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A method designed by Lindquist and Facemire [1] to construct vali-

dation tests for the Common APSE Interface Set (CAIS), a set of kernel

interfaces which allow for the transportability of the Ada Programming

Support Environment (APSE) tools, utilizes White-box testing methodolo-

gies in a Black-box fashion. A White-box testing approach is taken to

examine the internal structure of the Ada-based Abstract Machine

specification of the CAIS. Because the implementation details of the CAIS

are not known at validation time and the same validation suite is to be

used on several CAIS implementations, Black-box testing is a more desir-

able approach. Their solution is to identify test cases by analyzing the

program using a White-box approach. Tests cases can then be con-

structed and applied in a Black-box fashion. The system described in this

paper uses symbolic execution to create an execution tree which

identifies all execution paths through the program. The path condition, a

label corresponding to each execution path, identifies the conditions

which cause that path to be executed. For each path, symbolic execution

produces a range over the input interface parameters and a list of

corresponding altered outputs [1]. This range and list of altered outputs

are known as Input/Output(I/O) pairs. The I/O pairs are then used to

construct the tests needed for validating the CAIS. This paper discusses

the detailed design and preliminary implementation of TOGEN, a system

for generating the I/O pairs for the CAIS using symbolic execution.
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Abstract

This thesis addresses automating the process of generating test cases. The

detailed design and preliminary implementation of a system for generating the

input/output pairs are presented. The system, IOGEN, will be used for

constructing validation tests for the Common APSE Interface Set (CAIS). The

input/output pairs generated using symbolic execution and an overview of the

symbolic execution technique as it applies to testing are given. Finally, possible

areas for enhancing the IOGEN system are provided.
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CHAPTER 1

Introduction

The Ada* Program, developed at the initiative of the United States

Department of Defense (DoD), adopted the concept that a common environment

which supports automated tools is essential to the computer growth within the

military service [4]. From this concept evolved the development of a Programming

Support Environment (PSE). Within this environment resides software tools such

as compilers, editors, debuggers, configuration control aids, linkers, and text

formatters. All of these tools are designed to aid programming tasks during the

coding, testing, and debugging phase.

The Ada Programming Support Environment (APSE), implemented in Ada,

was designed to support mission critical software written in Ada. It was the intent

of the Department of Defense that the APSEs become the basic life-cycle

environment for all mission critical computer systems (MCCS) [1]. APSEs were

therefore expected to be transported among various types of machines and

operating systems. Transporting tools among various APSE architectures

realized one of the fundamental goals of the Ada program - to increase the

transportability and maintainability of embedded software systems [5]. However,

the Ada language does not provide a means for communications between APSE

*Ada is a registered trademark of the United States Government (Ada Joint

Program Office)
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tools and the host system. A set of kernel interfaces were therefore necessary.

To formulate the requirements for the kernel interfaces for tools needed to

support the APSE, the Ada Joint Program Office (AJPO) formed the Kernel APSE

Interface Team (KIT), chaired by the Naval Ocean Systems Center, and the

Kernel APSE Interface Team from Industry and Academia (KITIA). The KIT/KITIA

have designed a set of interfaces which allow APSE tools to access the facilities

and services of the host system. This set of interfaces is called the Common

APSE Interface Set (CAIS). The CAIS is not designed to encompass total

operating system's functionality, but instead it includes facilities which are most

useful to tools [7].

In early 1986, theDepartment of Defense proposed a draft government

standard CAIS. The purpose for standardization is to promote transportability of

Ada tools across all DoD-sanctioned APSE's. As a result, the APSE Evaluation

and Validation Team (E&V) is responsible for initiating the development of a

CAIS Validation Capability (CVC) [5]. The CVC will be designed to test whether

the implementation of the CAIS adheres strictly to the specifications.

Facemire and Lindquist [5] described a specification and validation

technique to construct validation tests for the CAIS. This technique constructs test

cases in a White-Box testing fashion from an Abstract Machine description of the

CAIS. The tests are administered in a Black-Box testing fashion. The Operational

Definition of the CAIS (CAISOD) serves as input to the White-box testing method.

. ..*-
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Symbolic execution is used to analyze the code to identify validation tests based

on execution paths through the operational definition. The test paths are

represented by input/output (I/O) pairs which consist of a range over the input

interface parameters and a list of corresponding altered outputs for Pach

execution path [5]. These I/O pairs are then converted into validation tests.

Coleman [3] further refines the method described by [5] for generating a CAIS

validation test suite based on symbolic execution. The method requires a valid

Ada-based Abstract Machine description (operational definition) of the CAIS.

This thesis discusses the detailed design and preliminary implementation of

generating a more complete set of test cases using symbolic execution. A

general overview of the symbolic execution technique as it applies to testing is

presented in Chapter 2. Chapter 3 presents the design of the I/O generator

(IOGEN) and the approach taken to automate the validation method described by

(5] and [3]. A case study is presented in Chapter 4 demonstrating the technique

described in Chapter 3. The limitations of and possible extensions to IOGEN are

discussed briefly in Chapter 5. Finally, Chapter 6 provides some conclusions

about the thesis.

w;
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CHAPTER 2

Symbolic Execution

2.1. General Overview

Software development is largely the process of communicating information

about the eventual program and translating this information from one form to

another [9]. Verifying that the end product of this translation process, the

computer program, behaves according to its specifications, is the focus of

attention of many research groups. Symbolic execution, one method of program

verification, is the approach taken by Hantler and King [6] for proving programs

correct.

Hantler and King [6] provide a method utilizing assertions to verify the

correc. An input assertion, represented as an ASSUME statement and inserted at

the beginning of a routine, places constraints on all inputs for the routine. An

output assertion, represented as a PROVE statement and inserted immediately

before the return from a routine, represents the expected relation between the

inputs and outputs. The routine is said to be correct if the truth of the input

assertion guarantees the truth of the output assertion.

The proof for correctness for any given program is a proof for all possible

program inputs, not just a subset of these inputs. Hantler and King [6] suggests

using symbolic values to represent arbitrary program inputs. By doing so,

numeric variables take on "symbolic" as well as numeric values. These symbolic
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values can be represented as an elementary symbolic value, an arbitrary string

chosen to represent a variable, or an expression in numbers and arithmetic

operators. In this thesis, symbolic values are represented as Greek letters.

Before symbolically executing a routine, all input parameters are assigned

a unique symbolic value. Symbolic execution continues by substituting all

occurrences of the input parameter on the right hand side of an assignment

statement by its symbolic value. The result isan algebraic equivalent of the

numeric value.

Symbolic execution of routines containing iterative and selective constructs

results in branches in the execution tree. Each path through the tree identifies an

execution path through the program. Attached to each path is a predicate, called

a path conditions (pc), describing the conditions which cause a path to be

executed. The pc receives an initial value of true at the beginning of symbolic

execution for all routines. As branches are encountered in the symbolic execution

tree, the pc is modified to reflect the path condition for each branch by using an

AND operation. The following sections discuss input/output (I/O) pair generation

using symbolic execution for several Ada constructs.

2.2 I/O Pairs Generation using Symbolic Execution

We assume that the CAISOD, which serves as the input for symbolic

execution and as the specification, has been validated by some other means [3].

Symbolic execution as presented by Hantler and King [6] is used as a means of
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generating I/O pairs, not as a means of proving a program's correctness.

Modifications to the method are made to provide I/O pair generation. Since the

input assertion at the beginning of any routine is always true, it has been

eliminated. Additionally, because the operational definition is assumed to be

correct, the PROVE statement is also eliminated.

The execution trees generated as a result of symbolic execution are used

to devise a set of I/O pairs. The input portion of the I/O pair is produced by

examining the path conditions at the bottom of each execution pah within the

execution tree. The path condition can be reduced, thereby yielding an algebraic

expression representing a "value" which causes that path to be executed. All

symbolic values in the resulting algebraic expression are substituted by their

corresponding global, local, or parameter variables in order to generate test data

for the routine. The resulting data may then be used to establish initial values for

global variables or values for the input parameters.

The output portion of the I/O pair results from actions taken along a path

within the execution tree. The actions taken represent modifications of global

variables and output parameters. The following sections discuss symbolic

execution for several Ada programming constructs.

2.3 Assignment Statements

Assignment statements are normally executed by replacing the variables in

the right-side expression by their corresponding numeric value. The indicated
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operations are then performed and the result is then assigned to the left-side

variable. Symbolic execution replaces the variables in the right-side expression

with a symbolic value. Because the right-side expression consists of an algebraic

expression containing symbols and not numeric values, it is left unchanged. This

algebraic expression then become the new value for the left-side variable.

2.4 If-Then-Else Statements

Symbolic execution of If-Then-Else statements is similar to the normal

execution for this conditional branching statement. First, all variables in the

boolean expression are replaced by their corresponding symbolic value. Two

separate expressions are formed using the new boolean expression. One

expression represents a true boolean condition. The second expression

represents the negated (false) boolean condition.

A conditional branching statement such as If-Then-Else causes a fork in the

execution tree. One path represents the true boolean expression or then path.

The other path represent the false boolean condition or else path. These paths

do not rejoin at a point later in the execution tree.

Path conditions for the two separate paths are formed by ANDing the

current pc with each boolean expression formed earlier. The then path's pc is

formed by ANDing the current pc with the true boolean expression. The

remaining path's pc is formed by ANDing the current pc with the false boolean

expression. This represents the else path. If the statement does not contain an
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else clause, modifications to the pc are not necessary. Execution for both paths

continues with the instructions following the If-Then-Else statement.

function VOWELS (char: in character) return integer is

type vowel-char is (
temp "integer;
vowel: vowelchar;

[1] begin

[2] if (char in vowel) then
[3] temp
[4] else
[5] temp =0;
[6] end if;
[7] return temp;
[8] end;

FIGURE 1. Function VOWELS

Figure 1 presents an example of a function which returns a integer value (0

or 1) indicating whether the input character is a vowel. The symbolic execution

tree for the corresponding function is presented in Figure 2. The symbolic value

"it" represents the variable char. Figure 2 presents an example of symbolic

execution for the conditional branching statement and shows the separation of

paths with their corresponding path conditions.
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Initialization:

pc .4-. true
char 4- c ( 2)

pc 4- (xt in vowel) pc .-- ! (7c in vowel)

*temp4 3 5 temnp-4-O0

returnl 7/ ar - 7 return 0

--- I/0 Pairs ---

II: (char invowel) 12 : not ( char in vowel)

O 1 return 1 02: return 0

FIGURE 2. Symbolic execution tree: Function VOWELS

2.5 Looping Constructs

Introducing loops into a routine implies that the symbolic execution trees

corresponding to the routine can be infinite [8]. It is obvious that routines which

have non-terminating loops have infinite execution trees. For routines which do

terminate, the size of the execution tree are finite, but can be exceedingly large.

Substituting symbolic values for actual variables during symbolic execution
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represents a problem when looping constructs are involved since a unique

symbolic value must be generated for each actual variable.

To solve this problem, Hantler and King (6] use a form of induction to prove

programs correct. Essentially, by focusing attention to only a finite section of the

symbolic execution tree, the problem can be eliminated. This is accomplished by

inserting inductive assertions into the symbolic execution tree, thereby restricting

attention to a finite portin of the tree.

Since the operational definition of the CAIS is assumed to be correct,

verifican of loop correctness is not necessary. The focus of attention, however,

must be narrowed. To accurately reflect the loop construct when generating I/O

pairs, the number of loop iterations must be determined. Generally, this number is

not known prior to execution. In this case, a single iteration is considered.

Additional tests may be necessary if it is determined that a single iteration is not

sufficient.

The Ada looping constructs For, While, and Exit-When are examined.

Symbolic execution for these constructs is similar to symbolic execution of

If-Then-Else statements. A fork in the execution tree is created with one branch

representing a path around the loop, a false loop condition. The pc for this path is

determined by ANDing the current pc with the false loop condition. The other path

represents a single iteration of the loop whose pc is determined by ANDing the

current pc with the true loop condition. Once this path has been executed, the

4

.e
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loop condition becomes false and must be reflected accurately in the path

condition. This is done by ANDing the pc with a false loop condition.

Consider the procedure COUNTVOWELS in Figure 3. COUNTVOWELS

counts the number of vowels appearing in a string. COUNTVOWELS calls the

function VOWELS which appeared in Figure 1. Symbolic execution of the routine

COUNTVOWELS results in the execution tree presented in Figure 4.

type letters is 'A' .. 'Z;
type charstring is array <> of letters;
index: integer;

function COUNTVOWELS (
length integer;
instr • char-string ) return integer is

vowelcount integer := 0;
temp • boolean;

[1] begin

[2] while index <= lenath loop
[3] temp := VOWL 3(instr(index));
[4] vowelcount := vowelcount + temp;
[5] end loop;

[6] return vowel_count;

end VOWELCOUNTS;

FIGURE 3. Function COUNTVOWELS

The example given in Figure 4 demonstrates symbolic execution for the



12

While loop. Symbolic execution for the For loop is identical to the While loop. One

branch in the tree represent an out-of-range index when the For loop is

Initialization
2

instr 4- XC-

length -4- A (A <= index) (A <=index)

Call Vowels x~ (1)) return 0

3 6

(A <=index) & (A <=index) & r

temp 4-1 1 5' temp *.0

3'.

return 1 7 ' rtr

-- 1/0OPairs--

Il: (index <= length) & 12: (index <= length) & 13: ! index <= length)
(instr(l) in vowel) (instr(1) in vowel)

01: return 1 02: returnO0 03: returnO0

FIGURE 4. Symbolic execution tree: Function COUNTVOWELS
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encountered while the other branch represent a single iteration followed by an

out-of-range index. There is a slight variation in symbolic execution for the

EXIT-WHEN looping construct. A fork is generated in the execution tree when the

EXIT-WHEN condition is encountered. The exit condition is met the first time it is

encountered for one branch. The boolean condition is assumed to be false for

the second branch, therefore execution continues with the statements following

the EXIT-WHEN statement. For each branch, execution continues with the

statements following the looping construct.

2.6 Case Statement

The Case statement, like the If-Then-Else statement, allows for the

selection of alternative paths of control. Unlike the If-Then-Else statement which

allows only two alternative paths, the Case statement all for N possible paths. If

there are N possible path of control, the fork in the execution tree has N

branches. Each branch's path condition, except for the others choice, is

determined by ANDing the current pc and the expression caseselector =

choice. The pc for the others choice causes the current pc to be ANDed with the

negation of every possible path. Execution for each branch continues with the

statements following the selected case and then the statements following the

Case statement.. ljre 6 shows the execution tree for a Case statement in Figure

5.
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[1] case COUNT is

[2] when 1 => temp 1;
[3] when 2 => temp 2;
[4] when 3 => temp := 0;

[5] end case;

FIGURE 5. Case statement

Initialization: Count -- A1

pc4l--pc & (A-1) PC4-pc&( A/=1)

& (A/=2)
pc. l-pc & (h2)

2 4

temp 4- 1 temp 4- 2 temp 4-- 0

1/0 Pairs ---

I1 : Count= 1 12: Count= 2 13: Count/= 1 & Count/= 2
01: temp:= 1 02: temp := 2 03: temp 0

FIGURE 6. Symbolic execution tree: Case statement

2.7 Procedure Calls

The transfer of control caused by a procedure or function invocation can be

approached in two different ways when generating the symbolic execution tree.
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approached in two different ways when generating the symbolic execution tree.

One approach is to continue execution as if the procedure was contained within

the main routine. This involves a macro-like expansion into the symbolic

execution tree (5]. Caution must be taken not to confuse local variables with the

variables of the calling routine. In 'act, this method requires a "start from scratch"

approach because it causes the procedure code to be retested with every

invocation.

The approach designed by [5] suggests that the symbolic execution tree be

built in a bottom-up fashion. The I/O pairs for the called procedure are generated

prior to the calling program's invocation. The I/O pairs generated are expressed

in terms formal parameters. If there are N I/O pairs corresponding to the called

procedure, an N-way branch in the execution tree is generated. The current pc of

the calling procedure is joined with the input portion of each I/O pair by an AND

operation to generate a unique pc for each branch. The new pc generated for

each branch should be expressed in terms of the symbolic values corresponding

to the actual parameters. Therefore, the formal parameters are substituted by

their corresponding symbolic value.

Figure 4 presents the symbolic execution tree for the function

COUNTVOWELS. Figure 2 illustrates the I/O pairs necessary for the procedure

COUNTVOWELS. The two I/O pairs generated cause a 2-way fork in the

execution tree.

A
I
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The path conditions resulting from the AND operation of the calling program's pc

and the I/0 pair generated by the function VOWELS are:

- (A <= length) & (i in vowel)

-(A <= length) & !(nin vowel)

2.8 Summary

This chapter presented an overview of the symbolic execution technique

designed by Hantler and King [6]. This technique was modified and applied to

several Ada constructs in order to construct symbolic execution trees

representing these constructs. Using the execution trees produced, input/output

pairs were generated.

, "" " -" " ' " "'"P" ' 4.b - - * ."\ *" " 
"

- -
' ' '

4'1 *' " -: "* "-'
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CHAPTER 3

Input/Output Pair Generation (IOGEN)

The detailed design of the automated system which generates I/O pairs is

presented in this chapter. The inputs required, outputs generated, and the

structures used in the system are oiscussed. The major components of the

system are also discussed.

3.1 Input and Output for IOGEN

IOGEN, an automated system for generating I/O pairs, symbolically

executes source code from the CAISOD and produces a set of I/O pairs

representing the possible execution paths through a routine. In order to generate

the I/0 pairs, IOGEN requires the name of two files as input. The first file contains

the CAISOD source code which is written in Ada. The set of I/O pairs generated

by IOGEN is directed to the second file specified.

The CAISOD source code consists of a separate package specification and

body. Because the type declarations and forward declarations of procedures and

functions contained with the package specification do not play a role in the

symbolic execution process, the specification for any package is ignored. IOGEN

therefore expects a package body as input. All global number and object

declarations placed in the package specification must be relocated from the

package specification to the package body by the user. It is important that this be

- ~ ~~ ~ ~ ~~~~~~ C , . . . . . . . . . ,-. 4
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accomplished because IOGEN must generate a structure for all global variables.

3.2 Data Structures

The execution trees produced by the symbolic execution method presented

in the previous chapter contains 2 and/or 3 way branches. Figure 7, for example,

represents a tree which could be generated by IOGEN.

A

FIGURE 7. Tree

Each node in the execution tree demonstrates some action taken when a

particular Ada construct was encountered. Each path condition represents the

initial state causing that particular path te executed. Nodes A and B represent an

Ada construct which causes a fork in the execution tree, while node D represents
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either a case statement with three alternative paths or a procedure call which

generated three distinct I/O pairs. Nodes C, E, F, G, H, and I represent

nonbranching constructs such as assignment statements. While this is just a

pictorial version of a tree, a symbolic execution tree created by IOGEN is based

on nodes and pointers. The implementation of the tree shown in Figure 7 is

presented in Figure 8.

A

FIGURE 8. IOGEN's symbolic execution tree

The actions taken along a particular path are represented in one of two

information fields as indicated in Figure 9. The connections between nodes as

indicated in Figure 7 represent path conditions, while the pointers in Figure 8
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represent actual links or addresses to succeeding nodes within the execution

tree. In order to represent the path conditions between nodes, an additional

information field within the node was required. For example, the pc between

nodes A and H in Figure 8 is represented in the in_..ptr field of node H. The path

condition and action taken are by no means the only information contained within

the node. Additional information which eases the implementation effort is

contained in the node and is discussed in the detailed design section later in thisI.

chapter.

in_ptr ._..

str-ptr

left_link

right link
FIGURE 9. IOGEN Node

3.3 Major Components of IOGEN

Four distinct components for the IOGEN system were necessary in order to

generate an execution tree and a set of I/O pairs corresponding to the execution

tree: a scanner, a parser generator, a parser, and an I/O pair generator.

3.3.1 Scanner

When IOGEN accepts as input the file containing a package body, it is

U-.". . . .
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viewed as one long stream of characters which must be assembled into a format

more suitable for manipulation. The primary purpose of the scanner, or lexical

analyzer, is to convert this unstructured stream of characters into a set of terminal

symbols or tokens. The basic lexical units which IOGEN's scanner, called

Get_a_token, accepts are keywords such as package and loop , symbols such

as < ,/=, and (, and identifiers. All keywords, symbols, and identifiers recognized

by the Ada language are considered as valid tokens by IOGEN.

The basic function of IOGEN's scanner is to convert the input characters to

tokens (terminal symbols). The text is examined character-by-character to

determine whether the symbol is an extraneous blank, a symbol continuing a

previously seen token, or the beginning of a new token. The action appropriate to

the type of symbol recognized is taken.

Two additional functions are performed by the scanner. First, comments

and extraneous blanks are removed. Second, the scanner must eliminate the

type and subtype declarations which can appear in procedures and functions

defined in the package body. These declarations are irrelevant in generating a

symbolic execution tree. It is unnecessary for IOGEN to perform error detection

since only previously compiled code is accepted as input.

One pass over the text provided in the input file is made. As the pass

proceeds, tokens are provided to the parser upon request. This is done one token

at a time.

*.*,.-- ]



22

3.3.2 Parser Generator

RRIPLL (pronounced as ripple), a parser generator tool developed at

Arizona State University, builds a major component of the IOGEN system, its

parser. RRIPLL requires as input:

- an LL(1) grammar

- the name of the scanner (Get_a_token)

- a list of terminal symbols returned by the scanner

- a list of non-terminal symbols

Every programming language has a set of rules characterizing the correct

form of programs for that language [10]. This set of rules determining the format of

programs is known as a grammar. Grammar rules consist of left and right-hand

sides. The left-hand side, a unique non-terminal, denotes the name of the

grammar rule (syntactic category) and is defined to be the sequence on the

right-hand side. The right-hand side consists of a sequence of zero or more

non-terminal and terminal symbols. An example of a grammar rule for the

non-terminal packagebody is shown in Figure 10. An equivalent syntax graph

for the non-terminal is shown in Figure 11. Syntax diagrams for the grammar

rules provided to RRIPLL are shown in Appendix A [2]. The rules are a subset of

the Ada language.

Using the previously mentioned inputs, RRIPLL produces a predictive,

top-down parser. This table-based parser, written in Pascal, deterministically
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packagebody:=

PACKAGE BODY package -simpleL_name IS

declarative-.part

BEGIN sequence of-statements

END [ packageLsimplename

FIGURE 10. Grammar rule: Package-body

beginbod sequencekof* taWemis

FIGURE 11. Syntax diagram: Packagebody

parses a string from left to right with a single token of lookahead. That is, it parses

without making an incorrect choice as to which grammar rule, or production, to

apply next. Given a choice of two alternative productions, the next token indicates
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the one and only choice of productions that leads to a successful parse.

3.3.3 Parser

The focal point of the IOGEN system is the parser produced by RRIPLL. Its

basic structure is that of a table driven recursive descent parser (a predictive

parser). Procedure calls which invoke various external Ada routines are

permitted by RRIPLL and are integrated into the parser.

A parser generally accepts the output generated by the scanner and

verifies that the source program satisfies the grammatical rules of a language

*, [10]. Various structures such as parse trees and symbol tables are created as

outputs. The primary purpose of the parser in IOGEN, however, is to generate a

symbolic execution tree. The parser accepts tokens produced by Get_a_token

and invokes the appropriate Ada action routines. These action routines build

"- node structures, which contain information indicative of the token and statement

type. At various points during the parsing stage, these nodes are inserted into

their proper locations in the symbolic execution tree.

* 3.3.4 I/O Pair Generation

Upon completion of the parsing phase, a symbolic execution tree

representing the execution paths within the source routine has been created.

Traversing the symbolic execution tree creates the I/O pairs. Examining the

nodes within the tree determines whether the node represents an action (i.e.,

assignment) or a change in path condition. If the node represents an action node,

%,.
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the information contained within the node is appended to the output portion of the

I/O pair. If it represents a condition node, the stored information is inserted into

the input portion of the I/O pair. Once the entire symbolic execution tree has been

traversed, all I/O pairs generated are outputted to the output file designated by

the user.

3.4 Detailed Design of IOGEN

The objectives of the IOGEN system were two-fold. First, IOGEN accepts as

input CAISOD routines and generates from these routines I/O pairs. Second, all

routines necessary for generating a symbolic execution tree were to be written in

Ada. With one minor exception, these objectives were achieved. The parser

produced by RRIPLL is Pascal, not Ada code. If a compiler-compiler producing

Ada code becomes available, the parser could be re-generated; or with minor

effort, the Pascal code produced by RRIPLL could be converted into Ada.

However, the routines required to produce the symbolic execution tree and I/O

pairs are written in Ada and are external to the Pascal parser.

As previously mentioned, the acceptable input to the IOGEN system is an

Ada package body. The three components of the package body, as shown in

Figure 12 are:

- global declarations

- global procedure/function declarations

-body
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PACKAGE BODY name IS

global declarations

global procedures/functions ]

[ BEGIN

sequence of-statements

END[ name ];

FIGURE 12. Package body

Although these components are optional within a package body, the body of the

package itself is required by IOGEN. The processing of these components is

discussed in detail in the following sections.

3.4.1 Global Declarations

Global declarations for the package body consists of the following:

- number declarations

- object declarations

- type declarations

- subtype declarations

Number declarations create objects of a constant numeric value and may be any

subset of the integer or float predefined type. The following are valid number

declarations:

month: constant := MAY;
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pi constant := 3.14159265;

Object declarations create variables of a predefined or user-defined type.

IOGEN, however, does not recognize subranges for predefined types. The

parser recognizes type definitions only. For example:

bottom: INTEGER;

is a valid variable declaration while

bottom: INTEGER range -10.. -1;

is not. Note that constrained array definitions are not permitted when defining

variables. The constrained array construct is not included in IOGEN's grammar.

Default values in variable declarations are permitted if not of the predefined type

string.

If the lexical element represents a number or object declaration, an object

of type ID_NODE is created. An example of IDNODE is shown in Figure 13.

name
value
id types
tokens
next

FIGURE 13. IDNODE

.1
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The information field name is a string whose value is the identifier's name. If a

default value has been assigned, it is contained in value, otherwise, the value

assigned is "undefined." Id type is used to distinguish whether the identifier is

located in the package body or subprogram. If the identifier was defined in the

package body, the value of idtype is GLOBAL_ID, otherwise, LOCALID is

assigned. Tokens contains the address to a list of tokens representing the value

of the object. Additional information on tokens is provided in section 3.4.3.1. As

each object is created, it is inserted into a linked list structure which is maintained

for the package body or current subprogram.

Type and subtype declarations are permitted if they span less then 81

characters and are contained in one input line. Type and subtype declarations

spanning multiple lines are considered to be invalid input. As previously

mentioned, these declarations are eliminated by the scanner.

3.4.2 Global Procedure/Function Declarations

Symbolic execution of source code containing procedure and function

invocations requires as input all I/O pairs for the called routines. This is

accomplished by generating a separate symbolic execution tree for each

subprogram defined.
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Subprograms have the following format:

Subprogram specification is

{ local type declarations }

begin

sequenceofstatements

end {name};

For each subprogram encountered, an object, called PROC_NODE, is created. A

linked list of these objects is maintained and referred to as subroutines are

encountered in the main body of the package

name

iopair
parms
local vars
next

FIGURE 14. PROCNODE

As shown in Figure 14, three information fields within the node are of particular

interest; iopair, parms, and localvars. After each subroutine's execution tree

has been generated, a traversal of the tree is performed to generate a set of I/0

pairs for that routine. The address of the set of I/0 pairs is maintained in io_pair.

*. *. .
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Since only one pass is made over the input, information such as formal

parameters and local variables must be preserved so it can be retrieved at a later

time. Although local variables are not of major importance, their affect on formal

parameters and global variables must be considered.

The generation of each subprogram's I/O pairs relies on the current value

of formal in parameters and local variables. Therefore, maintaining accurate lists

of parameters and variables is essential. In order to accomplish this, two

additional fields within PROCNODE were generated, parms and localvars.

Parms contains the address for a list of IDNODEs whose current id_type value

indicates whether the parameter was an in or out parameter (see Figure 15).

inpart ell-___

out-part
next

FIGURE 15. 10_NODE

This distinction must be made since I/O pairs should reflect changes in out and in

out parameters but not in in parameters. Because Ada functions do not permit

parameter types other than in, this does not apply. The current implementation

of the system does not permit assignment of default values to formal parameters,

therefore thevalue field in IDNODES is always undefined. Localvars is the
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address a list of IDNODEs created for each variable defined within the

subprogram. Each node may contain an initial default value and is assigned an

idtype of LOCALID.

Once the subprogram's symbolic execution tree has been generated, it is

traversed to determine which actions affectout andin out parameters. This is

accomplished by examining each node's identifier element and comparing its

value with elements in the parms andlocal_vars list. Actions modifying local

variables are ignored. Actions modifying out and in out parameters are

recorded in the appropriate I/O pair. If the identifier element is not located in

either list, the variable represents a global identifier and is also recorded in an I/O

pair.

3.4.3 Body

The body of a package consists of a sequence of statements, simple and

compound, which forms the primary symbolic execution tree in the IOGEN

system. Each statement is examined to determine whether it represents an action

or condition which causes a fork within the execution tree. A node is generated

accordingly.

The following statement types are examined in the following sections:

Assignment statements

- Procedure/function call statements

- Return statements

4-. ,,, .4
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- If-Then-Else statements

- Case statements

- Exit statements

- Loops

3.4.3.1 Assignment Statements

IOGEN accepts any legal Ada assignment statement with an expression

consisting of variables and operators defined by the Ada language. As lexical

units are encountered in the right-side expression, IOGEN determines whether

the token represents a variable, symbo!, operator, or numeric value. A

TOKENNODE is created for each token and a type is assigned accordingly (see

Figure 16).

id
idcat
next

FIGURE 16. TOKENNODE

After the entire execution tree has been built, each token within a node's tokens

list is evaluated. Tokens representing symbols and operators are used by IOGEN

for grammatical analysis only and require no further action. If the token
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represents a variable, the global variables list is searched to determine its current

value. The token within the expression is then substituted by the variable's

current value. If the assignment statement occurs within the body of a

subprogram, the list of parameters and local variables is searched prior to the list

of global variables. If the token represents a numeric value, no substitution is

made.

Once the entire expression has been evaluated and all necessary

substitutions have been performed, the object of assignment is located in the

appropriate list and its value is then updated.

The action node representing the assignment statement has a designated

stmt_type of "asm". The node field tokenlist contains the address of a list of

tokens which make up the assignment statement. This list is used when the

individual tokens of the statement must be examined. A node field is provided

which allows a string to represent the original assignment statement. Additionally,

the individual token representing the object of assignment is contained in a node

field. This allows for quick referencing of the identifier in a given node.

3.4.3.2 Procedure/Function Call Statements

Procedure and function calls have the same effect on the symbolic

execution tree being generated and require several actions to take place. The

PROCNODE for the corresponding subprogram is located and the number of I/O

pairs must be determined. An N-way fork in the execution tree, which reflects the
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number of 1/O pairs generated within the subprogram, must be created. For each

node in the tree fork, the path condition must reflect actual, not formal parameters.

Therefore, substitutions between actual and formal parameters must occur.

These substitutions must also occur within the output portion of the I/O pair. Once

these substitutions have been performed, the output portion then becomes an

action node along the indicated path. The address of this action node is retained

in the leftlink field of the path condition node. This process must be completed

for each I/O pair represented in the PROCNODE for that subprogram.

3.4.3.3 Return Statements

The return statement, which is permitted in functions only (by IOGEN),

indicates a transfer of control back to the routine of invocation and the return of a

value. Its structure,

RETURN expression;

may consist of any legal Ada expression. Return statements pose a serious

problem when used throughout a function. During the generation of the

function's execution tree, careful attention must be made not to append additional

nodes to the node of a return statement. This would indicate that control was

transferred yet processing within the function continued. To resolve this problem,

the node is marked as a return node by designating the node's stmt type as

"retrn." Appending additional nodes to a "retrn" node is not permitted.

Once a function's execution tree is complete, a "retrn" node represents the

I,
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last node in each execution path. The absence of a return node indicates an

unattainable transfer of control and the existence of an error.

3.4.3.4 If-Then-Else-Statements

If-statements, which must be of the form:

IF < condition > THEN

sequenceofstatements

{ ELSE

sequence of statements }

END IF;

generates a fork in the symbolic execution tree. Each fork node in the tree is of

type SINGLENODE and represents a condition node. The condition represents

any legal boolean expression. All tokens within the condition must be examined

to determine whether substitutions are required. If so, the appropriate lists are

searched and the proper substitutions are made. A string and a list of tokens is

used to represent the altered If-statement's condition.

One node within the fork must reflect a true path condition. This is

accomplished by retrieving the string representing the previously altered

condition and assigning it to the information field of the node in.ptr. The address

of the list of tokens representing the condition is stored in condlist. The address

of the sequence of statements which is executed when the path condition is true

is stored in the node field leftlink. This address represents the address of the
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sub-tree generated as the sequence of statements is parsed. As a result, the

sub-tree must be built prior to its address being inserted into the current -, mbolic

execution tree, not while each statement is encountered during the parsing

phase.

A node which represents the false path condition is generated regardless

of whether an ELSE clause exists. If an ELSE clause exists, generating and

storing the address of the sub-tree follows the same process as a true path

condition. The path condition for the node is calculated by prefixing the condition

string and tokens list with the character" I ". The string and tokens list address is

stored in the appropriate field.

The ELSE clause within the statement is optional, however, ELSIF clauses

are not permitted by IOGEN.

3.4.3.5 Case Statements

Case statements take the form:

CASE selector IS

WHEN choice => sequenceofstatements
END CASE;

The selector represents a valid Ada identifier while each choice consists of one
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of the following:

- Identifier

- Discrete range

- Expression

- Others clause

The selector is represented by its symbolic value and each identifier within the

various choices must reflect the current value of the identifier. Once again,

substitutions between actual identifiers and their current value must take place.

When a case statement is encountered during the parsing phase, two

separate lists are maintained. The first list represents a list of choices that is used

if an others statement is encountered. Each choice within the list is negated and

ANDed together in order to reflect an accurate others choice. The second list

represents a list of SINGLENODEs, one for eachchoice within the case

statement. Each node reflects an alternative execution path in the symbolic

execution tree. Associated with each node is a list of action nodes represc-'ting

the sequence of statements to be executed. The address corresponding to this

list of nodes is maintained in the information field/eft _ink. The right link points

to an alternate choice in the case statement.

3.4.3.6 Exit Statements

Exit statements must be of the form:

- -,IT WHEN < boolean expression >

;. ' :.'" , , . ",""", ."."*~ ~ 4 , " ,. " . ,;, . .: "'.,," "" * " * . "-" - , " , ,", "~'~a-" ' -'" " - -"
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and indicates that a fork within the execution tree must be created. The nodes

contained in the fork are of type SINGLENODE and represent condition nodes.

The boolean expression within the statement is used to generate the path

conditions for each node. The path condition for the first branch reflects a true

boolean expression. A string representing the boolean expression is reflected in

the node's in-ptr while the address of the list of tokens which form the

expression is stored in tokens. Each variable within thetokens list is updated by

its current value. Execution continues with the statements following the end of the

loop in which the Exit statement is contained.

The remaining branch's path condition is generated by negating the

expression. This expression is reflected in in .ptr as a string and tokens as a list

of tokens. Execution continues with the statement following the EXIT-WHEN.

3.4.3.7 Loops

Three basic loop structures are examined:

-For loops

- While loops

- Simple loops

The For loop, which must be of the following format:

FOR < loop.parameter specification > LOOP

sequenceofstatements.

END LOOP;
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generates a fork in the execution tree. The conditions represented in each node

of the fork consists of the loop parameter.specification. One node represents a

true specification, while its associated node's condition is negated. Once again,

all variables contained within the specification reflect its current value.

The node representing the true loop parameter specification contains in

its leftlink, the address of the sequence-of statements. This statement

sequence is the address of a sub-tree which is created as the statements are

parsed. As with all statement sequences parsed by IOGEN, the complete

sub-tree is created prior to including its address in the appropriate node.

Once the sub-tree has been created and properly addressed,

theloop parameter specification which represents the path condition must be

negated to accurately reflect the termination of the For loop. In order to do so,

the subtree must be traversed to determine the changes in each symbolic value

contained within the specification. Because all variables do not have their

symbolic values updated until the entire symbolic execution tree has been built, a

node containing the negated specification is created. This node is appended to

the bottom of each execution path of the sub-tree to reflect this change.

The node representing the negated loopparameter specification

continues its execution with statements following the For loop.
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The While loop, whose structure is:

WHILE < condition > LOOP

sequence of statements

END LOOP;

The sequence of steps taken to form a branch in the symbolic execution tree and

the corresponding sub-tree are identical to the For loop. Note that instead of the

loopparameter specification ,a boolean condition is used. The condition

represents any legal boolean expression which is permitted by the Ada

language.

Simple loop statements take the following format:

LOOP

sequence_of_statements

EXIT WHEN < booleanexpression >

sequenceofstatements

END LOOP;

Unlike the previous loop structures, a fork in the execution tree is NOT created

when the loop is encountered. It is created when the EXIT-WHEN statement is

encountered. The sequence of statements preceding the EXIT-WHEN is

processed as usual. The sequence of statements following the EXIT-WHEN is

processed in the tree branch representing a false boolean condition as described

in the previous section.
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3.5 Summary

This chapter discussed the different components of the IOGEN system and

their basic function. A detailed description of how IOGEN processes various Ada

constructs was also presented.



CHAPTER 4

Case Study

In this chapter, a case study of the technique provided in Chapter 3 for

generating input/output pairs is presented. The data structures created by IOGEN

as well as the symbolic execution trees representing sample routines are

provided.

Coleman [3] presented two routines contained in the CAIS operational

definition which converted a string of digits into its integer equivalent. These

routines were examined and converted into a format acceptable to IOGEN. Minor

changes were made for constructs and syntax not supported by IOGEN. The

subprogram CONVERT was transformed from a function into a package body and

the formal parameters were converted into a list of objects defined globally. The

package body CONVERT is shown in Appendix B.

The declaration part of the package body consists of type, object, and

function declarations. Thetype declarations are ignored by IOGEN but are

included to provide better understanding of the package. Seven objects are

defined: ACCUM, CHAR, I, SIZE, STR, TEMP, and VALUE. For each object

defined, an IDNODE is created. The resulting list of IDNODEs is presented in

Figure 17. The IDNODE contains the name of the object, its default value, an

id type of GLOBALID, and a pointer to the list of tokens representing the value

%.%
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name /i'",eII / 1 "'
value
id_type i
tokens
next

name "OVlt

value

tokens
next

of the object. Default values are not assigned to CHAR, SIZE, and STR,

therefore, value contains an empty string and tokens is assigned a null pointer.

When the tree is traversed to generate I/O pairs, both the value and tokens

field is updated to reflect the current value of the object.

The function ATOI is processed next. A PROCNODE created for ATOI is

shown in Figure 18. Parms contains a pointer to the only formal parameter

-a
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name
value

name "AT0r' 9 id _typen
tokens

io__pairs next

parms ID_NODE

local vars nm

next value lol
idtyrpe locl dt
tokens
next

IDNODE

FIGURE 18. ATOI PROCNODE

defined in ATOI, C. Localvars contains the address of the IDNODE created for

the variable TEMP. A default value of zero. has been assigned to TEMP. A

pointer to the I/O pairs representing the paths within ATOI is stored in io.pair. At

this point, io_pair is null.

The initial tree generated when the sequence of statements representing

the body of ATOI is symbolically executed is presented in Figure 19. Several

things should be noted at this point. First, if the node contains a value in the

inptr field, the same value is represented in the condlist field but in a different

format. The same holds true for strptr. The same value represented in st._ptr is

assigned to tokenlist. The Ada language lacks the complicated string

manipulation functions needed by IOGEN. Therefore, in-ptr and str_ptr

. . .. .. - . - . -
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represent the statement in its original form and cond list and token list represent

the statement in a form which can be easily modified.

inpr.not (Cin _nptf nt( C in

DIGIT CHARY-'S DIGITCHAR"

idenatfler idezrnfier
slrntZ'T 3sm sunt typqe a_;rn

"n ~ .nced T -) iden type unccd C.
Cordid cand List

token-" in DC oensttCn D

right link 
rightjxnk

left-Link TDCleft 
Linkn

in otr "TLNP: c'psiC)
:= -I" - C p05(O),

identifier TEM"identiu '1E %1
stint -type smSunstype asm

ie ye undefined iden~t typ e fre
cond I.ist cotid list cntO
token List -token-list ( ) @
right :xk right link I 1(EDCO

leftLinkleft-link

in~pt __ .retn in"treturn
sz~ptr Lit TEMP'1  sw,
idenifier F ]identifier L Z ..
Saint type reton Sant rype Let J

ie unpefie iden tre[~p~~
cond list cotidjist
token list reuntoken list rturn TEMP
right Link right link
left Link left lnk

PATH A PATH B

FIGURE 19. Symbolic execution tree: Function ATOI

The stmtjtype field for these nodes can assume one of three values: proc,

* asm, or retrn. Nodes representing a return statement are assigned a stmtjtype of

"retrn". All other nodes have been assigned the value "asm". ATOI does not
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contain subprogram invocations, therefore, the stint type "proc" has not been

assigned.

Finally, for the two nodes representing the two assignment statements, the

identifier field contains the name TEMP, the object of assignment. The idenjtype

field currently contains the value "undefined". Once the substitution process

commences, this value is updated to LOCALID to indicate that TEMP is a locally

defined variable.

After the execution tree has been generated, a traversal of the tree is

performed. All tokens representing identifiers within tokenlist and condlist are

substituted by their current value. To obtain an identifier's current value, two lists

are searched, parms and local vars. These lists are copies of the lists contained

in the PROCNODE for the function ATOI. If references are found in either list, the

identifier is substituted by the list of tokens contained in the tokens field of the

corresponding IDNODE. If references are not found, the identifier is assumed to

be global and no substitutions are made. The only substitution necessary in

ATOI's execution tree is between TEMP and its current value. TEMP receives the

value P-1" in the return statement of path A and

"characterpos(C)-characterpos('O')" in path B.

It the node represents an assignment statement, parms and localvars are

searched once again to locate the variable referenced in the node's identifier

field. The variable's value is updated by assigning the value of the node's
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tokenlist to the variable's tokens field. For the function ATOI, TEMP's value is

updated.

Finally, the I/O pairs for the procedure are generated. This is performed in

conjunction with the previously mentioned actions. Each node is examined

during the traversal to determine whether the information contained within that

node should be included in the input/output pair. Only the assignment statements

which modify global variables or out or in out parameters are reflected in the I/O

pairs. All return statements are reflected as well as all compound statements.

Once the traversal is complete, every path within the execution tree is

represented. The input/output pairs generated for the function ATOI are:

I1: ( C in DIGITCHAR)

01: return -1

12: C in DIGITCHAR)

02: return characterpos(C) - character'pos('O')

The iopairs field in ATOI's PROCNODE points to the I/O pairs generated

above.

The final phase involves generating a symbolic execution tree for the body
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FIGURE 20. Symbolic execution tree: CONVERT

of the package CONVERT. The sequence of statements representing

CONVERT's body produces the symbolic execution tree shown in Figure 20. The
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only field shown is in.tr or strptr.

During the generation of the execution tree for CONVERT, the statement

TEMP:= ATOI (CHAR);

is encountered. Although similar in format to the statement

CHAR := STR ( I );

the actions which take place differ greatly. A search for the variable STR in the

global identifiers' list (see Figure 17) takes place and is successful. The

statement therefore represents a simple assignment statement and an action

node is created.

The assignment to TEMP, however, requires an additional list to be

searched. The global identifiers' list is searched once again, but this time, the

search is unsuccessful. The search continues by examining the list of

PROCNODES (see Figure 18). The identifier ATOI is located, thereby indicating

a function call. The list of I/O pairs addressed by the pointer io.pairs in ATOI's

PROCNODE is examined to determine the number of I/O pairs generated. As

previously shown, ATOI has two I/O pairs, therefore a two-way fork in the

execution tree is generated. Each I/O pair generates two nodes within the tree.

One node represent the input (path condition) while the second node represent

the output associated with the input node. For example, the input/output pair

I1: not (C in DIGITCHAR)

01: return-1

. .-- ,- a- ... , ,
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forms the structure shown in Figure 21.

in ptr "not ( C in DIGIT_CHAR )"
str-ptr ....

identifier I'll

stniLtype proc
identype undefined
cond-list
token list
rightink
left link

inptr "-,-__M_=__
strptr _TEM: -1"

identifier "
stinttype asm
iden type a
cond list
token- list Z-0
right link
left link

FIGURE 21. Input/output pair

Notice that the string in in.ptr differs from the list of tokens referenced by

condlist. This is caused by the substitution made between the actual and formal

parameters.

After the symbolic execution tree has been generated for CONVERT, the

tree is traversed. All necessary substitutions are made and all values are

updated. Unlike the function ATOI which used the lists parms and local_ vars to

make substitutions, CONVERT uses the list of global identifiers referenced in the

Jd4
4 , . . . .. ..,"e , e "- """'"""''""" .. e.. .e .... ''',..,.,....'''' ''' '-,.,, ,...-.-.''.'.'' , ,,..#.e'..,.,.; ,,.,,...,
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IDNODEs list.

Finally, the I/0 pairs generated for the package CONVERT are:

11: 1 <= SIZE & not (STR(1) ir DIGIT-CHAR) & -1/= -1

01: CHAR: STR(1) & TEMP: -1 & ACCUM: 010 +-1 & 1: 1 +1 &

VALUE: 0*10+-1

12: 1 <= SIZE & not (STR(1) in DIGIT-CHAR) & ! -1 /= -1

02: CHAR: STR(1) & TEMP: -1 & VALUE: 0

13: 1 <= SIZE & I!not (STR(1) in DIGIT-CHAR) &

(character'pos(STR(1)) - character'pos(0O')) /= -1

03: CHAR: STR(1) & TEMP: characteepos(STR(1)) -

characterpos('O') & ACCUM: 0 * 10 + character'pos(STR(1)) -

characterpos('0') & 1: 1 + 1 & VALUE: 0 * 10 +

character'pos(STR(1)) - character pos('0')

14: 1 <.SIZE & !not( STR(1) in DIGIT-CHAR ) &

(characterpos(STR(1)) - characterpos(0O)) /= -1

04. CHAR: STR(1) & TEMP:characteepos(STR(1)) - character'pos('O') &

VALUE: 0
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15: !1 <= SIZE

05: VALUE: 0

In summary, two symbolic execution trees were created, one representing

the function ATOI and the second representing the package body CONVERT. The

trees were traversed, all substitutions were made and I/O pairs were generated.

Five I/O pairs were generated to represent the package CONVERT, one of which

contained conflicting information. Chapter 5 addresses this issue along with other

limitations of the IOGEN system.



CHAPTER 5

Limitations/Extensions to lOGEN

The preliminary design of the IOGEN system focused primarily on Ada

branching constructs which generated forks within the symbolic execution tree for

a CAIS routine. Other areas included in the design were:

- global declarations

- global procedure/function declarations

- package body

all contained within a package body. Restrictions, however, are present within

each of these areas. This chapter focuses on the current limitations of the IOGEN

system and discusses details for extending IOGEN in order to eliminate these

limitations.

5.1 Global Declarations

IOGEN does not support global declarations such as type and subtype

declarations which span more than one input line. It also does not support

default values which are strings. In order to eliminate these restrictions, both the

scanner and parser generator must be modified.

Currently, the scanner Get_a_token does not recognize the Jouble quotes

used to enclose a string as a special character. This special character could

simply be added to the set of acceptable characters. The parser generator must

-. . . . .. . . . . . . .
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be modified to recognize not only the first double quotes signifying the beginning

of the string but must also classify each following token as a continuation of the

character string. Once a second double quote is recognized, the lookahead

token must be examined. If the lookahead symbol is a semicolon, the end of the

string has been encountered. If the lookahead symbol is another double quote, a

double quote is contained within the string and parsing should continue.

To allowtype andsubtype declarations to span more than one input line,

the parser generator must be modified. All valid type and subtype declarations

must be included in the grammar. Type declarations which should be included

are:

_ full ty, declarations

- incomplete type declarations

- private type declarations.

In order to allow for multi-line subtype declarations, definitions for valid

constraints, including

- discriminant constraints

- fixed point constraints

- floating point constraints

- index constraints

- range constraints

must be included in the grammar. Keep in mind that including these additional
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declarations and constraints does not extend IOGEN's ability in handling the

current statement types. This allows for fewer modifications to the original routine

prior to submitting it as input to IOGEN.

5.2 Global Procedure/Function Declarations

IOGEN's limitation in procedure/function declarations include restrictions

within the parameter list and subprogram body. Default values are not permitted

in the formal parameter list of a procedure or function. To allow default values,

the parameterassociation grammar rule within the parser generator must be

modified to reflect an optional production; formal parameter followed by the

symbol " =>". In addition, the initial default value for each parameter must be

reflected in the IDNODE for the corresponding parameter. If, during the

substitution process, an identifier is located in the parms list, thevalue field must

be examined to determine if an initial value for the parameter exists. This does

not take place in the current system.

Currently, IOGEN does not permit subprogram calls from within a

procedure or function. The reason is this. Forward declarations for procedures

and functions are contained within the package specification which is not

included as input. I/O pairs for a given procedure or function must be generated

prior to the invocation of that subprogram. It is conceivable, however, that a call is

made prior to the declaration of that subprogram. For example, procedures A, B,

and C are defined in that order for a given package. Calls to procedure A from
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within procedure B do not cause a problem. However, calls to procedure C from

within procedure B cause a serious problem. The N-way branch representing a

call to procedure C within procedure B's symbolic execution tree cannot be

generated since the number of I/O pairs cannot be determined.

One possible solution is to maintain a list of addresses of nodes within the

execution tree which require further expansion. If a call is made to a procedure

which has not yet been defined, a node representing the call is included in the

execution tree and the address of the node is inserted into the list of unexpanded

nodes for that procedure. This process is repeated for each call to a subprogram

not yet defined. Symbolic execution for the procedure continues with the

remaining statements. If, however, the execution tree for a procedure is complete,

all I/O pairs for that procedure are generated.

Once the execution trees for all subprograms have been defined, the

PROCNODE for each subprogram is examined to determine whether the list of

addresses of unexpanded nodes is empty. No further action is required if the list

is empty. If the list is not empty, nodes requiring further expansion must be

examined to determine whether the I/O pairs for the corresponding subprogram

have been generated. If the pairs have been generated, the unexpanded node is

eliminated, an N-way branch is generated, and the tree is restructured. If the I/O

pairs have not been generated for the subprogram, the called subprogram's

execution tree must be examined and all nodes expanded. This procedure

9
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continues until all trees have been fully expanded and all I/0 pairs have been

generated.

5.3 Package Body

Limitations contained within the body of the package are directed towards

statement structures. Call statements do not allow explicit naming of parameters.

If-statements do not permit elsif clauses and case statement selectors can only be

identifiers. Note, these restrictions also apply to the body of subprograms.

In order to allow explicit naming of parameters in a procedure call, the

parameterassociation grammar rule within the LL(1) grammar provided to

RRIPLL must be modified to reflect an optional production; formaljparameter

followed by the symbol " => ". A comparison of names, whereas before, positions

within the list, should be used to determine the proper substitutions between

actual and formal parameters.

In order to extend the If-Then-Else statements so it includes the elsif

clause, the if statement production rule within the grammar must be modified. It

should include an optional elsif production which states that the rule consists of

the keyword "ELSIF", a boolean condition, and a sequence of statements. To

represent the structure in the execution tree, an N-way branch must be

generated. The path conditions for each elsif branch are constructed by ANDing

the negation of each preceding path condition with the condition of the current

path. The else branch's path condition is constructed in the same manner as the

.......................
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others path in a case statement. All previous path conditions must be negated

and joined by an AND operation.

To enable the selector of the case statement to take on values other than a

single identifier, the casestatement production must be modified. By changing

the token id to the production representing a discrete expression, the selector

can represent an integer or enumeration type result.

5.4 Input/Output Pair Generation

The example given in the previous chapter demonstrates how I/O pairs for

a routine are generated. Notice, however that the first pair generated contains

conflicting information. The input portion indicates that the value of TEMP is not

equal to -1 while the output portion states that the current value of TEMP is equal

to -1. The value of TEMP is generated by a call to the function ATOI, in which a

value of -1 is returned for invalid characters passed as parameters. IOGEN does

not evaluate the information contained in each I/O pair to determine whether the

pair represents a valid path within the symbolic execution tree. It is important to

note that any I/O pair generated by IOGEN which contains conflicting information

can be disregarded. It represents a path which is not executable due to the result

of an expression or the value returned by a function or procedure. One possible

area for further research is to design a method which prevents input/output pairs

containing conflicting information from being generated.
C'

..- . C- - . .
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Summary

The chapter discussed the limitations of the IOGEN system and

recommended ways of modifying IOGEN in order to eliminate these restrictions.

These modifications included altering both the scanner, Get_a_token, and the

parser generator. Changes to the parser generator focused primarily on changes

to the LL(1) grammar.



CHAPTER 6

CONCLUSION

A method using symbolic execution to construct the I/O pairs necessary for

generating validation test cases for the Common APSE Interface Set was

discussed. The I/O pairs identified the execution paths through a routine

containing various Ada constructs. The Ada constructs which were examined and

implemented included assignment statements, If-Then-Else statements, loops,

case statements, and procedure calls. The detailed design for IOGEN, the

automated system for generating the I/O pairs, was presented. Each of IOGEN's

four major components were discussed.

Finally, implementation enhancement details were discussed in order to

ease modification efforts should the system be upgraded to support additional

Ada constructs.

This thesis provides the initial design for generating I/O pairs for the CAIS.

By no means is IOGEN a complete system. IOGEN makes an attempt in reducing

the effort necessary to design the necessary test cases to validate routines in the

CAIS. Not only can IOGEN be applied to CAIS routines but it can also be applied

to Ada programs in general.

- . V V *V ... i
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ACTUALPARAMIETER

ACTUALPARAMIETERPART

ASSIGNMIENTSTATEMENT

BASICDECLARATION



-~~T --,

65

BASICDECLITEM

BINARYADDINGOP

BODY

CASESTATEMNT

end cas
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CASESTMT_-ALTERN

CHOICE

COMFOUND ISTATEMEfNT

CONDITION

b o o l a n li!............... ....... ..... ............. ... ......... ........ ..
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DECLARATIVEPART

basic dcl JPart later dcljpart

DISCRETERANGE

EXITSTATEMIENT
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EXPRESSION

* relation

and relation

o r relation

FACTOR
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FORMALPART

FUNCTIONCALL

H1IGHPRECEDENCEOP

IDENTEFIERLIST

k Lidetifie.

Jk-
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IFSTATEMENT

if condiinte

........ .* sequence_.1)] of ;stints

else sequence of strnts

ITERATIONSCHEME

LATERDECLITEM

LODOPPARAMETERSPEC



.........

LOOPSTATEMENT 71

MODE

MULTIPLYINGOPERATOR



NUMBERDECLARATION 72

OBJECTDECLARATION

PACKAGEBODY

.~ ~~ . ....... . . . . . . . . . . . .......... . . . . .
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PROPERBODY 73

RANGE

RELATION

silapona opxpmpeeeprisio

RELATIONALOP
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RETURNSTATEMIENT 74

SEQUENCEOFSTMTS

SIMPLEEXPRESSIO

SIMPLEEXPRESSION



STATEMENT 75

SUBPROGRAMBODY

SUBPROGRAMSPEC
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TERM 76

UNARYADDINGOPERATOR
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[1] package body CONVERT is

[2] type DIGIT is -1 .. 9;
[3] type DIGITCHAR is '0'.. '9';
[4] type DIGITSTRING is array <> of DIGITCHAR;

[5] ACCUM : integer:= 0;
[6] CHAR "DIGITCHAR;
[7] I : integer:= 1;
(8] SIZE integer;
[9] STR :DIGITSTRING;
[10] TEMP integer:=0;
[11] VALUE integer:= 0;

[12] function ATOI ( C : in character) return DIGIT is
[13] TEMP: DIGIT:= 0;

[141 begin
[15] if ( C in DIGITCHAR) then
[16] TEMP := character'pos(C) - characterpos('0');
[17] else
[18] TEMP := -1;
(19] end if;
[20] return TEMP;
[21] end ATOI;

[22] begin
[23] if I <= SIZE
[24] then
[25] CHAR := STR(l);
(26] TEMP := ATOI(CHAR);
[27] if TEMP/= -1 then
[28] ACCUM :=ACCUM *10 +TEMP;
[29] I:= I + 1;
[30] end if;
[31] end if;

[32] -- the integer value for the string of digits
[33] -- is contained in
[34] VALUE := ACCUM; ' ,

[35] end CONVERT;

. . .. . * ., 4... .
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