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Abstract

We consider strategies for selecting message routes in unreliable data-communication
networks. We make the following assumptions: the nodes of the network are per-
fectly reliable; the links are unreliable, and for each link I there is a probability
pl, where 0 < p, < 1 is a rational number , that the link is operative; links fail
independently of each other. We focus on approaches that use two transmission
paths simultaneously to transfer a message, maximizing the probability that at
least one of the copies of the message arrives at the destination node. The intent
is to trade increased use of network resources for a lowered transmission delay. We
consider different versions of this problem: in one version one of the paths is fixed,
and we are asked to find a second one that results in maximum message reception
probability; in another version we look for two link-disjoint path that maximize
the same objective as before; in the third version we dispense with the disjoint-
edness restriction of the previous problem. Complexity results are given for these
problems and solution techniques proposed.

Thesis Supervisor: Pierre A. Humblet
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Chapter 1

Introduction

1.1 Unreliable Networks

By a data-communication network we mean a collection of geographically distant
'A

computers (nodes) that can communicate with each other by exchanging messages

via communication channels (links). From our point of view the purpose of a data-

communication network is to transport messages reliably between its component

nodes. Most conventional wire-networks have highly reliable links. In this kind of

network the usual approach to reliable message transfer is to include in each mes-

* sage enough redundancy to make error-detection possible. Typically the polynomial

code, also known as cyclic redundancy code or CRC, is used. This code satisfies

the standard reliability-enhancing requirements, and is easily implementable in

hardware, see [17] for more details. Upon detection of an error most link-level

transmission protocols request that the message be re-sent. Typical of this class of

10

,-~~~~~~.......:...-,,-....-...-.,.......-.,..... -...-.,-.,....-... ,,....-,.....,..,..



W- V V- .7.-.7-

protocols is HDLC (High-level Data Link Control) used in CCITT's X.25 network

interface standard. The net effect of an error is to add to the transmission delay,

since one has to wait until the message is retransmitted. Also, the retransmitted

copy of the message shows up as an increase in the total load of the network. If

the bit-error rate were to increase, the transmission delay might become unsat-

isfactory. In this contingency we need to seek different means to achieve reliable

communication. There are other types of network, e.g. packet radio networks, that

are inherently unreliable and would benefit from techniques designed to improve

message transmission reliability.

In this thesis we focus on approaches that use two or more transmission paths

simultaneously to transfer a message. We intend to trade increased use of network

resources, two or more paths instead of one, for a lowered transmission delay.

We can argue in favor of this approach, with its consequent reduction in total

throughput, by saying that when using the more conventional approach an error

results in the repeated use of the same path for the same message. Thus, with a

'high' bit error rate, in a network that uses the standard approach, it is likely that,

in the end, we will use extra resources anyhow.

The extreme case of multiple path transmission is flooding the network with

copies of the message. The message is routed so that, in the case of no failures,

a copy of the message is sent along every link of the network. This is maximum

network resource consumption. We are looking for intermediate strategies between

the extremes of sending a single copy of the message and flooding the network with

many copies of it.

% %.
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The choice of the specific approach to be used depends on exactly how link-

failures behave. When we talk about link-failures, we do not necessarily mean

the actual misfunction of the hardware, but also any condition that results in an

unsuccessful transmission. Here we are mostly concerned about the correlation

between the outcomes, whether failures or successes, of consecutive attempts at

transmission. In other words, if a link fails, for how long does it stay 'down'? In

this thesis we assume that the status of a link, i.e. whether 'up' or 'down', changes

so fast that keeping track of it would be pointless. The delay formed by the time

it takes to determine a link's status plus the time necessary to disseminate that

datum is sufficiently large that the received information is already obsolete. This

is because the information in question is received from the network itself.

A packet radio network with mobile nodes fits these characteristics. In this

scenario, the mobility of the transmitters and the fragility of the medium conspire

to produce what we can safely call an 'unreliable' network. More so, if we consider

the possibility that the network might find itself under attack, an external agency

might try to prevent successful communication, by jamming, say.

We next mention some approaches used to deal with node and link failures in

the more usually considered case when the network state remains stable for long

enough to make possible the use of knowledge about actual network configuration.

Strategies proposed range from the very dynamic to the completely static. An

example of the former type is the one used in the ARPANET in which traffic is

rerouted in an attempt to use low delay routes and avoid links with long queueing

delays. An example of the latter is the one proposed for the IBM network in which

for each source-destination pair there is a list of allowed routes. When a link failure
4*,

I,.
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is detected all routes utilizing this link are deleted from the allowed route lists.

S. G. Finn proposes in [41 a class of network synchronization procedures, called

Resynch Procedures. These are mechanism for bringing all nodes of a distributed

network to a known state simultaneously, despite arbitrary finite delays between

nodes. The resynch procedures are used to implement a network protocol that can

guarantee that no packets will be lost and no duplicate packets will be inadvertently

received, despite arbitrary node and link failures. J. A. Roskind in his doctoral

thesis, see [131, proposes the use of precomputed disjoint spanning trees to transmit

information about topological changes. J.M. Spinelli in his Master's thesis, see [151,

presents an algorithm to maintain a correct view of the network topology without

transmitting any information other than the operational status of links.

This thesis examines some approaches for choosing routes for two copies of a

message. We focus on maximizing the probability that at least one of the copies

arrives at the destination node. We ask how hard is it to calculate these routes.

We conclude that looking for a pair of routes that satisfy this very natural criterion

is a computationally intractable problem.

The rest of this chapter is as follows. In section 1.2 we define probabilistic

networks. This is the basic model used in this thesis. In section 1.3 we give an

overview of related work to be found in the literature. In section 1.4 we consider

alternative ways to use several paths simultaneously for transmitting one message.

Section 1.5 gives an overview of this thesis including a summary of results.

13



1.2 Probabilistic Networks

* A directed network is a tuple (N, L), where N is a finite set of nodes and L C N x N

is the set of links of the network. Notice that this definition excludes the existence

of more than one link between any two nodes. A link of the network is denoted

either by a single letter, e.g. 1, or by the ordered pair of nodes connected by the

link, e.g. (1,J), we assume that the network includes no self-loops, i.e. there is no

link of the form (i, i) in the network. In the links of a directed network, traffic can

flow only in the direction given by the ordering of the nodes, i.e. in link (i~j) we

can have traffic going from node i to node j, but not in the opposite direction. The

network includes two distinguished nodes, nodes s and t. Node s is the origin node,

node t the destination. In a similar manner we can define an undirected network

* in such a network a link is an unordered pair, e.g. (i,.j), traffic can flow in both

directions of an undirected link. In what follows we shall be referring to directed

networks unless explicitly stated.

A simple path joining nodes s and t is a sequence of nodes s, ni , n2 ,. .. I nm, ti

* such that the links (s, ni); (n1 , ni+i) for i 1,. rn-i1; and (n,, t) are all members

of L, and such that no node in this sequence is repeated. ILe. the path does not

fold onto itself.

* To each link I G L we associate a rational number 0 < p, < 1, the probability

that link I is operative. Links fail independently of each other. This independence

assumption is unrealistic but necessary, we shall see that even with its inclusion

many questions pertaining to probabilistic networks are very difficult to answer.

If we give up this assumption it can be shown that finding one simple path, P,

14
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Figure 1.1: Transforming an Unreliable Node

* connecting nodes s and t in a given probabilistic network such that the probability

* that P is operative is greater or equal than a given rational threshold is an NP-

* complete problem. An intermediate approach between assuming independence

or assumming unrestricted dependencies would be to consider locally correlated

* failures, i.e. if a link has failed it is likely that 'nearby' links have failed too. We

* have not pursued this. We shall assume that the nodes of the network are perfectly

reliable. This implies no loss of generality because any unreliability in the nodes

of the network can be modelled by unreliable links. To wit, see figure 1.1 given

an unreliable node n, and given Pn, the probability that node n is operative, one

* can separate node n into two nodes, n' and n", joined by a link I with operation .

probability equal to Pn. M'vake all links incoming into n arrive at n', and all outgoing

links depart n". The two versions are equivalent.

A path P connecting nodes s and t is said to be operative if every link I G P

is operative. Given a path P, P(P) the probability that this path is operative is

13o
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given by

P(P) =Ip,. (.
LEP

We consider only simple paths because for any non-simple path P, a path that

loops onto itself, there exists a simple path P, C P such that P(P,) > P(P).

The main questions concerning probabilistic networks deal with the existence of

operative simple s-t-paths. We next give an overview of these questions and the

related results to be found in the literature.

1.3 Related Problems

The problem of determining "network reliability", i.e. the probability that there

is a path connecting node s to every other node in the network has been proved

to be #P-complete, to be defined below, also see [11]. However, if the graph is di-

rected and acyclic, network reliability can be computed in polynomial time, see [1].

The #P-completeness result holds for directed and undirected networks. Approx-

imating the reliability to a given e > 0 is also a #P-complete problem, see [11].

The category of #P-complete (read "number P") problems was proposed in [18'.

It includes many enumeration problems, i.e. "given a problem, how many solu-

tions are there?". For example, associated with the Satisfiability problem is the

enumeration problem of counting how many truth assignments satisfy simultane-

ously the clauses of the problem. This category of problems is 'harder' than 'plain'

NP-complete problems. It is interesting that there are #P-complete problems for

which the associated search problem can be solved in polynomial time. For more

16
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on #P-completeness see [6].

Similar results exist for the "s-t reliability" problem where we are given two

nodes s and t and asked what is the probability that there is an operative path

between them. Valiant has proven that this problem is #P-complete for general

directed or undirected graphs, see 'L19'. There are algorithms to calculate s-t re-

liability in time proportional with LNI and the number of minimal s-t cuts in G.

This number can be very large, exponential in INI, but need not be so, see [12].

The related problem of finding a most reliable path in a probabilistic network

has a polynomial time algorithm. The algorithm is equivalent to calculating a

*hortest path between the nodes s and t with the length of a link given by - logpl,

see [9].

Another related problem is that of finding the maximum number of disjoint

bounded s-t paths, bounded in the sense that the probability that each path is

operative should be greater or equal than a given threshold. Not only this, but also

the problem of determining if two disjoint bounded paths exist have been shown to

be NP-complete problems, see [7]. Contrastingly the problem of finding K disjoint

paths such that the probability that all of them are operative is maximized has a

polynomial time algorithm, see (161. This optimization is done by a minimum cost

flow algorithm.

17
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1.4 Alternative Approaches

Given the basic idea of using multiple paths, the actual implementation can be

done in many different ways. The main question is, how are the paths going to

be chosen? A related issue is how to characterize the reliability of the links of the

- network.

Given two nodes, once we have chosen several paths that connect them, these

paths can be used in different ways. The simplest approach would be to send

identical copies of the message we want to transmit along each one of the selected

paths. Alternatively, we could map the message, by a suitable coding scheme,

into a relatively large number of 'micro-packets'. The coding would ensure that

the recovery of a given fraction of these -packets, say eighty of a hundred, would

enable us to reconstruct the original message. Here we shall call such a coding

scheme a 'holographic' code. Each path would carry some fraction of the/z-packets.

The former procedure, identical copies, would be preferable in a situation in which

there is some correlation between the failure or succes of succesive attempts at

transmission along network links. The latter seems r. ore suited when we can

assume that the outcome of these trials are independent random variables. In the

rest of this section, we go briefly over alternative approaches suggested by the basic

multiple-path transmission idea.

18
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1.4.1 Modeling Reliability with Probabilistic Networks

* The most common way to quantify the reliability of a link is to associate with

* it a probability. The most basic problem this setup suggests is to look for two

paths, P, and P2, such that the probability that at least one of them is operative

* is maximized. That is, we are trying to maximize

P1 p+ HI P - P1
{L:EPI) {1:LEP,} {1:1CPiUP 2}

We obtain variants of this problem by including further restrictions on the paths,

e.g. we could ask that P1 and P2 should be disjoint, i.e. they should have no links

in common. In the same vein, one could look for disjoint paths P1 and P2 such

that the probability that both of them are operative is maximized. That is, we are

maximizing

{H:EPi up 2 }

This last formulation has the advantage that, after the appropriate transformation,

the problem can be solved by existing special purpose efficient algorithms, see 161.

The problem is transformed into a minimum cost flow problem.

A different approach is to fix one path P1 and look for a path P2, not necessarily

disjoint from the first, such that the probability that at least one of the two paths

is operative is maximized. We say that P2 complements P1. This procedure can be

iterated; after finding P2, take it as the fixed path and then find P3 complementing

P2. This can be repeated until we are satisfied with the answer, or until we feel

that the progress being made is not worth the effort.

197
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1.4.2 Modeling Reliability with Additive Costs

An alternative, and more heuristic, approach is to assign to each link I coefficients

1 2 c7, m..,w rc1, c1, ... , where m is the number of paths P 1, P 2, ..., P,, that we are looking

for. The number Ej.,l eq corresponds to the cost incurred when i paths use link 1.

The c' are chosen to reflect the reliability of link 1; the more unreliable a link, the

higher the cost associated with its use. We want paths Pi, -.. , Pm, that minimize

the total cost. That is, m paths minimizing

I j=l

Here i(I) is the number of paths that use node I.

If we define c' In pl, then a set of minimum cost paths P, that happen to

be disjoint will maximize the probability that all the Pi are operative.

If the c' satisfy 0 < c' < C2 < ... < c', the optimum can be found by casting

the problem as a minimum cost flow problem. To each link I = (i,j correspond

rn parallel links, i.e. these m links go between nodes i and j, 1', 2, 1 ', with

associated costs c , c ... , c, and unit capacity. We seek a minimum cost flow

of m units between nodes s and t. Viewing the problem in these terms allows us

to use special purpose efficient algorithms. Also, the matrix associated with the

capacity and flow conservation constraints of this problem is unimodular. This

guarantees that if the problem is feasible there will be an optimal integer solution.

20

% '-. . % ,.-' ,. .K. ' - - , .. '-.*-..- %. . % % % * .~ * °.\" " , .q ,,*" -' . -- . " . • .*.- " ".. . . .°



1.4.3 Interpreting the Probabilites as Loss Coefficients

Another approach is to interpret the probabilities pi as 'transmission coefficients'.

That is, if a link I has the entering flow of fin, the flow coming out would be given

by flout = plfin. To each link we assign unit capacity. Given that there are m

units of flow entering s, we want to find a feasible flow that will maximizc the flow

entering node t. A feasible flow is such that for each link 1, ftin < 1, and for each

node n the flow entering it is equal to the flow coming out, i.e.

p PfLin fin.  (1.2)
{i:L enters n} {i:i leaves n}

This specifies a linear program. Notice that the solution to this problem is not

guaranteed to be integer. The expression

fin (1.3), f ,i fin

F-{i:l leaves } fin

can be interpreted as a relative :outing variable for outgoing link 1. That is, of all

the flow entering node n a fraction of it given by al is routed along link I.

This scheme is compatible with the 'holographic' coding, since the subdivision

of a message into n-packets is better adapted to the fractional routing described. In

this case the capacity of a link would be set to the number of jL-packets a message

is mapped into.

From a probabilistic point of view this approach is equivalent to maximizing

the expected number of it-packets arriving at the destination node.
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We can observe that in a scheme as the above, maximum flow in a network with

losses plus 'holographic' coding, each h-packet should contain enough redundancy

to allow the detection of transmission errors. The link protoco] would most likely

be designed not to ask for A-packet retransmission when a link transmission error

is detected; rather retransmission would be provided on an end to end basis using

time-outs.

1.5 Summary of Results

The underlying question we are addressing is: what can be done when we do not

really know what is happening in the network? Mlost published routing algorithms

assume accurate knowledge of the conditions in the network: topology, and traffic

matrices are taken as known; the message arrival processes are often considered to

be Poisson, and so on. In practice the situation is different. We need ways to deal

with data-communication networks when we do not have exact knowledge of their

status. We need to decide how to represent the uncertainty: one could, for example,

assume a probability density on the inputs, or one could take that it is only known

that the inputs are inside a given range. Corresponding to the former approach.

probabilistic weighting of inputs, the logical next step would be to optimize the

expected value of an appropiate objective function, including, perhaps, restrictions

10 on variance. Corresponding to the latter approach, the input within a range, a

min-max optimization could be attempted.

This thesis is an exploratory foray in the direction expr~ssed above. We look

at a basic problem: what to do when we do not know the topology of the net-
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work. More precisely, what can be done when our knowledge about any link of the

network is the probability that this link is operative. We are looking for a robust

routing scheme, i.e. a scheme that would produce satisfactory results in the face

of uncertainty. The essence of most attempts at designing robust systems, as for

example in control theory, is that we need to overdesign. We need to know how to

overdesign intelligently, i.e. how to get the most, where the meaning of 'most' has

yet to be agreed upon, from the additional expenses.

In the rest of this section we outline the rest of this thesis.

Chapter Two: Complementary Path Problem

The problem considered in this chapter is as follows. Given nodes s and t, given P1 ,

a path that connects these two nodes; find P 2, a path also connecting s and t, not

necessarily disjoint from P 1, such that the probability that at least one of these two

paths is operative is maximized. We prove that for directed or undirected networks

this problem is NP-complete. The proof is a reduction to Partition, and applies to

the restricted case of directed acyclic networks. We also give a pseudo-polynomial

algorithm for the solution of this problem.

Chapter Three: Routing Two Messages Along Disjoint Paths

We consider the following problem. Given nodes s and t, find P1 and P 2, two

disjoint paths joining nodes s and t, such that the probability that at least one of
q.

the two paths is operative is maximized. We show that this problem is NP-complete
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for general directed networks. The problem is shown to be strongly NP-complete

if we allow the possibility p, = 1, or if the probabilities are given in logarithmic

format, i.e. p, = a"' for rational 0 < a < 1 and positive integers ni. We give a

pseudo-polynomial algorithm for acyclic networks. It is not known if the problem

is NP-complete for acyclic graphs. The related problem of finding P1 and P 2, two

disjoints paths joinng nodes s and t, such that the expected number of operative %

paths is maximized is also shown to be NP-complete.

Chapter Four: Routing Two Messages Along Non-disjoint

Paths

We address the same problem considered in chapter three, with the difference that

the path-disjointedness restriction is dispensed with. The problem is shown to be

NP-complete, even in the case of an acyclic network. We give a pseudo-polynomial

algorithm for acyclic networks. It is not known if the case of a general network, a

network that might contain cycles, results in a strongly NP-complete problem.

The fifth chapter contains the conclusions and suggestions for further research.
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Chapter 2

Finding a Complementary Path

2.1 Introduction

Onee approach to routing two copies of a message in a data-communication network

is to fix the route of one of the two copies. The second copy is then routed to

optimize a given criterion that is a function of both copies's routes. In this thesis

the criterion to be optimized, maximized, is the probability that at least one of the

two copies reaches their destination. The first copy might be sent, for example,

along a most reliable path of the network, or througi' -ny chosen path that the

specific situation suggests. The paths followed by these two copies need not be

disjoint. If they are, then the optimal route for the second copy is a most reliable

path in the network obtained by removing from the original network the links

belonging to the path followed by the first copy.

The failure of a link that is shared by both copies's paths is catastrophic but,

25
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"alternative unreliable link also such a link need not exist. The network of figure 2.1

presents such a case, the number labeling each link in that figure is the probability

* that the link is operative. Given P1, the fixed path, as in the figure, the optimum

P2, the path followed by the second copy, shares the link going between node s

and node 2. This link is much more reiiable than the only alternative link that

connects node s to node 1.

The problem described in the previous paragraph is one of the simplest that can

be proposed under the idea of sending multiple copies of a message. We would like
2*. . . . . . . . . . . . . . . . . . . . . . ..d e.1 . ."
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to obtain an efficient, i.e. polynomial, algorithm for its solution. Unfortunately in

4' this chapter we show by a reduction to Partition that this problem is NP-complete.

.

Therefore a polynomial algorithm is ruled out under the assumption P _4 N P. WVe

present a pseudo-polynomial algorithm to pick the routing for the second copy

given a fixed route to be followed by the first copy. The algorithm is an adaptation

of that given in [9] to find a shortest length path with time constrains.

In section 2.2 the problem is stated more precisely. In section 2.3 we give the

NP-completeness proof. In section 2.4 we consider a variation of the problem in

which a different format is used to represent the probabilities. In section 2. we

obtain an equivalent problem. The algorithm is developed in section 2.6.

2.2 Problem Statement

In this section we define precisely the problem introduced in the previous section.

PComplementary Path Problem

INSTANCE: Given G =(Nv, L) a directed graph, where N is the set of nodes of

the graph, and L CN x N is the set of links. For each link I E L we are given a

rational number P , 0 < p, u 1, the probability that link I will be operative. Also

* given is Pth a rational threshold, and P1 C L a simple directed path in G connecting

nodes s and t.

*QUESTION: Is there P2, another simple directed path that connects nodes s and

t, such that the probability that at least one of these two paths is operative is larger

* than Pth? A path is operative if every link in that path is operative. The paths P,

27
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and P2 need not be disjoint. More precisely, is there a P2 so that

/l1P(Pi, P2) pt (H HI- 71 pi) > Pth (2.4)

A P2 that maximizes P(P1 ,P 2) is said to complement P1.

2.3 The Complementary Path Problem is NP-

Complete

In this section we prove that the complementary path probl n is NP-complete.

This is done by giving a construction that results in a reduction to partition. Next

we define the partition problem.

Partition
INSTANCE: Given S a finite set of positive integers, S {c1 ,c 2 ,..., c}.

QUESTION: Is there a subset A C S such that
-. 2

Zc, c1? (2.5)
iS-A iES\A

The sets A and S \ A constitute a partition of S. A reduction to partition is

often used to show NP-hardness of problems in whose statement, loosely said, many

numbers, usually positive integers, appear. For example, the well known Knapsack

problem is easily shown to be NP-hard by a reduction to Partition the numbers
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appearing when specifying an instance of the Knapsack problem are the weights

and values of the elements. Partition is not a strongly NP-complete problem i.e. it

can be solved in pseudo-polynomial time by dynamic programming. Therefore, for

any problem shown to be NP-hard by a reduction to partition it is possible that

there exists a pseudo-polynomial time algorithm for its solution. In fact, this is the

case for the complementary path problem, in section 2.6 we offer such an algorithm.

Partition appeared in the original list of 21 NP-complete problems published by

Karp in 1972, see [8].

2.3.1 The Reduction

Theorem 2.1 The complementary path problem is NP-complete.

Proof. The problem is easily seen to be in NP, i.e. for any given pair of paths

P, P, and threshold Pth, it can be checked in polynomial time whether P(PI, P2) >

Pth. Consider the network shown in figure 2.2, with P, as shown. P1 includes all

links lj 1,...,m. Define plo = hy, Pj = tj, let all other links in the network be
2 3

perfectly reliable. A path P2 connecting node s to node t includes one and only one

of either l orl, = 1,... ,m. Given P2 define T I{j Gl P}, H {jl0 E P2}.

Notice that T U H m{1,... ,m}, and T m II 0. With these definitions we have

m m
P(Pi,P.) 1 hi + I- t, l hi -l hi rl ti

i=l iET iEH i=1 iET

h I + hi t ) (2.6)
s=l i(CT iET

29
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Figure 2.2: Network used to reduce the Complementary Path Problem to Partition.
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Take now t= (hi)2 . We then have

P(P 1,P 2) = 11hi 1 + -l hi - h . (2.7)
j=1 \iET iET}

Defining now b = H1-, hi and f(x)=x-x 2 we have

P(P., P2) b6( + f (H hj) (2.8)

Maximizing P(P , ,P 2) is equivalent to finding T C {1,.,m} that maximizes

f (F, T hi). f(x) is a continuous, concave function, its maximum is located at

x = 1/2, with f(1/2) = 1/4. Therefore maximizing P(P,,P.) is equivalent to

finding T such that I lET hi - 1/21 is minimized.

Given S = {cl,... ,c,}, where the ci are positive integers and r', ci =M.

Define h= (1/ 2 )2c./M . With these definitions we car see that there is T such that

/l W .i E 1
lh (-2 2 = (2.9)

iET

if and only if T is a partition of S. Or equivalently, if and only if for the corre-

sponding P2 we have

1P(P 1 , P2 ) > b 1± f (I)) Pth, (2.10)

where the last equality is a definition.

The h*'s are not necessarily rational numbers, and therefore they cannot be
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taken as input data for the complementary path problem. We next give a sequence

of lemmas by which we prove that using a suitably defined rational approximation

of the h,'s, which we denote as hi's, we obtain a reduction to Partition. The

gist of the argument is as follows. Given any T1,T 2 C {1,...,rn} we first prove

that either IET, h, = -eT h; or 1,rM , h* - 1ET h*1 > A. We then prove that
S.

if we have h,'s that are 'close enough' to the h*'s we shall have that for any T

MET h, - HIET h, Ai/4. Thus, given the value of IET hi it is possible to

determine the value of RET h;. From which, if we have RET hi - 1/21 < A/4 we

can conclude MET h, = 1/2. Hence, -,ET C, (1/2)M. Then we prove that it is

possible to find the h,'s in polynomial time.

Lemma 2.1 If for any T C { m) we have ETh'- 1IEThij < 1 then

ZET C, = Nf if and only if there exists P2 such that

(PI, P2) rl h, -f )> h - p, (2.11) '.

in which the last equality is a definition.

Proof. Define g(i) - (/2))2IM, i= 1,... , M. Notice that for any T C {1,... ,rn}

there is an integer i. 1 i < rn such that IET h- = g(i). Therefore given T1,T 2 C

{1...rn}. such that [l:,,_T h: MET, h: there exist integers I < i,i _ M, i j

such that

H h: H- h, g) g(J) > g"(AI ) (M)
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1 2 1 21n2
4 12-1- 11 >4 411 + M

1n2 1
> 2-M > 4 =-A, (2.12)

in which the last equality is a definition. We have used a Taylor's series expansion

for 2', in which R2 > 0 is the remainder. We have proved that, given T1 ,T, .

1,...,m} if M-iET, h. 4 [LiET2 h. then

I * II - IIh* > A (2.13)"
iET, iET 2

If we are given rational approximations hi of the hi's (i m1,...,) such that

for any T C 1,..., m} it is guaranteed 1 [lET h - [lET hil _< A/4 1116M. Then

[MET h* = g(j) implies that the corresponding product of the hi's over the same

set T is going to be closer to g(j) than to any other g(k) for k - j. Hence, for any

T 1,... ,ml, if J minimizes [LET hi - g(k): over k = 1 ,...,M we can conclude

that ,LET h* = g(J). Consequently, if there is T such that ILET h, - 1/2 < 1/ 16-.

we can infer that ELT h* = 1/2, which implies that !,ET ci = 1/2 and viceversa.

Since f(x) = x - x' is a concave function with maximum at 1/2 tl Lbove is also

equivalent to

f ( hi) f (2.14)

and thus equivalent to the existence of a path P2 such that

P (PI, P2) > h 5 611) Pth,15
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where the last equation is a definition.

Lemnma 2.2 If h - hi < 3-/16M, for Z' 1,..., m, then

I Hl h' - fi hij < 1/16MV (2.16)
iET iET

for anyTC

Proof. We first proof an auxiliary lemma.

Lemma 2.3 If lh*- h5 < E, for i 1..m where 0 < E,h*,h, < i. then we

have

Iih* - fil < 3I1 (2.17)
iET iET

Proof. We prove this by induction in JTI. For ITI 1 this statement corresponds

to the hypothesis. Suppose now that equation (2.17) holds true for any T such that

* TI = n. Consider now a set Q C 1.. m such that Q\ n -1. Take, without

loss of generality, that Q ={1, 2,... ,n + 1}. Let T ={fI,-. ,n}.Then we have

HIET h,= HicT h* + 6, for some 6, such that 6, < 3n, also h,, h- 6, for

some 6 such that 161 < c. Therefore

(u hi~pt ±nl r *+6 (hn*+l 6) ( h'j h* 6 fl h, .6, h,. 1 -6~
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From which have

f~h;-J7Jh+ 6h>6,,h- bb'!1I h; -1 hi = 6 rl hi n,:* 6.
iEQ iEQ iET

<_ i IIh* + '&h*,.li + 66,

tET

< 16[ + jbn + jbn1 < + 3" n, 3 n < 3"'E. (2.19)

We now require that for any T we have HIET h; - hiET < A/4 1/16M. We

have from the previous lemma that to obtain I MET h* - IlET hi < 3ITIE < 3-E

it is enough to ask for jh* - hil < E, for i 1,...,m with 3'E < 1/16M, i.e.

E < 3-"/16M. I.e. if we allow an error of E < 3-7/16M in the approximation

of the h,* by the hi, we will obtain that the HIET h, are within a tolerance of

A/4 = 1/16M.

1

It rests to show that the hi can be calculated in polynomial time, and that we

will obtain hi whose binary representation will have length polynomially related to

the length of the binary representation of the particular instance of the partition

problem reduced. First we need a new definition. Given a = a';a", where a is/A

a rational, and both a',a" are integers, a" z 0, we say that the height of a is

max{fa", a"f!.
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Lemma 2.4 Given c1, c2,. .. ,Cm, positive integers such that ,ci =M, there

exists an algorithm that finds rationals h,, for 1' = 1, ... ,m, such that h, -

(1'2) c , / M  < 3-"/16M in time polynomial in m and log M. Moreover the height

of the h, 's has a binary encoding of length polynomial in m and log M.

Proof. We want to calculate (1/2)' where 0 < x = 2ci/M1 < 2. We have

(1/2)z. 1 /ezIn 2 . Notice also that if xln2 > 1 we have e'ln2 . eezln2 - 1 , with

0 < xln2 - 1 < 1. Therefore to approximate (1/2),0 < x < 2 within a precision

of e 3- /16M it is sufficient to be able to calculate e', 0 < x < 1 with precision

O(E), and to be able to calculate In2 within O(E). For the calculation of 1n2 and

of e' 0 < x < 1 we have the following lemmas.

Lemma 2.5 Let x be a rational 0 < x < 1 such that the height of x has a binary

encoding of d bits. There exists an algorithm that finds a rational q such that

ex - q[ < E in time that is polynomial in d and log - 1.

Proof. Using a Taylor's series expansion for e' in the interval x C '0, 1' we get

2 n-1
ez 1 + - - )-... Rn (2.920)-

2! (n- 1)!

where R, x'ea' /n, 0 < 0 < 1. It is plain that since e < 3 we have R, < 3 'n!.

Choose a minimal n such that 3/'n! < c, or equivalently logn! > logE - 6 log3.

Therefore logn! = O(log c'). From Stirling's formula we have that Inn! Z: nln n.

which implies n O(n In n) O(log 6-). Now, define

X 2 X n- 1

2!(36! (.1
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this is a rational approximation of ez. The height of each of the terms in T,

x(-')/(k- 1)! for k = 1,...,n- 1, has a binary representation of O((n - 1)d +

log(n - 1)!) = O((log -')d + log E- 1) = O((log E_)d). T has O(log E-') terms.

Therefore the height of T has a binary encoding of O((log E-') 2 d). Define now

a0  1,a 1 = xai/i,i 1,.. . ,n - 2, then T =-n-1 a1 , from which we conclude

that T can be calculated with O(log E-') additions and the same number of multi-

plications. Each of these involve rationals whose heights have binary encodings of

lenght O((log C 1 )d). Take q T.

I

Lemma 2.6 [Chandrasekaran & Tamir There exists an algorithm that finds a

rational q such that I In2 - qj < E, for 0 < E < 1, in time polynomial in logE - '.

Moreover the height of q has a binary encoding of lenght polynomial in log 6- 1.

Proof. We have that

n - 1) "klnnx(X 1 2k I R. (2.22)k=0 2k + a 1

where

(z_+ )_ z -1 2n3
0< R < 2(2+3) x-1) ,forx> (2.23)

Using equation (2.23) with x 2 we get R < 3-(2n+3), we choose a minimal n such
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that 3-(2n+ 3) < c, i.e. n O(log-). In 2 is now approximated by

II"

q E 2 3 -(2k+1) (2.24) _"

k=O 2k + 1

in O(log -') time, the height of q has an encoding of length O((log E 1 )2 ) bits.

Notice that we have also proved that the following problem is NP-complete.

Rational Multiplicative Partition.

INSTANCE: Given ql,q2,... q,,, rational numbers such that qj > 1/2, i 1,... m.

QUESTION: Is there T C {ql,... ,q, } such that TITqi 1/2?

2.4 Complementary Path Problem. Logarithmic

Input.

In this section we consider the complementary path problem when the link prob-

abilities are given by p, = ant, for a rational 0 < a < 1, and a positive integer

nL. The input of the problem consists of the rational number a, and the integers

nL,l E L. We say that this is a logarithmic representation of the pl. We give a

similar result to that of theorem 2.1;that is we prove that this problem is NP-hard, 1"

the proof is very similar to that of theorem 2.1.
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The complementary path problem with logarithmic inputs is not known to be

in NP. That is, for a rational a; integers ni, n 2; and a rational Pth; it is not known

if it can be decided in polynomial time whether

a n + a n 2 - a nl+n2 > Pth.

The exponentiation operation, a' , can be realized in O(log n) multiplications, but

the length of the binary representation of the result is not a polynomial in the

length of the input. It can be argued though that in comparison with the stan-

dard method of representing the probabilities, i.e. as a ratio of two integers, the

logarithmic representation contains 'more information', in the following sense. If

we are interested in representing probabilities p in the range 0 < E < p < 1, using

the standard representation we will need O(log E- 1) bits to encode the p's, on the

other hand, using logarithmic representation, assuming that this is acceptable, we

need O(log log E- ') bits. Consequently, with logarithmic representation, p an

for some n, can be calculated in O(Iog c').

In [21 it is shown that there exists a polynomial algorithm for deciding whether

an > a2, for rationals a,, a2 and integers nj, n 2. The techniques used there do not

seem to be useful for the problem we consider here.

Theorem 2.2 The complementary path problem with logarithmic inputs is NP-

hard.

Proof. Consider the same situation as in theorem 2.1, with the same definitions

as made there. Consider an instance of partition as above. Define a' (1/ 2 )2/M,
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n = cj, and np = 2cj. With these definitions we have h* a'c,, t a 2 , and
3 3

therefore t = h,. As before there is T such that

l h* = V ci- (2.25)
iET (22

if and only if ZET ci = (1/2)M. a* is not necessarily a rational number, there-

fore it cannot be used as part of the input for the complementary path problem

with logarithmic representation. We next prove that a suitably defined rational

approximation of a' results in a reduction to Partition.

Lemma 2.7 There exists an algorithm that finds a rational a such that la*k -akl <

(1/16M) = A/4, for any k = 1,...,M in time polynomial in logM. Moreover the

height of a has a binary encoding of length polynomial in log M.

Proof. Consider the function g(X) = xk, 0 < x < 1. By a Taylor's series expansion

we have

. g(XO + AX) = g(Xo) + Axg'(xo + OAX), 0 < 0 < 1. (2.26)

Therefore

g(xo + Ax) - g(xo)l = jAxlg'(xo + OAx)I =Ax lk(zo + L) '

< kJA I < MIAXI. (2.27)

Where we have taken that Ax is small enough to guarantee that 0 < x0 + Ax < 1.
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Therefore to guarantee la-k - -g(a*) - g(a)j :S 1/16M it is sufficient to

* require MIa* - a < 1/16M, or equivalently ia" - a ! < 1/16M 2 . I.e. we need to

calculate a* = (1/ 2 )2/M within an accuracy of 1/16M ' . The proof is completed by

an argument similar to that of lemma 2.4.

Given any T C {1,... ,m} we have that

la*EET - a>Erc i <

4

Therefore aZ.ET F - 1/21 < A/4 if and only if -iCT Ci 1/2. Which is equivalent

to the existence of a path P2 such that

P(PiP 2) hi - 6-Mh) Pth.

(4l 64M/2 "

2.5 An Equivalent Problem

In this section we are going to show that the complementary paLhi problem is a

special case of a more general problem that has a 'cleaner' structure. The algorithm

to be presented in section 2.6 can be used to solve this more general problem. In
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the rest of this chapter we shall assume that we have Pt a"' where 0 < a < 1 is

a rational and ni is a positive integer, i.e. logarithmic input.

Deleting the first constant term in the expression for P (Pi, P2), and factorizing

HZcp2 p, ,equation (2.4), we get.

R' max 11I P1 P,
PIEP2  IEP1 \P2

max lt1-pt I Pt (2.28)

P2 IEPi EP2 \jP 2 fln J

1E P

Define now

P1, if IE PI;
qI -

th1, otherwise,

13=P PP (2.29)

We have then

R' max - P1 1 -I q (2.30)

P 2P2IEP2 1EP2

The logarithm is a monotonically increasing function, therefore

-nR' mn (lP - In q,(I pt 28

P2 Inp°

IEP E P2

4 2

Define now .-- .. a aaa



,P2

= minp, 2 (-lnpi)-ln ('1-!3exp (ln Iflq

I2 ~EP2 EP2

= min -(-lnpj)-in 1-Qexp (j(-nql) } 2.31)
2 IEP 2  \1P 2

We assume that for IC L, p, - a'; with 0 < a <1, n a non-negative integer.

Defining now

a -Ina, S

d, -lnp = nja, .

w - In q,

f(x) - ln(1 - 3ez). (2.32)

we get the following equivalent problem. Find P.2 achieving

r =dmin {f-d, +f( wi }. (2.33)
-P2 2

IEP (IEP2 WI)

Note that f is an increasing function. For any P.,
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2.6 The Algorithm

Here we address the following problem.

Generalized Complementary Path Problem.

INSTANCE: Given G (N,L) a directed graph as in section 2.2, given for each

link I two integers d, > 0 and w, 0. Given f, a monotonically increasing positive

real function.

TASK: Find P, a simple directed path in the network connecting nodes s and t,

such that

Zdi+f W

IEP (LEP

is minimized.

With the definitions given in equations (2.29) and (2.32) this is equivalent to the

original probleri as defined in section 2.2. In this section we derive an algorithm

for this more general formulation.

Given P1, P 2, two s-t paths in G we say that P1 dominates P 2 if ZcP 1 d, _

P d, and Ej;p, w, 5 EIEP2 wl and at least one of these two inequalities is strict.

An s-t-path P, is said to be non-dominated if there is no other path that dominates

it. We now have

Lemma 2.8 The minimum of g(P) = ,EP di + f(,- p w,) occurs at a non-

dominated path.

Proof. Define dR =lEp di, Wp = EP w,. g(P) d, + f(wi) is a monotonously
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increasing function of both dp and wp. Suppose that P* minimizes g(P) and that

P** dominates P*, then either dR.. < dp. or wp.. < wp., this implies g(P") <

g(P'), which is a contradiction.

I

Let P' denote a path from node s to node j. Define cj(D) as the minimum

over all P1 of YLEp, w, subject to the condition that El P, dL < D. If for a given D

there is no s-j path with 1-EPi di < D we say cj(D) = +oc.

It is easy to see that c,(D) is a decreasing function of D. Also if ct(D) < c,(D- 1)

we have that there exists P' a non-dominated s-t path with FIp, wl = ct(D) and

7_1p, d, = D. Also every pair (w, d) corresponding to a non-dominated path shows

as w - ct(d) < ct(d- 1).

We can now set up the following relations

c,(o) 0,

c,(D) + +c forj sandD<O,

cj(D) = min{cj(D - 1),min{ck(D - d(k,j)) + WkJ)}} (2.35)
(k,j)

For a given D, assuming that cj(d) is known for x < D, it takes O( L) operations

to calculate cy(D). We can start with D = 1 and proceed until D = M, where as M

we can use an upper bound for the length, as measured by EP di, a simple s-t path
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in G can have. I.e. Al > ZJEp dL, for any simple path P between nodes s and t. For

example, A= Z=EL d, is such a bound. Given that a simple path in the network

can have no more than N - 1 links, if we suppose, without loss of generality,

di > d2 > ... > d, then M =_ "j d, is a tighter bound. AI = (N'- 1)dj can

". also serve as a bound. If after deleting all links I such that w, > 0, nodes s and t

remain connected in the resulting network G', then we can use as M the lenght of

a d-shortest s-t path in G.

This results in an O(MILI) calculation. The presence of M here classifies this

algorithm as pseudo-polynomial. To find the optimum of g(P) it is sufficient to

identify all pairs (w, d) corresponding to non-dominated paths, of which there will

be at most M, and identify one that achieves the minimum, an operation that takes

O(M) steps. Notice that since the minimum of g(P) coincides with the minimum

of P(P,P 2) in the complementary path problem we can compare the different

non-dominated points by evaluating P(P 1 ,P 2) for these points.
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Chapter 3

Routing Two Messages Along

Disjoint Paths

3.1 Introduction

In this chapter we address the following problem. We wish to transmit a message

between two given nodes, nodes s and t, of an unreliable data-communication

network. To increase the probability that the message is received we will send

two copies of the message. In addition we include the restriction that the paths

followed by the two copies should be link-disjoint, i.e. they should share no links.

In contrast to the problem considered in chapter two neither of the two paths is

fixed. How should these two copies be routed so as to maximize the probability

that at least one of them is received at node t?

In section 3.2 of this chapter the problem is precisely stated and the solution
47
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points are characterized. In section 3.3 we give a solution for the particular case

of an acyclic network. In section 3.4 we prove that this problem is NP-complete

for an unrestricted network, i.e. a not necessarily acyclic network. For logarithmic

inputs the problem is shown to be strongly NP-complete. In the next chapter we

address the same problem without the disjointedness restriction.

3.2 Disjoint Paths

We now consider the following problem.

Directed two link-disjoint path maximum reliability problem.

INSTANCE: Given a network G (N,L), where N is the set of nodes of the

network, and L C N x N is the set of links. Given for each link I a number pl,

0 < p, < 1. Where this p is the probability that link I is operative. For every link

I we have p, = a', where n, is a non-negative integer, and 0 < a < 1.

TASK: Find two simple link-disjoint paths P and P2, both joining node s to

node t, such that the probability that at least one of the two paths is operative i.3

maximized. A path is operative if every link in the path is operative.

Given two nodes i, j, if the link (i,j) L, then we shall take nflj) = no. We

want to find paths P1 and P2 such that P (P1 , P2 ), the probability that at least one

of these two paths is operative, is maximized.

1P(PI,P 2) p1 + fi p,- 1 P 1 P1 (3.36)
1EP, IEP2 IEP 1EP2
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rZ. I.P

a -f-In(a iEP2 i a (ZLEPI Z,- (3.3)

Define now

q(rlr 2) a r a r - a r 7: (3.38)

Then, we have

1I P It 1f' . "

Theorem 3.1, which follows, allows us to characterize an optimum pair of paths

Pl", P.. With this characterization we sl.all later be able to produce an algorithm

to find an optimum pair of disjoint paths for an acyclic network.

Theorem 3.1 Given R, a finite subset of points (ri, r2) belonging to the positive

orthant of R 2, where by R we denote the real line. A point (ri, r') G R, maximizing

the function

g(r1 ,r2 ) a + a - a"'  over R (3.40)

is an extreme point of the convex hull of Rd By R we mean the convex hull of R,

and by Rd the union of R with all points dominated by some point of . A point

(ri, r) dominates a point (ri,r2) if and only if r < r, and r' < r2 and at least one

of the two inequalities is strict. I.e.

R Ru {X: Ir E Rsuch that r dominates s} (3.41)
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Notice that R C R C d, and an extreme point of Rd is a non-dominated point,

i.e. it is not dominated by any other point in Rd.

We shall first prove three auxiliary lemmata, and then give the proof for theorem

3.1.

Lemma 3.1 g(r .r?) is a decreasing function of both of its arguments.

Proof. g(ri,r) a" (1-a '2) + a '2, for fixed r 2  c > Owe have

f(r) g(r 1 ,c) a(1 - ' )a" -t- a' (3.42)

and

df
- = (1 - a')a n na < 0. (3.43)dr,

I

Lemma 3.2 A point (r*,r:) maxzmizing the function g over R is non-dominated.

Proof. Suppose that there exists (r1 ,r 2 ) C R that dominates (r',r*). Then,

either r, < r , or r2 < r; from which, from lemma 3.1, we get g(r , r,) < g(r1 , r2),

this is a contradiction.

I
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p.

d,,_ (d1,jd2) fe,d 2)

T

e2- + - (el, e2)

di ei

Figure 3.1: Boundary of R

Lemma 3.3 Given points (djd 2) and (ele 2 ), such that d, < el and e2 < d2 , the

maxi~mum of g in T, the convex hull of (dj, d2 ), (el, e2 ) and (el, d2) is attained at

(di, d 2) or (el, e2 ), see figure

Proof. The region T is defined by, r, < el, r2 < d2 and r , > -br, + c, where

13

dcl em

inTwlFcura oepitofLe straightulinryonnctn pont (d,2)an

l e2), ever other point i s domin)aed bye some point in L. Now endeed, only

sotttemaximum of g in T, ihs attaine huato (d , d2,e) anr (e ,d2) tanda

DefT ine op, a", P2m a12inThsag of Lta les monnetg poitiv (ddt)and
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1.T

ad2
SI

.4 

I I

a

Pi
ae  adl 1.0

Figure 3.2:

of 22 to the unit square 0 < pi < 1, 0 < P2 < 1. T', the image of T under this

transformation is defined by p, >_ a" , P2 ad2, and P2 _ acp-1b, see figure 3.2.

Evaluating g(rl,r 2) is equivalent to evaluating fJ(pI,p2) P1 + P2 - P1P2. The

maximum of f in T' is in some point of L', the image of L. Consider now J, the

straight line that joins (ad',ad2) to (ael,ae2). For any point (pI,P2) G L', there is a

point (pl,p2) E J such that f(pl,p2) > f(pI,p2). We have

J = {(PI,p2) : P2 - -mp 1 + n, a i < pi < adi; for some m, n > 0}. (3.44)
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The function g evaluated in J is

2S

g(pi,-mpj + n) =mp, + (1 - m- n)pi + n, (3.45)

this is a convex function of Pl. This implies that the maximum of g in J is attained

at either p = a" or at p = ad, i.e. at either (ael, ae2) or at (ad , ad 2). These points

belong to L', this implies that one of them maximizes g in L' too. Therefore, f in

T is maximized by either (el,e 2) or (d,d 2).

Ui

Lemma 3.4 A non-dominated point of R, (rl,r 2), is either an extreme point of

R , or there are two extreme points of R , nominally, (ele 2), (d,d 2), such that

di < ri el, and e2 < r2 < d2.

Proof. Comes directly from the definitions.

, i.

Proof of Theorem 3.1: Consider (rl, r 2) E R, suppose (rl, r2 ) is not dominated

by any point of R, and (rl,r 2 ) is not an extreme point of Rd, see figure 3.3. Then,

by lemma 3.4, there exist points (el, e2 ), (di, d2) as in lemma 3.3, extreme points of

Rd such that (ri,r2 ) G T, as defined in the lemma. Then, either (el,e 2 ) or (di,d 2 )

achieve a larger value of g than that achieved by (ri, r2 ).
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Thus, one way to compute the optimum of P(P1 , P 2) is to generate the set of all

S -d
extreme points of R , and then find which of them maximizes g. If the number of

these points is not excessive this approach is practical. In the rest of this section we

whall give an upper bound to the number of extreme points of Rd. As R we take

the set of all pairs (ri,r2 ), where ri = Zl p. nt, i = 1,2, and P1, P2 are node-disjoint

paths that connect nodes s and t in the network G.

3.2.1 A Bound on the Number of Non-Dominated Points

of Rd

Observe from figure 3.1 that R is symmetrical, i.e. if (rl,r 2) is in R, then (r2 ,ri)

also belongs to R. Let r' be the length of a shortest path in the network, a path

connecting nodes s and t, where the length of link I is given by ni. Thus, a " is the

probability that a most reliable path in the network is operative. Pick a shortest

path of the network, it need not be unique. Delete from the network all the links

belonging to this shortest path. Suppose that in the resulting network, G', the

nodes s and t remain connected. Calculate in G' r** the length of a shortest path.

For any non-dominated point (r1 , r 2), we have that ri, r2 > r*, and, as (r*, r") E R,

we have rl, r2 < r". Therefore, the number of non-dominated points is bounded by

(r'" - r" + 1), see figure 3.4. Notice also that if the point (r, r) C R, i.e. if there
4'

are two disjoint paths both of shortest length, then this point is a maximum of

the function g on R. Notice also that r", as generated here, need not be uniquely

defined, its value might depend on which shortest path was originally deleted from
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(r r*

(ri, r2)
r2-- - - - L--------

r LI --\ L (r ~r*)

II

r. r, r **

Figure 3.4:- A Bound in the number of non-dominated points

the network.
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3.3 A Solution for Acyclic networks

Yd
5%

3.3.1 Generating the Extreme Points of Rd. Stratified Net-

works

Given G, an acyclic network, the set of nodes N can be partitioned into disjoint

layers S1, S2,... S,, where rn < n, and Ui=1,...,, Si = N, and such that the layers

have the property that for k E N all the links emanating from k go to a node in a

higher numbered layer. Additionally we also impose the condition that S1 {s},

and S, = {n}. Suppose, without loss of generality, that for k E Si all the links

emanating from k go to Si+,. We say that a network that satisfies these properties

is a stratified network. We call the Si the strata of the network. See figure 3.5.

3.3.2 Squared Network
/

Given a stratified network G = (N, L), with strata S1,... ,m, we form G2 , the

squared network, in the following way. We denote the nodes of G2 by a pair of

integers e.g. ij, G2 consists of m strata I?,... SS. Similarly to G, S' = {ss}, and

S'=2 nn}.

The strata Si2 for 1 < i < m are created as follows. For every ordered pair of

nodes k,j E S there exists a node kj E S,. There is an arc (kI, rs), connecting

nodes kI in S to node rs in + if and only if there is an arc connecting node

k E Si to node r G S,+,, and an arc connecting node I E S, to node r E SiI, unless

k I and r s. This last requirement serves to guarantee disjoint paths. See
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Figure 3.5: A stratified network
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A link (ik, rs) E G2 is labeled by two coefficients, C~ik, 8) = ~ir and Ci~s

To every path connecting node .ss to node tt in G2 correspond two disjoint :.

paths in F, both connecting node s to node t, and viceversa. The squared network
device transforms the search for two disjoint paths in 1 into a search fo a single

path in C2.-

3.3.3 Characterization of Extreme Points "

To each path from node ss to node tt in G2 we can associate two numbers vj and

v2. These numbers are the lengths of the corresponding disjoint paths P1 and P2
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in G. For a given path P in G2 , v, is obtained by adding the c"s of the links in P,

v2 is obtained in analogous way. That is, v, = Ep cI, and v2 = En cP.

Obtaining a path P" minimizing one of these objectives can be formulated as

a minimum-cost-flow problem. To each link I E L 2 we associate a positive number

fl, which we interpret as the flow aloi.o link 1. These f, should satisfy the following

constraints. With the exception of nodes ss and tt the flow in each node of G2

should be conserved. The net flow in node ss should be outgoing, more flow going

out than entering, with a value of one. The net flow in node tt should be entering,

'a more flow entering than going out, with a value of one. That is,
.4

Z_ f(s,kL) -- f(ki,ra) = 0, rs L 2, rs 5 ss, tt. (3.46)
(ki:(ra k)EL2 } {k,:(k,ra)EL2 }

Z f(ss,kl) = 1. (3.47)

(k1:(3s,k1)EL 2 } {kL:(k1,,s)EL 2 }

Z f(tt,t - Z f(k,,tt) = -1. (3.48)
{kL:(tt,k1)EL

2
} {lk:(k,tt)EL

2
}

This is a linear program with two objective functions, v1 and v2.

V = L f(rs,k1)
(rs,kl)EL

2

VI cf(r,.k,) (3.49)
(rs,k1)CL

2

Notice that the feasible region defined by these constraints corresponds to R, the

convex hull of R. If this linear program is expressed in matrix form the matrix

corresponding to the flow-conservation constraints is unimodular. This guarantees
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that for any objective linear function, if there is an optimum solution, there is

an integer optimum solution. Which means that we may use the techniques and

results of linear programming to find P*. Moreover there exist standard algorithms,

see jiO], to find the set of all non-dominated points of a multiple-objective linear

program. In their simplest form, the basic approach is to form a combined objective

function vA = v1' ± Av', for A > 0. Non-dominated points with respect to the

objectives vI' and v' correspond to extreme points of Rd. Varying A the different

non-dominated points are obtained. We need consider only as many different values

of A as there are non-dominated points. We are using only the fact that the

points of R that optimize (3.36) are non-dominated points. To obtain a more

efficient approach we would have to use additional properties of the function we

are optimizing. In the next section we will present an algorithm to find two paths

optimizing vA without explicitly constructing the squared network.

3.3.4 Two Minimum-Cost Paths with Different Path Costs

We first give an algorithm for a more general problem, and then specialize it to

optimize vA. Given G = (N,L) an acyclic network, in which 'N1 = m, we can

take without loss of generality that the nodes in this network are so ordered that

for any link Ki,j) we have i < j. This numbering of the nodes can always be

done in an acyclic network, see '91. Let then s, the origin node, be node 1; and t,

the destination node, be node m. To each link I in the network we associate two

non-negative numbers c and c .

Define for i, j, a pair of, not necessarily distinct, nodes, S(i,j) as the set of all
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1i

pairs (P 1, P2) of directed link-disjoint paths in which P1 connects node s to node

z, and P 2 connects nodes t to node j. Notice that for any link (q, r) in P we have

q, r < i, and similarly for links of P2 .

Define

d (i,i)= min ZC1+ZC4  (3.50)d~~)(P1,P2)ES(i°J) IEP IEP2

Our objective is to find d(t,t). We take d(s, s) - 0. That is, we are looking for

two minimum cost link-disjoint paths both joining node s to node t, for which the

cost of a link I belonging to the first path is given by c', and the cost of a link

I belonging to the second path is given by c'. If we specialize the c, by taking

c1 Ac',cl n1, we are minimizing v), as defined in the previous section.

With this definitions we can write

d(i,k) min{d(i,j) +j)} i < k. (3.51)
j<k

Similarly

d(k, i) min {d(j, i) + c(,k) } < k. (3.52)
j<k

And

d(k,k) min {C(tk) + C2jk) d(i,j)} (3.53)

This is because any link of the form (i,k) cannot be part of any P1, P. in

S(i,j) for i,j < k. We can calculate the d(i,j) by starting with d(1, 1) = 0, and
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for increasing values of k calculating the d(i,k), d(k,i), and d(k,k) for i < k. We

do this for m - 1 different values of k, and each time we take 0(k2 ) operations. We

have an algorithm that uses O(m 3) steps. The optimizing paths can be obtained

by recording the values of the indices that achieve the minimum in 3.53.

Take now c' = n, and c' = Ani, then d(s, s) corresponds to the optimum for vA.

One could try to generalize this approach to general networks, i.e. not necessarily

acyclic networks, but in the next section we prove that the problem of finding two

minimum-cost link-disjoint paths with different path costs in a general network

is NP-complete. Not only that, but the directed two link-disjoint path maximum

reliability problem is also NP-complete, as will be shown in next section.

3.4 The Directed Two Path Maximum Reliabil-

ity Problem is NP-Complete

We address the following problem.

Directed two link-disjoint path maximum reliability problem. (Decision

version.)

INSTANCE: Given a network G (N,L), where N is the set of nodes of the

network, and L C N x N is the set of links. Given for each link I a number pl,

0 < P, < 1. Where this p, is the probability that link I is operative. For every link

I we have p1 = a", where n1 is a non-negative integer, and 0 < a < 1.

QUESTION: Are there two link-disjoint paths in the network P1 and P2 , such that
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both these paths connect node s to node t, and the probability that at least one of

these paths is operative is larger than a given threshold Pth?

Notice that the existence of two link-disjoint paths between s and t can be

established by a maximum flow computation, see [3], this is a polynomial operation.

Given P and P 2, P (Pi,P2), the probability that at least one of these two paths

is operative is given by

P (Pi, P) = J p, + 7p, - Il P, 17 p, (3.54)
IEP IEP2  IEPL IEP 2

If the p, are rational numbers, i.e. if a is a rational number, then this problem is

in NP. I.e. given P1 and P2 one can decide in polynomial time if P(P1 ,P 2) >_ Peh

for a given Pt,.

We shall now prove that the problem is NP-hard. This will be done by show-

2 ing that if we can solve the two link-disjoint path reliability problem, as defined

above, then we can also solve another problem that already been proved to be

NP-complete. The problem we are going to use is as follows.

Directed two link-disjoint path problem with distinct origins and desti-

nations.

INSTANCE: Given a directed network G' (N',L'), and given Si, s2, t1, t 2 , four

distinguished nodes of this network.

QUESTION: Are there in this network two link-disjoint paths P and P2 such that

P, connects s, to t, and P2 connects 82 to t 2 ?
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S1 tl

s Original Network t

< S2 t2 

Figure 3.7: The original network with added links

For the NP-completeness proof of this problem see [5].

3.4.1 The Reduction

Given G' and sI, s2, t1 , t 2, we augment the network in the following way, see

figure 3.7. Add two nodes s and t, also add four links: (s, sl), (s, s2), and tl, t),

(t 2 ,t). Assign link probabilities to this augmented network as follows: p(<,,,,)

p~t,,> = (1 / 2)3n, and p, = 1/2 for all other links, where n is the number of nodes in

the network. Notice that if we use standard binary representation for the pl, the

number of bits necessary to specify them is 0(n 2 ).

Any pair (P1 , P2) of link-disjoint paths joining s to t will necessarily use the

four links that were added to the (-:,ginal network. Take, without loss of generality,

4 65



itl tl

S2  t 2t2
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Figure 3.8: 'Straight' and 'Crossed' paths

*that P, uses (s, si), and P2 uses, necessarily, (S, S2 ) . In the case that P1 uses (ti, t),

* and P2 uses (t 2 , t), we say that (P1 , P2 ) is a straight pair. Otherwise, if P1 uses

* (t 2 , t), and P2 uses (ti, t), we say that (Pi, P2) is a crossed pair of paths, see figure

* 3.8.

Lemma 3.5 If IN'I n > 2, i.e. if the network has at least two nodes, then for

any straight pair (P1 1P, and any crossed pair (P,,P~c), with the probabilities as

assigned above, we have

Proof. We have

P (P, P2 AIp + fJp A fJ1 A J pA (3.56)
iEPj- 1 C=P2 1EPr* IEP

> 11 pi (1/2)n+ > (1/2) ~ ~ (3.57)
IEP2;
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Also,

P(P,P) H2- Pi + X Pt - II Pt F Pi (3.58)
iEP' IEP, EPf IEP

< I- Pt + 1- P < PO,,11) + P(ti,t) (3.59)
IEP,' IEP,

< 2(1/2 )3 = (1/2)3r- < (1/2)2r%. (3.60)o

Therefore,

P(P,P2) > (1/2) 2n > p(Pe,Pc). (3.61)

Theorem 3.2 The directed two link-disjoint path maximum reliability problem is

NP-complete.

Proof. Given G and si, ti, i = 1, 2, augment this network and assign link prob-

abilities as above. From Lemma 3.5 we know that there is a pair of link-disjoint

paths P and P2 connecting s to t with P(PI,P2 ) > Pth: -- (1/2)2,, if and only if

there exist two link-disjoint paths P1 and P2' so that P connects s1 to ti and P'

connects S2 to t 2.

I

In the proof of lemma 3.5 all the probabilities have the form pt (1//2)9 ( - ) ,

where n, = g(n) is a polynomial in n. From this we have, see 161, following
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Corollary 3.1 The directed two link-disjoint paths maximum reliability problem is

t strongly NP-complete.

Also, if we allow p, = 1, lemma 3.5 has an analogue with P(tt) = P(",,3) = 1/2,

and P, = 1 for the rest of the nodes. If the data are given in the non-logarithmic

format, i.e. P, is a rational number, the pt are 0(1), and therefore a polynomial of

n hence we have

Corollary 3.2 The directed two link-disjoint path maximum reliability problem
a.:

with standard input format is strongly NP-complete if perfectly reliable links are

allowed.

-- 4

It is interesting that the existence of two link-disjoint paths if G is an undirected

network is not an NP-complete problem. Y. Shiloach has given a polynomial algo-

rithm, see [14].

3.4.2 Related Problems

The intermediate problem treated in section 3.3.4 can also be shown to be NP-

complete when the network is not assumed to be acyclic. The proof is very similar

to that given in the previous section. The problem is as follows.

Directed two link-disjoint weighted path problem.

INSTANCE: Given a directed network G as in 3.1 Given for each link I of this

network a non-negative integer ni. Given also a rational number A > 0.
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QUESTION: Are there two link-disjoint pa.hs P1 and P2. such that

F(P1, P2 ) =Zni + XZ n, fth (3.62)
IEPi 1EP,

for a given rational threshold value fth >0?

Notice that for A q/r, where q and r are positive integers this is equivalent

to

F'(Po, P2 ) r n, + q Zn 1  qft. (3.63)
LEPi IEP2

It is easy to see that this is an NP problem. Le., given two paths P1 and P2 it is

possible to decide in polynomial time if 3.63 holds or not.

To prove that this is an NP-complete problem we reduce the same problem used

in the previous section. The proof is very similar. Given a directed network G'

and four distinguished nodes as before, we augment the network as in the previous

section. Assign link numbers in the following way: n(,,,,) fl(tt) 10n, the rest

of the links are assigned n, 1. Take q 10 and r 1. Then we have.

Lemma 3.6 For any crossed pai*r of paths (Pc, P2) so that both these paths connect

s tot we have

F(fP2)> 50n. (3.64)

Proof. We have

F'(Po,Pc) n n n + 10 Sn > 10<_ q n. (3.63)

PEP2 IEP2
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Lemma 3.7 If there is a straight pair (P,, P) so that both these paths connect s

to t, then there is a straight pair (P1, P2) such that

f.

F'(P;,P2) < 50n. (3.66)

Proof. Of the paths P and Pb one of them must use the link (s, sj), take that

path as P 3, take the remaining one as P2. Then we have

F'(P3,P2) = nj + 10 2(10n) + (n - 1) + 10(n -1 + 2) (3.67)
IEP: IEP

< 30n < 50n. (3.68)

I .

Now we can prove

Theorem 3.3 The directed two link-disjoint weighted path problem is strongly NP-,"

complete.

Proof. Given G' and its four distinguished nodes, augment this network and

assign the nl as above. From the lemmata 3.6 and 3.7, we know that there is a
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pair of link-disjoint paths P and P 2 connecting s to t with F(Pf, P2) <_ fth 50n,

if and only if there exist two link-disjoint paths P1 and P2 such that P1 connects

s, to t, and P2 connects s2 to t2 . All coefficients in the problem are a polynomial

in n, therefore the problem is proved to be strongly NP-complete.

SI

Notice that from this we have that the more general problem of deciding if there

exist link-disjoint paths P and P2 that connect s to t and such that 'lPjp cl +
<_sP2 c Cth, for given non-negative integers Cth, c', I E L, i= 1,2, is also an

NP-complete problem.

Also it is interesting that if in the proof of section 3.4. we change the definition

of P(P1 ,P2 ) to read

P(P1 ,P2 ) = r pj + -I p1, (3.69)
IEPi IEP2

the proof still holds. Of course, now P(P,P) is not a probability any more.

It can be interpreted to be the expected number of paths that are operative, or

equivalently, the expected number of copies that arrive at node t. This also would

have made sense as an alternative routing criterion. I.e. we could have started by

trying to find two paths P and P2 such that if we were to send one copy of the

message along each one of them the expected number of copies arriving at node t

is maximized. As we just saw this problem is also NP-complete.
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Chapter 4

Routing Two Messages Along

Two Non-Disjoint Paths

4.1 Introduction

The problem we deal with in this chapter is similar to the one addressed in chapter

three the difference is that here we dispense with the requirement that the paths

followed by the two copies of the message be link-disjoint. This gives us more

freedom in choosing these routes, offering thus, possibly, a higher probability that

the message be received. The problems addressed in chapters two and three could

be co nsidered to be restrictions of this one.

In section 4.2 we prove that this is an NP-complete problem if the probabili-

ties are given as rational numbers, and NP-hard if the probabilities are given in

logarithmic format. In section 4.3 we give a pseudo-polynomial algorithm for its
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solution when we have logarithmic inputs.

4.2 The Two Non-Disjoint Path Maximum Reli-

ability Problem is NP-Complete

The problem is as follows.

Two path maximum reliability problem.

INSTANCE: Given a network G = (N,L), where N is the set of nodes of the

network, and L C N x N is the set of links. Given, for each link 1, a rational

number pl, 0 < p < 1, where pt is the probability that link I is operative. Also

given is a rational threshold Pth.

QUESTION: Are there two simple paths P and P2 , both joining node s to node t,

such that the probability that at least one of the two paths is operative is greater

or equal than Pth.

We prove that this is an NP-hard problem by considering a specific topology,

see figure 4.1, we show that by solving the problem for this network we solve the

complementary path problem, considered in chapter two, for the same network;

this proves that the problem is reduced to partition.

Consider the network of figure 4.1. This is the same network as in figure 2.2.

As in chapter two we define pi = p; this implies Pl," > pli.

Given the tuple (P1 , P2) consisting of two paths that connect nodes s and t,

73

V. 
..



pi 0/ p.

t 10

2 T

T T

* 74



let P(PI, P2) be the probability that at least one of the two paths is operative. A

path P in this network can be characterized by specifying whether P includes l'

or I' for j 1,.m. To a given path P we now associate m binary variables

P1~j = 1,.. ,m. Where P2 = 0, if 1 E P, PJ = 1, if l c P. We prove two lemmas

that shall then be used to prove the main result.

Lemma 4.1 If (P1 , P2 ) is the optimum solution for the two non-disjoint paths

maximum reliability problem, then either Pj = 0 or Pj 0, for j= 1 ,m. The

'or' in the previous statement is not exclusive. %

Proof. Suppose this is not true. I.e. for some j we have that Pl P' 1; this

means that the link l is in both P1 and P2 . Therefore,

P (PI, P2) = +lPi -Pi- A
IEPi IEP2  ZEP uP 2

ThPa + PjiPb - POP, (4.70)
3 3 3

for some 0 < p., Pb, P < 1. If we now make P1 0, changing thus P1 into P which

includes 10 instead of lI, we have

P (P, P2) PQ P. + P1 .Pb - P1°P1Pc- (4.71)

Therefore,

P(P, P2) - P(PI,P2) (PO Pt.)P, P1 (1 - PThc) > . (4.72)
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Which implies

i, P (Pi, P2) > P (PI, P2). (4.73) :

Which is a contradiction.

I

* Lemma 4.2 In an optimum solution (P1 , Pb) one of the two paths, say P1 , is such

that P? =O for

Proof. Suppose that the tuple (Pa,Pb) is an optimum solution, ad that for

neither of these two paths are all Pi =0 . From the previous lemma we have that

P,2 =Pb = 1 cannot occur for any j. Consider now the pair (P1 , P 2) defined by

Pl' = 0 for j=1,...,m

1 if P =0 and P, = 1;

Pd otherwise.

This means

P,:=1,P O " 0 PI 0, P 2  1

P0,P:o =0 P =O,Pg=0. (4.74)
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From this construction we have that P U P2 = P U Pb; we also have

11 pI7H pI = I PI II PI (4.75)
IGP tEP2  IEGP, tEPb

We want to prove that P (Pi, P 2) > P (Pa, Pb), or equivalently that

P(P1,P2) - P(Pa,Pb) > 0. (4.76)

We have

P(PI,P2) P(P,,Pb) -H P' + I- - I- PI
IEP, IEP2  IEPiuP2

P, + HI P, - HIP
IEP, 1EPaUPb

- IP p+ H pi- rn-Pt-HrI . (4.77)
IEPi IEP 2  LEP, iEPb

Define now

X P, X2 PI,
. IEPl IEP2

_xa I P, xb - ' (4.79)

IEP IEPb

Take, without loss of generality, xa > Xb, We also have, by construction, x, > x,
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and x, x2 -. Define c = x 1 x 2 =aXb. Then,

P(X1,T 2) P(Xa,Xb) - + ) -

= f(xi) - f(Xa). (4.79)

Where f(x) x + . For x >_ vIc, f(x) is an increasing function. We have x1 : X2
z

and c = x 1 X2 , and this guarantees x, >vic. Similarly we have that x > s/F.

Therefore

X > X, f(xi) > f(X). (4.80)

Which implies P(XT, 2 ) > P(Ta,Z.).

We can now prove

Theorem 4.1 The two non-disjoint path maximum reliability problem is NP-complete.

Proof. The problem is easily seen to be in NP, i.e. for given P, and P2 it can

be determined polynomially if the probability that at least one of the two paths

is operative is greater or equal than Pth. Frcm the two previous lemmata we have

tint we can always take P to be fixed, namely P( 1,j 1,... ,m. The problem

is then reduced to the particular case of the complementary case problem that was

used in chapter two for the reduction to partition.
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We also have the following.

Theorem 4.2 The two non-disjoint path maximumn reliability problem with loga-

rithmic inputs is NP-hard.

It is not known if this problem is in NP.

4.3 The Algorithm

In this section we present a pseudo- poly nomnial algorithm for the problem described

in section 4.2. The algorithm is basically dynamic programming. Given G

(N, L), a directed, acyclic, stratified network, we generate G' (N 2 , L2 ), the

corresponding squared network as in section 3.3.2, with the difference that we omit

the requirement that in 3.3.2 guarantees path disjointedness. That is, if there is a

node kc E Si, and a node I E Si, with a link (k,l) C L, then, in G 2 there will be

a link (kk,II). To every path connecting node ss to node tt in G2 correspond two,

not necessarily disjoint, paths in G, both connecting nodes s and t.

A link (ik, rs) E G2 is labeled by three coefficients: cl fl(i,r);(ik ) C(ikrs)

3 3
fl(k,,); and c~i,rs) =0, unless i =k and r s, in which case c(kkj 3,) =C~kkss)-

22

* (kk,.s) = n(k.)

Given a path P in G', the probability that at least one of the two corresponding
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paths, P1 and P2 C G, is operative is given by

P (P1 , P2) = aZ '
EP 1  + aE '

E - aE EP ' f"l+ EP, "'+IEP2 ,nP, n,

a-(EP cl + aZliEPC ayi1EP r±iEP c2-ZIEP c3
. (4.81)

Suppose copy one of the message is sent to node i C Sk following fixed path

P1. Similarly, copy two is sent to node j E Sk following fixed path P2. Define

now, ni = ZlEp, nj; n2 = Flp nL; and n 3 :ZiEPnp ni. Or equivalently, if P'

is the path in G2 corresponding to P1 and P', ni = TZ,,p, c;n2 = ,p, c ; and
=3

n3 = IP' CI.

Let P1' and P.' be the paths the two copies should follow if they were to start

from nodes i and j to node t, so that the probability that at least one of them

arrives is maximized. Notice that the choice of these paths, the paths the two

copies would follow after the kth layer if they were to make it that far before

encountering a failed link, depends on P and P2, the paths along which the copies

were routed towards the kth layer. For example, is P is much more reliable than

P2, the optimal choice of P' and P2' would typically favor P,', as it is more probable

that copy one has actually reached the kth layer. The choice of these paths depends

only on nj, n2 , and n 3.

Define
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2 pi

IEP,'

/ 3(njn 2 ,n 3 ) - Z nz. (4.82)
IEPII I IfLEP nP"

Define 7rij(ni, n 2, n 3) as the maximum probability that at least one of these two

copies reaches node t. Then, given that node ij E Sk, we have

_. l, ,, , + 1(j,k ,n2, +C. ii,,,n +Cj,k>))
7ri (n n 2 , n 3 ) - m ax { al ............. .......

(ij,k1)EL
2 -

2 2 1 2 3

- an
2+C 2ij,kl; + v

2k
(n
l
+ c

(j
j kA >

)
n 2 

+C2 
ij,k

1l
> n

3+
C i

j,k
1
))

(n a , }f 3 + 1~) + VkLn +C +4k)f 2Ciiki) f+C3d~~) .. 3+n + 2i'm V 2 , n I 2 ,,k) n 3 i )
(4n3" -C3 qk1)+ V3 (n,'-c1(ij,kj

) ,n2"4c~jj,kt ), +3"4cij'At
) ) V

Let mn E S2 be such that (i", inn) is the link that achieves the maximum in

4.83. Then we have, for p = 1,2,3

V?(nin 2 ,n 3) C --,mn) v/(ni + c 1jmn) n2 + C2ijmn) n3 + C3i,mn)" (4.84)

Equations (4.83) and (4.84) provide the means to cajculate the optimal routing

for two copies of a message. The maximum of P(P,P2), as in equation (3.36), is

given by

P(P,P 2) 7r,,(0, 0, 0). (4.85)
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The paths can be obtained by recording the decisions taken when using equation

(4.84). Notice that

7r,(= a(' +na22 na3) a+na,

vi,(n 1,n 2 ,n 3) n,, i= 1,2, 3. (4.86)

We next look at the performance of this algorithm. If Mk is an upper bound

on the maximum length a path can have from node ss to a node in Sk, where the

length of a link I is given by n1, if we know the j (n,n 2 ,n 3 ) for n = 1,2,3, and

0< nl,n 2 ,n 3 < Mk+l, and i,j E Sk+l, i.e. ij 2 + then it is possible to calculate

the z4j(n 1,n 2 ,n 3 ) for n = 1,2,3; and 0 < n1 ,n 2 ,n 3 _< Mk; ij E Sk.

This dynamic programming solution of the problem presents the usual problem

of state space explosion. Any attempt at using it for practical application would

require careful programming. In particular, one way to optimize the performance

of this approach is to make the Mk as tight as possible. Notice that this approach

could also be used for the case of a link-disjoint path as in section 3.2. Also, by a

simple device as in the introduction, we can treat the case of node-disjoint paths.
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Chapter 5

Conclusions and

Recommendations for Further

Research

In this thesis we have presented several ways of selecting two s-t-paths for simulta-

neous transmission of two copies of one message in a data communication network. j

In section 5.1 we compare how these approaches perform in practice. In section 5.2

we look at suggestions for further research.

5.1 Comparing Approaches

We have chosen three of the route selection procedures, all of them using loga-

rithmic input. These three have been selected because they can be implemented
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efficiently:

" Complementary Path Algorithm, chapter 2, (Compath).

" Finding two disjoint s-t-paths P1 and P 2 such that the probability that both

of them (Pi and P 2) are operative is maximized, (Twopathand).

" Finding two disjoint s-t-paths P and P2 such that the probability that at

least one of them (P or P 2) is operative is maximized, (Twopathor).

These three methods have been programmed. We have some limited experience

comparing their performance in actual examples. We next comment on each of

them separately and then compare their behaviour.

Compath: The algorithm given in chapter two for this problem works on unre-

stricted networks, it is pseudopolynomial. But, if for every link I we take n, < n,

where p, = a" , and 4n4 is a positive integer, then the algorithm becomes polyno-

mial in ILI and INI. Specifically, it takes O(nJLI2) operations. For a given input

network, given basic path P 1, given the hi'S, and given the basic operational prob-

ability a the solution is dependent on the value of this a, as follows. The closest

a is to one the more it is likely that P 2, the complementary path, be disjoint from

P 1. The closest a is to zero the more likely it is that P1 and P2 will share links.

Twopathand: the algorithm given in [16] consists of two consecutive applications

of Dijkstra's shortest path method with the addition of an O(ILI) step between

these two applications. Therefore this is a polynomial procedure. It works on un-

restricted networks. The solution is independent of the basic operative probability

8
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a. As a by-product we obtain a shortest path of the network which can be used as

part of the input, for Compath, the fixed path (PF).

Twopathor: the pseudopolynomial algorithm given in chapter three applies only

to acyclic networks. The algorithm works by finding all pairs of non-dominated ex-

treme disjoint s-t-paths (P1 , P2). Once this set has been found it can be calculated

which pair attains the optimum for the given value of a.

To test the comparative performance of these algorithms we generated acyclic

networks with random values of nj, pi = ar', for the links of the network, n,

takes the values 1,2,3,4,5 with equal probability. The generated networks are

characterized by the number of nodes they have, and by a parameter called width,

this parameter is such that there exists a link connecting node i to node j if and

only if i < j < j + width. Here we present result for six networks:

* neti: consisting of 10 nodes, with a width of 3.

Snet2: consisting of 15 nodes, with a width of 4.

* net3: consisting of 20 nodes, with a width of 4.

* net4: consisting of 25 nodes, with a width of 4.

* net5: consisting of 40 nodes, with a width of 5.

* net6: consisting of 30 nodes, with a width of 6.

Tables 5.1, 5.2 and 5.3 present the value of the probability that at least one of

the two messages arrives at the destination node for the pair of paths provided by
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a=0.99 Twopathand Twopathor Compath

netl .9910 .9910 .9910

net2 .9909 .9909 .9909

net3 .9905 .9905 .9905

net4 .9756 .9756 .9756

net5 .9754 .9754 .9754

net6 .9905 .9905 .9905

Table 5.1: Message arrival probability for a = 0.99

the algorithms indicated in the columns. The source node is node number 1, the

destination node is the highest numbered node of the network. The three tables

correspond to different values of the basic probability a. We use a most reliable

path of the network as the fixed path in the input for algorithm Compath.

Notice that even though the paths found by algorithm Twopathand maximize

the probability that both path are operative, the value shown in the tables is the

probability that at least one of them is operative.

Our computational experience suggests that the solutions obtained by the al-

gorithm Twopathand are very close to those given by algorithm Twopathor, in the

cases shown here they happen to be always the same. This can be explained by re-

calling that the solution given by algorithm Twopathor is always a non-dominated

extreme pair of link-disjoint paths of the network, which is also the case for al-

gorithm Twopathand, though not necessarily the same pair, if the network is such
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a=0.9 Twopathand Twopathor Compath

neti .5976 .5976 .6416

net2 .5796 .5796 .5796

net3 .5752 .5752 .6123

net4 .3131 .3131 .3388

net5 .3076 .3076 .3119

net6 .5752 .5752 .5941

Table 5.2: Message arrival probability for a 0.9

a=0.5 Twopathand Twopathor Compath

neti .0079 .0079 .0146

net2 .0024 .0024 .0038

net3 .0040 .0040 .0048_

net4 .0000 .0000 .0000J

net5 .0000 .0000 .0000

net6 .0040 .0040 .0057]

*Table 5.3: Message arrival probability for a 0.5
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that there exists only one non-dominated extreme pair of link-disjoint paths the

solution provided by these two algorithms is necessarily the same. From the exam-

ples here presented one could infer that the family of generated networks has this

property for sufficiently large values of the number of nodes and the width of the

networks.

The solutions given by algorithm Twopathand are also close to those given by

algorithm Compath, particulary when a is close to one, see the tables for a = 0.99.

When the value of a decreases, see table 5.3, algorithm Compath does produce

better solutions. This suggests that in this case, 'low' a, sharing links is necessary

to improve the probability that at least one of the two copies of the message arrives

at the destination node.

The numerical results obtained indicate that the possible improvements to be

gained by using algorithm Twopathor might not justify the increased computational

expense. For a close to one the solutions obtained by algorithm Twopathand arc

very close to that obtained by algorithm Compath when, as here, a most realiable

path of the network is used as the fixed path (P1 ).

5.2 Suggestions for Further Research

Some complexity issues remain unanswered:

- Is the problem treated in chapter three (finding twc disjoint s-t-paths

that maximize the probability that at least on of them is operative)

NP-complete when the network is acyclic?
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-Is the problem treated in chapter four (finding, two not necessarily dis-

joint s-t-paths that maximize the probability that at least one of them

is operative) strongly INP-complete for an unrestricted network, i.e. a

network that may contain cycles.

*From a more greneral perspective the subjetct of "robustness" for algorithms

in data-communication networks seems to be open. The design of flow-control

and routing algorithms that will behave reasonably in the presence of unre-

liable input data seems to be deserving of attention.
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