

IO R R ' bat laZ N

‘.

PURTUA A RS TP

.4

PN IR LR 3

»

LR Ry

L

e

22

2.0

b
o~
E

B E

J

ol off on - EF)
 EEFEPEIN

2

16

|

")

Iz 0

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

Lo N N Y e Y
N A LA

SECURITY CLASSIFICATION OF THIS PAGE (When l:'ala‘Enu!rud)4

- —

i
? - A
; REPORT DOCUMENTATION PAGE BEF OB CORPL Bt o sRM

A T REPORT NUMBER 2 GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER

.y

2 ~ AFIT/CI/NR 86-7¢4T

3 4. TITLE (and Subtitle) 5. TYPE QF REPORT & PERIOD COVERED
0

A Automated Generation of Input Output Pairs THYYS/DISSERTATION =
e

For The Cais Validation Test Suite & PERFORWING OG- REPORT WuwBER

7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
Joyce Rene Jenkins

B AT P N

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
. . AREA & W 0 K UNIT NUMBERS

\

AFIT STUDENT AT: Arizona Stat:_é University

v,

- Rk I

F
v 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
N AFIT/NR 1986
WPAFB OH 45433-6583 13 NUMBER OF PAGES
78
2 14. MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Office) | 15. SECURITY CLASS. (of this report)
. — UNCLAS
< 15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
' 6. DISTRIBUTION STATEMENT (of this Report)
Q APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED LECTE
AUG 1 3 1386
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Repor
¥ o
8. SUPPLEMENTARY NOTES
\ N E. WOLAVER 6 ﬂ\)f t
K APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 an for Research and
sk Professional Development
4 AFIT/NR

19. KEY WORDOS (Continue on reverse side if necessary and identify by block number)

\

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number) ¢

!

R
2alaa

ATTACHED.

GTI0 FILE GOPY

Lo DD , 9%, 1473 EoiTion oF 1 nov 65 15 0BSOLETE

v uEET. e 2 07 /7 C NEY

ABSTRACT

.) A method designed by Lindquist and Facemire [1] to construct vali-
dation tests for the Common APSE Interface Set (CAIS), a set of kernel
interfaces which allow for the transportability of the Ada Programming
. Support Environment (APSE) tools, utilizes White-box testing methodolo-
gies in a Black-box fashion. A White-box testing approach is taken to
examine the internal structure of the Ada-based Abstract Machine
specification of the CAIS. Because the implementation details of the CAIS
are not known at validation time and the same validation suite is to be
used on several CAIS implementations, Black-box testing is a more desir-
able approach. Their solution is to identify test cases by analyzing the
program using a White-box approach. Tests cases can then be con-
structed and applied in a Black-box fashion. The system described in this
paper uses symbolic execution to create an execution tree which £
identifies all execution paths through the program. The path condition, a 9
label corresponding to each execution path, identifies the conditions
which cause that path to be executed. For each path, symbolic execution
produces a range over the input interface parameters and a list of
corresponding altered outputs [1]. This range and list of altered outputs

are known as Input/Output(l/0) pairs. The 1/0 pairs are then used to

- v - . - -

construct the tests needed for validating the CAIS. This paper discusses s

the detailed design and preliminary implementation of IOGEN, a system A

for generating the 1/0 pairs for the CAIS using symbolic execution.

. 2B on an fh g

AUTOMATED GENERATION OF INPUT/OUTPUT PAIRS
FOR THE CAIS VALIDATION TEST SUITE
by

Joyce Rene' Jenkins

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Acceusion For

TNTIS GRAKT ﬁg
- D10 TAB
: a

Unannounced
Justification . |

ATy
INSPecrf .

4

By
mgistribut;on[<_d~
ARIZONA STATE UNIVERSITY | Avatlabiiity Codes |
'Avall and/or
May 1986 Est Spechal

Nele ‘f e . ‘l.-' * -..‘;.---.-,"_._--‘..- \.*‘. ", q\ . \- . -f-.i .’(...'_.l.'l\l t'q‘. . \— - .‘. ~f\\f

AUTOMATED GENERATION OF INPUT/0OUTPUT PAIRS
FOR THE CAIS VALIDATION TEST SUITE
by

Joyce Rene’ Jenkins

has been approved

April 1986

APPROVED:

//(/1/;7//“ f j,{’(ﬁ woj;7L/ ,Chairperson

QL J w/z,

/z’m/%h/&i”@(

Supervisory Committee

ACCEPTED:

G

Depart.ment Cha.xrperson /

Dean, Graduate College

.............................
P R TR P TR P RO S

Abstract
\

This thesis addresses automating the process of generating test cases. The
detailed design and preliminary implementation of a system for generating the
input/output pairs are presented. The system, IOGEN, will be used for
constructing validation tests for the Common APSE Interface Set (CAIS). The
input/output pairs generated using symbolic execution and an overview of the
symbolic execution technique as it applies to testing are given. Finally, possible

areas for enhancing the IOGEN system are provided.

\

ves

Dedication -

To my mother and father.

. ov_po_ o P00

W e - w_m .

=,

Yt -,.-"..- & e ‘;.-%‘.\-‘-- ‘-‘."\'-"'.':".' AN .-\v$ 248‘- N e AT Tl T AT A et

L S

wervT vTeYy

Acknowledgement

| would like to thank Dr. Timothy Lindquist for his invaluable guidance and
patience throughout the development of this thesis. My thanks to Dr. James
Collofello and Dr. Terry Melion for their participation as committee members and
Marc Lesure for his assistance with RRIPLL. Finally, | wouid like to thank Ronald

Harden for all the moral support he provided.

...............................
..............

Table of Contents

¢
'; ListOf FIQUMBS o e viii
_ CHAPTER
Todntroduction 1
2. Symbolic Execution
2.1 GeneralOverviewoviiiiiiiiii i 4
2.2 1/O Pairs Generation Using Symbolic Execution 5
2.3 AssignmentStatements 6
24 t-Then-ElseStatements 7
25 Looping Constructsot i e 9
26 CaseStatement il 13
27 Procedure Callscooiuiniii i 14
: 28 SUMMaArY 16
3. Input/Output Pair Generation (IOGEN). 17
3.1 Inputand Output for tOGEN 17
32 DataStructures 18
3.3 MajorComponents of IOGEN 20
3.4 Detailed Design of IOGENcouvurireennn. .. 25
35 8ummary. ... 40
4. Case StUdY 42
A vi

!
‘ 5. Limitations/Extensionsto IOGEN 53
) 5.1 GlobalDeclarations, 53
| 5.2 Global Procedure/Function Declarations 55
53 PackageBody 57
5.4 Input/Output PairGeneration.........................c.... 58
5. SUMMANYt i e 59
. B. CONCIUSION e 60
; R OrBNCESot e e 61
Appendix :
A. SyntaxDiagrams e 63 :
' B. Sample Routine. i e 77

List of Figures

FIGURE
. Function VOWELS
. Symbolic execution tree: Function VOWELS

. Function COUNT_VOWELS

. Symbolic execution tree: Function COUNT_VOWELS

. Case statement

. IOGEN's symbolic execution tree

. IOGEN node

. Grammar rule: Package_body

. Syntax diagram: Package_body

. Package body

. ID_NODE

. PROC_NODE

. IO_NODE

. TOKEN_NODE

. ID_NODEs for Package CONVERT

. ATOI PROC_NODE

-

)

wtalsa a8, &

I~
N
.

FIGURE (continued)

19. Symbolic execution tree: Function ATOI

20. Symbolic executiontree: CONVERT 47

21, Input/output paIr i e 48

-"f Cala s To

PO W Py Yoy Dy

-

. CHAPTER 1

) Introduction

The Ada* Program, developed at the initiative of the United States

Department of Defense (DoD), adopted the concept that a common environment

PR O Y

which supports automated tools is essential to the computer growth within the
military service [4]. From this concept evolved the development of a Programming

‘ Support Environment (PSE). Within this environment resides software tools such

[

as compilers, editors, debuggers, configuration control aids, linkers, and text
formatters. All of these tools are designed to aid programming tasks during the

‘ coding, testing, and debugging phase.

| The Ada Programming Support Environment (APSE), implemented in Ada,

was designed to support mission critical software written in Ada. It was the intent

a4 8 3 2 M2

of the Department of Defense that the APSEs become the basic life-cycle
environment for all mission critical computer systems (MCCS) [1]. APSEs were
therefore expected to be transported among various types of machines and
. operating systems. Transporting tools among various APSE architectures
‘ realized one of the fundamental goals of the Ada program - to increase the
transportability and maintainability of embedded software systems [5]. However,

the Ada language does not provide a means for communications between APSE

i

*Ada is a registered trademark of the United States Government (Ada Joint
Program Office)

tools and the host system. A set of kernel interfaces were therefore necessary.

To formulate the requirements for the kernel interfaces for tools needed to
support the APSE, the Ada Joint Program Office (AJPO) formed the Kernel APSE
Interface Team (KIT), chaired by the Naval Ocean Systems Center, and the
Kernel APSE Interface Team from Industry and Academia (KITIA). The KIT/KITIA
have designed a set of interfaces which allow APSE tools to access the facilities
and services of the host system. This set of interfaces is called the Common
APSE Interface Set (CAIS). The CAIS is not designed to encompass total
operating system's functionality, but instead it includes facilities which are most
useful to tools [7].

In early 1986, theDepartment of Defense proposed a draft government

standard CAIS. The purpose for standardization is to promote transportability of

Ada tools across all DoD-sanctioned APSE's. As a result, the APSE Evaluation
and Validation Team (E&V) is responsible for initiating the development of a
CAIS Validation Capability (CVC) [5]. The CVC will be designed to test whether
the implementation of the CAIS adheres strictly to the specifications.

Facemire and Lindquist [5] described a specification and validation
technique to construct validation tests for the CAIS. This technique constructs test
cases in a White-Box testing fashion from an Abstract Machine description of the
CAIS. The tests are administered in a Black-Box testing fashion. The Operational

Definition of the CAIS (CAISOD) serves as input to the White-box testing method.

3

Symbolic execution is used to analyze the code to identify validation tests based
on execution paths through the operational definition. The test paths are
represented by input/output (I/O) pairs which consist of a range over the input
interfaée parameters and a list of corresponding altered outputs for each
execution path [5]. These I/O pairs are then converted into validation tests.
Coleman [3] further refines the method described by [5] for generating a CAIS
validation test suite based on symbolic execution. The method requires a valid
Ada-based Abstract Machine description (operational definition) of the CAIS.
This thesis discusses the detailed design and preliminary implementation of
generating a more complete set of test cases using symbolic execution. A
general overview of the symbolic execution technique as it applies to testing is
presented in Chapter 2. Chapter 3 presents the design of the I/O generator
(IOGEN) and the approach taken to automate the validation method described by
[5] and [3]. A case study is presented in Chapter 4 demonstrating the technique
described in Chapter 3. The limitations of and possible extensions to IOGEN are
discussed briefly in Chapter 5. Finally, Chapter 6 provides some conclusions

about the thesis.

o el

> - T
T T e e

- et ol - e -

arate s 4 md]

VG

LSRR A A L PRI L
¥ TSR O Y IR TR

CHAPTER 2
Symbolic Execution
2.1. General Overview

Software development is largely the process of communicating information
about the eventual program and translating this information from one form to
another [9). Verifying that the end product of this translation process, the
computer program, behaves according to its specifications, is the focus of
attention of many research groups. Symbolic execution, one method of program
verification, is the approach taken by Hantler and King [6] for proving programs
correct.

Hantler and King [6] provide a method utilizing assertions to verify the
correc. An input assertion, represented as an ASSUME statement and inserted at
the beginning of a routine, places constraints on all inputs for the routine. An
output assertion, represented as a PROVE statement and inserted immediately
before the return from a routine, represents the expected relation between the
inputs and outputs. The routine is said to be correct if the truth of the input
assertion guarantees the truth of the output assertion.

The proof for correctness for any given program is a proof for all possible
program inputs, not just a subset of these inputs. Hantler and King [6] suggests
using symbolic values to represent arbitrary program inputs. By doing so,

numeric variables take on "symbolic” as weil as numeric values. These symbolic

W~

.....

5
values can be represented as an elementary symbolic value, an arbitrary string
chosen to represent a variable, or an expression in numbers and arithmetic
operators. In this thesis, symbolic values are represented as Greek letters.

Before symbolically executing a routine, all input parameters are assigned
a unique symbolic value. Symbolic execution continues by substituting all
occurrences of the input parameter on the right hand side of an assignment
statement by its symbolic value. The resuit isan algebraic equivalent of the
numeric value.

Symbolic execution of routines containing iterative and selective constructs
results in branches in the execution tree. Each path through the tree identifies an
execution path through the program. Attached to each path is a predicate, called
a path conditions (pc), describing the conditions which cause a path to be
executed. The pc receives an initial value of true at the beginning of symbolic
execution for all routines. As branches are encountered in the symbolic execution
tree, the pc is modified to reflect the path condition for each branch by using an
AND operation. The following sections discuss input/output (I/O) pair generation
using symbolic execution for several Ada constructs.

2.2 /0 Pairs Generation using Symbolic Execution
We assume that the CAISOD, which serves as the input for symbolic
execution and as the specification, has been validated by some other means (3].

Symbolic execution as presented by Hantler and King [6] is used as a means of

6
generating 1/0 pairs, not as a means of proving a program's correctness.
Modifications to the method are made to provide I/O pair generation. Since the
input assertion at the beginning of any routine is always true, it has been
eliminated. Additionally, because the operational definition is assumed to be
correct, the PROVE statement is also eliminated.

The execution trees generated as a result of symbolic execution are used
to devise a set of I/O pairs. The input portion of the 1/0 pair is produced by
examining the path conditions at the bottom of each execution pats within the
execution tree. The path condition can be reduced, thereby yielding an algebraic
expression representing a "value” which causes that path to be executed. All
symbolic values in the resulting algebraic expression are substituted by their
corresponding global, local, or parameter variables in order to generate test data
for the routine. The resulting data may then be used to establish initial values for
global variables or values for the input parameters.

The output portion of the /O pair results from actions taken along a path
within the execution tree. The actions taken represent modifications of global
variables and output parameters. The following sections discuss symbolic
execution for several Ada programming constructs.

2.3 Assignment Statements

Assignment statements are normally executed by replacing the variables in

the right-side expression by their corresponding numeric value. The indicated

7
operations are then performed and the result is then assigned to the left-side
variable. Symbolic execution replaces the variables in the right-side expression

with a symbolic value. Because the right-side expression consists of an algebraic

expression containing symbols and not numeric values, it is left unchanged. This

algebraic expression then become the new value for the left-side variable.
2.4 If-Then-Else Statements

Symbolic execution of if-Then-Else statements is similar to the normal
execution for this conditional branching statement. First, all variables in the
boolean expression are replaced by their corresponding symbolic value. Two
separate expressions are formed using the new boolean expression. One
expression represents a true boolean condition. The second expression
represents the negated (false) boolean condition.

A conditional branching statement such as If-Then-Else causes a fork in the
execution tree. One path represents the true boolean expression or then path.
The other path represent the false boolean condition or else path. These paths
do not rejoin at a point later in the execution tree.

Path conditions for the two separate paths are formed by ANDing the
current pc with each boolean expression formed earlier. The then path's pc is
formed by ANDing the current pc with the true boolean expression. The
remaining path's pc is formed by ANDing the current pc with the false boolean

expression. This represents the e/se path. If the statement does not contain an

8

else clause, modifications to the pc are not necessary. Execution for both paths

continues with the instructions following the If-Then-Eise statement.

function VOWELS (char : in character) return integer is

type vowel_charis ('A''E','I''O",'U");
temp : integer;
vowel : vowel_char;

[1] begin

{2] if (charin vowel) then
(3] temp = -1;

(4] else

(5] temp = 0;

(6] end if;

(7 return temp;

[8] end;

FIGURE 1. Function VOWELS

Figure 1 presents an example of a function which returns a integer value (0
or 1) indicating whether the input character is a vowel. The symbolic execution
tree for the corresponding function is presented in Figure 2. The symbolic value
"rn" represents the variable char. Figure 2 presents an example of symbolic
execution for the conditional branching statement and shows the separation of

paths with their corresponding path conditions.

!
R i
: 9
¥
v'
4
:_ Initialization:

pc € true

chr @ =« @

pc <@— (1 in vowel) pc @— ! (7 in vowel)
temp @ 1 temp <4 0
R return 1 return 0
X --- /O Pairs ---
I1 : (char in vowel) I2 : not (charin vowel)
; Ol : retum 1 02: returmn O

FIGURE 2. Symbolic execution tree: Function VOWELS

2.5 Looping Constructs

Introducing loops into a routine implies that the symbolic execution trees
corresponding to the routine can be infinite [8]. It is obvious that routines which
have non-terminating loops have infinite execution trees. For routines which do
terminate, the size of the execution tree are finite, but can be exceedingy large.

Substituting symbolic values for actual variables during symbolic execution

......
. PR

TR ST A R R N A N AN NI N AT IS IR I RIS IFRE SP S SIP NRBRERE I TTPE SR TG T I8 ST

ey "N a® 8 o
‘ AN \.) .-{}I

10
represents a problem when looping constructs are involved since a unique
symbolic value must be generated for each actual variable.

To solve this problem, Hantler and King [6] use a form of induction to prove
programs correct. Essentially, by focusing attention to only a finite section of the
symbolic execution tree, the problem can be eliminated. This is accomplished by
inserting inductive assertions into the symbolic execution tree, thereby restricting
attention to a finite portiun of the tree.

Since the operational definition of the CAIS is assumed to be correct,
verifican of loop correctness is not necessary. The focus of attention, however,
must be narrowed. To accurately reflect the loop construct when generating 1/0
pairs, the number of loop iterations must be determined. Generally, this number is
not known prior to execution. In this case, a single iteration is considered..
Additional tests may be necessary if it is determined that a single iteration is not
sufficient.

The Ada looping constructs For, While, and Exit-When are examined.
Symbolic execution for these constructs is similar to symbolic execution of
If-Then-Else statements. A fork in the execution tree is created with one branch
representing a path around the loop, a false loop condition. The pc for this path is
determined by ANDing the current pc with the false loop condition. The other path
represents a single iteration of the loop whose pc is determined by ANDing the

current pc with the true loop condition. Once this path has been executed, the

11
loop condition becomes false and must be reflected accurately in the path
condition. This is done by ANDing the pc with a false loop condition.

Consider the procedure COUNT_VOWELS in Figure 3. COUNT_VOWELS
counts the number of vowels appearing in a string. COUNT_VOWELS calls the
function VOWELS which appeared in Figure 1. Symbolic execution of the routine

COUNT _VOWELS results in the execution tree presented in Figure 4.

type letters is 'A’ .. 'Z';
type char_string is array <> of letters;
index : integer;

function COUNT_VOWELS (
length : integer,;
instr : char_string) return integer is

vowel_count : integer = 0;
temp : boolean;

[1] Dbegin

[2] while index <= lenath loop

[3] temp = VOWL 53(instr(index));

(4] vowel_count := vowel_count + temp;
[5] end loop;

[6] return vowel_count;

end VOWEL_COUNTS;
FIGURE 3. Function COUNT_VOWELS

The example given in Figure 4 demonstrates symbolic execution for the

12

While loop. Symbolic execution for the For loop is identical to the While loop. One

branch in the tree represent an out-of-range index when the For loop is

Initialization :
insr €— T

length €@— A

(A <=index) '(A <=index)

Call Vowels (= (1))

return 0

(A <=index) &
(®(1) in vowel)

(A <=index) &
! (n(1) in vowel)

temp €— O

' 7' return O
return 1 7
-- /O Pairs ---
I1: (index <= length) & [2: (index <= length) & I3: ! (index <= length)
(instr(1) in vowel) ! (instr(1) in vowel)
Ol: return 1 02: return 0 O3: return 0

FIGURE 4. Symbolic execution tree: Function COUNT_VOWELS

¢ 420

A

P

13

encountered while the other branch represent a single iteration followed by an
out-of-range index. There is a slight variation in symbolic execution for the
EXIT-WHEN looping construct. A fork is generated in the execution tree when the
EXIT-WHEN condition is encountered. The exit condition is met the first time it is
encountered for one branch. The boolean condition is assumed to be false for
the second branch, therefore execution continues with the statements following
the EXIT-WHEN statement. For each branch, execution continues with the
statements following the looping construct.
2.6 Case Statement

The Case statement, like the |f-Then-Else statement, allows for the
selection of alternative paths of control. Unlike the If-Then-Else statement which
allows only two alternative paths, the Case statement all for N possible paths. If
there are N possible path of control, the fork in the execution tree has N
branches. Each branch's path condition, except for the others choice, is
determined by ANDing the current pc and the expression case_selector =
choice. The pc for the others choice causes the current pc to be ANDed with the
negation of every possible path. Execution for each branch continues with the
statements following the selected case and then the statements following the

Case statement. . ure 6 shows the execution tree for a Case statement in Figure

5.

[1]
(2]
(3]
(4]

(5]

L g AR A o b o ottt ol g o o

PC4—pC & (A=1)

temp €— 1

11 : Count =1
O1: temp :=1

Initialization: Count €— A

FIGURE 6. Symbolic execution tree: Case statement

2.7 Procedure Calls

The transfer of control caused by a procedure or function invocation can be

approached in two different ways when generating the symbolic execution tree.

.........

..........

case COUNT is

vV Vv

v

end case;

FIGURE 5. Case statement

pPCa—pc&(A/=1)
& (A/=2)

temp @— 2

temp€— 0
--- /O Pairs

12: Count=2
02: temp =2

13: Count/=1 & Count /=2
03: temp =0

...................
O =

g Bast e Jene Jhat et Aalh Sase Jhet St it ANk

15

approached in two different ways when generating the symbolic execution tree.

LARA S ENE ol kil

One approach is to continue execution as if the procedure was contained within
the main routine. This involves a macro-like expansion into the symbolic
execution tree [5]. Caution must be taken not to confuse local variables with the
variables of the calling routine. In ‘act, this method requires a "start from scratch”
approach because it causes the procedure code to be retested with every
invocation.

The approach designed by [5] suggests that the symbolic execution tree be
built in a bottom-up fashion. The I/O pairs for the called procedure are generated
prior to the calling program's invocation. The I/O pairs generated are expressed
in terms formal parameters. If there are N 1/O pairs corresponding to the called
procedure, an N-way branch in the execution tree is generated. The current pc of
the calling procedure is joined with the input portion of each 1/O pair by an AND
operation to generate a unique pc for each branch. The new pc generated for
each branch should be expressed in terms of the symbolic values corresponding
to the actual parameters. Therefore, the formal parameters are substituted by
their corresponding symbolic value.

Figure 4 presents the symbolic execution tree for the function

COUNT_VOWELS. Figure 2 illustrates the I/O pairs necessary for the procedure

COUNT_VOWELS. The two /O pairs generated cause a 2-way fork in the

execution tree.

SOIEROA L aa y EA L Y

-

SO I P S SR PR e A
.‘3'.\‘;‘-,‘:0_1"41'43_-‘.\’ ,‘1:)_\

16

R A R Ny

p The path conditions resulting from the AND operation of the calling program's pc
: : and the /O pair generated by the function VOWELS are:

- (A <= length) & (x in vowsl)

IS 22X

- (A <= length) & !(rin vowsl)
2.8 Summary
This chapter presented an overview of the symbolic execution technique
.. designed by Hantler and King [6]. This technique was modified and applied to
several Ada constructs in order to construct symbolic execution trees
representing these constructs. Using the execution trees produced, input/output

pairs were generated.

CHAPTER 3

Input/Output Pair Generation (IOGEN)

The detailed design of the automated system which generates 1/O pairs is
presented in this chapter. The inputs required, outputs generated, and the
structures used in the system are aiscussed. The major components of the
system are also discussed.

3.1 Input and Output for IOGEN

IOGEN, an automated system for generating I/O pairs, symbolically
executes source code from the CAISOD and produces a set of /O pairs
representing the possible execution paths through a routine. In order to generaté
the 1/O pairs, IOGEN requires the name of two files as input. The first file contains
the CAISOD source code which is written in Ada. The set of I/O pairs generated
by IOGEN is directed to the second file specified.

The CAISOD source code consists of a separate package specification and
body. Because the type declarations and forward declarations of procedures and
functions contained with the package specification do not play a role in the
symbolic execution process, the specification for any package is ignored. IOGEN
therefore expects a package body as input. All global number and object

declarations placed in the package specification must be relocated from the

package specification to the package body by the user. It is important that this be

18
accomplished because IOGEN must generate a structure for all global variables.

3.2 Data Structures

The execution trees produced by the symbolic execution method presented
in the previous chapter contains 2 and/or 3 way branches. Figure 7, for example,

represents a tree which could be generated by IOGEN.

FIGURE 7. Tree

Each node in the execution tree demonstrates some action taken when a
particular Ada construct was encountered. Each path condition represents the
initial state causing that particular path te executed. Nodes A and B represent an

Ada construct which causes a fork in the execution tree, while node D represents

............................

......

19
either a case statement with three aiternative paths or a procedure cail which
generated three distinct 1/0 pairs. Nodes C, E, F, G, H, and | represent
nonbranching constructs such as assignment statements. While this is just a

5 pictorial version of a tree, a symbolic execution tree created by IOGEN is based
on nodes and pointers. The implementation of the tree shown in Figure 7 is

presented in Figure 8.

: FIGURE 8. IOGEN's symbolic execution tree

The actions taken along a particular path are represented in one of two
information fields as indicated in Figure 9. The connections between nodes as

indicated in Figure 7 represent path conditions, while the pointers in Figure 8

T

o
-

"™

v
..

oo el "l A A

X3

.l-

C LS

LR .":.' ava

)
At At

ZrYYYYY3

20

represent actual links or addresses to succeeding nodes within the execution
tree. In order to represent the path conditions between nodes, an additional
information field within the node was required. For example, the pc between
nodes A and H in Figure 8 is represented in the in_ptr field of node H. The path
condition and action taken are by no means the only information contained within
the node. Additional information which eases the implementation effort is

contained in the node and is discussed in the detailed design section later in this

chapter.

v

in_ptr ()
str_ptr

left link

right link)

FIGURE 9. IOGEN Node

3.3 Major Components of IOGEN
Four distinct components for the IOGEN system were necessary in order to
generate an execution tree and a set of I/O pairs corresponding to the execution

tree: a scanner, a parser generator, a parser, and an |/O pair generator.

3.3.1 Scanner

When IOGEN accepts as input the file containing a package body, it is

21

viewed as one long stream of characters which must be assembled into a format
more suitable for manipulation. The primary purpose of the scanner, or lexical
analyzer, is to convert this unstructured stream of characters into a set of terminal
symbols or tokens. The basic lexical units which IOGEN's scanner, called
Get_a_token, accepts are keywords such as package and loop , symbols such
as <, /=, and (, and identifiers. All keywords, symbols, and identifiers recognized
by the Ada language are considered as valid tokens by IOGEN.

The basic function of IOGEN's scanner is to convert the input characters to
tokens (terminal symbols). The text is examined character-by-character to
determine whether the symbol is an extraneous blank, a symbol continuing a
previously seen token, or the beginning of a new token. The action appropriate to
the type of symbol recognized is taken.

Two additional functions are performed by the scanner. First, comments
and extraneous blanks are removed. Second, the scanner must eliminate the
type and subtype declarations which can appear in procedures and functions
defined in the package body. These declarations are irrelevant in generating a
symbolic execution tree. it is unnecessary for IOGEN to perform error detection
since only previously compiled code is accepted as input.

One pass over the text provided in the input file is made. As the pass

proceeds, tokens are provided to the parser upon request. This is done one token

at a time.

SWIYET

Y

-

RERIROA

4

.........

3.3.2 Parser Generator

RRIPLL (pronounced as ripple), a parser generator tool developed at
Arizona State University, builds a major component of the IOGEN system, its
parser. RRIPLL requires as input:

- an LL(1) grammar

- the name of the scanner (Get_a_token)

; a list of terminal symbols returned by the scanner
- alist of non-terminal symbols

Every programming language has a set of rules characterizing the correct
form of programs for that language [10]. This set of rules determining the format of
programs is known as a grammar. Grammar rules consist of left and right-hand
sides. The ieft-hand side, a unique non-terminal, denotes the name of the
grammar rule (syntactic category) and is defined to be the sequence on the
right-hand side. The right-hand side consists of a sequence of zero or more
non-terminal and terminal symbols. An example of a grammar rule for the
non-terminal package_body is shown in Figure 10. An equivalent syntax graph
for the non-terminal is shown in Figure 11. Syntax diagrams for the grammar
rules provided to RRIPLL are shown in Appendix A [2]. The rules are a subset of
the Ada language.

Using the previously mentioned inputs, RRIPLL produces a predictive,

top-down parser. This table-based parser, written in Pascal, deterministically

..........
............
......

''''''''''''''''''''

23

package_body ::=
PACKAGE BODY package_simple_name IS
[declarative_part]
[BEGIN sequence_of statements)|

END [package_simple_name]

FIGURE 10. Grammar rule : Package_body

body package_simple_name —®(_is

—@1 declarative_part

sequence_of_statements

package_simple_name
L RIS

FIGURE 11. Syntax diagram : Package_body

parses a string from left to right with a single token of lookahead. That is, it parses

without making an incorrect choice as to which grammar rule, or production, to

apply next. Given a choice of two alternative productions, the next token indicates

-

| AN S VL M

E A ‘
.‘JJ‘J » l"'—l

SN

- ,- ’C

.....
. e e .
Pl o PR

24
the one and only choice of productions that leads to a successful parse.
3.3.3 Parser

The focal point of the IOGEN system is the parser produced by RRIPLL. Its
basic structure is that of a table driven recursive descent parser (a predictive
parser). Procedure calls which invoke various external Ada routines are
permitted by RRIPLL and are integrated into the parser.

A parser generally accepts the output generated by the scanner and
verifies that the source program satisfies the grammatical rules of a language
[10]. Various structures such as parse trees and symbol tables are created as
outputs. The primary purpose of the parser in IOGEN, however, is to generate a
symbolic execution tree. The parser accepts tokens produced by Get_a_token
and invokes the appropriate Ada action routines. These action routines build
node structures, which contain information indicative of the token and statement
type. At various points during the parsing stage, these nodes are inserted into
their proper locations in the symbolic execution tree.

3.3.4 VO Pair Generation

Upon completion of the parsing phase, a symbolic execution tree
representing the execution paths within the source routine has been created.
Traversing the symbolic execution tree creates the /O pairs. Examining the
nodes within the tree determines whether the node represents an action (i.e.,

assignment) or a change in path condition. If the node represents an action node,

25
the information contained within the node is appended to the output portion of the
, I/O pair. If it represents a condition node, the stored information is inserted into
| the input portion of the I/O pair. Once the entire symbolic execution tree has been
traversed, all I/O pairs generated are outputted to the output file designated by
the user.
3.4 Detailed Design of IOGEN
The objectives of the IOGEN system were two-fold. First, IOGEN accepts as
input CAISOD routines and generates from these routines /O pairs. Second, all
routines necessary for generating a symbolic execution tree were to be written in
Ada. With one minor exception, these objectives were achieved. The parser
produced by RRIPLL is Pascal, not Ada code. If a compiler-compiler producing
Ada code becomes available, the parser could be re-generated; or with minor
effort, the Pascal code produced by RRIPLL could be converted into Ada.
However, the routines required to produce the symbolic execution tree and /O
pairs are written in Ada and are external to the Pascal parser.
As previously mentioned, the acceptable input to the IOGEN system is an
Ada package body. The three components of the package body, as shown in
Figure 12 are:
- global declarations

- global procedure/function declarations

- body

C ta- b g0 SRR " B i K -) AR DA N D B N
M AU S el gt Rt Rp et ah s e aies et g dny Jiedat Sad St) FANETETSIITAIN LYY,

26

PACKAGE BODY name IS
| global declarations]
[global procedures/functions]
[BEGIN
sequence_of_statements]
END [name]

FIGURE 12. Package body

Although these components are optional within a package body, the body of the
package itself is required by IOGEN. The processing of these components is
discussed in detail in the following sections.
3.4.1 Global Declarations
Global declarations for the package body consists of the following:

- number declarations

- object declarations

- type declarations

- subtype declarations
Number declarations create objects of a constant numeric value and may be any
subset of the integer or float predefined type. The following are valid number

declarations:

month : constant = MAY;

27

pi : constant := 3.14159265;
Object declarations create variables of a predefined or user-defined type.
IOGEN, however, does not recognize subranges for predefined types. The

parser recognizes type definitions only. For example:

W W

bottom : INTEGER;
is a valid variable declaration while

bottom : INTEGER range -10 .. -1;

rrryrrx

is not. Note that constrained array definitions are not permitted when defining
variables. The constrained array construct is not included in IOGEN's grammar.
Default values in variable declarations are permitted if not of the predefined type
string.

If the lexical element represents a number or object declaration, an object

of type ID_NODE is created. An example of ID_NODE is shown in Figure 13. !

name ()

value :
id_types

tokens

next _ J

FIGURE 13. ID_NODE

- VLWL, WO v,

28
The information field name is a string whose value is the identifier's name. If a
default value has been assigned, it is contained in value, otherwise, the value
assigned is "undefined.” Id_type is used to distinguish whether the identifier is
located in the package body or subprogram. If the identifier was defined in the
package body, the value of id_type is GLOBAL_ID, otherwise, LOCAL_ID is
assigned. Tokens contains the address to a list of tokens representing the value
of the object. Additional information on tokens is provided in section 3.4.3.1. As
each object is created, it is inserted into a linked list structure which is maintained
for the package body or current subprogram.
Type and subtype declarations are permitted if they span less then 81
characters and are contained in one input line. Type and subtype declarations
spanning multiple lines are considered to be invalid input. As previously
mentioned, these declarations are eliminated by the scanner.
3.4.2 Global Procedure/Function Declarations
Symbolic execution of source code containing procedure and function
invocations requires as input all I/O pairs for the called routines. This is
accomplished by generating a separate symbolic execution tree for each

subprogram defined.

-
.
B
-
’
&

SRS

...............

.

Subprograms have the following format:

Subprogram_specification is

{ local type declarations }
begin
sequence_of_statements

end {name};

......

29

For each subprogram encountered, an object, called PROC_NODE, is created. A

linked list of these objects is maintained and referred to as subroutines are

encountered in the main body of the package

name ()
10_pair

parms

local vars

next _)

FIGURE 14. PROC_NODE

As shown in Figure 14, three information fields within the node are of particular

interest; io_pair, parms, and /ocal_vars. After each subroutine's execution tree

has been generated, a traversal of the tree is performed to generate a set of /O

pairs for that routine. The address of the set of I/O pairs is maintained in io_pair.

............................
......

..................

30
Since only one pass is made over the input, information such as formai
parameters and local variables must be preserved so it can be retrieved at a later
time. Although local variables are not of major importance, their affect on formal
parameters and global variables must be considered.

The generation of each subprogram's 1/O pairs relies on the current value
of formal in parameters and local variables. Therefore, maintaining accurate lists
of parameters and variables is essential. In order to accomplish this, two
additional fields within PROC_NODE were generated, parms and local_vars.
Parms contains the address for a list of ID_NODEs whose current id_type value

indicates whether the parameter was an in or out parameter (see Figure 15).

v

in_part ()
out part

next .

FIGURE 15. IO_NODE

This distinction must be made since I/O pairs should reflect changes in out and in
out parameters but not in in parameters. Because Ada functions do not permit
parameter types other than in, this does not apply. The current implementation
of the system does not permit assignment of default values to formal parameters,

therefore thevalue field in ID_NODES is always undefined. Local_vars is the

31
address a list of ID_NODEs created for each variable defined within the
subprogram. Each node may contain an initial default value and is assigned an
id_type of LOCAL_ID.

Once the subprogram's symbolic execution tree has been generated, it is
traversed to determine which actions affectout andin out parameters. This is
accomplished by examining each node's identifier element and comparing its
value with elements in the parms andlocal_vars list. Actions modifying local
variables are ignored. Actions modifying out and in out parameters are
recorded in the appropriate I/O pair. If the identifier element is not located in
either list, the variable represents a global identifier and is also recorded in an I/O
pair.

- 3.4.3 Body
. The body of a package consists of a sequence of statements, simple and
compound, which forms the primary symbolic execution tree in the IOGEN
system. Each statement is examined to determine whether it represents an action
or condition which causes a fork within the execution tree. A node is generated
accordingly.
The following statement types are examined in the following sections:
- Assignment statements
- Procedure/function call statements

- Return statements

>
e

T g\

‘_‘.
a s A A

LA

Rl N 0 o

s e & 2°3 &

N

R
o

If-Then-Else statements

Case statements

Exit statements

Loops

3.4.3.1 Assignment Statements

32

IOGEN accepts any legal Ada assignment statement with an expression

consisting of variables and operators defined by the Ada language. As lexical

units are encountered in the right-side expression, IOGEN determines whether

the token represents a variable, symbe!, operator, or numeric value. A

TOKEN_NODE is created for each token and a type is assigned accordingly (sée

Figure 16).

r)
id

id_cat

next _ y,

FIGURE 16. TOKEN_NODE

After the entire execution tree has been built, each token within a node's tokens

list is evaluated. Tokens representing symbols and operators are used by IOGEN

for grammatical analysis only and require no further action. If the token

33
represents a variable, the global variables list is searched to determine its current
value. The token within the expression is then substituted by the variable's
current value. If the assignment statement occurs within the body of a
subprogram, the list of parameters and local variables is searched prior to the list
of global variables. If the token represents a numeric value, no substitution is
made.

Once the entire expression has been evaluated and all necessary
substitutions have been performed, the object of assignment is located in the
appropriate list and its value is then updated.

The action node representing the assignment statement has a designated
stmt_type of "asm”. The node field token_list contains the address of a list of
tokens which make up the assignment statement. This list is used when the
individual tokens of the statement must be examined. A node field is provided
which allows a string to represent the original assignment statement. Additionally,
the individual token representing the object of assignment is contained in a node
field. This allows for quick referencing of the identifier in a given node.
3.4.3.2 Procedure/Function Call Statements

Procedure and function calls have the same effect on the symbolic
execution tree being generated and require several actions to take place. The
PROC_NODE for the corresponding subprogram is located and the number of /O

pairs must be determined. An N-way fork in the execution tree, which reflects the

AAAAAAA

34
number of I/O pairs generated within the subprogram, must be created. For each
node in the tree fork, the path condition must reflect actual, not formal parameters.
Therefore, substitutions between actual and formal parameters must occur.
These substitutions must also occur within the output portion of the I/0 pair. Once
these substitutions have been performed, the output portion then becomes an
action node along the indicated path. The address of this action node is retained
in the left_link field of the path condition node. This process must be completed
for each I/O pair represented in the PROC_NODE for that subprogram.
3.4.3.3 Return Statements

The return statement, which is permitted in functions only (by IOGEN),
indicates a transfer of control back to the routine of invocation and the return of a
value. Its structure,

RETURN expression;

may consist of any legal Ada expression. Return statements pose a serious
problem when used throughout a function. During the generation of the
function's execution tree, careful attention must be madse not to append additional
nodes to the node of a return statement. This would indicate that control was
transferred yet processing within the function continued. To resolve this problem,
the node is marked as a return node by designating the node's stmt_type as
"retrn." Appending additional nodes to a "retrn” node is not permitted.

Once a function's execution tree is complete, a "retrn” node represents the

.....

35
last node in each execution path. The absence of a return node indicates an
unattainable transfer of control and the existence of an error.
3.4.3.4 If-Then-Else-Statements

If-statements, which must be of the form:
IF < condition > THEN
sequence_of_statements
{ ELSE
sequence_of_statements }
END IF;
generates a fork in the symbolic execution tree. Each fork node in the tree is of
type SINGLE_NODE and represents a condition node. The condition represents
any legal boolean expression. All tokens within the condition must be examined
to determine whether substitutions are required. If so, the appropriate lists are
searched and the proper substitutions are made. A string and a list of tokens is
used to represent the altered If-statement's condition.
One node within the fork must reflect a true path condition. This is
accomplished by retrieving the string representing the previously altered
condition and assigning it to the information field of the node in_ptr. The address
of the list of tokens representing the condition is stored in cond_list. The address
of the sequence of statements which is executed when the path condition is true

is stored in the node field /eft_link. This address represents the address of the

36 f
sub-trge generated as the sequence of statements is parsed. As a result, the
sub-tree must be built prior to its address being inserted into the current ., mbolic
execution tree, not while each statement is encountered during the parsing
phase.

A node which represents the false path condition is generated regardless
of whether an ELSE clause exists. If an ELSE clause exists, generating and

storing the address of the sub-tree follows the same process as a true path

condition. The path condition for the node is calculated by prefixing the condition
string and tokens list with the character " | . The string and tokens list address is
stored in the appropriate field.

The ELSE clause within the statement is optional, however, ELSIF clauses
are not permitted by IOGEN.
3.4.3.5 Case Statements

Case statements take the form:

CASE selector 1S
WHEN choice => sequence_of_statements

END CASE;

The selector represents a valid Ada identifier while each choice consists of one

At]

f
J

.............

a Y oL

37
of the following:
- ldentifier
- Discrete range
- Expression
- Others clause
The selector is represented by its symbolic value and each identifier within the
various choices must reflect the current value of the identifier. Once again,
substitutions between actual identifiers and their current value must take place.
When a case statement is encountered during the parsing phase, two
separate lists are maintained. The first list represents a list of choices that is used
if an others statement is encountered. Each choice within the list is negated and
ANDed together in order to reflect an accurate others choice. The second list
represents a list of SINGLE_NODEs, one for eachchoice within the case
statement. Each node reflects an alternative execution path in the symbolic
execution tree. Associated with each node is a list of action nodes represe “ting
the sequence of statements to be executed. The address corresponding to this
list of nodes is maintained in the information field/eft_link. The right_link points
to an alternate choice in the case statement.
3.4.3.6 Exit Statements

Exit statements must be of the form:

- 7 .IT WHEN < boolean_expression >

...........

38
and indicates that a fork within the execution tree must be created. The nodes
contained in the fork are of type SINGLE_NODE and represent condition nodes.
The boolean expression within the statement is used to generate the path
conditions for each node. The path condition for the first branch reflects a true
boolean expression. A string representing the boolean expression is reflected in
the node's in_ptr while the address of the list of tokens which form the
expression is stored in tokens. Each variable within thetokens list is updated by
its current value. Execution continues with the statements following the end of the
loop in which the Exit statement is contained.

The remaining branch’'s path condition is generated by negating the
expression. This expression is reflected in in_ptr as a string and tokens as a list
of tokens. Execution continues with the statement following the EXIT-WHEN.
3.4.3.7 Loops

Three basic loop structures are examined:

-For loops
- While loops
- Simple loops
The For loop, which must be of the following format:
FOR < loop_parameter_specification > LOOP
sequence_of_statements .

END LOOP;

‘ 39
generates a fork in the execution tree. The conditions represented in each node
b of the fork consists of the loop_parameter_specification. One node represents a
true specification, while its associated node's condition is negated. Once again,
N all variables contained within the specification reflect its current value.

The node representing the true loop_parameter_specification contains in
its left_link, the address of the sequence_of_statements. This statement
sequence is the address of a sub-tree which is created as the statements are
parsed. As with all statement sequences parsed by IOGEN, the complete
sub-tree is created prior to including its address in the appropriate node.

Once the sub-tree has been created and properly addressed,
L theloop_parameter_specification which represents the path condition must be
negated to accurately reflect the termination of the For loop. In order to do so,
the subtree must be traversed to determine the changes in each symbolic value
contained within the specification. Because all variables do not have their
symbolic values updated until the entire symbolic execution tree has been built, a
node containing the negated specification is created. This node is appended to
the bottom of each execution path of the sub-tree to reflect this change.
. The node representing the negated /oop_parameter_specification

continues its execution with statements following the For Iloop.

(]
(N
L)
3
"
*

4

-

................................

40

The While loop, whose structure is:
WHILE < condition > LOOP
sequence_of_statements
END LOOP;
The sequence of steps taken to form a branch in the symbolic execution tree and
the corresponding sub-tree are identical to the For loop. Note that instead of the
loop_parameter_specification ,a boolean condition is used. The condition
represents any legal boolean expression which is permitted by the Ada
language.
Simple loop statements take the following format:
LOOP
sequence_of_statements
EXIT WHEN < boolean_expression >
sequence_of_statements
END LOOP;
Unlike the previous ioop structures, a fork in the execution tree is NOT created
when the loop is encountered. It is created when the EXIT-WHEN statement is
encountered. The sequence of statements preceding the EXIT-WHEN is
processed as usual. The sequence of statements foliowing the EXIT-WHEN is
processed in the tree branch representing a false boolean condition as described

in the previous section.

3.5 Summary

This chapter discussed the different components of the IOGEN system and

their basic function. A detailed description of how IOGEN processes various Ada

constructs was also presented.

A AL ol) oS0 o ol oty

Y v W

CHAPTER 4

Case Study

In this chapter, a case study of the technique provided in Chapter 3 for
generating input/output pairs is presented. The data structures created by IOGEN
as well as the symbolic execution trees representing sample routines are
provided.

Coleman [3] presented two routines contained in the CAIS operational
definition which converted a string of digits into its integer equivalent. These
routines were examined and converted into a format acceptable to IOGEN. Minor
changes were made for constructs and syntax not supported by IOGEN. The
subprogram CONVERT was transformed from a function into a package body and
the formal parameters were converted into a list of objects defined globally. The
package body CONVERT is shown in Appendix B.

The declaration part of the package body consists of type, object, and
function declarations. Thetype declarations are ignored by IOGEN but are
included to provide better understanding of the package. Seven objects are
defined: ACCUM, CHAR, |, SIZE, STR, TEMP, and VALUE. For each object
defined, an ID_NODE is created. The resulting list of ID_NODEs is presented in

Figure 17. The ID_NODE contains the name of the object, its default value, an

id_type of GLOBAL_ID, and a pointer to the list of tokens representing the value

[l B bt Al W

-

...................................

43

name
value
id_type
tokens
next

" 1 (13
global id

name "SIZE"
value o
id_type | global id |
tokens
next

name "VALUE"

value 0"

id_type | global id _

tokens @
next

FIGURE 17. ID_NODEs for Package CONVERT

of the object. Default values are not assigned to CHAR, SIZE, and STR,
therefore,value contains an empty string and tokens is assigned a null pointer.
When the tree is traversed to generate /O pairs, both the value and tokens
field is updated to reflect the current value of the object.

The function ATOl is processed next. A PROC_NODE created for ATOl is

shown in Figure 18. Parms contains a pointer to the only formal parameter

) 44

v alue "non
" 1] i d in
name ["ATOI') 1¢_type @
_ tokens]
b io_pairs next ___/
) parms ID_NODE
local vars - = 0
- name TEMP
ncx t value " O'l
id_type local id
tokens | 0
next

ID NODE

FIGURE 18. ATOI PROC_NODE

defined in ATOI, C. Local_vars contains the address of the ID_NODE created for

the variable TEMP. A default value of zero- has been assigned to TEMP. A

P ATILLr?

pointer to the I/O pairs representing the paths within ATOl is stored in io_pair. At
this point, io_pair is null.

The initial tree generated when the sequence of statements representing
the body of ATOI is symbolically executed is presented in Figure 19. Several
things should be noted at this point. First, if the node contains a value in the
in_ptr field, the same value is represented in the cond_/ist field but in a different
format. The same holds true for str_ptr. The same value represented in str_ptr is

assigned to token_list. The Ada language lacks the complicated string

manipulation functions needed by IOGEN. Therefore, in_ptr and str_ptr

45
represent the statement in its original form and cond_list and token_list represent

the statement in a form which can be easily modified.

in_ptr /_L\¢“nol(Cin in_pw (> not(Cin

SAU_‘W " DIGIT_CHAR)' sT_pwr - DIGIT_CHAR"
idenutier il idenafier
stme_npe asm s_um _type am .

wien v [_ncenned @ OC iden_ type unacined | (MO

cond _list _
, roken tst |G XDC @ token_list (_ﬂ_xDEQ
' nght_iink nghl'_'lmk
) fert_link - left_link ,
9 . J
- inow (" . in_pw - “TEMP := ¢'posiC)
2 — TEMP ST_ptr — e
A so_px = = 1" - - ¢'pos('0)
' identifier | __TEMP" identfier | "TEMP"
! stmt_type asm sont_type | asm
g iden_rype [_undefined iden_type | undefived |
cond_list - cond hust —- ©O
token _list -T\- token _list =
right_link right_link .@@.@
d left_link \ left_link
\ v
' in_pwr ——: - —— _"return :_—-P - ‘:__"remm i
] sT_pur TEMP” sa_pw TEMP
idendfier 1?::5;; —
stme_type retmn st _ T
iden_type | underined iden_type undetined
cond_list cond_list
token,_list —Eum)TEP) token_list L(Em (D
right_link right Tink]
left_link left_link
PATH A PATH B

FIGURE 19. Symbolic execution tree: Function ATOIl

The stmt_type field for these nodes can assume one of three values: proc,

a¥aVs s &N

asm, or retrn. Nodes representing a return statement are assigned a stmt_type of

"retrn". All other nodes have been assigned the value "asm". ATOl does not

46
contain subprogram invocations, therefore, the stmt_type "proc” has not been
assigned.

Finally, for the two nodes representing the two assignment statements, the
identifier field contains the name TEMP, the object of assignment. The iden_type
field currently contains the value "undefined". Once the substitution process

commences, this value is updated to LOCAL_ID to indicate that TEMP is a locally

defined variable.
5 After the execution tree has been generated, a traversal of the tree is
performed. All tokens representing identifiers within token_list and cond_list are

3 : substituted by their current value. To obtain an identifier's current value, two lists

are searched, parms and local_vars. These lists are copies of the lists contained
in the PROC_NODE for the function ATOI. If references are found in either list, the
identifier is substituted by the list of tokens contained in the tokens field of the
corresponding ID_NODE. If references are not found, the identifier is assumed to
be global and no substitutions are made. The only substitution necessary in
ATOI's execution tree is between TEMP and its current value. TEMP receives the
value "-1" in the return statement of path A and
"character'pos(C)-character'pos('0')" in path B.

If the node represents an assignment statement, parms and local_vars are
searched once again to locate the variable referenced in the node's identifier

field. The variable's value is updated by assigning the value of the node's

; . 47
token_Jist to the variable's tokens field. For the function ATOI, TEMP's value is
updated.

Finally, the I/O pairs for the procedure are generated. This is performed in
conjunction with the previously mentioned actions. Each node is examined
during the traversal to determine whether the information contained within that
node should be included in the input/output pair. Only the assignment statements
which modify global variables or out or in out parameters are reflected in the 1/0
pairs. All return statements are reflected as well as all compound statements.
Once the traversal is complete, every path within the execution tree is

represented. The input/output pairs generated for the function ATOI are:

1: 1(Cin DIGIT_CHAR)

O1: return -1

i2: (Cin DIGIT_CHAR)
0O2: return character'pos(C) - character'pos('0')

The io_pairs field in ATOlI's PROC_NODE points to the /O pairs generated

above.

The final phase involves generating a symbolic execution tree for the body

- s

AR 4 A%

T T

......

48
" <= SIZE" > | <= SIZE"
" CHAR := "VALUE :=
STR(D " AcctM ™
“NOT (T(STR(M)
STR(I) IN N
D CY D_C)"
"TEMP := "TEMP :=
L ¢p(STRQ -
cvp(‘o')"
“TEMP /= "I TEMP /= “TEMP /= "I TEMP /=
-1 " -1" -1 " -lll
"ACCUM:= . - "ACCUM:= "VALUE :
Accum: VALUE := AcCLM: VALUE :=
10 “TEMP" ACCLM 10 +TEMP" Accem
L= la 1" Tl 1"
"VALUE :a "VALUE :=
ACCUMT ACCUM"

FIGURE 20. Symbolic execution tree: CONVERT

of the package CONVERT. The sequence of statements representing

CONVERT's body produces the symbolic execution tree shown in Figure 20. The

......

............

49
only field shown is in_ptr or str_ptr.

During the generation of the execution tree for CONVERT, the statement

TEMP := ATOI (CHAR),
is encountered. Although similar in format to the statement

CHAR =STR (|);
the actions which take place differ greatly. A search for the variable STR in the
global identifiers' list (see Figure 17) takes place and is successful. The
statement therefore represents a simple assignment statement and an action
node is created.

The assignment to TEMP, however, requires an additional list to be
searched. The global identifiers' list is searched once again, but this time, the
search is unsuccessful. The search continues by examining the list of
PROC_NODES (see Figure 18). The identifier ATOI is located, thereby indicating
a function call. The list of I/O pairs addressed by the pointer io_pairs in ATOl's
PROC_NODE is examined to determine the number of I/O pairs generated. As
previously shown, ATOl has two /O pairs, therefore a two-way fork in the
execution tree is generated. Each I/O pair generates two nodes within the tree.
One node represent the input (path condition) while the second node represent
the output associated with the input node. For example, the input/output pair

I1: not (C in DIGIT_CHAR)

O1: retun -1

A A

LU

Félatatl s

forms the structure shown in Figure 21.

50

in_ptr
str_ptr
identifier
stmt_type

"not (C in DIGIT_CHAR)"

"o

proc

iden_type | _undefined |
cond_list -1 @A(D STRI)
token_list (i) 0O

right_link
left_link

in_ptr t

str_ptr —+—" TEMP :=-1"
identifier "TEMP"
stmt_type asm
iden_type | _globalid |
cond_list
token_List =@y

right_link
left link \ y,

FIGURE 21. Input/output pair

Notice that the string in in_ptr differs from the list of tokens referenced by
cond_list. This is caused by the substitution made between the actual and formal
parameters.

After the symbolic execution tree has been generated for CONVERT, the
tree is traversed. All necessary substitutions are made and all values are

updated. Unlike the function ATOI which used the lists parms and local_vars to

make substitutions, CONVERT uses the list of global identifiers referenced in the

51
ID_NODE:s list.
Finally, the I/O pairs generated for the package CONVERT are:
I1: 1<=SIZE & not (STR(1)ir DIGIT_CHAR) & -1 /=-1
O1: CHAR:STR(1) & TEMP:-1 & ACCUM:0*10+-1 & 11 +1 &

VALUE: 0* 10 +-1

12: 1<=SIZE & not(STR(1)in DIGIT_CHAR) & !-1 /= -1

O2: CHAR: STR(1) & TEMP: -1 & VALUE: 0

13: 1<=SIZE & !not{ STR(1)in DIGIT_CHAR) &
(character'pos(STR(1)) - character'pos('0’)) /= -1

O3: CHAR: STR(1) & TEMP: characterpos(STR(1)) -
characterpos('0') & ACCUM: 0 * 10 + character'pos(STR(1)) -
characterpos('0’) & I:1+1 & VALUE:0*10 +

character'pos(STR(1)) - character'pos('0')

14: 1<=SIZE & !not (STR(1)in DIGIT_CHAR) &
! (character'pos(STR(1)) - characterpos('0’)) /= -1

O4: CHAR: STR(1) & TEMP:character‘pbs(STRU)) - character'pos('0’) &

VALUE: 0

e) -

52
I5: 11<=SIZE
0O5: VALUE: 0

In summary, two symbolic execution trees were created, one representing
the function ATOI and the second representing the package body CONVERT. The
trees were traversed, all substitutions were made and |/O pairs were generated.
Five 1/0 pairs were generated to represent the package CONVERT, one of which

contained conflicting information. Chapter 5 addresses this issue along with other

limitations of the IOGEN system.

- . - e gh 1
(UWUNLRLTRE S MW TE NV K Lkl) A UTA A S) e/ iU A AR A A

CHAPTERS

Limitations/Extensions to IOGEN

The preliminary design of the IOGEN system focused primarily on Ada
branching constructs which generated forks within the symbolic execution tree for
a CAIS routine. Other areas included in the design were:

- global declarations

- global procedure/function declarations

- package body
all contained within a package body. Restrictions, however, are present within
each of these areas. This chapter focuses on the current limitations of the IOGEN
system and discusses details for extending IOGEN in order to eliminate these
limitations.
5.1 Global Declarations

IOGEN does not support global declarations such as type and subtype

declarations which span more than one input line. It also does not support
default values which are strings. In order to eliminate these restrictions, both the
scanner and parser generator must be modified.

Currently, the scanner Get_a_token does not recognize the Jdouble quotes
used to enclose a string as a special character. This special character could

simply be added to the set of acceptable characters. The parser generator must

ARSI

. &y

54
be modified to recognize not only the first double quotes signifying the beginning
of the string but must also classify each following token as a continuation of the
character string. Once a second double quote is recognized, the lookahead
token must be examined. If the lookahead symbol is a semicolon, the end of the
string has been encountered. If the lookahead symbol is another double quote, a
double quote is contained within the string and parsing should continue.

To allowtype andsubtype declarations to span more than one input line,
the parser generator must be modified. All valid type and subtype declarations
must be included in the grammar. Type declarations which should be included
are:

- full ty; - declarations

- incomplete type declarations

- private type declarations.
In order to allow for multi-line subtype declarations, definitions for valid
constraints, including

discriminant constraints

fixed point constraints

floating point constraints

index constraints

range constraints

must be included in the grammar. Keep in mind that including these additional

s 3 2 8 B

55

declarations and constraints does not extend IOGEN's ability in handling the
current statement types. This allows for fewer modifications to the original routine
prior to submitting it as input to IOGEN.

5.2 Global Procedure/Function Declarations

IOGEN's limitation in procedure/function declarations include restrictions
within the parameter list and subprogram body. Default values are not permitted
in the formal parameter list of a procedure or function. To allow default values,
the parameter_association grammar rule within the parser generator must be
modified to reflect an optional production; formal_parameter {followed by the
symbol " =>". In addition, the initial default value for each parameter must be
reflected in the ID_NODE for the corresponding parameter. If, during the
substitution process, an identifier is located in the parms list, thevalue field must
be examined to determine if an initial value for the parameter exists. This does
not take place in the current system.

Currently, IOGEN does not permit subprogram calls from within a
procedure or function. The reason is this. Forward declarations for procedures
and functions are contained within the package specification which is not
included as input. /O pairs for a given procedure or function must be generated
prior to the invocation of that subprogram. It is conceivable, however, that a call is

made prior to the declaration of that subprogram. For example, procedures A, B,

and C are defined in that order for a given package. Calls to procedure A from

a"s a1 & M

L=t

[NCSENENEAE N

56

within procedure B do not cause a problem. However, calls to procedure C from
within procedure B cause a serious problem. The N-way branch representing a
call to procedure C within procedure B's symbolic execution tree cannot be
generated since the number of I/O pairs cannot be determined.

One possible solution is to maintain a list of addresses of nodes within the
execution tree which require further expansion. If a call is made to a procedure
which has not yet been defined, a node representing the call is included in the
execution tree and the address of the node is inserted into the list of unexpanded
nodes for that procedure. This process is repeated for each cail to a subprogram
not yet defined. Symbolic execution for the procedure continues with the
remaining statements. If, however, the execution tree for a procedure is complete,
all /0 pairs for that procedure are generated.

Once the execution trees for all subprograms have been defined, the
PROC_NODE for each subprogram is examined to determine whether the list of
addresses of unexpanded nodes is empty. No further action is required if the list
is empty. If the list is not empty, nodes requiring further expansion must be
examined to determine whether the 1/O pairs for the corresponding subprogram
have been generated. If the pairs have been generated, the unexpanded node is
eliminated, an N-way branch is generated, and the tree is restructured. If the /O

pairs have not been generated for the subprogram, the called subprogram’s

execution tree must be examined and all nodes expanded. This procedure

AR AN LA AR A A

57
continues until all trees have been fully expanded and all 1/0 pairs have been
generated.
= 5.3 Package Body
Limitations contained within the body of the package are directed towards
b statement structures. Call statements do not allow explicit naming of parameters.
If-statements do not permit elsif clauses and case statement selectors can only be

identifiers. Note, these restrictions also apply to the body of subprograms.

In order to allow explicit naming of parameters in a procedure call, the
parameter_association grammar rule within the LL(1) grammar provided to
RRIPLL must be modified to reflect an optional production; formal_parameter
followed by the symbol " => ". A comparison of names, whereas before, positions
within the list, should be used to determine the proper substitutions between
actual and formal parameters.

In order to extend the If-Then-Else statements so it includes the elsif
clause, the if_statement production rule within the grammar must be modified. It
should include an optional elsif production which states that the rule consists of J

the keyword "ELSIF", a boolean condition, and a sequence of statements. To

..
e,

represent the structure in the execution tree, an N-way branch must be
generated. The path conditions for each elsif branch are constructed by ANDing

the negation of each preceding path condition with the condition of the current i

path. The else branch's path condition is constructed in the same manner as the N

-
T

58

-
-

others path in a case statement. All previous path conditions must be negated
and joined by an AND operation.
\ To enable the selector of the case statement to take on values other than a
A N single identifier, the case_statement production must be modified. By changing
the token id to the production representing a discrete expression, the selector
can represent an integer or enumeration type result.
5.4 Input/Output Pair Generation
The example given in the previous chapter demonstrates how I/O pairs for
a routine are generated. Notice, however that the first pair generated contains
conflicting information. The input portion indicates that the value of TEMP is not
equal to -1 while the output portion states that the current value of TEMP is equal
. to -1. The value of TEMP is generated by a call to the function ATOI, in which a
value of -1 is returned for invalid characters passed as parameters. IOGEN does
not evaluate the information contained in each I/O pair to determine whether the
pair represents a valid path within the symbolic execution tree. It is important to

note that any 1/O pair generated by IOGEN which contains conflicting information

r

can be disregarded. It represents a path which is not executable due to the result

of an expression or the value returned by a function or procedure. One possible

Ta A 8 bty

area for further research is to design a method which prevents input/output pairs

containing conflicting information from being generated.

..
*
'S
L)

........... . P R I A A LV S PR T SR YL) ate et ettt et

R N S SO JE SRR S PP W PEPC PO PO PRGN PR RNV FUPE PEEAN-y ¢ 1§ VS PC YUY Py

59
Summary
The chapter discussed the limitations of the IOGEN system and
recommended ways of modifying IOGEN in order to eliminate these restrictions.
These modifications included altering both the scanner, Get_a_token, and the
parser generator. Changes to the parser generator focused primarily on changes

to the LL(1) grammar.

CHAPTER 6

CONCLUSION

A method using symbolic execution to construct the I/O pairs necessary for
generating validation test cases for the Common APSE Interface Set was
discussed. The 1/O pairs identified the execution paths through a routine
containing various Ada constructs. The Ada constructs which were examined and
implemented included assignment statements, |f-Then-Eise statements, loops,
case statements, and procedure calls. The detailed design for IOGEN, the
automated system for generating the I/O pairs, was presented. Each of IOGEN's
four major components were discussed.

Finally, implementation enhancement details were discussed in order to
ease modification efforts should the system be upgraded to support additional
Ada constructs.

This thesis provides the initial design for generating 1/0 pairs for the CAIS.
By no means is IOGEN a complete system. IOGEN makes an attempt in reducing
the effort necessary to design the necessary test cases to validate routines in the

CAIS. Not only can IOGEN be applied to CAIS routines but it can also be applied

to Ada programs in general.

References

62

1. Ada Joint Program Office. Military Standard Common APSE Interface
Set (CAIS). Department of Defense. 1985.

2. Booch, G. Software Engineering with Ada. Benjamin/Cummings
Publishing Company, Menlo Park, CA, 1983.

3. Coleman, K.A. A CAIS Validation Methodology. MS Thesis, Dept. of
Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA, 1985.

4. Druffel, L. Strategy for a DOD Software Initiative. Defense Technology
Center, Defense Logistics Agency, Alexandria, VA, 1982.

5. Facemire, J.L. and Lindquist, T.E. Using an Ada-based Abstract Machine
Description of CAIS to Generate Validation Tests. Washington Ada
Symposium, Washington D.C., 1985.

Hantler, S.L. and King, J.C. An Introduction to Proving the
Correctness of Programs. ACM Computing Surveys, 8, 3, (1976),
331-353.

Kramer, J.F. etal. The CAIS Readers Guide. IDA Memorandum
Report M-150, 1985.

McGettrick, A.D. Program Verification using Ada. Cambridge University
Press, New York, 1982.

Myers, G.J. The Art of Software Testing. John Wiley and Sons,
New York, 1979.

. Pyster, A.B. Compiler Design and Construction. Van Nostrand Reinhold
Company, New York, 1980.

V.Y

»

T

~~

N R

"

. (.

.

AL DU SN P ANt A

Appendix A

Syntax Diagrams

W PGIE PR LA O IR AT (TN

- ey v

o, L CT 0

Py,

o

- -

ACTUAL_PARAMETER

—» ope D@»idennﬁer—-b

%1 identifier

ACTUAL PARAMETER PART

parameter_association b@-———->

ASSIGNMENT _STATEMENT

—»| identifier ’@ 1 expression —b@———#

BASIC_DECLARATION

number_declaration y Y >

" object_declaration >

subtype declaration ——————-Di

'| type declaration —_—

Vs s

65
BASIC_DECL_ITEM

'[basic_declaration >

Y BINARY ADDING OP

® O O

BODY

> proper_body >

CASE_STATEMENT

> case_stmt_altern

end case ‘

R T R T I SR j',.’."' L PN N AP Y
\.(‘.{}ﬂ'.‘:\"_‘-'_\f_'-‘;‘;:'g RS .}AZJ\::};.S Yy *

3 " 'y, vy vy O Aakia e diaat gk
66
CASE_STMT ALTERN
—.C when sequence_of stmts o .
CHOICE
.[identifier + >
— discrete_range >
- . . >
——Of simple_expression .
COMPOUND_STATEMENT
* case_statement 7'y > "
> if_statement >t -
»{ loop_statement »
CONDITION R
»| boolean_expression > :
.
.._.. AT e et e ’_;‘.-.’ -------- .‘-.-.'-\- e 5t Y o N AR N T T et e e el SRR

67
DECLARATIVE_PART
i !
T basic_dcl_part later_dcl part
DISCRETE_RANGE
' discrete_subtype >
range
EXIT STATEMENT

B
. 68
EXPRESSION
)
L]
X ——{ relation >
' T@ ${ relation >
] @ »| relation >
L4
4
)
Xor i relation
* >
T(and)-’(then)—b relation >
!
-Tb(or Melse)-. relation >
FACTOR
' —»| primary >

#1 high_precedence_op —= primary

69 !
FORMAL PART
(parm_specification .@ —>
O\
w -
FUNCTION_CALL
—® function_name | actual parm part ————p -
HIGH_PRECEDENCE_OP
’< * %) > -
IDENTIFIER LIST

—] identifier >

LR AARY

YA h % "‘l‘

(Y

-
-
-

IF_STATEMENT

if condition

then

’l sequence_of_stmts

of stmts

-0

70

>
ITERATION_SCHEME
m— for loop_parameter_spec >
LATER DECL _ITEM
® body —»>
LOOP_PARAMETER_SPEC K
P idensifier >®-——>discrcte_range —

iteration_scheme

loop | sequence_of stmts

—C]

MULTIPLYING_OPERATOR

NUMBER_DECLARATION

identifier_ist (—#{ :) static_value

OBJECT _DECLARATION

— identifier_list -b@-b

expression

PACKAGE_BODY

o -

declarative_part

sequence _of stmts

5 W

PROPER_BODY 73 :
—#{ subprogram_body > :.

.

RANGE :
———T—® simple_expression —O@—-b simple_expression)
.

’

| range amribute .

L'd

RELATION .
=% simple_expression 7 > §
4

~» relational op simple_expression []

(o —7—s e |
(o) —s o i

RELATIONAL _OP :
- . >

— (O3 5 ¥ R

> %

—b@—b *

>

26
o—
-

=D

SEQUENCE_OF STMTS

expression

statement

SIMPLE_EXPRESSION

.

unary_adding_op

SIMPLE_EXPRESSION

| binary_adding_op

assignment_stmt

exit_statement

—{ proc_call_stmt

return_statement

"\ y

\

simple_statement

compound_statement

SUBPROGRAM_BODY

subprogram_spec @———-

declarative_part

«

®1 sequence of stmts

procedure

function

o .

end

l—.[subprogram_name

SUBPROGRAM_SPEC

identifier | _g{formal part
identifier | —#] formal_part}—w{_retum npe
et RO T R T PR IEAND AL N L0 ST

Rl i e L e C L LA e RS RRAER RE

PR

> factor »

| multiplying_op [@——

i
UNARY_ADDING OPERATOR
+() >
§

WP MO LA/

* .
P

o
&

Appendix B

Sample Routine

. 3 o g <ol N q . ¥ ' A
Noedmu L] ISl B Y SEY SN Rt B, T T U i St i D Rat Dt e AR LA
AT

78

[1] package body CONVERT is

2] type DIGITis-1..9;
(3] type DIGIT_CHARis'0'..'9",
(4] type DIGIT_STRING is array <> of DIGIT_CHAR;

4

- -
- -

[5)] ACCUM : integer = 0;]
[6] CHAR : DIGIT_CHAR; ht
(71 | : integer:=1; A
[8] SIZE : integer; E
[9] STR : DIGIT_STRING; ’

[10] TEMP : integer :=0;

[11] VALUE : integer = 0; iy

[12] function ATO! (C: in character) return DIGIT is o
[13] TEMP: DIGIT :=0; N

[14] begin
[15] if (Cin DIGIT_CHAR) then :
[16] TEMP := characterpos(C) - character'pos('0');
(177 else

(18] TEMP :=-1;

[18] endif;

[20] return TEMP;

[21] end ATO};

-

ATBAANGAR

[22] begin

[23] ifl <= SIZE

[24] then

(25] CHAR = STR(l);

(26] TEMP := ATOI(CHAR);
[27] if TEMP /= -1 then

'.' .-‘ .-.‘_'v ,‘r‘;i \

(28] ACCUM := ACCUM* 10 + TEMP; L
[29] l=14+1;
(30] end if;

[31] endif;

[32] -- the integer value for the string of digits
[33] -- is contained in
[34] VALUE := ACCUM;

[35] end CONVERT;

— |

_ . e e -
T e e € RN o A e

