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Abstract

- Many important problems in computer vision can be characterized as template matching problems on edge
images. Some examples are circle detection and line detection. Two techniques for template matching are
the Hough transform and correlation. There are two algorithms for correlation: a shift and add based
technique and a Fourier transform based technique. The most efficient algorithm of these three varies
depending on the size of the template and the structure of the image. On different parallel architectures
the choice of algorithms for a specific problem is different. This paper describes two parallel architectures :
the WARP and the Bunerfly and describes why and how the criterion for making the choice of algorithms
differs between the two machines.

This material is based upon work supported under a National Science Foundation Graduate Fellowship
grant number SPE-8350104. This work was supported in part by NSF Grant RCD-8450125 and a Defense
Advanced Research Project Authority grant number N0014-82-K-0193
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1. Introduction

In this paper the problem of template matching between edge images is explored. Edge images are
the thresholded output of running an edge detector over a digitized image. The resultant data structure is
an array of boolean data describing where the edges are in the image and an array of orientations for the
edges. A template is a representation of a small structure in a similar format to that of the image. An
example of such a template is shown in figure 1. The process of template matching on edge images finds
the places in the image that are similar to the template.

This paper discusses the implementation of template matching on multiprocessors. The two
multiprocessors that are examined in this paper are the WARP and the Butterfly. The WARP is a heavily
pipelined multiprocessor. According to the system promulgated by Flynn for categorizing multiprocessors
it is a MISD architecture [5]. A MISD architecture is a multiple instruction stream single data stream
machine. The WARP is MISD) because each of its processors can run different code simultaneously and
there is one stream through which data can be piped.

The WARP is a pipeline of 10 independently programmable synchronized processors. Fach processor
uses pipelined functional units that can be accessed in parallel.

The other multiprocessor that is examined is the Butterfly. The Butterfly contains 128 68000 based
processors. Each processor has its own local memory. Each processor executes instructions out of its local
memory. The processors run asynchronously. Thus according to Flynn's categories the Butterfly is a
MIMD machine.

The processors of the Butterfly are connected with a Fourier Transform or Butterfly switching
network. Through this network they can access the other processors’ local memory. On the Butterfly a
remote read through the switch takes 6 times the time of a local memory reference. A write takes twice the
tme of a local memory reference. The processors and the switch run asynchronously.

In this paper | will show that for cenain kinds of templates the most efficient algorithms for matching
on the WARP and the Butterfly are radically different. 1 will also examine a generalization of these two
architectures to examine the importance of the speed of floating point operations.

Figure 1: Template of A Diamond Pattern .
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2. Descriptions of the WARP and Butterfly

2.1. The WARP Architecture

The WARP is a machine currently being fabricated at CMU by the V1.SI group there [6] [7]. The
WARP is an array of 10 processors arranged in a pipeline. Each processor can only communicate with the
previous and next processor in the pipeline. There is a host processor that sends information to the first
processor and receives the results from the last. There is an interface that takes integer data from the host
and translates it to floating point for the WARP and vice-versa. Currently the exact machine to be used as
the WARP's host is undetermined. A detailed view of the WARP's processors and a description of a host
that would be ideal for the WARP for image processing is in this section.

2.1.1. The WARP’s Processors

The WARP's cycle time is 200ns. Each of the WARP's processors is heavily pipelined. The
pipelining makes it difficult to program the WARP and analyze its behavior. If one considers the WARP
as a machine with a 1000 ns cycle time one can ignore much of the pipelining. In this section | describe
the WARP's processors in these terms.

In a 1000ns cycle each processor can retreve 10 32 bit floating point numbers from either its
predecessor or its successor or itself. [t can send 10 numbers in that same cycle. It can in the same cycle
do § memory reads and » memory writes. An indirect access counts as 1.5 memory accesses. In the same
cycle it can send 10 numbers to the floating point multiplier from any part of the machine. It can also send
10 numbers to its floating point alu. The multiplier and alu can each do § operations in cach cvcle. The
results of the computations set up in a cvcle are available in the second cycle thereafier. The alu can
compute: fix (float -> 24 bit integer) float (24 bit integer -> float) a+b a-b b-a |a] + |b] ja-b} |a+b]|
Both the alu and the multiplier can compute lx and _\/1_x (because of an accident of the design). The

warp can test for 0 or negative on the output of the ALU and behave conditionally thereupon. It can
generate and read two flag bits that it can send or read to the next WARP along.

Each WARP processor has 2K of 32 bit word memory for storing data and tables.
This is a simplified description of the WARP. For a more detailed description see [6].

2.1.2. The ldeal Host: the WIMP

WIMP stands for Wide Integer Memory Processor. Experience programming the WARP suggests
that a good host for the WARP should have these properties:

(1) {t should be synchronous with the WARP
(2) It should have i/0 bandwidth within an order of magnitude of the WARP's.
(3) [t should have a large memory to store large intermediate data structures.

(4) lt should be able to do simple integer operations and memory references at a speed comparable to
the WARP’s floating point operation speed.

A machine that meets these specificauons is within the capability of the currently available hardware. The
rest of this section gives a more detailed description of an architecture that is plausible and tulfills these
requircments.
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2.1.2.1. The Memory

The WIMP should be an integer processor with a 24 bit word size to be compatible with the WARP.
The address space pointed to by a 24 bit word is 16 megawords. A 16 megaword address space allows it to
store 2 1K by 1K images with 8§ words of information per pixel.
2.1.2.2. The Processor

Like the WARP the WIMP should be able to use all its functional units in parallel. The WIMP will
have 5 200ns cycles in one of the 1000ns WARP cvcles descnibed above. During one 200 ns cvcle the
WIMP should be able to:

(1) Read one 24bit integer from the WARP
(2) Write one 24bit integer to the WARP

(3) Read one 24bit integer from main memory
4) Write one 24bit integer to main memory
(5) Write one 24bit integer to the register file
(6) Read one 24bit integer to the register file
(1) Apply one alu operation

(8) Apply one multiplication

The register file should have at least 16 24bit registers.
2.2. The Butterfly Architecture

The Butterfly is a network of 128 tightly coupled asynchronous 68000's. Each 68000 also has
associated with it a memory management processor that handles memory requests. It also manages other
aspects of memory management and does some simple functions like block move. Because the processors
are not arranged in a full crossbar there is the possibility of two remote requests conflicting. [t has been
found that for many regular communication graphs including arrays these conflicts can be eliminated [14].
A processor will block untl a remote memory reference is finished.

A 68000 local memory reference (through the built in virtual memory system) takes 625ns. A remote
read through the switch takes about 3750 ns and a write takes about 1250 ns. Block moves of data amortize
some of the handshaking overhead over the entire transaction thus can run faster than the equivalent set of
single remote memory references [15]

There is no floating point hardware or microcode on the Butterfly. The floating point operations are
done in software. The arithmetic capabilities are just those of the 68000 [12].

A program has been written that tests the speed of various operations on a Butterfly. The results can
be considered to be accurate to within 30%. [hese timings suffice for the purposes of this paper. The
results are:
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Timings of Operations on the Butterfly
Operation (memory to memory)  Speed (in microseconds)

integer assignment 4.30
floating point assignment 11.29
integer addition 4.15
floating point addition 295.59
integer multiplication 68.24
floating point multiplication 474.76

The table above shows that a floating point multiply takes about 100 times the time of an assignment
statement or an integer add. On the WARP/WIMP combination a floating point multiply is about the
same speed as an integer addition. In the WARP’s processors it takes 4 times as long to do an integer add
as a floating point multiply since one must float the integers add the results and fix the answer. The WIMP
can do the addition at the same speed as a floating point operation on the WARP (modulo the parallelism).

Of the 128 available processors on the Butterfly I assume that several of them are dedicated to 1/0
devices or bookkeeping overhead. thus only 100 processors are available for applications (..de. Each
processor on the Butterfly is assumed to have .5 Megabytes of memory available to it most of which can be
used for data.

3. Descriptions of Edge Template Matching Algorithms

Template matching is the process of finding out where a specified structure occurs in an image. Thus
template matching can be used to look for specific objects in an image. In this paper the problem of
template matching is applied to the domain of edge images. For edge images simple calculations can be
used to detect if a template truly matches an image at a particular point. Template matching has been
applied directly to gray-level images. Here normalized correlation is the calculation that calculates the
degree of match between the template and the image. Template matching on gray-level images is further
described in {4].

Three algorithms will be examined for edge template matching in this paper. They are shift and add
correlation. Fourier based correlation and the generalized Hough transform.

Often edges come with weights that indicate something about the strength of the signal that caused
the edge. A minor change to each of the algorithms presented here results in an algorithm that takes
advantage of these weights. Such changes do not effect the efficiency of these algorithms. Thus this issue 1s
irrelevant to the paper. but is discussed further in [3].

3.1. Correlation

Correlation is historically the standard method for template motching [4]. Correlation is the sum of
the pointwise products of the shifted template and the image. For binary images calculating the correlation
gives the number of points where both the image and the template are one. If the template is binary and
the image’s elements are numbers the correlation gives the sum of the values of the image function where
the corresponding template point is one.

I'he most straightforward algorithm to compute the correlaton is to sk'ft the template across the
image and calculate the sum of products after each shift. This algorithm can be parallelized in two
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different ways. One method simply runs the template over different sections of the image simultancously.
The second pipelines the sum of products computation. doing several simuitaneously.

The main change to the shift and add algorithm for the edge template domain is to substitute
comparison for multiplication as the pointwise operation. The shifted template is compared pointwise to
the image. The number of points where two cdges have the same ortentation is counted. The result is the
degree of maich between the template and the image at that point.

Another implementation of correlation uses the Fourier transform. The Fourier transform of the
correlation of the image and template is the pointwise product of the Fourier transform of the image and
the Founer transform of the murror image of the template {2). If the transform of the tem-iate is
precomputed then the speed of Fourier based correlation is independent of the size of the template. A
technique for using this on edge images is described later in this section.

3.2. The Hough Transformation

The Hough transformation was developed by P. Hough [10] for detecting curves in bubble chamber
photographs. It was adapted to the problem of general template matching by Dana Ballard at the
University of Rochester [1]. The technique that implements template matching is the gencralized Hough
transform or gHough for short.

Generalized Hough maps significant points of the image (many kinds of images such as edge images
have sparse significant points) to template clements it can match. For each tentative match one is added to
the value of the position of the template that would make the martch possible. The template positions that
accumulate many matches are the places where the template closely matches the image. The advantage of
the generalized Hough transform is that only the significant points of the image cause malching
computations and that the technique can procced entirely by table lookup.

3.3. Edge Templates

Template matching works especially well on edge images since many of the problems that plague
linear template matching on image intensities are not relevant here. One such problem is that on an
intensity image a bnght spot will cause correlation to have a high value near that point regardless of
whether the image at that point matches the template. An image of thresholded edges has no "bright
spots”. This 1s because the comparison operation gives equal weight to ail successtul comparisons.

An example of an application of edge templates is circle detection. It is important for certain
applications 1o find objects with circular boundaries in images. Figure 2 is a template for a circle 5 pixels
wide.
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Figure 2 :-r
Template for an edge image of a circle of radius 3
y/x 0 1 2 3 4 5 6 ~
0 Jn ;
. T o
2 ’
1 I oss e 22 %
2 59 582 . . . 361 346 pt
3 0 ) . . . . n -
4 32 46 . . . 23.68 2.82
m ) 27
5 a 1.11 . 203 n
n
6 2
The entries that are just "." are positions that are not matched against edges. The result of matching .
this template against an image at position (x,y) in the image is the number of places that the template -
shifted to (x.y) has an edge that has an equal direction to (within a certain tolerance) an edge in the <
corresponding image element. The number thus computed is the number of cdges in the image that l:'_
support the statement "There is a circle of radius 3 at position (x + 3.y + 3)." :
‘&
3.3.1. Shift and Add Correlation 3
This section describes an algorithm for template matching akin to correlation. The template is stored :::
as a list of <x_displacement,y_displacement.angle> triplets. The algorithm is as follows. -:'
for(x = 0: x<IMAGE_WIDTH ; x + + ) /* move template across image */
for(y = 0.y <IMAGE_LENGTH ; y ++ ) /* move template up and down on image */ 8
for( index = 0 ; index  TEMPLATE_SIZF : index + + ) .
iflan_edge_exists_at ( 0
image[ o
x + template[index].x_displacement.
y + templatefindex).y_displacement -
)] ¢
if{ >4
template[index].angle -
is_close_to .
image[ o
x + template{index].x_displacement.
y + template[index).v_displacement :
).angle) '
{ "
correlation_output{x]ly] + = I: o
} T
This algorithm does O(/MAGE_SIZE*TEMPILATE_SIZE) operations that index into the memory to
check for the existence of an angle (2 integer adds) and O(/MAGFE_SI7E*number_of_template_edges) : ::-
operations that compare the angles with the template angle. :'
. . 2,
3.3.2. Fast Fourier Based Correlation
Convolution and multiplication are Fourier pairs [2]. This means that one can convalve two funcuons '
by taking the inverse Founrer transform of the product of the two Fourier transtorms of the functions. :.t
Correlating a template un an image is the same as convolving the tmage with the reflection ot the template N




along the lower left to upper right diagonal. Thus onc can implement a correlation by using a Founer
transform.

The Fourier transform is a transformation on complex functions. One could express an cdge image
by an array whose values were:
0 when (x.)) is not an edge
¢'% when (x.y) is an edge with angle 6
The template could be expressed as:

0 when (x_displacement y_displacement) 1s not an edge
¢ % when it is an edge with angle 8

This results in a function where the real part of the correlation at (x.y) is the sum ot
0 when the template element of the image element being matched is
not an edge
€088 rmuge— 8 -cmoine| When the two match

The second funcuon is only near 1 when the two angles are near cach other and drops to 0 when they
differ substantially. For such an algorithm to work only angles whose difference talls within the right half-
plain of the complex planc can be compared. Otherwise numbers with negative real parts can be generated
making a good match look bad. Thus a four pass algorithm is required. For each quadrant an edge image
is generated using only edges with orientations in that quadrant. ['his edge image 1s correlated with a
template that has only edges with orientations within that quadrant. Such a techmque should render a
good approximation to the correlation described above.

Assuming the Fourier transform of the template’s edges is precomputed. the algorithm consists of

(1) generating cos(#) and sin(4) for each edge in the image.

2) applying the Fourier transform to the 4 partial edge images.

3) multiplving every element of the transformed images by the transformed templates.
(4) applying the inverse Fourner transform to the results.

The cost of the first part is the ume for 2 square roots. 4 multiplies 2 adds. and 2 divides to the 1mage
multiplied by the number of edges in the image. The cost of the second part is 4 times the ume tor .
Fourier transform. A Fast Fourier Transtorm requires two complex multplies. 1 complex add. and 1
complex subtract ( = 4 multiplies 6 adds 2 subtracts) * log(v IMAGE_SIZENV*IMAGE_SI1/F . The cost
of the third part is equal to 4/MAGFE_S1/7F complex multiplies. The cost of the fourth part is equal to
that of the second.

The finite field fast Fourier transform is a transtformaton for which convoluuon and muluplication
are paired. Such a transformation can be performed using only integer arithmetic. Thus the finite field
Fourier transform runs two orders of magnitude faster than the fast Fourier transform on machines without
floating point hardware. However it is not clear how onc uses convolution on a finite ficld for the purposes
of edge template matching. The trick [ used here took advantage of some ordering properues that do not
apply to finite ficlds. Thus the fimte field Founer transform will not be discussed further.

1.3.3. The Generalized Hough Transformation

The generalized Hough transformation was designed with edge template matching in mind [1}. The
data structure for the image that is most efficient s tnplets of (x_position v _posiion @), The template s
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stored in a table of parameters to be voted for indexed by ranges of angles Here, cach table entry is a list of
displacements to vote for. Figure 4 is the circle template expressed in this form (see Figure 2 for original
template). The algorithm that implements the Hough transformation on these data structures is as follows.
foriedge = 0: edge < NUMBER_OF_EDGES_IN_[MAGE ; edge+ +)
{
range = range edge_image{edge].angle falls into;
on all ( displacement in template[range] )
output|
text[edge].x + displacement.x,
text{edge].y + displacement.y
]+=1;

}

The speed of this aigorithm is about: NUMRBER_OF_EDGES_IN_IMAGE multipliecd by the
average number of displacements per category multiplied by the cost of 3 integer adds.

4. Implementing Template Matching on the WARP and Butterfly

I'his section outlines various implementations of the three techniques outlined previously and
investigate their timings.

This section assumes that the image is 1K by 1K and that the problem is to match edge direction
templates. The size of the templates and the sparsity of edges in the image and templates are independent
vanables in the calculation. (It is assumed that the image and template has about the same percentage of
edge points.) Another independent varniable is the discretization of the angle space, which is the number of

Figure 4

Circle Template Stored in Generalized Hough transformation Form:
Angle Range Displacements
Do, 0--T 03
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different classes of angles. The discretization of the angle space affects the speed of the generalized Hough
transformation technique. The edges are assumed to be cvenly distributed through the area of the
template.

The following notation describes some image statistics:
M {mage size (IKx1K)

Tr Number of edges in template

Tw Template width - the extent in the x dimension
T, Template length - the extent in the y dimension
3 Fraction of edges

A4 Number of angle classes

4.1. Implementation on WARP/WIMP

On the WARP techniques have been developed for efficiently implementing convolution and Fourier
transforms.

4.1.1. Implementation of Shift and Add Correlation Technique

If the template has less than 10 edges in it there is a simple systolic algorithm tor it on the WARP.
The equivalent algorithm tor convolution 1s described in [3] and [11].

4.1.1.1. Implementation on Small Templates (size <= 10)

In this algonthm each processor has a template clement. The input and cutput can be thought of as
streams passing in parallel through the 10 processors. 'T'he input stream is initialized to the image edges
and the output stream is initialized to 0. When a processor inputs an image element equal to its template
element it adds 1 to the output strcam.  Shift registers skews the output stream in time so that the proper
member of the input stream meets the proper member of the output stream in the right processor.

As an example suppose a template has elements at displacements 7 and 10 and nothing in between.
Assume processor 1 has the element at displacement 7 and processor 2 has the element at displacement 10.
There should be a shift register of size 7 before processor 1 and a shift register of size 3 between processor
! and 2. Thus output element 0 meets input 7 at processor 1 and input 10 at processor 2. Output clement
1 meets input 8 at processor 1 and input 11 at processor 2.

In this algorithm the angles are assigned to some finite set of classes represented by images and some
other number indicates the nonexistence of an edge. The angle comparison and the test for the existence of
an edge can be done in a single alu operauon (absolute difference). Another alu operation is required to
increment the output of the correlation. Exven if no incrementing is necessary the time tor the incrementing
must be allocated so that the data rate can be determined in advance. The WIMP can not figure out
whether to pause for an incrementation amid data without doing the correlation itsclf.

T'hus for each datum ume for two alu operations must be allocated on cach processor. All the other
operations required can be done in parallel with these operations. Thus this algonthm can consume a
datumn cvery 400ns. Thus the speed of this algonthm s 4s
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4.1.1.2. Implementation on Large Templates (size > 10)

For template sizes greater than 10 a more complex algorithm must be attempted. One way to

Te - .
implement such an algorithm was to have each processor emulate ’1—6 processors. ‘These issues must be
addressed by this algorithm:
: Te
(1) Can the WARP's processors emulate 10 processors?
(2) How fast would this algorithm run given that it can be implemented?
T,

The most scarce resource on the WARP processor 1s memory. Simulating 1—6 Processors requires

simulating the shift registers between them. If the edges are evenly distributed about the template the

Te

10 llK. This data will fit into the local memories of the

memory needed for such shift registers 1s I

WARP processors for templates of length < 20.

In this algorithm each processor accepts 2 inputs once every T2 cycles and outputs at an equal
-
. . . Ty
rate. ‘Thus its execution time is [M T 400 ns.

4.1.1.3. Algorithm for Template Lengths > 20

The WIMP's memory allows an algorithm for the WARP/WIMP combination that will work for
template length's > 20. This algorithm has the WARP run the first 10 of the T processors required by the
simple algorithm. The output of such a run and a shifted image is sent back to the WARP, which is
simulating the next 10 processors using the output of the last 10 processors as input. The algorithm iterates
until the T processors have been simulated. The final output is the output that would have been created by
a I processor WARP executing the algorithm for small templates.

Such an algorithm can run as fast as the small template convolution algorithm for each stage. because
it requires that two inputs be sent to the WARP every 400ns which is within the capacity of the WIMP.

T .
The speed of this algonthm s lMI_lglm ns. This is as fast as the previous routine. Thus this is

probably the algonthm of choice for all templates (since the algorithm for small templates is just a special
cased.

4.1.2. Implementation of Fourier Based Correlation

The 1K Fast Fourier Transform can be implemented in a pipeline on the WARP in a way that takes
tull advantage of the WARP's parallelism using techniques described in [8]. To use the Fourier transform
for correlation one need first transform each of the rows of the original image and then transform each of
the columns of the output. Thus 2K Fourier transformations are needed to complete the operation. 2K
inverse transformations need to be run to reverse the transformation. This algornthm uses the WARP as a
10 stage pipeline. Each processor s devoted to a particular iteration of the tast Fourier transform
algonthm.  This pipeline must be Hushed atter the rows are transformed and after the columns are
rransformed  Thus the tme o do the transtormaton o and from is 4K + 20 umes the cost of a single
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iteration of the algorithm. Each of these transforms are done to an image consisting of edges whose angles
that fall respectively into the 4 quadrants. Thus a total of 16K + 20 column transformatons are
necessary.

The fast Fourter transtorm is implemented by an algorithm that does log(n) iterations for n points of
data. The parallelism of the WARP can be used for such an algorithm by having the log(n) iterations
proceed in parallel on the different processors. Within cach of the log(n) iterations the results are taken in
pairs. Each pair of numbers gencrates « new pair of numbers that are inserted elsewhere in the results. To
generate a new pair of complex numbers from an old pair one complex multiply. one complex add and one
complex subtract arc required. ‘Therefore the cost of one stage of a Fourier transform on 1K points is 512
complex multiplies. adds and subtracts. A complex mutltiply requires 4 multiplies and 2 alu operations. A
complex add or subtract requires 2 alu operations. The muitiplics and alu operations can be done in
parallel. Thus the entire procedure requires 1200ns per pair. This is the determining cost of the iteration
since all other operations can proceced in parallel. Thus the speed of one iteration of the algorithm is 600K
ns. This is the speed of the algorithm when the iterations are proceeding in parallel on different machines.
Thus the speed of a Fourier transform of a 1K by 1K image is 2406M ns. The speed of the inverse is
similar.

The matn constraint on the speed of the multiplication of the transformed template and the image is
the 170 bandwidth for moving the complex numbers to and from the WARP or WIMP’s multipliers and
adders. Twe complex numbers take 800ns (0 be retrieved tfrom memory. This is done to the 4 transformed
images. Running the inverse transform on the 4 product images and summing the real parts of the results
results in the correlation of the two images. The sum process is also bound by the memory speed. [t can
be done as fast as the 4M of correlation results can be retrieved. Thus 800M ns are required for the
summing process and 3200M ns arc required for the multiplication. Thus the total speed for generating the
correlation of two images using the Fourier transform is 8812M ns or 8.812 s on 1K by 1K images.

4.1.3. Implementation of Generalized Hough Transformation

The generalized Hough algorithm requires that a section of memory of size T; Ty be available for
random access. The WARP is not good at accessing large sections of memory randomly. Thus, the WIMP
was descnbed (though no such machine has been designed or built). The case is turther complicated
because the window of memory that needs o be accessed changes for each data element. Thus the WARP
gives litde leverage for an implementation of generalized Hough transtormation. This section assumes that
generalized Hough transtormation is implemented entirely by the WIMP.

This section assumes that the edges have alrcady been separated according to angle so there is no
need to check the angles of the edges. In the WIMP’s memory one need set up a 1K +27; by IK+27y
array. This array is where the results are accumulated. The elements of this array should be initialized to
0. Imualization takes 200 times 1K +27, umes IK+27y ns.

For each angle. iterate through the edges in the image that are of that angle. For each edge. iterate
through the elements of the tempiate that are of that angle. For each edge at (x.y) and cach displacement
of the template of (dx.dy), increment the output element (x+dx y+dy). The WIMP nceds to read
x.v.dx.dy. After that the WIMP does two adds. [t then needs to do an indirect memory reference an
increment and another indirect memory reference. To check to see whether the end of the list has been
reached the WIMP also does one reference to registers, one decrement and check for 0. [t does a check
each time 1t generates an edge and cach ume 1t generates 4 displacement.
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Because of the internal parallelism of the WIMP it can overlap the alu. memory and register calls.
Thus the speed at which it can do one iteration of generalized Hough transformation is the speed of 6
memory accesses. Thus the speed of generalized Hough transformation on the WARP/WIMP 15 1200 ns
tumes 1M times E (since only the edges are looked at) times 7 divided by A (if the edges are equally

T F
distributed over angle space in the image) or more concisely ET 1.2s.

4.1.4. Timing Considerations
These are the techniques described above and their specds.

Technique for Template Matching Speed in Seconds
Shift and Add Correlation (T <10) .4
Shift and Add Correlation (T¢10) 04T,
Fourier Based Correlation 8.812
Te E
A

Generalized Hough Transform 1.2

I will assume that there are 12 ranges of angles distinguished from one another between 0 and 2w.
Generalized Hough is more efficient than shift and add correlation when £ < 4 . If T, >20 then
generalized Hough will be more efficient when £ < .6 - 2/T .

Shift and Add correlation will be superior to the Fourier transform based technique for T, <220.3 .

The generalized Hough transformation will be faster than the Fourier transtormation when
T E<88.12. A chait showing these effects is shown in figure 5.

4.2. Implementation on Butterfly

The parallelism of the Butterfly is arranged differently than the WARP's. Thus the techniques for
using the parallelism are different. A major difference between the two machines is that memory is scarce
on the WARP's processors but plentiful on the Butterfly’s. Thus algorithms can be run entrely using
internal memory on the Butterfly that would require access to external memory (such as the WIMP's) by
the WARP [9).

Figure 5
Optimal Technique for Template Matching on the WARP
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fourier Based Correlation

Te/F 1 2 3 4 5 6 7 8 9 1
0 G G G C €C C C C C C
0 G G G C €C C C C C C
3 G G G F F F F F F F
4 G G G F F F F F F F
S G G F F F F F F F F
60 G G F F F F F F F F
7 G G F F F F F F F F
80 G G F F F F F F F F
990 G F F F F F F F F F
00 G F F F F F F F F F
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4.2.1. Implementation of Shift and Add Correlation Technique

There are two techmques that can be used to parallelize the implementation of correlation on the
Butterfly:

(1) Different sections of the image can be given to different processors that then generate the resulting
correlation.
(2) The effect of different elements of the template can be calculated by different processors.

The second technique was the primary one used by the WARP. This was because the WARP was built
primarily to take advantage of such pipelining. Pipelining and limits on the local memory of the WARP's
processors makes programming the first technique somewhat difficult. However these are not concerns for
the Butterfly. These two techniques need not be mutually exclusive either. This section examines the
extent to which these techniques can be used and mixed.

To store 2 1K bv 1K image on the Butterfly requires that it be partitioned among many processors
because no single processor has the memory to store anything larger than a sparse edge image of that size.
Thus partitioning an image for processing will be explored in this section.

In [13] it was found that the partition shape that minimized communication needs and overhead
between processors was the square. However once an image is partitioned no communication between
processors is necessary. [hus our problem is slightly different. since there is no advantage in time between
different shapes. [t is assumed that the space is partitioned into a set of overlapping rectangles as in figure
6. If the length is partioned VM, ways and the width is parttioned My ways the space used on each
Processor is:

1K 1K
v, Tt ll M, T Tw

Thus the total spacc used is IM+1IKT, Wy +1KTy M +T; Ty M; My. For a given number of
partitions this number is minimized when M, Ty =7, My . Thus the most efficient partitioning partitions
the image into a set of rectangles proportional to the template’s shape. There being no obvious benefit from
any other partitioning. assume that the image is partitioned into rectangles and the correlation routine run
on each rectangle.

Clearly by partitioning the image into N sections and running the algorithm over the N sections the
speedup is N. The only loss occurs in the distribution of the image to the different processors. The

Figure 6
5 by 7 Rectangles Overlapped for a 2 by 4 Operator
Each Rectangle is Qutlined by a Character
% % % %* %* * *+ *+ + + +

% * % + * +
% * % + * +
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%/ =" %/ +& . +&
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slowdown that occurs because of the distribution has to be smaller than that resulting from sending every
element of the image through several processors as one would have to do if pipelining was used.

Checking for equality requires one subtraction and one test and if the test is true then an extra
additon is required. The times for this calculation is 5000ns when the test is false and an extra 4300ns
when the test is true. The time needed for doing convolution is:

1 1
Y 1
0.05T; +.043T¢ E+9+.08T, |7L-—] 24087y 2+ 0087, Tws
w

v
7.

When the template size is large the portion of the image stored in each processor may exceed the
amount of available memory on the processor. Only a byte is nceded to store an angle. 500 K bytes are

available on each processor for data storage. In the general casc a 32 bit integer is required to store each
output. These are the memory requirements:

(1) 40K bytes for output
(2) 9T bytes for template

(3) l—l—K—+T l 1K + Ty | for input.

M, M

Thus

Tu
9I+1K-— +T, Ty 450K

100

If one assumes that 7; =Ty and that Tg=F T; Ty then this inequality reduces to :
[9E+ 1] T}+20T, 450K

Thus for all T; < 212 this technique fits into the processors’ memory. If £ is smaller than 1 then
proportionately larger templates can be used. Thus for all reasonably sized templates such a technique can
he used.

4.2.2. Implementation of Fast Fourier Correlation

kast Founer correlation requires that 4K Fourier transforms be done on the columns of the image
and 4K Founer transforms be done on the rows of the result. Doing 40 columns in cach processor will not
strain the memory of any processor. The fast fourier based algorithm requires little communication since
the 1K by 1K of data need only be transmitted three times. The 1K by 1K of transformed template can be
prestored into the processors if many images need to be correlated.

Assume that the image starts out as an array of complex numbers. Each complex number is two 32
ht floating point numbers. The communication cost is less than the cost of transmiting 1M of 64 bit
information 3 times since the second and third times the transmission may occur in parallel. Assuming a
scheme can be developed to minimize contention the Butterfly’s processors should be able to send cach
complex number in 20000ns. Thus the communication time is 10.400s. ‘This time 1s dominated by the
onginal cost of getting the [M of 128 bit words out to the processors in the first place.

Doing a Founer transform or an inverse transform to a column or row requires 10 iterations. In cach
iteration the numbers are taken in pairs and on each pair one complex multiply and one complex add and
one complex subtract s required. A complex multiply requires 4 multiplies and two adds. Fach complex
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add or subtract requires 2 adds (for the purposes of this paper a floating point subtract is considered to
have the same cost as an add). ['hus each iteradon require 512|4time_of_muliiply+6time_of _add|. Fach
processor will do 10 iterations on 40 rows or 40 columns 4 times. Thus the speed of the computation will
be 819200|4time_of _multiply+61ume_of _add|. The time of a multiply is 475 us and the tme of an add is
295 us. Thus the computation speed s 3006.464 s. Thus the ume required to run a Fourier transform
based correlation on a 1K by 1K image is 3006.464 s.

4.2.3. Implementation of Generalized Hough Transformation

Partitioning the data for the generalized Hough transform in a naive way does not work because it
requires each processor to store the entire output array. There is not enough memory on each processor to
store such an array.

If T; and Ty are small enough then the input and output image can be partitioned as in the simple
implementation of correlation. The output is a set of overlapping rectangles that generate the final output
array when added together. A simpler technique is to vote for some points using remote memory
references. Using remote memory references has problems associated with synchronization, since no two
processors can be allowed to increment the same point simultaneously. Thus the only way to implement
generalized Hough transformation is to partution the output array among the processors.

1

w |2
{
and input data can be stored on cach processor the resulting time of computation for generalized Hough

transformation is:

T, |2
Assuine that the output array 1s partitioned into 100( T—’ by 100 rectangles. If the output
1%

td |

1
T, Tw |2
£ T—‘I‘ +.01Ty

: . T
O.OSI:—Z-+8E

Tw +.01 Tl,

If I; =Ty and that Tg=T7; Ty FE if you are storing M by M of the image in each processor then the
space used each processor is :

(1) STZ E bytes for the template.
(2) 40000 bytes for output.

ML X _
(3) 5—4— bytes for the input.

This means that
92K T‘— T2AM?
Thus:
A 2
92K <57; .4+[T, +100]
With 4 =12 as before. then

1.094 M D13T7+2007,

If T, < 282 it can be guaranteed that there will be enough memory. If £ is smaller than 1 then
proportionately larger templates can be handled. Thus for template sizes used in most carly vision
apptications such a technique fits into memory.
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4.2.4. Timing Considerations

12
These are the techniques described above and their times. Assume that 7, =Ty = i—’l and A=12.

Technique for Template Matching  Speed in Seconds

Te |2 Ty
Shift and Add Correlation 0ST5+.043T¢ E+8+.16 TEI +.008-—-
Fourier Based Correlation 3006.464

1
Generalized Hough Transform 0047, F+8F +.16[TE E] 2 +.0008 Ty

The generalized Hough transformation 1s always more efficient than shift and add correlation, since it does
no comparisons and uses more efficient data structures. The equations above show that the generalized
Hough transformation is more efficient than the fast Fourier transform when

to)—

2[3006-8£]{.004 7 +.0008 +.0256E+[[2[3006—8E] [.004I~,'+.0008]+.0256[1"2—4[3006—81:' (L0047 + 00082

Ty >
f 2004 +.0008

Figure 7 charts this result. Note that generalized Hough transformation is the most efficient algonthm for
Ty up to 4000 while on the WARP the Fourier based technique 15 the most efficient for 7x over 200.

5. Changing the Speed of Instructions

The results so far suggest that the relative timings ot the different instructions in the processors has
the most important effect on the choice of algorithm given an image and template. This section determines
how the choice of algorithms is modified if the WARP or the Butterfly are modified o change their
instruction timings. To simplify (and thus better understand) the results of such a comparison assume that
there are two classes of operations occurring in the processors. Every operation in a class takes the same
amount of time.

Class Cl
memory reference, remote memory reference. integer subtraction, integer addition

Figure 7
Optimal Technique for Template Matching on the Butterfly
G indicates Generalized Hough transformation
F indicates Fourier Based Correlation

T/E 1 2 3 4 5 6 7 8 9 |1
00 G G G G G G G G G G
800000 G G G G G G G F F F
12000000 G G G G F F F F F F
600000 G G F F F F F F F F
000000 G F F F F F F F F F
2400000 G F F F F F F F F F
280000 F F F F F F F F F F
320000 F F F F F F F F F F
600000 F F F F F F F F F F
4000000 F F F F F F F F F F
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Class C2
floating point multiply, floating point add. floating point subtract

Note that that the WARP processors have only floating point operations and thus must do angle
comparisons with floating point subtracts. The WIMP and the Butterfly can use the C1 integer subtraction
though. In this section a C1 instruction takes 71 time and a C2 instruction takes 72 time. Assume that
T'1 is always smaller than T2.

5.1. Pattern Matching on the Generalized WARP Architecture

This section investigates the speed of various algorithms on the generalized WARP. A generalized
WARP is the same as the WARP described above except for the new assumptions about the speed of
different operations.

The limited memory available on the WARP’s processors constrained the implementation of template
matching most severely. The interprocessor bandwidth also constrained the choice of operation in a more
subtle manner. These are left unchanged in the generalized WARP. Thus the same algorithms should be
used as before. The only difference is that the WIMP in this model can do its arithmetic at a different
specd than the WARP. Thus the choice of implementation for algorithms is constrained in the same
manner.

5.1.1. Implementation of Shift and Add Correlation

5.1.1.1. Small Templates (size <= 10}

In the small template algorithm each clement of the image is compared to a stored angle using a
floating point subtract. Then if the two angles are equal. the window output is incremented. Necessary
memory references are done in parallel with the arithmetic operations. The speed of this algorithm is
simply 272 M.

5.1.1.2. Large Templates (size > 10)

The WARP algorithm runs the small convolution algorithm 10

Te | . .
——| umes. Thus the speed of

£

convolution is
10

I2 T2M.

5.1.1.3. WIMP Correlation

For every combination of template and image elements two alu operations are required for the
convolution. Two counters must be maintained in the registers to keep track of the locations in the image
and the template. Maintaining these counters requires another 4 alu operations. Since the alu is the scarce
resource for the application of the template the time that the WIMP takes for the operation is 6 T1 T M.

5.1.2. Implementation of Fast Fourier Correlation

The best algorithm for the fast Founer correlation 1s the same on the WARP and the generalized
WARP. One iteration of the algonthm requires 6 alu operations. 4 multiplies and 4 memory references per
pair of numbers per processor. ['hus the speed of one iteration (in which 1 step of 10 Founer transforms is
performed) 1s 3000 72, Thus the ume for a 2D Founer transform on the 4 1K by 1K images is
18.06M I'2. The time for the inverse 1s the same.  The product ot the Fourner transform of the template
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and the transform of the image can be done on the WIMP. For each clement of the image two memory
references are necessary to access the template and the image and one multiplication. The speed of the
multiplication is min{2 71.72|M. Thus the time for the entire aigorithm is 48.06M T 2+4 minIZ Tl.T?_]M.

5.1.3. Implementation of Generalized Hough

Section 4.1.3 showed that the WARP's parallelism could not be used with the generalized Hough
transform. Thus in this section the time for running the generalized Hough transformation on the WIMP is
determined. All the operations involved in doing gencralized Hough transformation are in class Cl. As
determined before the scarce resource is memory in doing the Hough transformation. Thus the speed of
one iteration of generalized Hough transformation requires 6 memory references that take 671. A

. . . i Ty E
generalized Hough transformation on an image requires —

TE E

M iterations. Thus the speed ot Generalized

Hough transformation is 6 7'1 M.

5.1.4. Timings

These are the techniques descrited above and their speeds:

Technique for Template Matching Speed in Seconds

Shift and Add Correlation (on WARP) -71—-([—)— 27T2M

Shift and Add Correlation (on WIMP) 6T 1T M

Fourier Based Correlation 48.06M T?+4min|2 Tl.T2]M
Generalized Hough Transform 6T1 T;E M

[n the following sections different ratios of 71 and 72 are considered regarding which algorithm to use for
template matching.

514.1. TI:T2 =1

This ratio is similar to the WARP's. The shift and add correlation technique is best done on the
WARP. The shift and add correlation 1s superior to the Fourier correlation for 7; <240.3. With 4=12 the
generalized Hough transformation ts superior to shift and add correlation when £<¢.4. The generalized
Hough transformation is superior to the fast Founer correlation when Tp F<96.12. Figure 8 charts these
effects.

5142, TIET2 = 4

The shift and add correlation technique is best done on the WARP. The shift and add correlation 1s
superior to the fast Fourier correlation for 7,<250.3. With 4=12 the generalized Hough transformation is
always superior to shift and add correlation in this section. The generalized Hough transformation is
superior to the fast Fourier correlation when T¢ £<¢400.16. Figure 9 charts these effects.

5.143. TI:T2 =16

The shift and add correlation technique s best done on the WIMP. The shift and add correlation is
superior to the fast Fourier correlation for T¢<128.49. With 4=12 the generalized Hough transformation is
always supenor to shift and add correlation n this section. The generalized Hough transtormation is
superior to the fast Fourier correlation when 7, £7<1541.92. Figure 10 charts these effects.
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Figure 8
X Optimal Technique for Template Matching on Generalized WARP (T1:T2=1)
i . G indicates Generalized Hough transformation

C indicates Shift and Add Correlation
: F indicates Fast Fourier Correlation

y Te/E 1 2 3 4 S5 6 i .8 9 |
100 G G G C C C C C C C
200 G G G C C C C C C C
300 G G G F F F F F F F
400 G G F K F F F F F F
500 G F F F F F F F F F
600 G F F F F F F F F F
700 G F F F F F F F F F
800 G F F F F F F F F F
900 G F F F F F F F F F
1000 F F F F F F F F F F

Figure 9

Optimal Technique for Template Matching on Generalized WARP (T1:T2=4)
G indicates Generalized Hough transformation

C indicates Shift and Add Correlation

F indicates Fast Founer Corrclation

Te/E 1 2 3 4 s 6 7 8 9 1

0 G G G G G G G G G G

8% G G G G G ¥ F F F F
\ 20 G G G F ¥ F F F F F
- 0 G G F ¥ F ¥ F F F F
; 20 G G ¥ F F F F F F F
- 0 G F F F ¥ ¥ F F F F
X 2800 G F F FF F FF F F

200 G F F ¥ F ¥ F F F F
. 0 G ¢ F F F F F F F F
. 0 G F F ¥ F F F F F F
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Figure 10
Optimal Technique for Template Matching on Generalized WARP (T1:T2=16)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation .
F indicates Fast Fourier Correlation .

T/E 1 2 3 4 5 6 1 8 9 1 :
0 G G G G G G G G G F

W0 G G G G F F F F F F

800 G G G F F F F F F F 8
40 G G F ¥ F F F F F F :
800 G F F F F ¥ F F F F :
0 G F F F F F F F F ¥ :
11200 G F F F F F F F F F .
122000 G F F F F F F F F F

40 G F ¥ F F F F F F F '
6000 +F F F F F F F F F F p
5.144. TLLT2 = 64 -

The shift and add correlaton technique is best done on the WIMP. The shift and add correlation 1s
superior to the fast Fourier correlation for 7, <512.97. With =12 the generalized Hough transformation s X
always supenor to shift and add correlation 1n this section. The generalized Hough transformauon 1s iy
supertor to the fast Founer correlation when 7, £°<6155.68. Figure 11 charts these cffects. N

5.2. Pattern Matching on the Generalized Butterfly Architecture

This section describes tmings tor pattern matching on the generalized Buuerflv.  The "
implementations on the Butterfly described previously took full advantage of the full parallelism of the -~
Butterfly. There is no obvious wav to trade C1 for C2 operations while implementing these algonthms.
Thus the best implementation of the techniques on the generalized Butterfly are the same as the
implementation on the real Butterfly. Only the timings will differ.

Figure 11 -
Optima! Technique for Template Matching on Generalized WARP (T1:T2=64) K
G indicates Generalized Hough transformation 2
C indicates Shift and Add Correlation
F indicates Fast Fournier Correlation
T¢/F 4
6400
12800
19200
25600
32000
38400
44300
51200
57600
64000

—QOQ00OQO00 —~
TTmTTTOO00 0
T O0O0L
TrrTTTTTTTO0

TrTrTTTTTTTTOOL
TTrTrTTTTTOS>
TrtrTrrTtTTrTrTTO 4
TTrTTTTTTOwx
rTrTTTTTTTO

TTTTTTTTTT~

................................
.............................



0 plodat walt Vol ikt ad tal 4 Vot - 24 * n 'Y Q \] o ree?

21

5.2.1. Implementation of Shift and Add Correlation

To implement the shift and add correlation technique, first store the overlapping rectangles on the
varous processors. Storing these rectangles costs:

1

1
2 Ty |2
+Twllool =2 | "+ 7, 11

100}100} -
T,

Tw

Then the convolution must be applied to all IM points of the image. Thus each application of convolution
require T compansons and in the % of the cases increments (2 memory references and an add). and three

memory references to access the template. the image and the output. Thus the convolution altogether
requires:

1
2

7y
100100 —

T1
Ty

1
Tw 3
+Ty 100[7‘11 + T, |T1+.01M
L

4+i
1

s

5.2.2. Implementation of Fast Fourier Correlation

In this algorithm each of the 100 processors transforms 10 columns and then 10 rows of the result 4
times. The 4 results are multiplied by the transformed template at the processors. The inverse
transformation follows. It 1s executed by an algorithm similar to that for the fast Fourier transform. Thus
4M T'1 is required to distribute the image originally. The two data transmission sections to get rows trom
columns or vice versa 15 .0792M T'1. There is a way to arrange contention free rings of communicating
processors on the Butterfly so contention is not a significant problem. The fast Fourier computation
requires that 4 multiplies and 6 adds are required for each pair. This operation is done for 10 iterations
Each datum must be referenced and output too. Thus all the fast Fourier transformations and inverse
transformations will require 2M 72+ 2M 7T'1. The multiplication with the template will require three
memory references (two inputs and one output) and one multiply thus require .01M 72+.03M T'1. The sum
of the 4 convolved 1mages requires 3 adds per pixel. Thus doing the sum will cost .03M T2 Thus the total
time required by the fourier based correlauon is 8.07TM T2+5M T'1

5.2.3. Implementation of Generalized Hough Transformation

The most efficicnt solution to this problem is also to partition the problem. IM T1 is required to
distribute the image to the 100 processors. Then the algorithm is applied to the subimages. Thus the time
required to do generalized Hough transformation is

T
IM T 1+10000 £ 1+4T‘ Tl
5.2.4. Timings
These are the techniques described above and their speeds.
Technique for Template Matching  Speed in Seconds
! 1
. , I 1? Ty 2
Shift and Add Correlation 1M T +.017y 7 +017, (71
13 {
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3
+.01M 4+—1 T1
Fast Fourier Correlation 8OIMT2+5MT1
T
Generalized Hough Transform IMT1+.01IME l+4—/:+lT1

This table shows that the generalized Hough transformation is always faster than shift and add
correlation. Thus one need only consider these two transformations when deciding which technique to
implement on the generalized Butterfly. A formula that determines when the generalized Hough
transformation is faster than fast Fouricr correlation is:

T.
E 1+T" T1¢807T2+400T1

Figures 12.13.14.and 15 graphs this formual for different ratios of I'l and 2.

5.3. The Effect of Architecture on Choice of Algorithm

The decision formula developed for the generalized WARP and the generalized Butterfly differ
significantly in two ways. The generalized WARP has a case in which shift and add correlation s
preferable to the generalized Hough transformation.

On the generalized WARP the generalized Hough transformation is faster than the fast Fourier
correlation technique when:

T FTY<C96.12T2+16T1
On the generalized Butterfly the corresponding incquality 1s:
Iy FT1<¢2421 72+120071

I'hus a generalized Butterfly acts hike 4 generalized WARP when this relationship holds true:

Figure 12
Optimal T'echnique for Template Matching on Generalized Butterfly (T1:12=1)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourner Correlation

/€ 1 2 3 4 5 6 1 8 9 1
W G G G G G 5 G G G G
WO G G G G G G G G F
00 G G G G G G G F F F
80 G G G G G F F F F F
0w G G G G F F F F F F
12000 G G G G F F F oo b 3
14000 G G G ¢ z FOF  F F F
0w G G G F  F 2 FoooF I F
18000 G G G F N 3 3
W00 GG F 1t b 3 + H F
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Figure 13
Optimal Technique for Template Matching on Generalized Butterfly (1'1:12=4)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
Fandicates Fast Fourner Correlation

Iy /F A 2 3 4 S5 6 7 8 9 ]
3000 G G G G G G G G G G
16000 G G G C G G F F F F
24000 G G G G G 3 F t F F
32000 G G G G F b F E 3 F
40000 G G G b F b F d o F
48000 G G G F l< F d F F
56000 G G t t k- i F + F F
64000 G G 3 b k- F F F F i
72000 G G } F 18 18 3 F F F
80000 G G b t F 3 F F F F
Figure 14

Optimal Technique for Template Matching on Generalized Butterfly (11:12=16)
G indicates Generalized Hough transtormation

C indicates Shift and Add Correlation

F indicates Fast Founer Correlation

s 1 2 3 ER 6 . X 9 l
300 G G G G G G G GGG
64000 G G G G G G G F 3 t
%00 G G G G G F F t s |
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920000 G G G F F b F b t t
2400 GG F F F F b F F b
6000 G G b F F 3 F b 5 F
B GG F F F F F 3 8 f
P00 G G b H b F F 3 b t
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Figure 15

Optimal Technique for Template Matching on Generalized Butterfly (11:12=64)
G indicates Generalized Hough transformatton

C indicates Shift and Add Correlation

F indicates Fast Founer Correlauon

Te/F 1
128000
256000
384000
512000
640000
768000
896000
1024000
1152000
1280000

slalolslialaloialole!
TTTTOOOOOO W
TTrTTTTOOO0Q

=TT QQQOQ0O00 W
TTTrTrTTTOOO WL

T TTTTTOO
T T T T T OO0 N

TTHTTTTTTTQO >
—TTTTTTTTTTOO®

—-—TrTTTTTTTO—

RR = .04Ru - .49

Where Rp is the ratio between the time for the C1 and C2 operations on the generalized Butterfly, and Ry
is the same for the generalized WARP.

The fact that the Butterfly acts like a WARP with floating point operations 25 times siower can be
attributed to the inability of the generalized WARP to use most of its parallelism tor the generalized Hough
algonithm. The generalized WARP can do floating point muluplies and adds simultancously. Only the fast
Fourer transform correlation made use of this parallelism on the WARP.

6. Conclusion

Fhis paper examines the effect of two parallel architectures on template matching techniques. [t was
found that tor a specific template the algonthm works most efficienty differs ereatly on the ditferent
machines. 1t can be deduced from these results that the choice between fast Founer correlation and
generalized Hough transformaton or shift and add correlaton is determined by the relative speeds of
comparison operations. memory reterences and anthmeuc vperations.  The actual implementation of these
technmigues i< largely determined by the distnbution of memory on the processors.  The speed of
communication between the processors 1s also crnitical in choosing between parallel and  partitioned
implementaton.  the structure of the interconnection network does not seem to have a direct etfect on the
mplementaton of the algorithm. Whether this s true for other problems remains to be determined.
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APPENDIX
Timings for an Enhanced Buttertly

< A
8. Appendix
The figures given for the umings of the Butterfly are for a Butterfly whose nodes lack floating point '
hardware. Recently floating point hardware has been added to the Butterfly nodes. Thus there is a
different ratio between the speed of floating point operations and the speed of fixed point. The FFT will
be the faster technique for smaller examples. No nodes with floating point hardware are currently available
outside BBN. [ will use for the speed of floating point operations one half the speed of the 68020 with K
floating point hardware (since the memory has not been speeded up correspondingly) [16]. This table :
describes the old and new speeds:
Timings of Operations on the Butterfly
Operation (memory to memory)  Old Speed New Speed  Speedup
integer assignment 4.30 1.6 2.7 .
floaung point assignment 11.29 13.6 8 "
integer addiuon 4.15 1.8 23
floating point addition 295.59 28 13.0 .
integer multiplication 68.24 6.6 10.3 .
floating point multiplication 47476 25.2 18.8 X
These speeds change the ratio of 71 to T2 (as described in section ?) for the Butterfly. The enhanced "
Butterfly does not correspond exactly to a generalized Butterfly. since the ('] operations vary between 1.6
and 13.6 microscconds and the C2 instructions vary from 13.0 to 25.2 microseconds. Never the less the -
enhanced Butterfly roughly corresponds to a generalized Butterfly with a % of 2. The onginal Butterfly ]
roughly corresponded to a generalized Butterfly with a %— of 32 (except for integer multiplication which
usually can be worked around).
8.1. Implementation of Shift and Add Correlation Technique :
Checking for equality requires one subtraction and one test and if the test is true then an extra N
additon s required. The times for such a check will be 3400ns when the test is false and an extra 1800ns
when the test is true. F'he ume needed for doing convolution is:
X
»

8.2. Implementation of Fast Fourier Correlation

Fast Fourier correlation requires that 4K Fourier transforms be done on the columns of the image
and 4K Fourier transforms be done on the rows of the result. Doing 40 columns in each processor will not
strain the memory of any processor. Such an algorithm requires little communication since the 1K by 1K of
data need only be transmitted three times. The 1K by 1K of transtormed template can be prestored into
the processors if many images need to be correlated.

Assume that the image starts out as an arrav of complex numbers. Fach complex number s two 32
mii Hloating point numbers. The communication cost 1s less than the cost of transmitting 1M ot 64 bit

-----




27

information 3 times since the second and third times the transmission may occur in parallel. Assuming a
scheme can be developed to minimize contention the Butterfly's processors should be able 10 send each
complex number in 20000ns. Thus the communication time is 10.400s. This time is dominated by the
original cost of getting the 1M of 128 bit words out to the processors in the first place.

Doing a Fourier transform or an inverse transform to a column or row requires 10 iterations. In each
iteration the numbers are taken in pairs and on cach pair onc complex multiply and one complex add and
one complex subtract is required. A complex multiply requires 4 multiplies and two adds. Fach complex
add or subtract requires 2 adds (for the purposes of this paper a double subtract is considered to have the
same cost as an add). Thus each iteration require 5124time_of _multiply+6time_of _add|. Each processor
will do 10 iterations on 40 rows or 40 columns 4 umes. Thus the speed of the computation will be
819200 41:’me_of_multip/y+6lime_of_addl, The ume of a multply is 25.2 us and the time of an add is 6.6
us. Thus the computation speed is 12542 s. Thus the time required to run a Fourier transform based
correlation on a 1K by 1K image is 12542 s.

8.3. Implementation of Generalized Hough Transformation

1
3
Assume that the output array is partitioned into 100} —— lOOl—l rectangles. [f the vutput

and input data can be stored on ¢ach processor the resul[mg time of computauon for generalized Hough
transfo. mation is:

8.4. Timing Considerations

T,
Thesc are the techniques described above and their times. Assume that 7, =T= lTFl and 4=12.
Technique for Template Matching  Speed in Seconds

l
T Te
Shift and Add Correlation O34T+ 018, £+8+.16| +.0087"

Fourier Based Correlation 125.42
1
Generalized Hough Transform 00177y F+8E+. lb[TE E] 2.+.0008 Te

The generalized Hough transformation is always more efficient than shift and add correlation. since it does
no comparisons and uses more efficient data structures. The equations above show that the generalized
Hough transformation is more efficient than the fast Founer transform when

z[125 42-8£] [ 00171:+.0008) + 0256+ [2[125.42-88] [ 0017 +.0008 |+ 0256 £~ 4125 42-8£]* 0017£ + 0008 ]
]0017/ +.0008]"

Figure 16 charts the results of this equation. Note that generalized Hough transtormation is the most
efficient algorithm for T, up to 6000 while on the unmodified Butterfly the generalized Hough
transformation is the most efficient for T, under 400000 and on the WARP the Fourier based algorithm
is most cfficient for 7, over 200.




Figure 16
Optimal Technique for Template Matching on the Butterfly
G indicates Generalized Hough transformation
F indicates Fourier Based Correlation

Te/E 2 3 4 5 6 7 8 9 1
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