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Abstract

The problem of obtaining A-optimal designs for comparing
v test treatments with a control in b blocks of size k each
is considered. A step type design is a BTIB design in which
the control is replicated t times in some blocks and t + 1 P
times in the remaining blocks. A condition on the parame- .
ters (v,b,k) is identified for which optimal step type
designs can be obtained. Families of such designs are
given. Methods of searching for highly eflicient designs are
proposed, for situations where it is difficult to determine an

A-optimal design.
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1. INTRODUCTION.

Consider the problem of comparing v treatments called test treatments with a
standard treatment called the control in b blocks of size k each. The test treat-
ments will be labelled 1,2,..v and the control 0. The model is additive and
homoscedastic, that is, if Y;; is the observation on treatment i (0 <i < v) in
block j(1 < j < b)and plot 1 (1 <1 < k), then

Yj=pn+1n+p8+ey

where the e;; are assumed to be uncorrelated random variables with mean 0 and
a common variance 02. The unknown constants g, ; and B, represent the general
mean, the effect of treatment i and the effect of block j respectively. Let
D(v,b,k) be the set of all possible experimental designs. The primary purpose of
the experiment is to draw inferences on the contrasts (ro-17), i = 1,2,...v. If
(740 - Tq;) is the best linear unbiased estimator of (7o-7) under a design
d € D(v,b,k), then we want to choose a design such that the variances of
(740 - 74;) are smallest in some sense. Formally, we want to choose an experimen-
tal design from D(v,b,k) which minimizes

v
8 var(‘rdo - %di)
1=
as d varies over all of D(v,b,k). A design which attains the minimum is called an
A-optimal design. Throughout this paper, we will assume that v and k satisfy

k>3 (1.1)
v > k. (1.2)

Majumdar and Notz (1983) gave a method for finding A-optimal designs.
Their optimal designs can basically be of two types. Using the terminology of
Hedayat and Majumdar (1984), they are: rectangular (or R-)type, in which every
block has the same number of replications of the control, and step (or S-)type, in
which some blocks contain the control t times and the others t + 1 times.
Optimal R-type designs were studied by Hedayat and Majumdar (1985). Families
of such designs, particularly when each block has one replication of the control,
were given in that paper. In this article, we intend to study optimal S-type
designs. S-type designs are more complicated than R-type designs; the latter
being a balanced incomplete block (BIB) design in the test treatments augmented
by an equal number of controls in each block, but the former does not have such
a simple characterization. Consequently, both the optimality and the construc-
tion of such designs are more involved.
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In section 2 we give a characterization of classes D(v,b.k) for which the
Majumdar and Notz (1983) method gives an optimal S-type design. Hedayat and
Majumdar (1985) contains a similar result for R-type designs. The results of sec-
tion 2 are applied in section 3 to obtain some families of optimal S-type designs.
We also suggest ways of obtaining efficient designs in classes D(v,b k) where
optimal designs are not readily available.
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2. THE NATURE OF OPTIMAL STEP TYPE DESIGNS.

We start this section by giving some definitions and known results. For

d € D(v.b.k). ng; will denote the number of times treatment i (0 < i < v) occurs
b

in block j (1 <) <b}, and Ay = _Elndi,-ndpj (0 < i,p < v). The following
J=

definition is due to Bechhofer and Tamhane (1981).

Definition 2.1. d is a Balanced Treatment Incomplete Block (BTIB) design if

o1 = = Ndov
and

A2 = Nz = = kd,v-l,v-

A special type of BTIB designs will be of particular interest to us.

Definition 2.2. For integers t€{0,1,--- k-1}, s€{01, - --,b-1}, dis a
BTIB(v,b,k ; t,s) if it is a BTIB design with the additional property that

ndijE{O,l},i=l‘?,"',V;jz1,‘2,--',b,
Dgo1 = .":nd03:t+lv
Dgos+1 = ~ = Dggp = L.

The layout of a BTIB(v.bk ; t,s) design can be pictured as follows, with columns
of the array denoting the blocks:

e e te e ter e e ey s 0 % RPN - 1

l.' Control .

. Conmtrol t

ta1 .
. a .

. 2 .

. dl '_ .

k K

Here d, and d, are components of the design which involve the test treatments
only. If s = 0 then d, is empty and dj is necessarily a BIB design. In this case
the BTIB(v,b,k . t,0) is called rectangular (R-)type. Otherwise, when s > 0, the
BTIB(v.b.k ; t.s) is called step (S-)type.

Let

a=(v-1)% ¢ =bvk(k-1), p = v(k - 1) + k,

A={(xz):x=0,---,]k/2]-1,2=0,1, - b, withz > 0 when x = 0}.

Here | - ] is the largest integer function. Let,

PP S
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g(x,z) = a {c - p(bx + z) + (bx® + 2xz + z)}
+ 1/{k(bx + z) - (bx® + 2xz + z)}.

Observe that g(x,0) = g(x - 1,b), for all x 2 0. The following theorem is due to
Majumdar and Notz (1983).

Theorem 2.3. A BTIB(v,bk ; t,s) is A-optimal in D(v,b k) if

t,s) = min g(x,z).
glt.s) = ming(x.2)

some examples of optimal R- and S- type designs are available in Majumdar
and Notz (1983) and in the catalogs of optimal designs given in Hedayat and
Majumdar (1984). It may be noted that the designs given in Theorem .3 are
also Maximum Variance (MV-) optiinal, that is they minimize

max var(74, - 74i)
l<igv

among all d € D(v,bk). More general results on MV-optimal designs are now
available in Jacroux (1984). Hedayat and Majumdar (1985) investigated the
nature of g(x,z) and characterized classes D(v,b k) for which the gfx,z) is minim-
1zed at {t,0) for some t.

Let L be the set of integers r with 0 < r < |k/2]b. Then the function g in
Theorem 2.3 can also be expressed as a function G on L as follows:

G(ro) = g(x,z), where ry = bx + z with x = [ry/b] and

7= ro - b‘ro/'bl.
Thus a BTIB(v,b,k ; t.s) is A-optimal if G(ry) is minimized at ry’ = bt +s. Here
1, is the number of observations allocated to the control. For specific values of
v.b and k, the minimization of G over L can be performed on a computer
without difficulty. However, if one wants to derive some general results such as
the optimality of a family of designs, (for instance, Tlieorem 3.1 in the present
paper) then it would be necessary to study some theoretical properties of the

function G (or g). The following result, first conjectured in Ture (1982), provides
an important technical tool for investigating the A-optimality of BTIB designs:

Theorem 2.4. If G(ry') = migG(ro), then G is decreasing on {rg€L: 1y < rq }
ref
and increasing on {ro € L: ry > 1o’}

A Proof of Theorem 2.4 can be found at the end of this section.

Let Ay={(0,z):2=1,---,b} and A, = {(i,z):2=0,1,---,b} for
i=12 ---,[k/2] -1. Then, by Theorem 2.4, one of the following two situa-
tions must prevail, for some t € {0,1, - - -, [k/2]}:

a) g(x,z) is a decreasing function of z on each of AyA,, - -, A, and, if

t < [k/2|, glx,z) is increasing on each of Ay, ‘-, Ay/g.;. In this case, the

"3
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minimum of g(x,z) over A is achieved at x = t and z = 0, and an R-type design.
BTIB(v,b.k ; t,0) is optimal. This was the case studied by Hedayat and Majum-
dar (1985).
b) g(x.z) has a local minimum at (t,s) on A, for somes€ {l. - - b -1}, g(x.z) is
decreasing on each J\;, i < t, if any, and g(x,z) is increasing on each A;, i > t, if
any. In this case, an S-type design, BTIB(v,b,k ; t,s) is optimal.

An immediate consequence of Theorem 2.4 is that a Jocal minimum of G is
also a global minimum. Thus G(ry') = x;r:eif G(ry) if and only if

G(rg') < min{G(ry - 1), G(ry’ + 1)}. In other words, we have

Corollary 2.5. For some t€ {01, ---,lk/2]-1} and se{l,--- b-1},
g(t,s) = min g(x,z) if and only if
{x,3)eA

g(t,s) < min{g(t,s - 1), g(t,s + 1)}. (2.1)
Consequently, a BTIB(v,bk ; t,s) is A-optimal in D(v,b,k) whenever (2.1) holds.
Condition (2.1) substantially reduces the computation one has to do in verify-

ing the optimality of a BTIB design. In section 3, it will be used to show the
optimality of a family of S-type BTIB designs.

Theorem 2.4 is also useful for simplifying the search for the optimal
ro' = bt + s, which, as will be demonstrated in the next section, is useful for con-
structing efficient designs when optimal designs cannot be found among BTIB
designs. One simple method for finding the optimal (t,s) could be the sequence:

(1) Determine xy = min{x: g(x,b - 1) < g(x,b), x =01, - - -, [k/2] - 1}.
(ii) Determine z4 such that g(xq,2¢) = rgllin bg(x(,,z). A method of determining
1=01,..,

zg could be to consider g(xg,z) as a function of a real-valued z over the interval
[0,b], and using techniques of Calculus to find its minimum. Suppose the
minimum is at a point p € [0,b]. If p is an integer, then z = p. If p is not an
integer, then zg = [p] if  g(xe[P]) < glxo.[p] + 1), zp=][p]+1 if
g(xo.[p]) > &(xo,[p] + 1), and zny one of [p] and [p] + 1 can be chosen as z, if
g(xo,[P]) = 8(xq.[p] + 1). In the last situation a choice between [p| and [p| + 1
should be made with an eye to the existence of an optimal BTIB design.

(iii) If 2 =0 thent = xo,s = 0. If zg€ {1, ---,b-1} thent = xo, 8 = 25 If
Zg=Dbthent =x9+ 1,5 =0.

Remark. It is easily seen that
glx,2) = b'g(x.z),

where z = b~!z and g does not depend on b. Thus, treating z as a real variable
on |0,1], one can now minimize g(x,z) over x € {o1,---, [k/2] -1} and z € [0,1]

to obtain optimal x4, zo. The solutions xn and z4 do not depend op b, If zob is

S o o o P O Y
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an integer then the optimal values are t = x, and s = zgb. Otherwise, the
minimum of g(x.z) over A is attained at x = Xo and z = |zgb] or [zgb] ~ 1. This
fact makes it possible to tabulate (xg,z¢) as a function of k and v. One such
table is available in Ture (1985).

As an example, consider v =6, k =5 and b = 18. Here xy = 1 and the
optimal value of z is zy = .321, but 2ob = 5.778 is not an integer. Since
g(1.6) < g(1.5), the optimal s = 6. A BTIB(6.18,5 ; 1,6} is given in Hedayat and
Majumdar (1984) (design S4 in its appendix).

We finish this section by proving Theorem 2.4. For this purpose we need two
lemmas. Lemma 2.6 was first proved in Ture (1982); also see Ture (1985) and
Hedayat and Majumdar (1985).

Lemma 2.6. The function

z — glx,2)

is, for a fixed x€ {0,1,--- ,(k -2)/2}, a decreasing function on [0,b], or an
increasing function, or there is a zg € (0,b) such that the function is decreasing on
[0.2] and increasing on [z4,b).

Lemma 2.7. (i) If x€{0,1, - -, [k/2]- 2} then g{x,b) > g(x,b-1) implies
g(x + 1,1) > g(x + 1,0).

(i) Ifxe{1,2,..,(k/2] - 1} then g(x,1} < g(x,0) implies

g(x - 1,b) < glx-1,b-1)

Proof. (i) It follows from p.762 of Hedayat and Majumdar (1985) that
g(x.b) > g(x,b - 1} if and only if

b{k - (x + 1)}|alx + 1)>(p - 2x - 1) - (k - 2x - 1){v(k - 1) - (x + 1)}2|
>vik-2x-1)(p-2x - I){k - 1 + (v -2)}{x + 1)}.

In order that the above inequality holds, the left hand side should be positive
since the right hand side is. Hence if g(x,b) > g(x,b - 1), then

alx + 1)%(p-2x-1) > (k- 2x - 1){v(k - 1) - (x + 1)}= (2.2)

Again, from p.761 of Hedayat and Majumdar (1985), g(x + 1,1) > g{x + 1,0) if
and only if

b{k - (x + 1)}[(k - 2x = 3){v(k - 1) - (x + 1)}* - a(x + 1)*(p - 2x - 3)}]
<vik-2x-3)p-2x-3){k -1+ (v-2)(x +1)}.

This inequality is certainly valid if the left hand side is negative, since the right
hand side is positive; that is, if

alx +1)3p-2x-3) > (k-2x - 3){v(k-1)-(x + 1)}2 (2.3)
It suffices to show that (2.2) implies (2.3). Using (2.2) we see

______________ .
------
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a(x = 1)%(p - 2x-3) = a(x + 1)*(p - 2x - 1) - 2a(x + 1)?
> (k- 2x - 1){v(k - 1) - {(x + 1)}* - 2a(x + 1)*
= (k-2x-3){v(k-1) - (x + 1)} + 2f{v(k - 1) - (x ~ 1)}% - 2a(x ~ 1)*.
So, it suffices to show that

(vik-1)-(x + 1)}% > a(x + 1)%,

that is {v(k - 1) + (v - 2)(x + 1)}{v(k - [} - v(x + 1)} > 0, which is true since
x < (k 2)-2.

The proof of (ii) is completely similar and involves the following steps:
g(x.1) < g(x,0) is equivalent to

b(k - x)|(k - 2x ~ 1){v(k - 1) - x}? - ax*(p - 2x - 1)]
>vk-2x-1)(p-2x-1){k -1 + (v-2)x}.

Hence, (k - 2x - 1){v(k - 1) - x}? > ax®(p - 2x - 1), so that
(k - 2x + 1){v(k - 1) - x}* > ax®(p - 2x + 1). Hence,

b(k - x)[ax*(p - 2x + 1) - (k - 2x + 1){v(k - 1) - x}?]
< vik-2x + 1)(p-2x + 1){k -1 + (v - 2)x},

< bl At deiechncl ek 2

that is g(x - 1,b) < g(x-1,b-1).
Now we are ready to prove Theorem 2.4.
Proof of Theorem 2.4:

If the minimum of g(x,z) over A is attained at sc .e (t,z) with z = 0, then the
result follows from Lemma 2.4 of Hedayat and Majumdar (1985). On the other
hand, suppose

g(t,s) = min g(x,z),
(x,2)eA

where s € {0,b}. Then since

gits) < glts+1) < - < glt,b-1) < glt,b),
we obtain from Lemma 2.7 that

g(t + 1,0) < gt + 1,1).
Now, using lemma 2.6,

gt +10) <glt+11)< -+ <glt+1b)
Continuing this chain of arguments, we see that

ts) = min X,2
g( ) x=t,..., [k/’.’l—l,g( )

‘‘‘‘‘‘‘‘‘‘

..............
....................
----------
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g(ts) = min g(x,z)

x=0,..,t
3=0.1,....b
>0 when x=0

This completes the proof.
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3. APPLICATIONS.

An important application of Corollary 2.5 is finding families of optimal step
type designs. We give some families in Theorem 3.1. We shall also discuss situa-
tions where Corollary 2.5 cannot be applied, and suggest ways of finding efficient
designs.

[heorem 3.]. Let a > 3 be a prime or a power of a prime. Then, for any posi-
tive integer ~, there exists a BTIB(a® - 1, f{a + 2)(a® - 1), a; 0, v(a + 1)(a®-1))
which is A-optimal in D(a?® - 1, y(a + 2)(a?® - 1), a).

Proof; The A-optimality follows from Corollary 2.5 upon verifying condition
(2.1).

We will establish the existence for ¥ = 1; for larger 4 we take the union of ~4
copies of this design. We denote by BIB(v,b,r ,k,\) a BIB design with the parame-
ters v,b,r,k and \; the symbols enjoying their standard interpretation.

Since a is a prime or a prime power, there exists a
BIB(a® ala + 1), a + 1,a,1), that is an Euclidean plane. There is also a
BB(a?-1,(a + 1)(a®-2),a®-2,a-1,a-2). To see this, start with an
Euclidean plane based on a? treatments and delete one treatment from it. The
remaining design has a + 1 blocks of size a — 1 and a® - 1 blocks of size a. Take
a - 2 copies of each block of size a - 1, and replace each block of size a by a
blocks of size a - 1, the a blocks being the a subsets of size a - 1 of the original
block of size a. These (a - 2)(a + 1) + a(a®-1) = (a + 1)(a® - 2) blocks give
the desired BIB design.

To get a BTIB(a®-1,(a + 2)(e®-1), a; 0, (a + 1){a® - 1)), augment one
replication of the control to each block of the constructed
BIB(a® -1, (a + 1){(a®*-2),a®-2,a -1, a - 2) and add to this the blocks of a
BTB(aZ, ala + 1), a + 1, a,1), in which the control appears as one of the treat-
ments. Hence the theorem.

Stufken {1986) has more families of optimal step type designs. There again,
condition (2.1) is crucial in proving the optimality.

The problem of the existence of a BTIB(v,bk; t,s) imposes restrictions on the
scope of Corollary 2.5. As in BIB designs, the parameters should satisfy some
necessary conditions (Hedayat and Majumdar 1984, p.365). Even when these are
satisfied, a BTIB(v,b,k; t,s) may not exist. In case the parameters v,bk cannot
accommodate Corollary 2.5, one may try to find a design in D{v,bk) which is
highly efficient, even if it is not known to be A-optimai. It is not difficult to see
from Theorem 2.3 that for any d € D(v,b,k),

o? Elvar('rdo - 741} 2 vkg(t,s) (3.1)

------




The left hand side of this expression is the value of the A-criterion for a design d.
We denote this by A,. Clearly the ratio vkg(t,;s)/Ay gives a measure of the
efficiency of d.

' The lower bound in (3.1) is achieved by a BTIB(v,b.k; t,s). Before discussing
specific methods of identifying efficient designs, let us determine how close an
u arbitrary design in D(v,bk) can come to the lower bound vkg(t,s). For
d € D(v,b,k), let us defin~

| myg = [{j : ngo; = 1},
that is, my is the number of blocks in which the control appears | times,
I=0,1,---,k-1. Clearly

k-1

lv Imy = ry,,

k-1
R )\do, - l'do(k - 1) - 2 l(l - l)mdl,

v
and if ndij € {0,1} for all1 = 1,2, c e ,V,j = 1,2, : b then 8_4 Xdlp + £ Xdoi
L,p=1 1=
ko 3 <P
= —bk(k -1)-—= E l(l - 1)my where ry, = ¥ ndoj, the number of replications
2 =

of the control in d.

Lemma 3.2. Let mgm;,:--,m_,; be fixed numbers satisfying
my + m; + * - - + my_; = b. Consider the subset of D(v,b.k) in which my = m,,

1=12---,k-1. For these designs denote ry, =ry and Xy, =X,
ip = 0,1, ---,v. Define the quantities

No = RIRSTAL N =28 L lxip/v(v - 1)
1= i,p=
i<p
Then, for each d € D(v,b,k),

Ay = a‘z.Elvar(i‘do -Ty) 2 vk(xo + X,)/{XO(XO + vX,)}. (3.2)
1=

Proof. Follows from Lemma 2.2 of Majumdar and Notz (1983).

The condition (3.2) gives a sharper lower bound to A, than (3.1). It can be
used to eliminate configurations (mg,m,, - - -, my_;) for which the lower bound in
(3.2) is not very close to vkg(t,s).

To find an efficient design when Corollary 2.5 cannot be applied, we first
determine the optimal ry = bt +s by the method described in section 2. If
there did exist a d € D(v,b,k) which was a BTIB(v,bk; t,s) then this d would
have been A-optimal. Since there is no such design, we shall look at values rq




...........

close to ry and various configurations of (mg,my, - - -, mg_;). For each of these

. . we compute lower bounds given by (3.2), and consider those which are not much

larger than vkg(t.s), the lower bound given by (3.1). Next we consider designs
o having these (mg,m,, - - -, my_;) configurations which are very ‘close’ to BTIB
designs. By this we mean A\y,'s(l <1< v) are as close as possible and
. )‘dip' s(l1 € i.p < v, i7 p) are as close as possible. We choose the most efficient

design among all these designs. It is expected that this design would be highly
efflicient, in general. In particular we expect two types of designs to perform very
well. One is a BTIB design with ry, close to ry'; the other is a design ‘closest’ to
a BTIB design, with ry, equal to ry. We now give two illustrative examples.

-

Example 33. Let v=25 k =4and b=7. Thent =1 and s =0, e = 7,

> vkg(1,0) = 2.04.
- Table 3.1
ro (mgmpmsmy)  (XgX) lower bound from (3.2)
- 6 (1,6,0,0) (3.6, 2.4) 2.137
7 (1,5,1,0) (3.8, 2.2) 2.134
7 (0,7,0,0) (4.2, 2.1) 2.041
- 8 (1,4,2,0) (4, 2) 2.143
: 8 (0,6,1,0) (4.4, 1.9) 2.060
; 9 (0,6,0,1) (4.2, 1.8) 2.165
* 9 (0,5,2.0) (4.6, 1.7) 2.091

Note that whenever Xy and X, are integers, the corresponding design achieving
the lower bound is a BTIB design. Consider five designs d;,ds,d3,d,,dg, with

columns as blocks, and the corresponding values of Ay = 072 T var(7,, - 74;):
i=1




....................

0000001

0011222 :
d, = 1334343 A4, = 2.143 (BTIB design)

2455554

0000000

0111123
ds:l0222334* Ag, = 2.207

5534445

Clearly d, is the best among all these designs. In fact Ay is even smaller than

the lower bounds given in table 3.1 for all other configurations of (mgy,m;,mo,mj).
d, is not a BTIB design but ry 4 = ro. It is highly efficient since

vkg(t,s)/Aq, = .992.
Note that the BTIB design d, has a high efficiency also, since
vkg(t.s)/Ag, = -952.

Example 34, v=6, k=5 b=17 Here t=1 and s=2, o = 9,
vkg(t,s) = 2.204.

Table 3.2
ro (mgm;my mgmy) (Xo.Xy) lower bound from (3.2)
7 (0,7,0,0,0,0) (4.67, 2.8) 2.236
8 (0,6.1,0.0,0) (5, 2.6) 2.214
9 {0,5,2,0,0.0) (5.33, 2.4) 2.204
10 (0,4,3,0,0,0) (5.67, 2.2. 2.207
11 (0,3,4,0,0,0) (6, 2) 2.029
12 (0,2,5,0,0,0) (6.33, 1.8) 2.249
0000000
0111122
dy = 11223333, Ay, = 2.243
2445445
35665686
0000000
0011112
dy = ]1222243], Ay, = 2.227
3533454
4656665

T rec. voa

'y

=

Y

SQ




‘J'!‘} 'y

Sl

Rl ™ Sl
Oy

O Xyt |

0000000
0001112].
dy = [1122343], Ay, = 2.223
2334554
5466665
0000000
0000113
dy= |1122224], Ay, = 2.222 (BTIB design)
3434355
5665466

Clearly the BTIB design d, is the best. Note that ry, is close, though not equal
to ry’. This design is highly efficient, in fact,

ng(t,S)/Ad‘ = .992.

It may be suggested that one way of finding efficient =signs is to look for an A-
optimal design among all BTIB designs only. Hedayat and Majumdar (1984)
shows that even though these designs perform very well, in general, there can be
instances where it is quite poor. This is because the stringent combinatorial con-
ditions of BTIB designs may enforce a very inefficient choice of ry. For instance,
they show that in D(10,80,2) it is possible to achieve at least a 24% improvement
over the best BTIB design. In this case, the optimal (x,z9) = (0, 0.49), so
bzy = 80X0.49 = 39.2. The best BTIB design has ry = 80, which is too far
away from 39.2. We recommend to use the right ry (or approximately so) and
then construct a design combinatorially close to a BTIB design.
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