
AD4179 748 SHORT-TERM FILE REFERENCE PTTE3S IN A UNIX 1A1
ENVIRONMENT(U) ROCHESTER UNIV NY DEPT OF COMPUTER~SCIENCE R FLOYD MAR 86 TR-177 MNU4-82-K-0193

I UNCLSSIFIED F/O 9/2 Ni.

rllll ~ 3M I~f 111.ICROOPY S uO ES A

MICROCOPY RESOLUTION TEST CHART
NATIONH AL F l 'IN I , A-

00

Short-Termn File Reference P~atterns
in a LAI X F.nvironmient

Rick FHoO
COMPuter Science [Depairtment

'Die Un1'~ersit\ of Rocheiter
Rochester. \ek York 1462'

\iarch I'ThS6

C-,

Department of Computer Science
9A University of Rochester

Rochester, New York 14627

b 86 7 28 12 1
L :f -t ... * t f

Short-Term File Reference Patterns
in a UNIX Environment

Rick Floyd

Computer Science Department
The University of Rochester
Rochester, New York 14627

TR 177
March 1986

Abstract

Data on short-term user file reference patterns have been collected from a local UNIX system supporting
university research. These data provide detailed information on file opens and directory accesses. Somewhat
coarser information on internal file operations has also been collected.

An analysis of the data shows that referenced files in our environment are generally small (under 1000
bytes), usually completely read or written, and have short interopen intervals (a succeeding open to a file
usually occurs within 60 seconds of the last open). In addition, while there is extensive sharing of some
files, this sharing is restricted to standard system files. We see very little sharing of user files.

This paper emphasizes the implications the patterns we observe have for distributed file systems. However,
the results may also be applied to ,,e design and modeling of more traditional file systems.

This work was supported in part by the National Science Foundation under grant number DCR-8320136
and in part by the Office of Navel Research under grant number N00014-82-K-0193.

I' 1e_

• --.

1. Introduction

Much work has been done in recent years on transparent distributed file systems (DFS's) for local area
networks [Ellis 83,Satyanarayanan 85,Tichy 84, Walker 831. These DFS's typically provide transparent
name lookup, transparent file access, and facilities for automatic caching and migration of files.
Understanding and improving the behavior of such DFS's has been hampered by a lack of information on

*6 the ways that they are used. In particular, there is very little data available on short-term file and directory
usage patterns.

Inspired and frustrated by this lack of information, we instrumented a local UNIX' system to collect
information on file system requests. The UNIX file system is particularly appropriate for a study such as
this one because it places relatively few constraints on user behavior. In addition, all of the DFS's
mentioned above used the UNIX file system as their design model. We logged directory accesses, file
opens, file closes, and information on process creation and destruction. In addition, the amount of
information read and written for opened files was logged.

This paper describes the data collection method, presents our analysis of short term file reference patterns
and discusses how the results may be applied to the design and tuning of DFS's. A companion paper
[Floyd 86b] presents an analysis of short term directory reference patterns. We have generally tried to
present results in a way that gives a qualitative feel for the characteristics of the data we have measured.
Quantitative fits and distributions are, for the most part, sacrificed in faxor of observations that would aid
in developing and operating DFS's. These results, along with a simulation driven by the data we have
collected, will be used to investigate the performance of the Roe distributed file system [Flod 86aj.

Our work is no~el in several respects. It is by far the most detailed study of short term UNIX file reference
patterns that has been done to date. It is also the only study we have seen that examines the difference,
between important user and file classes. In addition to examining the overall request behavior, we haxe
broken down references by the type of file (temporary, log and permanent), owner of file (system, user and

net2), and requester (system. user and net). We see large differences in behavior for the various classes.
Knowledge of these differences should be useful in designing future DFS's.

Section two of this paper sur'eys preious work in the area. Section 3 describes the environment in which
our measurements were made. Sections 4 and 5 present an overview of the data collection and analysis
methods. In section 6. we present some of the results of the analysis. The implications the results of this
analysis have for DFS design are discussed in section 7. Section 8 describes further analysis and data
collection that could be done and section 9 summanizes our results. Finally, in the appendices, we present
results that are too detailed for the main body of the paper.

Familiarity with UNIX [Ritchie 781 is assumed. Knowledge of 4.2BSl) UNIX [Joy 831 may also be useful.

'IX s a trademark of AT&T Bell Laboratones.

I I (P and LSF NF news isee secuon 5)

%...-,

2

2. Previous Work

Early studies of file reference patterns [Satyanarayanan 81, Smith 81, Stritter 77] concentrated on long term
(days or weeks) reference patterns that could be used in designing archival migration policies. The relatively
small time delay of a local area network makes migration on a much smaller time scale feasible.

Recent work has concentrated on short term (seconds) file reference patterns. Porcar studied what was
primarily batch activity on IBM mainframe systems [Porcar 821. Our study is of an interactive UNIX
system, an environment that has considerably different reference patterns. The differences between Porcar's
results and ours are discussed in section 6.1. Satyanarayanan has made measurements on an interactive
DEC-10 system [Satyanarayanan 83], with events being treated anonymously. Unfortunately, anonymous
references make intelligent migration difficult. Smith has also done a study of short term file reference
patterns [Smith 85], but primarily at the disk track level. We are concerned here with logical operations
(opens. closes and so on) at a higher level of the system and less concerned with "tuning" using block
caches and other such methods.

Woi K done on 4.2BSD UNIX file reference patterns at Berkeley is more closely related to our work. A file

system tracing described by Zhou et a. [Zhou 85] is similar in approach to ours. The differences between
the two packages are described in section 4. Ousterhout et al. report on read/write characteristics, file sizes.
and data lifetimes for several 4.2BSD UNIX systems [Ousterhout 85]. Their results in these areas are
similar to ours and are discussed in more detail in section 6.1.

None of these previous studies have collected information on directory access patterns. This information is
not needed in systems that are concerned primarily with migration to manage disk storage. since files are
typically much larger than the directories that reference them. Howe~er. a DFS may also migrate and
replicate directories to improve performance and availability. In a DFS with non-trivial directory
structures, the overhead of directory access is an important performance consideration. Evaluating
directory design decisions in the absence of data on reference patterns is difficult. Section 4 of this paper
describes the directory data collected by our tracing package.

Previous studies have also. for the most part, ignored the distinctions between batch and interactive use,
system and user files, log and permanent files and so on. We believe that information on the behavior of
each of these file classes can be of great value in designing a DFS and have considered them separately
when clear differences exist.

3. Data Collection Environment

The data used in this paper were collected from a VAX 11/80 on the University of Rochester Computer
Science Department Internet. At the time that the data was collected (September 1985), the internet

consisted of a VAX3 11/780. 4 VAX 11/750's, 7 Sun workstations, 13 Xerox Dandelion workstations, 3

Symbolics LISP machines and a number of special purpose devices. The 11/780. Seneca 4, was selected as
the primary machine for data collection because it was far and away the most heavily used of our systems.
Seneca had, at the time, 4MB of memory, 560MB of disk storage and was running 4.2BSD UNIX. lhe

3VAX is a trademark of Digital Equipment Corporauon
4Our local VAXen are named after Western New York State's Finger Lakes

3

system supported roughly 200 users. The primary user activities were program development (as part of our
research effort), text editing and formatting, reading news and reading personal mail. Seneca also acted as a
USENET news and UUCP mail relay [Nowitz 781. There was relatively little database activity.

Data were also collected from two of the 11/750's, Preliminary analysis of the 11/750 data merely
confirmed the importance of Seneca in our environment. Neither of the 11/750's had file system activity
levels greater than 15% of that seen on Seneca. Because of this, only the Seneca data were fully analyzed.

4. Data Collection Method

Two types of data were collected: 1) a static "snapshot" of the file system and 2) a running log of file
system activity.

4.1. Static Snapshot

The static snapshot provides a picture of the entire file structure on a machine at a given point in time. The
information generated for each file system object that we are interested in is given in table 1. Processing
starts at the root of the file system hierarchy and recursively traverses the directory tree, logging each object
encountered.

A static snapshot was taken of the Seneca file system when file system logging (section 4.2) was started. This
snapshot was used as a starting point for the analysis programs (section 5) and also pro% ided information on
the static file size distribution.

4.2. Logging File System Actiyity

The 4.2BSD UNIX kernel was modified to log selected system calls made by users. The calls logged can be
classified as follows:

(1) Directory structure modifications: mkdir, rename, rmdir and symlink.

(2) Process context: chdir. chroot. exit, fork/vfork and setreuid.

(3) Other references: close. exec /execve. link, open/creat, truncate, unlink.

The logging of these calls has a negligible effect on the performance of the host (less than 1%).

object output
directory name. deice, inode
regular file name. de\ice. inode, size (bytes)
symbolic link name. target file
special file name

Table I: snapshot output

r . r n . I.. - . . .- - - . : -- " -% "*, , . . . "* , "- ".__.--- -__-- -- -- -- - .-- -- ,- - . . - --.- -

4

A number of other file-system related calls were judged unnecessary for our purposes (due to our ability to
infer them from other calls or to their infrequent use) and were ignored. These included:

(1) Internal file operations: read, write, Iseek. Actually, code was added to log reads, writes and
seeks. However, running with this code enabled increased the size of log files by 500% and
resulted in a 5-10% degradation in host performance. Since we were concerned primarily with
operations on files as a whole, this additional overhead was felt to be unacceptable. Instead, we
summarized some of the information ir close records (see table 2).

(2) Protection: chmod. fchmod, chown. fcnown.

(3) Status: readlink. fstat, Istat. stat., utimes. access.

(4) Other: fcntl, flock, fsync. mknod. ftruncate.

Each log record included the time that the call finished (with a resolution of lOms) and the pid (process
identifier) of the process making the request. In addition, most records contained information describing
the call arguments and result. The record contents are given in table 2.

A brief explanation of the contents of table 2 is in order at this point. The first four records (mkdir.
rename, rmdir and symlink), combined with the results of a static snapshot taken at the start of logging,
allow us to construct and maintain a model of the directory tree for the file systems on the machine. Mkdir
creates a new directory. Rename changes the path used to reach an object. Rmdir deletes a directory.
Symlink creates a symbolic link containing a path to a file or directory. When a symbolic link is
encountered during path resolution, the path in the symbolic link is substituted into the partially resolved
path before resolution is continued. This is the only way in 4.2BSD UNIX to make links across file systems.

The next 5 records (chdir. chroot. exit. fork and setreuid) gi'e us the information we need to keep track of
the working directory and real uid (ruid) of each process. Chdir changes the director. used to resoke

call output
<all time. pid of caller
mkdir + file id of new directory, path of new directory
rename -,- old path, new path
rmdir _ path of deleted directory
symlink ± target of link, link name
chdir + path to new working directory
chroot + path of new root
exit
fork (fork/vfork) + child pid
setreuid + new ruid
close + file id, final size, bytes read, bytes written
execute (execv/execve) + file id, uid of file owner, size, path
link + target path, link path
open (open/creat) + file id, open flags, mode of file, size. uid of file owner, path
truncate + path. new size
unlink + path

Table 2: dynamic log structure

-." * - ° " " ° ' ' - - " " - ' - ' ' " ' " " " " " . , . - " ." ," ." - -" " - " " " ° " " " " . . , -- . , . ,

5

relative references made by a process (those not starting ftom the root of the file system tree). Chroot
changes the root of the file system as seen by a process. Fork (fork and vfork system calls) and exit create
and destroy processes. Logging these allows us to keep track of processes created for each user. Setreuid
changes the effective "owner" of the current process. This is the mechanism for logging into the system.

The remaining records (close. execute, link, open, truncate and unlink) are the actual references to files.
Execute (execv and execve system calls) executes a file, replacing the current process with the image given
in the file. Link and unlink add and delete directory entries for files. If unlink removes the last link to a
file, the file is deleted. Open (open and creat system calls) opens or creates a file or opens a directory.
Processes access files either by explicitly opening them or by inheriting open files from their parents.
Truncate shortens a file. Close records indicate that a process no longer has a file open. They are generated
by either a close system call or by a process exit. As mentioned earlier, a process may inherit open files
from its parent. If this happens. the close record is generated when the last process having access to a file
due to the open closes the file or exits (for those in the know: we log the release of the kernel open file
table entry). We only log closes for regular (data) files. Closes are not logged for directories or for special
files (files corresponding to de~ices). Since directories are short, completely scanned when opened and can
only be opened for reading, close records for directory opens would have given us little useful information.
Special files are not analyzed in this study (except for a count of opens).

The calls listed in table 2 are logged for all processes in the system. In addition. a small number of
administrative records hawng to do with enabling and disabling data collection are logged. The most
important of these is the process state record. A process state record contains infomation on the ruid.
working directory, root directory and command name for a process. One of these is logged for a process the
first time it appears in a log, but enly if we dont already have this information for the process. Process state
records are only necessary for proxesses that exist before logging is started (and for their children until we
log the parent). The gi~e us a wa to locate the process in the directory tree and to classif% it as a user.
system or net proccs.

The 4.2BSD tracing package we ha e described differs from the one developed independentl. at BerkeleN
by Zhou et al. [Zhou 851 in a number of ways. The most important difference is that we don't collect
information on internal file operations. Ihis means that we have less informatiu n on the timing of these
operations to files and on which bytes are accessed. We do. however, log the number or bytes read from or
written to an opened file. -Ns we will see later on (section 6.1). most files in our emironment are read or
written completely and are usually open for only a short period of time. These results, combined with the
fact that most DFS's treat files as a whole. mean that the omission of internal file operations is not
important for our particular application.

We also collect less information per record. In particular, all of our times are real times at the finish of the
system call. Zhou et al. record, in addition to real times, the durauon of the call and process virtual times.
We made a decision early on to collect the minimum information necessar-y for our purposes. This allows
us to collect and process data for a longer period, but means that our trace is sensitive to the capacity of the
machine that the data was collected on. Adjusting for this would be difficult in any case.

Finalls we collect information on high level directory operations (create, delete and open). This allows us
to track process locations in the directo tree so that we can accurately analyze relative file references. It
also gvies us the data needed to analye directory reference patterns.

.. -

6

The trace data collected by Ousterhout et al. [Ousterhout 851 includes information on seeks (so that read
and write data may be derived), but lacks information we record that allows references to be classified bN
file type and file owner. We also include directory and process information not present in their trace.

Note that our package does not collect a full trace of file system activity. We don't collect information on
imode accesses, paging activity, internal file operations (except for the total number of bytes read and
written), or protection and status related calls. However, our package does generate detailed information on

the most common operations on files and directories as a whole (open, close, create, delete. execute and so
on) and on overall read and write activity for opened files. This information provides a useful basis for

)*, investigating file usage patterns and is sufficient for trace driven studies of most DFS's.

5. Analysis Method

5.1. Basic Approach

The data in the raw form described in table 2 is difficult to analyze. [here is no obvious correspondence
between opens and closes, unlinks are not associated with the files they affect, no direct information is
available on process working director or owner and so on. A library of analysis routines was written to
address these difficulties. [he routines maintain enough state about the system being analyzed to allow the
necessary associations to be made. Alternatives would have been to reformat the file reference logs so that
each record contained the information necessary for its analysis (see, for example [Zhou 85]) or to collect
more information for each reference. We chose to derive the information at the time of analysis to
minimize the disk resources needed (and so maximize the logging period). Of course, one pays a penalt. in
analysis time for doing this. Using this approach, a simple analysis of the trace described in this paper (2.5
million events occupying "0MB of disk) takes about 5 hours of 11/780 CPU time. This is adequately fast
for our needs.

Nnalysis proceeds in two phases. During the initialization phase. a snapshot of the directories in the system
being analyzed is read in and used to set up a model of the onginal directory structure. Dunng data
analysis, log records are read and passed. one by one. to user analsis routines. These log records are also
used to update state information on files, directories and processes in the system. creating and destroying
them to maintain an accurate model. Given this up to date state information, the library routines can
perform the associations mentioned above and pass this information on to the user routines.

[here are some conventions worth mentioning here that are used by all analysis programs:

(1) Calculations involving file sizes are always based on the size of the file when It is closed or

executed.

(2) File reads and writes are assumed to occur at the time a file is closed (we didn't have more
accurate information on these operations). Since the time most files are open is usually
considerably shorter than any of our histogram resolutions, this has no noticeable effect on our
results.

(3) File lifetimes run from the Lime a file is created (based on a create flag in the open call) until
the ume the underlying inode supporting the file is deleted. This doesn't happen until there are
no links to the file left and there are no active opens. so the delete time can (and frequently
does) differ from the time of the last unlink. File %ersion lifetimes are handled in a similar

- * . . * 4~ M ~ ~ ta A~a .a!. .&"

-7 .r .W.. 1 7

7

fashion.

(4) Processes occasionally open a file and then open it again before closing it. This is usually done
to get both read and write access to a file without using the mechanisms for this built into the
4.2BSD kernel. We honor the intent (not the method) by combining these opens into one open
with both access modes. This affects only 0.7% of the opens and so is not an important

consideration in any case.

5.2. Cuts

We are interested in investigating both the overall pattern of requests to the file system and in the patterns
for various classes of users and files. Past work has often ignored the distinction between batch and
interactive use, system and user files. log and permanent files and so on. We believe that information on the
behavior of each of these file and user classes can be of great value in developing a DFS and have
de'eloped a number of data cuts to separate the classes of interest. We use three basic types of cuts:

(1) Cuts on the ruid (owner) of processes making requests (UUCP/USENFT network. system and
user).

(2) Cuts on the owner of files (UUCP/SENET network, system and user).

(3) Cuts based on the purpose of files (log, permanent, temporary).

Some of these can he comhined to gixe other more specific cuts. 14 cuts are used in this paper. The cuts
and their meanings are:

(1) no cut: 'his cut passes all records in the log to the user analysis routines.

(2) ruidNH1: Passes references b. Ah,it we term nei processes. Net processes are those running
under LLCP. LSF\FI neks or note, account.s. Most of these processes run in batch mode
and so this cut gi'es us a sampie that i, considerably different from an interactive one. This
category has been broken out from the system and user categories because of the batch-
oriented nature of the references and the large number of references b, net processes (roughly
1/3 of the references in this tudv and as much as 70% of the non-system references in earlier
studies [Floyd 851). We dont include references due to Seneca being on the Rochester
Internet in the ruid_5NE- cateior\.

(3) ruidSYSTEM: Passes references by system processes (those rurning under rooL daemon.
games and other miscellaneous s. stem accounts). System processes are pnmaril. daemons that
provided widely used ser'ices (such as spooling and network status reporting), processes
created on behalf of users to perform privileged operations. and periodic maintenance
processes.

(4) ruidUSER: Passes references by processes running under user accounts.

(5) owner_NET: Passes references to files owned by UUCP, USENET news and notes accounts.
These are primarily news articles and UUCP spool files.

(6) ownerSNSITNl: Passes references to files owned by the system accounts mentioned ahose.
This includes major administrative and status files (for example, /etc/passwd), system libraries,
system include files and so on.

(7) ownerUSER: Passes references to user files.

.. * .

-' 8

(8) fileLOG: A number of files on any UNIX system are used to keep logs of acuit . Examples
include /usr/adm/messages, /usr/adm/wtmp and user mbox files. Since we expect the access
patterns for these files to be considerably different from that for files as whole and since these
files are generally quite large, we use a cut, file_l.OG, that allows us to analyze only these logs.

We had originally intended to place in this category just those files opened with append-only
access. However, it soon became clear that this mode of access is basically never used. Instead.
most logs are opened write-only, a seek is done to the end of the file and then the log entry is
appended. If several processes are trying to update a log simultaneously, the results are
unpredictable. Some of the busier logs on our system are scrambled on a regular basis using
this "method."
We were eventually forced to use the name of the file given in the open call to make this cut.
Luckily, most of the log files on the system have well known names and an examination of
source for commonly run programs and of the file reference logs enabled us to find the rest of
the log files on the system.

(9) filePERM: Passes references to permanent files. [his includes all files that aren't log files
(file-LOG) or temporar. files (file_ IEMP).

(10)fileTEMP: Passes references to temporary files. This includes files that are created on a
special file s.stem h/tmp), temporar. spool files, lock files and other 'uch transitory, files. Most
temp files are clearlh identified h. either their name (a special template is usuall. used to
create temp file names) or h the directory in which they are created.

(11)owner_USFR+ruid_USFR (shown as U in tables and figures): Passes references that satisf.
both the owner_ USER and ruidUSER cuts. These are user retzrences to user fifes. Ihe
owner SFR-ruid_ LSER cut produces results similar to the owner ISF-R cu. [here are
about 9.5c fewer references for the U cut. but the resultant distribution,, ire nac.irl identical. It
is included here for comparison with the next three cuts.

(12)oinerUSFR+ruidUSER+fileI.OG (shown as U+file_LOG in tables and figurcs): Passes
user references to user log files.

(13)onerUSER+ruid USFR+file_ PFRM (shown as U+file_PFIRM in table" and figures):
Passes user references to user permanent files.

(14)ownerUSER+ruidUSfiR+file_ [F"P ishown as L +file_ FMP in tables and figures):
Passes user references to user temDoradr files.

5.3. Analysis Complications

lhe data analysis did not proceed as smoothl. as we had hoped. [his section describes some of the
problems we experienced and suggests changes in the data collecuon and analysis that would help avoid
these problems in the future. None of these problems was senous enough to ha\e a noticeable effect on our
results.

It was not alw, a~s possible to pair up opens and closes correct. In most cases there was onlk one open for
a gicen file to associate a close with or the process numbers of an open and close matched. In cases were
this was not true. we looked for an open that was made by an ancestor of the process making the close
request. Sometimes there were multiple opens to a file outstanding among those made bk ancestors. Ihi,
problem occurred less than 0.03% of the time and was dealt with by using the most recent open h% in

":a --'. . ."...--..-.--.-..---- - - ," . . -- . . ".-.-.S - F . . '.." 3 ---- " '

9

ancestor. A more accurate solution would have been to record an open session number in the log and use
this to make the association. but the low frequency of occurrence of this problem and the relative

unimportance of the derived numbers makes this solution unnecessary for us.

There were two peculiarities in the 4.2BSD kernel that resulted in some surprises in the logs. One. having
to do with incorrect returns from the fork call. was caught and corrected before the data analyzed here was
collected. The other, an inconsistent handling of error indicators when a process was forcibly terminated,
caused us to lose some close and exit records. This was not discovered until fairly late in the analysis. Less
than 0.03% of the close records and about 0.5% of the exit records were not recorded because of this
problem. Since the number of close records lost was so low, we made no attempt to correct the problem.

Files were classified (as log, perm or temp) the first time they were seen in the logs. Occasionally this

classification was incorrect. While we were developing the cuts, we classified a number of files b hand.
using information on the programs making the requests and the full history of reference patterns to files.
Comparing our classifications to those done by the analysis routines (using file name and directo
information) showed that only a few tenths of a percent of files were incorrectly classified. It would be
difficult to do better than this without explicit information on the intended usage of files. This information

is just not a~ailable under UNIX.

," We had to retain a large amount of state in order to associate unlink records with files and to interpret their
-', meaning. Since we needed most of this state for other reasons (uid classification, directory studies and so

on) this was not really a problem for us. Including the file id and a count of the number of remaining
references in unlink records would make it possible to interpret them in the absence of the ;tate

information.

6. File Reference Patterns

Roughly 7 days of data were collected on Seneca (168.82 hours, from 3:21am on Mionday. September 16.

1985 to 4:10am on Monday, September 23). During this period there were 142 active users of the system.
There were generally 20 to 30 logged in users at any given time on weekday afternoons, with load averages
running between 5 and 10.

In section 6.1. we examine the overall pattern of open and read/write requests. Section 6.2 briefly examines
exec~e patterns. Section 6.3 concentrates on user files. Our approach in all cases is to present only those
tables and histograms that are particularly characteristic or striking. A more complete breakdown of many
of our results may be found in the appendices.

6.1. Overall Open and Read/Write Patterns

6.1.1. Basic Statistics

\ summar of the records collected is given in table 3. [he first three columns give the number of records
of each type collected, the a~erage rate for that type of record, and the percentage of the collected records
that this represents. The remaining columns show the number of records collected cut by the ruid of the
calling process and the percentage of the total for the mid class.

, -,

10

From this table we can see that each of our ruid categories accounted for roughl 1/3 of the activity on the
system. The majority of the file system requests were for opens and closes, with most of the rest of the
categories being a factor of 5 or more down from this (of course we didn't record reads, writes and seeks,
all of which would be a significant component of a full trace). Processes made, on the average. 5.3 open
requests.

Table 4 gives the number of opens to each type of file object on the system. For the purposes of
comparison, the SLAC trace [Porcar 821 included about 237,000 opens to data (regular) files in a similar
period. The remainder of the analysis in this paper deals with only regular files. the largest category in
table 4. Directory access patterns (including explicit directory opens) are analyzed in a companion paper
[Floyd 86b]. Block and character special files are used in UNIX to provide access to deuices and are not of
interest to us. They are, in any case, a small fraction of the total number of opens.

r no cut ruidNET ruidSYSTEM ruidUSER
record count per hr I fracuon count]fraction count fracon count fraction

mkdir 936 5.5 0.04% 795 0.11% 2 0% 139 0.02%
rename 3211 19 0.13% 1946 0.26% 408 0.04% 857 0.11%
rmdir 913 5.4 0.04% 780 0.11% 0 - 133 I 002% 1
svmlink t 16 0.1 0% 0 3 0% 13 0%

chdir 136063 806 5.4% 19102 2.6% 71854 7.1% 45106 5.7%
chroot 0 0 - -, 00 O !

exit 180270 1070 I 7.1% 31219 4.2% 85917 8.5% 63133 S.0%
fork 181511 1080 7.1% 29271 4.0% 90735J 8.9% 61503 78%
setreuid 16772 99 0.66% 4372 0.59% 9698 1 0.95% 2701 0.34%

close -540"2 [44-0 29.7% 249837 34.0% 298164 29.4% 205666 26.2%
execute 125064 '41 4.9% 26761 3.6% 38093 3.8% 60209 7.7%
link 42929 254 1.7% 25694 3.5% 7301 0.72% 9934 1.3%
open 965087 5720 1 38.0% 277350 37.7% 393661 38.8% 294070 37.4%
truncate 0 - 0 0 - 0 -

unlink 130929 -76 5.2% 68342 9.3% 19861 2.0% 1 42726 5.4%

total 2537773 15040 100% 735469 100% 1015697 100% 786190 . 100%

Table 3: records logged

no cut ridNET ruid SYSTEM ruid USER
otype pens fraction opens I fraction opens fraction opens fraction

regular file 754285 78.2% 249825 90.1% 298186 ,57% 206268 70.1%
directory 170448 17.7% 17275 6.2% 72625 18.4% 80548 27.4%
block special 922 0.1% 0 - 60 0.02% 862 0.3%
character special 39432 4.1% 10250 3.7% 22790 5.8% 6392 2.2%
total 965087 100% 277350 100% 393661 100% 294070 100%

Table 4: Opens, by object type

. %

S *

II

Opens may be further broken down by the class of file being opened and by the owiier of the file. This
information, plus statistics on how many files there are in each category, is given in table 5. We see here
that 2/3 of the references were to perm files, although temp files made up 4/5 of the files referenced.
Relatively few references were made to user files. The large number of net files may be attributed to a daily
news expiration procedure that reads the headers of all news articles.

Information on read/write modes for open-close sessions is given in table 6 (note that percentages in this
table sum horizontally). Overall, files opens were evenly split between opens with read-only access and
opens for write-only or read-write. Users. however, opened most files read-only. Log files were generally
opened write-only.

Perm files are categorized by their function in table 7. This categorization was done using the directories
that files appeared in and/or based on file names and extensions. "System configuration" files are those
appearing in / and /etc. Examples are /vmunix (the bootable kernel image) and /etc/passwd (passwords
and other information on accounts). "Rwho daemon" files are used to maintain status information about
machines on the network. "Library" files are those in /lib. /usr/lib and so on (this includes both program
libraries and additional configuration files). Files with names beginning with '.' are grouped into the

category "personal configuration." These files traditionally contain startup commands and status
information for various programs and are used to tailor and maintain an individual's environment.

cut opens % opens files % files opens/file
fileLOG 35662 4.7% 506 0.5% 70.5
filePERM 499193 66.2%, 16352 16.2% 30,5
fileTEMP 19430 i 29.1% 84327 83.3% 2.6
owner NET 249733 33.1% 46207 45.7% 5.4
ownerSYSTEM i 392790 52.1% 25062 24.8% 15.7
owner USER 111762 i 14.8% 30822 30.5% 3.6
no cut 754285 j 100% 101185 100% 7.5

Table 5: Class and owner of opened regular ales

cut read-only write-only read/write total

opens fraction opens fraction opens fraction opens

fileLOG 735 2.1% 34819 97.7% 97 0.3% 35651
filePERM 282853 56.7% 180976 36.3% 35200 7.1% 499029
file TEMP 104828 47.8% 96766 44.1% 17794 8.1% 219388
ownerNET 148150 59.3% 79739 31.9% 21830 8.7% 249719
ownerSYSTEM 175787 44.8% 198183 50.5% 18712 4.8% 392682
ownerUSER 64479 57.7% 34639 31.0% 12549 11.2% 111667
ruid_N F.l 146993 58.8% 79111 31.7% 23713 9.5% 249817
ruidSYSTEM 99205 33.3% 188233 63.1% 10723 3.6% 298161
ruid USER 141822 69.0% 45189 22.0% 18654 9.1% 205665
no cut 388416 51.5% 312561 41.4% 53091 7.0% 754068

Table 6: Mode of open for open-close sessions

" ' ",-;*' " , L , ' -- I.. '' " ," - ' ' ' ' ' -,'..'-.,, ' ' " . - " ,'

.. w...T-r--,---

12

Examples include .login, .profile and .newsrc. The rest of the categories have the obvious meaning. Note
that over half of the opens to penn files were made to 0.7% of the files (those in the first two categories).
These files were basically all system configuration and status files. Activity to these two categories represents
roughly 40% of the total file opens we observed, indicating that a substantial fraction of the system activity
was devoted to communicating and maintaining information about itself and about other hosts on the
network.

6.1.2. Per Open Results

The open activity over time is shown in figure 1. Opens followed a daily pattern with a busy period
between 9am and 6pm, overlaid by strong bursts due to net activity (mostly news expiration and news
reception). Weekends were relatively quiet.

Figure 2 plots the open activity for just the first day of the trace. This shows the work day busy period
more clearly. Looking closely, we can see that user activity accounted for roughly half of the daytime load.
System opens had a base level (the rwho daemon) overlaid by activity that followed or lagged slightly

behind user and net activity. That is. a significant part of the system activity was indirectly due to the other
classes. This activity may be attributed to logins, spoolers, mailers and so on.

The read and write activity to regular files corresponded only roughly to the open activity. This can be seen

by comparing figures 3 and 4 with figure Is. Reads and (especially) writes were fairly bursty on the
resolution used in these figures (about 2 hours). The burstiness increased as the resolution used increased.
Figure 5 shows the throughput of the file system during a typical period of heavy user activity, averaged
over 10 second intervals. This represents activity for about 25 logged in users. It is interesting to note that
the peak rates in this figure. 35K bytes/second, would present little problem for today's LAN technologies.
even with fairly hefty open and transfer protocol overheads. Our results here are similar to those presentel
by Ousterhout et al. [Ousterhout 851 and supports their contention that such networks can support large
numbers of users.

category opensl % opens files % files opens/file
system configuration 123481 24.7% 100 0.6% 1235
rwho daemon 166761 33.4% 13 0.1% 12830
library 59245 11.9% 222 1.4% 267
manual pages 18371 3.7% 1597 9.8% 11.5
news 40022 8,0% 5828 35.6% 6.9
program source 10596 2.1% 1499 9.2% 7.1
includes 13767 2.8% 344 2.1% 40
objects 5618 1.1% 468 2.9% 12
personal configuration 23125 4,6% 1676 10.2% 13.8
mail spool 3621 0.7% 524 3.2% 6.9
other 34586 6.9% 4081 25.0% 8.5

Table 7: Function of opened perm files

he unusually heavy read/wnte acuv ity on Thursday was caused by repeated execution of a large user text formatting job ifor-
,natting a Ph.D dissertation). Most of the aalvlty was to temp files

..... ,*, .-.. " :" ,•
"

' '" "l" '''T ''':"'1
=

13

3.0 mdUE

....... muidNET
........ mid_-SYST-M

no cut

2.0

* average
* opens
* per second

1.0~

9............. . 9 ..
9

.s
9- !:R

......... r id NET.. *

4.0

4.0

....

2.0 -

4:00 (Mon) 8:00 12:00 16:00 20:00 0:00 (Tue)

time of open

Figure 2: Average number of regular file opens per second ('15 minute resolution)

14

15
.................... ruidUSER
............. ruid NET
.......... ruidSYSTEM

no cut

10

kbytes 4
read

per second

5

x A
* . . ."• : _ " . , ,. .

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)
time of close

Figure 3: Bytes read from regular files ('2 hour resolution)

4
.................... ruidUSER
............. ruidNET

------ ruidSYSTEM
no cut

3

kbytes
written 2

per second

1 A
0

A : , . . :: ,.
..... . -' " -' " : " . *:r: sy x. "

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 (Mon)

time of close

Figure 4: Bytes written to regular files ('2 hour resolution)

15

35

30

25

kbytes 20
transferred
per second 15 -

10

5

0
14:00 (Mon) 14:10 14:20 14:30 14:40

time of close

Figure 5: Bytes transferred to and from regular files (10 second resolution)

Table 8 shows the average throughput of the file system over the life of the trace for each class of user.
Note that reads accounted for 84% of the bytes transferred. Users accounted for over half of all bytes
transferred, even though they made only about a quarter of the opens to regular files (table 4).

Referenced files on Seneca tended to be small, particularly compared to IBM mainframe environments such
as the ones studied by Porcar. Figure 6 and table 9 show file size distributions on Seneca. weighted by the
number of opens made and cut by the class of file. Note that these are cumulative distributions. At any
point on a curve, the y value is the fraction of files with sizes less than or equal to the x value. For
comparison purposes, we ha e included here the static file size distribution, as derived from a snapshot of
the file system taken at the beginning of data collection (this is the distribution that would result if each file
on the system were opened once). Table 9 also includes statistics for on-disk permanent files referenced
during the SLAC trace.

reads writes overall (r + w)cut I bvtes/sec fraction bytes/sec fraction bytes/sec fraction

ruidNET 870 21% 250 31% 1120 22.5%
ruidSYSTEM 1060 25% 110 14% 1170 23.5%
ruidUSER 2260 54% 440 55% 2700 54%
no cut 4190 100% 800 100% 4990 100%

Table 8: Bytes read/written for regular files

16

1.0
............ filePERM , -- -

........ file-LOG /
fileTEMP ,

0.8 - , .."" ,no cut "
static ,

0.6 , "//

fraction 7 / .
of ,. /y /

opens 0.4-

0.2 / '

.. _

0.2 - - - "- "I-: ' -"r.. .,

0.0 r

1 10 100 1000 10000 100000 1

file size (bytes) e6

Figure 6: Dynamic file size distributions (cumulative, measured at close)

distribution mI max mean median std de,,ialon

file_LOG, dynamic 0 1.28e6 105000 38900 1.5e
filePERM. dynamic 0 2.49e6 19600 620 5.9e4
fileTEMP. dynamic 0 1.3e6 2980 620 1.9e4
all. dynamic 0 2.49e6 18800 710 6.2e4
all. static 0 7.95e6 8020 1600 5.6e4
SLAC. disk file PERM 0 94.0e6 549000 80000 2.3e6

Table 9: File size distributions

From figure 6 we see that there were substantial size differences between opened log, perm and temp files.
The large number of zero length temp files was due to frequent creation of lock files (these lock files serve
as a very crude mutual exclusion mechanism). Log files, on the other hand. were generally an order of
magnitude or more bigger than other files. The jump at 60 to 100 bytes in the perm file distribution was
due to the rwho daemon. which was updating a set of status files describing machines in the network every
60 seconds. By comparing the dynamic and static distributions, we find that opens tended to favor small
files (due to lock and rwho daemon files) and, to a lesser extent, a few larger files (administrative files such

as /etc/passwd).

The small size of opened files (55% are under 1024 bytes, a common block transfer size, and 75% are under
4096 bytes) suggests that directory lookup and open overhead will play a large part in file access times.
particularly in a distnbuted environment.

-.. ,'-. .?. ",".' ". - ". ,.-.. -' . .-. -. .. '.
............

17

While most files opened in our environment were small, the majority of bytes came from files that were
much larger: 2/3 of all bytes were read from files greater than 20.000 bytes long. This is shown by figure 7
and table 10, which give distributions for the size of opened files, weighted by the number of bytes read.
We have also included here, for comparison purposes, the static space used distribution (the distribution
that would result if each file on the system were completely read once). The staircase effect in the dynamic
distributions is due to repeated opens and reads of a few large administrative files. /etc/passwd, for
example, at 21,000 bytes, accounts for almost 20% of the bytes read. This file is infrequently modified and
so would be a good candidate for replication in a distributed environment. We saw earlier (table 7) that a
relatively small number of files received a high fraction of the open traffic. Figure 7 gives graphic evidence
of the corresponding impact on I/O traffic.

Our distributions for the overall sizes of opened files and for the source of bytes read (figures 6 and 7)
agree with the distributions found by Ousterhout et al.. By these measures, at least, our data appears to be

1.0 file PERM
......... file_ LOG

fileTEMP
0.8 no cut ./,

static

0.6 /
fraction

of .

bytes read 0.4 / -

0.2 ,

0 .0 ----------
1 10 100 1000 10000 100000 1

file size (bytes) e6

Figure 7: Dynamic file size distributions, weighted by bytes read (cumulatie. measured at close)

distribution min max mean median std deviation
fileLOG, dynamic 0 1.28e6 1.91e5 1.2e5 1.6e5
filePERM. dynamic 0 2.49e6 1.19e5 2.2e4 2.0e5
fileTEMP, dynamic 0 1.3e6 1.12e5 6.8e4 1.5e5
all, dynamic 0 2.49e6 1.19e5 3.4e4 1.9e5
all, static 0 7.95e6 3.6e4 1.29e4 5. e4

Table 10: File sizes, weighted by number of bytes read

A:. . . . -

18

representative of a university research environment.

Two figures that are useful in estimating the appropriateness of dynamic migration are the fraction of a file
opened for reading that is actually read and the fraction of a file opened for writing that is actually written.

* As mentioned in section 4. we don't have complete information on which bytes of opened files were read
and written. However, if we make the reasonable (for our environment) assumption that a given byte in a
file was not usually read or written repeatedly in a single session, we can use the counts of bytes read and
written from the close record to calculate the fraction of a file read or written. Figure 8 shows the
percentage read for files opened read-only, cut by the class of the file. Figure 9 shows the percentage
written for files opened write-only and figures 10 and 11 are for files opened read/write. In all cases, the
size used is the size of the file when closed. Zero length files are omitted. Tables 11-14 provide some

* statistics on the distributions in these figures.

From these figures we see that most opens with read-only or write-only access resulted in the file being
completely read or written. The notable exception vwas for log files. For these files, writes usually 'us
incrementally extended rthe file. This is shown clearly in figure 9 and indicates that we have successfullh
extracted log files from our data. Much less can be said about the read/write behavior of files opened with

* read/write access. For these files. information on usage history or more detailed information onl the
intended usage of the file would be needed to predict the read/write behavior. Recall (table 6) that this
category represents only 75c of the opens and so the additional information will not usually be needed.

Overall, 68% of files opened with read access (read-only or read/write) were completely read and 78% of
files opened with write access (write-only or read/write) were completely written. This may be contrasted
with the SLAC data. where only 17% of opened permanent files were completely accessed. The high
percentage of files completely accessed on Seneca is due to the much smaller file size and to the lack of any
serious database activity.

As one might expect, the fraction of a file that was accessed depended strongly on the size of the file. Very
small files were usually completely read or written. Large files were rarely completely read or written. This
is shown for files opened read-only and write-only in figures 12 and 13 and in tables 15 and 16. Files
opened with read/write access followed a similar pattern.

. -. . ..

19

1 file_ P E R M
. - - . -

........ fileLOG
0.8 ----- -- file_ EM

* 0.8 no ctt

0.6
fraction

of
* opens 0.

0.2

0.0 ~
1 5 10 50 100 500 1000

percent read

Figure 8: Percent of file read for read-only opens (cumulative)

1.0

0.8 .

*fraction 0, fe- E N
of fileLOG

ofes-- fileTEMP
o es 0.4 -no cut

0.2

..................................... I

0.0- ----------

54 10 50 10500 1000
percent written

Figure 9: Percent of file written for write-only opens (cumulative)

20

1.0 filePERM------

-........ fileLOG
------ fileTEMP

0.6

fraction 0.

of
* opens 0.

0.2

0.0 I

15 10 50 100 500 1000
percent read

Figure 10: Percent of file read for read/wtrite opens (cumulative)

1.0----
.......... filePERMI

....... fileLOG

0.8 - --- - fileTEMP
08no

cut

0.6

of
opens 0.

0.2

0.0 I

1 5 10 50 100 500 1000
percent written

Figure 11: Percent of file written for read/write opens (cumulativ.e)

21

distribution min I max mean median std dev <100% >100c
fileLOG 0 690 85.8 100 72 26% 3.3%
filePERM 0 64100 83.2 100 235 36% 3.2%
fileTEMP 0 3600 85.8 100 53 18% 2.1%
no cut 0 64100 83.9 100 202 31% 2.9%

Table 11: Percentage read (read-only opens)

distribution min max mean median std dev <100% >100%
fileLOG 0 100 2.8 <1 12 98.8% 0%
filePERM 0 200 96.6 100 18 3.9% 0%
file_ FIMP 0 9600 100.8 100 85 0.7% 0.2%
no cut 0 9600 85.7 100 53 15% j 0.1%

Table 12: Percentage written (write-only opens)

distribution mi max mean median std dev < (100% > IO%

file LOG 0 100 60.2 100 49 40-, 1 0%
filePERM 0 1900 162.5 100 66 41% 0.4-
fileTEMP 0 65000 138 100 1180 37% 37%
no cut 0 6500) 82,q 100 615 40% 11%

Fable 13: Percentage read (read/write opens)

distrbution min max mean median std dev <100 i > 100%
fileLOG 0 100 43.0 (1 49.5 57% 0%
filePERM 0 20000 36.4 <1 275 70% 0.1%
file TEMP 0 3600 93.5 100 150 37% 9.8%
no cut 0 20000 51.8 <1 249 61% 2 -

Table 14: Percentage written (read/write opens)

"V

22

1.0.. ------------
........ size < 512 - - - -

512 < size < 4K - -

4K < size < 32K
0.8 size > 32K '

no cut

0.6
fraction

of
opens 0.4 I -

0.2
------------ "-

. ..0- .

1 5 10 50 100 500 1000

percent read

Figure 12: Percent of file read for read-only opens (cumulative. by size)

Sfraction of !i
i sue ractionns min max mean median std dev < 100% >100%

r-o opens ___ ________ _______

< 512 bytes 22.7% 0 3600 100.1 100 19 1.2% 3.8%
512 (size < 4K 46.7% 0 64100 88.4 100 158 I 17% 1.7%
4K < siue < 32K 18.5% 0 55500 97.0 80 382 59% 6.7%
siwe > 32K bytes 12.1% 0 12500 15.6 7.7 110 95% 0.4%
all 10 0 64100 83.9 100 202 31% 2.9%

Table 15: Percentage read. by size (read-only opens)

*- ~ * .-,

23

1.0

0.8 *.. size < 512
. 512 < size _< 4K

4K < size < 32K
size > 32K

0.6 no cut
fraction

of

opens . -
0.4

0.2 . - -......

0.0

1 5 10 50 100 500 1000

percent written

Figure 13: Percent of file written for write-only opens (cumulathe. by size)

fraction of 0

size mm max mean median std de I 100% >I00%w-o opens

< 512 bytes 71.5% 0 6800 99.5 100 35 1.0% 0.1% II
512 < size < 4K 13.0% 0 9600 79.7 100 84 22% 0.3%
4K < size < 32K 7.3% 0 101 48.8 12 49 54% 0%
size > 32K bytes 8.2% 0 100 6.5 <1 24 94.2% 0%
all 100% 0 9600 85.7 100 53 15% 0.1%

Table 16: Percentage written, by size (%rite-only opens)

.' . . 1 - - - - -

24

1.0

if ... -.
* *

0.8 0 :""

* i .
,

**
*

0.6 , -fraction "' '"..... :

of ~. -...

files
0.4

............ I

................... filePERM
0.2 fileLO G

---------- fileTEMP

no cut

0.0 I I

1 5 10 50 100

number of opens to file

Figure 14: Number of opens per active file (cumulative)

opened popened o
distribution mean median oopened more max

_ __ once twice, than twice

fileLOG ,0.5 3 5% 36% 59% 5330

filePERM 30.5 1 4 16% 16% 68% 26800

fileTEMP 2.6 1 55% 36% 9% 1920

no cut 7.5 2 48% 33% 19% 26800

SLAC. disk file-PERM 12 2 46% 23% 31% 2660

Table 17: Number of opens/file

6.1.3. Per File Results

The number of opens per file gives an indication of the potential benefits and penalties of migrating files to

a user's machine (the degree of sharing is also a factor here). Most files in our enironment were opened

only once or twice (figure 14 and table 17) This may be attributed to the large number of lightly used

temp files: log and perm files saw con;ierably more activity. The low number of opens for most files

suggests that the initial placement of a file is an important consideration. We have also included in table 17

information on the distribution for on-disk permanent files in the SLAC trace (for a period of 310 hours).

SIAC perm files saw. on average, considerably less activity than the perm files in our environment, despite
the longer SLAC logging period.

25

1

0.8

0.6.
fraction

of
opens

0.4

0.2 fileLOGN
. file-LMP

no cut
0.0 I

1 5 10 50 100 500 5000

number of opens to file

Figure 15: Fraction of opens per active file (cumulative)

distribution mean median std dev

fileLOG 1480 950 1700
filePERM 8120 >5000 8100
fileTEMP 57 3 210
no cut 5400 480 7600

Table 18: Open distribution (as a function of opens/file)

Most opens went to files opened many times. 75% went to files opened more than 10 times and half to files
opened more than 480 times (figure 15 and table 18). For these files (and hence for a distibuted file system
as a whole), migration and/or replication ma be useful. r'his will be especially true for perm files, since
they receive so much open activity per file and tend to be opened read-only.

The most frequently opened files on Seneca were administrative and configuration files in /etc and in
library directories. rwho daemon files and news databases. A table of the most frequently opened files may
be found in appendix A.

* ** , I[ii | " . --. -.-nr . - -n

26

1.0
.......................................

0.8

0.6
fraction
of

opens 0.4

0.2 -. file- PERM0.2 -........ fileLOG
file_TEMP
no cut

0.0
0.01 0.1 1 10 100

length of time file open (seconds)

Figure 16: Times from file open to close (cumulative)

distribution min max mean median std deviation

fileLOG 0 8.6e4 33.4 0.08 1140
filePERM 0 7.6e4 6.5 0.08 251
fileTEMP 0 4.8e4 20.5 0.22 I 335
no cut 0 8.6e4 11.8 0.1 369

Table 19: Open time (seconds)

Files in our environment were usually only open for a few tenths of a second (figure 16 and table 19).
Temp files were open for relatively long periods of time. This is to be expected, since they are often used to
store intermediate results as they are being calculated. The distribution for perm files is consistent with the
small files sizes and whole file transfers we saw earlier. Programs open these files, transfer data and then
immediately close the files.

.

.

27

1.0
....... filePERIM .f.

........ fileLOG
SfileTEMP

0.8 no cut

0.6 .
fraction ,.

Of .- /t
of

intervals - ,
0.4

I
/

I

0.2 - ..';

0.6
0.01 0.1 1 10 100 1000 10000 100000

time since last open (seconds)

Figure 17: File interopen intervals (cumulative)

distribution min max mean median std deviation

fileLOG 0 5.4e5 965 5 15 9.8e3
filePERM 0 5.4e5 8215 60 2.4e4
fileTEMP 0 4.2e5 6655 3.6 1.8e4
no cut 0 5.4e5 7502 60 2.2e4
SLAC. disk filePERM 0 9.7e4 8350 50 4.4e4___ __ __ __ __ __ __ _ 1 __ _ _ _ _ _ _ _ _ _ _ _

Table 20: File interopen intervals (secondi)

Knowledge of file interopen intervals (the time from one open of a file to the next) is useful in estimating
both the appropriate time scale for migration and the possibilities for caching. Figure 17 and table 20 show
that interopen intervals in our environment were short (opens to a file were strongly clustered). When a file
was opened, the following open (if any) had a 50% probability of occurring within the next 60 seconds.
Interopen interva.s for temp files were particularly short. If a temp file was opened multiple times (many
were not), the next open often occurred within a few seconds of the last one. This is to be expected for files
that are used to hold results between job steps. Log files also had shorter interopen intervals than files as a
whole. Most log file opens were made by net processes and these processes show intense bursts of activity
(figure 2), so this is not surprising. The jump at 60 seconds in the distribution for perm files is due to rwho
daemon acuvity.

28

The lifetime of a file in our environment depended strongly on the class of the file. Most temp files lived
less than a minute. The overwhelming majority of perm files had lifetimes that extended beyond the
logging period. Log files fell in between (mostly due to short lived UUCP work logs). File lifetime
distributions are shown in figure 18. Here files that existed before logging was started or that continued to
exist after logging was terminated were given lifetimes exceeding the logging period (lie to the right of the
histogram). Because so many log and perm files fell into this category, we have not included the moments
of these distributions.

Even though most perm files have long happy lifetimes, the data in these files is not so fortunate. This is
shown in figure 19, where we have histogrammed the time from when a file is created or written to the
time when a file is overwritten or deleted (this is the file lifetime used by Ousterhout et al.). Files that were
only partially written are not included in this histogram. Again, data whose lifetime extended beyond the

limits of our log were given lifetimes exceeding the logging period. The large jump at 60 seconds is due to
rwho daemon activity. Since we include all files here and Ousterhout et al. included just new data, our
results are not directly comparable.

The first two columns of table 21 show the mean number of readers per file. as indicated by the account
(ruid) of the reader, and the percentage of files with more than one reader, cut by the file class and owner.
The next four columns show this information for writers and for the overall number of file users. The last
two columns show the mean and maximum number of inversions per file. The number of inversions is the
number of times that the most recent user of the file changes (this is basically the inversion clustenng
metric used by Porcar [Porcar 82]). For a file used by only one user, the number of inversions will be zero.

1.0
............ filePERM
........ fileLOG
- file TEMP

0.8 no cut

0.6
fraction

of
fi le s 0 .4

0.4

0.2
.

'.

0.0 '

0.0 ,

0.01 0.1 1 10 100 1000 10000 100000

file lifetime (seconds)

Figure 18: File lifetimes (cumulative, files living beyond log period binned at right)

• =---J'-" -' ,, • °-.-,.. -. .% - - .' . . , ." " d .. . - "- -' - • " € , . . . % "* ." ". [

29

1.0
.......... file_PER .

........ file LOG . .
- file TEMP

0.8 no cut

0.6 -
fraction /

of
versions

0.4 - "

0.2
.

0.0 , -

0.01 0.1 1 10 100 1000 10000 100000
version lifetime (seconds)

Figure 19: Version lifetimes (cumulative, versions living beyond log period binned at right)

We can see from table 21 that 11.8% of the files seen during the logging period %ere accessed by multiple

users (users with separate accounts). Multiple readers were much more common than multiple wnters.

Most shared files belonged to net. These were predominately news articles (perm files). Logs were also
hea~ily shared. They frequently had multiple writers and separate readers. Although system files were not
as heauly shared as net files. in terms of the number of shared files, the high mean number of in'ersions
(2.92) indicates that the s.stem files that were shared were not sh\ about it. Few user files were shared. The
low mean number of inversions (0.111) indicates that this sharing was incidental to the normal use of user
files.

readers wnters users (r I w) inversions
mean > mean > mean >1 mean 1 max

file-LOG 0.98 3.8% 1.86 26.7% 2.67 76.9% 5.25 293
filePERM 1.575 17.9% 0.444 3.4% 1.711 20.9% 5.52 12529
file TEMP 0.639 4.4% 1.02 2.1% 1.212 9.6% 0.293 92
ownerNET 0.905 11.9% 0.933 4.1% 1.501 20.7% 0.874 1288
owner SYSTEM 0.483 3.0% 0.962 0.12% 1.196 3.8% 2.92 12529
owner USER 0.85 1.3% 0.876 0.84% 1.053 2.7% 0.111 169
no cut 0.792 6.6% 0.930 2.4% 1.30 11.8% 1.16 12529

Table 21: file sharing, by file class and oiner

4-..

30

The overall distributions are shown in more detail in table 22. Note that very few files had more than 2
writers and that even the distribution of the number of users per file drops off quite sharply.

readers writers users (r I w) inversions
S number

count cum count cum count cum count cum

0 44711 44.2% 11252 11.1% - - 89272 88.2%
1 49845 93.4% 87510 97.6% 89272 88.2% 5838 94.0%
2 3022 96.4% 2009 99,59% 7555 95.7% 2182 96.2%
3 1244 97.7% 209 99.80% 1818 97.5% 666 %.8%
4 685 98.3% 66 99.86% 758 98.2% 799 97.6%
5 421 98.8% 23 99.89% 448 98.7% 389 98.0%
6 356 99.11% 18 99.90% 369 99.05% 339 98.3%
7 245 99.35% 20 99.92% 258 99.30% 318 98.6%
8 167 99.52% 8 99.93% 175 99.47% 291 98.9%
9 80 99.60% 12 99.94% 88 99.56% 213 99.13%
10 105 99.70% 8 99.95% 111 99.67% 156 99.29%

>10 304 100% 50 100% 333 100% 722 100%

total 101185 101185 - 101185 - 101185

Table 22: readers, writers, users and inversions; no cuts

6.2. Execute Patterns

The basic calls to run an executable file under 4.2BSD UNIX are execv and exec~e. These calls are grouped
together under the heading "execute" in table 3. Users were responsible for half of the execute requests in

our log (table 23), even though, as we saw in section 6.1, they made only a quarter of the opens to regular
files. Most executes were done on system files. Users owned almost half of the executables seen but there
were few executes of these files.

cut executes % executes executables % executables executes/executable

ruidNET 26761 21.4% 41 7.1% 653
ruidSYSTEM 38093 30.5% 137 23.6% 278
ruidUSER 60210 48.1% 528 90.9% 114

ownerNET 12190 9.7% 34 5.9% 359
ownerSYSTEM 108646 86.9% 291 50.1% 373
owner USER 4228 3.4% 256 44.1% 17

no cut 125064 100% 581 100% 215

Table 23: Basic active executable statistics

[.:', . , ,, . ' . . 4 . ,.. , - : . '.. , - 11111,;, : .-I J -iI . . , ... , _ , - ~ :. ., ,, . o , ,.- -, - -[7

31

1.0
............ ownerUSER
........ owner-NET

owner-SYSTEM
0.8 no cut

0.6
fraction

. _. .

of
executes 0 .4

0.4, .. "

0.2

0.0 .

1000 5000 10000 50000 100000
size of executable (bytes)

Figure 20: Dynamic executable file size distributions (cumulatise)

distribution min max mean median std deviation

ownerNET 9216 8.8e4 44400 35500 23900
owner_SYSTEM 4096 1.1e6 34500 21400 84900
owner USER 1 4228 3.2e6 55900 28200 135000
no cut 4096 3.2e6 36200 22400 j 83400

Table 24: Executable file sizes (bytes)

Most executable files were between 5.000 and 100.000 bytes long (figure 20 and table 24). The relatively
large size of executables is a reflection of the lack of run-time libranr shanng. All executahles contain
whatever code they need to run.

4..

4

"1* • " P . " " - o °
"

" ' " ' '
"

', ° " " •" o - . . - • *.. .

32

1.0

0.8 0.8

0.6
fraction . .

of
executables

...... ".........

.... ownerUSER
0.2 ownerNET

ownerSYSTEM
no cut

0.0 ° I I o

1 5 10 50 100 500 1000
number of executes to file

Figure 21: Number of executes per actve executable (cumulatie)

distnbution min max mean median_{std deviation

.ownerNET 1 2152 359 60 570
ownerSYSTEM 1 17519 373.24 1340
o0 nerUSER 1 675 17 3 59

17519 1215 8 970

Table 25: Number of executes/active executable

An executable file saw considerably more activity than other regular files (figure 21 and table 25). Almost
half were executed 10 times or more. This is not surprising, considering the small number of active
execu9ables.

-l b e

33

1.0
.................... ownerUSER
............. ownerNET

owner_SYSTEM ...
0.8 no cut

...

0.6
fraction .'

of ,
executes

0.4 :1

oI, , -°

0.2
i1.,#

f

• °,;

0. : : -- - . .'"

0.0.
1 10 100 1000 10000

number of executes to file

Figure 22: Fraction of executes per active executable (cumulative)

distribution mean median std dev

ownerNET 1270 1380 634
ownerSYSTEM 5150 2600 5850
ownerUSER 230 105 244
no cut 4600 2000 5640

Table 26: execute distribution (as a function of executes/executable)

Most executes went to files executed a large number of times. Half wen: to files executed more than 2000
times (figure 22 and table 26) and 95c% went to files executed at least 100 times.

The most frequently executed files on Seneca were shells and system utilities to delete files, evaluate
conditionals, list directories and distribute files to other machines (table A-2 in appendix A). Over half of
the executes went to only 13 files. These files, taken together, occupied 0.46MB of disk space (0.08% of the
total). This suggests that even a very modest amount of caching or other special treatment for frequentlN
requested programs will produce significant improvements. Evidence for this was also seen in a stud of

4

43

1.0
............ ownerUSER o........ ownerNET

ownerSYSTEM / .
0.8 no cut

0.6
fraction , ,

of ',

intervals 0 .4
0.4 ,

ss -

0.2 - " , .

0.0

0.01 0.1 1 10 100 1000 10000 100000

time since last execute (seconds)

Figure 23: File interexecute intervals (cumulative)

distibuton min max mean median std deviation

owner_N ET 0.05 2.2e5 1160 65 6550

ownerSYSTEM 0 5.6e5 983 40 7680

owner-USER 0.52 4.1e5 6290 730 23600
no cut 0 5.6e5 1170 47 8610

Table 27: Interexecute intervals (seconds)

2MB diskless Sun workstations running a version of UNIX similar to the one on Seneca at the University

of Washington [Lazowska 84]. For the Suns studied, 80% of the bytes transferred were due to file accesses
and only 20% were for paging. If he take our average executable siue times the execute rate (most 4.2BSD
executables are loaded using demand paging), we get a very crude paging estimate of 7500 bytes/second, or

about 170% of the transfers due to opens (table 8). The difference between our crude estimate and the
behavior seen at the University of Washington is probably due to both the caching of pages of frequently
executed files and to code and debugging information in executables that is not used.

The distnbution of tune between executes for executables is given in figure 23 and table 27. These

distrbutions lend support to our caching arguments (at least for selected executables owned by net and
system).

35

1.0

0.6
fraction

of
processes0.

0.4 ."

- - - - - - ruid SN'F

I. no cut
0.0 -". "

0.01 0.1 1 10 100
process lifetime (seconds)

Figure 24: Process lifetimes (cumulative)

distribution min max mean median std deviation

04 idNET 0.02 7250 15.7 3.0 88
midSYSTEM 0.01 15000 52.2 0.09 1380
. idUSER 0.02 76100 118 2.4 1190
no cut 0.01 215000 165 0.95 2560

Table 28: Process lifetimes (seconds)

Executing a program on UNIX is usually done using the sequence fork (to create a copy of the running
process),, execv or execve (to replace that copy with the new program): exit (when done). Since over 2/3 of
the forks on Seneca were followed by an execute we can. by looking at process lifetimes (time from fork to
exit) estimate how long executables were in use. Process lifetime distributions, cut by the id of the

requester, are given in figure 24 and table 286. Over half of all processes recorded in the log lived less than
a second. System processes were particularly short-lived. With the exception of the large number of system
processes that lived less than a tenth of a second (due mostly to local network servers) our results agree
with process lifetime results given by Zhou et a]. [Zhou 851.

some processes, such as login shells, start ife in one ruid class and exit in another hese are included only in the oerall ditan-
buuon

-I ------ ... _ i . •1 q _ , , : .

36

Executable files were more heavily shared than opened files (table 29). This should come as no surprise.
since there were relatively few executables and there were usually located in public directories. User
executables were relatively lightly shared.

executors inversions
cut

mean median >1 >5 max mean >0 >5 max

ownerNET 10.3 4 70.6% 41.2% 45 92.9 70.6% 55.9% 957
ownerSYSTEM 12.0 2 61.5% 34.4% 111 126 61.5% 38.8% 6539
ownerUSER 1.38 1 9.8% 1.6% 28 1.74 9.8% 4.7% 205

no cut 7.2 1 39.2% 20.3% 111 69.5 39.2% 24.6% 6539

Table 29: Executable sharing

6.3. User File Patterns

In this section we take a closer look at user files. Many distributed file systems (including Roe [Ellis 83] and
the ITC DFS [Satyanarayanan 85]) deal primarily or wholly with user files. In addition, we expect that user

file access patterns will be less dependent on the operating system used. These factors make user file
reference patterns particularly interesting.

The results presented in this section are actually for user references to user files
(ownerUSER + ruidUSER cut. referred to as the "U" cut below). These references represented over 90%
of the references to user files. The remaining references were mostly infrequent periodic references made
by system processes and had little effect on the distributions we see (with the exception of some of the
sharing results). The organization of this section follows closely that of section 6.1.

6.3.1. Basic Statistics for User Files

The majority (62%) of user references to user files were to perm files (table 30), even though less than a
third of the referenced user files were perm files. There were few references to log files. Most of these files
were logs of mail sent or read and so the low level of activity is not surprising. With the exception of a
somewhat higher proportion of penn files. these figures agree with what we saw for the overall distributions
(table 5).

cut opens % opens files % files opens/file

U + fileLOG 837 0.8% 101 0.3% 8.3
U + filePERM 65051 62.4% 8662 29.0% 7.5
U+fileTEMP 38420 36.8% 21127 70.7% 1.8

U 104308 100% 29890 100% 3.5

Table 30: User opens to user files

-1

". 2.'''- '',* 'S .. *'..' ' ' - " " . ,' - , , ._, - ' ' ' . "' """- . ',,, ".' : .",-." : ,% :." " -

37

read-only write-only read/write total
cut

opens fraction opens fraction opens fraction opens

U+fileL-OG 117 14.0% 623 74.4% 97 11.6% 837
U +file_PERM 50193 77.5% 13296 20.5% 1310 2.0% 64799
U + file TEMP 7349 19.1% 19891 51.8% 11140 29.0% 38380

U 57659 55.4% 33810 32.5% 12547 12.1% 104016

Table 31: Modes of open for user open-close sessions to user files

category 1 opens 7 opens i files qfi opens/file

library 2036 3.1% '1 1.1 17 22.4

manual pages 776 1.2% 18 I 2.1% 4.3

program source 10538 16.2% 1486 7 1.1% 7.1

includes 3093 4.8r 1 306 1 3.5% 10.1
objects 5617 8.6% 467 5.4% 12.0

personal configuration 20278 31.2% 1638 18.9% 12.4
mail spool 2049 3.1% 453 5.2% 4.5

other 20644 31.8% 4040 46.67, 5.1

Table 32: Function of opened user perm files

55% of the opens were read-only with most of the read-onl opens going to perm files (table 31). Users
showed a strong tendency to open penn files read-onlh and other files wnre-onlh or read/%rnte.

30% of the activity to perm files was to program de'elopment files ("program source," "includes," and
"objects" in table 32). A similar number of references 'here to personal configuration files (often referred to

as "dot files"). Most of the rest of the references %ere unidentifiable.

o°

°"p

"p

38

0.5... U ~ file_ P E R M

.......... U+ file-LOG

........ U+ flleTEMP
0.4 u

0.3
* average

opens
per second0.

0.2

0.1 . .,'

0 .0 -- -- --- - ----

0.00 Tutesda\ 0:00 Thursda 0:00 Saturday

Lime of open

Figure 25: kyerage number of file opens per second ('2 hour resolution. U cut)

reads wriues ov erall (r -±-

cut
bytes/sec fraction bytes/sec fraction bvtes/sec ifractionj

U +file LOG 9.6 1.00% 4.6 1.1% 14.2 1 .067C
L+filePERM 401 14 1. 0% 121 28.6% 522 37. 3
U+fileTEMP 568 58.0% 297 70.4% 865 ci7

U 978 100%c~ 423 100%C/ 1401 100%,
no cut (table 8) 4190 800 - 4990

Table 33: Bytes read/written by users to user files

6.3.2. Per Open Results for User Files

User open activity to user files (figure 25) showed a busy period during the work day, with activity tapering
off in the late evening. This is typical of a university environment. T'here was some early morning activity
due to user background jobs. The overall level of activity was much less than what we saw for the system as
a whole (user opens to user files accounted for 14% of the open activity) and was generally less bursty.

User reads and writes to user files accounted for 28% of the bytes transferred during the logging period.
Most of the transfers (61.7%) were to and from temp files (table 33). Few bytes were transferred to or from
log files.

......................

39

1.0
............ U+filc PERM - -

........ U + file-LOG -

U + file-TEMP /I'0.8 U -.. ,/ .,

- static .

/ I

0.6 .. /
fraction - - ,

of /
opens 0'"// .0.4- ' '

0.2 . / .

0.0 W -'""' "r.

1 10 100 1000 10000 100000 1

file size (btes) e6

Figure 26: Dynamic file size distributions (cumulative. measured at close, U cut)

distribution min max mean median std deviation

U + fileLOG, dynamic 0 1.28e6 9G400 39000 1.7e5
U + file_PERM, dynamic 0 2.49e6 6205 1230 4.0e4
U+file_TEMP. dynamic 0 1.30e6 5006 310 2.4e4
U, dynamic 0 2.49e6 6440 930 3.9e4

all. dynamic (table 9) 0 2.49e6 18800 710 6.2e4
all. static 0 7.95e6 8020 1600 5.6e4

Fable 34: User file size distributions

Cumulative file size distributions for users files, weighted b\ the number of user opens and cut by the file
class, are given in figure 26 and table 34. Referenced user files were, on average, smaller than other

- referenced files. This was due, in part. to the large number of zero length temp files and to the absence of
the large, frequently accessed administration files seen in the overall data.

'p

Users accessed most of their files completely (figures 27-30 and tables 35-38). 90% of opens with read access
(read-only or read/write) resulted in the file being completely read (compared to 68% for the system as a

-" whole). 83% of files opened with write access were completely written (compared to 78% for the system as a
whole). Nearly all files opened read-only were completely read.

". "C " .._'L ., " -'- ., " --7." .".-'. "--', ' -'.-' -', -..- "....'.....-.....-.....-....,."....-.."-.-.-.-...'....,......".-............".".....

40

1.0
............ U + filePERM
........ U + fileLOG ...

0.8 ... U + file_TEMP0.8 U

0.6
fraction
of

opens
0.4

0.2 - .. - '

- --- ------ -

0.0 -------
1 5 10 50 100 500 1000

percent read
Figure 27: Percent of file read for read-only opens (cumulative, U cut)

1.0

0.8

0.6 . ' -
fraction 0.6
of

opens .
............ U + filePERM
........ U + file-LOG
-.-....- U + file_-TEMP

0.2 U

0.0 -.-. -- - - - -- - -....

1 5 10 50 100 500 1000
percent written

Figure 28: Percent of file written for write-only opens (cumulative, U cut)

.....

.11

.1.

......... U+filePERM

* U +fileLOG
------ U +fileTEMP

*0.8 u

0.6
fraction

* of
*opens 04 -

------------------------------------- --

0.2

1 5 10 50 100 500 1000

percent read

Figure 29: Percent of file read for read/write opens (cumulative, U cut)

1.0

0.8...

fraction 0 .6 .. -- - -

of U+filePERM
opens 0.4 U + - . Ufile-LOG

0.4 L+fileTEMP
* U

0.2-

0.0.................

1 5 10 50 100 500 1000
percent written

Figure 30: Percent of file written for read/write opens (cumulative, U. cut)

,. ,. .. - , ". - - , . -_ . • . . - .- . . ? :.-/ -.. r .~. . . - - . .. , .. -c

42

distribution min max mean median std dev <100% >100%

U + fileLOG 0 100 75.3 100 40 28% 0%
U + filePERM 0 12500 99.9 100 110 5.7% 5.2%
U + fileTEMP 0 1160 109 100 47 7.2% 11.4%
U 0 12500 100.9 100 104 5.9% 6.0%N

no cut (table 11) 0 64100 83.9 100 202 31% 2.9%

Table 35: Percentage of users files read (read-only opens)

distribution minI max I mean median std de. <100% >100%

U+fileLOG 0 100 F 12.4 1.9 26 94% 0%
U+filePERM 0 200 90.8 100 27 14% 0.8%
U + fileTEMP 0 9600 106.4 100 201 2.0% 0.7%
U 0 9600 95.6 100 134 11% 0.8%

no cut (table 12) 0 9600T_ 85.7 100 53 15% 0.1%

Table 36: Percentage of user files written (write-only opens)

distribution minI max mean median std dev (100% I100%

U + fileLOG 0 100 60.2 100 49 40% 0

U+filePERM 0 100 81.8 100 39 18% 0%
U+fileTEMP 0 65000 159 100 1670 34% 19%
U 0 65000 145 100 1500 31% 16%

no cut (table 13) 0 65000 82.9 100 615 40% 11%

Table 37: Percentage of user files read (read/write opens)

distribution min max mean median std dev <100% >100%

U + file_LOG 0 100 43.0 <1 50 57% 0%
U + filePERM 0 100 17.0 <1 37 83% 1%
U + fileTEMP 0 3600 112 100 156 23% 12%
U 0 3600 95.7 100 147 34% 10.3%

no cut (table 14) 0 20000 51.8 <1 249 61% 2.7%

Table 38: Percentage of user files written (read/write opens)

• "|

43

1.0 . -

0.8

0.6
fraction

files ..8....
0.4

-- -- -- - •.... ..

.. U°,+ f,-e o° o1

0.2........... +- fileP
........ +fil_ FM P

U
0.0

1 5 10 50 100
number of opens to file

Figure 31: Number of opens per active file (cumulative. U cut)

0.

disribtin man medan opened opened Fopened more

+.fileLOG 8.3 5 13% 18% 69%
U iePR . 23%1 2 1%q 56%7 562

U+.fileTEMP 1.8 2 35% 61% 3.99 198
U 3.5 2 310% 50% 19% S62

no cut (table 17) 7.5 2 ii48% j33% 19% 268001

Table 39: Number of user opens/user file

6.3.3. Per File Results for User Files

User temp files were generallv accessed twice. User log and perm files saw somewhat more acuvut (figure
31 and table 39). Although only 19% of the user files seen were referenced more than twice durng the
week of logging, these files accounted for 63% of the opens. User file distributions don't show the frantic
actm'.ic to a few files that we saw for the overall distribution. but there was still a small group of relatiw.ly
active files that accounted for the majority of the opens.

-7 n-

44

1.0. U + file PER M

..... U +file-.LOG

0. ----- U +fileTEM P -----

0.6
* fraction

of
intervals0. - --

0.2 -

0.01 0.1 1 10 100 1000 10000 100000
Lime since last open (seconds)

Figure 32: File interopen intervals (cumulative, U cut)

distribution min max mean median stdl deviation

U+fileLOG 0.02 5.45 31100 3100 5.7e5
U+filePERM 0 5.4e5 21400 450 4.1e4
U +fileTEMP 0.01 4.2e5 1390 0.38 1.2e4
U 0 5.45 16900 120 3.7e4

no cut (table 20) 0 5.4e5 17502 I 60 2.2e4

Table 40: User file interopen intervals (seconds)

Interopen intervals for user files (figure 32 and table 40) bore little resemblance to the results we saw for
the overall data. Intervals for user files could .erally be expressed in minutes instead of seconds. Temp
files were an exception here. The second opt.. to a temp file usually followed immediately after the first
one.

* File and data lifetimes for user files are shown in figures 33 and 34. Most user permn and log files had lives
exceeding our logging period. Data in user log and perm files vwas also long lived (this was not the case for
the overall data). Half of all user temp files lived less than 15 seconds.

45

1.0
....... U+file_ PERM
-........ U +fileLOG

0.8 ------ U~fileTEMP

fraction 0.......

* of
* ~files 0.

0.2

........ --- r----

0.01 0.1 1 10 100 1000 10000 100000
file lifetime (seconds)

Figure 33: File lifetimes (cumulative, files living beyond log period binned at right. U2 cut)

1.0
......... U fllePERM------------

-..... U +file-LOG
- -- -- - U +-fileTEMP

0.8 -

0.6
fraction 0

of
versions

0.4

0.2-. . -

* ~~~~0.0 .-.-.--

0.01 0.1 1 10 100 1000 10000 100000
version lifetime (seconds)

Figure 34: Version lifetimes (cumulative, versions living beyond log period binned at right, U2 cut)

...

46

Tables 41 and 42 provide some statistics on user sharing of user files. Sharing was restricted to log and
perm files. The low mean number of inversions (0.069) indicates that sharing was incidental to the normal
use of user files.

cut readers writers users (r I w) inversions
~cut

mean >1 mean >1 mean >1 mean max

U + fileLOG 0.634 3.0% 0.99 3.0% 1.099 5.9% 0.356 9
U+filePERM 0.936 2.7% 0.632 2.1% 1.12 4.9% 0.231 163
U + fileTEMP 0.798 0.02% 0.995 0% 1.0 0.04% 0 2
U 0.838 0.80% 0.889 0.63% 1.035 1.5% 0.069 163

no cut (table 21) 0.792 6.6% 0.930 2.4% 1.30 11.8% 1.16 12529

Table 41: User file sharing

readers writers users (r I w) inversionsnumber
count cum count cum count cum count cum

0 5367 18.0% 3826 12.8% - - 29452 98.5%
1 24284 99.20% 25877 99.37% 29452 98.5% 198 99.20%
2 146 99.69% 98 99.70% 255 99.39% 109 99.56%
3 45 99.84% 28 99.80% 74 99.64% 27 99.65%
4 21 99.91% 19 99.86% 40 99.77% 23 99.73%
5 11 99.95% 8 99.89% 19 99.83% 14 99.78%
6 2 99.95% 7 99.91% 9 99.86% 7 99.80%
7 3 99.96% 7 99.93% 10 99.90% 5 99.82%
8 2 99.97% 3 99.94% 5 99.91% 7 99.84%
9 2 99.98% 5 99.96% 7 99.94% 7 99.86%
10 0 99.98 2 99.97% 2 99.94% 4 99.88%

>10 7 100% 10 100% 17 100% 37 100%

total 29890 29890 29890 - 29890 -

Table 42: readers, writers, users and inversions; user references to user files

.

.

-C 2.

47

7. Implications for DFS's

In this section we make some observations on DFS design, based on the results we have presented. It
should be emphasized that these observations and suggestions are most applicable to systems that see
reference patterns similar to ours. They will not necessarily carry over to other environments.

The small median size of opened files (710 bytes) suggests that the overhead to traverse a directory and
then actually open a file will tend to dominate file access time. Careful directory design and low
communication requirements for opens will be needed to minimize this overhead.

. The high percentage of a file that was read or written tells us that migrating a file as a whole is usuall%
appropriate. Log files are an exception'. In this case, information about the intended use of the file would
be helpful.

For files that were not completel\ read or written, the fraction accessed depended strongly on the access
mode (read-only, write-only or read/write), the size of the file and the opener of the file. Systems limited
by bandwidth considerations may benefit from using this information in making migration decisions.

Reads accounted for 84% of the bytes transferred in the system. Many of these reads were from large
administrative files that were frequently read and rarely written. Replication and caching of even a few such

files could substantially increase the performance of a DFS.

Most temp files in our environment were opened only once or twice. These files were also short lived,
generally existing for only a few seconds. Many other files were only used a few times during the logging
period. Knowing the intended use of these files at the time of their creation could substantially increase
the performance of a DFS. There is. for example, no need to replicate a temp file and files that are
infrequently used or short-lived will usually benefit from different initial placement decisions.

The short interopen intervals seen here (median of 60 seconds) suggests that fast response to changing
patterns is important. DFS's that migrate or replicate a file at open time are often doing the right thing.
User files had substantially longer interopen intervals. In some situations, fast response time will be less
important for these files.

The bursty nature of requests (for our background activity in particular) means that congestion could be a
serious problem at times. Preliminary results from the VICE/Andrew system [Svobodoa 851 confirm the
importance of this issue. It will be interesting to investigate algorithms that place and migrate files to
minimize congestion.

User files accounted for only 15% of the open activity on our system. For DFS's that support acccss to local
file systems coupled with access to a global user file system. minimizing the performance impact of adding
the global file system on local accesses is clearly important.

Net and system files made up the bulk of shared files. Relatively few user files were shared and this sharing
N,%as incidental to their normal use. O~erall. only about 12% of the files on the system were shared. This
suggests that there is no need for replication to improve performance for most files (replication for
increasing availability is another issue. though).

One might prefer to use a different logging mechanism in a distributed environment in any case

N-

V..

48

Over half of all execute requests made went to just 13 files. These files occupied 0.46MB of disk space
(0.08% of the total). This suggests that even a very modest amount of caching or other special treatment
for such files will produce significant improvements in system performance.

There were generally substantial differences in access patterns for log, permanent and temporary files.
Placement and migration algorithms will benefit from recognizing and ruthlessly exploiting these
differences.

8. Further Work

The analysis of file system traces can soak up boundless amounts of time and energy. We have tried to stop

at the point were we felt that we had enough information to understand trace driven simulations based on
the data. There is a great deal of further work that could be done, Some possibilities include:

(1) Studies of open frequency as a function of file age. Smith found that for long term file
reference patterns. open frequency falls off as the age of the file increases [Smith 811. A recent
survey of files on Seneca showing that 66% of all user files (user log and perm files) hadn't
been accessed in over one month [Friedberg 85] suggests that this is also true in our
environment for at least some classes of files.

(2) Studies of interopen intervals as a function of file size. Porcar found that smaller files tend to
have shorter interopen intervals [Porcar 82]. We don't expect this to be true for the overall
activity in our system (because of the large heavily used administrative files), but it may be true
for user files.

(3) Measunng the paging and inode access actixity. It would be interesting to see what fraction of
the file system bandwidth is devoted to each of these activities.

(4) Examining in more detail the activity per user. Ousterhout et al. [Ousterhout 85] have done
some of this work.

(5) Using the trace data to drive simulations investigating file system performance issues. A trace
driven simulation of Roe [Ellis 83] is planned.

(6) Fitting curves to various distributions (size, inter-open time and so on). These would be useful
in writing synthetic drivers for use in simulating DFS's [Satyanarayanan 83].

(7) Further data collection and analysis for different environments and work loads. This would
give us a better feeling for where our data fits into the universe of file system usage.

9. Summary

This paper has described in detail the collection and analysis of short term file reference data from a
4.2BSD UNIX system supporting university research. Our major findings:

(1) Opened files in our environment are small. with half being under 710 bytes long.

(2) The majority of bytes read come from larger files (greater than 20,000 bytes long).

(3) 68% of files opened with read access are completely read and 78% of files opened with write
access are completely written. The percentage read and written depends strongly on the class of
the file (log, perm or temp), the mode of open, the file opener and the size of the file. In

'" -'." -'-.2 , -2. i " ' % "- ""i "'"", \
"

*. " ' " Ii" . 4'"' " ." "

,.'

49

particular, log files are almost never completely written and users completely read 94% of files
they open read-only.

(4) Temporary files are usually accessed only once or twice and most live for less than a minute.
Log and permanent files live for much longer periods and see more open activity.

(5) Most opens go to files opened hundreds or thousands of times a week. Large administrative
files account for a substantial fraction of this activity.

(6) Files are generally open for only a few tenths of a second.

(7) Interopen intervals in our environment are short. Half are under 60 seconds. The interopen
interval depends strongly on the class (log, permanent or temporary) and owner of the file.

(8) Most sharing is restricted to system and net files in our environment. Sharing of user files is
incidental to their normal use.

(9) Executed files are relativel large (half are over 20.000 bytes), heavily used and few in number.

(10) Half of all execute requests go to a ery small number of executable files (13 files: 2.2% of the
referenced executables).

(11)We see substantial differences in file access patterns based on the class of the file, the owner of
the file and the class of the file opener. In particular. o erall reference patterns do not match
user file reference patterns and reference patterns for logs, permanent files and temporary files
bear little resemblance to each other.

These results have a number of interesting implications for I)FS design. These implications are discussed
in section 7.

As is true with all studies of this sort- our results can be guaranteed to be valid only for our system at the
tme of data collection. Care should be taken in applying the results to other situations.

10. Acknowledgements

Carla Ellis and Stuart Friedberg made numerous suggestions on both the analysis and presentation. l'heir
help is gratefully acknowledged. Lee Moore's efforts in maintaining and enhancing our press software
[Kahrs 851 helped make the plots shown here possible. Liudvikas Bukys and Mike Dean are to be thanked
(I think) for convincing me that kernel hacking wasn't really so bad. Finally. I would like to thank the 5
VAXen that struggled so long and hard to analyze this data.

&-

S'. 7 v . 7 .. , 7 ,;_, ' .r " ', ,-, ,, " ','- . .",-,',,, , , _ , "- -7, , .,.,,: " •""" '"

50

References

[Ellis 831 Ellis, C. and Floyd, R., "The Roe File System," Proceedings of the Third Symposium on
Reliability in Distributed Software and Database Systems, October 1983, 175-81.

[Floyd 85] Floyd, R. A.. "Short Term File Reference Patterns in a UNIX Environment: Preliminary
Results." Internal Note, Department of Computer Science, University Rochester, August 1985.

[Floyd 86a] Floyd. R. A., Transparency in Distributed File Systems, Ph.D. Dissertation. Department of
Computer Science. University Rochester, December 1986. (in preparation).

[Floyd 86b] Floyd, R. A., "Directory Reference Patterns in a UNIX Environment." Technical Report 178.
Department of Computer Science, University of Rochester, May 1986. (in preparation).

[Fnedberg 851 Fnedberg• S.. private communication. July 1985.

[Kahrs 85] Kahrs• %. and Moore. L.. "Adventures with Typesetter-Independent IROFF," Technical
Report 159. Department of Computer Science. Lni~ersit. of Rochester. June 1985.

[LazoAska 841 Lazowska. F.. Zahorjan. J.. Cheriton. D. and Zwaenepoel. W., "File Access Performance of
Diskless Workstations." Technical Report 84-06-01.)epartment of Computer Science, University of
Washington. June 1984.

[Novitz 78] Nowitz, D. and Lesk. M.. "A Dial-Up Network of UNIX Systems," in The UNIX
Programmer's Manual, Seventh Edition, vol. 2. Bell Laboratories, August 1978.

[Ousterhout 85] Ousterhout, J., Da Costa. H., Harrison, D.. Kunze. J., Kupfer. M. and Thompson. J., "A
Trace Driven Analysis of the UNIX 4.2BSD File System," UCB/Computer Science Department 85/230,
FECS Department. University of California, Berkeley, April 1985.

[Porcar 82] Porcar, J., "File Migration in Distributed Computer Systems," LBL-14763. Lawrence Berkeley
Laboratory, July 1982.

[Ritchie 78] Ritchie, D. and Thompson. K., "The UNIX Time-Sharing System." Bell System Technical
Journal 57:6, Part 2, July-August 1978. 1905-30.

[Satyanarayanan 81] Satyanarayanan. M., "A Study of File Sizes and Functional lifetimes," Operating
Systems Review 15:5, December 1981. 96-108.

[Satyanarayanan 831 Satyanaravanan• M.. "N Methodology for Modelling Storage S.stems and its
Application to a Network File System." CMU-CS-83-109. Department of Computer Science. Carnegie-
Mellon University, March 1983.

[Satyanarayanan 851 Satyanarayanan. M.. Howard. J.. Hichols. D.. Sidebotham. R., Spector. -V and West.
M.. "The ITC Distributed File System: Principles and [esign," Operating S)stems Rewe, /:5.)ecember
1985. 35-50. (SOSP 10).

[Smith 811 Smith. A.. "Analysis of Long Term File Reference Patterns for Application to File Migration
Algorithms." IEEE Transactions on Software Engineering SE-7:4, July 1981. 403-417.

-- . . - . .'. -. - . -- . . - . - -. . . . -. -. .- - - ' '. - - . -- ,

[Smith 85] Smith. A., "Disk Cache-Miss Ratio Analysis and Design Considerations," ACAI Transactions on
Computer Systems 3:3, August 1985. 161-204.

* [Stritter 77] Stritter, E., "File Migration." STAN-CS-77-592, Stanford University, March 1977.

(Tichy 841 Tichy, W. and Zuwang, R., "Toards a Distributed File System," 1984 USENIX Summer

Conference Proceedings, June 1984. 87-97.

[Walker 831 Walker, B., Popek, G., English, R., Kline, C. and Thiel, G., "The LOCUS Distributed
Operating System," Operating Systems Review 17:5, December 1983, 49-70. (SOSP 9).

(Zhou 851 Zhou, S., Da Costa, H. and Smith, A., "A File System Tracing Package for Berkeley UNIX,"
UCB/Computer Science Department 85/235, EECS Department, University of California. Berkeley, May
1985.

m2

52

Appendix A. Frequently Opened and Executed Files

The following two tables list the most frequently opened and executed files during the logging period.
What are actually listed here are the most frequently accessed inodes, with the given name being the path
used to first access the mnode. For the most part, this distinction doesn't matter. There are a few mnodes
listed here, though, that are one of several versions of a heavily used system file. An example is
Ietc/passwd. which starts life as /etc/ptmp. Occurrences of this are noted in the table.

rank opens fraction path of first open

1 26801 5.4% /etc/hosts
2 20675 4.1% /usr/spool/rwho/whod.keuka

... ... [2 more rwho dae-non files]
5 14977 3.0% /etc/passwd [35485 (7.1%) with /etc/ptmp versions]
6 12036 2.4% /etc/utmp
7 10594 2.1%7 /usr/spool/rwho/ A hod.capella

... [9 more rwho daemoa files]
17 9386 1.9% /usr/include/whoami.h
18 8881 1.8%1 /etc/ptmp [version of /etc/pass~d]
19 8630 1.7%01 /etc/ptmp [version of /etc/passwd]
20 7533 1.5% /usr/lib/sendmail.st
21 7295 1. 5%c /munix
22 6908 1.4% /etc/termcap
23 6400 1.3% /etc/group [6947 (1.4%c) for all versions]
24 6294 1.3% /etc/services
25 6211 1.2% /etc/gettytab
26 5063 1.0% /etc/ttvs
27 3991 0.80% /usr/lib/uucp/L.sys
28 3852 0.77% /usr/lib/news/svs
29 3140 0.63% /usr/lib/ uucp/L.aliases
30 3111 0.62% /usr/adm/lastlog
31 3039 0.61% /etc/hosts.equiv
32 2765 0.55% /usr/lib/news/nacti ve 19830 (2.0%) for all versions]
33 2613 0.52% /bin/true
34 2303 0.46% /usrflib/uucp/SEQF
35 2295 0.46%c //.cshrc
36 21292 0.46% /usr/lib/news/nactive
37 2247 0.45% /usr/lib/aliases.dir
38 2246 0.45% /usr/lib/aliases.pag
39 2165 0.43% /usr/lib/news/nactive

1 40 2143 0.43% /usr/lib/sendnail.cf

Table A-1: Frequently Opened Inodes

53

rank executes fraction path of first execute

1 17519 14.0% /bin/sh
2 6946 5.6% /bin/rm
3 6511 5.2% /bin/[
4 6402 5.1% /bin/csh
5 4568 3.7% /bin/Is
6 4497 3.6% /etc/rdist
7 3776 3.0% /usr/ucb/more
8 2517 2.0% /usr/ucb/vi
9 2514 2.0% /bin/login

10 2197 1.8% /bin/echo
11 2152 1.7% /usr/bin/mews
12 2143 1.7% /usr/lib/sendmail
13 2026 1.6% /etc/logld
14 1891 1.5% /bin/hosname
15 1803 1.4% /bin/rmdir
16 1734 1.4% /usr/ucb/mail
17 1667 1.3% /usr/lib/uucp/uuxqt
18 1658 1.3% /usr/lib/uucp/uucico
19 1612 1.3% /bin/stty
20 1592 1.3% /usr/ucb/tset
21 1520 1.2% /bin/mail
22 1382 1.1% /usr/bin/uux
23 1283 1.0% /bin/cat
24 1260 1.0% /bin/eftpsend
25 1169 0.93% /etc/getty
26 1013 0.80% /etc/dmesg
27 999 0.80% /usr/lib/news/batch
28 978 0.78% /usr/ucb/clear
29 949 0.76% /bin/mkdir
30 937 0.75% /bin/awk
31 907 0.73% /usr/bin/uux
32 882 0.71% /etc/getty
33 876 0.70% /bin/rmail
34 814 0.65% /lib/cpp
35 812 0.65% /usr/bin/basename
36 791 0.63% /usr/ucb/uptime
37 784 0.63% /bin/cc
38 772 0.62% /bin/date
39 745 0.60% /usr/lib/news/compress
40 744 0.59% /bin/as

Table A-2: Frequently Executed Inodes

54

Appendix B. Selected Histograms and Distributions, in Detail

The first two tables in this appendix (table B-1 and table B-2) give information on opens and bytes

transferred for each of the 14 cuts described in section 4. Some of the information in these tables appeared

in the main body of the paper and is included again here for comparison purposes.

The remainder of the appendix gives a more complete set of distributions for file sizes, percent read and

written, open counts, open time, interopen intervals and lifetimes. Distributions for all of our cuts are
given. Again, some of this information also appears in the body of the paper.

cut opens % opens files % files opens/file

ruidNET 249825 33.1% 51600 51% 4.8

midSYSTEM 298186 39.5% 15500 15% 19.2

midUSER 206274 27.3% 45900 45% 4.5

owner_NET 249733 33.1% 46207 45.7% 5.4

ownerSYSTEM 392790 52.1% 25062 24.8% 15.7

owner_USER 111762 14.8% 30822 30.5% 3.6

fileLOG 35662 4.7% 506 0.5% 70.5

filePERM 499193 66.2% 16352 16.2% 30.5

fileTEMP 219430 29.1% 84327 83.3% 2.6

U + fileLOG 837 0.1% 101 0.1% 8.3

U + file-PERM 65051 8.6% 8662 8.6% 7.5

U+fileTEMP 38420 5.1% 21127 20.9% 1.8
U 104308 13.8% 29890 29.5% 3.5

no cut 754285 100% 101185 100% 7.5

Table B-I: Opens to regular files

55

reads writes overall (r +w)
ctbytes/sec fraction bytes/sec: fraction bytes/sec fraction

ruidNET 870 21% 250 31% 1120 22.5%
ruidSYSTEM 1060 25% 110 14% 1170 23.5%
ruidUSER 2260 54% 440 55% 2700 54%

owner NETF 845 20%o 245 31% 1090 22%
ownerSYSTEM 2330 56% 130 16% 2460 49%

Sowner USER 1015 24% 425 54% 1440 29%

fileLOG 45 1.1% 11 1.4% 56 1.1%
filePERM 3225 77% 285 35% 3510 70%
fileTEMP 920 22% 505 63% 1425 29%

U U+file-LOG 9.6 0.2% 4.6 0.6% 14.2 0.3%
U +file-PERM 400 10.0% 120 15% 520 10%
U+fileTEMP 570 14% 300 37% 870 17%
U 980 23% 420 53% 1400 28%

no cut 4190 100% 800 100%/ 4990 100%

Table B-2: Bytes read/written for regular files

* B.2. Dynamic File Sizes

distribution min max mean median std deviation

ruid_NET 0 9.48e5 16500 1230 5.4e4
*ruidSYSTEM 0 9.46e5 23200 178 7.5e4

Cruid USER 0 2.49e6 15300 1230 5.1e4
ownerNET 0 9.48e5 13700 1230 4.9e4
ownerSYSTEM 0 7.76e5 25600 310 7.4e4
ownerUSER 0 2.49e6 6530 930 3.9e4

fileLOG 0 1.28e6 105000 38900 1.5e5
filePERM 0 2.49e6 19600 620 5.9e4
fileTEMP 0 1.3e6 2980 620 1.9e4

*I+ fileLOG 0 1.28e6 90400 39000 1.7e5
U +file-PERM 0 2.49e6 6205 1230 4.0e4
U +fileTEMP 0 1.30e6 5006 310 2.4e4
U 0 2.49e6 6440 930 3.9e4

no cut 0 7.49e6 18800 710 6.2e4
static 0 7.95e6 80,20 L 1600 5.64

Table B-3: File size distributions

56

1.0
............ r U.._
........ ruidNET // i
--ruidSYSTEM A -0.8
0.8 no cut - -

- static - - "

0.6 . ..

fraction 0, "/
of,/i

opens
0.4

I - * /

0.2 ..:" - /

0.0 . -1 - I I I

1 10 100 1000 10000 100000 1
file size (bytes) e6

Figure B-1: Dynamic file size distributions (cumulative. measured at close. ruid cut)

0 ownerUSER
........ owner NET

ownerSYSTEM . -
0 .8 n o c u t. ,

static ' '
0.6, ,' /

fraction 0.6, /

of .

opens 0.4

j "i .. '0.4.

0................. ." '-
0.0

0.0---------.. - I ,

1 10 100 1000 10000 100000 1

file size (bytes) e6

Figure B-2: Dynamic file size distributions (cumulative, measured at close, owner cut)

d' , "-.. " -" --"," ." € .-.--.-. - -.- , .-• .-., ...-.- • .-.--." .-I " .t .

1.0
....... filePERM -- --

---- fileL~X TEMP/
0.8 ___ _ no cut

- -- - Static

fraction 0.

of /

oes 0.4 -- ~

0.2/

0.0 - - -- - - . - I

1t1 100 1000 10000 1000001

file size (bytes) e6

Figure B-3: Dynamic file size distributions (cumulative, measured at close, file cut)

1.0
....... U+ file-PER M ,- *

..... U+fileLOG/ -

08------- U+fileTEMP/
0.8 U

- -- - static

0.6 --

fraction - - -1

0.4~

oes 0.42-..

0.0 -------

1 10 100 1000 10000 1000001

file size (bytes) e

Figure B-4: Dynamic file size distributions (cumulative, measured at close. U cut)

58

B.3. Percentage Read (Read-Only Opens)

dist~ribution min max mean median std dev (100% >100%

ruidNEI' 0 600 82.1 100 36 23% 0.3%
muidSYSTEM 0 3530 63.5 80 47 52% 3.0%'Y
ruid.USER 0 64100 99.9 100 330 23% 5.5%

ownerNET 0 55500 99.0 100 264 16% 1.7%
ownerSYSTEM 0 64100 65.1 80 166 53% 3.0%
owner._.USER 0 12500 100.4 100 99 6.1% 4.9%

fileLOG 0 690 85.8 100 72 26%o 3.3%
file_PERM 0 64100 83.2 100 235 36% 3.2%
file_TEMP 0 3600 85.8 100 53 18% 2.1%

U +file_LOG 0 100 75.3 100 40 28% Wo
U +file-PER M 0 12500 99.9 100 110 5.7% 5.2%
U +fileTEMP 0 1160 109 100 47 7.2% 11.4%
U 0 150 100.9 100 104 J 5.99% 6.0F%

no cut 0 64100 83.9 100 202] 31% 2.9%

Table B-4: Percentage read (read-only opens)

1.0
......... midUSER

........ ruid NET
- -- - mid SYSTEM

0.8 no cu

0.6
fraction

of
opens 0.

0.4

0.2

1 5 10 50 100 500 1000

percent read

Figure B-5: Percent of file read for read-only opens (cumulative, ruid cut)

59

1.0
......... ownerUSER

. owner_NET

0.8- -- - - ownerSYSTEM
0.8 no cut

0.6
fraction

of
opens

0.4

0.2

1 5 10 so 100 500 1000

percent read

Figure B-6: Percent of file read for read-only opens (cumiulativ'e. owner cut)

1.0
....... filePERNA- - . .-

-. fileLOG

- -- -- - fileTEMP0.8 - o u

0.6
fraction

of
opens 0.

0.2

0.0 . . .I

1 5 10 50 100 500 1000

percent read

Figure H-7: Percent of file read for read-only opens (cumulative. file cut)

60

1.0 U+file_PERM ,r
........ U + fileLOG .

U + file_TEMP0.8 U

0.6
fraction

of
opens 0.4

0.0

1 5 10 50 100 500 1000
percent read

Figure B-8: Percent of file read for read-only opens (cumulatie. U cut)

* BA4 Percentage Written (Write-Only Opens)

distribution min j max mean median std dev <100% >100%

r 0idNET 0 i 1 60.2 100 48 41% 0%
ruidSYSTEM 0 530 93.0 100 25 7.1% 0%
rui&USER 0 9600 93.2 100 119 12% 0.6%

ownerNET 0 100 59.1 100 48 42% 0%
ownerSYSTEM 0 530 93.7 100 24 6.3% 0%f
owner-USER 0 9600 93.7 100 132 11% 0.8%

fileLOG 0 100 2.8 <1 12 98.8% 0%
filePERM 0 200 96.6 100 18 3.9% 0%
fileTEMP 0 9600 100.8 100 85 0.7% 0.2%

U+fileLOG 0 100 12.4 1.9 26 94% 0%
U+file_PERM 0 200 90.8 100 27 14% 0.8%
U+fileTEMP 0 9600 106.4 100 201 2.0% 0.7%
U 0 9600 95.6 100 134 11% 0.8%

no cut 0 9600 85.7 100 53 15% 0.1%

Table B-5: Percentage written (write-only opens)

U

61

1.0

0.8

fraction 0.6 ruidUSER

of ruid NET

opens - -ruidSYSTEM
0.4 -- -- no cut

0.2

0.0 ._
1 5 10 50 100 500 1000

percent written
Figure B.9: Percent of file written for write-only opens (cumulative. ruid cut)

1.0

0.8

fraction 0 .6. owner USER

of ownerNET

opens -_-_--_-_- owner-SYSTEM
0.4 no cut -------- - ---

0.2

0.0

1 5 10 50 100 500 1000

percent written
Figure B-10: Percent of file written for write-only opens (cumulative. owner cut)

, ",' " l , " ', ;- " .,, ,'-' ,,'.'...,'.'.'.'.4 -.j

62

1.0

0.8

fraction 0.6 filePERM
of fileLOGofn fileTEMP

* ~~opens ____

0.4 no cut

0.2

,

0.0 *..** " - " "

1 5 10 50 100 500 1000

percent written

Figure B-II: Percent of file written for write-only opens (cumulative, file cut)

1.0

0.8

0.6
fraction . -""

of .

opens 0 .
.... 0...... U + filePERM
........ U+fileLOG

U + fileTEMP

0.2 U

0.0......................................

0.0---- - - - - - - - - - -I 4

1 5 10 50 100 500 1000

percent written

Figure B-12: Percent of file written for write-only opens (cumulative. U cut)

.%- 5, % . .~-.' . A '- ... 5*4 :-~-.* --
.. , .. ,. ." "" " " ' " .'. .. '"-", S", ",, :I*.", .h -,A" . . ' "" ""." ' . "•" ""," " , " . . .-"" "" - " ' ."""' .". " -// , / ' ''

63

* B.5. Percentage Read (Read-Write Opens)

distribution min max mean median std dev (100% >100%

ruidNET 0 2200 69.3 100 104 49% 15%
ruidSYSTEM 0 1900 73.1 100 80 30% 0.2%
ruidUSER 0 65500 114 100 1100 33% 109%

owner _NET 0 2200 66.1 38 110 54% 18%
ownerSYSTEM 0 1900 76.6 100 65 27% 0.2%1
owner_USER 0 65500 145 100 1500 31% 16%o

file_LOG 0 100 60.2 100 49 40% 09%
filePERM 0 1900 62.5 100 66 41% 0.4%
file TEMP 0 65000 138 100 1180 37% 37%

U +file-LOG 0 100 60.2 100 49 40% 00%
U+filePERM 0 100 18 100 3 18% 0%
U+fileTEMP 0 65000 159 100 1670 34% 19%
U 0 I65000 145 100 1500 31% 16%

no cut 0 65000 82.9 100 615 40%1%

Table B-6: Percentage read (read/write opens)

1.0
......... ruidUSER

-. . ..-. ruidN ET

0.8- -- - - ruid SYSTEM
0.8 no cut

4 0.6
fraction

of
opens

0.0 I

1 5 10 50 100 500 1000
percent read

Figure B-13: Percent of file read for read/write opens (cumulative, muid cut)

64

1.0
............ ownerUSER
........ ownerNET -

ownerSYSTEM .
0.8 - no cut

0.6
fraction

of
opens

0.4

... t _..

0.2

0.0 I i

1 5 10 50 100 500 1000
percent read

Figure B-14: Percent of file read for read/write opens (cumulative, owner cut)

1.0
............ filePERM
........ fileLOG

fileTEMP
0.8 no cut

0.6.

fraction
of

opens 0.4

-. .- =- - -_ --.. . . .

0.2

0.0 I I I I

1 5 10 50 100 500 1000
percent read

Figure B-15: Percent of file read for read/write opens (cumulative, file cut)

*...... ... i .

65

1.0 U + file_PERM

........ U + fileLOG

U+fileTEMP
0.8 U

0.6
fraction

of
opens

--

" 0.2•
0 °....

0.0

1 5 10 50 100 500 1000
percent read

Figure B-16: Percent of file read for read/write opens (cumulative, U cut)

B.6. Percentage Written (Read-Write Opens)

distribuuon min max mean median std dev < 100% >100%

ruid_NET 0 20000 43.1 <1 326 70% 2.0%
- ruid_SYSTEM 0 3600 43.9 1.7 159 64% 0.3%

ruidUSER 0 3600 72.8 100 118 44% 5.9%

ownerNET 0 20000 40.5 (1 340 74% 2.2%
ownerSYSTEM 0 3600 46.8 1.7 124 58% 0.2%
ownerUSER 0 3600 95.7 100 147 34% 10%

fileLOG 0 100 43.0 (1 49.5 57% 0%
filePERM 0 20000 36.4 <1 275 70% 0.1%
fileTEMP 0 3600 93.5 100 150 37% 9.8%

U + fileLOG 0 100 43.0 < 1 50 57% 0%
U+filePERM 0 100 17.0 <1 37 83% 1%
U+file_TEMP 0 3600 112 100 156 23% 12%
U 0 3600 95.7 100 147 34% 10.3%

no cut 0 20000 51.8 (1 249 61% 2.7%

* Table B-7: Percentage written (read/write opens)

P

!i '-- t ."''' '- "i., ' '"'i' ''.;: 4 ' '"'- i"_'' -,''"'' - . ' ''" :v,'.:' i_:;K,',.'',''' -"'

66

1.0. ruidU SER

....... ruidNET

0.8- ---- ruidSYSTEM
* 0.8no cut

of
opens 0.4

0.2

0.0 I

1 5 10 50 100 500 1000
percent written

Figure B-17: Percent of file written for read/write opens (cumulative, ruid cut)

1.0
......... ownerUSER

-........ ownerNET

0.8 - ____ - onrSSE

0.6
fraction-

of

0.4

0.2

0.0
1 5 10 50 100 500 1000

percent written

Figure B-18: Percent of file written for read/write opens (cumulative, owner cut)

67

1.0 filePERM " -

........ file-LOG
file TEMP

0.8 no cut

o...~ , .. ° ,..

0.6 - =' Z.. . .. '
fraction 0... - - - - - - - -...... .---

of
opens

0.4

0.0

1 5 10 50 100 500 100
percent written

Figure B-19: Percent of file written for read/write opens (cumulative, file cut)

1.0

D0 90.8 '..... °°°°°°°°°°'°°°°°°°.... °'...................

0.6
fraction
of............ U + filePERM

opens U + file LOG0.4
0.4U + file_TEMP

U

0.2

*/

0.0 I

5 10 50 -AO 500 1000
percent written

Figure B-20: Percent of file written for read/write opens (cumulative, U cut)

68

B.7. Number of Opens per File

opened opened opened more
distribution mean median maxonce twice than twice

ruidNET 4.8 1 56% 24% 20% 6140
ruidSYSTEM 19.2 1 64% 22% 14% 20200
ruidUSER 4.5 2 39% 42% 19% 5390

ownerNET 5.4 1 51% 26% 23% 3990
ownerSYSTEM 15.7 1 67% 20% 10% 26800
ownerUSER 3.6 2 32% 48% 20% 760

fileLOG 70.5 3 5% 36% 59% 5330
filePERM 30.5 4 16% 16% 68% 26800
fileTEMP 2.6 1 55% 36% 9% 1920

U + fileLOG 8 3 5 13% 18% 69% 79
U+filePERM i .5 3 23% 21% 56% 562
U+file_TEMP 1.8 2 35% 61% 3.9% 198
U 3.5 2 1 c 50% 19% 562

Fnocut 7.5 2 J 48% 33% 19% 26800

Table B-8: Number of opens/file

1.0
- ...L~ --..................................... .

0.8

0.6
fraction

of
files

0.4

................... uidUSER
0.2 ri_~............. ruidNET

---------. ruidSYSTEM
no cut

0.0 d _ %
5 10 50 100

number of opens to file

Figure B-21: Number of opens per active file (cumulative. ruid cut)

.....................

69

1.0

0.8 -.-.

fraction 0.6

of

files
0.4

,,...... °..............

................... ownerUSER
........... ownerNET
---------- ownerSYSTEM

no cut
0.0

1 5 10 50 100

number of opens to file

Figure B-22: Number of opens per active file (cumulative. owner cut)

1.0

I-- - - -- - - - --------- -- - -

0.8

0.6
fraction "......

of-.

files
0.4

............
"

0.6.........file PERM
0.2 flO

.fr.a.ction.... e-....

files ,....fileTEMP

0.0 L-no cut

4 0.0

*1 5 10 50 100

number of opens to file

Figure B-23: Number of opens per active file (cumulative, file cut)
.-v ..-~t::4%,e-t. tf%°... ,- v'- .- %.

70

1.0

0.8.

0.82

0.6
fraction

of
files....... . ..

0.4

............ U+filePERM
0.2

.......... U +fileLOG
..............! -------- U+fileTEM P

U
0.0

1 5 10 50 100
number of opens to file

Figure B-24: Number of opens per active file (cumulaive. Ui cut)

* B.8. Time from Fie Open to Close

distribution min] max mean median std deviation

*ruidNET 0 1.2e4 6.9 0.14 86
ruidSYSTEM 0 8.6e4 3.1 0.02 390

*ruid-USER 0 7.6e4 30.4 0.35 520

ownerNETl 0 1.3e4 9.6 0.1415
owner _SYSTEM 0 8.6e4 6.1 0.05 402
owner _USER 0 4.8e4 37.1 0.35 568

*fileLOG 0 8.6e4 33.4 0.08 1140

*filePERM 0 7.6e4 6.5 0.08 251
fileTEMP 0 4.8e4 20.5 0.22 335
U +file-LOG 0 5.9e3 14.5 0.29 226
U +file-PERM 0 4.8e4 15.8 0.32 438
U +fileTEMP 0 4.8e4 79.9 0.60 781
U 0 4.8e4 39.4 0.35 588

no cut 0 8.6e4 11.8 0.1 369

Table B-9: Open time (seconds)

71

1.0

0.8

0.6
fraction

* of
opens

0.4

0.2 ruidUSER
-. ruidNET

- -- -- - ruidSYSTEM
no cut

0.0
0.01 0.1 1 10 100

length of time file open (seconds)

Figure B-25: Times from file open to close (cumulative, ruid cut)

1.0

0.8

0.6
* fraction

of

......... ownerUSER
0.2.......-. ownerN ET

....-- ownerSYSTEM
no cut

0.0
0.01 0.1 1 10 t00

length of time file open (seconds)

Figure B-26: Times from file open to close (cumulative, owner cut)

72

1.0

4 ~0.8 .

0.6 -

fraction ..--

opens 0.

0.2 filePERM

0.2- -....... . fileLOG
- -- -- - fileTEMP

no cut

0.0
0.01 0.1 1 10 100

length of time file open (seconds)

Figure B-27: Times from file open to close (cumulative, file cut)

1.0

0.8

0.6
fraction

of
opens 0.

0.2 filePERM
0.2 -. U +file-LOG

- -- --- U + fi leTEMP
4 U

0.01 0.1 1 10 100
length of time file open (seconds)

Figure B-28: Times from file open to close (cumulative. U cut)

Se 73

j B.9. File Interopen Intervals

distribution min max mean median std deviation

ruid-NET 0 4.0e5 13640 13 2.9e4
ruidSYSTEM 0 3.9e5 2816 60 1.1e4
ruidUSER 0 5.4e5 11520 105 3.5e4

owner _NET 0 4.Oe5 13890 25 2.8e4
*owner _SYSTEM 0 5.3e5 1740 60 9.103

ownerUSER 0 5.4e5 17600 200 3.6e4

fileLOG 0 5.4e5 965 15 9.8e3
file_PERM 0 5.4e5 8215 60 2.4e4
fileTEMP 0 4.2e5 6655 3.6 1.8e4

U + file-LOG 0.02 5.4e5 31100 3100 5.7e5
U U+file-PERM 0 5.4e5 21400 450 4.1e4
U U+fileTEMP 0.01 4.2e5 1390 0.38 1.2e0

*U 0 5.4e5 16900 120 3.7c4

no cut 0 5.4e5 75260 2.2e4

Table B-10: File interopen intervals (seconds)

1.0
......... midUSER-------

-....... ruidNET

- -- - midSYSTEM
0.8 no cut

0.6
fraction

of
intervals0.

0.4

.........
0.0

0.01 0.1 1 10 100 1000 10000 100000
time since last open (seconds)

Figure B-29: File interopen intervals (cumulative, ruid cut)

74

1.0 owner-USER --

........ ownerNET
----- ownerSYSTEM

0.8 no cut

0.6 -"'"

fraction 0.- .-

of"
intervals

0.4- - ,-

0.2

0.0 I

0.01 0.1 1 10 100 1000 10000 100000
time since last open (seconds)

Figure B-30: File interopen intervals (cumulative. owner cut)

1.0
.......... filePERM

........ fileLOG
fileTEMP

0.8 no cut

0.6
fraction
of

intervals 0
0.4 - -

0.2,..,

.. OR

0.0 -

0.01 0.1 1 10 100 1000 10000 100000

time since last open (seconds)

Figure B-31: File interopen intervals (cumulative, file cut)
.,'

-. |

75

1.0UfleP M

..... U U+fileLOG
----- U +fileTEMP -

0.8U-

0.6
fraction

of
intervals-

0.4

0.2. .-

0.0 .. n 1 1"

0.01 0.1 1 10 100 1000 10000 100000
time since last open (seconds)

Figure B-32: File interopen intervals (cumulative. U cut)

B.10. File Lifetimes

1.0 ruidUSER
....... ruidNET
- -- -- - ruidSYSTEM

0.8 no cut

0.6
* fraction

o f
-' files

A 0.4

0.2--

0.0
0.01 0.1 1 10 100 1000 10000 100000

file lifetime (seconds)

Figure B-33: File lifetimes (cumulative, files living beyond log period binned at right, ruid cut)

76

1.0
......... ownerUSER

. ownerNET

0. --- owner_-SYSTEM -

0.6
fraction

of
files

0.4

0.2

0.0
0.01 0.1 1 10 100 1000 10000 100000

file lifetime (seconds)

Figure B-34: File lifetimes (cumulative, files living beyond log period binned at right, owner cut)

1.0
....... filePERM

........ fileLOG

0.8 - --- - fileTEMP
0.8 no cut

0.6 -

* fraction
of

files 0.

0.2

..........

..

0.01 0.1 1 10 100 1000 10000 100000
file lifetime (seconds)

Figure B-35: File lifetimes (cumulative, files living beyond log period binned at right, file cut)

77

1.0 U+filePERM---------------

0. --- U + fileTEMP

0.4

0.6

fractionme(scods

B1File VrinLieie

10

0.2 - o u

.

0.06...

filracetme(scods

vers ileVrsonLftie

1.0

veso fraction 0.6conds)

Fiur B-7versionsme cmltie eson iigbeodlgpeidbneda ih. dct

78

6 1.0
......... ownerUSER----------------------

........ ownerNET

0.8- -- - - ownerSYSTEM

0.8 no cut

fraction 0.

of
versions

0.4

0.0

0.01 0.1 1 10 100 1000 10000 100000
version lifetime (seconds)

* Figure B-38: Version lifetimes (cumulative, versions living beyond log period binned at right, owner cut)

1.0
.......... filePERM

-. fileLOG

0.8 - --- - fileTEMP
0.8 no cut

0.6
fraction

of
versions 0.47

0.2

0.0 -.-.-.-.-

0.01 0.1 1 10 100 1000 10000 100000

version lifetime (seconds)

Figure B-39: Version lifetimes (cumulative. versions living beyond log period binned at right, file cut)

79

1.0 U+file_PERM
........ U + fileLOG-"
----- U+file TEMP

0.8 -U

0.6,"

fraction 0.6
of

versions 0 ."

0.2 ,,

0.0. - --- -

0.01 0.1 1 10 100 1000 10000 100000
version lifetime (seconds)

Figure B-40: Version lifetimes (cumulative, versions living beyond log period binned at right. U~ cut)

9.n .,

S .

4.° o

o °°4.° °

.~-:~:'~~z l~J~*w7~w -~-~-- ~.- -.--3;w .. ~. -~ ~.. 4.-

.4
'.4

.4

I
.4

.4

'4.

44

.4

'4

d

V

S...

