € = 1/2 is frequently used as the surface scat-

tering coefficient. Taking this, we have

A
;)] . (42)

3
o oo [1 -~ 1 ¢
We have bhad difficulty in obtaining numerical values for mean
free paths from the literature. However, Kittell3 provides a
good background as well as quantitative data for & number of
metals. Taking copper as the subject material a value of A = 4.2

x 10-8m is given in Table 10.1 of Kittel’'s book. Using Eq. (40),

and taking the Fermi velocity vg = 1.6 x 106 m/sec (Kittel,
p. 240), we obtain a mean free time of v = 2.6 x 1014 sec. This
is in fairly good agreement with the value T = 1.9 x 10-14 gec,

which we obtain from Ref. 9 for copper.

Utilizing the above value, we obtain for copper

7.9 x 10-9
6 = o0, [1 - -————;———-] (43)
where the radius a2 has the unit of meters. This equation shows
that, if a = 1.6 x 10-8 m (160 Angstroms), the conductivity is

roughly half its bulk value. If the radius is 0.1 micromn, the

conductivity is 92% of the bulk value.

This exercise was dome to show that, indeed, one must

consider the particle size effect upon electrical conductivity,

14
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when computing the absorptive and extinctiom properties of thin

metallic fibers or films.

3.0 RESULTS FOR COPPER AND LEAD FIBERS

All of the above work has been reduced to operating computer
codes with quantitative graphical outputs. It should be noted
that, as a part of our present AFOSR contract, we have received a
Hewlett Packerd HPS9000 Model 520 computer. This machine will
replace our present HP9835 computer, which presently requires 50
bhours to complete a full set of scattering, #bsorption. and
extinction data on a given particle over a wavelength range from
10 cm to 1 micron. The new machine will reduce this time by a

factor of between 100X and 1000X,

As a first example, consider copper. ¥e take fiber radius
of 5 x 108 m, unreduced bulk conductivity of 5.8 x 107 mho/m,
relaxation time 1.9 x 10—14 sec, mean free path of 3 x 108 m,
The reduced conductivity can now be computed from Eq. (42), and
using that result the complex optical dielectric comstamnt is
obtained from Eqs. (37) and (38). Results of this computation
are plotted inm Fig. 1 vs, wavelength over the range from 10

cm to 1 micron.

Enowing ¢' and ¢', the surface impedance of the fiber may be
computed from Eq. (2). The results, which are again frequency-

dependent, are shown in Fig. 2,
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Choosing a fiber length of 5 x 10-4 m, the extinction, o
! absorption and scattering cross—-sections may now be obtained from <
-"
F Eq. (7) of the variational method, and are plotted vs., wavelength
-
-
r
in Fig. 3. Note that both the scattering and absorptiom cross- ;5
r
sections rise to peak values at A ~ 10-3 m, then fall off. The :f
’
b extinction cross—section must equal the sum of the scattering and
.
K
absorption cross—-sections, and this is seem to be accurately o
obeyed except at the shorter wavelengths A { 104 m, where we :E
k believe that og is in error due to employing too few points in

Tt

A &4

the numerical integratiom (which affects only og),

e
.
’ l‘ .

o
'J.l’ L)

In Fig. 4 we show the cross—-sections obtained using the

~,
D

quasistatic theory, for the same example. As expected, both o, i}

and og are in excellent agreement with the previous values at the &;

H. longer wavelengths. The absorption cross—section moreover, is [
seen to agree with that of Fig. 3 for the shorter wavelengths ;i

also, providing good confirmation of the high freguency depola- ii

i rizing factor proposed in Eq. (29). Tj
%

In Fig. 5 04 is plotted using the infinite cylinder approxi- :;

+. mation Eq. (30) appropriate for short wavelengths., Almost exact .
agreement is found with both preceding results, for A £ 10-3 m, ia

and hence for k{2 3, about as onme would expect. 2?

le v
Figures 6 and 7 give respectively the variational and ﬁ

quasistatic results for the same cylinder, but shorter by a :S

o factor of ten, The peaking and crossover behavior from long to ‘;
short wavelength is now seen to occur at A ~ 10-4 m as one would :S‘

16 *:

|.'




anticipate. Agreement between the two figures is analogous to
that of the first example, although the peak height predicted by
the quasistatic theory for o, is seen to be somewhat low this
time. For the infinite cylinder approximation, the curve of
Fig. 5 applies without change, and again o6, is in excellent
agreement with the variational values at the shorter wavelengths

for which k{ 2 3,

Next, consider lead fibers. The resulting dielectric
constant and impedance are shown vs. wavelength in Figs. 8 and 9,
with fiber parameters as listed in the figures. The variational
results, along with the long and short wavelength approximations,
are shown im Figs. 10-12, respectively. Agreement is analogous
to that obtained with copper. Note that in these cases oy shows

saturation effects for wavelengths 2 10~5 m.

Figures 13 and 14 show that upon increasing the fiber radius
by a factor of 10, the dielectric constant is substantially
unchanged, while the surface impedance decreases at all wavelengths
by about two orders of magnitude, The resulting cross-sections,
given in Figs. 15-17, again show the same pattern of agreement

between the variationmal (Fig. 15) and approximate results,

Finally, Figs. 18 and 19 (which should be compared with the
short wavelength approximation of Fig. 17) give the corresponding
values when the fiber length is decreased by a factor of ten.

This time the absorption cross—section peaks at k{/ ~ 3, precisely

as observed originally with copper.
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The agreement seen consistently throughout these computations
provides striking confirmation of the validity of the variational
L results, and also provides some explicit bounds on the regimes in
which either of the approximate methods might safely be used

independently.

4.0 SCATTERING BY CURVED CONDUCTIVE FIBERS

4.1 Preliminary Survey

b All the numerical results obtained by Panametrics to the
present time for scattering and absorptionm by conductive fibers
have dealt with straight fibers. The question naturally arises
Ll then as to the effects of curvature of the fibers on the scattering

and absorption efficiency.

A search of the literature reveals very little work on
curved wires: all of that, with two exceptions, involving perfectly

conducting wires. The curved, perfectly conducting wire was

apparently first considered by Aharoni in 1946.14 |His equations
were applied to circular loop and spiral antennas by Mei.lS In
1956 Kouyoumjian considered back-scattering from perfectly
conducting circular loops.16 The two exceptions to the pexfectly
conducting case are the work of Philipson, who considered lossless
dielectric rings,17 and Acquista, who considered wavy cylinders.18
In both of these latter cases, however, the scatterer was taken
to be only a perturbationm on its surroundings, so that a full

integral equation approach was not required.

18
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We have derived the integral equation for curved fibers,
having finite conductivity, from first primnciples. The usual
L» thin-wire analysis invariably assumes that the electric field can
be expressed in terms of a current filament concentrated on the
axis of the fiber, and this is physically somewhat unsatisfactory
r especially when, as in the present case, we must work with both
electric and magnetic fields at the surface of the fiber. We use

instead an approach based om Huygen's principle,l9 which states

that fields generated by the tangential components of E and H
(distributed along the surface of the fiber) must precisely
cancel the axial components of the incident electric field along

the fiber axis.

This results in an equation involving integrals of the two
unknown functions E and H along the fiber. Taking the thin-wire
limit where fiber radius is very small compared to incident
wavelength, the second of these integrals is fairly straight-
forward, and for good conductors is interpretable as the field
due to a distribution of surface currents. The first integral
behaves differently, however. The kernel reduces to a delta-
function, resulting in a8 term in E at the field point of evaluation
of the integral equation, Surface values of E and H can then be
related by a surface impedance concept to finally give a pure

integral equation for the current.



4.2 The Integral Equation
When an incident electromagnetic field Einc jlluminates a body
in free space, the resulting fields are related by Huygens'

principle, which states rigorously thatl9

ginc(i) - (1/4m) VUV x Sda'ka' x E4(z') g(kR)

‘g(;) outside (44)

~(1/4nm) vxvx [ do'in’ x Hy(r') g(kR) = (
0 inside .

The left-hand side (LHS) of this equation consists of the sum of
the electric fields due to the incident wave and surface distribu~
tions over the body of magnetic and electric dipoles, respectively.

Here

g(kR) = (1/kxR)eikR, R = | - '], (45)

where r' and r are the source point and field point, respectively.

Equation (44) states that the E field is given by the LEHS
for all field points outside the surface. On the other hand, for
all field points within the surface the LHS vanishes identically,
i.e, the surface field distributions must precisely camncel the
incident wave, This latter statement is sometimes known as the

extinction theorem, or the extended boundary condition.

The extinction theorem is applied to the curved fiber, shown

in Fig. 20, as follows. Let a = fiber radius, and p(s) = radius

20
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of curvature as a function of position s along the axis of the

fiber. We assume that

a/ppin ¢ ¢ 1 (46a)
a/b < < 1 (46b)
ka ¢ < 1 , (46¢c)

i.e., the fiber r.sius is much less than the minimum radius of
curvature, the fiber half-length b, and free space wavelength k =
2n/X, respectively. We also assume the fiber to have moderate
to large conductivity, so that axial currents will be induced and

guided along the fiber,

Now requiring that the axial] component of Eq. (44) vanish

alopg the fiber axis gives

(1/47) € . gxox [do' ifl' x Hi(z’') g(kR)

+(1/41) § .vx [do’ kA’ x E4(g’) g(kR) = & - EiBc(s) . (47)

Note that this equation is still exact, although we have only
used a8 portion of the information available. The curl operators

may be taken under the integral sign, because the field point

need never approach the fiber surface.




- ~ - w 7 3 <
v
&
We suppose the magnetic field on the surface to be purely "
azimuthal, so that i
K
+ A "~
Sy
Hy (') = ©' H(s') ,
l‘x
-
(48) -~
N &
r n' x Hy (r') = 5 H(s')
Using the idenmtity curl curl = grad div - div grad, the first L
F integrand of Eq. (47) takes the form
A A, A Ay ' .
s - Ux yYxn' x Hy (£') g(kxR) = & « (VY -vV)s' H(s') g(kR) "
= H(s') § .vv. §' g(kR) + x2(%.5") H(s') g(kR) -
A -
= H(s’) (§.¥) ($7.v) g(kR) + k2 (§ - s’) H(s') g(kR)
= -H(s') [82/3sds’' - k2 (s . ') g(kR) , (49) =
where in the last step we have used the formal notation A T = f
[ 9/ds and 5'.v = -3/ds' for directional derivatives. The minus

sign arises inm the latter case because the primary variable has

the form

R = 1r(s) - r(s')

3

® For the secn»nd integral of Eq. (47), the electric field on

the surface is assumed to be purely axial, i.e. <




E+(z') = 5' E(s') . (50) -

+ Now .

A A
s +vxn' x E4y(g') g(kR) = -

A R
= (%' x Eif) - (s x wg) o
5
A
)
L = E(s') (&' x §') - (% x vg) B
= -E(s') (5 . %) (& - vg) 2
o
= -E(s') (5 . &) (3' - Rkg' . o
PS = -E(s') (5 . &) (a/R)kg' .  (51)
3
Here in the fourth step we used the identity o
.‘
-
(e xb) - (¢ xd) =(a -+ ¢) (b-d ~(a-4d (b- g
-
Y
e then noted that the scalar product {:\' . 9 vanishes identically
under the azimuthal portion of the surface integration. In the ':
last step above g'(kR) = dg/d(kR) and we have assumed that t.'
-
- .
A A
n' «- R = a/R . (52) ,
-'
r'S Note from Fig. 20 that this equality only holds when ls-s’] << p, i
i.e., for points sufficiently close together along the axis that t
“
»
23 .
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L negligible otherwise,

the curvature of the fiber has

not come into play. No approxi-

mation is involved here, however, because the integral is entirely

as we will now see.

Using Eq. (51), the second term of Eq. (47) becomes

2n +b

-(k2/4n) | ade' | ds' E(s’)(%-%') (a/R) g'(kR)

(=]

-b

+b

= —(k/2) (ka)2 | ds’ E(s')(5.5') (1/kR) g'(XkR)

»

-b

+@

~ (1/2)a2 E(s) ds'[(s-s’')2 + a2]1-3/2 = E(s) . (53)

From the first step ome notes that because ka << 1 only that

portion of the integral of order (1/ka)2 will contribute to the

final result. Noting that

(1/kR) g’'(kR) ~ —(1/kR)3 = -(1/k)3 {(s-s')2 + a2]-3/2 ,

e for kR <(( 1, the remaining steps of Eq. (53) are straightforward.
24
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Putting the results of Eqs. (49) and (53) back in Eq. (47)

and carrying out the szimuthal integration, one finds that

+b
(ia/2) ds'H(s')[82/as 3s'-k2(5.5")Jg(s,s') - E(s)

-b

= -¢ .ginc (s) . (54)

We can express this result as an integral equation for total ljinpe

current I(s) by writing

I(s) = 2nai H(s) , (55)

and introducing a surface impedance per unit length given by4

Z = ~(wp/2nakg) Jo (kfa)/JTo'{kfa) . (56)

Here kg = (wlpe + iwuc)l/z is the complex propagatiom conmnstant
within the fiber, J, is the Bessel function of the first kind,
and we have assumed that both E and H within the fiber vary much
more rapidly im the radial than the axial direction. This
assumption is consistent with the requirement of moderate to

large conductivity. Note, however, that if one were to represent

I(s) as a Fourier expansion, then eventually the axial variations

L afli e i ol e
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of such terms would dominate, with the result that kf jn Eq. (56)
would have to be modified.4 That is, the surface impedance
becomes dependent on the rate of axial variation of current when

that rate is large.

The tangential E field can now be expressed as
E(s) = ZI(s) , (57)

and uwusing this result, along with Eq. (55), one finally obtains

+b

(1/4n). ds’ I(s') [32/8s 8s’ - k2(8-8')1 gl(s,s') - ZI(s)

= ~g . gii ne (s) ., (58)

TANAN
S8

Note that for straight fibers * = 1 and this equatiom reduces
to the usual formula.3 Also, for curved, perfectly conducting

wires Z——0 and one again finds the accepted formula,l$5

4.3 Approximation for Special Fibers
For the general case, as described by the integral Eq. (58),
it is clear that detailed numerical computations are required in

order to obtain any explicit results, If the fiber axis has

26
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radius of curvature large compared to wavelength, or is made up
of a zigzag series of straight line segments, however, then the
absorption cross-—-section is readily approximated using earlier

results.

First, consider the case where the fiber axis curves only
slowly and is relatively long, compared with wavelength. Then we
can use the infinite cylinder result to obtain the absorption
cross—-section per unit length o,/), where this ratio is given
by Eq. (30). Note that o4 will be & function of position s along
the curved fiber, in that o, depends on the angle 8, formed by
the incident E vector and the local tangent to the fiber axis.

The total absorptiom cross—section E:abs is then given by

+b
Zabs = J' ds [O'a (S)/Q] . (59)

It is now straightforward to obtainm results for toroidal or
C-shaped fibers, or other configurations meeting the slowly-

curving limitation, by numerical integration of Eq. (59).

For a fiber made up of zigzag line segments, it is more
appropriate to emply the quasi-static approximation to the

absorption cross—section o345 as givenm by Eg. (18). We bhave

already seen by comparison with other computations that this
formula is quite accurate for all fiber lengths provided the

modified depolarization factor L’ of Eq. (29) is used for k°f> 1.
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Now for a fiber of N segments, having individual lengths Pn
a =1, 2, ... , N, the total absorptiomn cross—section z:abs is
% given simply by

2:abs =

Gahs (!n) Sin2 en N 60)

B
-
[

where the factor sinzen (angle between incident E vector and nth
P segment axis) is included because the original Eq. (18) was

specifically for broadside incidence.

It is useful to note that for both Eqs. (59) and (6) the
cross—~section 2:,bs is & linear sum of the cross—-sections of
individual segments. Because each such segment behaves precisely
as a straight fiber under oriemtatiom averaging, one concludes
that the orientation-averaged cross—section.E:abs for the curved
fiber will be just equal to that of a straight fiber of the same

total length.

§.0 TARGET OBSCURATION

In this section, taking into consideration both the diffuse
cloud scattering properties and the beam extinction properties,
one requires the optimum conditions for target obscuratiomn from a
P mass efficiency standpoint, over a wavelength range where the
theory is believed to be most accurate. It is appropriate to

employ the quasistatic approximation, in which particles are

J. assumed to be small in comparison with sensor wavelength,
28
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Consider the situation when a target of (radar or optical)

cross—section oT is partially concealed by a cloud of particles,
the cloud having an incoherent cross—sectionz:c. Because of this

incoherence, the cross—sections are additive and one has
Observed cross—section = EDC + o e"27T (61)

where ¥y and t are the decay constant and thickness of the cloud,

respectively.
We now asassume that the sensor cannot detect the target if
Zc > Ko e~277 (62)

where K is a figure of merit, e.g. for K = 0.1 the signal from
the target would be 10 dB down in the ‘‘noise’’ of the cloud
return. The diffuse scattering from the cloud has earlier been
computed to be5,6

2: Ac ko2
R A ) (63)

vhere V, is single-particle volume, the reduced conductivity is
given by o' = kye'" = J::7::—oc (in terms of conductivity, or the
imaginary part of the relative dielectric constant), and A. js
the geometrical cross—-section of the cloud, or the sensor beam
cross—section at the cloud, if the latter should be smaller.

Using this result, and taking the equality in Eq. (62) then gives
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A, (koz) o

— — ' = 27T .-
B Vp o K o1 e 47 . (64) e
V3 “~
%

The decey constant for the cloud is given by "
h."

K
l:.'

- = ",

k Y = 8 Gext o (65) >,
‘.':\.

>
O

-

in terms of the number density of particles and the orientation- {-
averaged extinction cross—section per particle. Assuming that e
A4

absorption effects dominate, one has o
:

c V
- - c P [

Sext = Gabs = 5 = oc Vp/3 (66) -

3[1 + (Le'")™) =

where in the next-to-last step the quasistatic approximation was T
employed, and in the last step we noted that optimum absorption ﬁ
will occur when -
Y

NS
._\-
Le" = 4(a/L)2 [ n(f/a) -1]1 " << 1 (67) i

2

(L is the depolarizing factor). Note also that the total mass M S
\':

of particles can be written R
3

M= p V; Bt Ag . (68) D

~

~

Employing Eqs. (65), (66) and (68) in Eq. (64), and taking the )
logarithm of the result determines the required mass to be ?;
w
:,-.
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(69)

The quantities K, or and A, are prescribed by the logistics of

the task at hand. Thus, to minimize M one first must seek a

material with smallest possible value of the ratio p/o; . In

addition, it is desirable to obtain as large a value of the

product k°2 Vp oc' as possible, in order to minimize the loga-~

rithmic term in Eq. (69).

For concreteness, suppose that

kol = 0.1 . (70)

From Eq. (67) we then find that

0.01 (f/a)
¥ oo’ [fa({/a) -11 ° (713

This equation can be used to determine particle radius, once the
length and conductivity are known, Typical particle design

parameters can now be listed:
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a) mic ave regio
y = 3.x 1072 g

{ = 4.8 x 10-4 n

0. = 5 x106 mho/m

a = 2.2 x 10—-8 n

b) infrared region
vy =3 x 10-5 m
( = 4.8 x 107 n
6. = 1 x 104 mho/m

a =1.0 x 10-8 n

6.0 TAILORING OF PARTICLE PARAMETERS FOR SPECIFIC APPLICATIONS
It is the purpose of this sectiom to demomstrate the tech-
niques by which the parameters (length, radius, and comnductivity)
of thin conductive fibers cam be adjusted so that a cloud of
these particles will have selected specified spectral charac-
teristics. These characteristics are: (1) large absorption and
small scattering, (2) large scattering and low absorptiom, and
(3) transparency. Two frequencies were arbitrerily chosen for
the cases to be analyzed. These are f1 = 1010 Hz and f; = 1012
Hz, corresponding to wavelengths of 3 ¢cm (microwave) and 300

microns (infrared).

The analyses to be discussed will be based on our ’'‘extended
quasistatic model'’, the basis of which is described in Section

2.2. As demonstrated in Section 3, this analytical model produces




results which are in surprisingly good agreement with the results

obtained using the much more rigorous variational technique of
Sectiom 2.1. To be more explicit, the quasistatic model can be
used to calculate the absorption cross section over a very wide
range of ko{, including kol »> 1. The scattering cross section
computations resulting from the quasistatic model are valid only

in the range ko{ < =.

In all of the cases analyzed, the results of the quasistatic
calculations are directly compared with the corresponding results
of the variational techmique. We find these comparisons to be

quite remarkable.

6.1 Constitutive Equations
In addition to the equations of Sections 2.2, 2.4 and 2.5,

the following equations are utilized in the foregoing analyses:

Orientation—averaged absorption cross—section

(see Eg. 21):

1
Sabs = (3) cabs (72)
Orientation-averaged scattering cross—-section (see

Eq. 22):

Tsca = (%) Ssca (73)

High frequency depolarizing factor (see Eq. 29):
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(74)

The inclusion of the above equation permits extension of the
calculation of absorption cross section well into the k°(>> 1
regime. Due to this, we refer to the present theory as the

'"extended quasistatic theory., "

In this treatment, we are using the Drude (free electron)
model for the complex dielectric comnstant (Section 2.4) and the
Fuchs model for the dependence of conductivity on particle
dimensions, and we have purposely chosen frequencies wy and wy such
that possible anomalies due to these do not appear. Also, for
purposes of analysis, we can make the simplificatiom & = ie"

The computer program, however, does not utilize this simpli-

fication.

6.2 Absorb at 3 cm, Reflect at 300 microns

These criteria lead to the following mathematical statements:

At frequency wy = 2n x 1010 Hz

Ssp (1)
=P - << 1 (75)
] (2)
sp
Bs (1)
Let =P 2’ = o1 (76)
3
sp (2)
(Le'" (1))2 << 1 (77)
Let Le" (1) = 0.1 (78)
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Equation (7) ensures that the absorption cross sectiom will

be at its maximum value at frequency w1, but will be reduced by =
large factor at frequency wy = 27 x 1012 Hz., Also, we know that

the scattering cross section will be at least as great at wy as

at wjp, This will cause o0gca(2)/0gps(2) to be large, which is

what we seek at wy .

From Eqs. (76), (78), (72), and (73), we obtain (with the
appropriate definmitive equations of Section 2.2) equations for

the conductivity o, radius a and length [ :

2 2/3
€07 (.03) /

Cc = ’ (79)
w1 a% {10 [fn (f) ~1]1} 173

/3 /2

<5n)1
(10 ten (L) <11 %0

c (.03)1
1/2

-
]

(80)
(wg) 1/2

1/2

’ o
f= 2a {10 [{n (;) -1] é:ajar)} (81)
o

when Egqs. (79) and (80) are equivalent, i.e., we can choose a

conductivity amd solve for a, or choose & radius, a, and solve

for the conductivity o.. We will do the former. Knowing both a

and o., we then calculate the length from (81). Note that the

term in square brackets in (79), (80), and (81) is very insensitive

to large variations in ({/a)., This is especially true when it is

raised to fractional powers im (79) and (80). Therefore, we can

come quite close to the desired results if we simply let [ ]I = 2.5,

This permits direct estimation of a and [, given a preselected

value of o,
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Cond
Length

Cond
Length

Cond
Length

Cond
Length

Cond
Length

Cond
Length

The above

values, as

parameter sets

shown in Fig.

wavelength

figure 1is

ft

procedure

range

1.00E+04
3.71E-03

1.00E+05
3.71E-03

1.00E+06
3.71E-03

1.00E+07
3.71E-03

1.00E+08
3.71E-03

1.00E+09
3.71E-03

exemplified
into the

21. Since

representative

leads

300 microns

Table 1

to sets

in Table

these

to

of a

(bulk conductivity = 107 mho/m).

copper.

From Fig.

section peaks

in the case

excellent agreement

greater than about 50 microns,

of absorption,

21, we

at very mnearly

that

with

the wavelength Ajp

variational

and (3) the scattering as calculated

graphs

(1)

Radius
kog(1) £/2

Radius
ko(l)f/Z

Radius
k0(1)£/2

Radius
ko(l)f/z

Radius
ko(l)Q/Z

Radius
ko(l)g/Z

of permissible

8.68E-06
3.88E-01

2.75E-06
3.88E-01

8.68E-07
3.88E-01

2.75E-017
3.88E-01

8.68E-08
3.88E-01

2.75E-08
3.88E-01

Substitution of the

cm, only one

indeed,

computer program yields

are

fairly highly

The relaxation time <

the

the extended quasistatic

graphs
identical

is

3 cm,

conducting metal

absorption

theory for wavelengths

from both theories is in excellent agreement when ko 1.
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We further conclude that the mathematical ‘‘design'’ procedure

demonstrated in this sub-section, although not analytically
exact, provides good parametric sets for the solution of the
stated problem, since the objectives are met at the two specified

wavelengths.

6.3 Absorb at 3 cm, Absorb at 300 microns
We have quite different criteria for this problem as compared
with the preceding problem. Here, we wish to have & very highly

absorbing cloud which has low scattering cross section.

In this case, the cloud scattering cross section Z; is

given by
Tsca
2. = A, (i_vahs) , (82)
where A, = projected area of the cloud or that portiom thereof

which occupies the solid angle of the imcident beam.

Obviously, we wish to make the absorptiom cross sectiom of
the particle much larger tham its scattering cross sectiom. This
must be true over at least the wavelength range from 300 microns

to 3 cm,

The above considerations lead to the following mathematical
criteria:

(1) In order to have maximum absorption over the specified

wavelength range, we want Le''(1) << 1 amd Le'(2) << 1.
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This means that the particles should be very thim and

(perhaps) not too highly conducting.

(2) Since, under the above conditions, Ggcag ~ kg2 VP2 0.2 and
Oabs ~ Vp oc, the ratio (Gsca/Gabs) is proportiomnal to

k02 Vp oc. Therefore, in order to maintain high cloud

absorption and low cloud scattering, we wish to keep

the product V, o, low (we bave no control over ko).

A little bit of experimenting with the extended quasistatic
(EQ) computer program yields appropriate sets of parameters. The
parameter set corresponding to mimimal total mass is a = 100
Angstroms, [ = 100 microns, and o, = 106 mho/m as the bulk conduc-
tivity. The results of using these parameters in the EQ and
variational codes are shown in Fig. 22. One can trade off =
larger radius for a lower conductivity and achieve similar

results, but with a somewhat higher ratio of (Bg.5/Gabs).

Note again the remarkable agreement between the computations

based on the two independent theories!

6.4 Reflecting Modes

It is easy to design particles having very low absorption
and relatively high scattering. Experience has shown us that if,
for example, we choose a highly conducting metal such as copper
or aluminum, and select a radius of one micron or greater, the
particle will be essentially completely reflecting for at least

all wavelengths below 30 microns, We can tailor the scattering
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cross section to become proportional to wt at wavelengths signif-

L Y
..

icantly below that for which k, 7 1, which of course, represents

K 2

Rayleigh scattering from '‘perfectly conducting'’ wires. Thus,

by

the aggregate of particles can easily be made to be reflecting at E
‘:' (
one wavelength and essentially transparent at some (significantly) ﬁ~
lower wavelength. Chaff clouds behave in this way. .
..I

6.5 Treansparent at 3 cm, Absorb at 300 Microns iy
b

In this case, we want the scattering cross sectiom to be -

: <

K4

much lower than the absorption cross sectiom at all wavelengths 5
under consideration. The requirements due to this and the ‘3
transparency criterion at wy are given below: x
(1) Make V, o, as small as possible, comnsistent with the 2
other criteria. ’
=4
(2) Make Le" = 1 at wy. -4

‘.\

:;

(3) Make kof < 1 at wy. Fi

N

Application of these criteria leads to the parameters listed -

in Figure 23. Note that, at A = 3 cm, the absorptiomn is three ;;
i

orders of magnitude lower tham that et A = 300 microns. The h’
scattering throughout the wj to ws spectrum is much lower than -
the absorption. o
-

"

>

l.I‘

‘-

‘e
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[ 6.6 Comments Relative to Particle Parameter Tailoring

(1) Our extended quasistatic treatment provides a very

useful tool in the design of particles for specified
b applications. In some instances, the e.q.s. theory
does not yield accurate gquantitative data and should be

used primarily as a first step to be followed by the

b full computation using our Variational method.
(2) The calculation of scatterimg cross sectionms using the
o EQ theory is limited to the ramge k,f /2 ¢ 1, Uafor-

tunately, the accuracy of the scattering cross sections
using the variational theory decreases substantially
® for kot >> 1, This is discussed im Section 3. Our
numerical integration techmique is presently undergoing

substantial improvement, Also, we are presently using

o the Hewlett Packard HP 9000, Model 520 computer for
these calculations - providing much higher computation

speed.‘

(3) We have included backscatter cross section computations
in Figures 21, 22 and 23 for those applications that

Y require this,

(4) Within the bounds of present techmology, it is possible
® to create particle parameters that could provide useful

spectral characteristics over a wide wavelength range,.

® *Note - added in proof: At the time of submission of this
report, we have made substantial improvements im our numerical

"

integration routines. This includes ko,ﬁ dependent incrementing :ﬂ
of the number of the scattering cross section computations. The :J
minimum incrementation of scattering angle is 0.05 deg. and the <Y
maximum is 1.0 deg. This gives good results for ky! £ 350, -
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Fig. 1. Complex dielectric constant vs. wavelength for copper.
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(variational method).
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