
7D-R1?8 ?25 TEPLRTE RTCHING ON PRLLEL 
RRCITECTURES(U)ROCHESTER UNIV NY DEPT O2F COMPUTER SCIENCE 0 SHER

1 JUL 85 TR-156 NSSS±4-82-K-6193pUNCLSSIED F G 9/2 NL



- ..1.111

10i 12. 2-5

L I111111128



CV)

Template Matching on Parallel Architectures

[)a',id Sher
Computer Science Department

I'hc L ni,.crsit, of Rochester
Rochester. Ncv, York 14627

TR 156
July 1985

A3.:r t A A" A i - - 4)

ETE

11' 'L8

Department of Computer ScienceCZUniversity of Rochester
i= Rochester, New York 14627

S! :it 86 7 29 05.2



Template Matching on Parallel Architectures

David Sher
Computer Science Department

The University of Rochester
Rochester, New York 14627

TR 156
July 1985

Abstract
Many important problems in computer vision can be characterized as template matching problems on edge
images. Some examples are circle detection and line detection. Two techniques for template matching are
the Hough transform and correlation. There are two algorithms for correlation: a shift and add based
technique and a Fourier transform based technique. The most efficient algorithm of these three varies
depending on the size of the template and the structure of the image. On different parallel architectures
the choice of algorithms for a specific problem is different. This paper describes two parallel architectures :
the WARP and the Butterfly and describes why and how the criterion for making the choice of algorithms
differs between the two machines.

This material is based upon work supported under a National Science Foundation Graduate Fellowship
grant number SPE-8350104. This work was supported in part by NSF Grant RCD-8450125 and a Defense
Advanced Research Project Authority grant number N0014-82-K-0193
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I. Introduction
In this paper the problem of template matching between edge images is explored. Edge images are

the thresholded output of running an edge detector over a digitized image. The resultant data structure is
an array of boolean data describing where the edges are in the image and an array of orientations for the
edges. A template is a representation of a small structure in a similar format to that of the image. An
example of such a template is shown in figure 1. The process of template matching on edge images finds
the places in the image that are similar to the template.

This paper discusses the implementation of template matching on multiprocessors. The two
multiprocessors that are examined in this paper are the WARP and the Butterfly. The WARP is a heavily
pipelined multiprocessor. According to the system promulgated by Flynn for categorizing multiprocessors
it is a MISD architecture 151. A MISI) architecture is a multiple instruction stream single data stream
machine. The WARP is MISI) because each of its processors can run different code simultaneously and
there is one stream through which data can be piped.

The WARP is a pipeline of 10 independently programmable synchronized processors. Each processor
uses pipelined functional units that can be accessed in parallel.

The other multiprocessor that is examined is the Butterfly. The Butterfly contains 128 68000 based
processors. Each processor has its own local memory. Each processor executes instructions out of its local
memory. The processors run asynchronously. Thus according to Hynn's categories the Butterfl. is a
MIMD machine.

The processors of the Butterfly are connected with a Fourier Transform or Butterfly switching
network. Through this network they can access the other processors' local memor . On the Butterfly a
remote read through the switch takes 6 times the time of a local memory reference. A write takes twice the
time of a local memory reference. lhe processors and the switch run asynchronously.

in this paper I will show that for certain kinds of templates the most efficient algorithms for matching
on the WARP and the Butterfly are radically different. I will also examine a generalization of these two
architectures to examine the importance of the speed of floating point operations.

Figure 1: Template of A Diamond Pattern
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2. Descriptions of the WARP and Butterfly

2.1. The WARP Architecture
The WARP is a machine currently being fabricated at CMU by the VILSI group there [61 171. The

WARP is an array of 10 processors arranged in a pipeline. Each processor can only communicate with the
previous and next processor in the pipeline. There is a host processor that sends information to the first
processor and receives the results from the last. There is an interface that takes integer data from the host
and translates it to floating point for the WARP and vice-versa. Currently the exact machine to be used as
the WARP's host is undetermined. A detailed view of the WARP's processors and a description of a host
that would be ideal for the WARP for image processing is in this section.

2.1.1. The WARP's Processors
The WARP's cycle time is 200ns. Each of the WARP's processors is heavily pipelined. The

pipelining makes it difficult to program the WARP and analyze its behavior. If one considers the WARP
as a machine with a 1000 ns cycle time one can ignore much of the pipelining. In this section I describe
the WARP's processors in these terms.

In a 10OOns cycle each processor can retrieve 10 32 bit floating point numbers from either its
predecessor or its successor or itself. It can send 10 numbers in that same cycle. It can in the same cycle
do 5 memory reads and -. memory writes. An indirect access counts as 1.5 memory accesses. In the same
cycle it can send 10 numbers to the floating point multiplier from any part of the machine. It can also send
10 numbers to its floating point alu. [he multiplier and alu can each do 5 operations in each cycle. The
results of the computations set up in a cycle are available in the second cycle thereafter. [he alu can
compute: fix (float -> 24 bit integer) float (24 bit integer -> float) a+b a-b b-a al +IbI la-bi Ia+b

Both the alu and the multiplier can compute - and - (because of an accident of the design). The

warp can test for 0 or negative on the output of the ALU and behave conditionally thereupon. It can
generate and read two flag bits that it can send or read to the next WARP along.

Each WARP processor has 2K of 32 bit word memory for storing data and tables.

This is a simplified description of the WARP. For a more detailed description see 161.

2.1.2. The Ideal Host: the WIMP
WIMP stands for Wide Integer Memory Processor. Experience programming the WARP suggests

that a good host for the WARP should have these properties:

(1) It should be synchronous with the WARP

(2) It should have i/o bandwidth % ithin an order of magnitude of the WARP's.

(3) It should have a large memory to store large intermediate data structures.

(4) It should be able to do simple integer operations and memory references at a speed comparable to
the WARP's floating point operation speed.

A machine that meets these specifications is within the capability of the currentl available hardware. The
rest of this section gives a more detailcd description of an architecture that is plausible and fulfills these
requirements.

t:.::.:- .: . . . . .. . -. . .-.. -. . .- -- .-- -. *. . .. .-. -.--- ..-.-. . -.. -- ., - -."1
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2.1.2.1. The Memory
The WIMP should be an integer processor with a 24 bit word size to be compatible with the WARP.

The address space pointed to by a 24 bit word is 16 megawords. A 16 megaword address space allows it to
store 2 1K by IK images with 8 words of information per pixel.

2.1.2.2. The Processor
Like the WARP the WIMP should be able to use all its functional units in parallel. The WIMP will

have 5 2dOns cycles in one of the 10OOns WARP cycles described above. During one 200 ns cycle the
WIMP should be able to:

(1) Read one 24bit integer from the WARP

(2) Write one 24bit integer to the WARP

(3) Read one 24bit integer from main memory

(4) Write one 24bit integer to main memor.

(5) Write one 24bit integer to the register file

(6) Read one 24bit integer to the register file

(7) Apply one alu operation

(8) Apply one multiplication

The register file should have at least 16 24bit registers.

2.2. The Butterfly Architecture
The Butterfly is a network of 128 tightly coupled asynchronous 68000's. Each 68000 also has

associated with it a memory management processor that handles memory requests. It also manages other
aspects of memory management and does some simple functions like block move. Because the processors
are not arranged in a full crossbar there is the possibility of two remote requests conflicting. It has been
found that for many regular communication graphs including arrays these conflicts can be eliminated [14).
A processor will block until a remote memory reference is finished.

A 68000 local memory reference (through the built in virtual memory system) takes 625ns. A remote
read through the switch takes about 3750 ns and a write takes about 1250 ns. Block moves of data amortize
some of the handshaking overhead over the entire transaction thus can run faster than the equivalent set of
single remote memory references [151

There is no floating point hardware or microcode on the Butterfly. The floating point operations are
done in software. The arithmetic capabilities are just those of the 68000 1121.

A program has been written that tests the speed of various operations on a Butterfly. The results can
be considered to be accurate to within 30%. Ihese timings suffice for the purposes of this paper. lhe
results are:
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Timings of Operations on the Butterfly
Operation (memory to memory) Speed (in microseconds)
integer assignment 4.30
floating point assignment 11.29
integer addition 4.15
floating point addition 295.59
integer multiplication 68.24
floating point multiplication 474.76

The table above shows that a floating point multiply takes about 100 times the time of an assignment

statement or an integer add. On the WARP/WIMP combination a floating point multiply is about the
same speed as an integer addition. In the WARP's processors it takes 4 times as long to do an integer add
as a floating point multiply since one must float the integers add the results and fix the answer. The WIMP
can do the addition at the same speed as a floating point operation on the WARP (modulo the parallelism).

"* Of the 128 available processors on the Butterfly I assume that several of them are dedicated to I/O

devices or bookkeeping overhead, thus only 100 processors are aNailable for applications L,,de. Each
processor on the Butterfly is assumed to have .5 Megabytes of memory availahle to it most of which can be

used for data.

3. Descriptions of Edge Template Matching Algorithms
Template matching is the process of finding out where a specified structure occurs in an image. rhus

template matching can be used to look for specific objects in an image. In this paper the problem of
template matching is applied to the domain of edge images. For edge images simple calculations can be
used to detect if a template truly matches an image at a particular point. Template matching has been
applied directly to gray-level images. Here normalized correlation is the calculation that calculates the
degree of match between the template and the image. Template matching on gray-level images is further
described in 14].

Three algorithms will be examined for edge template matching in this paper. I hey are shift and add
correlation. Fourier based correlation and the generalized Hough transform.

Often edges come with weights that indicate something about the strength of the signal that caused
the edge. A minor change to each of the algorithms presented here results in an algorithm that takes

advantage of these weights. Such changes do not effect the efficiency of these algorithms. Thus this issue is
irrelevant to the paper, but is discussed further in 13].

3.1. Correlation
Correlation is historically the standard method for template motching [4]. Correlation is the sum of

the pointwise products of the shifted template and the image. For binary images calculating the correlation
gives the number of points where both the image and the template are one. If the template is binary and

the image's elements are numbers the correlation gives the sum of the values of the image function where
the corresponding template point is one.

ihe most straightforward algorithm to compute the correlauon is to sl'Ft the template across the

image and calculate the sum of products after each shift. This algorithm can be parallelied in two

4" • • " . " d " • • € . • .t " " , " q " . " ° ,"" '" " " -"- *"- .°."° "." . ° " . ° . ." - " . - - - . -
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different ways. One method simply runs the template over different sections of the image simultaneously.
[he second pipelines the sum of products computation. doing several simultaneously.

The main change to the shift and add algorithm for the edge template domain is to substitute
comparison for multiplication as the pointwise operation. The shifted template is compared pointwise to
the image. The number of points where two edges have the same orientation is counted. The result is the
degree of match between the template and the image at that point.

Another implementation of correlation uses the Fourier transform. The Fourier transform of the
correlation of the image and template is the pointwise product of the Fourier transform of the image and
the Fourier transform of the mirror image of the template [21. If the transform of the tem' late is
precomputed then the speed of Fourier based correlation is independent of the size of the template. A
technique for using this on edge images is described later in this section.

3.2. The Hough Transformation
The Hough transformation was developed by P. Hough [101 for detecting curves in bubble chamber

photographs. It was adapted to the problem of general template matching by Dana Ballard at the
University of Rochester [1]. The technique that implements template matching is the generalized Hough
transform or gHough for short.

Generalized Hough maps significant points of the image (many kinds of images such as edge images
have sparse significant points) to template elements it can match. For each tentative match one is added to
the value of the position of the template that would make the match possible. The template positions that
accumulate many matches are the places where the template closely matches the image. The advantage of
the generalized Hough transform is that only the significant points of the image cause matching
computations and that the technique can proceed entirely by table lookup.

3.3. Edge Templates
Template matching works especially well on edge images since many of the problems that plague

linear template matching on image intensities are not relevant here. One such problem is that on an
intensity image a bright spot will cause correlation to have a high value near that point regardless of
whether the image at that point matches the template. An image of thresholded edges has no "bright
spots". This is because the comparison operauon gi~es equal weight to all successful comparisons.

An example of an application of edge templates is circle detection. It is important for certain
applications to find objects with circular boundaries in images. Figure 2 is a template for a circle 5 pixels
wide.
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Figure 2
Template for an edge image of a circle of radius 3

y/x 0 1 2 3 4 5 6
37755.

1 7 5.18 4.25 5
4 4

2 5.96 5.82 3.61 3.46
3 0 .r. .1

4 .32 .46 2.68 2.82

5 -- 1.11 2.03 --
4 4

2.6 .2

The entries that are just "." are positions that are not matched against edges. The result of matching
this template against an image at position (x,y) in the image is the number of places that the template
shifted to (x.y) has an edge that has an equal direction to (within a certain tolerance) an edge in the
corresponding image element. The number thus computed is the number of edges in the image that
support the statement '"here is a circle of radius 3 at position (x + 3.y + 3)."

3.3.1. Shift and Add Correlation
This section describes an algorithm for template matching akin to correlation. The template is stored

as a list of <x-displacement.y_displacemenLangle> triplets. The algorithm is as follows.

for (x = 0 • x < IMAGE WIDTH ; x + + ) /* move template across image */
for ( y = 0 " y < IMAGELENGTH " y + + ) /" move template up and down on image */

for( index = 0 " index < TEMPLATESIZE : index + + )
iftanedge-existsat (

image[
x + template(indexl.x-displacement.
y + template[indexl.y-displacementI)).

templatejindex].angle
iscloseto
image[

x + template[index].x-displacement.
y + template[index. y_displacement

].angle){
correlation-outputfxliyj + = 1

This algorithm does O(IM AGESIZE*TE.IPL,4TESIZE) operations that index into the memory to
check for the existence of an angle (2 integer adds) and O(lMAGE__SI/Enumber of templateedges)
operations that compare the angles with the template angle.

3.3.2. Fast Fourier Based Correlation
Convolution and multiplication are Fourier pairs [21. This means that one can con olwe two functions

bh taking the inverse Fourier transform of the product of the two Fourier transforms of the tinctions
Correlating a template on an image is the same as con\oliung the image with the reflection of the template

,.' ',, " .. . ... ,. ,.,q . _ . .', ."."% '.,,. -, ,/' ..... '' ,. ' ., " . . ',, ,",S ,; .. ' -.. " , ..; ,'-, .. •. , S .- ,• ' '
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along the lower left to upper right diagonal. Thus one can implement a correlation by using a Fourier
transform.

The Fourier transform is a transformation on complex functions. One could express an edge image

by an array whose values were:

0 when (x,.) is not an edge
e'8 when (xy) is an edge with angle 8

The template could be expressed as:

0 when (xdisplacementuy displacenit) is not an edge
e -' when it is an edge with angle 8

F his results in a function where the real part of the correlation at (x.y) is the sum of

0 when the template element of the image element being matched is
not an edge

Cos IOr, I-e - I:cj when the two match

The second function is only near I when the two angles are near each other and drops to 0 when they
differ substantially. For such an algorithm to work only angles whose difference falls within the right half-
plain of the complex plane can be compared. Otherwise numbers with negative real parts can be generated
making a good match look bad. fhus a four pass algorithm is required. For each quadrant an edge image
is generated using only edges with orientations in that quadrant. [his edge image is correlated with a
template that has only edges with orientations within that quadrant. Such a technique should render a
good approximation to the correlation described above.

Assuming the Fourier transform of the template's edges is precomputed. the algorithm consists of

(1) generating cos(8) and sin(0) for each edge in the image.

(2) applying the Fourier transform to the 4 partial edge images.

(3) multiplying exer element of the transformed images by the transformed templates.

(4) applying the inverse Fourier transform to the results.

The cost of the first part is the time for 2 square roots. 4 multiplies 2 adds, and 2 di ides to the image
multiplied by the number of edges in the image. The cost of the second part is 4 times the time for ,

Fourier transform. A Fast Fourier Fransform requires two complex multplies. 1 complex add. ind I
complex subtract ( = 4 multiplies 6 adds 2 subtracts) * log( V I.I.4F -__SIZ )Il.1(AF: _%//[-. Ihe cost
of the third part is equal to 41IAGF-_SIZt. complex multiplies. The cost of the fourth part is equal to

that of the second.

The finite field fast Fourier transform is a transformation for which convolution and multiplication

are paired. Such a transformation can be performed using onlh integer arithmetic. Thus the finite field
Fourier transform runs two orders of magnitude faster than the fast Fourier transform on machines without
floating point hardware. However it is not clear how one uses convolution on a finite field for the purposes
of edge template matching. [he trick I used here took advantage of some ordening properties that do not
apply to finite fields. [hus the finite field Founer transform %ill not be discussed further.

3.3.3. The Generalized Hough Transformation
Ihe generaliied Hough transformation was designed with edge template matching in mind Ill. Ihe

data structure for the image that is most efficient is triplets of cp(,ovlit m.,rt jsitl .8). 1 Ihe template Is



8

stored in a table of parameters to be voted for indexed by ranges of angles Here, each table entry is a list of
displacements to vote for. Figure 4 is the circle template expressed in this form (see Figure 2 for original
template). The algorithm that implements the Hough transformation on these data structures is as follows.

for(edge = 0: edge < NUAIBEROF_EDGESINIAAGE; edge+ +)
{
range = range edge_imagefedgel.angle falls into:
on all ( displacement in template[rangel

outputl
text[edgel.x + displacement.x.
text(edge].y + displacement.y
]+=1:

}

The speed of this algorithm is about: NUMBER OF_EDGES IN_ IMAGE. multiplied by the
average number of displacements per category multiplied by the cost of 3 integer adds.

4. Implementing Template Matching on the WARP and Butterfly
[his section outlines various implementations of the three techniques outlined preniously and

investigate their timings.

This section assumes that the image is 1K by 1K and that the problem is to match edge direction
templates. [he size of the templates and the sparsity of edges in the image and templates are independent
variables in the calculation. (It is assumed that the image and template has about the same percentage of
edge points.) Another independent variable is the discretization of the angle space, which is the number of

Figure 4
Circle Template Stored in Generalized Hough transformation Form:
Angle Range Displacements
23 - 21, 0 - [0.31

12 12
V-- -- [0,41.11,41
12 47r 5w
7 - 1--[1.51.[2.51
4 1'
57w 1.7r 13,61

11 [ r4,51

4 12 15.51,15.41,[6,4]
l11 13v11 - 13 16.31
12 1213v 5w- 5 15.21.[6,21
12 4

51r 17w1

- 1 13.0 1

- 12.11

12 4
7w 23w 10.21.pl.211.ll
4 12,
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different classes of angles. The discretiiation of the angle space affects the speed of the generalized Hough
transformation technique. The edges are assumed to be evenly distributed through the area of the
template.

The following notation describes some image statistics:

IM Image size (IKxIK)

T - Number of edges in template

Tj Template width - the extent in the x dimension

T, Template length - the extent in the y dimension

E Fraction of edges

.,t Number of angle classes

4.1. Implementation on WARP/VtIMP
On the WARP techniques have been deeloped tor efficicntl implementing convolution and Fourier

transforms.

4.1.1. Implementation of Shift and Add Correlation Technique
If the template has less than 10 edges in it there is a simple s~stolic algorithm for it on the WARP.

The equivalent algorithm for convolution is described in 181 and [111.

4.1.1.1. Implementation on Small Templates (size <= 10)

In this algorithm each processor has a template element. The input and output can be thought of as
streams passing in parallel through the 10 processors. The input stream is initialized to the image edges
and the output stream is initialized to 0. When a processor inputs an image element equal to its template
element it adds I to the output stream. Shift registers skews the output stream in time so that the proper
member of the input stream meets the proper member of the output stream in the right processor.

As an example suppose a template has elements at displacements 7 and 10 and nothing in between.

Assume processor I has the element at displacement 7 and processor 2 has the element at displacement 10.
There should be a shift register of size 7 before processor 1 and a shift register of size 3 between processor
1 and 2. Thus output element 0 meets input 7 at processor I and input 10 at processor 2. Output element

1 meets input 8 at processor 1 and input 11 at processor 2.

In this algorithm the angles are assigned to some finite set of classes represented b) images and some

other number indicates the nonexistence of an edge. The angle comparison and the test for the existence of
an edge can be done in a single alu operation (absolute difference). Another alu operation is required to
increment the output of the correlation. k~en if no incrementing is necessary the time t or the incrementing

must be allocated so that the data rate can be determined in advance. The WIMP can not figure out
whether to pause for an incrementation amid data Aithout doing the correlation itself.

hus for each datum time for two alu operations must be allocated on each processor. \11 the other
opet itions required can be done in parallel with these operations. Thus this algorithm can consume a

datum even, 400ns. Thus the speed of this algorithm is .4s

. , . . -. , . '.".-.-"
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4.1.1.2. Implementation on Large Templates (size > 10)

For template sizes greater than 10 a more complex algorithm must be attempted. One wa to

implement such an algorithm was to haxe each processor emulate -- processors. These issues must be

addressed by this algorithm:

(1) Can the WARP's processors emulate T4 processors?

(2) How fast would this algorithm run gien that it can be implemented'?

The most scarce resource on the WARP processor is memory. Simulating - processors requires

simulating the shift registers between them. If the edges are evenly distributed about the template the

memory needed for such shift registers is IK. This data will fit into the local memories of the
110

WARP processors for templates of length < 20.

In this algorithm each processor accepts 2 inputs once every 2 ccles and outputs at an equal

101

rate. Thus its execution time is IN1M 400 ns.

4.1.1.3. Algorithm for Template Lengths > 20
The WIMP's memor) allows an algorithm for the WARP/WIMP combination that will work for

template length's > 20. This algorithm has the WARP run the first 10 of the I processors required by the
simple algorithm. The output of such a run and a shifted image is sent back to the WARP, which is
,imulaung the next 10 processors using the output of the last 10 processors as input. The algorithm iterates
until the F processors have been simulated. The final output is the output that would have been created by

I I processor WARP executing the algorithm for small templates.

Such an algorithm can run as fast as the small template con,,olution algorithm for each stage, because
it requires that two inputs be sent to the WARP e er, 400ns Ahich is within the capacit of the WIMP.

[he speed of this algonthm is IM -0 400 ns. This is as fast as the previous routine. Ihus this is

probabl. the algonthm of choice for all templates (since the algorithm for small templates is just a special
case).

4.1.2. Implementation of Fourier Based Correlation
The IK Fast Fourier Transform can be implemented in a pipeline on the WARP in a wa. that takes

full adxantage of the WARP's parallelism using techniques described in 181. Fo use the Fourier transform
for correlation one need first transform each of the rowks of the original image and then transform each of
the columns of the output. Thus 2K Fourier transformations are needed to complete the operation. 2K
inverse transformations need to be run to rexerse the transformation. This algonthm uses the WARP as a
10l stage pipeline. Fach processor is de oed to i particular iteration of the fast Fourier transform
algorithm. Ihis pipeline must he flushed after the rows are transformed and after the columns are
ir,insftrmed I hus the time to do the trn in,,ornon to and from is 4K + 20 times the cost of a ,ingle

%
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iteration of the algorithm. Each of these transforms are done to an image consisting of edges whose angles
that fall respectiel. into the 4 quadrants. Thus a total of 16K + 20 column transformations are
necessar%.

Ibhe fast Fourier transform is implemented by an algorithm that does log(n) iterations for n points of
data. [he parallelism of the WARP can be used for such an algorithm by having the log(n) iterations
proceed in parallel on the different processors. Within each of the log(n) iterations the results are taken in
pairs. Fach pair of numbers generates . new pair of numbers that are inserted elsewhere in the results. To
generate a new pair of complex numbers from an old pair one complex multiply, one complex add and one
complex subtract are required. Iherefore the cost of one stage of a Fourier transform on 1K points is 512
complex multiplies, adds and subtracts. A complex multiply requires 4 multiplies and 2 alu operations. A
complex add or subtract requires 2 alu operations. The multiplies and alu operations can be done in
parallel. Thus the entire procedure requires 1200ns per pair. This is the determining cost of the iteration
since all other operations can proceed in parallel. Thus the speed of one iteration of the algorithm is 600K
ns. This is the speed of the algorithm when the iterations are proceeding in parallel on different machines.
Ihus the speed of a Fourier transform of a 1K by 1K image is 2406M ns. The speed of the inverse is

similar.

The main constraint on the speed of the multiplication of the transformed template and the image is
the I/O bandwidth for moing the complex numbers to and from the WARP or WIMP's multipliers and
adders. Two complex numbers take 8OOns to be retrieved from memory. This is done to the 4 transformed
images. Running the inxerse transform on the 4 product images and summing the real parts of the results
results in the correlation of the two images. The sum process is also bound by the memory speed. It can
be done as fast as the 4M of correlation results can be retrieved. Thus 800M ns are required for the
summing process and 3200M ns are required for the multiplication. Thus the total speed for generating the
correlation of two images using the Fourier transform is 8812M ns or 8.812 s on 1K by 1K images.

4.1.3. Implementation of Generalized Hough Transformation
The generalized Hough algorithm requires that a section of memory of size T, TW be available for

random access. The WARP is not good at accessing large sections of memory randomly. Thus, the WIMP
%as descnbed (though no such machine has been designed or built). [he case is further complicated
because the window of memory that needs to be accessed changes for each data element. Ihus the WARP
gi~es little leverage for an implementation of generalized Hough transformation. [his section assumes that
generalized Hough transformation is implemented entirely by the WIMP.

This section assumes that the edges have already been separated according to angle so there is no
need to check the angles of the edges. In the WIMP's memory one need set up a 1K +2T,_ by IK+2TI.
array. This array is where the results are accumulated. The elements of this array should be initialized to
0. Initialization takes 200 times IK+2T1 times 1K+2T1. ns.

For each angle. iterate through the edges in the image that are of that angle. For each edge. iterate
through the elements of the template that are of that angle. For each edge at (x.v) and each displacement
of the template of (dx.dy). increment the output element (x+dxy+dy). I'he WIMP needs to read
x.y.dx.dy. After that the WIMP does two adds. It then needs to do an indirect memory reference an
increment and another indirect memory reference. To check to see whether the end of the list has been
reached the WIMP also does one reference to registers, one decrement and check for 0. It does a check
each time it generates an edge and each ume it generates a displacement.
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Because of the internal parallelism of the WIMP it can overlap the alu. memory and register calls.
Thus the speed at which it can do one iteration of generalized Hough transformation is the speed of 6
memory accesses. Thus the speed of generalized Hough transformation on the WARP/WIMP is 1200 ns J
times IM times E (since only the edges are looked at) times TE dkided by A (if the edges are equally

TEE ,.
distributed over angle space in the image) or more concisely -- 1.2 s.

A

4.1.4. Timing Considerations
These are the techniques described above and their speeds.

Technique for Template Matching Speed in Seconds
Shift and Add Correlation (TE_<.0) .4
Shift and Add Correlation (TE)I0) .04 Tl-
Fourier Based Correlation 8.812
Generalized Hough Transform 1.2 TEE

A

I will assume that there are 12 ranges of angles distinguished from one another between 0 and 27r.
Generalized Hough is more efficient than shift and add correlation when E < .4 . If T 20 then
generalized Hough will be more efficient when E < .6 - 2f/T

Shift and Add correlation will be superior to the Fourier transform based technique for T, (220.3.

The generalized Hough transformation will be faster than the Fourier transtormation when
TE E(88.12. A chart showing these effects is shown in figure 5.
4.2. Implementation on Butterfly

The parallelism of the Butterfly is arranged differently than the WARP's. thus the techniques for
using the parallelism are different. A major difference between the two machines is that memory is scarce
on the WARP's processors but plentiful on the Butterfly's. Thus algorithms can be run entirely using
internal memory on the Butterfly that would require access to external memory (such as the WIMP's) by .
the WARP 191.

Figure 5
Optimal Technique for Template Matching on the WARP
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fourier Based Correlation
T17E .1 .2 .3 .4 .5 .6 .7 .8 .9 1

100 G G G C C C C C C C
200 G G G C C C C C C C bp

300 G G G F F F F F F F
400 G G G F F F F F F F
500 G G F F F F F F F F
600 G G F F F F F F F F
700 G G F F F F F F F F
800 G G F F F F F F: F F
900 G F F F F F F F F F
1000 G FF F F F F F F F

* S ~ ... - . . . . . '-
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4.2.1. Implementation of Shift and Add Correlation Technique

There are two techniques that can be used to parallelize the implementation of correlation on the
Butterfly:
(1) Different sections of the image can be given to different processors that then generate the resulting

correlation.

(2) The effect of different elements of the template can be calculated by different processors.

The second technique was the primary one used by the WARP. This was because the WARP was built
primarily to take advantage of such pipelining. Pipelining and limits on the local memory of the WARP's
processors makes programming the first technique somewhat difficult. However these are not concerns for

the Butterfly. These two techniques need not he mutually exclusive either. This section examines the
extent to which these techniques can be used and mixed.

To store a 1K by 1K image on the Butterfly requires that it be partitioned among many processors
because no single processor has the memory to store anything larger than a sparse edge image of that size.
Thus partitioning an image for processing will be explored in this section.

In 1131 it was found that the partition shape that minimized communication needs and overhead
between processors was the square. However once an image is partitioned no communication between
processors is necessary, Thus our problem is slightly different, since there is no advantage in time between
different shapes. It is assumed that the space is partitioned into a set of oxerlapping rectangles as in figure
6. If the length is partioned .1fL ways and the width is partitioned if;,, ways the space used on each
processor is:

LK + T IK +TwI

Thus the total space used is IM±IKTt_ I ,+IKT, :ItL+T Tw T4. f w. For a given number of

partitions this number is minimized when .1l/ Tif= TL iw. Thus the most efficient partitioning partitions

the image into a set of rectangles proportional to the template's shape. There being no obvious benefit from
any other partitioning, assume that the image is partitioned into rectangles and the correlation routine run

on each rectangle.

Clearly by partitioning the image into N sections and running the algorithm over the N sections the
speedup is N. The only loss occurs in the distribution of the image to the different processors. The

Figure 6
5 by 7 Rectangles Overlapped for a 2 by 4 Operator

Fach Rectangle is Outlined by a Character
% % % %* %* * + *+ + + +
% * + * +

% * % + * +
1 / I *" %/ +& *-& & & +&
%1 * %1/ +& * &

%1 " %/ +& *&

%i % % %*" %*/ * + + + + 4-&

S". I & &
/ / & &
I/ / I I I" - "& "& & & &

-- "- " '-" " ,' -. . . . . -,. . . . . ., . - .... " . .. . . .. .".",'. .. . .,. ... . . . .'''.' .- ' .. ' .
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slowdown that occurs because of the distribution has to be smaller than that resulting from sending every
element of the image through several processors as one would have to do if pipelining was used.

Checking for equality requires one subtraction and one test and if the test is true then an extra
addition is required. The times for this calculation is 5000ns when the test is false and an extra 4300ns
when the test is true. The time needed for doing convolution is:

0.O5TEfr.043TF E+9+.O8L + 8 w +08TL Tws

-W TL

When the template size is large the portion of the image stored in each processor may exceed the
amount of available memory on the processor. Only a byte is needed to store an angle. 500 K bytes are

available on each processor for data storage. In the general case a 32 bit integer is required to store each
output. These are the memory requirements:

(1) 40K bytes for output

(2) 91' bytes for template

(3) .,-+.T1l I .Tiv for input.

Thus

9I1 K 1--

10+ 1K L IT42IK- Tt + T1 T,4,(450K
10 100 Tw4

If one assumes that TL= Tw and that TE=E T1. Tw then this inequality reduces to

19E+ 1 Tf?+ 20TL (450K

[hus for all T1.< 212 this technique fits into the processors' memory. If E is smaller than I then
proportionately larger templates can be used. Thus for all reasonably sized templates such a technique can
he used.

4.2.2. Implementation or Fast Fourier Correlation
Fast Fourier correlation requires that 4K Fourier transforms be done on the columns ot the image

[and 4K Foruner transforms be done on the rows of the result. Doing 40 columns in each processor will not
-train the memory of any processor. The fast fourier based algorithm requires little communication since
the I K h I K of data need only be transmitted three times. The 1K by 1K of transformed template can be
prestored into the processors if many images need to be correlated.

.\vume that the image starts out as an array of complex numbers. Each complex number is two 32
hit floating point numbers. The communication cost is less than the cost of transmitting IM of 64 bit

ntormation 3 times since the second and third times the transmission may occur in parallel. Assuming a
;A hcmc can be developed to minimize contention the Butterfly's processors should be able to send each
:omplex number in 20000ns. I hus the communication time is 10.400s. TIhis time is dominated b the
onginal cost of getting the IM of 128 bit words out to the processors in the first place.

l)oing a Fourier transform or an inerse transform to a column or row requires 10 iterations. In each
iteration the numbers are taken in pairs and on each pair one complex multipl. and one complex add and
ome complex subtract is required..A complex multip. requires 4 multiplies and t(o adds. Each complex

-. . -,"-- P L
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add or subtract requires 2 adds (for the purposes of this paper a floating point subtract is considered to
have the same cost as an add). Ihus each iteration require 5124time-of mulipy+61me-o'_add1. Fach
processor will do 10 iterations on 40 rows or 40 columns 4 times. Thus the speed of the computation %ill
be 8192004Iime -ofmuip Iv6ume-jjadd. The time of a multiply is 475 us and the time of an add is
295 us. 'hus the computation speed is 3006.464 s. Thus the time required to run a Fourier transform
based correlation on a IK by IK image is 3006.464 s.

4.2.3. Implementation of Generalized Hough Transformation
Partitioning the data for the generalized Hough transform in a naive way does not work because it

requires each processor to store the entire output array. There is not enough memory on each processor to
store such an array.

If TL and Tw are small enough then the input and output image can be partitioned as in the simple
implementation of correlation. The output is a set of overlapping rectangles that generate the final output
array when added together. A simpler technique is to vote for some points using remote memory
references. Using remote memor. references has problems associated with synchronization, since no two
processors can be allowed to increment the same point simultaneoush. Ihus the only Aay to implement
generalized Hough transformation is to partition the output array among the processors.

1 T 11-
Assume that the output arra. is partitioned into 100 L2 by 100 rectangles. If the output

and input data can be stored on each processor the resulting time of computation for generalized Hough
transformation is:

Tb T11  2 2
0.051 -'.+8k' , 1 Tw14-+.0 T,

If T, = T and that T/= T, Ti E if you are storing M by M of the image in each processor then the
space used each processor is

(1) 5 T,2 E bytes for the template.

(2) 40000 bytes for output.

(3) 5 - butes for the input.

This means that

92K J- TIA )M 2

Thus:

92K -)TI+ IT+01

With .4 = 12 as before, then

1.094M )13Tf+ 200 T,

If T, < 282 it can be guaranteed that there will be enough memory. If V is smaller than I then
proportionately larger templates can be handled. Thus for template sizes used in most earl. usion
applications such a technique fits into memor.

". . " '° ,, % .° .. ",,€ o . ° -'- - -". . ." •.' ' ° ". -. . . -.. %..-. . .
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4.2.4. Timing Considerations

These are the techniques described above and their times. Assume that TI= Tw= I and A= 12.

Technique for Template Matching Speed in Seconds

Shift and Add Correlation .05TF+.043TF E+8+.16 008E
E E

Fourier Based Correlation 3006.464

Generalized Hough Transform .004T [-+ 8E .16 TE F1 2 +.0008 T .

The generalized Hough transformation is always more efficient than shift and add correlation, since it does
no comparisons and uses more efficient data structures. The equations above show that the generalized

Hough transformation is more efficient than the fast Fourier transform when

213006-Sri (.004h-+.0008j+.0256E+ [12 30-8-'1.004, +.00081+.0256 p]2 4306-81?.04[.0.?008 2 1
T . >2 .004E+ .00081'

Figure 7 charts this result. Note that generalized Hough transformation is the most efficient algorithm for
Tb up to 4000 while on the WARP the Fourier based technique is the most efficient for T o(er 200.

5. Changing the Speed of Instructions
The results so far suggest that the relative timings of the different instructions in the processors has

the most important effect on the choice of algorithm given an image and template. This section determines

how the choice of algorithms is modified if the WARP or the Butterfly are modified to change their

instruction timings. To simplify (and thus better understand) the results of such a comparison assume that

there are two classes of operations occurring in the processors. Fvery operation in a class takes the same

amount of time.

Class C I
memory reference, remote memory reference, integer subtraction, integer addition

Figure 7
Optimal Technique for Template Matching on the Butterfly

G indicates Generalized Hough transformation
F indicates Fourier Based Correlation
TEIE .1 .2 .3 .4 .5 .6 .7 .8 .9 1
400000 G G G G G G G G G G
800000 G G G G G G G F F F
1200000 G G G G F F F F F F
1600000 G G F F F F F F F F
2000000 G F F F F F F F F F
2400000 G F F F F F F F F F
2800000 F F F F F F F F F F
3200000 F F F F F F F F F F
3600000 F F F F F F F F F F
4000000 F F F F F F F F F F

** **~ *****.* ** * . ******* 4*.. ~ %%~ *~t\ ,.i
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Class C2
floating point multiply, floating point add, floating point subtract

Note that that the WARP processors have only floating point operations and thus must do angle
comparisons with floating point subtracts. The WIMP and the Butterfly can use the Cl integer subtraction
though. In this section a Cl instruction takes T1 time and a C2 instruction takes T2 time. Assume that
TI is always smaller than T2.

5.1. Pattern Matching on the Generalized WARP Architecture

[his section investigates the speed of various algorithms on the generalized WARP. A generalized
WARP is the same as the WARP described above except for the new assumptions about the speed of

different operations.

The limited memory available on the WARP's processors constrained the implementation of template
matching most severely. The interprocessor bandwidth also constrained the choice of operation in a more
subtle manner. These are left unchanged in the generalized WARP. Thus the same algorithms should be
used as before. The only difference is that the WIMP in this model can do its arithmetic at a different
speed than the WARP. Thus the choice of implementation for algorithms is constrained in the same
manner.

5.1.1. Implementation of Shift and Add Correlation

5.1.1.1. Small Templates (size < = 10)

In the small template algorithm each element of the image is compared to a stored angle using a
floating point subtract. Then if the two angles are equal. the window output is incremented. Necessan
memory references are done in parallel with the arithmetic operations. The speed of this algorithm is
simply 2 T2 M.

5.1.1.2. Large Templates (size > 10)

The WARP algonthm runs the small convolution algorithm I- times. Thus the speed ofr1

convolution is I-T-1 T2M.

5.1.1.3. WIMP Correlation
For every combination of template and image elements two alu operations are required for the

convolution. Two counters must be maintained in the registers to keep track of the locations in the image
and the template. Maintaining these counters requires another 4 alu operations. Since the alu is the scarce
resource for the application of the template the time that the WIMP takes for the operation is 6 Ti T M.

5.1.2. Implementation of Fast Fourier Correlation

The best algorithm for the fast Fourier correlation is the same on the WARP and the generalized
WARP. One iteration of the algorithm requires 6 alu operations. 4 multiplies and 4 memor, references per
pair of numbers per processor. I hus the speed olone iteration (in which I step of 10 Fourier transforms is
performed) is 3000 T2. Ihus the time for a 21) Fourier transform on the 4 1K h\ 1K images is
48.06M T2. The time for the incrsc is the same. I he product )ot the -ouner transform of the template

• S ' . ; ',''<z. .#, :r,!:..' ':'' ; i.. ..;' 'i.,. rbi- ' '-;.' € , "- - - - . . - ,-. 7: ..,5,-...@
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and the transform of the image can be done on the WIMP. For each element of the image two memory
references are necessary to access the template and the image and one multiplication. The speed of the
multiplication is min12 Tl.T2jM. Thus the time for the entire algorithm is 48.06M T2+4mini2 Tl.T2IM.

5.1.3. Implementation of Generalized Hough
Section 4.1.3 showed that the WARP's parallelism could not be used with the generalized Hough

transform. Thus in this section the time for running the generalized Hough transformation on the WIMP is

determined. All the operations involved in doing generalized Hough transformation are in class Cl. As
determined before the scarce resource is memory in doing the Hough transformation. Thus the speed of
one iteration of generalized Hough transformation requires 6 memory references that take 6 TI. A

generalized Hough transformation on an image requires M iterations. i'hus the speed of Generalized
T E M.

Hough transformation is 6 T 1 M.
A

5.1.4. Timings
These are the techniques described above and their speeds:

Technique for Template Matching Speed in Seconds

Shift and Add Correlation (on WARP) TII T2 M

*Shift and Add Correlation (on WIMP) 6 T I TF M
Fourier Based Correlation 48.06M T2+4minf2 T1.T2JM

Generalized Hough Transform 6 Tf M
tnsdforn TI ad A

* In the following sections different ratios of T1 and T2 are considered regarding which algorithm to Use for
template matching.

5.1.4.1. TI:T2 = I

This ratio is similar to the WARP's. The shift and add correlation technique is hest done on the
WARP. The shift and add correlation is superior to the Fourier correlation for Tf (240.3. With .1= 12 the

generalized Hough transformation is superior to shift and add correlation when E-(.4. [he generalized
Hough transformation is supenor to the fast Founer correlation when Tp- E<96.12. Figure 8 charts these

effects.

5.1.4.2. T1:T2 = 4

The shift and add correlation technique is best done on the WARP. The shift and add correlation is

superior to the fast Fourier correlation for Tb (250.3. With .4= 12 the generalized Hough transformation is
always superior to shift and add correlation in this section. The generalized Hough transformation is
superior to the fast Fourier correlation when Tf- E<400.16. Figure 9 charts these effects.

5.1.4.3. TI:T2 = 16

The shift and add correlation technique is best done on the WIMP. The shift and add correlation is
superior to the fast Fourier correlation for TE <128.49. With A= 12 the generalized Hough transformation is

always superior to shift and add correlation in this section. The generalized Hough transformation is

superior to the fast Fourier correlation when Tf E<154'.12. Figure 10 charts thee effects.
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Figure 8
Optimal Technique for Template Matching on Generalized WARP (TI :T2 = 1)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourier Correlation
T/E .1 .2 .3 .4 .5 .6 .7 .8 .9 1

100 G G G C C C C C C C
200 G G G C C C C C C C
300 G G G F F F F F F F
400 G G F F F F F F F F
500 G F F F F F F F F F
600 G F F F F F F F F F
700 G F F F F F F F F F
800 G F F F F F F F F F
900 G F F F F F F F F F
1000 F F F F F F F F F F

Figure 9
Optimal Technique for Template Matching on Generalized WARP (T!:T2=4)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourier Correlation
T E .1 .2 .3 .4 .5 .6 .7 .8 .9 1

400 G G G G G G G G G G
800 G G G G G F F F F F
1200 G G G F F F F F F F
1600 G G F F F F F F F F
2000 G G F F F F F F F F
2400 G F F F F F F F F F
2800 G F F F F F F F F F
3200 G F F F F F F F F F
3600 G F F F F F F F F F
4000 G F F F F F F F F F

?I
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Figure 10
Optimal Technique for Template Matching on Generalized WARP (TI:T2= 16)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourier Correlation
TEIE .1 .2 .3 .4 .5 .6 .7 .8 .9 1
1600 G G G G G G G G G F
3200 G G G G F F F F F F
4800 G G G F F F F F F F
6400 G G F F F F F F F F
8000 G F F F F F F F F F
9600 G F F F F F F F F F
11200 G F F F F F F F F F
12800 G F F F F F F F F F
14400 G F F F F F F F F F
16000 F F F F F F F F F F

5.1.4.4. T:12 = 64
[he shift and add correlation technique is best done on the WIMP. The shift and add correlation is

superior to the fast Fourier correlation for Tt (512.97. With -= 12 the generalized Hough transformation is
always superior to shift and add correlation in this section. The generalized Hough transformation is
superior to the fast Founer correlation Ahen Tp F(6155.68. Figure 11 charts these effects.

5.2. Pattern Matching on the Generalized Butterfly Architecture
This section describes timings for pattern matching on the generalized Butterfl.. Ihe

implementations on the Butterfly described previously took full advantage of the full parallelism of thc
Butterfly. [here is no obvious wa. to trade C1 for C2 operations while implementing these algorithms.
Thus the best implementation of the techniques on the generalized Butterfl% are the same as the
implementation on the real Butterfly. Only the timings will differ.

Figure 11
Optimal Technique for Template Matching on Generalized WARP (TI:T2=64)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourier Correlation
T1, /E .1 .2 .3 .4 .5 .6 .7 .8 .9 1
6400 G G G G G G G G G F
12800 G G G G F F F F F F
19200 G G G F F F F F F F
25600 G G F F F F F F F F
32000 G F F F F F F F F F
38400 G F F F F F F F F F
44800 G F F F F F F F F F
51200 G F F F F F F F F F %
57600 G F F F F F F F F F
64000 F F F F F F F F F F

%%
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5.2.1. Implementation of Shift and Add Correlation
To implement the shift and add correlation technique, first store the overlapping rectangles on the

various processors. Storing these rectangles costs:

100 100 T[ j+Tw 100 1+j ,I TI

Then the convolution must be applied to all IM points of the image. Thus each application of convolution

require T comparisons and in the I of the cases increments (2 memory references and an add). and three
A

memory references to access the template. the image and the output. Thus the convolution altogether
requires: I IT~ii I lw 13

100 100 T1 +Ti 100 TI- .M 4+ TI

5.2.2. Implementation of Fast Fourier Correlation
In this algorithm each of the 100 processors transforms 10 columns and then 10 rows of the result 4

times. The 4 results are multiplied by the transformed template at the processors. The inverse
transformation follows. It is executed hb an algorithm similar to that for the fast Fourier transfiwm. [hus
4M TI is required to distribute the image originall. The two data transmission sections to get rows from
columns or Nice versa is .0792M T1. There is a way to arrange contention free rings of communicating
processors on the Butterfly so contention is not a significant problem. The fast Fourier computation
requires that 4 multiplies and 6 adds are required for each pair. This operation is done for 10 iterations
Each datum must be referenced and output too. Thus all the fast Fourier transformations and inverse
transformations will require 2M T2+.2M TI. The multiplication with the template will require three
memory references (two inputs and one output) and one multiply thus require .OIM T2±.03M T1. The sum
of the 4 convolved images requires 3 adds per pixel. Thus doing the sum will cost .03M T2 Thus the total
time required by the fourier based correlation is 8.07M T2+ 5M T1

5.2.3. Implementation of Generalized Hough Transformation
['he most efficient solution to this problem is also to partition the problem. IM TI is required to

distribute the image to the 100 processors. Then the algorithm is applied to the subimages. Thus the time
required to do generalized Hough transformation is

IM T14-10000FII1+ I TI

5.2.4. Timings
These are the techniques described above and their speeds.

Technique for I emplate Matching Speed in Seconds

Shift and Add Correlation N +.0 1,Tir +.OT; T1

Ti. T,
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±.011M {4+ 3 I
Fast Fourier Correlation 8.07M T2+5,M T I

Generalized Hough Transform IM Tl±.OIM

This table shows that the generalized Hough transformation is always faster than shift and add

correlation. Thus one need only consider these two transformations when deciding which technique to

implement on the generalized Butterfly. A formula that determines when the generalized Hough
transformation is faster than fast Fourier correlation is:

F I + TfI TI <(807 T2+400T I
Figures 12,13,14,and 15 graphs this formual for different ratios of [I and T2.

5.3. The Effect of Architecture on Choice of Algorithm
The decision formula de~eloped for the generalized WARP and the generalized Butterfly differ

significantly in two ways. [he generalized WARP has a case in which shift and add correlation is
preferable to the generalized Hough transformation.

On the generalized WARP the generalized Hough transformation is faster than the fast Fourier
correlation technique when:

7 F (96.12 T2+16 TI

On the generalized Butterfly the corresponding inequality is:

1Fp [' TI ( 2421 T2+ 1200 TI

Ihus a generalized Butterfly acts like a generalized WARP Ahen this relationship holds true:

Figure 12
Optimal Iechnique for [emplate Matching on Generalized Butterfly (T[:12 = 1)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourier Correlation
Ti/E .1 .2 .3 .4 .5 .6 .7 .8 .9 1
2000 G G G G G ' G G G 6
4000 G G G G G G G G F
6000 G G G G G 0 G F F F

8000 G G G G G F F F F F
10000 G G G G F F F F F F
12000 G O G G F I- -F F F F
14000 G G G F F F F F F F
16000 G G G F F F -F F V I
t 8000 G G O F F F " t- 
20000 C G F I I I- F F F F

.,"
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Figure 13
Optimal !technique for Template Matching on Generalized Butterfly ('[1:2=4)
G indicates (cnerali/,d Hough transformation
C ndicate, Shift and Add Correlation
F indicates Fast Fourier Correlaton
T I/F .I .2 .3 .4 .5 .6 .7 .8 .9 1
8000 0 G G G G G G G G G
16000 G G G " G G F F F F
24000 G G G G 17- F F F F F
32000 O O (i Ci F F F F F F
40000 CI G (j F F I- F F F F
48000 G G Gi F F I- F F F F
56000 G G F F F F F F F F
64000 G G, F F- - F F F F F

2000 iG G F F f- F F F F F
80000 C (X F F F F F F F

igure 14
Optimal Technique for I emplat Mlatching on Generalized Butterfly (I[! :12 = 16)
G indicates (jeneral/ed Hough transtorTnation
C indicate, Shift and \dd Correlation
F indicates Fast Fourier Correlation
T./IF 1 .2 .3 .4 .5 .6 S 9
32000 G G G G G G 6. (i C Ci
64000 G G G G G G i F - f
96000 G G G G G F F - F t
12800( G G G C F F F F F
160000 G G G - F F F F F F
192000 G G G F F 1F F F - F
224000 G G F F F F f F F F
256000 G G F F F F F F F F
281(0) G G F F F F F F F V
320000 (i (i F F F F F F F- F-

- . * ., . **I* '* *
.a.......* ' **I.. *. .
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Figure 15
Optimal Technique for Template Matching on (Generalied Butterfly (TI:!2=64)
G indicates Generalized Hough transformation
C indicates Shift and Add Correlation
F indicates Fast Fourier Correlation
Tb./f., .1 .2 .3 .4 .5 .6 .7 .8 .9 1
128000 G G G G G G G G G G
256000 G G G G G G G F F F
384000 G G G G G F F F F F
512000 G G G G F F F F F F
640000 G G G F F F F F F F
768000 G G G F F F F F F F
896000 G G F F F F F F F F
1024000 G G F F F F F F F F
1152000 G F F F F F F F F F
1280000 G F F F F F F F F :

R = .04R1 , -. 49

Where R8 is the ratio between the time for the C1 and C2 operations on the generali/ed Butterfly and Rw
is the same for the generaliied WARP.

rhe fact that the Butterfly acts like a WARP with floating point operations 25 times slower can be
attributed to the inability of the generalized WARP to use most of its parallelism for the generali/ed Hough
algorithm. Ihe generalized WARP can do floating point multiplies and adds simultaneousl.. Only the fast
Fourier transform correlation made use of this parallelism on the WARP.

6. Conclusion
[his paper examines the effect of two parallel architectures on template matching techniques. It wi'

found that for a specific template the algorithm works most efficiently differs greatl on the different
machincs. It can be deduced from these results that the choice between fast Fourier correlation and
generahed Hough transformation or shift and add correlation is determined by the relative speeds of
comparison operations. memory references and arithmetic operations. [he actual implementatMion of these
techniques v, largely determined hb the distribution of memor% on the processors. I he speed of
communication between the processors is also critical in choosing between parallel and partitioned
implementation. Ihe structure of the interconnection network does not seem to ha\e a direct effect on the
implementation of the algorithm. Whether this is true for other problems remains to be determined.
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APPENDIX
Timings for an Enhanced Butterfly

8. Appendix
The figures given for the timings of the Butterfly are for a Butterfly whose nodes lack floating point

hardware. Recently floating point hardware has been added to the Butterfly nodes. Thus there is a
different ratio between the speed of floating point operations and the speed of fixed point. The EI-T will
be the faster technique for smaller examples. No nodes with floating point hardware are currently available
outside BBN. I will use for the speed of floating point operations one half the speed of the 68020 with
floating point hardware (since the memory has not been speeded up correspondingly) [161. This table
describes the old and new speeds:

Timings of Operations on the Butterfly
Operation (memory to memory) Old Speed New Speed Speedup
integer assignment 4.30 1.6 2.7
floaung point assignment 11.29 13.6 .8
integer addition 4.15 1.8 2.3
floating point addition 295.59 22.8 13.0
integer multiplication 68.24 6.6 10.3
floating point multiplication 474.76 25.2 18.8

Ihese speeds change the ratio of TI to T2 (as described in section ?) for the Butterfl. The enhanced
Butterfly does not correspond exactly to a generalized Butterfly, since the C1 operations vary between 1.6
and 13.6 microseconds and the C2 instructions vary from 13.0 to 25.2 microseconds. Never the less theT1
enhanced Butterfly roughly corresponds to a generalized Butterflv with a - of 2. The original Butterfl,

T12
roughly corresponded to a generalized Butterfly with a - of 32 (except for integer multiplication which

T2
usually can be worked around).

8.1. Implementation of Shift and Add Correlation Technique
Checking for equality requires one subtraction and one test and if the test is true then an extra

addition is required. [he times for such a check will be 3400ns when the test is false and an extra 1800ns
when the test is true. [he time needed for doing convolution is:

8.2. Implementation of Fast Fourier Correlation
Fast Fourier correlation requires that 4K Fourier transforms be done on the columns of the image

a3nd 4K Fourier transforms be done on the rows of the result. Doing 40 columns in each processor will not
strain the memory of any processor. Such an algorithm requires little communication since the 1K by I K of
data need only be transmitted three times. The 1K by 1K of transformed template can be prestored into
the processors if many images need to be correlated.

\ssume that the image starts Out as an arra of complex numbers. Fach complex number is two 32
,i floating point numbers. Ihe communication cost is less than the cost of transmItting IM1 of 64 bit
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information 3 times since the second and third times the transmission may occur in parallel. Assuming a
scheme can be developed to minimize contention the Butterfly's processors should be able to send each

complex number in 20000ns. Ihus the communication time is 10.400s. This time is dominated by the
original cost of getting the IM of 128 bit words out to the processors in the first place.

Doing a Fourier transform or an inverse transform to a column or row requires 10 iterations. In each
iteration the numbers are taken in pairs and on each pair one complex multiply and one complex add and
one complex subtract is required. A complex multiply requires 4 multiplies and two adds. Each complex
add or subtract requires 2 adds (for the purposes of this paper a double subtract is considered to have the
same cost as an add). Ihus each iteration require 512I4iin uipv+6iime oaddJ. Each processor
will do 10 iterations on -40 rows or 40 columns 4 times. Thus the speed of the computation will be
81920014titneiofmultip'±+6tneofadd. The time of a multiply is 25.2 us and the time of an add is 6.6
us. Thus the computation speed is 125.42 s. Thus the time required to run a Fourier transform based
correlation on a 1K by 1K image is 125.42 s.

8.3. Implementation of Generalized Hough Transformation
1 1

T, - :i-i

Assume that the output array is partitioned into 1001 by 10ILf rectangles. If the output

and inout data can be stored on each processor the resulting time of computation for generalized Hough
transfo, rnation is:

8.4. Timing Considerations

These are the techniques described above and their times. Assume that T1. Tw;.= - and . 12.

Technique for Template Matching Speed in Seconds

Shift and Add Correlation .034Tf+.018TE E+8+.16 I I+.08 K

Fourier Based Correlation 125.42

Generalized Hough Transform .0017 T E+-t8FL+. 16[TL E1 2+.0008 TL

* The generalized Hough transformation is always more efficient than shift and add correlation, since it does
no comparisons and uses more efficient data structures. The equations above show that the generalized
Hough transformation is more efficient than the fast Fourier transform when

2[125.42-8K--] .0017 I:'+.0008 +.0256K,-+ [ 125.42-8E K[1.0017 E+.0008.0256Ej2-41125.42-8 [.0017 E+.0008121

TF > 2j.00171-,'±0008 I
Figure 16 charts the results of this equation. Note that generalized Hough transformation is the most
efficient algorithm for Tf. up to 6000 while on the unmodified Butterflx the generalized Hough
transformation is the most efficient fo: T under 400000 and on the WARP the Fourier based algonthm
is most efficient for T o'er 200.

* -.. ..
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Figure
Optimal Technique for Template Matching on the Butterfly

G indicates Generalized H-ough transformation
* F indicates Fourier Based Correlation

TEIE .1 .2 .3 .4 .5 .6 .7 .8 .9 1
*20000 G G G G G G G G G G

40000 G G G G G G G G G G
60000 G G G G G G G G G G

*80000 G G G G G G F F F F
100000 G G G G F F F F F F
120000 G G F F F F F F F F
140000 G F F F F F F F F F
160000 F F F F F F F F F F
180000 F F F F F F F F F F
200000 F F F F F F F F F F
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