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I. INTRODUCTION

Recent advances in the efficient evaluation of integral derivatives I- 3

have resulted in a renewed interest in the analytical evaluation of the first

and second derivatives of the energy with respect to nuclear coordinates for
Hartree-Fock and post-Hartree-Fock wavefunctions. Much of this work has been

pioneered by Pople and co-workers 4 5 who developed efficient codes both for
the evaluation of the second derivatives of the integrals and for solving the
coupled-perturbed Hartree-Fock equations. The first and second derivatives
are extremely useful tools for optimizing structures, characterizing
stationary points, and calculating vibrational frequencies, as well as for
more extensive studies of the Born-Oppenheimer potential energy surface away
from the stationary points. The 1ast several years have also seen tremendous
advances made in CI and MCSCF methodologies, which coupled with the
interest in derivatives, have led to powerful techniques for a wide range of
wavefunctions. In this vein, we report our work on general, multireference CI

gradients and MCSCF second derivatives.

Before presenting our work, it is appropriate to quickly review the

previous activity in the area ?f CI gradients and MSCF second derivatives.
In 1980, both Krishnan, et al. and Brooks, et al. presented both equations
and algorithms for the analytical computation of single-reference UHF or
closed-shell RHF CI gradients. Osamura, et al. extended the capabilities to
include open-shell RHF reference functions,29 and more recently published the

equations for general multireference CI gradients.
3 0 Yamaguchi, et al. 3 1

reported second erivatives for two-configuration SCF (TCSCF) wavefunctions
and Camp, et al.q 2 developed the methodology and implemented second

derivatives for CAS MCSCF wavefunctions. Independently, Pulay, 3 3 as well as
Jorgensen and Simons, 34 have provided equations for MCSCF second derivatives.
The work on both multireference CI gradients and MCSCF second derivatives is
closely related since a major step in both types of calculation is the
solution of the coupled-perturbed MCSCF (CPMCSCF) equations.

In this paper we report the first general multireference CI gradient

calculations. We have extended the theory developed by Osamura, et al. 30 to
include a general class of references in the CI. This extension is necessary
for the calculation of gradients for a commonly employed class of CI
wavefunctions for which the reference configurations are selected from a

generalized CAS MCSCF wavefunction. By generalized CAS we mean that there is
at least one partially occupied orbital subspace where the energy is invariant
to rotations of the orbitals in space. The simplest example of this type of
wavefunction is a full CI in a selected subspace of orbitals. The length of
the CI expansion in such a calculation grows rapidly with the size of the
active space. To avoid unreasonably large MCSCF expansions, it is desirable
to partition the space of chemically active orbitals and perform CAS
calculations in some or all of the subspaces, while a GVB type wavefunction
might be used in the remaining subspaces. A MCSCF calculation where all
single and double excitations are generated from one subspace into another
subepace would also be considered a generalized CAS wavefunction. In order to S

calculate the gradient of a selected reference CI wavefunction in which the
orbitals are obtained from a generalized CAS wavefunction, orbital derivatives
not appearing in the CPMCSCF equations are needed and we develop the machinery
necessary to obtain these quantities.

5
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We also present the equations employed in our MCSCF second derivative

calculations. Our equations are an extension of the open-shell SCF second
derivative formulas of Osamura, et al. 2 These equations are different from

those presentedy by Pulay 3 3 and Jorgensen and Simons 4 principally in the
manner in which the derivative overlap contributions are handled. We expand
upon these differences later in the text. In addition, the open-shell second
derivative formulas of Osamura, et al. 4 2 are reformulated so that we need not

contract Coulomb or exchange operators after the CPMCSCF equations are solved.

The CPMCSCF equations are also presented in a more compact and convenient
manner than Osamura's. The gradient-like terms appearing in the CPMSCF are
defined in terms of modified integrals involving derivative overlap terms, as

well as integrals involving derivative atomic orbitals. This formulation is
particularly convenient when MCSCF second derivatives are desired.

Finally, we present the results of sample calculations on the reaction,
Be + H2 + BeH 2 . Here, second derivatives obtained at the MCSCF level are used
in the optimization of the geometry of the products and for locating the
transition state at the jiultireference CI level. We compare the results
obtained at the second-order CI level with the results obtained in a selected
reference CI (SRCI) calculation.

II. COMPUTATIONAL DETAILS

-" A. First Derivatives

The energy of a general CI wavefunction

= C.x.1 (1)

can be expressed as

ij II iKjklC~
E j C j C ) h + C K i k  C )gjl(2a)
mj pq p pq q ij ijkl pxq p pq q ijkl

I ii D.h.l ii + i'kl1 Dijklgijkl (2b)

= £ CH C , (2c)
pq p pq q

where C is the CI vector, X is a configuration state function (CSF), hij and

gijkl are one and two electron MO integrals, Kq and jkl are spin coupling

constants, and Hpq is an element of the Hamiltonian matrix in our CSF basis.

Dij and Dijkl are one-particle and two-particle density matrix elements,

respectively. The first derivative of the CI energy, with respect to nuclear

coordinates, is28

6



,a q CH a Cq + or al Ua (3a)

= D..h'. + I Di.g. o c al IL U a (3b)
IJ xj ijkl ijklgijkl +  r ri ri

In this equation hj and gijkl are derivatives of the one- and two-electron

atomic orbital integrals transformed to the molecular orbital basis. The
derivatives of the molecular orbital expansion coefficients corresponding to
orbital i, a, are expressed in terms of undifferentiated coefficient vectors
*p as

a ua 
(4)

i pi Op

Lri is a Lagrangian multiplier defined as

Lri - 2 ( Dh rj + 2 il Dikl (5)

For a MCSCF wavefunction

Lij= Lji fcr ij occupied (6a)

and

Lri = 0 for i occupied and r = virtual. (6b)

These relations are simply a reflection of the variational conditions on the
orbitals. Not all of the elements of Uq. are independent. By differentiating
the orthonormality condition

U+SU = 1 (7)

one obtains

+ saj + ui 0, (8)

% where
Sa

s% 9 Sa (9)%a S1 xi xy yj

Say is the derivative of the x,y atomic orbital overlap integral with respect
to nuclear coordinate a. U4. can then be expressed as a sum of an
antisymmetric matrix and an upper triangular matrix

7
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uj= Aj + Tip (10)

where

a a(A.. = - (A..)(1
13 13

and Ta4 is defined by

T# - S4. for i<j (12a)

1 Sii for i=j (12b)

2 ii

= 0 for i>j .(12c)

Thus, the derivative of the MCSCF energy is

Ea = D. a a oc ail a (13)Ea j D j + ijkl Djkigijkl +  L.. .]I] 13

since

occ all A rl ri = 0 .(14)
ri ri

Before proceeding with a discussion of the CPMCSCF equations, it is
useful to further examine the contributions to the first derivative. We note
that it is possible to rewrite the first derivative for a CI wavefunction as

Ea = q a C + a (15)
Cp pq Cq iq p pq

This equation is obtained by reordering the sums in Eq. (3a) as follows:

u°c all L . Ua. D (j 2 Ua .h .)
ri ri i i r J

a

+ikl Dijkl ( 4 Urigrjkl) (16a)

a a
i~kl Dijkl (Urigrjl + Ujik

Urkgijrl Urlgijkr)

* 8
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a a
j[D.ih' + ikl Di (16c)

a
= E C , (16d)pq p pq q

where
au aah.. = (Ua.h + Ua.h .)(16e)ij ri rj rj ri

and

au a a a a
Sgjkl (Urigrjkl + Urjgirkl + Urkgijrl + Urlgijkr)

Similarly, the first derivative of the MCSCF energy is

a

Ea = E E C Ha C + E E C HT C (17)
pq ppqq pq ppqq

* a a

Partial-derivative integrals similar to h a and gUjklarise naturally in the

quadratic SCF procedure of Bacskay3 5 and in the atomic orbital based CPHF
equations of Osamura, et al. 36  They have also been exploited by Olsen, et
al. 2 3 in a cubic MCSCF procedure and by Lengsfield 2 2 in a quadratic MCSCF
approach designed to handle large CI expansions. These integrals have also
been used by Dupuis, 3 7 Pulay,3 3 and Jorgensen and Simons 3 4 to simplify their
derivative expressions. The partial-derivative Hamiltonian constructed from
these quantities is particularly useful as it occurs in both the CPMCSCF
equations and in the expressions for the MCSCF second derivatives.

" B. Coupled Perturbed MCSCF Equations

The derivative of the molecular orbitals U~j, which are needed to compute

the CI gradient, are obtained by solving the CPMCSCF equations. These
equations are generated by requiring that the wavefunction satisfy the MCSCF
variational conditions to first order with a change in nuclear geometry.
Thus, these equations result from requiring that the derivatives of the
orbital and CI stationary conditions, with respect to a nuclear coordinate,
vanish.

dG.. d(L..-L..)
1 1 ] = 0 (18a)

da da

Gij , in 3Gij C 2 G. oic a Tl T Grs= E n j + pir +  (18b)

8a mn aa 36m p aa 3C s r 3a Tmn p rs

and

9
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dGCI
da d (H - E6 ) C = 0 (19a)

da pq pq q

aGC , aA aGC I  3C aG C I  T aGC I

p + Z mn p + q p + oc atl rs p (19b)
aa mn aa M mn a Cq a Trs

The prime sign indicates that the sum only runs over the unique orbital

rotations which change the energy. Gathering the terms which are known on the
right-hand side of the equation, we obtain the CPMCSCF equations

aG.. aG.,

, aGC  I a T
in(a n n Cq q 1] iJ

a 0+ ' - C( a C + )Ta (21)

;n (M ( C a an a ( Imn q

where
A 3C

a mn and Ca  q
mn 3a q 3a

with the condition that

3a C = 0 .a p

In these expressions the superscript "a" in Gj and (GCI)a is used to denote
that derivative AO integrals are employed in the construction of these
quantities. The left-hand side of these equations contains explicitly the
Hessian matrix appearing in second order MCSCF theory. These equations are in
fact similar in structure to the second order MCSCF equations, and can thus be

most efficiently solved by expressing the CI variations in the CSF basis, as
noted by Lengsfield and Liu. 2 1 ,22 These equations are also similar to those

obtained by Osamura, et al.30 However, we have reordered the sums appearing
on the right-hand side of this equation in order that the quantities needed to

compute the MCSCF second derivatives are readily available.

C. MCSCF Second Derivatives

The derivative with respect to a nuclear displacement can be expanded as

follows:

d ( a 1 al IUri __a + r 3 (22a)
db ab +  T-'b aU . ab 9Cri p

10



all all Ub a cb a (22b)PCpab +i ri a~ p p ac

The second derivative of our MCSCF wavefunction is obtained by applying this

operator to our expression for the first derivative. It simplifies matters if
we make use of both expressions (Eqs. (13) and (15)) for the first derivative.
Our second derivative expression is obtained by operating on Eq. (13) with the
first two terms in Eq. (22) and then operating on Eq. (15) with the last term
in Eq. (22).

We obtain

a

Eab -2 q Cb Ha C 2 Cb HT q + Dhab + ab
p pq q q q p pq q +j ijij ijkl Dijkl gijkl

"+ ai ~La. Unb + Ic t rL . a + Ic iL U bTa. (23)
+ I ~ u I~bT I aI~ri ri + ri ri ri ri (3

occ ab occ all b a a b
L 1  i m mj + im mj

Note that only the first two terms are unique to MCSCF second derivatives.
The remaining terms are equivalent to the open-shell formulas of Osamura, et
al. 4 2 It is also important to note that almost all of the quantities
involving MO or CI derivatives are generated by setting up or solving the
CPMCSCF equations. In particular, the vector

a
Ba (Ha + HT ) C

pq pq q

can be stored when GcI + GCI is constructed. Moreover, the Lagrangian
multipliers Lai and L Tan G Tjia

rs a are used to obtain the gradient terms Gj and in

the CPMCSCF equations. The trace of the density matrix with the second
derivative integrals is calculated by transforming the density matrix elements

to the AO basis. The most time consuming step in this transformation only
requires mn4 multiplications where m is the number of active orbitals and n is
number of basis functions. The remaining contributions can be obtained from
the product of one-particle density matrices.

b  a
The only term which requires further consideration is Eir Lri Tr. This

term formally requires one to contract Coulomb and exchange operators (or more

efficiently to contract Osamura's Y nimj matrix) with the solution to the
b mU

CPMCSCF equations, U to form Lri. However, we can eliminate this step by

noting that

11



al IcLUbTa i L- T a.° U b
ri ri ri ri ri

(24)

+°oc L ial I Ub Ta.T a  Ub .

rp pi rp p)

The right-hand side of this equation is particularly convenient as all of
these terms are generated when we set up the CPMCSCF equations. Using this
relation and Eq. (10), we now obtain the final second derivative expression.

Eab 2 1q C (Hq + H a ) C + Jj Di.hab b Di

Hp pq pq q ij ij jkl ijkl

ail °ic Lb . all c (L+L ) . (25)
+ T. + ( a

. + T Ub )
ri ri ri ri ri

occ L Tab all a b a b+ i Lji ji + (TPi pj p Jp

Equation (23) can be decomposed in another fashion if the orthonormality
conditions are expressed in such a way that T is symmetric. Camp, King,
McIver, and Mullally 32 have expressed the orthonormality conditions in this
way. However, there is an advantage in employing an upper triangular T matrix
as only the first p (p is the number of occupied orbitals) columns are needed

to obtain the integrals hi and gik Thus, the transformations needed to
Ta 

Ta

obtain h andijkl can be performed very efficiently. This fact is also

exploited in Osamura's equations.

D. Selected Reference CI Gradients

The gradient of the energy for a CI wavefunction requires knowledge of
the first order variations in the molecular orbitals. The CPMCSCF scheme does
not uniquely define a tranformation of the orbitals, but only specifies a
transformation of the variational parameters. This is enough information to
define an orbital transformation excluding an arbitrary orthogonal mixing
within the invariant subspaces. If the CI wavefunction has the same invariant
subspaces as the reference wavefunction, then the gradient is well defined.
This is the case, e.g., with a SDCI using closed-shell Hartree-Fock orbitals.
Both wavefunctions are invariant to mixings among the doubly occupied core
orbitals and information concerning such mixings is not required for the CI
gradient.

For a CI wavefunction constructed as all excitations of a given order
from selected references of a generalized CAS wavefunction, this is not the
case. The CI is not invariant to mixings of orbitals within the partially

12



occupied subspaces. The most common way to address this problem in
calculating the CI energy itself is to require that the orbitals be natural
orbitals of the one-particle density matrix. For the calculation of the CI
gradient, we then remove the ambiguity by requiring the natural orbital
conditions to be satisfied to first order with a change in nuclear geometry.
The derivative of the natural orbital condition must vanish in analogy with
Eqs. (18) and (19) for the variational conditions.

dd- (DW - W) = 0 . (26)

Here D is a subblock of the one particle density matrix and A is a
diagonal matrix of occupation numbers. At a-0, W-1, and thus D(O)=X(0).

Evaluating Eq. (26) leads to expressions for the derivatives of
parameters which mix orbitals within the invariant subspace.

-Da
a = W 1 (27)

,i 
j i j k i - X 

C

In this equation, 2 p CaKiJD and Ca is obtained from the
SIpq p pq q p

solution to the CPMCSCF equations. Aqj is then obtained with the overlap

derivative portion Ta.* as in Eq. (10) to obtain Uaj.

III. COMPARISON WITH OTHER WORK

As noted in the Introduction, our second derivative expressions differ
" from those of Pulay3 3 and Jorgensen and Simons34 principally in the manner in

which the derivative overlap terms are included in the CPMCSCF equations, and
subsequently in the final expression for the second derivatives. Jorgensen
and Simons include an overlap term in the definition of their AO basis. They
are then able to derive a very compact set of formulas. However, the formulas
for the derivatives of their AO integrals are involved and the overall
efficiency of their method depends very strongly on how their derivative AOs
are computed. We should also note that Jorgensen and Simons' method was
developed to describe second derivatives of CI and coupled-cluster
wavefunctions, as well as MCSCF wavefunctions. The comparative efficiency of
their method must also be judged on how well it treats highly correlated wave-
functions, and this analysis is beyond the scope of the present study.

Pulay has derived the CPMCSCF equations in such a manner that the orbital

variations are expressed in the AO basis (as opposed to the MO basis used by
Osamura) and the CI variations are in the CSF basis. His CPMCSCF equations do
not require a contraction of Coulomb and and exchange operators with overlap
terms, but his CPMCSCF equations are larger than Osamura's because he is
working in the AO basis. We feel that the overall efficiency of both methods
should be about the same. However, we also note that Pulay's equations
neglect projection operator terms appearing in Osamura's equations (see also
Lengsfield and Liu 1 ). These terms are needed if the Hessian appearing in the

CPMCSCF equations is to be nonsingular.

13



The recent communication by Camp, et al., 32 provides few details of their
second derivative equations. However, they express the variation of the

molecular orbitals with nuclear displacement in terms of a product of an
exponential and a Hermitian opera-or. The orthonormality conditions at first
order are treated by this Hermitian operator as opposed to the upper
triangular matrix appearing in Eq. (12). Further details are needed to
determine if the simplicity of their final equations offset the computational

expense of working with a Hermitian matrix as opposed to an upper triangular

matrix in constructing terms like LTa appearing in our second derivative

expression.

IV. SAMPLE CALCULATIONS

The reaction Be + H2 + BeH 2 was studied in C2 v symmetry. The geometry of
the products and transition state was stabilized at the MCSCF and multi-
reference CI level. The MCSCF wavefunction employed in this study was a four-
electron in four-orbital CAS. This wavefunction correctly describes the
cleavage of the BeH bonds, but does not contain all of the configurations
needed to describe s2 and p2 near degeneracy in Be. Second order CI
calculations, based on the 4 in 4 CAS, are compared to the results of selected
reference singles and doubles CI (SRCI) calculations. In the SRCI

calculations, the references were selected on the basis of their cumulative
weight in the natural orbital representation of the MCSCF wavefunction. The

weight, W, was defined as follows:

w {2 (28)
W Ci

The basis set used for beryllium was Dunning's 5s contraction 38 of Huzinaga's

10s primitive set 3 9 and Bartlett's p function4 0 composed of three primitives

which we augmented with an uncontracted p function of exponent 0.057 181. The
hydrogen basis was Dunning's 2s contraction 41 of Huzinaga's 4s primitive set39

with a scale factor of 1.2. The results of these calculations are presented
in the following four tables. Table 1 lists the references employed in the
SRCI calculations. The stable geometries are given in Table 2, and the MCSCF
vibrational frequencies in Table 3. Our calculated MCSCF and CI energies are
given in Table 4.

The reaction is symmetry forbidden along the C2 v reaction path and this

results in a transition state with two dominant CSFs.

The results of the SRCI calculations accurately reproduce the second
order C1 results while only requiring a fraction of the computational effort.

The MCSCF calculations provide a good description of the reaction (in this
basis) but the activation energy is a bit high as expected.

We found that the multireference CI gradient calculations converged very
rapidly to stable points when MCSCF second derivatives and starting geometries
were employed. In the most unfavorable case, four iterations were required
for convergence (largest component of the gradient less than 1.0 x 10- a.u./
bohr).

14
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Table I. Dominant Configurations in the MCSCF Wavefunction

Equilibrium Geometry Configuration Coefficient

1 1a22a2lb2  0.989
2

2 1a2 2a11b23al2b2  0.092

U Weight -0.98766

Transition State Geometry Configuration Coefficient

1 la22a~1b2 0.740

2 1a2 2a2 3a2 -0.623

3 l22al2a~ -0.197
0.117

*The two coefficients associated with this configuration correspond to the

two spin couplings.

Table 2. Geometries of BeH 2 Stationary Points

HCSCF SRCI SDCI
* Equilibrium

R BH2.61 876 bohr 2.60 512 bohr 2.60 637 bohr

*0 180.000 180.00* 180.000

C2v 3.0875 bohr 3.0687 bohr 3.0693 bohr

0 47.380 48.680 48.760

Table 3. MCSCF Vibrational Frequencies

*Equilibrium Transition State

790.1 cm'1 4044.9i cm-1

790.1 c-

1827.5 cm-1  993.4 c-

2069.4 cm-1  4514.7 ciJ1

15
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Table 4. MCSCF and CI Energies for BeH 2

MCSCF SRCI SDCI

Equilibrium -15.773 651 a.u. -15.798 597 a.u. -15.798 965 a.u.

Transition State -15.597 013 a.u. -15.628 925 a.u. -15.629 315 a.u.

AE 0.176 638 a.u. 0.169 672 a.u. 0.169 650 a.u.

(110.8 kcal) (106.5 kcal) (106.45 kcal)

V. CONCLUSION

We have presented a set of simple and efficient formulas for the

calculation of multireference CI gradients and MCSCF second derivatives. The
additional machinery needed to compute selected-reference CI gradients was

developed. Sample calculations were presented in which SRCI structures and

activation energies compared very favorably with the full second order CI
results. In the reaction investigated in this work, MCSCF second derivatives
were found to be very useful in the stabilization of the CI structures.

16
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