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Abstract

The problem of obtaining A-optimal designs for comparing

v test treatments with a control in b blocks of size k each

is considered. A step type design is a BTIB design in which

the control is replicated t times in some blocks and t + 1

times in the remaining blocks. A condition on the parame-

ters (v,b,k) is identified for which optimal step type

designs can be obtained. Families of such designs are

given. Methods of searching for highly efficient designs are

proposed, for situations where it is difficult to determine an

A-optimal design.
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1. INTRODUCTION.

Consider the problem of comparing v treatments called test treatments with a
standard treatment called the control in b blocks of size k each. The test treat-
ments will be labelled 1,2,...v and the control 0. The model is additive and
homoscedastic, that is, if Yjii is the observation on treatment i (0 < i < v) in

block j(1 < j _< b) and plot 1 (1 < I < k), then

Yii- p / + ni + + eij,

where the eijI are assumed to be uncorrelated random variables with mean 0 and

a common variance o2. The unknown constants p, ri and #j represent the general

mean, the effect of treatment i and the effect of block j respectively. Let

D(v,b,k) be the set of all possible experimental designs. The primary purpose of
the experiment is to draw inferences on the contrasts (ro - r), i = 1,2,...,v. If

('do - rdi) is the best linear unbiased estimator of (o - ri) under a design

d E D(v,b,k), then we want to choose a design such that the variances of

('do - rdi) are smallest in some sense. Formally, we want to choose an experimen-
tal design from D(v,b,k) which minimizes

V .0

var(ido - Tdi)

as d varies over all of D(v,b,k). A design which attains the minimum is called an

A-optimal design. Throughout this paper, we will assume that v and k satisfy

k>3 (1.1)

v > k. (1.2)

Majumdar and Notz (1983) gave a method for finding A-optimal designs.

Their optimal designs can basically be of two types. Using the terminology of
Hedayat and Majumdar (1984), they are: rectangular (or R-)type, in which every
block has the same number of replications of the control, and step (or S-)type, in
which some blocks contain the control t times and the others t + 1 times.

Optimal R-type designs were studied by Hedayat and Majumdar (1985). Families
of such designs, particularly when each block has one replication of the control,
were given in that paper. In this article, we intend to study optimal S-type

designs. S-type designs are more complicated than R-type designs; the latter
being a balanced incomplete block (BIB) design in the test treatments augmented

by an equal number of controls in each block, but the former does not have such
a simple characterization. Consequently, both the optimality and the construe-
tion of such designs are more involved.

. -- . -.,. --- " •-.
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In section 2 we give a characterization of classes D(v,b.k) for which the

Majumdar and Notz (1983) method gives an optimal S-type design. Hedayat and
Majumdar (1985) contains a similar result for R-type designs. The results of sec-
tion 2 are applied in section 3 to obtain some families of optimal S-type designs.
We also suggest ways of obtaining efficient designs in classes D(v,b,k) where

optimal designs are not readily available.

- .

* . - - . .. - . . . - -
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2. THE NATURE OF OPTIMAL STEP TYPE DESIGNS.

We start this section by giving some definitions and known results. For

d E D(v.b.k), ndij will denote the number of times treatment i (0 < i < v) occurs
b

in block j (I < j < b), and Xdip = n (0 < i.p < v). The following

definition is due to Bechhofer and Tamhane (1981).

Definition 2.1. d is a Balanced Treatment Incomplete Block (BTIB) design if

XdO1 l•• dOv

and

Xd12 Xdl3 " Xd,v-lv-

A special type of BTIB designs will be of particular interest to us.

Definition 2.2. For integers t E (0,1, - , k - 11, sE (0,1, ' , b - 1, d is a

BTIB(v,b,k ; t,s) if it is a BTIB design with the additional property that

ndij E , 1 , i  1,2,.-. v;j --- ,2 . ,b,

ndOi ••ndOs-- t + 1,

nd,+l-- •d0 b  t.

The layout of a BTIB(v,b,k ; t,s) design can be pictured as follows, with columns

of the array denoting the blocks:
.... . .. . . . . . b

Control

Control

4 .

d

k

Here di and d, are components of the design which involve the test treatments

only. If s = 0 then d, is empty and d2 is necessarily a BIB design. In this case

the BTIB(v,b,k . t,0) is called rectangular (R-)type. Otherwise, when s > 0, the

" BTIB~v,b,k ; t,s) is called I (S-)type.

Let

a: (v - 1)2, c = bvk(k -1), p =v(k - 1) + k,

A : = {(x, z): x --- 0, - ,[k/21 -1; z 0 ,1, ' ' b. w ith z > 0O w hen x 0}.

Here - is the largest integer function. Let,

~ . .... * I
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g(x,z) = a,' {c - p(bx + z) - (bx 2 - 2xz + z)J

+ 1/f{k(bx + z) - (bx2 + 2xz + z)}.

Observe that g(x,O) = g(x - 1,b), for all x 3 0. The following theorem is due to
Majumdar and Notz (1983).

Theorem 2.3. A BTIB(v,b,k ; t,s) is A-optimal in D(v,b,k) if

g(t,s) = min g(x,z).
fx,z)EA

.5ome examples of optimal R- and S- type designs are available in Majumdar
and Notz (1983) and in the catalogs of optimal designs given in Hedayat and
Majumdar (1984). It may be noted that the designs given in Theorem .:2..3 are
also Maximum Variance (MV-) optimal, that is they minimize

max var(*Od0- rdi)
l<i<v

among all d E D(v,b,k). More general results on MV-optimal designs are now
available in Jacroux (1984). Hedayat and Majumdar (1985) investigated the
nature of g(x,z) and characterized classes D(v,b,k) for which the g(x,z) is minim-
ized at (t,O) for some t.

Let L be the set of integers r with 0 < r < [k/2jb. Then the function g in

Theorem 2.3 can also be expressed as a function G on L as follows:

G(r0 ) = g(x,z), where r0 = bx + z with x = [r0/bi and

z = r0 - blro, bl.

Thus a BTIB(v,b,k ; t,s) is A-optimal if G(r 0 ) is minimized at r0* = bt + s. Here
r0 is the number of observations allocated to the control. For specific values of

v,b and k, the minimization of G over L can be performed on a computer
without difficulty. However, if one wants to derive some general results such as

the optimality of a famiy. of designs, (for instance, Teorem 3.1 in the present
paper) then it would be necessary to study some theoretical properties of the
function G (or g). The following result, first conjectured in Ture (1982), provides
an important technical tool for investigating the A-optimality of BTIB designs:

Theorem 2.4. If G(ro*) = minG(r0 ), then G is decreasing on {r0 E L: r0 < ro*}
rol L

and increasing on {r0 E L: r0 > ro*}.

A Proof of Theorem 2.4 can be found at the end of this section.

Let A0 = {(0,z) : z=1, ,b} and Ai = {i,z):z=0,1,..,b} for

= 1,2, • . , [k/21 - 1. Then, by Theorem 2.4, one of the following two situa-

tions must prevail, for some t E {0,1, • • - , [k/2]}:

a) g(x,z) is a decreasing function of z on each of A0,A,, At-, and, if
t < Ik/21, g(x,z) is increasing on each of At, , A1i,!21i. In this case, the

- .... . ,,

",: .,% -", , % ', , ;: , ., ., ,, 't. ,. , .. ;,. ,. ._.. .-.... ,. .---. .,-..-. -.- .. .. ,..-.-... ..-.- -.. -
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minimum of g(x,z) over A is achieved at x t and z 0, and an R-type design.
BTIB(v,b.k ; t,0) is optimal. This was the case studied by Hedayat and Majum-
dar (1985).

b) g(xz) has a local minimum at (t,s) on At for some s E {1. • b - I}, g(x,z) is

decreasing on each A, i < t, if any, and g(x,z) is increasing on each A1, i > t, if
any. In this case, an S-type design, BTIB(v,b,k ; t,s) is optimal.

An immediate consequence of Theorem 2.4 is that a local minimum of (Q s
also a global minimum. Thus G(ro*) minG(r0 ) if and only if

G(ro*) _< min{G(ro* - 1), G(r0* + 1)}. In other words, we have

Corollary 2.5. For some t E {0,1,• , k/21 - 1} and sE (1, , b -1,

g(t,s) = min g(x,z) if and only if
(X,Z)EA

g(t,s) < min{g(t,s - 1), g(ts + 1)}. (2.1)

Consequently, a BTIB(v,b,k ; t,s) is A-optimal in D(v,b,k) whenever (2.1) holds.

Condition (2.1) substantially reduces the computation one has to do in verify-
ing the optimality of a BTIB design. In section 3, it will be used to show the
optimality of a family of S-type BTIB designs.

Theorem 2.4 is also useful for simplifying the search for the optimal
ro* = bt -,- s, which, as will be demonstrated in the next section, is useful for con-
structing efficient designs when optimal designs cannot be found among BTIB

designs. One simple method for finding the optimal (t,s) could be the sequence:

i) Determine x0 = min{x: g(x,b- 1) < g(x,b), x = 0,1, [kiJ2- 1}.
(ii) Determine zo such that g(x0,z0 ) min g(x0 ,z). A method of determining

z=0,1,...,b
z0 could be to consider g(x0,z) as a function of a real-valued z over the interval

[0,b], and using techniques of Calculus to find its minimum. Suppose the
minimum is at a point p E 10,bi. If p is an integer, then z0 = p. If p is not an

integer, then zo = 1p) if g(xo,[pj) < g(xo,lpj + 1), z0 = 1PI + 1 if
g(x0,lp) > g(x0jp] + 1), and iny one of [pl and [p] + 1 can be chosen as z0 if
g(x0,[p]) = g(x 0 ,[pI + 1). In the last situation a choice between [p] and [pJ + 1

should be made with an eye to the existence of an optimal BTIB design.

(iii) Ifz o = 0 then t-=-x0,s=0. Ifz 0 E{1,-- ,b-1} thent=x0 ,s= z0 . If

z0 = b then t = x0 + 1, s= 0.

Remark. It is easily seen that

g(x,z) =-

where z = b- 1 z and j does not depend on b. Thus, treating z as a real variable

. on 10,11, one can now minimize (x,z) over x E (0,1,..., [k/21 - 1} and z E 10,11

to obtain optimal x0 , z0 . Th solutions Ka and .AU dQ nt , 2a b. If z0b is

4.S
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an integer then the optimal values are t x0 and s z0b. Otherwise, the

minimum of g(x,z) over A is attained at x = x0 and z = jz 0bJ or Jz0b - 1. This

fact makes it possible to tabulate (x0,z0 ) as a function of k and v. One such
table is available in Ture (1985).

As an example, consider v = 6, k 5 and b = 18. Here x0  1 and the
optimal value of z is z0 = .321, but z0 b = 5.778 is not an integer. Since
g(1,6) < g(1.5), the optimal s = 6. A BTIB(6,18,5 ; 1,6) is given in Hedayat and

Majumdar (1984) (design S4 in its appendix).

We finish this section by proving Theorem 2.4. For this purpose we need two
lemmas. Lemma 2.6 was first proved in Ture (1982); also see Ture (1985) and

Hedayat and Majumdar (1985).

Lemma ,2.6. The function

z - gtx,z)

is, for a fixed x E {0,1, ,(k - 2)/2}, a decreasing function on I0,bI, or an
increasing function, or there is a z0 E (O,b) such that the function is decreasing on

10,z 0J and increasing on Izo,b ].

Lemma 2.7. (i) If xE {0,1, ,[k,/21 - 2} then gfx,b) > g(x,b - 1) implies

g(x + 1,1) > g(x + 1,0).

(ii) If x E {1,2,..., [k/21 - I) then g(x,l) < g(x,0) implies

g(x - 1,b) < g(x - 1,b - 1).

Proof. (i) It follows from p.762 of Hedayat and Majumdar (1985) that

g(xb) > g(x,b - 1) if and only if

b{k - (x + 1)}Ia(x + 1)2(p - 2x - 1) - (k - 2x - 1)(v(k - 1) - (x + 1)121

> v(k - 2x - 1)(p - 2x - 1){k - I + (v - 2)(x + 1)}.

In order that the above inequality holds, the left hand side should be positive

since the right hand side is. Hence if g(x,b) _> g(x,b - 1), then

a(x + 1)2 (p - 2x - 1) 2! (k - 2x - 1){v(k - 1) - (x + 1)}2. (2.2)

Again, from p.761 of Hedayat and Majumdar (1985), g(x + 1,1) _> g(x + 1,0) if

and only if

b{k - (x + 1)}[(k - 2x - 3{v(k -1) - (x + 1} 2- a(x + 1)2 (p -2x - 3}

< v(k-2x-3)(p-2x-3)(k-1 +(v-2)(x+1)}.

This inequality is certainly valid if the left hand side is negative, since the right

hand side is positive; that is, if

&(x + 1)2 p - 2x - 3) (k - 2x - 3){v(k- 1)- (x + 1} 2 . (2.3)

It suffices to show that (2.2) implies (2.3). Using (2.2) we see
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a(x - 1)2(p - 2x - 3) = a(x + 1)2(p - 2x - 1) - 2a~x - 1)2

> (k - 2x- 1){v(k - 1)- (x 1)}2 - 2a(x 1 1)2

(k - 2x - 3){v(k - 1) - (x + 1)}2 + 2{v(k - 1) - (x -)}2 - 2a(x -) -

So, it suffices to show that

{v(k - 1)- (x + 1)}2 > a(x + 1)2,

that is {v(k - 1) + (v - 2)(x + 1)}{v(k - 1)- v(x + 1)} > 0, which is true since

x < (k 2)- 2.

The proof of (ii) is completely similar and involves the following steps:

g(x,l) < g(x,0) is equivalent to

b(k - x)(k - 2x - 1){v(k - 1) -x) 2 - ax2 (p - 2x - 1)]

> v(k - 2x - 1)(p - 2x - 1){k - 1 + (v - 2)x}.

Hence, (k - 2x - 1){v(k - 1) - x}2 > ax2(p - 2x - 1), so that

(k - 2x 1){v(k - 1)- x)2 > ax2(p - 2x + 1). Hence,

b(k - x)[ax2(p - 2x + 1) - (k - 2x + 1){v(k - 1) - x} 2 1

< v(k - 2x + l)(p - 2x + 1){k - 1 + (v -2)x,

that is g(x - 1,b) < g(x - 1,b - 1).

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4:

If the minimum of g(x,z) over A is attained at s( ie (t,z) with z 0, then the

result follows from Lemma 2.4 of Hedayat and Majumdar (1985). On the other

hand, suppose

g(ts) = min g(x,z),
(x,z)EA

where s {O,b}. Then since

g(t,s) < g(t,s + 1) < < g(t,b - 1) < g(t,b),

we obtain from Lemma 2.7 that

g(t + 1,0) !5 g(t + 1,1).

Now, using lemma 2.6,

g(t + 1,0) !5 g(t + 1, 1) _<".5 g(t + 1,b).

Continuing this chain of arguments, we see that

g(t,s) = min g(x,z)

z=O,l..,b

Similar arguments starting from g(t,s) 5 g(t,s - 1) show that

-P '-
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z>O when x=O

This completes the proof.

71
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3. APPLICATIONS.

An important application of Corollary 2.5 is finding families of optimal step
type designs. We give some families in Theorem 3.1. We shall also discuss situa-

tions where Corollary 2.5 cannot be applied, and suggest ways of finding efficient
designs.

Theorem 3.,. Let a > 3 be a prime or a power of a prime. Then, for any posi-
tive integer "y, there exists a BTIB(a2 - 1, -At + 2)(Q 2 - 1), -; 0, +y(a + 1)(a 2 - 1))

which is A-optimal in D(a 2 - 1, -(Aa + 2)(a 2 - 1), Cg).

Proof: The A-optimality follows from Corollary 2.5 upon verifying condition

(2.1).

We will establish the existence for = 1; for larger -y we take the union of -7

copies of this design. We denote by BIB(v,b,r,k,,X) a BIB design with the parame-

ters v,b,r,k and X; the symbols enjoying their standard interpretation.

Since a is a prime or a prime power, there exists a

BlB(a 2, a(a + 1), a + 1, a, 1), that is an Euclidean plane. There is also a

BIB(a 2 -1, (a + 1)(a 2 -2, 2 -2, a- 1, a -2). To see this, start with an

Euclidean plane based on a 2 treatments and delete one treatment from it. The

remaining design has a + 1 blocks of size a - 1 and a 2 - 1 blocks of size a. Take

o - 2 copies of each block of size a - 1, and replace each block of size a by a

blocks of size a - 1, the a blocks being the a subsets of size a -- 1 of the original

block of size a. These (a - 2)(a + 1) + a(a 2 - 1) = (a + 1)(a 2 
- 2) blocks give

the desired BIB design.

To get a BTIB(a 2 -1,(a+2)(a 2 -I),a;0,a-i-+1)(a 2 -1)), augment one

r;plication of the control to each block of the constructed

BIB( 2 -1,(a + 1)(a 2-2),a 2 -2,-1, a-2) and add to this the blocks of a

BIB(a 2, a(a + 1), a + 1, a,l), in which the control appears as one of the treat-

ments. Hence the theorem.

Stufken (1986) has more families of optimal step type designs. There again,

condition (2.1) is crucial in proving the optimality.

The problem of the existence of a BTIB(v,b,k; t,s) imposes restrictions on the

scope of Corollary 2.5. As in BIB designs, the parameters should satisfy some

necessary conditions (Hedayat and Majumdar 1984, p.365). Even when these are

satisfied, a BTIB(v,b,k; t,s) may not exist. In case the parameters v,b,k cannot

accommodate Corollary 2.5, one may try to find a design in D(v,b,k) which is

highly efficient, even if it is not known to be A-optimal. It is not difficult to see

from Theorem 2.3 that for any d E D(v,b,k),

V
, - 2 E var(rd0 - d) -- vkg(t,s) (3.1),' i=l

a , lt l . m- ~ o ° . .
•

. . . . . . .- . . ". .. •
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The left hand side of this expression is the value of the A-criterion for a design d.

We denote this by Ad. Clearly the ratio vkg(t,s)/A d gives a measure of the

efficiency of d.

The lower bound in (3.1) is achieved by a BTIB(v,b,k; t,s). Before discussing

specific methods of identifying efficient designs, let us determine how close an

arbitrary design in D(v,b,k) can come to the lower bound vkg(t,s). For

d E D(v,b,k), let us defin-

mdl I{J ndo -- l}j,

that is, mal is the number of blocks in which the control appears I times,

1= 0,1 ,k-1. Clearly

k-I
lmdl : rdo,1=!

V k-Ir \,i = rdo(k - 1) -  E ('-1)mdl,
i=I ---

V V

and if ndij E {0,1} for all i 1,2, , v, j 1,, , b, then -pXl)dip + E.Xdoi

i<p
-b~ 1) - 1 1 - b~d hr ~ '
-bkk t (1 r doj, he number of replications

2 2=l j=
of the control in d.

Lemma 3.2. Let mo,m 1, • , mk_1  be fixed numbers satisfying

m 0 + m + .  +i k l = b. Consider the subset of D(v,b.k) in which mdl=m,

I = 1, 2, - ,k-I. For these designs denote rd, =-r 0  and 'dip = ip,

ip = 0,1, , v. Define the quantities

V V

X = 0  /V, I =2E 7. xip/v(v - 1).
i= l 1---

i<p

Then, for each d E D(v,b,k),
V

Ad :o.2  var('do- 'd1 ) > vk(K0 + X)/{X0 (X0 ± v+J)}. (3.2)
i=1

Proof. Follows from Lemma 2.2 of Majumdar and Notz (1983).

The condition (3.2) gives a sharper lower bound to Ad than (3.1). It can be

used to eliminate configurations (mo,ml, • , Mk) for which the lower bound in

(3.2) is not very close to vkg(t,s).

To find an efficient design when Corollary 2.5 cannot be applied, we first

determine the optimal ro* = bt + s by the method described in section 2. If

there did exist a d E D(v,b,k) which was a BTIB(v,b,k; t,s) then this d would

have been A-optimal. Since there is no such design, we shall look at values r0
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close to r0* and various configurations of (m0 ,ml, , mk-). For each of these

we compute lower bounds given by (3.2), and consider those which are not much

larger than vkg(t,s), the lower bound given by (3.1). Next we consider designs

having these (m 0,m1 , * •, Mk-1) configurations which are very 'close' to BTIB

designs. By this we mean Xdoi'S(l < i < v) are as close as possible and

)Xdip#s(l < i,p < v, i $ p) are as close as possible. We choose the most efficient

design among all these designs. It is expected that this design would be highly

efficient, in general. In particular we expect two types of designs to perform very
well. One is a BTH3 design with rd0 close to ro*; the other is a design 'closest' to

a BTIB design, with rdo equal to r0*. We now give two illustrative examples.

Example3.3. Letv=5, k=4 and b=7. Then t=1 ands=z0, r* 7,

vkg(1,0) 2.04.

Table 3.1

r0  (m 0,m1 ,m2,m3) (K0,X1) lower bound from (3.2)

6 (1,6,0,0) (3.6, 2.4) 2.137

7 (1,5,1,0) (3.8, 2.2) 2.134

7 (0,7,0,0) (4.2, 2.1) 2.041

8 (1,4,2,0) (4, 2) 2.143

8 (0,6,1,0) (4.4, 1.9) 2.060

9 (0,6,0,1) (4.2, 1.8) 2.165

9 (0,5,2,0) (4.6, 1.7) 2.091

Note that whenever K0 and K1 are integers, the corresponding design achieving

the lower bound is a BTIB design. Consider five designs dj,d2 ,d3,d4,d5 , with
V

columns as blocks, and the corresponding values of Ad a-2 E var(id. - 'd):

d, O 00000

d 12223344 2
2

d= 13343 3 1 A, = 2.058d," 4545545, A

id3 0004300, Ad,=2.067

i 124554551,

t:: ? ; . . . . .. . .. ... ."
7":",', : .. . ,_ . . " , :. -. .',", .., -.. . ..'..1-3- -3. ..-... - .,43 3. . .,4.* ...-- -
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d4= 34 ' 00 Ad - - 2143 (BTIB design)

00112
245555

10 1111231220102234 , Ad-2207

Clearly dq is the best among all these designs. In fact Ad. is even smaller than

the lower bounds given in table 3.1 for all other configurations of (mo,mj,m2,m 3).
d2 is not a BTIB design but rd0 = r* It is highly efficient since

vkg(t,s)/Ad2 = .992.

Note that the BTIB design d4  has a high efficiency also, since

vkg(t,s)/Ad, = .952.

Examle 3.4. v-=-6, k 5, b 7. Here t=1 and s=2, r:=9,

vkg(t,s) 2.204.

Table 3.2

r0  (m0 ,m1,m2 ,ms,m 4) (X0,Kl) lower bound from (3.2)

7 (0,7,0,0,0,0) (4.67, 2.8) 2.236
8 (0,6,1,0,0,0) (5, 2.6) 2.214

9 (0,5,2,0,0.0) (5.33, 2.4) 2.204

10 (0,4,3,0,0,0) (5.67, 2.2.) 2.207
11 (0,3,4,0,0,0) (6, 2) 2.222

12 (0,2,5,0,0,0) (6.33, 1.8) 2.249

d 1 = 1223333 ,Ad, =2.243 I

3565665

100 111121
d 2 =1 2 2 22 431Ad= 2.227

1353345 41
~46 5 66 6 5

:, ... ,, ...-.. . .. ., -- .. ... , .- . . .4..-1.. , ..'.. ..e, .- , ., ... . .1, .. ..,-.4- 1
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0000000

d3 1 22343 Ad, =2.223
23  3

156665

00 00 113
d4 11 2 222 4 , A,,. 2.222 (BTIB design)

13434355

Clearly the BTIB design d4 is the best. Note that rd.0 is close, though not equal

to ro*. This design is highly efficient, in fact,

vkg(t,s)/Ad4 = .992.

It may be suggested that one way of finding efficient &osigns is to look for an A-

optimal design among all BTIB designs only. Hedayat and Majumdar (1984)
shows that even though these designs perform very well, in general, there can be

instances where it is quite poor. This is because the stringent combinatorial con-
ditions of BTIB designs may enforce a very inefficient choice of r0 . For instance,

they show that in D(10,80,2) it is possible to achieve at least a 24% improvement

over the best BTIB design. In this case, the optimal (x0,z0) = (0, 0.49), so

bz 0 = 80X0.49 = 39.2. The best BTIB design has r0 = 80, which is too far

away from 39.2. We recommend to use the right r0 (or approximately so) and

then construct a design combinatorially close to a BTIB design.

i'
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