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1.0 INTRODUCTION

During the course of the past several years, a theory based

on the variational method, along with associated computer codes,

has been developed at Panametrics for analyzing the electromagnetic

scattering and absorption from thin conductive fibers of arbitrary

size, conductivity and orientation.1  Extensions and refinements

of this theory have now been completed and programmed, as described

herein.

We begin by summarizing the basic equations used in the

variational computation for arbitrary fibers. The quasistatic

model appropriate at long wavelengths is then derived, followed

by the infinite cylinder computation which should be accurate for c

wavelengths short compared with cylinder length.

In order that the computations may be extended into the

infrared and visible regimes, it is necessary to incorporate the

optical properties of the fibers. We do this by employing the

Drude model for conductivity (or complex dielectric constant), and

also introducing the dependence of conductivity on both fiber

diameter and electron mean free path.

Numerical results are then presented for copper and lead

* fibers, and the approximate methods are seen to agree very well

with the variational computation in those limiting regions where

they should apply. -_
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Curved fibers are considered in Section 4. An exact integral

equation is derived for the general case, and some approximate

results are then given for special fibers. In Section 5, we

consider the optimum conditions for target obscuration by a cloud

of particles from a mass efficiency standpoint. Finally, Section

6 deals with particle optimization studies under varying require-

ments on absorption, reflection and transparency of the particle

cloud.

2.0 THEORY

2.1 The Variational Equations

The variational method has been discussed often - 1 - 4 we will

simply summarize the important equations here. The basic integral

equation is

E o sin Oiejkz Cos Oi = I(z) Z + I Iz- )

/2

e-jkR
x dz'd' (1)

with surface impedance Z given by

g 10 (ga)
z = (2)27koa (e" + is') Ii(ga)

=k
2  2

g2  (cos oo - E') + is]

For the current I(z) one assumes

1 o 10 fc(z) + Afs(z)}, (3)

*1



where

fc(z) = cos kz cos qx- cos x cosqkz

fs(z) = sin kz sin qx - sin x sinqkz (4)

q = cos e i  = kx/2. = '

For the constant A appearing in Eq. (3), the variational method

then gives

J,.

gs (T c - )"

A = C (5)£ r~ - k ) ' "-c (T s S X s

in terms of the coefficients

2 r R/2 j2
S( i e-jkR

k I(2YC 1 d0J fc(z)fc(z') + R- dz dz
0 -f12 -2/12 k z

r 2 2 Tr1 J2 e jkR

c= df ffs(z)fs(z) -+ dzdz

o 2 /2

47T jZ f/2 2

22

k s2 fc(z)eikz idz f-

2f/2 jkz cos O

gs k sin Gi fs(z)e dz (6)

all of which can be evaluated explicitly.

3



The extinction, absorption and scattering cross-sections are

then given explicitly by

4 71 I c 2s 2i

Ge (0 i ) kIm - g

2 2

4n Re (Z) _ c I + gs .sOa el)y I- A xc I Z".

k, iz T c S s

0s~~~ ~1 ) 4(- p 2) f 8 c _o sq x~XC~~CS xpxs cos__x

2o 2 (q sinq4 cospq -pcosqx sinp x)
I-I

(p sin q n cospx -qcossqsx x

2(p sinqx cosp -q osqx sinpx p=cos e x=k2/2 (7)2 2

(q - p )

2.2 The Quasistatic Model

In the following, we re-derive the equations of Ref. 5 and 6

for absorption, scattering, and extinction worked out in 1965.

Although the previous equations are satisfactory at radar freque-

ncies, one must consider the relaxation effects of Sections

2.4 and 2.5 when calculating optical and infrared electromagnetic

interactions.

4
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First consider the electric field Ei inside a long, thin

spheroid, given by

E i  E o - L 4n P. (8)

where L depolarizing factor, P = polarization, and E. homo-

geneous applied field. In the case of a long, thin spheroid,

which is a good approximation to our conductive filament, the

depolarizing factor is

a 2 4n -1 (9)

where a particle radius and 2= particle length.

The definition of the polarization is

(e-i) E. (10
(10)'

where e normalized dielectric constant. Combining (9) and (10)

we see that the internal field is given by

*i E
1 + L (i)

We next take c to be complex, i.e., e = e' + ie". The internal

field then becomes

1 1+ L(e'-l) Le - iLe iLc"~
Ei =Eo (12)[L(c'-I) + 1]2 + [L"]2(

and we see that, in the quasistatic approximation, we have both

an in-phase and a quadrature component of the internal field.

5
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The electric dipole moment of our Rayleigh particle is

defined in terms of the polarization as

p(l) = PVp 13)

where Vp = particle volume. The polarizability a of the particle

is related (by definition) to the dipole moment as follows:

p(l) a E o  (14)

Combining (12), (13), and (14), we obtain the needed expression

for the complex electric polarizability of the particle:

Si

a, {(2 (eD-1) [1 + L(e'-l)J + Le,,2 +. (5

L(e '-1) + 1] + [Le']

The well known extinction theorem6 relates the extinction

cross section of any scatterer to its normalized forward scattering

amplitude, S(O) by the following relation:

CFext 4 Re {S(O)), (16)

where vext = extinction cross section, k = 2n/k o , o = free space

wavelength of the incident wave. Correct to order k 6 , S(O) is

related to the polarizability by 6

S(O) = ik 3 a + 2 k6 a2, 17

where the complex polarizability is given by Eq. (15).

6
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The absorption and scattering cross sections are, respec-

tively, given by

0 abs = 4n k Re (-ia) (18)

8
and asca = k4  Ja1 2 , (19)

where a is given by Eq. (15). After considerable manipulation,

the following expressions for the cross sections emerge:

k 3 Vp
ext kVp[B + T (12 + A2 )] (20)

Cabs kVpB (21)

k 4 Vp 2

* sca - (A 2 + B 2 ) (22)

('-) + [ - + ] (2A(23) ,,
1 + L( -)]2 + [Lc"] 2

B= (24)
El + L(c'-1)]

2 + [Lr"] 2

and, in summary from the preceding sections plus Sec. 2.4 and 2.5,

a-r:

1 o 1 + (Wt)](

ell -a (26)

Wo 'i- + (W)2] (2

7a"
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L = 4(-!) [jn2)-1

8 a

.-.
L"I

N.

In an attempt to analyze the effects of Eqs. (25) and (26)

on the absorption cross section, we have substituted the se

expressions into Eq. (24), and then inserted Eq. (24) into

Eq. (21). The resulting expression for absorption cross section

is too complicated for easy analysis. However, there is no doubt

that in the regime of (w't) 2  <K 1, the absorption cross section

is, in general, diminished from its value without the inclusion

of relaxation effects. It turns out that, for copper, w = 1

corresponds to o A 30 microns.

We have recently shown that (at least, for the filament

types of interest here), we can greatly extend the region of

applicability of the quasistatic theory by letting f= n/k o  in the

kof > 1 regime. We do this only in the depolarizing factor, L',

given by

k a 2

p.-

L' = 4 [1n ( -- ) - ](29)'..

Note that this substitution cannot be used to predict the scat- %

tering cross section when koj> n, and is good only for absorption.

We will comment shortly on the use of this formula.

8



2.3 The Infinite Cylinder Approximation

Using the results of Wait7,8 for scattering by infinitely

long cylinders of arbitrary dielectric constant, we have derived

the expression for absorption cross section per unit length of

the infinite cylinder. The general expression, obtained by

considering the inward radial component of the Poynting vector on

the lateral surface of the cylinder, is

2R at sin 2 0 0 Re [(-) J (k*a)J" '(ka)] (30

a k a sin 0 12

ko(ka) - (g) sin o0 [in ( + Y + y-](ka)Jo'(ka)j

k2= ko 2
-t

= .5772

We have compared the results of our high frequency asymptotic

quasistatic expression for the absorption cross section with this

expression. The results in all (six or seven) cases were in

close (Z 20%) agreement, as will be shown below. This close

agreement was both surprising and gratifying to us. It is now

evident that we have a quasistatic theory which can predict the

absorption cross section of thin conductive filaments over a very

wide range of k2, and which predicts the scatterinR cross section

in the region ko2 < 1.

2.4 The Drude Model

Our early workS, 6 in the area of target obscuration was

restricted to the microwave range of incident electromagnetic

9



energy. We did not at that time anticipate that the infrared and

visible regions of the spectrum would be applicable to the

absorbing particle cloud techniques which we developed. Although,

during our theoretical programs with the U.S. Army Chemical

Systems Lab, such applications were being explored, we were

so involved in developing a comprehensive theory that we did not

include the ovtical properties of the (metallic) filaments whose

cross sections we were calculating. Indeed, it has not been

until the present AFOSR program that we have included these

properties. In this and the following sub-section we deal with

(1) the inclusion of the optical properties in both theories, and

(2) the inclusion of the dependence of electrical conductivity

upon particle radius and the electron mean-free-path.

In a recent paper by Ordal, et ai9, the application of the

Drude model for the prediction of complex optical dielectric

constant was compared with measured values of the real and

imaginary parts of the optical dielectric constant for a number

of metals (Al, Cu, Au, Pb, Ag, and W) . Tabular experimental

results are also given for Fe, Pt, Co, Ni, Ti and Pd. This

model, which is based on the free electron theory of metals, is

in surprisingly good agreement with the observed experimental

results. We realize, that, for certain transition elements such

as Fe, the model has drawbacks. For such cases, one must resort

to the use of tabular experimental data. For our present discus-

sion, we will choose Cu as the substance comprising our fibers,

and will utilize the Drude model in the calculation of the

various electromagnetic cross sections. A good exposition of

10
1 0 "-.



this is given in Wooten's booklO, in which the normalized complex

dielectric constant is derived (note that Eq. (32) corrects a

mistake on p. 53 of Wooten's book):

= C' + is" (31)

w 2"a

C' = 1 - . (32)
1 +

p 2 (33)
E(33)"-

c[1 + (W,) ]

Using MKS units, the plasma frequency wp is given by

2= Ne 2  34)

me0

in which N = electron density (m - 3 ), e electronic change. m =

effective mass of the electron, and e. = permittivity of free

space = (1/36n) x 10-9 farads/m.

The quantity x is the electron relaxation time, which is the

time required for randomization of the momentum vector of an

electron in the (metallic) lattice. For our purposes, it is

instructional to cast the dielectric constant in terms of the

low frequency electrical conductivity, a, given by

N e 2 1V ,"o = -- (35)

11 _



From (34) and (35), we obtain

WP 2 (36)
0

Using Eq. (36) in (31) and (32). we have

eo =1+_(O"' )\ (37)

ft.

C,, = 2 (38)
0 [1 + ( W'r a]

Typical values of the relaxation time 'r are on the order of

10-14 sec.

It is easily shown that Eq. (37) can be written in terms of

= 1 - e"(w' ) . (39)

This equation shows us that, for all frequencies significantly 4,,t,.

below the visible and infrared (i.e. the microwave region), IC-I

(< I . And, from Eq. (38), we see that E" goes to its low
%ft

frequency value t" = a/wo for (wr) 2 << 1.

The reason for the above analysis is to determine whether or

not the Drude model can be utilized at low frequencies. Although .4

the low frequency asymptotic value of E' differs significantly

from a value of unity, which is normally assumed for metals at low

frequency, the ratio IE"/E'I will always be very large when (wt) 2

12

, . ;-"-"-" . . , ,, .. '.. . •'' . ... ,.. .- '.. . . . . . . . . . .. ' . . ... .. .. ", . .-. .. ., .. ..-,-. -, . ,.,'..;. ,'.-'.,'-. .. .- . .'. ... ..... .. ., .-.. '.-..%....*.',.. .-.' .'. .. ', ....'. .'.-..



<< 1. Therefore, the use of the Drude model throughout the

region 10-6 m _ k o J 10-1 m appears to be justified, and we feel

confident in using Eqs. (37) and (38) in the derivation of the

electromagnetic cross sections throughout this entire wavelength

range.

2.5 The Reduced Conductivity

When one or more dimensions of a conductive material (metal

or semiconductor) are on the order of the mean free path of the

conduction electrons, electron collisions with the surface will

significantly reduce the mean free time, and hence the mean free

path A given by

A VFT (40)

where vF = Fermi velocity and r relaxation time discussed

previously. Since the electrical conductivity is proportional to

-r (Eq. 35), the conductivity will be reduced.

The classic work on this subject was done in 1938 by Fuchs. 1

fIn a more recent paper, Dingle1 2 reviews the subject and provides

some useful numerical computations. The key equation in Dingle's

paper is his Eq. (2.3) which relates the effective conductivity a

to the bulk conductivity Go, as a function of the mean free path

A, the wire radius, a, and the quantity c that is the probability

of an elastic collision at the surface:

13
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3
00O [1 - '9 (1-C) ('-)] (41)ai

A value of F = 1/2 is frequently used as the surface scat-

tering coefficient. Taking this, we have

03

1 - a (42)

We have had difficulty in obtaining numerical values for mean "

free paths from the literature. However, Kittell 3 provides a

good background as well as quantitative data for a number of

metals. Taking copper as the subject material a value of A - 4.2

x 10-8 m is given in Table 10.1 of Kittel's book. Using Eq. (40),

and taking the Fermi velocity VF = 1.6 x 106 m/sec (Kittel, 4.

p. 240), we obtain a mean free time of c = 2.6 x 10-14 sec. This

is in fairly good agreement with the value -c 1.9 x 10-14 sec,

which we obtain from Ref. 9 for copper.

Utilizing the above value, we obtain for copper

7.9 x 10-9 -3o = %o [1 - a ](3

where the radius a has the unit of meters. This equation shows

that, if a = 1.6 x 10-8 m (160 Angstroms) , the conductivity is

roughly half its bulk value. If the radius is 0.1 micron, the

conductivity is 92% of the bulk value.
.4,

This exercise was done to show that, indeed, one must

consider the particle size effect upon electrical conductivity,

14
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when computing the absorptive and extinction properties of thin

metallic fibers or films.

3.0 RESULTS FOR COPPER AND LEAD FIBERS

All of the above work has been reduced to operating computer

codes with quantitative graphical outputs. It should be noted

that, as a part of our present AFOSR contract, we have received a

Hewlett Packard HP9000 Model 520 computer. This machine will

replace our present HP9835 computer, which presently requires 50

hours to complete a full set of scattering, absorption, and

extinction data on a given particle over a wavelength range from

lot 10 cm to 1 micron. The new machine will reduce this time by a

factor of between 1OOX and 100OX.

As a first example, consider copper. We take fiber radius

of 5 x 10-8 m, unreduced bulk conductivity of 5.8 x 107 mho/m,

relaxation time 1.9 x 10-14 sec, mean free path of 3 x 10 - 8 m.

The reduced conductivity can now be computed from Eq. (42), and

using that result the complex optical dielectric constant is

obtained from Eqs. (37) and (38). Results of this computation

are plotted in Fig. 1 vs. wavelength over the range from 10

cm to 1 micron.

% Knowing a' and z", the surface impedance of the fiber may be

computed from Eq. (2). The results, which are again frequency-

dependent, are shown in Fig. 2.

.

.
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Choosing a fiber length of 5 x 10-4 m, the extinction, .4

absorption and scattering cross-sections may now be obtained from

Eq. (7) of the variational method, and are plotted vs. wavelength

in Fig. 3. Note that both the scattering and absorption cross-

sections rise to peak values at 4 - 10-3 m, then fall off. The

extinction cross-section must equal the sum of the scattering and

absorption cross-sections, and this is seen to be accurately

obeyed except at the shorter wavelengths X 10- 4 m, where we

believe that o s is in error due to employing too few points in

the numerical integration (which affects only a.).

In Fig. 4 we show the cross-sections obtained using the

quasistatic theory, for the same example. As expected, both oa.

and a s are in excellent agreement with the previous values at the

longer wavelengths. The absorption cross-section moreover, is

seen to agree with that of Fig. 3 for the shorter wavelengths

also, providing good confirmation of the high frequency depola-

rizing factor proposed in Eq. (29).

In Fig. 5 a'a is plotted using the infinite cylinder approxi-

mation Eq. (30) appropriate for short wavelengths. Almost exact

agreement is found with both preceding results, for X £ 10-3 m,

and hence for ke 3, about as one would expect.

Figures 6 and 7 give respectively the variational and

quasistatic results for the same cylinder, but shorter by a

d factor of ten. The peaking and crossover behavior from long to

short wavelength is now seen to occur at X 10-4 m as one would

16
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anticipate. Agreement between the two figures is analogous to

that of the first example, although the peak height predicted by

the quasistatic theory for ca is seen to be somewhat low this

time. For the infinite cylinder approximation, the curve of

Fig. 5 applies without change, and again oa is in excellent

agreement with the variational values at the shorter wavelengths

for which k2 2 3.

Next, consider lead fibers. The resulting dielectric

constant and impedance are shown vs. wavelength in Figs. 8 and 9,

with fiber parameters as listed in the figures. The variational

results, along with the long and short wavelength approximations,

are shown in Figs. 10-12, respectively. Agreement is analogous

to that obtained with copper. Note that in these cases Ga shows

saturation effects for wavelengths 10-5 m.

Figures 13 and 14 show that upon increasing the fiber radius

by a factor of 10, the dielectric constant is substantially

unchanged, while the surface impedance decreases at all wavelengths

by about two orders of magnitude. The resulting cross-sections,

given in Figs. 15-17, again show the same pattern of agreement

between the variational (Fig. 15) and approximate results.

Finally, Figs. 18 and 19 (which should be compared with the

short wavelength approximation of Fig. 17) give the corresponding

values when the fiber length is decreased by a factor of ten.

This time the absorption cross-section peaks at kP -3, precisely

as observed originally with copper.

17



The agreement seen consistently throughout these computations

provides striking confirmation of the validity of the variational

results, and also provides some explicit bounds on the regimes in

which either of the approximate methods might safely be used

independently.

4.0 SCATTERING BY CURVED CONDUCTIVE FIBERS

4.1 Preliminary Survey

All the numerical results obtained by Panametrics to the

present time for scattering and absorption by conductive fibers

have dealt with straight fibers. The question naturally arises

then as to the effects of curvature of the fibers on the scattering

and absorption efficiency.

A search of the literature reveals very little work on

curved wires- all of that, with two exceptions, involving perfectly

conducting wires. The curved, perfectly conducting wire was

apparently first considered by Aharoni in 1946 .14 His equations

were applied to circular loop and spiral antennas by Mei. 1 5  In

1956 Kouyoumjian considered back-scattering from perfectly

conducting circular loops. 1 6 The two exceptions to the perfectly

conducting case are the work of Philipson, who considered lossless

dielectric rings, 1 7 and Acquista, who considered wavy cylinders. 1 8

In both of these latter cases, however, the scatterer was taken

to be only a perturbation on its surroundings, so that a full

integral equation approach was not required.

1.

18"



We have derived the integral equation for curved fibers,

having finite conductivity, from first principles. The usual

thin-wire analysis invariably assumes that the electric field can

be expressed in terms of a current filament concentrated on the

axis of the fiber, and this is physically somewhat unsatisfactory

especially when, as in the present case, we must work with both

electric and magnetic fields at the surface of the fiber. We use

instead an approach based on Huygen' s principle, 1 9  which states

that fields generated by the tangential components of E and H

(distributed along the surface of the fiber) must precisely

cancel the axial components of the incident electric field along

the fiber axis.

This results in an equation involving integrals of the two

unknown functions E and H along the fiber. Taking the thin-wire

limit where fiber radius is very small compared to incident

wavelength, the second of these integrals is fairly straight-

forward, and for good conductors is interpretable as the field

due to a distribution of surface currents. The first integral

behaves differently, however. The kernel reduces to a delta-

function, resulting in a term in E at the field point of evaluation

of the integral equation. Surface values of E and H can then be

related by a surface impedance concept to finally give a pure

integral equation for the current.

16*
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4.2 The Integral Equation

When an incident electromagnetic field Einc illuminates a body

in free space, the resulting fields are related by Huygens'

principle, which states rigorously that19

Einc(r)- (I/4n)V x Sda'kn' x E+(r') g(kR)

S_(_) outside ( 4

-(114n) VxVx J dc'in' X H+(r_) g(kR) outs

I 0 inside

The left-hand side (LHS) of this equation consists of the sum of

the electric fields due to the incident wave and surface distribu-

tions over the body of magnetic and electric dipoles, respectively.

Here

g(kR) (1/kR)eikR, R = L , (45)

where r' and r are the source point and field point, respectively.

Equation (44) states that the E field is given by the LHS

for all field points outside the surface. On the other hand, for

all field points within the surface the LHS vanishes identically,

i.e. the surface field distributions must precisely cancel the

incident wave. This latter statement is sometimes known as the

extinction theorem, or the extended boundary condition.

The extinction theorem is applied to the curved fiber, shown

in Fig. 20, as follows. Let a = fiber radius, and p(s) = radius

20



of curvature as a function of position s along the axis of the

fiber. We assume that

-S.

a/pmin < < 1 (46a) ..-
'.

a/b < < 1 (46b)

ka < < 1 , (46c)

i.e., the fiber r,,.ius is much less than the minimum radius of

curvature, the fiber half-length b, and free space wavelength k =

nt/X, respectively. We also assume the fiber to have moderate

to large conductivity, so that axial currents will be induced and

guided along the fiber.

Now requiring that the axial component of Eq. (44) vanish

alon2 the fiber axis gives

.A 
Al/1471 s • Vx x do' in x 1+(_ ° )  g(kR)

A,.,

- L

Note that this equation is still exact, although we have only

used a portion of the information available. The curl operators

may be taken under the integral sign, because the field point

need never approach the fiber surface.
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We suppose the magnetic field on the surface to be purely

azimuthal, so that

A

(48)

n' 1 (r') = ' H(s')

Using the identity curl curl = grad div - div grad, the first

integrand of Eq. (47) takes the form

A A A
S Vx VX n' x + (r') g(kR) s (V" -Vv)s' Hs') g(kR)

= H(s') - s" g(kR) + k2(s. s ') H(s') g(kR)

A AAA= H(s') (sA.V) (s'-v) g(kR) + k2 (sA  s') i(s') g(kR)

=-H(s') [ 2 /asas' - k 2  (A A g(kR) (49)

where in the last step we have used the formal notation s • "=

Aa/as and s • -/as' for directional derivatives. The minus

sign arises in the latter case because the primary variable has

the form

R r(s) - r(s')

For the sec,)nd integral of Eq. (47), the electric field on

the surface is assumed to be purely axial, i.e.

22
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, = A, E(s ) (50)

Now

A A, _ =A (A,
S7 ' n _+(L') g(kLR) -s (nx E+) I vg

A, A
=(n' x ~ s x Vg)

= E(s') (, x , vg) xg

=A-E(s) (A , A,

-E(') s s )

= -E(s') (A s. ) (a/R)kg' . (5)

A A,

Here in the fourth step we used the identity

-A-
(ax b) ( x d) a*c b d a d b c

A, A

then noted that the scalar product n' s vanishes identically

under the azimuthal portion of the surface integration. In the

last step above g'(kR) dg/d(kR) and we have assumed that

A A
n'• R = a/R. (52)

* Note from Fig. 20 that this equality only holds when Is-s'I << p,~

i.e., for points sufficiently close together along the axis that
I'
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the curvature of the f iber has not come into play. No approxi-

mation is involved here, however, because the integral is entirely

negligible otherwise, as we will now see.

Using Eq. (51), the second term of Eq. (47) becomes 5

(k2/4n)f adOlf sEs aR)g(R

0 f-b

-b

S(1/2)a2 E(s) ds'[(s-s') 2 + a2J-3/2 E(s) . (53)

F~rom the f irst step one note s that because ka << 1 only that

portion of the integral of order (1/ka) 2 will contribute to the

final result. Noting that

(1/kR) g'(kR) W..(l/kR)3  -C1/k)3 f(s-s') 2 +a2-/

* for kR << 1, the remaining steps of Eq. (53) are straightforward.
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Putting the results of Eqs. (49) and (53) back in Eq. (47)

and carrying out the azimuthal integration, one finds that

+b .'

(ia/2) { ds'H(s')[a 2 /as as'-k2(s, s ' )jg(s,s') - E(s)

-AS - Einc (s) (54)

We can express this result as an integral equation for total line

* current I(s) by writing

I(s) 2nai H(s) (55)

and introducing a surface impedance per unit length given by 4

Z -(wg/21rakf) Jo (kfa)/Jo'(kfa) (56)

Here kf = (w 2 pe + iwji)1/ 2 is the complex propagation constant

within the fiber, 3 o is the Bessel function of the first kind,

* and we have assumed that both E and H within the fiber vary much

more rapidly in the radial than the axial direction. This

assumption is consistent with the requirement of moderate to

* larige conductivity. Note, however, that if one were to represent

I(s) as a Fourier expansion, then eventually the axial variations

25
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of such terms would dominate, with the result that kf in Eq. (56)

would have to be modified.4  That is, the surface impedance
Q.

becomes dependent on the rate of axial variation of current when

that rate is large.

The tangential E field can now be expressed as

E(s) ZI(s) (57) -"

and using this result, along with Eq. (55), one finally obtains

+b

(1/4n) ds' I(s') [82 / s as' - k2(s' s)] g(ss') - ZI(s)

-b

A-s Einc (s) (58)

AA

Note that for straight fibers s = 1 and this equation reduces

to the usual formula. 3  Also, for curved, perfectly conducting

wires Z--0 and one again finds the accepted formula. 1 5

4.3 Approximation for Special Fibers

For the general case, as described by the integral Eq. (58),

it is clear that detailed numerical computations are required in

order to obtain any explicit results. If the fiber axis has

26
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radius of curvature large compared to wavelength, or is made up

of a zigzag series of straight line segments, however, then the

absorption cross-section is readily approximated using earlier

results.

i First, consider the case where the fiber axis curves only

slowly and is relatively long, compared with wavelength. Then we

can use the infinite cylinder result to obtain the absorption

* cross-section per unit length aa/P - where this ratio is given

by Eq. (30). Note that aa will be a function of position s along

the curved fiber, in that aa depends on the angle 00 formed by

*the incident E vector and the local tangent to the fiber axis.

The total absorption cross-section tabs is then given by .

+b

l~abs = ds [as (s)/f] (59)

It is now straightforward to obtain results for toroidal or

C-shaped fibers, or other configurations meeting the slowly-

curving limitation, by numerical integration of Eq. (59).

For a fiber made up of zigzag line segments, it is more

appropriate to emply the quasi-static approximation to the

absorption cross-section aabs as given by Eq. (18). We have

already seen by comparison with other computations that this

formula is quite accurate for all fiber lengths provided the

modified depolarization factor L' of Eq. (29) is used for koC> 1.

27
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Now for a fiber of N segments, having individual lengths In,

n 1, 2 .... . N, the total absorption cross-section L-abs is

given simply by

0abs cabs (!n) sin 2 9 n 60)

n=1

where the factor sin2On (angle between incident E vector and nth

segment axis) is included because the original Eq. (18) was

specifically for broadside incidence.

It is useful to note that for both Eqs. (59) and (6) the

cross-section Eabs is a linear sum of the cross-sections of

individual segments. Because each such segment behaves precisely

as a straight fiber under orientation averaging, one concludes

that the orientation-averaged cross-section abs for the curved

fiber will be just equal to that of a straight fiber of the same

total length.

5.0 TARGET OBSCURATION

In this section, taking into consideration both the diffuse

cloud scattering properties and the beam extinction properties,

one requires the optimum conditions for target obscuration from a

mass efficiency standpoint, over a wavelength range where the

theory is believed to be most accurate. It is appropriate to

employ the quasistatic approximation, in which particles are

assumed to be small in comparison with sensor wavelength.

28 S

o.-~~.. - 4... . . * 4 4 4~kt..- R. 8... S . . . .. . . 4.4.4 ~ ~ 4 .-*-* -.4-4.4.4.4



Consider the situation when a target of (radar or optical)

cross-section OT is partially concealed by a cloud of particles,
Io

the cloud having an incoherent cross-section c. Because of this

incoherence, the cross-sections are additive and one has

* Observed cross-section = + aT e- 27 , (61)

where y and t are the decay constant and thickness of the cloud,

respectively.

We now assume that the sensor cannot detect the target if

c  L KaT e-27 "c  (62)

* where K is a figure of merit, e.g. for K 0.1 the signal from

the target would be 10 dB down in the "noise " of the cloud

return. The diffuse scattering from the cloud has earlier been

computed to be 5 6

A \k 2) Vp crc 
(63)

where V p is single-particle volume, the reduced conductivity is

given by ac = ko = o/eo cc (in terms of conductivity, or the

imaginary part of the relative dielectric constant), and Ac is

the geometrical cross-section of the cloud, or the sensor beam

cross-section at the cloud, if the latter should be smaller.

Using this result, and taking the equality in Eq. (62) then gives
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A 2

\T VP Oc KO e-2(64 ( 4

The decay constant for the cloud is given by

Y B n ext (65) -

in terms of the number density of particles and the orientation-

averaged extinction cross-section per particle. Assuming that

absorption effects dominate, one has

V VI c Vp (66

ext Babs c 0:/(
311 + (La") 2] c Vp/3

where in the next-to-last step the quasistatic approximation was

employed, and in the last step we noted that optimum absorption

will occur when

Le" = 4(a/p) 2  c n(2/a) -1] a" << 1 (67)

(L is the depolarizing factor). Note also that the total mass M

of particles can be written

It p Vp j- Ac (68)

Employing Eqs. (65) , (66) and (68) in Eq. (64), and taking the

logarithm of the result determines the required mass to be
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3pA 8V7 ,'c \-- 2n (69)2 c' p c Z I

The quantities K, OT and A. are prescribed by the logistics of

the task at hand. Thus, to minimize M one first must seek a

material with smallest possible value of the ratio p/c ' . In

addition, it is desirable to obtain as large a value of the

product k0
2 V Gca as possible, in order to minimize the loga-

rithmic term in Eq. (69).

For concreteness, suppose that

La"= 0.1

ko = 0.1 (70)

From Eq. (67) we then find that

0.01 (M/a)
a- = , n( ./a) (71)

4 ac ' [n/a) -1]

This equation can be used to determine particle radius, once the

length and conductivity are known. Typical particle design

parameters can now be listed:
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i
a) microwave region

3.x 10-2 m

=4.8 x 10-4 m

Crc =5 x10 6 mho/m

a 2.2 x 10-8 m

b) infrared rezion

3 x 10-5 m

Lt =4.8 x 10-7 m

cr = 1 x 104 mho/m

a 1.0 X 10-8 m

6.0 TAILORING OF PARTICLE PARAMETERS FOR SPECIFIC APPLICATIONS

4U It is the purpose of this section to demonstrate the tech-

niques by which the parameters (length, radius, and conductivity)

of thin conductive fibers can be adjusted so that a cloud of

these particles will have selected specified spectral charac-

teristics. These characteristics are: (1) large absorption and

small scattering, (2) large scattering and low absorption, and

(3) transparency. Two frequencies were arbitrarily chosen for

the cases to be analyzed. These are fl = 1010 Hz and f2 = 1012

Hz, corresponding to wavelengths of 3 cm (microwave) and 300

microns (infrared).

The analyses to be discussed will be based on our "extended

quasistatic model", the basis of which is described in Section

2.2. As demonstrated in Section 3, this analytical model produces
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results which are in surprisingly good agreement with the results

obtained using the much more rigorous variational techniqu of

Section 2.1. To be more explicit, the quasistatic model can be

used to calculate the absorption cross section over a very wide

range of ko(, including ko( >> 1. The scattering cross section

computations resulting from the quasistatic model are valid only

in the range koC <N.

In all of the cases analyzed, the results of the quasistatic

calculations are directly compared with the corresponding results

of the variational technique. We find these comparisons to be

quite remarkable.

6.1 Constitutive Equations

In addition to the equations of Sections 2.2 , 2.4 and 2.5.

the following equations are utilized in the foregoing analyses:

'.-

Orientation-averaged absorption cross-section

(see Eq. 21):

Vabs = () ab s  (72)

Orientation-averaged scattering cross-section (see

Eq. 22):

tsca = asca (73)

High frequency depolarizing factor (see Eq. 29):
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2
L= 4( [(n (o)-1 ] (ko( _ n) (74)

The inclusion of the above equation permits extension of the

calculation of absorption cross section well into the kof >> 1

regime. Due to this, we refer to the present theory as the

"extended quasistatic theory."

In this treatment, we are using the Drude (free electron)

model for the complex dielectric constant (Section 2.4) and the

Fuchs model for the dependence of conductivity on particle

dimensions, and we have purposely chosen frequencies w1 and w2 such

that possible anomalies due to these do not appear. Al so, for

purposes of analysis, we can make the simplification c = i"'

The computer program, however, does not utilize this simpli-

f i cation.

6.2 Absorb at 3 cm, Reflect at 300 microns

These criteria lead to the following mathematical statements:

At frequency w1 = 2rn x 1010 Hz

sp (1) (75)
U (2) (
sp

Let s= () .01 (76)
sp (2)

(La" (1)) 2  << 1 (77)

Let Le" (1) 0.1 (78)

34
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Equation (7) ensures that the absorption cross section will

be at its maximum value at frequency wi, but will be reduced by a

large factor at frequency w2 = 2T X 1012 Hlz. Also, we know that

the scattering cross section will be at least as great at w 2  as

at i. This will cause Osca( 2 )/Gabs(2) to be large which is

what we seek at w2-

From Eqs. (76) , (78), (72), and (73), we obtain (with the

appropriate definitive equations of Section 2.2) equations for

the conductivity cc, radius a and length 2:

c C2 .03) 2/3
° = 2 1"3 79) -

w 1 a2 (10 [fn () -1] 1/3

c .03)1/3 1/2

1/2 1/6 1/2 (80)
Wi 10 ['n "-11) ci

1/2

2a 10 [ n -1] ( c)o (81)

when Eqs. (79) and (80) are equivalent, i.e., we can choose a

conductivity and solve for a, or choose a radius, a, and solve

for the conductivity cc. We will do the former. Knowing both a

and cc, we then calculate the length from (81). Note that the

term in square brackets in (79), (80), and (81) is very insensitive

to large variations in (M/a). This is especially true when it is

raised to fractional powers in (79) and (80). Therefore, we can

come quite close to the desired results if we simply let [ ] = 2.5.

This permits direct estimation of a and 2, given a preselected

value of cc.

.3'5
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Table I

Cond = i.OOE+04 Radius 8.68E-06

Length = 3.71E-03 ko(l) f/2 = 3.88E-01

Cond = 1.OOE+05 Radius = 2.75E-06
Length = 3.71E-03 k 0 (l) 2/2 = 3.88E-01

Cond = .OOE+06 Radius = 8.68E-07
Length 3.71E-03 k0 (1) 2/2 3.88E-01

Cond = I.OOE+07 Radius = 2.75E-07
Length = 3.71E-03 ko(1) i/2 = 3.88E-01

Cond 1 .00E+08 Radius = 8.68E-08
Length 3.71E-03 k0 (l) 2/2 = 3.88E-01

Cond = 1.00E+09 Radius = 2.75E-08
Length = 3 .71E-03 k0 (1) /2 3 .88E-01

The above procedure leads to sets of permissible parameter

values, as exemplified in Table I. Substitution of the various

parameter sets into the computer program yields graphs such as

shown in Fig. 21 Since these graphs are identical over the

wavelength range 300 microns to 3 cm, only one is shown. This

figure is representative of a fairly highly conducting metal

(bulk conductivity = 107 mho/m) . The relaxation time x is that of

copper.

From Fig. 21, we see that (I) indeed, the absorption cross

section peaks at very nearly the wavelength X1 = 3 cm, (2) that,

in the case of absorption, the extended quasistatic theory is in

excellent agreement with the variational theory for wavelengths

greater than about 50 microns, and (3) the scattering as calculated

from both theories is in excel lent agreement when kot 1.
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We further conclude that the mathematical "design" procedure

demonstrated in this sub-section, although not analytically

exact, provides good parametric sets for the solution of the

stated problem, since the objectives are met at the two specified

wavelengths, a:

6.3 Absorb at 3 cm, Absorb at 300 microns

We have quite different criteria for this problem as compared

with the preceding problem. Here, we wish to have a very highly

absorbing cloud which has low scattering cross section.

In this case, the cloud scattering cross section _c is

given by

EC Ac a (82)
a.°b s

which occupies the solid angle of the incident beam.

Obviously, we wish to make the absorption cross section of

the particle much larger than its scattering cross section. This

must be true over at least the wavelength range from 300 microns

to 3 cm.

The above considerations lead to the following mathematical

criteria:

(1) In order to have maximum absorption over the specified

wavelength range, we want Le"(c) << I and Le"(2) << 1.
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This means that the particles should be very thin and

(perhaps) not too highly conducting.

(2) Since, under the above conditions, asca k0
2 Vp2 ac 2 and

Cabs Vp cc, the ratio (Usca/5abs) is proportional to

ko 2 Vp Cc. Therefore, in order to maintain high cloud

absorption and low cloud scattering, we wish to keep

the product Vp ac low (we have no control over k.)-

A little bit of experimenting with the extended quasistatic

(EQ) computer program yields appropriate sets of parameters. The

parameter set corresponding to minimal total mass is a 100

Angstroms, = 100 microns, and Cc = 106 mho/m as the bulk conduc-

tivity. The results of using these parameters in the EQ and

variational codes are shown in Fig. 22. One can trade off a

larger radius for a lower conductivity and achieve similar -..-

results, but with a somewhat higher ratio of (usca/&abs)-

Note again the remarkable agreement between the computations

based on the two independent theoriesl

6.4 Reflecting Modes

It is easy to design particles having very low absorption

and relatively high scattering. Experience has shown us that if,

for example, we choose a highly conducting metal such as copper

or aluminum, and select a radius of one micron or greater, the

particle will be essentially completely reflecting for at least

all wavelengths below 30 microns. We can tailor the scattering
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cross section to become proportional to w 4 at wavelengths signif-

icantly below that for which k o : 1, which of course, represents

Rayleigh scattering from "perfectly conducting" wires. Thus,

the aggregate of particles can easily be made to be reflecting at

one wavelength and essentially transparent at some (significantly)

lower wavelength. Chaff clouds behave in this way.

6.5 Transparent at 3 cm, Absorb at 300 Microns

In this case, we want the scattering cross section to be

much lower than the absorption cross section at all wavelengths

under consideration. The requirements due to this and the

transparency criterion at wi are given below:

(1) Make Vp cc as small as possible, consistent with the ."

other criteria.

(2) Make Le" = 1 at w2.

(3) Make kof < 1 at w2-

Application of these criteria leads to the parameters listed

in Figure 23. Note that, at X = 3 cm, the absorption is three

orders of magnitude lower than that at 1 = 300 microns. The

scattering throughout the wIl to w2 spectrum is much lower than

the absorption.
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6.6 Comments Relative to Particle Parameter Tailoring

(1) Our extended quasistatic treatment provides a very

useful tool in the design of particles for specified

applications. In some instances, the e.q.s. theory

does not yield accurate quantitative data and should be

used primarily as a first step to be followed by the

full computation using our Variational method.

(2) The calculation of scatterin cross sections using the

EQ theory is limited to the range kof /2 ( 1. Unfor-

tunately, the accuracy of the scattering cross sections

using the variational theory decreases substantially

for kof )> 1 This is discussed in Section 3. Our

numerical integration technique is presently undergoing

substantial improvement. Also, we are presently using

the Hewlett Packard HP 9000, Model 520 computer for

these calculations - providing much higher computation

speed.

(3) We have included backscatter cross section computations

in Figures 21, 22 and 23 for those applications that

require this.

.o

(4) Within the bounds of present technology, it is possible

to create particle parameters that could provide useful

spectral characteristics over a wide wavelength range.

* Note - added in proof: At the time of submission of this
report, we have made substantial improvements in our numerical
integration routines. This includes k o Y, dependent incrementing
of the number of the scattering cross section computations. The
minimum incrementation of scattering angle is 0 .05 deg. and the
maximum is 1.0 deg. This gives good results for kol 350.

,,.



REFEREN CES

1. N. E. Pedersen, J. C. Pedersen and P. C. Waterman, Final
Report on Theoretical Study of Single and Multiple Scattering
by Cylinders, prepared for U. S. Army Chemical Systems
Laboratory (September 27, 1984).

2. C. T. Tai, Electromagnetic backscattering from cylindrical
wires, J. Appl. Phys., Vol. 23, pp. 909-916 (August, 1952).

3. E. S. Cassedy and J. Fainberg, Electromagnetic cross sections
of finite conductivity wires, The Johns Hopkins Laboratory
Technical Report No. AF-81, August 1960.

4. J. R. Wait, Exact surface impedance for a cylindrical
conductor, Electr. Lett. 15, 659-660 (1979).

5. N. E. Pedersen and J. C. Pedersen, Theoretical, Experimental
and Systems Studies on a New Technique for Radar Cross
Section Reduction, AVCO RADTN-65-67, 8 December 1965.

6. N. E. Pedersen, J. C. Pedersen and H. A. Bethe, "A New
Method of Radar Target Concealment, " Proc. Tri-Service Radar
Symposium, San Diego, 1969.

7. J. R. Wait, Scattering of a plane wave from a circular
dielectric cylinder at oblique incidence, Can. J. Phys. 3j,
189 (1955).

8. J. R. Wait, The long wavelength limit in scattering from a
dielectric cylinder at oblique incidence, Can. J. Phys. 4_,
2212 (1965)

9. M. A. Ordal et al., Appl. Optics 22, 1-99 (1983).

10. F. Wooten, Optical Properties of Solids (Academic Press, New
York, 1972).

11. K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938).

12. R. B. Dingle, Proc. Roy. Soc. A11, 545 (1950).

13. C. Kittel, Introduction to Solid State Physics (Wiley, New
York, 1956), Chap. 10.

14. J. Aharoni, Antennae - An Introduction to Their Theory
(Clarendon Press, Oxford, 1946) pp. 133-135.

15. K. K. Mei, IEEE Trans. Ant. Prop. AP-13, 374 (1965).

16. R. G. Kouyoumjian, Appl. Sci. Res. B6, 165 (1956).

17. L. L. Philipson, IRE Trans. Ant. Prop, 6, 3 (1958).

* 18. C. Acquista, Effects of axis wander on scattering by thin
tenuous cylinders, Proc. 1980 Chemical Systems Laboratory
Scientific Conference on Obscuration and Aerosol Research
(June 1983), p. 17.

19. P. C. Waterman, Phys. Rev. D 3, 825 (1971).

41

.5P'



Copper
~.J.

'4

/':

-/ Epsilon real
Epsilon imag.

//,-

,k7/ PFARAMETERS (mks)
r ad i us=5E-0B .

, / cond.-5.BE+07
/ / taui .SE-14

,' / mfp-3.OE- 8
/1 / No.pts. 100.
,/ min lam=IE-06

max lam=IE-01

' /
t / .
/ -

L /
1 I

-G --5 -<lqlmd -3 -2 -1i

Fig. 1. Complex dielectric constant vs. wavelength for copper.
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