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For many years, land development in the coastal

regions of the Gulf of Mexico and the eastern seaboard has

continued unabated. As coastal populations increase, it

is becoming more and more difficult to evacuate people

from hurricane-threatened areas and to secure industrial

plants. Greater accuracy is required in predicting

hurricane landfall in order to insure timely evacuation.

A significant result of this research is the

classification of past storms by time series stationarity

category which relates to direction of movement. Also, a

psi-weight representation of the forecast is used to

develop a bivariate Normal confidence ellipse for the

* threshold autoregressive model.
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It is shown that the landfall of North Atlantic

hurricanes and tropical storms can be accurately predicted

by modeling the storm track as a bivariate (latitude and

longitude) fifth-order autoregressive process. A thres-

hold approach is used to allow model parameters to change

as the storm moves to a new region of the ocean. For test

cases, operational average 72 hour prediction error is at

least three standard deviations below the average error of

the official forecasts issued by the National Hurricane

Center.
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CHAPTER I

INTRODUCTION

"On Saturday, September 8, 1900 a major hurricane

struck Galveston, Texas, resulting in the death of

approximately 6000 persons" (Carter, 1983). Despite the

fact that mariner warnings had been posted the day before,

the residents of Galveston were not prepared for the

hurricane.

Since that time, land development in the coastal

regions of the Gulf of Mexico has continued unabated.

Today the population of the Houston-Galveston metropolitan

area is over two million people and property is worth

billions of dollars. As coastal populations increase, it

is becoming more and more difficult to evacuate people

from hurricane-threatened areas. A recent study indicates

that it would take 26 hours to evacuate Galveston Island

and that the evacuation order must come 36 to 38 hours

before anticipated hurricane landfall (Carter, 1983).

When hurricane Alicia came ashore at Galveston on

August 17-18, 1983, the city was better prepared. Many

people had evacuated, yet Alicia still killed 17 people

• . .- , .
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and injured 3000 (Barron and Allred, 1983). The

evacuation order for hurricane Alicia came at 10:00 AM on

August 17, approximately 14 hours before landfall. As the

storm passed, inland freeways were still choked with cars.

It was amazing that the loss of life was not greater.

Hurricane scientists are well aware of the

evacuation problem and of the need for more accurate

landfall prediction. A recent newspaper article stated,

"With such enormous growth in the coastal lands, and no

real improvement in hurricane forecasting, scientists have

concluded they can no longer predict the landfall of the

big storms in time to guarantee that everyone can get out

alive" (Calonius, 1983).

Another problem that should be addressed here is

the cost of securing a threatened area. Neumann (1975)

estimates 1975 protection cost at 25 million dollars for a

typical 300 mile stretch of Gulf of Mexico coastline. He

states that every 10 nautical mile increase in forecast

error increases the cost by 5 million dollars, and every

10 nautical mile decrease reduces cost by 2.75 million (

dollars per storm. Costs have i creased since then. At an

annual inflation rate of 8 percent, the corresponding

total cost would now be 54 million dolldrs.

The crux of the problem rests with the inadequacy

of present forecasting procedures. Currently the National

i~
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Hurricane Center (NHC) needs approximately 2 hours and 45

minutes to develop a 72 hour forecast. The major reason

for this seemingly lengthy lead time is that the NHC

computer is not colocated with the forecasters. The

average NHC 72 hour forecast error is 435 nautical miles

(Carter, 1983). This large error sometimes results in an

inability of the population at large to "suspend

disbelief" with regard to that forecast. Thus, city

managers are left with difficult assessments. Should they

order a costly evacuation based on the forecast, or should

they wait and hope the storm misses their city?

Through the use of past hurricane tracks, Dr.

William G. Lesso has developed a Markov model that runs in

five seconds on a microcomputer but is usually less

accurate then the NHC official forecasts (Freeze, 1983).

Further refinement of his initial research has lead to a

time series model that runs in less than ten seconds on a

microcomputer and has an average 72 hour forecast error of

312 nautical miles.

The time series model is developed in this study.

The computer models currently used to forecast hurricanes

are discussed in Chapter 2. Recent developments in

nonlinear time series modeling are outlined in Chapter 3.

Chapter 4 includes a discussion of, stationarity as it

relates to hurricane tracking, formulation of the time

1
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series model, and estimation of the parameters. The

chapter also contains several sections on bivariate

estimation and the development of a forecast confidence

interval that can be applied to the threshold model.

Finally, the accuracy of the model is assessed by applying

it to historical hurricane tracks from 1945 through 1985.



CHAPTER 2

PREDICTION OF TROPICAL CYCLONE MOTION

The major United States agency involved in

hurricane movement forecasting today is the National

Hurricane Center (NHC) in Coral Gables, Florida. The NHC

is definitely the world leader in hurricane forecasting,

and the state-of-the-art is represented by the seven

models that the NHC uses to analyze storm movement. In

this chapter the forecast methodologies used by the NHC,

adaptations of NHC models used by other agencies world-

wide, and one of the models developed at The University of

Texas at Austin by Lesso and Freeze are discussed.

When an active hurricane is being tracked, the NHC

issues forecasts at least every 6 hours and predicts storm

movement for lead times up to 72 hours. These forecasts

are based partially on seven computer models: NHC-67,

SANBAR, HURRAN, CLIPER, NHC-72, NHC-73, and MFM. The

official forecast is made by a highly skilled and

experienced hurricane forecaster. The forecaster combines

the output of the seven models with data from prognostic

charts of hemispheric circulation, examines the influence

of these large scale features on the motion of the storm,

S5 "
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and using his best judgement issues a forecast (Carter,

1983; Freeze, 1983). The seven models are discussed in

the following paragraphs.

NHC-67 (Miller et al., 1968) is classified as a

statistical-synoptic model. The term synoptic refers to

the use of weather data covering a large area at a

particular time. NHC-67 is based on the steering

principle that a tropical cyclone moves in proportion to

the vertically integrated flow around the vortex.

Specifically, the smoothed 500, 700, and 1000 millibar

(mb) height fields are used in conjunction with the

thickness of the 500-700 millibar (mb) and 700-1000 mb

pressure bands. The measurements are used to grid the

pressure differences across the cyclone. The readings are

then combined with previous 1000 mb, 700 mb, and 500 mb

readings and used to modify an initial forecast based on

climatology and persistence (the degree of steadiness of

movement). A stepwise regression is performed to select

pressure levels that are significantly correlated with

future zonal (east/west) and meridonal (north/south)

components of motion (Neumann and Pelissier, 1981). The

result is a steering vector that predicts storm movement

and velocity. The aforementioned pressure levels are

chosen because the air flows into the storm at the 1000 mb

(surface) level, the pressure gradient is approximately

h%
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balanced at the 500 mb level, and the air flows out of the

top of the system at about the 200 mb level. (This

inverted "bathtub vortex" then spins counterclockwise due

to the Coriolis effect.) Thus, NHC-67 uses time dependent

pressure gradients that reflect the speed of development

and strength of the storm. This model is comparatively

accurate for forecast times of 24 hours or less.

The SANBAR model (Sanders and Burpee, 1968), has

been in use at NHC since 1970. It is a barotropic model

that predicts storm tracks by following minimum stream

function and maximum vorticity centers in the belief that

conservation of momentum is the primary physical mechanism

that determines the motion of the storm (Neumann and

Pelissier, 1981). The general assertion is that the storm

is steered by the large scale current in which it is

embedded. The method uses winds averaged with respect to

mass from the surface to the 100 mb level (approximately

55,000 feet), analyzes the wind circulation in terms of

stream functions, and predicts displacement of the

vorticity maximum value (the eye). It provides good

results for prediction periods longer than 36 hours and

works best in the tropics (Barney, 1983). SANBAR requires

computer facilities which can rapidly process large

amounts of data.
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HURRAN (HURRicane ANalog) is an analog model based

on the historical observation that hurricane tracks tend

to be repetitive (Hope and Neumann, 1970). Families of

storms are identified by location, motion, and time of

year. Selected tracks are moved to a common origin (the

current position of the existing storm) and combined with

persistence to produce a forecast with assumed bivariate

normal error. The centers of the confidence ellipses are

used to identify the most likely track. HURRAN is a good

predictor of westward movement, but fails accurately to

model recurvature (the usual northward turn a hurricane

makes when exiting the middle latitudes) (Freeze, 1983).

The Navy has adapted the analog techniques of HURRAN to

other tropical cyclone basins by using a weighting scheme

that gives the most weight to the most similiar storms.

Adaptations of HURRAN are also used by India, Australia,

Nationalist China, and the Peoples' Republic of China

(Hope and Neumann, 1977).

CLIPER (CLImatology and PERsistence) is a regres-

sion model that was developed to overcome the problems

encountered by HURRAN when no similar storm tracks exist

(Neumann, 1968). Based on location, motion, and forecast

period, CLIPER mathematically recreates past storm tracks,

and applies the same predictor equations to the current

storm. Thus it has the advantage of always being able to

JI



9

provide a forecast, even under unusual weather conditions,

but it is not reliable in predicting northward movement.

Interestingly, it consistently outperforms HURRAN.

Consequently, CLIPER is frequently used as a benchmark for

comparing the accuracy of more sophisticated models

(Neumann and Pelissier, 1981). The term "CLIPER-class

model" is now used to refer to a wide range of models that

employ climatology and persistence, such as the model

developed in this study.

NHC-72 (Neumann et al., 1972) generates two

independent sets of forecasts. One forecast uses the

1000, 700, and 500 mb pressure data, without persistence,

and the other uses the CLIPER equations. The final

equations are developed through regression techniques used

to combine the two forecasts. In general the model is a

combination of the NHC-67 and CLIPER methodologies. NHC-

72 provides a better model of northward movement, but is

dweak at low latitudes and in the westernmost parts of the

Caribbean and is not reliable after recurvature (Neumann

and Pelissier, 1981).

NHC-73 (Neumann and Lawrence, 1975) is a

combination of the NHC-72 and CLIPER systems. It is

similar to NHC-72 in that it combines regression equations

based on synoptic data with those of the CLIPER model.

However, it also selects predictors from the U. S.

''" '4 "'' ' ' ' '-'"""-"...................................................... "%"-''"-" ''-" "-'-" - -" .".,....*-'. -"-' "-..-....
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National Meteorological Center's 500 mb Primitive Equation

Model geopotential height prognosis. NHC-73 is one of the

most accurate models at the NHC, especially for long

period forecasts.

The Moveable Fine Mesh (MFM) grid model is

considered to be one of the most sophisticated and complex

dynamic models in use at NHC (Hope and Neumann, 1977).

The grid follows the hurricanes as they move. It is

generally the same as other primitive equation models, but

has finer resolution and covers less area. It is a ten

layer model with a horizontal grid mesh length of 60

kilometers and covers an area of 9 million square

kilometers (Neumann and Pelissier, 1981). This model is

also used for precipitation prediction. Its results

compare favorably with the other models.

The National Hurricane Center is definitely the

world leader in prediction models. Hope states that the

analog, regression, and synoptic models developed by other

meteorological centers are generally adaptations of the

NHC models (Hope and Neumann, 1977). There are two

exceptions: (1) the Indian Meteorological Service has

developed its own models using analog techniques; and (2)

the Royal Observatory in Hong Kong has developed an

empirical model that combines climatology and persistence

with equal weighting. The latter model combines the last

*, *, ' ;./ J'- , '.., i' .". V , '.%, '- -.. .....". .'...." ..'-'.'.".'-~.'.''-i'--.ft- . .'.**i~-. v." ' '



twelve hours of movement with historical directions and

speeds computed for each 2.5 degree latitude- longitude

square. It is quite accurate where there is a high

frequency of occurrence, but less reliable above 25

degrees north latitude due to recurvature. The techniques

used to develop this model are similar those which were

employed in this study.

Another approach has been pursued in one of%

several hurricane movement models developed by Lesso and

Freeze. The model (Model A) is based on a Markov process

that uses historical hurricane tracks to predict future

tracks (Freeze, 1983). In its simplest form a Markov

process represents the probabilities of movement along a

line. At each discrete time increment there is a

probability P of an object moving in one direction and

probability 1-P of moving in the opposite direction. At

each future time increment the expected position of the

object can be calculated. The analogy extends to two,

three, or more dimensions. The distinguishing feature of

the process is one of being in a discernable state which

can easily be represented by the state variables.

Movement to the future state depends only on the current

state. With respect to hurricanes, the state is theOl

position of the storm at a particular six hour position

report. Future movement is hypothesized to depend only on

J, 0°*
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current position and not on the path the hurricane took to
get to that position.

In developing their model, Lesso and Freeze

analyzed hurricanes that occurred in the Gulf of Mexico

and the north Atlantic Ocean. In Model A they divided the

region into latitude bands five degrees in width. Based

on the most frequent past movements in each band they

discovered, via least squares regression, that the next

change in longitude and latitude was described by the

following equations:

DX = -1.24969 + .001499 (PO(IP,I)) 2

DY = -. 045835 + .022926 (PO(IP,1))

PO(IP,I) was the current latitude of the storm. DX was

the forecast change in longitude, and DY was the forecast

change in latitude. These quantities and the cumulative

forecast error were added to the last position to obtain

the forecast position. Standard errors of the coeffi-

cients and the forecasts were not discussed. Freeze

(1983) considered only the average forecast error.

In order to improve the forecasts, Lesso and Freeze

regressed the mean error for each forecast (6 hr., 12 hr.,

72 hr.) against the forecast period and discovered

they were linearly related. Standard deviations of the

estimates were not discussed. Specifically the correction
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for latitude is given by

Y = -.35 + .29X

and for longitude

Y = -. 32 + .36X

where X represents the forecast period (X=1 is the 6 hr.

forecast, X=2 is the 12 hr. forecast, etc.) and Y is the

correction. Seeking an even better correction scheme they

found, by trial and error, that the latitude correction

should be multiplied by a factor of three.

Error analysis of five historical hurricane tracks

shows that Model A is slightly less accurate than the

offical forecasts issued by the National Hurricane Center.

The comparative data for hurricanes Frederic (August,

1979), Dennis (August, 1981), Allen (July, 1980), Floyd

(September, 1981) and Gert (September, 1981) are presented

in Table 2.1 on the following page.

I ... . -. -/ . -. .. . -. , .. , ..o . . -
.
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TABLE 2.1

FORECAST MEAN ERROR DISTANCE

Hurricane Forecast Error (Nautical Miles) Forecast
Name 24 HR 48 HR 72 HR Source

Frederic 91 188 286 Model A
69 143 218 NHC

Dennis 99 261 406 Model A
92 207 364 NHC

Allen 100 213 325 Model A
173 353 589 NHC

Floyd 115 272 558 Model A
93 234 408 NHC

Gert 133 372 859 Model A
136 236 455 NHC

Average 108 261 487 Model A
113 235 407 NHC

Sources: Freeze (1983), Hebert et al.,(1980),
Staff, NHC (1982), Taylor et al., (1981)

e-



CHAPTER 3

NONLINEAR TIME SERIES

Many processes occurring in nature, and in a vari-

ety of engineering fields, exhibit behavior that can not

be adequately represented by a linear time series. This

has resulted in significant interest in developing non-

linear time series models (Haggan et al., 1984). Priestly

(1980) discusses a general class of nonlinear time series

models called "state dependent models" (SDM). In the SDM

approach, current values of the coefficients depend on

previous values of the time series. When considering the

location prediction of a moving target one would like the

flexibility of allowing the model parameters to vary over

location. Thus, it would be desirable to utilize a model

which exhibits properties of the SDM models.

In this chapter univariate and bivariate cases of

the state dependent model are considered. The univariate

Box-Jenkins Autoregressive Moving Average (ARMA) model

is given as a basis for comparison. Then the general SDM

approach, the bilinear model, the exponential autorpgres-

sive model, and the threshold autoreqrf-, ;iw( (AR) model

for both the linear and nonlinear cau, aro pre.-ented.

15
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Estimation of SDM parameters is also discussed. In the

4bivariate section the "open-loop threshold autoregressive

system," which is very similar to the approach used in this

research, is discussed (Tong and Lim, 1980).

The Linear ARMA Model

The linear ARMA (k,Z) model is given by

+ + 4- =1 + +0 **
t  1 1 t_1 +-.-+ t k  = + 't  + '1't-1 +"-+ t_

where Et is a sequence of zero-mean random error terms and

e1, .. ,8£,01, .. ,Ok are constants. The objective is

to predict Xt based on previous observations and random

inputs.

The General SDM

The SDM is an extension of a linear ARMA time

series model to the case where a process (Xt] can be

represented by a nonlinear model whose behavior may be

approximated locally by a linear ARMA time series model

(Haggan et al., 1984). (The term "locally" implies small

departures of the model from its current state.) This

leads to the general model

X t + O1 (xt-1 )Xt_ 1 + 02 (xtl)Xt_2 + .. + Ok(xtl)Xtk

= 1(Xt-l) + ct + el(xt-l)Etl + + Z(xtt-l) t-, . (3.1)

That is, the coefficients depend on the state vector xt of

the process in the previous time period.
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There are benefits and disadvantages to using

nonlinear SDM models to describe hurricane movement. The

advantage is that parameter values can change as the storm

moves. This should result in forecasts with less error

than forecasts produced by linear models. Unfortunately,

the increased accuracy comes at a price. Identification

procedures for SDM models are not well established. To

circumvent this problem, researchers typically fit "all

orders" of a particular model and choose the model that

fits the "best" according to some predetermined measure.

Tong and Lim (1980) propose a procedure that is outlined

later in the chapter. In addition, computation times are

sometimes large, and there can be convergence problems

when estimating the parameter values.

The hurricane model used in this research is a

piecewise linearization of the hurricane movement process.

Parameter values are allowed to change only when the storm

crosses a "threshold" and enters a new region of the North

Atlantic. Thus, most of the usual time series identifica-

tion, estimation, and forecasting procedures still apply

within each region. The segmenting of the North Atlantic

ocean into several regions increases the computation time

and requires the availability of large numbers of

hurricane position reports.
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The Bilinear Model

In the linear model, p ,[u], and Ceu) are fixed.

In the bilinear model only ii and are fixed and
P

p
0u (XtI) bu + Z duXt-j

j=l

where bu and [duj) are scalars. Then (3.1) becomes

p r
Xt + j a jXt.j E cjet-j

j=0

m n
+ E z bkiXt k~t i

k=l i=1

which Rao (1981) denotes as BL(p,r,m,n).

Bilinear models arise naturally irk economic theory

where model components are the products of variables. For

example, cost is the product of quantity and price, and

return from an investment is the amount invested

multiplied by the interest rate. Use of the bilinear

model for forecasting can result in complicated expres-

sions due to the dependency structure of the term

containing the product (Granger and Anderson, 1978).

Rao (1981) discusses the identification and

estimation of parameter values for the bilinear model.

Identification is performed by fitting all lags up to an

arbitrary upper limit, and then selecting the lag combina-

tions (for X and c) that minimize the Akaike Information
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Criteria (AIC) (Akaike, 2973). AIC is defined as

AIC = N ln(RSS/N) + 2k

where RSS is the residual sum of squares, N is the

number of observations and k is the number of independent

parameters. Parameter values are then computed using a

nonlinear optimization procedure, such as Newton-Raphson,

to minimize the RSS. Starting values for the AR portion

of the model are obtained by fitting an AR(p) model. The

remaining coefficients are initiated at zero. An alterna-

tive starting procedure is to take initial estimates from

the model of order BL(p,0,p,q-1) or BL(p-1,0,p-l,q) which-

ever has the smallest RSS.

Lee (1985) used a biliner model to predict sea

state processes. He tentatively identified the order of

the autoregressive and moving average components by using

the usual identification procedures for linear models.

The order of the cross product term was identified by

selecting the model that minimized the AIC statistic.

The bilinear model was considered for use in

modeling hurricane tracks. However, it was discarded

when a comparatively simple additive autoregressive

threshold model was found to accurately describe storm

movement.

A
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Exponential Autoregressive Model

This class of models is formed by assuming p=O,

eu=O, for all u and

4u(xtI) = *U + fu exp(-yX
2ti ]

(Haggan et al., 1984). Then (3.1) yields

Xt2+(l+ 1 exp(-X2t-l)Xt-l+'+( k+ k exp(-X2t-l])Xt-k = E t

Ozaki (1980) has used this model to analyze self-sustained

oscillations of springs and nonlinear oscillations in

electric circuits. Model identification was not discussed.

Haggan and Ozaki (1981) describe a procedure for

estimating the order k, and the coefficients

' i' i=1,...,k). First y is fixed at particular

grid values and Xt is regressed against exp[ -X 2 tIJXs

(s < t) and against previous Xt values, from order k=1 up

through arbitrary order m. Then the model that minimizes

the AIC for that y is selected. The AIC statistic can

also be compared across y values to select the "best"

model overall.

This model was not used in this research because

the small size of the segmented hurricane tracks made it

desirable to limit the number of model parameters. The

bivariate threshold autoregressive model that was finally

developed had one-half the number of parameters as

compared to the exponential autoregressive model.

c. . . . . . . .-. + - . +. -.- -. . . + -. + . . . . . . . -- p. -.- -
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Threshold AR Model

The idea underlying the threshold AR model is the

piecewise linearization of a nonlinear model of the state

space by introduction of "thresholds." The models are

then locally linear (Tong and Lim, 1980). For this model

it is assumed that Ou=0 for all u and

rI if Xt-d 5 c

(t- 1 ) =

P2 if Xt.d > c

()if Xt d > c%u (xt-i

The resulting model is

xt + l(1)Xt-i +"'+ k (lxt-k P 1 + c t if Xt.d < c

Xt + 0 * Ok 2 Xt-k = 2 + ' t if Xt-d > c

(Haggan et al., 1984).

Tong and Lim (1980) used this model to study the

nonlinear aspects of "jump resonance" and "amplitude-

frequency dependency." Jump resonance is the sudden

change in output amplitude that occurs at different input

frequencies depending on whether the input frequency is

increasing or decreasing. Amplitude-frequency dependency
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is present when an output signal has different frequencies

of oscillation for different amplitudes. The estimation

procedure used by Tong and Lim is described later in the

chapter.

The threshold AR model is nearly the model used

in this research. The differences are that the hurricane

model is bivariate, and the parameter values depend upon

the region in which the storm is located rather than

depending on the value of the last observation Xt-1.

Nonlinear Threshold AR Model

This model is a modified form of the threshold AR

model (Haggan et al., 1984). Letp 0, eu = 0 for all u

and define

uu+ ru Ixt-1j if IXt-l1 -S c

u + u c if IXt-ll > c

where c is some constant. Then

Xt+(l+llxt l)xtl+***+(Ok+7kiXtll)Xt-k=ct if IXt-lk-c

Xt+(41+1 c)Xt-i +'"*+(Ok+ k c)Xt-k =et if I Xt.lI>c

This model has the flexibility to change parameters from

period to period, based on a state of the previous period.

This type of model provides the framework for the

, , ,,, ,, ,;, ;, , ~.......... . .: .. I............. .. , ....-. .... . .... *.. . -, ....... ".
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model used in this research. However, parameter values

depend on the previous observation Xt_ 1 which is not I

desirable. For the hurricane process it is belived that

the climatology of the storms changes slowly. Piecewise

linearization enforces this assumption by allowing the

forecast parameters to remain constant until the next

threshold is crossed.

Estimation of SDM Parameters

Priestly (1980) showed the estimation procedure

for the parameters of the SDM model could be based on the

extended Kalman filter. Parameters are assumed to be lin-

ear functions of the state vector X so that for each u,

P(Xt) = Po + Xaciu t

au(Xt) = 0u + X 8u

and

Ou(Xt) 00 + X

where u 'u ', are constants and a, 8 , u are gradient

vectors. Updating equations for the parameters are given

by

p(Xt+ I )  = V(Xt) + AX't+lat+l

ou(Xt+i) = Ou(Xt) + AXIt+ I ut+l

ou(Xt+l) = Ou(Xt) + AX't+lyu t+l

--, - - _ -... . -, .. - ....- ". --,-< .- -< , . .. ....-. ,', v "- , '.- .". .--,. .¢-. .- -. .-. .,.-.-.. ."-.-.- -. "-.."-. .-.
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for all u, where X't+ 1 = Xt+l-X t .

The gradients are unknowns that must be estimated.

The basic strategy is to allow the gradients to follow a

random walk which can be represented in matrix

form by

Bt+ 1 = Bt + V

where Bt = ((t), (t), , t) (t)=1 "'" Y1 ' ' ' Y

and Vt is a sequence of independent matrix-valued random

variables distributed as multivariate Normal with zero

means. For each t, the procedure determines tIose values

of Bt which minimize the discrepancy between the observed

value of X and its predicted value from the model. This

sequential algorithm resembles the procedure used in the

Kalman filter algorithm (Haggan et al., 1984).

Open Loop Threshold Autoregressive System

Tong and Lim (1980) developed a more general

representation of the threshold autoregressive (TAR)

model. One of their models, the open loop threshold

autoregressive system (TARSO), is nearly identical to the

hurricane forecasting model. There are two major

differences between the TARSO model and the model used in

this study. First, Tong and Lim require pairwise indepen-

dence between all white noise sequences. The white noise
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sequences in the hurricane model are allowed to have a

contemporaneous covariance structure. Second, the TARSO

model requires some past observation to be in a particular

region before switching parameters. In the hurricane

model, the parameters change when the forecast crosses

into a new region.

Tong and Lim (1980) represent the TARSO model as

m m '

Xn = ai + Z aiJXni + E biJYni + En j
n 0 i=l - i=0 -

where (Xt3 is the output series, (It) is the input series,

and the coefficients ao , ai and bi are dependent on the

value of Yn-d (some previous input). cn is a white noise

sequence with zero mean and finite variance and is

independent of Yn" The values of the nonlinear series are

assigned to j nonoverlapping intervals by percentiles of Y

(taken on the observed range). When Yn-d crosses a per-

centile boundary, the coefficients are allowed to change.

Tong and Lim (1980) use an estimation procedure

in which the data are divided into two regions, those

values falling above a percentile breakpoint tq, and those

falling below. In each region, AR models are fit up to a

maximum (arbitrary) order. The models that minimize the

AIC in each region are selected. Let the order of the
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models be k1 and k2. Then one can write

AIC(tq) = AIC(kl) + AIC(k 2 )

Next, tq is allowed to vary over a preselected set of

t q's. The value of tq that minimizes the AIC for the

applicable k1 and k2 order models is selected as the

threshold value. Then d (for Yn-d above) is varied over a

preselected set of integers. The d that minimizes the AIC

for the values of tq, kl, and kis selected as the appro-

priate lag.

Tong and Lim also develop the ev-ntual forecast

function. Their forecasts take the form of an oscillatory

series of constant period. This is due to the fact that,

unlike a linear Box-Jenkins model, a stable nonlinear

system will continue to oscillate (converge to a limit

cycle, which may degenerate to a constant) after termina-

tion of input (Tong and Lim, 1980). To analyze forecast

error, Tong and Lim delete the last 10 percent of the

observations, and then fit a new model. If the fitted

model using the complete data set does not differ

significantly from the new model, then the original model

is adopted as the final model. Confidence intervals of

the forecast were not discussed.



CHAPTER 4

MODEL IDENTIFICATION ESTIMATION AND FORECASTING

The procedure used to model the hurricane tracks

is outlined in this chapter. Stationarity and the

resulting identification of the appropriate autoregressive

model are discussed. Univariate and bivariate models are

estimated, and models are checked for adequacy and then

used to forecast the longitude and latitude series of

actual hurricane tracks.

Stationarity

A stochastic process is strictly stationary if its

properties are unaffected by a change in origin; that is,

if the joint probability distribution of ni observations

Z1 , Z 2 , , Zm, made at any set of times t1 , t 2 , ...

t m is the same as that of a different set of observations

Zl+k, Z2+k, ... I Zm+k, made at times tl+k, t2+k , ... ,

tm+k, for any integer k (Box and Jenkins, 1976).

A convenient example of a process that is mean

nonstationary is the latitude position series of a

hurricane moving due north at constant velocity. Clearly

the value of latitude increases over time. Thus, the

27
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latitude does not vary about a constant mean. It is non-

stationary. However, 'he longitude is constant and seems

to vary about a constant mean. It is apparently station-

ary. In an actual hurricane position series, nature

supplies random shocks that cause the longitude and

latitude to vary about their respective means. The

stationarity of the latitude and longitude series is

important and is discussed in detail in the next section.

In practical applications it is virtually

impossible to test for strict stationarity (Granger and

Newbold, 1977). Fortunately, under the assumption of a

Gaussian process, the conditions known as weak stationar-

ity are equivalent to strict stationarity. A process fwt)

is weakly stationary (covariance stationary) if over time

it varies about a constant mean, the process variance re-

mains constant, and the cov(wtwt+k) is constant for all t.

In order to obtain a consistent and unbiased

estimate of the population mean it is necessary that the

process be ergodic. Ergodicity is explicitly defined by

Hannan (1970). Ergodicity implies that observations of

the process sufficiently far apart in time are

uncorrelated, so that when averaging a growing series

through time, new information is continually added. Then

m
wm (1/m) E wt (4.1)

t=1

I I
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can be used to estimate the mean of the process.

Similarly, the estimators of cov(wt,wt+k) will also

be consistent. An estimator ; is a consistent estimator

of e if, as the sample size increases, it approaches 0 in

probability. That is if

lim P[ 0 - oj ] = 1 , for any E > 0

The cov(wt,wt+k), the autocovariance at lag k, is

defined by

Yk = cov [wt,wt+k] = E [(wt- 1)(wt+k-P)] (4.2)

where p = E [wt]. Given N observations, p is estimated by

N
w = (1/N) E w t  (4.3)

t=l

The autocorrelation at lag k is

Pk = Yk _ E [(wt-p) (wt+k-p)]
yo E [(wt-P)(wt - 0

E I(wt-P) (wt-k - P )]/w 2  4)

Pk is estimated by rk = ck/co where

N-k
ck =1 E (Wt-w) (wt+k-w) (4.5)

N t=l

The ck are the estimates of Yk. In order to compare the

ck values, aw must remain constant over time. Also co,

the estimator of the process variance, Ow2' must be

",." " -' "," -.'-'"-"-'" ;" "-,, -" " :., ," ,':-" ,: *" -'" 'L ..-'" ,'".."....-..."....."...."..,-..... ".".".".. ".-. "
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constant so that the values of rk may be compared at

various lags.

In modeling hurricanes, the approach used in this

study involved dividing the North Atlantic region into

rectangular grids within which the individual hurricanes

moved in a similar "pattern" (i.e. with constant velocity

or acceleration during a period of p observations for the

AR(p) model). That is, the tracks were divided into

approximately homogeneous segments. In order to analyze

various orders of AR models, it was necessary to develop a

procedure to determine if a given hurricane track was

covariance stationary. Within each grid, if the latitude

and longitude series (possibly differenced) are individ-

ually covariance stationary then, under the assumption

that the bivariate process is Normal, the bivariate

process is stationary.

Theorem 4.1:
Definitions

Let Yt and Xt be weakly stationary univariate series
with zero mean.

N is the number of observations.

p is the order of the AR model.

Pk is the cross correlation E[YtXtk]/(Ola 2 )

Oll,i is the autoregressive coefficient of Xt- i used
to predict Xt -

012,i is the autoregressive coefficient of Yt-i used
to predict Xt.
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021,i is the autoregressive coefficient of X t i used
to predict Yt"

022,i is the autoregressive coefficient of Yt-i used

to predict Yt"

El and 62 are the white noise series for X and Y,

ei " N(0'aI 2 )
2 1 % N (Oa 2 2)

and,

0 tzs

cov(Elt 62s) Pal a2

Then the general bivariate AR(p) model is

p

P

p
Y t =  E [ 21,iXt-i +  022,iYt-i ]  + 62t

i=l

The covariance matrix of the bivariate process is

E[(X,Y)' (X,Y) ] I l a1a 2 2

Kala2P a2
2 ]

where X and Y are column vectors of length N.

To prove that the bivariate process is weakly

stationary, it must be shown that the means and the

covariance matrix of X and Y are constant over time.

Proof:

Clearly the means are constant. It is given
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that u,2 and 22 are constant over time. Thus, the

proof reduces to showing that Pk (the cross

correlation at lag k) is constant over time, or

E[XtYtk] = c, for all t, where p+k ( t < N. The

use of lag k or lag -k is arbitrary. For stationari-

ty, both Pk and P-k must be constant over time (but

not necessarily equal). By definition of stationari-

ty, E[XtXtk] = a1 , a constant. Then,

E[X tXtk] = 1I ,IE[XtIXt k]+0II,2E[Xt_2Xtk]+ ' -

+EtlpE[Xt-pXt-k]

+012,1E[Yt-iXt-k]+012,2E[Yt_2Xt-k]+ -"

+012,pE[YtpXtk]+E[8ltXtk] = a, (4.6)

where E[litXtk] = 0 . Also,

E[YtXt k = 02 1,1E[Xt-lXtk]+021, 2E[Xt- 2Xt-k
] +

-'.. +021,pE[Xt-pXt-k ]

+ lE[Yt-iXt k]+022, 2E [Yt 2Xt.k]+ "'"

+02 2 ,pE[Yt-pXt-kI+Efc2tXt-k] (4.7)

where E[E 2tXtkI = 0

The individual expected values in (4.6) and (4.7) are

equal. Only the coefficients, which are known

scalars, differ in the two equations. From (4.6) it

is clear that
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12, 1E [Yt-lXt-k] +'12,2 E [Yt- 2 Xt-k] +
"

+012,pE [Yt-pXt-k]

must be constant over t. Thus, in (4.7), the quantity

022, 1E [Yt
- lXt - k]+ 22 ,

2 E[Yt
- 2Xt - k I +...

+"22,pE1[Yt-pXt-k ]

must also equal some other constant for all t.

Therefore, E[YtXtk] is constant over t.

It is easy to determine if a univariate process is

stationary. For the AR(p) process let

Wt = - lWt-l + + 4 wt-p + at atN(O,aa 2

An equivalent representation using the backshift operator

B is given by

(1 - 01 B . . 4pBP) wt = at

The effect of B is to shift w back one time interim. i.e.

Bwt = wt_.l Now, consider the AR(1) process where

(1 - 0 1B) wt = at

then

wt = at/(1 - 01B)

= at (I+0IB+01
2 B2 + ...

= at + Olat-1 + 01 2at_ 2 +

and the variance of wt is given by

Var[wt] = Var[at] (1+012+,14 + ...

A
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Then

Var[wt] (1-412) = Var[at] (4.8)

Clearly if these variances are to be finite, the geometric

series in t must converge so 0i < 1.

Equivalently, for a stationary process of any

order, the roots of the OIB) polynomial lie outside the

unit circle. For the AR(1) model this polynomial is given

by

O(B) = (1-01B)

Regarding B as a variable, if 4(B) is set equal to zero

and solved for B, for stationarity the roots of the

equation B=1/01 must be greater than one. In general, for

the AR(p) process, the roots of the c(B) polynomial

O(B) = (1 - iB - 2B2 - - P )

must lie outside the unit circle (Box and Jenkins, 1976).

Hurricane Stationarity

Suppose the last n position reports of a hurricane

(or tropical storm) are defined by the ordered pairs

(LAtI,LOtI) (LAt 2 ,LOt 2 ) ... (LAt-n,LOt-n). The set

of position reports are two time series, latitude and

longitude. It is desired to forecast (LAt,LOt) as a

linear combination of the n previous position reports.
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The general model is

LAt = all,1 LAt1 l+all, 2LAt_ 2  - all,nLAt-n

+alLOtl+al2,2LOt- 2+ " +al2,nLOt-n+cl

LOt a2 1,lLAt i+a 2 1,2 LAt- 2+ 21,nLAt-n

+a 2 2 ,1LOt-l+a 2 2 ,2LOt- 2 + " +a22,nLOtn+C2

In order to develop a model of the latitude series LAtI,

LAt- 2 ,0..., LAt n and longitude series LOt_ 1 , LOt_ 2 , ...

LOt-n, it is necessary that the series be weakly station-

ary. Hurricane series representing six hour position

reports are too short for nonconstant variance to be

detected, but often are nonstationary in their means.

While it would seem that a hurricane which is

continually in motion could never be considered to be

stationary, this is not typically the case. If a storm is

moving due west (W) or east (E), the latitude series

remains constant. In this case the hurricane is latitude-

position stationary, i.e. the time series LAt I ,

LAt_ 2, . LAt n varies about a constant mean. A storm

moving due north (N) or south (S), is longitude-position

stationary.

If the storm is moving northwest (NW), northeast

(NE), southwest (SW), or southeast (SE), it is neither

latitude-position stationary nor longitude-position

stationary. When this occurs, stationarity can be induced

.. . . .. . . . . - .
*,jb* N
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by differencing (calculating the change per unit time

interval) the latitude and longitude series. If the new

series (which now represent velocities) vary about a

constant mean, the hurricane is said to be latitude-

velocity and/or longitude-velocity stationary. It

describes a storm moving (say NW) at constant velocity and

is used to predict the next velocity, i.e. the next change

in position. This is the basis of the model developed by

Lesso and Freeze, although their model uses the previous

latitude to predict velocity and is based on all past

storm tracks (Freeze, 1983). If only the previous

velocity were used to predict the next change in position,

the model would be first-order autoregressive (ARi), or

equivalently, a Markov random walk in velocity.

If the hurricane is accelerating (say in

latitude), the latitude series must be differenced twice

to induce stationarity. The process of determining

whether the latitude and longitude series are stationary

in position, velocity, or acceleration, results in nine

possible classifications (categories) for ai particular

track. These categories have a useful physical interpre-

tation related to the direction of motion (Table 4.1).

................................
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TABLE 4.1

HURRICANE STATIONARITY CATEGORIES

LONGITUDE

LATITUDE POSITION VELOCITY ACCELERATION
1 2 3

Standing Moving Accelerating
POSITION Still West (East) West (East)

4 5 6
Moving Moving Recurving

VELOCITY North (South) NE,SE,SW,NW N,S to E,W
7 8 9

Accelerating Recurving Accelerating
ACCELERATION North (South) W,E to N,S NE,SE,SW,NW

Hurricane Model Identification

Once stationarity is confirmed, it is necessary to

determine the order of the autoregressive process. The
r,

general pth order bivariate (latitude, longitude) model is

given by

p
LAt = E [ iLAt_i + 1 2 iLOti] + alt

i=1 01

LOt = E0 [21,iLAt_i + 022,iLOt_i ] + a 2 ti=l

Tiao and Box (1981) developed a useful identification

procedure for such multivariate models. The process

involves fitting AR models of successively higher order

and examining the cross-correlation and partial auto-

regression matrices after each fit. Let r (1) be the

lag £ cross-covariance matrix. Then for the bivariate

.~ ..- '0
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process

(£) = [Yi,j(£ ,Z = 0, ±1, ±2,
i,j = 1, 2

and p(£) = (pij()) is the corresponding cross-correlation

matrix. For a stationary multivariate AR(p) process, the

auto and cross-correlations decay slowly to zero as the

lag increases. The pth partial autoregression matrix

P(p) is the matrix of autoregressive coefficients. i.e. at

lag p

P(p) = p

where

$p =[ij'p] i,j = 1,2

For a stationary AR(p) process, the partial autoregression

matrix is zero beyond lag p,and the estimates

are asymptotically jointly Normally distributed. The

significance of the parameters may be tested. (The test

results can be represented by filling the partial auto-

regression matrix with a + sign if the coefficient is

more than two standard deviations above zero, or a '-'

sign if it is more than two standard deviations below

zero.) Their procedure is implemented in the time series

package by Statistical Computing Associates (SCA; Liu et

4. al., 1983).

Unfortunately, due to the segmenting of hurricane

tracks and the resultant missing values, SCA could not be
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used. Instead Statistical Package for the Social Sciences

(SPSS; Nie, et al, 1975) was employed. The Box and Tiao

approach was adapted to the partial F statistic computed

by SPSS. The lagged data were sequentially regressed and

the plus and minus signs were assigned based on a 90%

confidence interval for the regression coefficients.

In the first analysis, all velocity lags of

latitude and longitude were considered up to lag 5 (30

hours prior to the current velocity observation). As

the lag increased, a gradual decrease in the auto and

cross-correlations was noted. Significant coefficients

occurred at lags 1, 4, and 5. This implied that the

process could be autoregressive with a "cyclic" component

at lag 4, representing a 24 hour lag. This component

could physically reflect the diurnal effect of the sun

(the slowing of the storm at night).

In the second set of regressions lags 1, 4, and 5

were considered. In general, the lag 5 parameter was

weak, so it was dropped from the model. This led to the

general model with velocity coefficients evaluated at lags

1 and 4.

Based on the analysis by Lesso and Freeze, it was

believed that the model coefficients should be allowed to

change as the storm moved. To capture this change, more

than 300 historical North Atlantic hurricane tracks (from

L ~i ~~LKee .. 5 .. 5 ..-. 5* ---.- ,-.
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the National Oceanic and Atmospheric Administration

magnetic tape described in Appendix F) were segmented by

latitude bands eight degrees in width with a three degree

overlap. Larger band widths masked the diurnal effect,

and smaller band widths resulted in too few observations

per track. Segmenting the longitude into similar bands

increased forecast error primarily due to the reduction of

latitude observations. Models were then fit to each

region. The models are discussed in Chapter 5 and are

listed in Appendix A.

Data Manipulation

For each individual grid, the physical manipu-

lation of the data that produced the model coefficients

required five major steps. In the first step, the raw

data file of hurricane tracks was condensed. Storms

that occurred before 1945 were deleted due to concerns

about the accuracy of the observations. Then portions of

storm tracks outside the current grid of interest were

deleted. Finally, the subtropical storms (maximum wind

less than 45 knots) were eliminated due to their weak

persistence. In the second step, the lag one coefficient

for storm tracks in the grid was calculated and used to

determine the stationarity category of the storm. Next,

based on the stationarity category, the latitude and
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longitude series were differenced appropriately, and the

lagged data matrices were constructed. In the fourth

step, the least squares regression coefficients were

calculated. Finally, in step five, the coefficients were

used to forecast the storms. The results of these

forecasts were compared with the "best track" data. This

produced the empirical forecast errors used in the

examples presented later in this chapter. A detailed

discussion of the data files and the required data

manipulation is in Appendix F.

UNIVARIATE ESTIMATION

When stationarity is achieved for a series, and

the order of the model is tentatively identified, the

model parameters must be estimated. The next several

sections include detailed discussions of the joint density

of the time series observations and derivation of the

maximum likelihood point and interval estimators for the

univariate process.

Joint Density of the Observations

Let wt = +lWt.l + 0 2 wt_ 2 + ... 4pwtp + at

where

at N(O,0a 2 ) wt N(O,Gw 2 )

- '! '...... ..... ..... . . .i " " " ... .. . . . .. .. .. . .
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at represents a random shock (input) to the system at

time t, w t is the observed value of the series at time t.

Let wn' = (wl, w 2 , ... Wn). Suppose the w i are

independent Normally distributed random variables with

zero mean and constant variance. Then the probability

density function (pdf) of wi is

f(wi=w1Oaw) = (2'rw 2 )-I/2 exp(-w 2 /2w 2 3

Because the observations are independent and identically

distributed (iid), the joint pdf is given by the product

of the marginal pdf's

n
f(wlrw 2, ... ,fWnlo w ) = (2TOw2)-n/2 exp[(-i/2) E (wi2/Ow2)].

i=l

Let Z represent the diagonal n x n covariance matrix. Then

w 2 
= 2

L w

because the w i are iid. Then

f(wJ'w2, ...,WnJ,,,)=(27T)-n/21. 1-1/2 expt(-1/2) wn' Z.-wn ]  (4.9)

If the w i are correlated, the functional form of the pdf

is the same, but the off-diagonal elements of E are

nonzero (Morrison, 1976).
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Box and Jenkins (1976) and Hannan (1970) use the

notation

f(W n Ga)=(2ija 2 )-n/ 2 1MnP 11/2exp (-1/2a 2 ) w'Mpw) (4.10)

where Mn P =E-oa2, wn is a vector of n observations,

and p is the order of the AR model. Substituting for MnP

in equation (4.10) yields equation (4.9). Consequently,

the exact likelihood is

f(Wnj,a) = L( ,aIWn)

2a)-n/2 im I/ 2exp(_(1/2a Wn MP wn (4.11)

where IMnPI=IMpPI, because the wt are uncorrelated

with observations more than p time periods in the past.

Thus, all the covariances beyond row and column

p in MnP are zero, and with Ga 2 factored out, the

variance elements (from p+l through n) are one.

Maximum Likelihood Estimators

The method of maximum likelihood can be used to

derive estimators for the parameters and the variance of

the noise series. Using the likelihood function (4.11),

the log likelihood function is

4.'

t(ooJa lw n )= (-n /2) an 2Tn- (n / 2)lr a 2 + (1/2)In nM pp [- I/ (2 a2)w n oM  41

Let S(4)= wn' MnP wn

n n n.



44

then at /aa a = (-n/2) (2o a/Ga 2 ) -(1 /2) (- 2) (0 a - 3 S(O)

=(-fl/oa) + S(O)/ja 3

equals zero at the maximum, which implies

C2 = S(Oi/n
a

The derivation of the estimator for the vector

is somewhat more tedious because MPP and MnP are functions

of

For example, for an AR(i) process with

wn'=(wi,.. .,wni

from (4.12) Z(q'alwn)=

n
(-n/ 2) ln217- (n/2)lIn a a2 + (1/2)ln(1-q 12 )(i/2a a2 ) 1(-0 2 ) Wi2 E (wt- wt1) 2 ](4.13)

t=2

a

Expanding a in (4.13) yields,

(2_0 2w2+W2 2 2 n 2
w1 - w1 +q 2  20wl.1;I2+ 1w 1  + E (wt-4 1 wt 1 j)

t=3

n
= (w1 2 +w 2 

2 -20 1 w 2 wl. + E (wt-piwt_1.)2 1
t=3

n-1 n
= (-241 wlw2 + E i 2wt 2.-2,E.tt1

t=2 t=2

Then
n-1 n

3 , 1= (1/ 2) [ (-2 p1) / (1- j2)] (i/2aa2)V2ww2+2l1 E wt
2 - E wtWt..)

t=2 t=2

n-i n
=C [ 2 (1....2) ( *ij (1- 2) ] f2wlw+2 E~ wt 2 - E wtwt..l

t=2 t=2
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n n-i
=-y + E wtWt - e1 Z wt2

t=2 t=2

Setting this equal to zero and solving for 01, yields

n n-i

i = Z wtwt_ 1 - l wt2) (4.14)
t=2 t=2

Clearly, 4.14 is asymptotically equivalent to the ordinary

least squares estimate of 1 given by

n n$I ( wtwt _I ) /  ( E wt 2 )

t=2 t= 2

When n is large enough, Box and Jenkins, and the

commercially available software, prefer to ignore

yi and simply use the ordinary least squares estimate.

A convenient iterative least squares algorithm will be

presented later in the paper.

In the general AR(p) model, the O's can be

estimated by conventional ordinary least squares or by

solving the Yule-Walker equations. The Yule-Walker esti-

mates are calculated by solving the system of equations

r= 01 + 2 rl + + Oprp-i

r2+ + + 4prp-2

rp Olrp-1 + 02rp-2 + + +p

where rk = Ck/co and

n-k
Ck (1/n) E wtwt+k

t=l

4* . .~. ~ 4' 4. *.*~*4 ~*,* *,*~** - =
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In matrix form let

ri  1 r, ... rp I
r 2  R r 1  1 ... p 2r- . R= :

rp-i p-2... 1

then

r so-i"
It, -u

Variance of the Maximum Likelihood Estimators

Derivation of the variance of the maximum likeli-

hood estimators is reviewed in this section. Then, an

iterative procedure that can be used to calculate

estimates of the autoregressive parameters is discussed,

and those estimates are compared to least squares

estimates. An actual hurricane track is then used to

illustrate the variances of parameter estimates computed

using both the least squares and maximum likelihood

criteria approaches.

The variance of the parameter estimates for the

autoregressive process is

V[$] = I-()

where I(0), the information matrix, is

-2
I[01 = E[U'U] a

- . .- ' -,!
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and U is an nxp matrix 
containing n+p observations 

lagged

up to p periods (Box and Jenkins, 
1976). In least squares

estimation of ' Utj is defined as ut,j = -aat/aj given

3,0 (Granger and Newbold, 1977). Thus, ut' j represents

the change of the error of the estimate of the tth value

in the time series with respect to changes in the value of

ththe j parameter. The gradient (ut,j ) can be

approximated using a first order Taylor series expansion

(Fig. 4.1) as

ut'j = -(at o - at)/(cj o - cj)

= (at - at,o)/(oj,o -0j)

Solving 
for at

at = -(Oj - oj,o)ut,j + at o  (4.16)

where j,o , and at o are initial guesses of the parameter

and error values respectively.

at

at'o........................

Figure 4.1 The Gradient ut,j

..............
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The one dimensional case is shown in Fig. 4.1.

In general, for the AR(p) model, solving for at yields

p
at Z at'o - Z (Oj - Oj'o )  ut j  . (4.17)

This expression is the first order Taylor series expansion

commonly used in nonlinear gradient search algorithms

(Granger and Newbold, 1977). if at is a function of ,

then
u t = -3at/a .

The minimum error with respect to the parameters is

determined along the direction of the negative gradient.

For moderate and large samples, when an ellipsoidal

quadratic approximation to the likelihood function is

appropriate, the global minimum occurs where the sum of

squares in the exponent of the likelihood function is

minimized. Solving (4.17) for at'o yields

p
at, o  - (j - Ojo )  utj + at

j=1

in the form of a linear regression model. The ( j-0j,o )

are estimated as

j- j'o = (U'U)- U' ao

where

-o* ~ 5 ~ . % '. 5 ~ %5 * .



49

U11 u12 .- Ulp al1 o

u21 u22 . U2p a2,

U= a a .N(O, 2a
t'o . at 2

L n2

At the final iteration the well known result of linear

least squares theory yields

n

VT = S2(U'U) - I where S 2 = (n-p)- I E at 2  (4.18)
t=1

The covariance matrix of the estimates is also

given by

V[-]I-) = )E[U'U]a2 f- I = (nrp)- lc2 = MpP/n

(Box and Jenkins, 1976). E(U'U) - I can be shown to be

equal to (nr p) For an AR(p) model

pp

wt = jwt j + at
j=l

p
so at = wt - E Oj wt.j

j=l

therefore

aat/aoj = ut,j = -wtj

and

E[ut,j2] = E[wt-j 2I o

Also

E[wt- k wt j ] Yk-j
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Then E[U'U] contains all cross product terms and

2 O Y1 '. Yp-i
E[U'U] n a Yi Yo ... Yp-2 = nrp

pi

Yp-i "'" Yo

when n is moderate or large. Thus, the approximate

covariance matrix of the parameter estimates may be

obtained from a transformation of the covariance matrix of

the data.

A Univariate Example

Consider the following velocities (in degrees of

latitude per six hour interval) of an example hurricane

in 1960 (.8,1.0,1.1,.7,.I,-.6,-.3,.6,.7). A short

series was chosen to better illustrate the differences

between estimation procedures. An AR(1) model was

appropriate for this series.

Let wt = (.8,1.0,1.1,.7,.1,-.6,-.3,.6,.7 .

Then there are eight pairs of observations that can be

used to calculate 01. They are (.8,1.0) (1.0,1.1) (1.1,.7)

(.7,.i) (.l,-.6) (-.6,-.3) (-.3,.6) (.6,.7). Let (x) denote

the series of first elements in each ordered pair. Let (y)

denote the series of second elements in each ordered pair.
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The sample mean of (x3 is .425 The sample mean of (y]

is .4125 . Adjusting (x3 and (y3 to zero mean yields

X' = .5875,.6875,.2875,-.3125,-1.0125,-.7125,.1875,.2875]

Y'= (.375 ,.575 ,.675 , .275 ,- .325 ,-1.025,-.725,.175).

The maximum likelihood point estimate of i is

n n-1

i Z wtwti/(n-l)]/[ 1 wt 2 /(n-2)] (4.19)
t=2 t=2

= [1.6975/8]/[2.5744/71 = .5769

The least squares point estimate is

9 9
$1 = E wtwt_l/[ E wt2]- 1.6975/2.7150=.6252 . (4.20)

t=2 t=2

Now in the usual least squares regression estimator

= (X'X)-I'Xy (4.21)

where

8 8
XX= Z Xm 2  E (wt-.425) 2

m=1 t=1

The question of whether to use the sum of the wt 2 from

index 2 to 9, or 1 to 8, to represent X'X is academic,

because as the number of observations increases, the dif-

ference becomes negligible. In fact, the SCA time series

computer package uses the Gauss-Marquardt search algorithm

which converges in three iterations to the least squares

estimate .6252 (Liu et al., 1983).

The estimated standard deviation of the maximum
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likelihood estimate of 1 , for a first order model is

R272 $i = .5769

std dev = [M P/9] = [(1-012)/9]1
/ 2 =

2 6 0 sI = .6252

From least squares the estimate is

9 9

std dev [Ei = [S/(X'X)1I/ 2 = [ at 2 /(8-1)]/[ E wt 2 ]

t=2 t=2

= ([l.699/(8-1)]/[4.16]13 /2 = .242

SCA calculates the standard deviation as

std dev [$1i = [[1.699/(8)]/[4.16] 11 / 2 = .226

which uses the biased maximum likelihood estimator for S.

The smallest hurricane model has 178 observations

and most parameter standard deviations are approximately

.05. Even with that small standard deviation, the

estimates of OI are not statistically significantly

different. Since the SCA estimate matches the result of

SPSS to four significant digits (all that SCA reports), it

seems appropriate to use the least squares point estimator

in equation (4.21). In addition, because of the way the

hurricane tracks are segmented by region, there is missing

data which SCA can not handle. Thus, the least squares

estimates from SPSS are used in all regions.

4

i P -*' S *.. . ..-. . . . - - .
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Univariate Forecasting

The time series models are to be used to

forecast hurricane positions. It is usually a simple

matter to calculate a point forecast. The more difficult

task, especially in the multivariate case, is to calculate

approximate probability limits surrounding the point

forecast. As a prelude to the bivariate section, this

section contains the development of the univariate point

and interval forecasts.

Suppose an AR(l) model has a nonzero mean. Then

wt -  = l(wt_-p) + at

w t = OlWtl - i + p +at

wt = OlWt_l + V(1-0 1 ) + at

Note that -Oip+p can be thought of as Y-8 1 X = 80 (the

intercept) in a simple linear regression.

For the AR(2) model,

t-= *1(wt-l-P) + 02(wt-2-) + at

wt-P = 1wt-1 - 01P + 02wt_ 2 -02 + at

wt = OlWt-1 + 02wt_2 + at + P(1-01-2)

In general for the AR(p) process,

wt = OlWt-1 + . + OpWt.p + (--2. .p) + at



I

54

Consider the one step ahead forecast of the AR(1)

process with nonzero mean.

wt(1) =0(Wt-P) + p = olwt - Oil + P

Then the two step ahead forecast is

wt( 2 ) = 0i(wt(1)-p) + p

= 0l[lwt i] + P

= 2(wt- 3 +

and the kth step ahead forecast is

wt(Z) = l£i[wt-P3 +

For stationarity it has been shown that loll < 1.

Therefore,

lim wt(Z) =

and the forecast converges to the mean of the series. For

hurricane forecasting this means that the greater the lead

time, the less information one has concerning the storm.

Consequently, the average velocity of past storms is the

best guess for a predicted path when the lead time is

large.

The forecast error for the AR(1) one step ahead

forecast is given by

et(l) = wt+l - t+= Wt+l - wt(1)

. . . .
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= (#l(wt-P)+P+at+l )-[#l (Wt-A )

= at+ 1

Thus, the one step ahead forecast error is the noise

series. The error for the two step ahead forecast is

et (2)= w t+2 - t+2 = wt+2 - w t(2)
= [0i(Wt+l-P)+p+at+2-[0l 2 ( w t - P ) + P ]t+2 t+2 t

= t+2+l 1 (Wt+l-P)a-ji((wt-P)w )

=at+2 +#1 (at+)

Similarly, the error in the kth step ahead forecast is

e (t) = at+, + i(at+- 1 )+ 1,2(at+£-2 )+'+ a1t+l

and, because the at are independent and identically

distributed (iid), the variance of the zth step ahead

forecast is given by

V[e t ( I ) ]=V~at+,]+ j12V[at+t l ] + 0j1 4 v [ a t + , _ 2 ] + ' ' "

+012£-2V~at+l ]

oa  2 [ ( i -0 1 2 ) / ( i - i 2 )  ] •

For the AR(2) model, the one step ahead forecast error is

et(1)= wt+l - Qt+ 1

=[ l(Wt-P)+02(Wt-l-P)+P+at+l]-[ l(Wt-p)+02(Wt-l-P)+P]

= at+,

and,
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et(2) = wt+ 2 - wt+ 2 = wt+ 2 - wt( 2 )

= (01(wt+l- )+02(wt-p)+p+at+2 3

-[O 1l(wt(1)- P) + 02 (wt-P) + P )

= lWt+ ta .+ 2wta1  ] 2wtl

= 01(wt+1-(wt+"2wt-l)) + at 2

a t+2 + Olat+l

These results are based on the assumption that the Oi are

constant parameters and aa is known. In practice these

quantities are random variables and must be estimated.

Consequently, the confidence regions for the forecast

error are approximate.

The calculation of et(k), for AR models is

simply an algebraic exercise. However, as k increases

the computation becomes laborious. Indeed, there is an

easier way to calculate the £th step ahead forecast error

for the AR(p) model. It involves the i weight

representation of the AR process which is defined by

expressing wt in terms of the past values of the noise at.

The psi-weight form of the AR(p) model is derived from the

difference equation form of the AR(p) model

wt = O1Wt1+02wt2+' '+ pwtp+at

then

(1-wIB-02B2-'''- pBP)w t = a t

wt = (I-0IB- 2B2 . pBP)-lat

= (1- IB-t 2B
2 . )at
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For the ARM1 model, the ~pweights are successive powers

of

Wt -jw =pa

(1-01B) (wt-J) = t

Wt - p= (1-0 1BV'lat

w= Pa Olt+02

.,here the at are the residuals of the one step ahead

forecasts of the previous observations.

For the AR(2) model,

wt- P (1-0iB-42 B2)V'at

Expading(1-~BB by a Maclaurin series yields the

approximate i weights (Abraham and Ledolter, 1983).

f(B)= 1OB 2

f' (B) = (01 +202 B) (1-01B- 0 2B
2 ) 2

f''(B) =2[0+0B 10B0B 0210B2

f(O) 1

f' (0) = O

f'(0) = 2[ (01)2+ 02]

f ...(0) = 6[(01)3+2010~2]
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w - = [I+01B+(OI2+02)B2+(o1 +20i0 2 )  +--]a t

wt = P+[ o+lB+ 2B2 3B3+'''a t  (4.22)

Equation (4.22) may be expanded to any desired degree of

accuracy and is easily obtained for the low order AR

models with which one is usually concerned. For example,

consider the AR(4) model with 02 and 03 equal to zero.

Then

iI 2=0 2 2 3=0i 3 ,  4=014+04

and, in general,

*j = 0ljl+ 4 j_4

Next, the forecast error for the AR(p) model is

derived in terms of the * weights. Let the Zth step

ahead forecast be given by

wt(j) = o+&at_,+2a (4.23)

where the Ej are to be determined. Then the forecast

error (known only after time t+X) is

et(k) = wt+X-wt(£) =(+Ooat+k+ lat+kl+ 2at+Z_2+''')

- (V Coat +Elat -, E2at_2 +- )

and because the at are iid, the variance of the Lth step

ahead forecast is given by

-- ' ' ' - I"0 - ' '..



-+..++ . +%+ + - --. . - ,+ ,+-o_ .- '-- - r--.- '-. -rw--.. . - + r -r. •., + . - . . . ,,r r .- + F r . . .r +_

59

E[et 2 (9)] - [at+.+lat+.-_+ 2at+,-2+ ''++£-i a t + 1

( k _Eo ) a t +  ( '+ 1 _E 1) a t -l .  . ] 2

* *+p 2) 2  2(- + 12 +- 2+l.+_12)a + (P£+j-&j) 2a
j=0

This variance is minimized when ,+j j.

Thus, the minimum mean square error forecast from (4.23)

is

wt(t) =v+*at+ k+lat-l+*k+2at-2+'

Therefore,

et( )  = (+at+£+ lat+£_l+"2at+£_2+ ' ' ' )
.

- (p+ .at+ ,+lat_l+*,+2at_2 + ' - - )

= (at+.,+*lat+,_l+'''+*,_lat+l+ .at+ ,+lat_l + '' ' )  .
'

- (lkat+*,+lat_l+ ' ')

= at+£+Ilat+,_l+''+p,_lat+l , (4.24)

and the variance of the tth step ahead forecast error is

V e (, ] = E[at+ £,21+ j12E[at+, 12]+ '-. - £_2E[at+l2 ]
V[et(i)1 ]

2 2+ 2
= Ga2(+" 1. +2 2 "+-i ) " (4.25)

There are three important conclusions: (1) the forecast

error is a linear sum of independent Normally distributed

noise terms, and so is Normally distributed with mean zero

and variance given by (4.25), (2) the forecast error is a

function of unknown future shocks (noise) which must be

estimated, (Consequently, forecast errors beyond one

7i
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period are correlated.), (3) this approach assumes that

the *i (and consequently the i) are constant and aa2 is

known. In practice these quantities are random variables

which must be estimated. Thus, the confidence region

surrounding the forecast is approximate. Also, if the

variances of the Oi are large (as in the univariate

example) the confidence interval may be severely under-

stated (Pankratz, 1983).

In order to reduce the variance of the parameter

estimates it was necessary to determine a way to combine

hurricane tracks so as to maximize the number of observa-

tions in each grid. This was accomplished by differencing

the individual storm tracks (if required) and then using

the pairwise deletion option of SPSS. For example, two

tracks were being combined, each having ten observations.

Then for the velocity model there were 18 observations

available to compute the lag 1 parameter 01, 16 available

to compute 02' 14 available to compute 03 and so forth.

This procedure increased the number of observations in a

particular region and so decreased the variance of the

parameter estimates (to approximately .0016 for a parame-

ter value near .7).
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Univariate Interval Forecast Example

In this example, for the arbitrary region 10-15

degrees north latitude, and 45-83 degrees west longitude,

confidence intervals associated with the 24, 48, and 72

hour latitude forecast are desired. A univariate AR(4)

model of the applicable latitude position series

(differenced once) yields the model

Velt = .69558Velt- .10069Velt_4

where Velt = (LAt-LAtI), and LAt is the latitude (in

degrees) at time t. Consequently,

LAt = 1.69558LAt_1 - .69558LAt-2 + .10069(LAt_4-LAt_ 5 )

The psi weights for this model are computed as shown in

the previous section. Here *o=l, '1=1.6 9 5 5 8 ,

'2 = 1.69558* 1+(-.69558)* 0 = 2.17941

'3 = 012 + 02'1 = 2.51595

'4 = 0 13 + 02'2 + 04'o = 2.85073

'5 = 01*4 + 02'3 + l4'1 + 5 o = 3.15364

*6 = 01*5 + 02'4 + 042 + 5'1 = 3.41305

'7 = 01*6 + 02'5 + 0403 + 05'2 = 3.62737

Similarly,

*8=3.81016, *9=3.96781, '10=4.10358, *11= 4 .2 1 9 6 0
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The one step ahead latitude forecast errors have mean zero

and standard deviation 9.1645 nautical miles (n mi).

Thus, the variance of the 24 hour forecast is

V[et(4)]"(9.1645) 2 (1+*. 2 "2 
2 "3 2) = 84.0(14.9548)= 1256.2

and the standard deviation (SD) of et(4 ) is 35.4 n mi.
This compares favorably with the empirical standard

deviation of 35.9 n mi obtained from the forecast models

in Appendix A. For the 48 and 72 hour forecast

SD[et(8)] = 69.7 n mi

SD[et(12)]= 101.5 n mi

compared to the empirical values of 67.0 and 82.2 n mi

respectively. Consequently, the 90% confidence intervals

are the point forecasts ± 58.2, 114.6, and 167.0 nautical

miles respectively.

BIVARIATE ESTIMATION

Let (Zl,t), (Z2, be two time series, each with

n observations. If the series are autoregressive of order

p then

Zl't = 'll'iZl't-i + fll,2Zlt-2  + "'" + 11 'pZ1 't-p

+ ,12 ,1Z 2 ,t-1 + + *l2,pZ2,t-p + C 1 + al,t
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and

,t =21,lZl,t-l + 021,p,t-p

+ 022,lZ2,t-i + "'" + 02 2 ,pZ 2 ,t-p + C 2 + al't

or, in matrix notation,

2,t 21,1 22,1I Z2,t-i

+ F11,p 012,p ] lt-p + + alzt

021,p 022,p 2,tp a2,t

or,
t(B)Zt =C + a (4.26)

where the [at] are iid N(Oz ). The at noise series

are assumed to have zero covariance except at time t.

That is, for two noise series, say (a1) and (a2 ),

0 t s
E[at,a2 ,s1 Z t =s

C is a 2 x 1 vector of constants, and

O(B) = I - 01B . *pBP

where 0 i is a 2 x 2 matrix of coefficients at lag i as

shown in (4.26) above. The individual series are assumed

to be weakly stationary.

The model in (4.26) can be expressed as a multi-

I

4- - . ' - ''' ' -_.,. .,. , . , , , .,' "'."- ."-"- -'"-".-"- -;-' V . .. -+""-'. . " / . ,' ; . . - ":
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variate linear model and c can then be obtained via multi-

variate least squares (Tiao and Tsay, 1983). Specifical-

ly, let

ZIi' j 1i•+l Z'p *•" Z I 1 a  1

Y =,X= . , ) , €

n n Z'n- Z'n- i L j

Then Y=Xn+e is a multivariate linear model. Least squares

estimates can be obtained directly (Hillmer and Tiao,

1979). Although they are biased (Granger and Newbold,

1977), the least squares parameter estimates converge in

probability to the true parameter values (Hannan, 1970).

Bivariate Point Forecast

Similar to univariate models, bivariate forecasts

are based on the difference-equation form of the model.

Specifically, the general form of the AR(5) position model

used in all regions is

LAt=oII,ILAt-I+OII,2LAt-2+0II,3LAt-3+ II,4LAt-4+0II,5LAt-5

+"12,1LOt-l+ 12,L t-2 1,3Lt-+12,4LOt-4+012,5LOt -5

+ C 1

Lt=021,1 _1-I021,2L t-2"O21,3L t-3+021,4L t-4+021,5L t-5

+022,1LOt-l+0 2 2 ,2LOt- 2 +42 2 ,3LOt- 3 + 2 2 ,4LOt-4 +02 2 ,5LOt-5

+ C 2
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where, LAt represents the latitude at time t, LO t

represents the longitude at time t, and C1 and C2 are

scalar constants.

For the region 25-30 degrees north latitude,

45-100 degrees west longitude (the Gulf of Mexico coastal

region), the model is

LAt =I.777LAt_-.777LAt_+.016LAt_-.016LAt_

-.101LOt-l+.101LOt_2+.083LOt_4-. 083LO t-5+.071

LOt =.I03LAtI-.103LAt_2--198LAt4 +-I98LA t5

+1.837LOtl-.837LOt_ 2 +.032LOt_ 4 -.032LOt_ 5+.052

Parameters not significantly different from zero have been

included for ease of programming, and model comparison.

The one step ahead forecast position (LAt,LOt) is based

on the use of the five previous (six hour) position

reports. To obtain the two step ahead forecast, (LAt,LOt)

is treated as the last observed position, and the one step

ahead forecast (from time t) is computed. Forecasts for

lead times up to n steps ahead are computed in a similar

manner.

...............................................
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Point Forecast Example

Consider the following five position reports from

hurricane Elena (1985).

(LAt_5,LOt_5 ) = (28.7, 85.2)

(LAt _4,LOt-4) = (28.8, 84.4)
(LAt_3 ,LOt_3 ) = (28.9, 83.9)
(LAt 2̂ ,LOt_2 ) = (28.8, 83.8)
(LAtI,LOtI) = (28.5, 84.0)

The last position report (time t-1) was for 0500 Central

Daylight Time (CDT) on September 1. Actual landfall of

Elena was 54 hours later at Gulfport, Mississippi (30.3,

88.8). The sequence of position forecasts from the 25-30N

latitude model is (28.3,84.1), (28.1,84.3), (28.0,84.4),

(28.0,84.6), (28.1,84.9), (28.2,85.3), (28.3,85.6),

(28.4,86.0), (28.6,86.4). These forecasts have an

important characteristic. Even though the initial motion

vector points to the southwest, the model "turns" the

storm to the northwest. That is, given that the hurricane

is "wandering" (as Elena was at this point) the forecast

of future motion is the average velocity vector of past

storms which points to the northwest. The landfall

forecast error of the time series model is approximately

150 n mi.

This is more accurate than other forecasts of

this storm. Model A (Freeze, 1983), which depends

heavily on the initial motion vector, forecasts landfall

........................................... .... . -------
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in 72 hours on the Yucatan peninsula. The error of model

A is approximately 480 n mi. At the time of this position

report the National Hurricane Center had hurricane

warnings posted from Pensacola, Florida to Fort Meyers,

Florida and was forecasting landfall near Cedar Key,

Florida. This was an error of approximately 250 n mi.

Thus, it appears the time series approach is potentially

v effective.

Interval Forecast of One Variable

If the random shocks (alt), (a2t are Normally

distributed (as assumed), and the appropriate model has

been estimated with a sufficiently large sample, then the

forecasts are Normally distributed (Pankratz, 1983).

Consequently, appropriate 90% confidence intervals for the

* £th step ahead latitude or longitude forecast are

LAt(X) ± 1.645 SD[elt(L)l

LOt(k) ± 1.645 SD[e 2 t()]

where elt(2) and e2t(£) are the Lth step ahead forecast

errors for latitude and longitude respectively.

In the bivariate case, the psi weights necessary

for computation of elt(t) and e2t(t) are computed using

*i the general model

-°.*
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+012 , LOt~i+i2 , 2LO t-.2+0i2 r3 LOt 3 +01 2 ,4LOt..4 +0 1 2 ,5 LO t 5
+ C1+ alt

+0t22 ,iLOti+ 2 2 ,2LO t-. 2+0 2 2 ,3LOt..3+02 2 ,4LOt..4+ 2 2 ,5t-

+C2+ a 2 t I

where a it and a 2 t represent the noise in the forecast for

period t for latitude and longitude respectively. Solving

for LAt and LOt in terms of the 0 (B) polynomials,

and eliminating the constants (which do not contribute to

the error), yields

LA= (1'B+1,B2 "12,B 3 +1,B 4 +012,B 5 )LOt+al (4.27)
t1,112,21 2B012, 3 _ 12, 4 1,5B5l)

LOt ("2 1 ,1 B+ 02 1 ,2 B
2 +0 21,3 B

3 +02 1,4 B
4 +02 15 B

5 )LAt+a2 t J4.28)

(1-022, 1B-02 2 ,2B
2 -022 ,3B

3 _-022 ,4 B
4 _-02 2 ,5B

5 )

Solving these two simultaneous linear equations for LAt

and LOt in terms of alt and a2 t results in

412,B+**+0l,5B5 42,lB+--+2l,55)) (4.29)

.412lB+ +0l,5B) ( 1,1+-+21,B5 . (4.30)
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where the ratios of the above polynomials yield the psi

weights. The error of the Lth step ahead forecast from

time origin t is given by

+*12,j~t~k- + P12,Z-j.a2t+1

The cov(alt,a2 s) =0, t r- s, so

E~l2 (1) (+1,2 ,2 2 2)Gl 2

2 2) 2
+4~12,1 +-+*Pl 12 k-l a2

+2 ( 1 1 ,1 *P12 ,1+* .+ *11,,ll 2 ,,_..)E[ala 2I (4.31)

r 2 = 1, 2 * * * 2, -1. ) a 22

+2 022101,1**+* 22 ,....J 21 ,....)Efala2 I (4.32)

+ (0J1 ,1021 ,1+' -+0'1,L-1*21,,l1)oEa12

- .. .2

- .. . . a_2,1 **' 2 1 1 2 , ~ 2. (4.33
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Interval Forecast Example (Latitude)

For the Gulf coast region discussed in point

forecasting, the covariance matrix (E) of the one step

ahead forecast forecasts is

[212.576 -28.9361

K-28.936 307.3011
By (4.31) the variance of the eight step ahead forecast

for latitude is

V[elt(8)]=(1+1.7772 +2.3702 +2.8152 +3.1552 +3.439 2 +3.6942

+3.9322) (213.16)

+(0+(-.101)2+(-.264) 2+(-.460)2+(-.587)2+(-.665)2

+ (-.715)2+(-.752)2] (307.301)

+2(-11.837) (-28.936) = 15927.0

The corresponding standard deviation of 126.2 n mi%

compares favorably with the empirical value of 137.2 n mi.

Interval Forecast of Two Variables

Results of chi-square tests of latitude and

longitude fo. cast errors for category five storms do not

reject the hypothesis that the joint distribution of the

forecasts is bivariate Normal (Appendix D). Specifically,
pt

the distribution is
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f (LA,LO) =f (2ra1a2) (1-p 2 ) 1/2 1 exp (-1/2) (1/[l-p2 ]) [ ([LA-Pl]/G I )2

-2 p ( [LA-pl]1/a 1) ([LO-P 2 ]/a 2) +(LO-P 2 ]/a 2 ) 2 ] (4.34)

where a 1 and a2 represent the standard deviations of the

latitude and longitude forecasts as computed from the psi

weights and (Pl, P2 ) is the point forecast. The exponent

of (4.34) can be used to specify the equation of a

confidence ellipse in two dimensions when it is set equal

to some positive constant (say c) (Morrison, 1976).

. Let (x1 , x 2 ) be any point on the ellipse. Then

(Xl-Plx 2 -P 2 ) is the vector from (xl,x 2 ) to the center

(PlP2). The length of the vector is maximized when

(x-p) ' (x-P) = (xl-pl) 2+(x 2 - 2 ) 23 is a maximum, subject to

-.-- l p2)-l[ (Xl_ l)/0112_2 p [((Xl_ l ) / a l ] [(x2_ 2)/a2]

+ +[ (x2_2) /G21]2 = c

This optimization problem can be solved by use of the

Lagrangian L where

L=(X l-Pl ) 2 + ( x 2 - P 2 ) 2 _ X( I - p 2 - I [(X _ )/ l]

-2P I(xl-P l )/all [(x 2 -p 2 ) / a 2 l +[(x 2 -p 2 )/ G2 12 -c)

Taking partial derivatives to find a stationary point,

aL/aXl=2(Xl-pl)-2A (l-p 2 ) - I [ (Xl_0l)/al 2 ]

+2X[(p/1-p2)] [(x 2 -1 2 )/(a 1 2 ) 0

.5 '' " " . " / ' - " " -i ' - - '- " °, '~ i '~ ¢
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aL/ax 2 =2(x 2-i 2 )-2X(1-p
2 [)- l (x2-P2 )/o 22

+2X[ (p/l-p2) [(xl-V i) / (Cio02)] 0

or, equivalently

I (X-P ) - AZ
- 1 ( x - ) = 0

(I-XZ - 1) (X-P) = 0 (4.35)

Pre-multiplication by Z yields

(Z-XI) (X-) = 0

Thus, the coordinates specifying the principle axis of the

ellipse lie on the eigenvectors of Z. Pre-multiplying

(4.35) by (X-p)' yields

(X-1.) ' (X-P) A (X- 11 ) '- 1 (X-P)

Then the length of the principal axis is maximized when

X is the largest eigenvalue of Z. The length of

the axis is 2(i)1 /2c, where X1 is the largest eigenvalue

of E, and c is the number of standard deviations for the

chosen confidence interval. The covariance matrix E is

the matrix for the £th step ahead forecast, and is

computed from equations (4.31), (4.32), and (4.33).

Bivariate Interval Forecast Example

In this example the 90% confidence ellipse is

derived for the 48 hour forecast for the Gulf coast

region (25-30N, 45-100W). From the previous example, the

'I
, . .€
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standard deviation of the latitude forecast is 126.2 n mi.

For longitude the eight step ahead forecast is given by

(4.30) where

LOt=[(.103B-.103B 2 -.I98B 4 +.198B5)alt

+(1-1.777B+.777B 2-.016B 4 +.016B 5 )a2t/

((1-1.837B+.837B
2 -.032B 4 +.032B 5)

(1-I.777B+.777B2 -.016B 4+.016B 5 )

-(-.101B+.101B 2 +.083B 4 _.084B 5)

(.103B-.103B
2-.198B 4 +.198B 5))

=((.103B-.103B 2-'98B 4+.598 5 )ait

+(I-1.777B+.777B2 _.016B4 +.016B 5 )a2 t3/

(1+3.614B+4.888B2_2.935B3 +.592B 4 +.105B 5-. 067B 6

+.009B 7 +.017B 8 +.032B 9 +.017B 10 )

Then the estimated variance of the eight step ahead

longitude forecast is

V(e 2 t(8)1=(0+.103 2 +.2692+.469 2 +484 2 +385 2 +219 2 +016 2 )a 2

+(12+1.8372+2.5282+3.0902+3.5722+4.0092+4.4212

+4.8172) (a2)2

+2(6.593) (-28.936)

=.728(212.576)+91.893(307.301)-381.55

=28012.154

Then the estimated standard deviation of the eight step

ahead longitude forecast is

SD~e2 t(8)] = 167.4 n mi

r * A.- .- -
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The estimated covariance of the eight step ahead longitude

and latitude forecast is computed as

E~elt(8) e2 t(8) ]=(1+1.777(1.837)+2.371(2.528)+2.815(3.090)
+3.155(3.521)+3.439(4.009)+3.694(4.421)
+3.932(4.817)+(-.101) (.103)+(-.264) (.269)
+(-.460) (.469)+(-.587) (.485)+(-.667) (.382)
+(-.715) (.213)+(-.752) (.016)1 (-28.936)
+ 1.777(.103)+2.370(.269)+2.814(.469)+
+3.155 (.484) +3.439 (.382) +3.694 (.213)
+4.144(-.191)] (212.576)
+((-.101)(1.837)+(-.264)(2.528)
+(-.469)(3.090)+(-.586)(3.571)
+(-.669)(4.009)+(-.715)(4.420)
+(-.752)(4.817)) (307.301)

- -5498.78

where -28.936, 212.576, and 307.301 are elements of the

empirical one step ahead forecast covariance matrix

evaluated previously. Then the estimated correlation of

the eight step ahead forecast is

p = -5498.78/[(167.4) (126.2)]

= -. 260

where 167.4 and 126.2 are the estimated standard

deviations for longitud3 and latitude.

The estimated covariance matrix is

(167.4)2 (-.260) (167.4)(126.2)

(-.260)(167.4) (126.2) (126.2)2

L 28022.80 -5492.72]

-5492.72 15926.44

-- .. ... . ..
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The estimated eigenvalues (A1 ,A2 ) are the solutions of the

quadratic equation

(28022.80-X) (15926.44X)-5492.722  = 0

Then,

2 _ 43949.24X + 416133470 = 0

which has roots

X1 = 13804.52

X2 = 30144.72

The corresponding eigenvectors are <.360,.938>, and

<-.938,.360>. The second eigenvector orients the major

axis of the confidence ellipse and has length

2(30144.72)1/2(l.645)=571.2 n mi

The minor axis has length 386.6 n mi., lies on a

magnetic heading of tan-l(.360/.938) = 21.0 degrees, and

is orthogonal to the major axis. The ellipse is centered

at the point forecast.

In general, the equation of the 90% confidence

ellipse for any forecast is given by

(Xl/ol)2-2p(xl/Ol) (x2 /o 2 )+(x 2,o2) 2=1.645(l-p
2)

where p is the correlation between longitude and latitude

forecasts and a, and 02 are the standard deviations of the

longitude and latitude forecasts respectively.

...............................................................
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Thus, for the 48 hour forecast for the Gulf coast

region, the equation of the 90% confidence ellipse is

(xl/167.4)22(-.260) (x1 /167.4) (x2 /126.2)-(x 2 /126.2)2

= 1.645(1-1-.260)2)

or

(x1
2 /28802.80)+(.520xlx 2/21125.88)+(x2

2 /15926.44)=1.534

It should be noted that this confidence ellipse

is based on the one step ahead forecast for all storms

that have passed through the region, so it is fairly

robust. However, locations for storms that exhibit rapid

changes in velocity may fall outside the confidence

ellipse because the model coefficients are based on

velocity-stationary storms.

Threshold Point Forecast and Example

Forecast models have been developed for each 5

degree band of latitude from 10 through 45 degrees north

latitude (Appendix A). When the forecast latitude LAt

enters a new latitude band, the model associated with that

latitude band should be used.

For example, position reports from hurricane

Henri (September, 1985) were (21.0,64.0) (21.4,65.0) ,

(22.2,66.7) (22.3,67.8) (23.0,68.7). Using the model for

20-25 degrees north latitude yielded the following

4
o
.
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forecasts: (23.7,69.6) (24.4,70.5) (25.1,71.5) . At the

third forecast, Henri was predicted to enter a new region,

and the model parameters were changed. The four step

ahead forecast was made using the new parameters for 25-30

north latitude. That forecast was (25.6,72.3).

Threshold Interval Forecast of One Variable

The time series model developed in the next two
'

sections of the paper is similar to the TARSO model (Tong

and Lim, 1980) discussed in Chapter Three. There are two

major differences between the TARSO model and the hurri-

cane model: (1) all observations on which the forecast is

based are not required to lie in the same region; (2) the

noise series of the hurricane model are allowed to co-vary

at the same lag, while Tong and Lim assume independence.

In addition, Tong and Lim do not discuss the distribution

of the forecast.

Definitions

t-(k+l) is the time index of the last observed position

(qi ] i=0,...,k is the set of old grid (R-) psi weights

j is the index of the region

(Ei) i=0,...,Z-k-l is the set of new grid (Rj+ I ) psi
weights

k is the number of forecasts in Rj

Z is the number of steps ahead from the last observation
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New Grid Psi Old Grid Psi
Weights Weights

Eo [t-(k+1)]+.

Ex-k-2 t+1

EX.-k-l boundary Rj+ 1

~tk1 first forecast t-(k-O)

last observation 0 t-(k+1)

Figure 4.2 Sample Hurricane Track
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ett_(k+lj(Z,k) is the £th step ahead forecast error from
time origin t-(k+l)

(at) is the noise series from R at N(O~oa 2)

is the noise series from Rj+ 1 nt N(O,a n2)

f 0 t s
cov(at,ns) =

P aaL n t s

p is a correlation coefficient

LAt+3 is observed latitude at time t+3
t+th

LAtI(z) is the ith step ahead forecast; time origin t-1

LAt is the the first forecast value in Rj+ 1

p is the order of the autoregressive model

( i] is the set of autoregressive parameters for Rj

[ i) is the set of autoregressive parameters for Rj+1

Consider, for example, the AR(1) process where the

true model is

LAt = *ILAtI + at

Lth
From time origin t-k , the k step ahead forecast for LAt

is

LAt-£(X) I LAt-£(£-I)

That is, the Lth forecast depends on the £-is t forecast.

Similarly,

LAt_ £ (Z - I ) = 01 LAt-£(t-2)

LAt-t(1) = *i LAt-t
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where LAt- is the last observed latitude. The the Xth

step ahead forecast may be represented in terms of the

last observed latitude as

LAti(t) = 01 LAt_ £

Let L=k+l. Then

LAt-£ = LAt-(k+l)

the time origin in Figure 4.2. For the true model,

looking forward from t-(k+l) (i.e. t-)

LAt_£+ 1 - PILAtt + at_,+,

LAt_£+ 2 = ILAt-__ + at_£+ 2

= I( ILAtk + Olat_,+l) + at_,+ 2

LAt_1+ 3 = OILAt_£+2 + at_£+ 3

= 0101 I LAt- + 0101at_£+1 + lat_£+ 2 + atk+3

= t0ILLAt_ + i E-lat_(,_l) + + Olat_ + at

Then the £th step ahead forecast error is

LAt - LAt_£(Z) = 01l£-at_(tl) + . + Olat-l + at

= G£_lat_(L£l) + . + *1at-1 + oat

The order of the AR model does not appear in the

expression of the error in terms of the psi weights.

Indeed, as was shown in univariate forecasting, the psi

weights are obtained by inverting the O(B) polynomial
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which generates an infinite series for every order of AR

model. Thus, if the forecast errors are represented in

terms of the psi weights, the analysis of the forecast

error applies to all orders of AR models, so it is

functionally sufficient to consider the AR(1) process in

developing the approach.

Referring to Figure 4.2, consider the AR(1)

forecast of LAt+I - The forecast is made using a "new" set

of parameters from Rj+I. From time origin t, for the true

model

LAt+ 1 = 4ILAt + nt+ 1

The one step ahead forecast of LAt+ 1 from time origin t is

LAt(1) = 0ILAt .

For the time origin t-1 the true model is

LAt = OILAtI + at

and the one step ahead forecast from time origin t-1 is

LAt I (1) = 01LAtI

and the forecast error is

et-l(l,0) = LAt - LAtI(I) = at

For two steps ahead,
*,

LAt+ 1 = 4ILAt + nt+1

= tIjILAtI + 'lat + nt+ 1

, LAt I ( 2 )  = 0ILAtI(1)
I = 0 I0ILAt_I

et-l(2,O) = Olat + nt+1

... .. .. -. ... . -•. . ..-....- - , -.",. - % . . .- .• -. ., -. .. ,.... -• -, - ,. - -'.', ..
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* Similarly, for three steps ahead (time origin still t-1)

LA t+2 = Ok+j+ T1t+ 2

= 0l4)i~iLAtl + 4- 14 at + (?)ift+i + 'It+2

LAt_1.(3) = iDLAt_1.(2)

et_,( 3 ,O) = 4$1 41.at + 4 1t+1 + "+

In general, for X. steps ahead,

et_11,0)= t,_..lat + E2.-2qt4-1 + + &n-+

For time origin t-2, and for one step ahead

LAtij = 41 LAt-2 + at_,

LA -.2 (1) = ,LAt-2

For two steps ahead,

LAt = OiLAt.. + at

= 01iILAt-.2 + *latlj + at

et...2(2,1) = Olat-1 + at

* - For three steps ahead the new model must be used. Then

LAt+i = OILAt + flt+I.

= 4*110IiAt. 2 + 010iat-1 + 11+ n

LAt-.2 (3) = DjLAt-2 (2)

= 01 10IiAt-2

et-.2 (3,1) = 0101at-1 + 4,lat + nt+l
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And finally, for four steps ahead,

LAt+ 2 = tILAt+I + nt+2

=t l PI LAt_2  + $l
4'1lat-l + 1llat + 4int+l + nt+ 2

LAt_ 2(4) = $iLAt_2 (3)

1 iP11ILAt_
2

Set- 2 (4,1) = 0l D41 at-i + sislat + Int+j + t+2

Three important general conclusions are evident.

(1) The weight coefficients of the a's are the same

within a particular forecast.

(2) The ' weight coefficients of the a's are the same for

all steps ahead. In other words, the coefficients of the

a's depend on k, the number of forecasts that fall in Rj.

(3) The C weight coefficients of the n's are the usual

psi weights for a "within" grid forecast.

Thus, by a two term induction, (Z and k), if the

forecast origin is t-(k+l) and the first forecast in Rj+1

is LAt, then

et-(k+l)(£,k)= £_k-l[ kat-k+*k-lat-k+l+ '' + O a t ]

*(4.36)? + _'Ekk_2nt+l+E£_k_3nt+2+---+Eont_(k+l)+£ 4.6

Equation (4.36) gives the £th step ahead forecast error

for the univariate threshold model when k forecasts fall

in Rj, kak+l. aiN(O,0a 2 ) and p*1"N(oa 2). So, when n

is sufficiently large, et_(k+l)(tk) is Normally

S

.'1 " ; - ' " : '' ; " " ':" " , " " '"i ' '" ' " " " :: " "" € " : ' ' '" "" " " " "-



84

distributed. The mean of the distribution is

E[e t_(k+I) (i'k ) ]=£Ekal kE [a t -k ]+ k - IE [a t +k + l ] + ..

+oE[a t ]  + E£_k_2E[nlt+l]+'''+&(oE[nt_(k+l)+£]

=0

Within a grid, the noise series does not co-vary with the

lagged values of the same series. Also, it is assumed

that different noise series are uncorrelated at different

time indexes. Therefore, since each of the noise terms in

(4.36) has a different time index, there is no covariance

between terms. Consequently,

[et 2(,k) ]= 22 2+... 2 2t-kl -k-i( k2+"k-1 02 a

+(L£-k-2 £-k-3 an2 (4.37)

is the variance of the error distribution.

Equation (4.36) is easily generalized for

multiple threshold crossings. At each threshold, all

previous psi weights are multiplied by the psi weight of

the new model. The error variance in (4.37) is merely

increased to include the psi weights of the new grid.

Threshold Interval Forecast Example (Latitude)

The following position series is from hurricane

Frederic (1979): ((12.0,45.1) (12.5,47.0) (12.9,48.7)

(13.3,50.4) (13.8,52.3) (14.3,54.1) (14.9,55.5)

(15.5,57.2) (16.3,58.8) (16.7,59.8) (17.1,60.8)
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(17.5,61.8) (17.8,62.8) (18.0,63.8) (18.1,64.8)

(18.1,65.8) (18.1,66.8))

Suppose 13.8 is the last observed latitude. Then fore-

casting with a lead time of 72 hours via the appropriate

model yields the following forecasts:

C(14.2,54.1) (14.6,55.9) (15.1,57.6) (15.4,59.1)

(15.8,60.6) (16.2,62.1) (16.6,63.5) (17.1,64.8)

(17.5,66.1) (18.0,67.4) (18.4,68.6) (18.8,69.8))

For latitude, the 48 hour forecast of 17.1 has estimated

variance

V~e 5 (8,2)] 52 ( 2+0202a 2 +(42+.E0 2)T 2 Ti,

For the grids 10-15N and 15-20N the variance estimates are

2 2 2 2 2.Ga2  (8.7)2 75.7 , ( 2 (11.2)2 125.4

From the univariate forecasting confidence interval

example o=1, $1=1.696, 2=2.179 . For the new model

LAt=1.766LAt_I-.776LAt 2 -. 106LAt 4 +.106LAt_ 5

-. 010LOtl •010LOt_2+.•073LOt_ 4 - . 073LOt_ 5 .  ..

For this example ignore the longitude coefficients.

This yields

to=i, ti=1.766, t2=1.766(CI)+(-.766) (Co)=2.353.



* . - -. --- .- - - - - - - - - -- *

86

Similarly,

F3 =2.813, C4=3.059, and C5=3.166

Then the estimated eight step ahead error variance and

standard deviation are

V[e 5 (8,2)1=10.023(8.624)75.7+(26.926)125.4=9919.904

SD[e5 (8,2)]=99.6 n mi

Threshold Interval Forecast of Two Variables

Definitions

t-(k+l) is the time index of the last observation

'1,i '12,i i=0,1,...,k is the ith set of psi

-21,i *22,i- weights for the old region Rj

Subscript (11,i) is latitude predicting latitude at lag i
Subscript (12,i) is longitude predicting latitude
Subscript (21,i) is latitude predicting longitude
Subscript (22,i) is longitude predicting longitude

j is the index of the region

Elli E12,i I i=0,1,...,-k-1 is the ith set of psi

L_21,i &22,i-I weights for the new region Rj+ 1

k is the number of forecasts in Rj

L is the number of steps ahead from the last observation

el,t-(k+l)( Ik) is the jth step ahead forecast error for
latitude from time origin t-(k+l)

e2,t_(k+l)( 2Ik) is the £th step ahead forecast error for
longitude from time origin t-(k+l)

alt t=0,1,...,k is the latitude noise series from Rj

. - . - .- .- . .- - + - -.. - -.- . - . '. - . - . .. .- . . .- , ,- .'. ," -. . . . . " " . . .' + ._ . ., - • .- - . a.
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a2 t t=0,1,...,k is the longitude noise series from Rj

ait % N(0,Oai 2 ) i=1,2
nit t=k+l,...,n is the latitude noise series from

"2 t t=k+l,...,n is the longitude noise series from Rj+ 1

nit ^. N(O,ani 2 ) i=1,2

0 t x s
cov(ait,njs) = t

Paaionj t =

FLAt+3  is observed latitude and longitude at time t+3

Lnot+3 -I

FLAt-I(-) is the step ahead forecast from time t-i

LLOt 1 (E)

KLAt
is the first forecast to fall in Rj+

LLOtI .,

F o l i 01 2 ]L21 0 are the lag 1 AR coefficients for Rj

I i12 7are the lag 1 AR coefficients for Rj+ I

L- 2 1 '21

Consider the AR(l) bivariate process where

LAt = 4IILAtI + 412LOt-l + alt

LOt = 421LAtI + *2 2LOt-l + a2t

This may be written in matrix form such that

.A.:. .
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L "t 01 0P '12 LAt..i al

LLOt- L-022 LLOt-I + La 2 t-

Referring to figure 4.2, consider the bivariate forecast

of (LAt+ILOt+1). The forecast is made using a "new" set

of parameters from Rj+ I . From time origin t, for the true

model

LAt+I] = Pl FII12] fLAt + 11t+1

t+Ij (P21 (D22-_ LLOt- Ln2t+-]

• The one step ahead forecast is

!I At( I:) = (Pi [1 L A t-

ZO 1 0~ 11$P12] LLL~t~l  21 022_ _Lt_

For a time origin of t-1, for the true model

LAt  F = 1 12 alt

LPLOt 02 1 02 2  LOt-1 a2tl

the one step ahead forecast is

LLAt-()7 01 0'~i'127 LAt-1 7
• ! F L t-l MI = F +I F- t--

LL~~ i i ) j L021 022- Lot-i_

and the forecast error is

elt_1(110) LAt  LAtI (i) al

Le2t-l (1,0)J LLOtJ L_LOt-I(1)_J La2t
For two steps ahead,

SLAt+I = D11iD12 LAt + nlt+l I

-LOt+lJ LD21 D221 LLOtI Ln2t+lJ

S.- , - .



-AI7S? ?42 TINE SERIES PREDICTION OF HURRICANE LANOFLL(U) AIR 2/'2
FORCE INST OF TECNH RIGHT-PATTERSON RFD OH T F CURRY

I NRY 86 AFIT/'Cl/NR-86-73D
UNCLASSIFIED F/O 4/2 ML

Eommmhhmhhl
EEshmhEmhhhhhI
sEoEEoEEE
L'.-



1 1364.11111 1.11 20 __
1.8

1111 5 - 1.6

MICROCOPY RESOLUTION TEST CHART

,A* INA, kllA NI A'!

",+ ,N+.L t+.+ , +.,.!..t.,, . i

- * %, ~- - ~. ~ ,.. - * . . 1~ -~ V V +-

I,6



89

21 022I [L 21 02 2 I L-LOt-l a2 tl Ln 2t+1 -

Then the forecast error is

relt-l(2'0) = Fil 4127 Falt7Fnlt+ie2t-l(2'0) t 21 422-J La2t-J L 2t+l-J

For time origin t-2, for one step ahead

1 LAt-li = 0ll12 1 iLAt-2+ --alt-l

LLOt-I1 L021 0221 LLOt- 2 1 La 2 t-il

and the forecast error is

rjlt-2(1,1) = alt-.11

e2t-2 (1,1) = La 2 t-Il_

For two steps ahead (time origin still t-2)

LAt - = ll 012- LAt-l7 + [iat

ELOt- 1021 022 tLot-l La2ti

r-OIl 01 2- Oil 12 ] [-LA t-27 [-alt_- [alt7

=L 2 1 022J 21 02 2J LLOt-2J+La2t-2
J  La 2 tJ

and the forecast error is

Lelt-2 (2,1) = oil 12 K ait-l +Kalt]

Le 2t_2 (2,1) = [ 221 la 2 t-i a2t l

For three steps ahead, the new model should be used. Then

LO t+lf = F 114 12 F Lt I+F Tlt+l1
LLt+l-J Lp 21 '22-J LLot-J LT12t+I-J

= 0127F Oil 012F 7il 0121 F LAt-2 7

L0 2 1 "22J I_ 21 022J 2 1 022J LLOt-2-
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+ 1  P22-J L21 22-1 La 2 t-l--

, 011 012] [ al t-

OP2 1 (P2 2 a 2 t -

+ Slt+l]

L2 t+1

These results are the multivariate analogy

identical to the univariate case, except they are in

matrix form. Thus, the conclusions are similar. If the

forecast origin is t-(k+l) and the first forecast in Rj+ 1

is (LAtLOt), then the Lth step ahead forecast error is

given by

7elt-(k+1) (t'k) =ll,£-k-l &12,k-k-i

[e2t_(k+l) (,k)] [21,-k-i 12,£-k-i1

g 4 lk 12 k 7  alt-k *11, 12,o ] alt
L L'2 i ,k * 2 2 ,k. La 2 t-kJ + 2 1 ,o *22,0 --a2t-

*F-Ell,k2 l2,k-k-2- Fnlt+l +

+. -21,i-k-2 E22,-k-2_ Ln2t+l1 +

+ Kllo E12,o nlt-(k+l)+k (4.38)
1E 2 1, o &2 2,0- L 2 t- (k+1) +Z1

The psi weights for (4.38) are the values calculated from

(4.29) and (4.30). As in the univariate case, the

: . 4* . - . * . . -
* . . . .
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individual forecast errors are a linear combination of

independent Normally distributed noise terms, so they are

Normally distributed, and the distribution of the bivar-

iate threshold forecast is bivariate Normal. The covar-

iance matrix for the Lth step ahead forecast can now be

calculated. From equation (4.38) ,

elt.(k+l) (L,k) = Eltk11,+l2tk12,~l-

+ ..

For notational convenience, this can be rewritten as

elt-(k+1l~k) =lt..kaltk k2t- k2t-k+* +c t+c2ta 2 t

+C 2t-(k+l)+Lfl2t-(k+l)+t

Then,

Ete t.(k+1) 2(i.,k) I= (citk Oa

*+(c 2 t-k
2 i."+c2 t 

2 )a22

+2c t-kc2t-k+***+cltc2 t)cov(alta2t)

2k..+ 2 2

+2(clt+ 1c2 t+l+*'+clt-(k+l)+Lc2t-(k+)+)cov(nlltn2t).(
4 .3 9 )
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Similarly,

+(21,tk1~12k+22kC22k)a2t-.k

+(E2,t-kl~llo+E2,k-k1&21o~al

and this may be rewritten as

E ~ 2I~)=d 2 +**d2 2
E 2t-.(k1) 2 ,)I=(lt-k +' +d1. l

t2t-k2 ~ d2t) a2

+2 (dt kdt +k.+ditdt coy [alat

f(lt+i +"*+dlt (k+ilr+t 2)a1i2

22 2+(dt~l+**+d2t-(k+1)+z )0rn2
+2 (dit+id2 t+i+'

+dlt-(kl)td2t-(kl))cv[lt)2t; (4.40)

so,

Eti.(k+1)(,k)e2t(k+i)(Zk)]

= (clt..kdltk+"*+Catdit)'al 
2

+(c2t..kdlt..k t" *+C2tdlt) kay [alta2tl

+(C 2t-kd2t-k+ ***+C2td2t)0a2 2

+(cl~ldt~l+"+Ct-(kl)+dlt-k~l+L)GIJr
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+[(clt+ld2t+l+" ' ' +clt - (k+ l )+d2t - (k+ l )+)

+(c2t+idlt+l + """+c2t-(k+l)+dlt- (k+l)+L))coV[nln2

+(c2t+d2t+l+*"+c2t-(k+l)+td2t-(k+l)+)c2 2  .(4.41)

Although these calculations are tedious, it

may be noted that equations (4.39) through (4.41) are

the Kronecker product of the error terms defined by (4.38)

where the Kronecker product is

ee = el2 e1 e2  (4.42)

Le 2 l -e I e 2  LeIe 2 e 2
2 j

The expected value of (4.42) is the covariance matrix of

the forecast of interest.

The case of multiple threshold crossings is easi-

ly handled. The first psi weight matrix of the new grid

is used to multiply all previous psi weight matrices.

Thus, the constants in the 2 by 2 matrices of equation

(4.38) change, and an additional sum is needed to account

for the new grid. For example, in the case of two thres-

hold crossings (the most that would normally be expected

in 72 hours) where there are kj, k2 , and k3 forecasts in

the first, second, and third grid respectively

(kl+k 2 +k 3=z), - , L , and dre 2 by 2 psi weight matrices,

and a, n, and b represent the applicable noise terms, a

notationally simplified version of (4.38) is given by

"."~~ ~ ... . . . . ... 0
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LeL k311L k21 ( kl FH l l2 a 'J La2 l

L"I L 11 LJ L 2-J+1k3-217 b 1V+ +Zso il]

Equations (4.38) - (4.41) can be used to

determine the confidence ellipse around a forecast that

crosses a grid boundary. The equations are the theoreti-

cal contribution of this research.

Bivariate Threshold Interval Forecast Example

The same hurricane track is used in this example

(hurricane Frederic 1979). It should be noted that the

correlation Prd standard deviations are based on all

storms rather than only category five storms. This

increases the standard deviations used in the confidence

ellipse by approximately 40 percent due to the inclusion

of accelerating storms. The increase affords additional

protection when forecasting storms that are not category

five.

Details of the following calculations used to

compute the 90% confidence ellipse are in Appendix C.

Psi weight matrices and covariance matrices for the one
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step ahead forecast for each grid are in Appendix B. For

this example, Frederic is forecast from origin (13.8,52.3)

which is the fifth report of the series (time origin 5).

Two forecasts fall in the old region from 10-15N (k=2).

The following procedure is used to defir the 90% confi-

dence ellipse centered at the eight step ahead forecast:

(1) Compute the point forecast using the models in

Appendix A. Here the point forecast is (17.1,64.8).

Note the number of forecasts that fall in the old

region (k=2).

(2) Write the models in O(B) polynomial form (see

Appendix C).

(3) Compute the psi weight matrices for each region the

storm crosses up through the eleventh term. Eleven

matrices (12 including o) are needed to compute the

variance of the 12 step ahead (72 hour) forecast.

(4) Let Za be the covariance matrix of the one step ahead

forecast errors for the old region. E is the

covariance matrix of the one step ahead forecast

errors for the new region. Form the Kronecker

product of (4.38) as shown in (4.39) through (4.41)

and Appendix C. This yields Z8 the estimated

covariance matrix of the eight step ahead forecast.

(5) Compute the eigenvalues A,, and A2 ( 2 is the

largest) and eigenvectors for Z8 " Compute the
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estimated coefficient of correlation (p) for Z 8-

(6) Then the approximate 90% confidence ellipse for this

example is

(xi/168.6)2-2(.076) (xi/168 .6)(x 2 /1l0.9)+ (x2 /l10.9)
2

= 1.645(1-(.076)2)

where the minor axis is oriented on a magnetic

heading of 4.99 degrees and is centered at the point

forecast.

I.
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CHAPTER 5

FORECASTING RESULTS

The results of applying the models in Appendix A

to historical hurricane tracks are presented in this

chapter. The analysis that led to the use of velocity-

stationary (category 5) models is discussed. Next, the

actual empirical models are presented and compared with

NHC official forecasts, and forecasts for storms from 1945

through 1983. Then the results for 1985 storms are

discussed.

Predicting the Stationarity Category

Transition matrices were investigated as a means

of forecasting the correct future stationarity category.

A window of seven previous six hour observations from each

track was used to develop the matrices. Segments of longer

length missed short term accelerations, and segments of

shorter length resulted in large variances in the parame-

ter estimates. At each new position, the stationarity

category was determined. For example, at the seventh

position report, the stationarity category was based on

positions one through seven. At the eighth, the station-

97
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* arity category was based on positions two through eight,

etc.. In this manner a storm category (direction of

movement) was associated with the terminal point in each

"window". Numerical results of this analysis are

presented in Appendix E.

A transition matrix was then constructed based on

a previous category. For example, regardless of which

category the storm was in at position seven, it was most

frequently in category five at later positions. This

implied that any acceleration of the storm was short

lived. Consequently, for six hour data a good guess of

the future category of any hurricane would be latitude-

velocity, longitude-velocity stationary.

The Forecast Models

Forecasts were made using the category five model

in each latitude band. The model is bivariate AR(4) in

* -velocity where latitude and longitude are functions of

each other at lags one and four. The model uses five

previous positions (differenced once to obtain four

velocities), and thus adapts itself to the changing motion

of the storm.

There are definite relationships between the

model structure and known meteorological phenomena asso-

ciated with hurricanes. Specifically, segmenting by
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latitude band relates to large scale climatology differ-

ences observed as the distance from the equator increases.

The lag one parameter captures persistence, and the lag

four parameter models the diurnal effect of the sun (the

slowing of the storm at night).

Probably the most significant result is that the

forecast parameters are based only on velocity-stationary

hurricanes. It is not valid to use accelerating storms

in a velocity model. Admitting such storms to the data

base, when forecasting the next change in position, biases

the parameter estimates and increases the variance of the

forecast error.

The forecast models for the five degree latitude

bands from 10 degrees north latitude to 45 degrees north

latitude are listed in Appendix A. Three digits after the

decimal are reported (even when insignificant) so that the

form of the models remains the same in each band. A

parameter standard deviation is reported for the lag one

parameter value even though it was derived directly from

the lag two value (by aOding the constant one). The lag

one parameter value increases as the storm moves north and

remains fairly constant above 25 degrees north latitude.

Also, latitude seems to be a better predictor of longitude

as opposed to predicting via the reverse relationship. In

general the lag four relationships are weak, but they are

*. . . -... ~- .* .~.*~-* -. *.:-.. * *-* *. ,
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significant for some regions.

To use the models, the most recent position

report becomes (LAtI, LOtl), and the forecast (LAt, LOt)

is calculated for a six hour leadtime. Twelve to 72 hour

forecasts are then obtained by treating (LAt, LOt) as the

last true position and then forecasting another 6 hour

increment. When LAt moves into a new latitude band the

model associated with that latitude band should be used.

Great Circle Distance

A popular measure of forecast accuracy, and the

measure used in this dissertation, is the great circle

distance between the actual and the forecast position of

the eye of the hurricane (Pike, 1985). Let (LAF,LOF) be

the latitude and longitude of the forecast position, and

let (LA,LO) be the actual position. Then the great circle

distance in nautical miles between the two points is

60 cos-1 [sin(LAF)sin(LA)+cos(LAF)cos(LA)cos(LO-LOF)]

Forecast Results

Overall forecast errors for all storms from 1945

through 1983 in each latitude band were computed using

great circle distance (Table 5.1). Sample standard devia-

tions (n mi) and sizes are reported below each mean error.

Similarly to Neumann and Pelissier (1981), the average
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error was computed for the southern (10-25N) and the

northern (25-45N) region and then summarized (Table 5.2).

Results are compared with the NHC average errors. The

TABLE 5.1

TIME SERIES BEST TRACK MEAN FORECAST ERRORS (N MI(KM))

Forecast interval (hours)
Region 24 48 72

110-15N 57.9(107.3) 131.9(244.4) 204.8(379.5)
45-83W (35.1,190) (75.7,103) (118.1,50)

15-20N 70.6(130.8) 154.6(286.5) 253.0(468.8)
145-87W 1 (47.6,721) (109.4,403) (160.0,221)

120-25N 76.6(142.0) 165.6(306.9) 260.1(482.0)
145-100W (49.9,956) (96.4,519) (135.2,279)

25-30N I 96.2(178.3) 203.2(376.6) 293.9(544.7)
45-100W1 (66.6,889) (131.6,448) (163.7,223)

30-35N I 107.7(199.6) 242.4(449.2) 358.6(664.5)
145-80W (67.2,598) (138.0,365) (188.9,230)

35-40N I 121.0(224.2) 267.5(495.7) 391.8(726.0)
145-76W (74.3,344) (132.8,176) (199.5,79)

40-45N 138.7(257.0) 269.8(500.0) 206.3(382.3)
45-70W (79.7,106) (178.1,47) (203.9,21)

time series storm tracks are not the same as those used by

Neumann and Pelissier because the time series sample is

larger. However, time series analysis of 1973-1979 storms

in the southern region (a subset of the 1945-1983 data

base) produced deviations of less than 10 n mi from the

: -'-,.°? -< - v ? :. :-- - --. < --- -> - ---- ? > - >-,.-- - .- . ---- ? ----<
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reported average errors for the entire sample (Table 5.2).

Thus, comparisons should be fairly accurate. Assuming

equivalent NHC standard deviations and sample sizes, the

time series (TS) errors (Table 5.2) are significantly less

(95% confidence) than the NHC errors at 48 and 72 hours.

It should be noted that TS results are based on

best track data instead of operational position reports.

Best tracks are constructed in a careful post-storm

analysis that combines position data from all available

sources. Some subjective smoothing is then employed to

plot the best track. Neumann observed that the average

error for real time position reports is approximately

TABLE 5.2

COMPARISON OF MEAN FORECAST ERRORS (N MI(KM))

Forecast interval (hours)
Group Source 24 48 72

1. Entire sample NRC 110.1(204) 244.0 (4 52) 3 62.0 (6 71)
TS 109.8(203) 214.6(398) 312.0(578)

2. Northern region NHC 131.3(243) 304.4(564) 421.0(780)
TS 126.5(234) 251.0(465) 351.5(651)

3. Southern region NHC 84.5(157) 179.2(332) 317.3(588)
TS 92.4(171) 177.9(330) 272.2(504)

20 n mi (Barney, 1983). In order to approximate true

error, the time series errors listed in Table 5.2 include

an additional 20 n mi error over the actual value obtained

using the model.
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To better compare the procedures, the five storms

* in Table 2.1 were forecast using operational position

reports. The average forecast errors were 94.8(176),

163.1(302), and 227.4(421) n mi (kin) as compared to

77.3(143), 179.4(332), and 317.3(588) for the NHC. The

differences are significant at the 95% confidence level at

24 and 72 hours. This analysis also confimed that 20 n mi

is an appropriate amount to add to the best track

forecasts to account for operational position error.

In 1985 there were eleven hurricanes and tropical

storms in the North Atlantic region. The National Weather

Service office in Austin issued position reports for eight

of them. Two of the eight storms were at sea for less

than five position reports and could not be forecast by

the time series model. The remaining 6 storms yielded 55

24 hour forecasts, 31 48 hour forecasts, and 10 72 hour

forecasts. The average forecast errors for the time series

* model were 118, 273, and 241 n mi respectively, indicating

that the storms were not category five. Indeed, looping

and accelerating storms caused the NHC to alert wide areas

of the Gulf coast where four of the storms came ashore.

Forecast accuracies for the NHC will not be available

until late in 1986.

It is evident that the time series approach is

valuable in reducing forecast error especially for the
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long range forecast. The fact that it rivals the official

forecast accuracy of the National Hurricane Center is

significant. This statement is made in consideration of

the fact that the time series model has used only latitude

and longitude as predictor variables, while the NHC has

available a plethora of predictive tools. Incorporation

of exogenous variables into the time series model, and

various extensions discussed in Chapter 6, can only be

expected to improve the forecast accuracies.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

Both the theoretical and application oriented

results of Chapters 4 and 5 are summarized in this

chapter, as they relate to hurricane forecasting and

threshold autoregressive time series models. Topics for

future research are also discussed.

Hurricane Modeling Results

The original objectives of this research were:

(1) to predict hurricane movement based on time series of

observations of latitude and londitude taken at six hour

intervals, (2) to determine the confidence intervals

surrounding the forecasts, and (3) to use a model whose

coefficients could change as the storm moved. The models

were to be categorized by time of year and region of the

ocean in which the storm was located.

The first problem encountered in the research

involved construction of the data files. Segmenting the

hurricane tracks by region resulted in several short

bivariate time series, each containing approximately 10-14

observations. These tracks could not be directly

concatenated, because the last observation of one storm

105
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would have been used to predict the first observation of

the next storm which was intuitively incorrect. The

lagged data needed to be "storm unique." The commercially

available time series computer programs were unable to lag

the data from the segmented tracks in the required manner.

A FORTRAN program was written to lag the data six time

periods, and SPSS was used to compute regression

coefficients.

The initial forecasting model (in which the

position forecasts were based on past positions) was

nonstationary. The latitude and longitude series were

differenced and the coefficients recomputed. Two findings

were immediately apparent. The level of differencing of

the latitude and/or longitude series required to satisfy

stationarity resulted in nine possible stationarity cate-

gories for the storm. These categories were related to

direction of movement (Table 4.1). In addition, parame-

ters significantly different from zero occurred at lags

one and four. It was believed that these parameters

related to known meteorological phenomena associated with

hurricanes. Specifically, the lag one parameter captured

persistence, and the lag four parameter modeled the diur-

nal effect of the sun (the slowing of the storm at night).

For storms that were velocity-stationary (the

latitude and longitude series were differenced once) the

;! - -'"; ' , . :, ,:1*., : . )" , : - :'::: .~ i -::::: i. i :-;; : i/ i,,: , .,""- -
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last change in storm position was the best predictor of

the next change in storm position regardless of location

or time of year. Segmenting data by month increased

forecast accuracy for some months, but resulted in an

overall decrease in average forecast accuracy. Time of

year was discarded as a predictor variable. By trial and

error it was determined that segmenting the North Atlantic

by latitude bands eight degrees in width with a three

degree overlap resulted in the smallest forecast errors.

This led to a "threshold" approach in which parameter

values were allowed to change when the storm crossed into

a new region. There were nine models for each region

depending on the stationarity category of the storm.

Forecast errors based on the velocity-stationary models

were small.

In order to increase forecast accuracy, empirical

transition matrices were computed in a Markov chain

approach to modeling the transition of storms between

categories (Appendix E). It was determined that future

storm categories were usually category five (velocity-

stationary) regardless of the current category. This

implied that storm accelerations were short lived. Thus,

a velocity model, especially one based on the last change

in position, was expected to accurately forecast all cate-

gories of storms, at least for 6-hour position report data.

d
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For the time series model the average error for

the 24 hour forecast is 110 n mi. The official forecasts

of the NHC have the same average error. At a 72 hour lead

time, the ave3rage error of the time series model is 312

n mi as compared to 362 n mi for the NHC. The accurate

long range forecast is probably due to two important

characteristics of the time series model. For a station-

ary model, the "importance" of the last observed velocity

deuays exponentially as the forecast lead time increases.

Thus, if the last velocity observation is inaccurate, its

effect diminishes rapidly. This rapid decay causes the

long range forecasts to be based primarily on the mean of

the latitude and longitude series, which is the average

motion vector of past storms in the region. This suggests

that, on the average, in particular regions of the ocean,

* hurricanes move in the same direction.

Future Hurricane Modeling

In this study, the velocity-stationary model is

used to predict movement of all hurricanes. This is a

very "broad brush" approach. Although category five

occurs most frequently, there are eight other categories

into which a storm can be classified. The typical storm

spends only 30-40 percent of its life as a category five

storm. The rest of the time the storm is accelerating.



109

The key to more accurate movement prediction is the

ability to forecast these accelerations. This is an

extremely difficult problem whose solution has always

eluded hurricane scientists. Predictors such as

surrounding pressure fields, maximum wind velocity, upper

level steering winds, and central pressure seem to be

useful for some storms, but not for others. It is

possible that certain of these exogenous variables are

good leading indicators only for storms in a particular

category.

It is also possible to make better use of the

category transition matrices. There are nine models for

each grid. Another forecasting approach would be to

examine the percentage of storms that (say, beginn.ng in

category five) are in each of the categories 48 hours

later. 48 hour forecasts could then be calculated by

combining forecasts from each of the nine models, weighted

by the applicable percentage of storms that historically

transitioned to that category.

Satellite photographs taken at 30 minute

intervals are available. These photographs could be

processed to yield position reports. The use of more

frequent observations might increase the significance of

the parameter estimates corresponding to the 24 hour lag

and/or introduce a moving average parameter.
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In this study the data were only lagged up to six

periods. Coefficients should be computed at longer lags

to determine if there are other significant predictor

variables. Caution must be exercised when lagging the

data depending on the size of the grid containing the

storm track. In the case of latitude bands five degrees

in width, storm tracks with many observations are usually

associated with storms moving in a westerly direction.

Thus, the variables beyond lag 10 (or so) are not from a

representative sample of hurricanes.

Theoretical Results

The bivariate threshold autoregressive model

used in this research represents a piecewise linearization

of the hurricane movement process. It is slightly

different from the TARSO model developed by Tong and Lim

(1980) because allows a contemporaneous covariance

structure between latitude and longitude.

In order to compute forecast confidence

intervals, it was necessary to determine the bivariate

distribution of the forecast errors. A psi-weight repre-

sentation of the univariate and bivariate threshold auto-

regressive process was used to show that the distribution

of the forcast errors was bivariate Normal. This allowed



the point forecast to be bounded with an approximate

confidence ellipse.

In addition, it was discovered that when a fore-

cast sequence contained a threshold crossing, the confi-

dence interval calculation required that the psi-weight

associated with the first forecast in the new region be

multiplied by all the previous psi-weights. This resulted

in an increase in the size of the confidence region that

accounted for the change in model parameter values as the

threshold was crossed. This adjustment was shown to be

necessary in the univariate and bivariate cases.

Future Theoretical Development

The useful theoretical extensions are based on

the possible improvements that might be made to the

forecasting model. If it is possible to forecast the

hurricanes by using a weighted combination of models, the

confidence interval calculations will have to be changed

accordingly. If more frequent observations introduce a

moving average component, it would be a theoretical extension

to derive the confidence interval for the threshold ARMA

model. This extension is probably most worthwhile, and

might also be easily accomplished using a psi-weight

representation of the forecast. Finally, a prediction

interval that accounts for the variation of the model



112

coefficients could be constructed. This is a difficult

problem if the psi-weight representation is used because

model coefficients are the product of several Normally

distributed random variables.

Overall Evaluation

The model developed during this study is

important because it groups the storms based on the

stationarity category. The nine categories are a direct

link between the theoretical requirement of stationarity

and the physical movement of the storm. This relationship

means that it is possible to describe statistically the

physical process that causes a hurricane or tropical storm

to stand still, move at constant velocity, or accelerate.

It is believed that application of known meteorological

predictor variables to the different categories would

result in the ability to forecast the stationarity

category. This, in turn, would result in further signifi-

cant decreases in forecast error.



A PP EN D IX A

FORECAST MODELS

LAt.. is the most recent latitude report. LOt. is the most
recent longitude report. Standard deviations of para meter
estimates are in parentheses. When LA enters a new
band, the alppropriate model from that tand is utilized.

110-15NI LAt =1.696LAt-..-.696LAt -2 +.101(LAt .- LAt..s+.048
145-83WI (.07) (.07) (.07) (.04)

LO t =.233(LA t--LA t-2 )-.075(LAt-4 -LAt-5)
(.11)(.12)

+l. 6 O7 LO t-.607LOt2 +.251(LO 4 -LOts+.127
(.07) (.07) (.07) (.07)

115-20NI LA t =1.766LA t..1-.766LA t- 2-. 106(LAt 4-LA t-5.)
45-87WI (.03) (.03) (.04)

(.02) (.02) (.02)
LOt .012(LAi- LAt2 )-.050(LAt 4 -LAts

(.05) (.06)
+1.775LOti- 77 5LOt 2+.088(LO ~- LO ~)+.139
(.03) (.03) (.03) (.04)

120-25N I LAt 1 .849LA t--1849LA t- +.013(LAt-4 -LAt-5)
145-10OWI (.03) (.03) (.03)

-.064(LO t.--LO t-.2 )+.073(LOt 4 -LOt-5)+.054
(.03) (.03) (.02)

LO t =.026(LA t.--LA t-.2 )-.052(LA t-.4-LAt-5)
(.04) (.G4)

+1. 7 7 9 LOtil-.779LOt-2 +.121(LOt-4 -LOt-5)+.067
(.03) (.03) (.03) (.03)

125-30N I LAt =1.777LAt-l-.777LAt- 2+.016(LAt. 4-LAt..)
145-100wl (.04) (.04) (.04)

-.l01(LO t-i-LOt-2 )+.083(LOt-4 -LOt-5)+.071
(.03) (.03) (.03)

Lot =.103(LAt.i- LA t-.2 )-.198(LAt-.4-LA t-5)
(.05) (.05)

+1.8 37 LO t i-.837LOt-2 032 (Lot- 4-LOt-5)+.052
(.04) (.04) (.04) (.03)
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30-35N ILAt = 1.746LAt...-.746LAt..2-.015(LAt..-LAt-5)
45-80W 1(.06) (.06) (.06)t-

Lt=.050(L~t--Lt-.2 )-.030(Lt.4 -L~t-5 )+.7

L =.O50(LAtil-LA t 2)-.00(LAt-.4 -LAts5)
(.08) (.06)

+1.881LOt-.88lLOt-2-. 06(LOt-4 -LOt-5)-.l
04

(.06) (.05) (.06) (.06)

13540 I ~t= 1.73542 ,35LLAt2 .03(LAt 4-LAt-5.)
157W1(.06) (.06) (.06)

-.07(LOt-l-LOt-.2 ).003(LOt- 4-LOt..s)-.OSG
(.08) (.08) (.05)

LOt = .145(LAt.i-LAt. 2)+.125(LAt 4-LAt-.5)
(.08) (.13)

+1.881LOt-.-881LOt-2 -.006(LOt 4 -LOt-5)-.205
(.05) (.05) (.12) (.14)

140-5N L ~ 1.7 2L~ -i-742L t-2 .01 (L~t 4-L t-5



APPENDIX B

PSI WEIGHT AND COVARIANCE MATRICES

The psi-weight matrices are listed from o through p1 1.

10-15N
45-83W

1.00000 0.00000 1.69589 -. 00041 2.18006 -. 00094
0.00000 1.00000 .23301 1.60668 .53652 1.97465

2.51686 -. 00147 2.85208 -. 00222 3.15546 -. 00313
.83347 2.19776 1.01723 2.58356 1.21311 2.96590

3.41529 -. 00408 3.62993 -. 00500 3.81298 -. 00593
1.44244 3.29566 1.69130 3.54926 1.91324 3.79963

3.97084 -. 00689 4.10678 -. 0078( 4.22289 -. 00879
2.11691 4.04808 2.31526 4.28038 2.5136 4.48470

The psi-weights are followed by the covariance matrix of
the one step ahead forecast error computed using all
storms in the region.

75.6900 2.4420
2.4420 201.3561

115-2ON
45-87W

1.00000 0.00000 1.76569 -.00960 2.35186 -.02439
0.00000 1.00000 .01206 1.77455 .03064 2.37436

2.80050 -.04147 3.24963 -.04534 3.67499 -.04304
.05209 2.83877 .02382 3.28640 -. 03011 3.70181

4.06349 -. 03864 4.40934 -. 03434 4.72193 -. 02853
-. 09460 4.07719 -. 16054 4.40979 -. 23253 4.70710

5.00624 -. 02102 5.26492 -. 01224 5.49947 -. 00282
-. 31066 4.97395 -. 39298 5.21358 -. 47683 5.42840

125.2161 -2.9775
-2.9775 257.6025

115
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20-2 5N
* 45-100W1

1.00000 0.00000 1.84867 -.06432 2.56723 -.16898
*0.00000 1.00000 .02610 1.77858 .06857 2.38309

3.17432 -.29669 3.69960 -.36173 4.15842 -.39159
.12039 2.85101 .12420 3.33268 .09955 3.80332

4.56213 -.40421 4.91924 -.41083 5.23258 -.40822
.05982 4.24724 .01387 4.65601 -.03964 5.04549

5.50628 -.39626 5.74493 -.37624 5.95312 -.35090
.10014 5.38938 -.16604 5.71947 -.23538 6.02665

143.2809 6.1945
6.1945 179.5600

2 5-30ON45-100wl

1.00000 0.00000 1.77698 -.10098 2.37029 -.26399
0.00000 1.00000 .10287 1.83734 .26894 2.52809

2.81451 -.46040 3.15533 -.58649 3.43948 -.66503
.46902 3.08971 .48432 3.57154 .38166 4.00860

3.69387 -.71528 3.93228 -.75231 4.14408 -.78303
.21277 4.42070 .01594 4.81731 -.19133 5.18586

4.32554 -.80898 4.47784 -.82946 4.60518 -.84333
.40259 5.52073 -.61655 5.82149 -.83347 6.09115

212.5764 -28.9362
-28.9362 307.3009

3 0-35SN
45-80W

1.00000 0.00000 1.74583 -.04904 2.29962 -.12684
0.00000 1.00000 .05037 1.84062 .13028 2.54479

*2.70874 -.21940 2.99394 -.32865 3.19124 -.44627
.22535 3.13281 .29555 3.69010 .34972 4.21140

3.32638 -.56639 3.41767 -.68491 3.47875 -.79966

.39382 4.69368 .43171 5.13563 .46427 5.54218

3.51908 -.90931 3.54521 -1.01312 3.56167 -1.11073
.49240 5.91698 .51696 6.26278 .53871 6.58173
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270.6025 -63.7864
-63.7864 390.0625

35-40N
45-76W

1.00000 0.00000 1.73508 -.07490 2.27314 -.19593
0.00000 1.00000 .03048 1.88079 .07973 2.65430

2.66497 -.34283 2.85457 -.47828 2.92116 -.59419
.13951 3.33191 .19889 3.91796 .25294 4.42487

2.91666 -.68797 2.87445 -.76019 2.82412 -.81537
.29945 4.86357 .33787 5.24361 .36905 5.57316

2.77979 -.85792 2.74682 -.89159 2.72590 -.91930
.39429 5.85916 .41490 6.10749 .43203 6.32317

336.3556 -11.8191
-11.8191 428.9041

40-4SNI

45-70W

1.00000 0.00000 1.74183 -.06665 2.30179 -.17149
0.00000 1.00000 -.14469 1.83112 -.37288 2.53152

2.73235 -.29594 3.08236 -.43071 3.36253 -.56523
-.64245 3.12881 -.80439 3.60144 -.89091 3.97068

3.58379 -.69279 3.75626 -.80950 3.88867 -.91328
.92390 4.25466 -.91826 4.46862 -.88804 4.62674

3.98864 -1.00347 4.06270 -1.08035 4.11637 -1.14476
-.84346 4.74095 -.79187 4.82111 -.73839 4.87533

367.8724 -68.7230
-68.7230 538.7041
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BIVARIATE THRESHOLD CONFIDENCE ELLIPSE EXAMPLE
(Hurricane Frederic, 1979)

This example illustrates use of the forecast

model parameters (Appendix A) and the psi weights and

covariance matrices (Appendix B) to compute a confidence

ellipse for a forecast that crosses a threshold boundary.

The positions of interest for hurricane Frederic are

[(12.0,45.1) (12.5,47.0) (12.9,48.7) (13.3,50.4)
(13.8,52.3) (13.3,54.1) (14.9,55.5) (15.5,57.2)
(16.3,58.8) (16.7,59.8) (17.1,60.8) (17.5,61.8)
(17.8,62.8) (18.0,63.8) (18.1,64.8) (18.1,65.8)
(18.1,66.8) 3.

From time origin 5 (13.8,52.3), the models in Appendix A

yield forecasts for lead times of 6 through 48 hours:

C(14.2,54.1) (14.6,55.9) (15.1,57.6) (15.4,59.1)
(15.8,60.6) (16.2,62.1) (16.6,63.5) (17.1,64.8) 3

The 90% confidence ellipse for the 48 hour forecast can be

readily constructed. From the model for 10-15N,

LAt = 1.696LAt.i-.696LAt..2 +.101(LAt-. 4-LAt-5.)+-048

LOt = .233(LAt-..-LAt-. 2 )-.075(LAt-. 4 -LAt-..)

160Lt-i- 67LOt-.2+.251(LOt.. 4-LOt...)+.12
7

and for 15-20N,

LAt =1.766LAt-l.-.766LAt- 2-106(LAt.. 4-LAt-5)

-.010(LOt..-LOt. 2 )+.014(LOt- 4 -LOt..) +.0
5 3

118
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LOt =.012(LAt-..-LAt-. 2 )-.050(LAt-. 4 -LAt-..)

+l. 7 7 5 LOt- .775Lot-2 +.88(Lot-4.Lot-5)+139

These models can be specified in terms of the noise series

alt, a2t, rlt, and '12t which represent the latitude and

longitude shocks in the region 10-15N, and the latitude

and longitude shocks in the region 15-20N respectively.

First represent the models in terms of the c (B)

polynomials. The polynomial for 10-15N is

LAt = (l.696B-.696B 2 +.1OlB4 -.1OlB5)LAt + O.OLOt +alt (Cl)

Lot = (.233B-.233B2 -.075B +.075B )LAt

+(1.607B-.607B +.25B . 251B )LOt + a2 t (C2)

and for 15-20N,

LAt = (1.766B-.766B2 +.106B-. 106B )LAt

+(-.O1OB+.010B2 +.014B 4 -.014B5 )LOt i (C3)

Lot = (.012B-.012B2 -.050B4+.050B 5 )LAt

+(l.775B-.775B +.088B -088B )Lot + '12t (C4)

Next solve (C3) and (C4) for LAt and Lot in terms of the

noise to yield, for 15-20N

LAt =a/b

where a =((1-1.775B+.775B
2 -. 088B4 +.088B5 )alt

+(-.O1OB+.010B2 +.014B 4 -.014B5 )a 2t

and b =((1-1.766B+.766B
2-.106B 4 +.106B 5 )

(1-1. 775B+.775B 2-.088B 4 + .088B 5)

-(-.OlOB+.010B 2 +.014B 4 -.014B5 )

(.012B-.01B2 -.050B4 +.050B 5) . (C5)
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LOt c/b

where c = (.012B-.012B2 -.050B 4 +.050B 5 )alt

+(J-1.766B+.766B 2-.106B 4 +.106B 5 )a2 t (C6)

Similarly, for 10-15N,

LAt = d/e

where d = ( (l-1.607B+.607B 2-. 251B 4 +.251B5)alt + 0.Oa 2t }

and e = ((I-1.696B+.696B 2 -.I01B 4 +.101B 5)

(i-i.607B+.607B2-. 251B4 +.251B 5 )

-(0) (.233B-.233B 2-. 075B 4+.075B 5 ) . (C7)

LOt = f/e

where f = (.233B-.233B 2 -. 075B 4 +.075B 5 )al t

+(1-1.696B+.696B 2 -. 101B 4 +.I01B5 )a 2 t . (C8)

The ratios in (C7) and (C8) are the psi weight matrices

for the region 10-15N. These 2 by 2 matrices are denoted

where i denotes the lag from the forecast position.

Similarly, the ratios in (C5) and (C6) yield the psi

weights for the region 15-20N. These are also 2 by 2

matrices are denoted pi" Then, following the development

in the section on Threshold Interval Forecast of Two

Variables,

o 000 0000.696 0.000 2 [2.180 0.000w

0.000 1.000 .233 l.6 07 .537 1.975

Ll-I 1000 0.000 L' = 1.766 -.010] 2 [2.352 -.024]
L.00 0 1.000 L .012 1.775 .031 2.374

&3 2.801 -.042 4 3.250 -.045] &_ = E3.675 -.043]L .052 2.839 L .024 3.286 .030 3.7021
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The covariance matrix of the one step ahead forecast

errors for 10-15N is

Ea =[-75.69 -2.447

L-2.44 201.36_

For 15-20N,

E n 1 2 5 .2 -2 .9 8 ]-2 .98 257.60]

From (4.39), (4.40), and (4.41),

c1
l c2 1l 73.675 -. 0437

1 = C5Po = I I (C9)

d d21  L-030 3.702

c12 c2 2 F 6.222 -.0717

= 5 2: L j(CII)Ld.12 d 2 2 _ E0 5l=K.812 5.948]()

F c.3 723 =5 f 7.989 -.0887 (Cli)Ldl3 d 2 3  L1.921 7.310]

Summing the squares of the elements of the matrices in (C9),

(CIO), and (CII) yields,

F 2 2 2 2 2 2- 3 04rCl12+c122+c132c212 +c222+c23:2d 1 +I 1 6 . 0 4 3 5 .120147

dLl +c1 2 +d1 3  d21 +d2 2 +d2 3 d.2dd 102.520

These are the multipliers for ual 2  and a 2 in equation

(4.39) and (4.40). The multipliers for the cov(ala 2 ) in

(4.39) are given by

CliC21+C12c22 +C13c23 = -1.306

and for cov(ala 2 ) in (4.40),

odld21+d12 d22+d13d23 = 18.761

J 
m

• / - - -, . : . _ , i I ] . 1
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For Z., the multipliers are the E weights. Specifically,

for (4.39), the sum

c142+ ... +c182 = (3.250)2+(2.801)2+(2.353)2+(1.766)2+(1)2

= 28.082

is the coefficient of a 1
2 . The sum

c242+ --- +c2 8
2  = (-.045)2 +(-.042)

2 +(-.025) 2 +(-.012) 2 +(0) 2

= .00456

is the coefficient of a.22 in (4.39), and,
• • • =-.340

c14c24 +  -+c18c28 34

is the coefficient of cov(nln 2 ) in (4.39).

For (4.40), a is multiplied by
22222+ 2

d14 2+ - +d1 8  = (.024) 2+(.052) 2+(.031) 2 (.012) 2 (0)2

= .00439

and u.2 2 is multiplied by

S +d28
2  28.644

Then cov(nln 2 ) is multiplied by

d14d24 + "' +d1441828 = .321

The coefficients of aal 2 r cov(ala 2 ), 0a2
2 , a012,

cov(nln 2 ), and cn2
2 in equation (4.41) are 20.289,

108.787, -1.228, .318, 28.348, and -.344 . So, from

(4.39) the variance of the 8 step ahead latitude forecast

from time origin 5 with 2 forecasts falling in the old

region is

I[

.°
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V[e15(8,2) ] = (l1 6 .0 4 3 )al 2+(. 0 1 4 7 )Ga2 2+2(-1.306)cov(ala2)

+ (2 8 .0 8 2 )0  1 2+(.00456)ao 2 2+2(-.340)cov(nln2)

= (116.21) (75.69) + (.0147) (201.36) +2 (-1.306) (-2.44)

+ (28.082) (125.22)+(.00456) (257.60)+2(-.340) (-2.98)

12295.427

Thus, the standard deviation of the 8 step ahead forecast

of latitude is

SD[eI5(8,2)] = (12295.427)1/2 = 110.9 n mi

This compares well with the empirical standard deviation

of 102.8 n mi.

From (4.40) the variance of the eight step ahead

forecast of longitude is

V [e 2 5 (8,2) =4.350(75.69) +102.520(201.36) +2(18.761) (-2.44)

+.00439(125.22)+28.644(257.60)+2(.321) (-2.98)

= 28439.717

and

[e 2 5 (8,2)J = 168.6 n mi

which compares favorably with the empirical value of 149.7

n mi. From (4.41),

E[e 1 5 (8,2)e 2 5 (8,2)] = 20.289(75.69)+108.787(-2.44)

+(-1.228)(201.36)+.318(125.22)

+28.348(-2.98)+(-3.44) (257.60)

= 1421.0

Consequently, the covariance matrix for the eight step

ahead forecast is
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Z8 = F12324.9 1421.07

L 1421.0 28258.5_

The confidence ellipse can be specified by using the

procedure described in Interval Forecast of Two Variables.

The eigenvalues for are X1 = 12171.30, and A2

= 28563.84, and the eigenvectors are

<.087,.996> <.996,-.087>

The major axis has length

2(X2 )-
5 (1.645) = 556.0 n mi.

The minor axis has length

2(X11) 5 (1.645) = 377.5 n mi.

The minor axis lies on a magnetic heading of

360 + tan-'(.087/.996) = 4.99 degrees

and is centered at the point forecast (17.1, 64.8)

Finally, the equation of the 90% confidence ellipse is

given by

(xl/168.6) 2-2(.076) (xl/168.6) (x2 /110.9)+(x 2 /110.9)2

= 1.645[1-(.076)2]

where x1 represents the east-west direction and x2

represents the north-south direction and

p = .076 = [(1421.0) (12295.4)-. 5 (28439.7)- -5 ]

.
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ANALYSIS OF RESIDUALS

Chi-square contingency table tests (99%

confidence) were used to evaluate the independence of the

latitude and longitude one step ahead forecasts. The

tests rejected the null hypothesis of independence which

was acceptable because a dependency structure was alilowed.

* However, chi-square goodness of fit tests also rejected

the null hypothesis that the forecasts were Normally

distributed which was not acceptable.

The region posessing the worst chi-square

value (20-25N) was examined in detail. Further goodness

of fit tests did not reject the double exponential

distribution for both marginals. This indicated the

* category five forecast distributions had heavier tails

than expected. Outliers were examined case by case. It

was discovered that a few storms that were classified as

category five had short non-category five track segments.

That is, the storms accelerated during the time they were

supposed to be moving at constant velocity. The segments
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containing the acceleraticns were removed and the category

five model was then fit to the new data. New coefficients

were not significantly different from old coefficients

(Table Dl). Mean forecast accuracy was not significantly

TABLE Dl

OLD VS NEW COEFFICIENT MATRICES

Old coefficients New Coefficients

LA LO LA LO
Lag 1 LA 7.84 -.067 7.81 -.087

LO L.03 .78J L.05 .76_

LA LO LA LO
Lag 4 LA E.01 .07 .04 .08]

LO -.05 .12 L-.09 .12

different. Deleting the track segments removed

approximately 4% of the forecasts from each tail of the

forecast error distributions. All the deleted forecasts

were beyond three standard deviations from the mean.

A second set of chi-square tests did not reject

the null hypothesis of Normally distributed errors. In

addition, the contingency table tests did not reject the

null hypothesis of independence.

Outliers beyond three standard deviations (at

most 4% from each tail) were deleted from the one step

ahead forecast errors in other regions. Chi-square tests

did not reject independence or Normality.
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Sequential regression analysis of lagged

residuals showed no significant auto or cross-correlations

at lags one through four.

To afford additional protection when forecasting

accelerating storms, the empirical one step ahead forecast

error covariance matrices based on all storms (Appendix B)

are used in confidence ellipse computations.

7



APPENDIX E

TRANSITION MATRICES

A representative analysis of the four step ahead

transition matrix for the region 25-30N is presented in

this appendix. The heuristic procedure used to develop

the matrix involved moving a window of seven previous six

hour position reports along each hurricane track. Seg-

ments of longer length resulted in large estimated parame-

ter variances, while shorter segments missed short term

accelerations. At each position report a stationarity

category was determined. For example, at the seventh

position report, the stationarity category was based on

positions one through seven. At the eighth position re-

port the stationarity category was based on positions two

through eight, etc.. In this manner, a stationarity cate-

gory was associated with the terminal point in each

"window." The transition matrix was then constructed

based on those categories.

Some difficulty was encountered in determining

the storm categories primarily due to the small window.

With seven observations, the standard deviations of the

parameter estimates were approximately .1 . If the storm

was in category nine, the series had to be differenced

twice for stationarity. This resulted in five

128
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observations being available to compute the lag one

parameter.

To sort the storms into the various categories,

the lag one parameter was calculated for each latitude and

longitude series. The raw position series was analyzed

first. By trial and error it was determined that

coefficient values below .8 were good indicators of mean

stationarity. If the lag one parameter was greater than

.8 (two standard deviations below 1.0), the series was

differenced and the lag one parameter was calculated for

the velocity model. If the parameter was still greater

than .8, the series was differenced again and the parame-

ter was calculated for the acceleration model. Usually,

at some point in the procedure, the series were found to

be stationary. In a very few cases (less than 1%) the

series were always nonstationary. Rather than difference

the series a third time, these cases were discarded.

Given that the storm is in a particular category

at time t, the category at time t+l, t+2, ... , can be

determined. By recording the results for all storm

tracks it is possible, given the current category, to

determine the probability the storm will transition to

some other category at a future time. The result of the

analysis is a transition matrix (Table E.1). For example,

given that the storm is presently in category 2, there is
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a 38.8% probability that it will be in category 5 in 24

hours. For this example the category five state is the

most frequent future state regardless of the current

category.

Forecasts were computed by using different combi-

nations of the nine possible models depending on past

categories (or probable future categories) without any

reduction in forecast error. Further study is required to

determine the acceptability of analyses that make use of

the transition matrices.

TABLE E.1

24 Hour Transition Matrix for he region 25-JON

Future Catcory
1 2 3 4 5 6 7 8 9

Present
Category

1 .120 .160 .000 .200 .200 .080 .040 .080 .120

2 .060 .149 .000 .194 .388 .030 .030 .134 .015

3 .000 .143 .000 .000 .714 .000 .143 .000 .000

4 .014 .137 .027 .137 .466 .096 .041 .055 .027

5 .057 .134 .000 .159 .459 .096 .045 .032 .019

6 .029 .171 .000 .114 .543 .000 .029 .086 .029

7 .100 .200 .000 .100 .400 .100 .000 .000 .100

8 .035 .035 .000 .172 .483 .069 .035 .138 .035

a9 .071 .143 .000 .214 .357 .143 .000 .000 .071
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APPENDIX F

REQUIRED DATA MANIPULATION

The data files and the five major steps required

to calculate the model coefficients for each latitude band

are described in the following pages. The five steps are:

data reduction, determination of the stationarity

category, construction of the data matrix, coefficient

computation, and analysis of empirical forecast error.

"Best track" storm data were provided via magnet-

ic tape by the National Environmental Satellite Data and

Information Service (an agency of the National Oceanic and

Atmospheric Administration), Asheville, North Carolina.

The data set contained position reports at 6 hour

intervals for 815 North Atlantic storms (including hurri-

canes, tropical storms, and subtropical storms) dating

from 1886 through 1983. The tape format had 80 characters

per record. There were three types of card images: the

Title Card (Table F.1), the Storm Classification Card

(Table F.2), and the Storm Data Cards (Table F.3)

(Jarvinen, Neumann, and Davis, 1984).

In each region, the first step was to condense

the data file by eliminating data that was not required.

Based on recommendations from the analysts at the National

Hurricane Center, all storms occurring before 1945 were

131
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TABLE F.1

TITLE CARD - FORMAT AND CONTENTS

Computer Card Columns Contents

1 - 5 Card sequence number
7- 8 Month

10 - 11 Day (first day of storm)
13 - 16 Year
20 - 21 Value of M (M=number of days the

storm existed)
23 - 24 Storm number for the year
25 - 30 Blank
31 - 34 Cumulative Storm Number
36 - 47 Storm Name
48 - 52 Blank

53 (1=hit coastline, 0=did not)
54 - 58 Blank

59 Saffir/Simpson Hurricane Scale
number

60 - 79 Blank
80 Last storm of the year if = L

TABLE F.2

CLASSIFICATION CARD - FORMAT AND CONTENTS

Computer Card Columns Contents

1 - 5 Card sequence number
7 - 8 Maximum status of the storm

during its life

Ii
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TABLE F.3

STORM DATA CARD - FORMAT AND CONTENTS

Latitude and longitude are rounded to the nearest
tenth. Wind speed is rounded to the nearest five knots.
Pressure is rounded to the nearest millibar. Storm types
are: '*'-tropical storm or hurricane, 'D'- tropical
disturbance, 'S'-subtropical storm, 'W'-tropical wave, and
'E'-extratropical storm.

Computer Card Columns Contents

1 - 5 Card sequence number
7 - 8 Month

10 - 11 Day
12 Storm type at 0000Z

13 - 15 Latitude at OOO0Z
16 - 19 Longitude at 0000Z

20 Blank
21 - 23 Wind speed at OOOOZ

24 Blank
25 - 28 Central pressure at OOOOZ

29 Storm type at 0600Z
30 - 32 Latitude at 0600Z
33 - 36 Longitude at 0600Z

37 Blank
38 - 40 Wind speed at 0600Z

41 Blank
42 - 45 Central pressure at 0600Z

46 Storm type at 1200Z
47 - 49 Latitude at 1200Z
50 - 53 Longitude at 1200Z

54 Blank
55 - 57 Wind speed at 1200Z

58 Blank
59 - 62 Central pressure at 1200Z

63 Storm type at 1800Z
64 - 66 Latitude at 1800Z
67 - 70 Longitude at 1800Z

71 Blank
72 - 74 Wind speed at 1800Z

75 Blank
76 - 79 Central pressure at 1800Z
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deleted due to concerns about the accuracy of the

observations. All storms that attained less than tropical

storm status (12 of them) were deleted because of their

weak persistence. Next, all storm tracks outside the

region of interest were deleted. Finally, because the

focus of the research was to accurately predict hurricane

landfall based on the past track, position reports

following landfall on the continental United States were

eliminated as were the central pressures and wind

velocities. This left 362 storm tracks containing a total

of over 10,000 position reports. The final condensed data

file contained the cumulative storm number, the year,

month, and day ol the first position report, the storm

name, the number of position reports, and the latitude and

longitude coordinates of each position report (Table F.4).

In the second step, the following procedure was

used to determine the stationarity category of the storm.

For latitude,

(1) Adjust the latitude series to zero mean.

(2) Lag the data one period.

(3) Use least squares regression to calculate the lag
one position forecast coefficient.

(4) If the coefficient is less than .8 (the storm is
latitude position-stationary) go to (12).

(5) Difference the series the first time.

(6) Use least squares regression to calculate the lag
one velocity forecast coefficient.
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(7) If the coefficient is less than .8 (the storm is

latitude velocity-stationary) go to (12).

(8) Difference the series a second time.

(9) Use least squares regression to calculate the lag
one acceleration forecast coefficient.

(10) If the coefficient is less than .8 (the storm is
latitude acceleration-stationary) go to (12).

(11) Discard the storm. Go to (14).

(12) Perform steps (1)-(11) for longitude.

(13) Classify the storm according to Table 4.1.

(14) Read the next storm track.

Various stationarity "cutoffs" were examined from

4=.6 through 0=1.2. The value of 0=.8 was selected

because it resulted in the minimum forecast errors and

because, for individual storms, the standard deviation of

the lag one coefficient was approximately .1. Thus,

coefficient values below .8 were good indicators of mean

stationarity. Once the stationarity category was deter-

mined, it was appended to the storm name. A two storm

sample of the resulting data file is shown in Table F.4.

The data matrices were then constructed. There

are nine data matrices for each grid, one for each of the

storm categories in Tuble 4.1. For example, the category

1 and category 5 data matrices for the storms in Table F.4

are shown in Tables F.5 and F.6.
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TABLE F.4

CONDENSED DATA FILE AND SAMPLE RECORDS

Title Card Columns Contents

1 - 2 Blank
3 - 6 Cumulative sequence number
7 Blank
8 - 11 Year
12 Blank
13 - 14 Month
15 Blank
16 - 17 Day of first position report
18 Blank
19 - 33 Name
34 Blank
35 - 36 Number of position reports
37 Blank
38 - 39 Maximum storm type attained
40 -41 Blank
42 Stationarity category

Position Card Columns

1 Blank
2 - 5 Latitude
6 Blank
7 - 10 Longitude

Sample Records For Grid 25-30N

690 1970 07 31 CELIA 08 TS 5
25.3 89.6
25.8 90.8
26.2 92.0
26.6 93.5
27.0 94.9
27.5 96.3
28.1 97.8
28.6 99.3

694 1970 09 12 FELICE 08 HR 5
25.3 84.0
25.8 85.2
26.5 86.5
27.2 88.4
28.0 90.2
28.8 92.2
29.4 94.1
29.9 95.5
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TABLE F.5

CATEGORY 1 REGRESSION DATA MATRIX
(For records in Table F.4)

This is position data for Celia and Felice adjusted to
zero mean. This example is mean nonstationary. Missing
data are denoted by an 'X'. Actual data matrices were
lagged up to six periods. This example is lagged four
periods for clarity of presentation. The dependent
variables are at lagO. The predictor variables are at
lagl through lag4. This is only an example of the
category 1 format. Celia and Felice are category 5
storms.

Latitude Longitude
lagO lagl lag2 lag3 lag4 lagO lagl lag2 lag3 lag4
-1.6 X X X X -4.7 X X X X C
-1.1 -1.6 X X X -3.5 -4.7 X X X E
-0.7 -1.1 -1.6 X X -2.3 -3.5 -4.7 X X L
-0.3 -0.7 -1.1 -1.6 X -0.8 -2.3 -3.5 -4.7 X I
0.1 -0.3 -0.7 -1.1 -1.6 0.6 -0.8 -2.3 -3.5 -4.7 A
0.6 0.1 -0.3 -0.7 -1.1 2.0 0.6 -0.8 -2.3 -3.5
1.2 0.6 0.1 -0.3 -0.7 3.5 2.0 0.6 -0.8 -2.3
1.7 1.2 0.6 0.1 -0.3 5.0 3.5 2.0 0.6 -0.8

-2.3 X X X X -5.5 X X X X F
-1.8 -2.3 X X X -4.3 -5.5 X X X E
-1.1 -1.8 -2.3 X X -3.0 -4.3 -5.5 X X L
-0.4 -1.1 -1.8 -2.3 X -1.1 -3.0 -4.3 -5.5 X I
0.4 -0.4 -1.1 -1.8 -2.3 0.7 -1.1 -3.0 -4.3 -5.5 C
1.2 0.4 -0.4 -1.1 -1.8 2.7 0.7 -1.1 -3.0 -4.3 E
1.8 1.2 0.4 -0.4 -1.1 4.6 2.7 0.7 -1.1 -3.0
2.3 1.8 1.2 0.4 -0.4 6.0 4.6 2.7 0.7 -1.1

! - , ,. ***,-*. " "*"*-.' " "*-" ". - - .. .. .. -. .. . . .. ..* .. .* ...*- .. .. . .. . ... .
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TABLE F.6

CATEGORY 5 REGRESSION DATA MATRIX
(For records in Table F.4)

This is velocity data for Celia and Felice. This example
is mean stationary. Missing data are denoted by an 'X'.
Actual data matrices were lagged up to five periods. This
example is lagged four periods for clarity of
presentation. The dependent variables are at lagO. The
predictor variables are at lagl through lag4. These are
the actual data matrices used for Celia and Felice.

Latitude Longitude
lagO lagl lag2 lag3 lag4 lagO lagl lag2 lag3 lag4
-0.5 X X X X -1.2 X X X X C
-0.4 -0.5 X X X -1.2 -1.2 X X X E
-0.4 -0.4 -0.5 X X -1.5 -1.2 -1.2 X X L
-0.4 -0.4 -0.4 -0.5 X -1.4 -1.5 -1.2 -1.2 X I
-0.5 -0.4 -0.4 -0.4 -0.5 -1.4 -1.4 -1.5 -1.2 -1.2 A
-0.6 -0.5 -0.4 -0.4 -0.4 -1.5 -1.4 -1.4 -1.5 -1.2
-0.5 -0.6 -0.5 -0.4 -0.4 -1.5 -1.5 -1.4 -1.4 -1.5
-0.5 X X X X -1.2 X X X X F
-0.7 -0.5 X X X -1.3 -1.2 X X X E
-0.7 -0.7 -0.5 X X -1.9 -1.3 -1.2 X X L
-0.8 -0.7 -0.7 -0.5 X -1.8 -1.9 -1.3 -1.2 X I
-0.8 -0.8 -0.7 -0.7 -0.5 -2.0 -1.8 -1.9 -1.3 -1.2 C
-0.6 -0.8 -0.8 -0.7 -0.7 -1.9 -2.0 -1.8 -1.3 -1.3 E
-0.5 -0.6 -0.8 -0.8 -0.7 -1.4 -1.9 -2.0 -1.8 -1.3

'S.
a-,

"a ,, z . , '- . - z .j . $ . i z .. .. .-¢ . . . ' . *. ., . , , . , "- . . '
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In this research only the forecast models for the category

* five storms were developed. A portion of the category

4 five data matrix for 25-30N latitude is shown in Table

F.6. The data in Table F.6 represent velocities in units

of degrees of displacement per six hour interval.

In the fourth step, the lag zero latitude and

longitude columns were treated as dependent variables and

a least squir es regression was performed using SPSS. The

resulting coefficients are in Appendix A.

Finally, in step five, the models were used to

forecast the storms, and the forecast error was analyzed.

Initially there was concern over the fact that the

hurricanes being forecast were the same ones used to

develop the model coefficients. To analyze the effect of

this "unfair" advantage, in a sample region, the

storms were deleted (one at a time) from the data base,

and model coefficients were computed and used to forecast

only the excluded storm. There was no significant change

in forecast accuracy. For example, for the 48 hour

forecast, the error changed by 2 n mi.

It was concluded that the large number of obser-

vations in each region tended to diminish the contribution

of individual storms. This allowed computation of model

coefficients in approximately 90 seconds (per region) on a

CDC Dual Cyber 170/750. Had it been necessary to delete
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individual storms prior to computing forecast coefficients,

it is estimated that run times would have increased by a

factor of 1000. A separate run would have been required

for each storm in each region. Most storms had track

segments in more than one region.

Once the model coefficients are computed,

forecasting can be accomplished rapidly. Complete

forecasts and error analysis for up to 72 hours in the

future requires approximately 17 seconds of CDC processor

time per region. This includes the analysis of

approximately 7700 forecasts per region. For individual

storms, forecasts with lead times as large as 72 hours in

the future (without error analysis) can be accomplished on

an Apple IIe micro-computer in approximately four seconds.

-- . . . .
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