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"Diffraction Phenomena in Optical Engineering Applications."

The complete work
reported here will also appear in a feature issue of the Journal of the Optical

Society of America, April 1986, entitled '"Propagation and Scattering of Beam
Fields."
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1. INTRODUCTION

The propagation of Gaussian beams has been extensively explored in the
literature. Most of the early literature neglects the effects of beam
truncation by an aperture with the result that a beam remains Gaussian as it
propagates.l-5 Often, it is the propagation of collimated beams that is

10 but lately the emphasis has been on focused beams.n-13 With

11,14-16

. 6-
discussed,
few exceptions, the discussion is limited to aberration-free circular

beams.

In spite of the vast amount of literature on the propagation of Gaussian
beams, there is little in terms of a quantitative comparison with the
propagation of a uniform beam. Even when results for both types of beams are

6-8,10,11 they appear in a normalized form in such a way

occasionally given,
that some of their quantitative difference is lost. The objective of this
report is to compare quantitatively the effects of diffraction, obscuration, and
aberrations on the propagation of uniform and Gaussian beams. Equations are
derived for the axial and transverse irradiance distributions for a focused
beam. Equations for encircled-power distributions are also given. For a
meaningful comparison between a uniform and a Gaussian beam, the total power
transmitted by the aperture is kept fixed, regardless of the value of the

obscuration or the nature of the beam. It is shown that, in the focal plane,

the irradiance at the focus and in its vicinity is smaller for a Gaussian beam

1Gaskill, J. D., Linear Systems, Fourier Transforms, and Optics, John Wiley
and Sons, NY, 1978, Section 10-7.

Siegman, A. E., An Introduction to Lasers and Masers, McGraw-Hill Book
Company, NY, 1971, Section 8-2.

Dickson, L. D., "Characteristics of a Propagating Gaussian Beam,"

Appl. Opt., 9, 1970, pp. 1854-1861. (This paper considers the effects of
aperture truncation and derives a condition under which they may be
neglected.)

Williams, C. S., "Gaussian Beam Formulas from Diffraction Theory,"

Appl. Opt., 12, 1973, pp. 871-876.

Herman, R. M., J. Pardo, and T. A. Wiggins, "Diffraction and Focusing

of Gaussian Beams," Appl. Opt., 24, 1985, pp. 1346-1354.

Buck, A, L., "The Radiation Pattern of a Truncated Gaussian Aperture
Distribution," Proc. IEEE, 55, 1967, pp. 448-450.
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than that for a uniform beam. However, away from the focus but within the
central disc of the diffraction pattern, the irradiance is higher for a Gaussian
beam. Accordingly, the encircled power is higher for a uniform beam for very
small circles, but the reverse is true for larger circles. The results for a
collimated beam are obtained as a limiting case of a focused beam, namely, a
beam focused at infinity. The differences between the diffraction patterns for

uniform and Gaussian beams decrease as the obscuration increases.

The problem of aberration balancing is discussed for the two types of
beams. Zernike polynomials representing balanced primary aberration for uniform
and Gaussian annular beams are described. The relationship between the peak
value of a primary aberration and its corresponding standard deviation across a
circular aperture is tabulated for both uniform and Gaussian beams. It is shown
that a Gaussian beam for which the irradiance at the edge of the aperture is
e-2 times the irradiance at its center (if there were no obscuratiom) is only
somewhat less sensitive to aberrations than a corresponding uniform beam. For a
Gaussian beam with a much weaker truncation by the aperture, the aberration
tolerance increases rapidly. However, in that case, since the beam power is
concentrated in a small region near the center of the aperture, the effect of
aberration in its outer region is negligible. Accordingly, for a weakly
truncated Gaussian beam, the aberration coefficients are defined in terms of the

peak aberration at the e_2 irradiance point in the aperture rather than at its

edge.

7Campbell, J. P., and L. G. DeShazer, '"Near Fields of Truncated Gaussian
Apertures,” J. Opt. Soc. Am., 59, 1969, pp. 1427-1429.

801laofe, G. 0., "Diffraction by Gaussian Apertures," J. Opt. Soc. Am., 60,
1970, pp. 1654-1657. -
9Schell, R. G., and G. Tyra, "Irradiance from an Aperture with Truncated-
Gaussian Field Distribution," J. Opt. Soc. Am., 61, 1971, pp. 31-35.
Nayyar, V. P,, and N. K. Verma, "Diffraction by Truncated-Gaussian Annular
Apertures,” J. Optics, 9, (Paris), 1978, pp. 307-310.
Holmes, D. A., J. E. Korka, and P. V. Avizonis, '"Parametric Study of
Apertured Focused Gaussian Beamws,' Appl. Opt., 11, 1972, pp. 565-574.
Li, Y., and E. Wolf, "Focal Shift in Focused Truncated Gaussian Beams,"
Opt. Comm., 42, 1982, pp. 151-156.

1 Tanaka, K., N. Saga, and K. Hauchi," Focusing of a Gaussian Beam Through a
Finite Aperture Lens," Appl. Opt., 24, 1985, pp. 1098-1101.

T



Note that the diffraction effects of a uniform or a Gaussian beam are
equivalent to those of a uniform or Gaussian-apodized pupil, respectively, in an
imaging system. Thus, for example, an irradiance distribution transverse to the
direction of beam propagation represents a corresponding point-spread function

of an imaging system.

L4 owenthal, D. D., "Marechal Intensity Criteria Modified for Gaussian
Beams," Appl. Opt., 13, 1974, pp. 2126-2133, 27i4.

15Lowenthal, D. D., "Far-Field Diffraction Patterns for Gaussian Beams in
the Presence of Small Spherical Aberrations,” J., Opt. Soc. Am., 65, 1975,
pp. 853-855,

lésklar, E., “Effects of Small Rotationally Symmetrical Aberrations on the
Irradiance Spread Function of a System with Gaussian Apodization Over the
Pupil," J. Opt. Soc. Am., 65, 1975, pp. 1520-1521.
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2. DIFFRACTION EQUATIONS

Consider an optical beam of wavelength XA diffracted by an aperture. If
>
U(0) represents the amplitude at a point B on the plane of the aperture, then,

- . 3 3 . + » -
in the Fresnel approximation, the amplitude at a point r in an observation plane

parallel to and at a distant z from the aperture plane is given by17

explik(z + r2/2z)]
iz

U(;;z) = u(o) exp(ikoz/Zz) exp(—ikg .« ¥/2)dp ()

> -
where k = 21/)X is the wave number of the beam radiation, r = frl, and o = Ipl.
The irradiance distribution in a certain plane is equal to the square of the
modulus of the corresponding amplitude distribution. For example, in the

observation plane, it is given by
-> -+ 2
I(r;2) = |U(r;2)| (2)

The corresponding encircled power (or energy) P(ro), i.e., the power in a cir-

> .
cle of radius T, centered at r = 0 in the observation plane, is given by

P(r ;z) = f 1(¥:z) dr (3)
o <

MELE
- 0

17Mahajan, V. N., "Axial Irradiance and Optimum Focusing of Laser Beams,"
Appl: Opt., 22, 1983, pp. 3042-3053.
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3. APERTURE DISTRIBUTION

Consider an annular aperture of inner and outer radii of €a and a,
respectively, where 0 < € < 1 is the linear obscuration of the aperture. As
indicated in Figure 1, a beam of outer and inner radii a and €a, respectively,
is focused at a distance R from the aperture plane. The beam is aberration-
free when a spherical wavefront of the radius of curvature R is centered at
the point of observation and passes through the center of the aperture. For a
fixed total power Po transmitted by the aperture regardless of the value of
€ or the nature of illumination (uniform or Gaussian), the irradiance

distribution at the aperture for uniform and Gaussian illumination may be

written
I (p) = (P /A)/(1 - %) (&)
u o
and
Ig(p) = (PO/A) £(y;e) exp(-2yp?) (s5)
respectively. Here
A= mal (6)

is the area of the unobscured circular aperture

- 2 -
Flyse) = 2y/(e 2YE - 72Y) (7)

and p is in units of a so that € < p < 1, The parameter Yy characterizes
the truncation of a Gaussian beam by the aperture. If we define a Gaussian
beam radius w as the radial distance from the beam center at which the
irradiance is equal to e-2 of the value at the center (if there were no

obscuration), then
Y = (a/w)2 (8)

i. ” .
-13- { FRECEDING PAGE BLANK-NOT §1LMED
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Gt

i.e., /? represents the ratio of the aperture radius and Caussian beam
radius. Note that as y + 0, f(y;e) + (1 - ez)-l and Eq. (5) reduces
to Eq. (4). Hence, the results for a Gaussian beam reduce to those for a

corresponding uniform beam in the limit y + O.

It is evident from Eq. (4) that the aperture irradiance (in units of
PO/A) for a uniform beam increases with ¢ as (1 - ez)-l. For a Gaussian beam,
the irradiance decreases exponentially from a maximum value of f(y;e)exp(-2ye?)
at the inner edge of the aperture to a minimum value of f(y;€)exp(-2y) at the
outer edge. For example, as illustrated in Figure 2a, when y =1 and € = 0,
the maximum and winimum values are 2.31 and 0.31, respectively. Thus, the
mirrors in a high-power Gaussian beam train are not only illuminated unevenly,
but they must also withstand considerably higher irradiance levels compared to
those for a uniform beam. For an annular beam, the peak irradiance is even
higher, as illustrated in Figure 2b for y = 1 and € = 0.5, since the same
total power is now distributed across a smaller area. The ratio of the peak

values of the aperture irradiance for Gaussian and uniform beams is given by

Ig(e)/Iu(e) (1 - €2) f(y;e)exp(-2ye?)

2v(1 - €2)/{1 - expl-2y(1 - €2)1} (9)

The variation of this ratio with € is shown in Figure 2c¢ for vy = 0.5, 1,
2, and 3. It is evident that as y(1 - €?) increases, the ratio approaches

a value of 2y(1 - €?).

-15_
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4, FOCUSED BEAM

For an aberration-free beam focused on the axis of the aperture at a

distance R from it, the amplitude at the aperture can be written

ulp) = YI(p) exp(-iApzlxR) (10)

If, for example, Rb is the radius of curvature of a spherical wave incident on

L R;l + f_l. Substituting Eq. (10) into

Eq. (1), we find that the irradiance distribution in an observation plane

a lens of focal length f, then R

can be written

1
I(r;z) = A(R/z)2 ‘,- /1(p) exp[i¢2(o)] Jo(ﬂrp) pdp 2 (11)
€
where
= Afl _1\2
@2(0) =3 (z R)p (12)

represents the defocus phase aberration of a beam focused at a distance R with

respect to a reference sphere centered at a distance z and passing through the

center of the aperture. In Eq. (11), various quantities are normalized by the

parameters for a uniformly illuminated circular aperture. The I(p) is in units
of PO/A, I(r;z) is in units of POA/AZRZ, p is in units of a, and r = 17

is in units of Az/D, where D = 2a.

We shall refer to the observation plane at z = R where the beam is focused
at as the focal plane and the axial point at z = R as the focus or the focal
point. Similarly, we shall refer to a beam with R = o at the exit of the
aperture as a collimated beam. 1In imaging applications, the focal plane will be

more appropriately called an image plane, unless the object is at infinity.

-17~




4.1 FOCAL-PLANE DISTRIBUTION

If we let z = R and substitute aperture distributions, Eqs. (&) and (5),

for uniform and Gaussian beams into Eq. (11), we obtain the corresponding

focal-plane distributions. In the case of a uniform beam, it is given by18’19

I (r5R) = (1 - eyl Vi (O - e /T:TE¥$12 (13)
where
1 () = [2J1(nr)/nr]2 (14)

represents the focal-plane irradiance distribution for a uniform circular
(¢ = 0) beam. It is evident that for the focal-plane distribution, the
variable r is in units of AF, where F = R/D is the f-number of the focused

beam. The encircled power, in units of Po, is given by

1
Pu(ro;R) = (1 - sz)-lch(ro) + ech(ero) - he_érJl(nrro)Jl(nerro)dr/r] (15)
where L is in units of AF, and
P(r)=1- Jz(ﬂr ) - Jz(nr ) (16)
c o 0 o 1 o

represents the focal-plane encircled-power distribution in the case of a uniform

circular beam.
The corresponding results for a Gaussian beam are given by

1 2

—_—vn
1(riR) = 4f(y;e) f e P 3, (nro)pdo (17)
€

1830:216M., and E, Wolf, Principles of Optics, Pergamon Press, NY, 1975,
p. .

19ahajan, V. N., "Included Power for Obscured Circular Pupils," Appl. Opt.
17, 1978, pp. 964-968. A

-18-




and

r
P (T iR) = (ﬂ2/2)£‘olg(r;R)rdr (18)
Figure 3 shows how the irradiance and encircled-power distributions in the
focal plane compare for the two beams. The uniform beam corresponds to y = 0,
and the Gaussian beam considered in Figure 3 is for y = 1. At and near the
focal point, a uniform beam gives a higher irradiance than a Gaussian beam.
For a circular aperture (Fig. 3a), Iu > Ig for r < 0.42. For larger values
of r, Ig > Iu, except in the secondary rings where again Iu > Ig, as is
well known. The encircled power Pu % Pg for r})§ 0.63. Of course, as ro + o,
Pu > Pg + 1. The Gaussian illumination broadens the central disc but reduces
the power in the secondary rings. For annular apertures with € = 0.5 (Fig. 3b),
the differences between the focal-plane distributions for uniform and Gaussian
beams are less compared to those for a circular aperture. The obscuration reduces
the focal-point irradiance, reduces the power in the central disc, and spreads it
into the secondary rings of the diffraction pattern. It reduces the size of the
central disc also. Moreover, the difference in encircled powers Pu - Pg
changes its sign from positive to negative to positive as r, increases. Note

also that because of the obscuration, the secondary maxima are higher and of

nearly equal value for the two types of beams.

For clarity, the irradiance distributions are also plotted on a logarithmic
scale (Figs. 3¢ and 3d). The positions of maxima and minima and the correspond-
ing irradiance and encircled-power values are given in Table 1. It is evident
that the corresponding maxima and minima for a Gaussian beam are located at higher
values of r than those for a uniform beam. Moreover, whereas the principal
maximum for a Gaussian beam is only slightly lower (0.924 compared to 1), its
secondary maxima are lower by a factor >3 compared to the corresponding maxima

for a uniform beam.

The focal-point irradiance corresponding to uniform and Gaussian beams is

given by

I (OR) =1 - g2 (19)

-19-
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Focal-Plane Trradiance and Fncircled-Power Distributions for

Uniform and Gaussian (y

(Continued)

Figure 3.

1) Beams of a Given Total Power P,



Table 1. Maxima and Minima of Focal-Plane Irradiance Distribution and
Corresponding Encircled Powers for Uniform and Gaussian
(y = 1) Circular Beams

Maxima/Minima r,r, I(r) P(ry)
Max 0 1 0
(0) (0.924) (0)
Min 1.22 0 0.838
(1.43) 0 (0.955)
Max 1.64 0.0175 0.867
(1.79) (0.0044) (0.962)
Min 2.23 0 0.910
(2.33) (0) (0.973)
Max 2.68 0.0042 0.922
(2.76) (0.0012) (0.976)
Min 3.24 0 0.938
(3.30) (0) (0.981)
Max 3.70 0.0016 0.944
(3.76) (0.0005) (0.983)
Min 4,24 0 0.952
(+.29) 0) (0.985)
Max 4,71 0.0008 0.957
(4.75) 0.0002 (0.986)

Note: The numbers without parentheses are for a uniform beam and
those with parentheses are for a Gaussian (y = 1) beam.
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and
Ig(O;R) = (2/y) tanh[(1 - €2)y/2] (20)

. . .. . 20
respectively. Thelr ratio is given by

3
[}

1 (0;R)/TI (O;R)
g u

_ tanh[(1 - e2)y/2)

(21)
(1 - €¥)y/2
Figure 4a shows how n varies with y for several values of €. It is
evident that n decreases as Y increases, regardless of the value of €.
However, as shown in Figure 4b, for a given value of Yy, N increases as €
increases. Note that for large values of y
n-=+ 2/y(1 - €?) (22)

The decrease in N due to an increase in Y can be due to an increase in
a and/or a decrease in w. If we consider the absolute (unnormalized) values of
the focal-point irradiance, we note that Iu(O;R) increases quadratically with a,
but Ig(O;R) increases only slightly (< 10%) with a for /¥y > 3. Similarly,
Ig(O;R) decreases (nearly) quadratically as w decreases for vy > 3. It is
evident that n is always less than 1. A redistribution of the aperture power from

a uniform to any nonuniform distribution reduces the focal-point irradiance.

4.2 AXTAL IRRADIANCE

If we let ¥ = 0 in Eq. (11), we obtain the axial irradiance for uniform17

and Gaussian11 beams

Iu(O;z) = (R/z)2(1 ~ €%) {sinl(1 - ez)¢o/2]/[(1 - ez)¢>°/2]}2 (23)

ZOMahaigg, V. N., "Luneburg Apodization Problem I," Opt. Lett., 5, 1980,
pPP. -2
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and

2

Ig(o;z) = (R/z)z[ZYlwo + Yz)]{coth[(l - e%)y]

- cos[(1 - e2)¢0]/sinh[(1 - ey} (24)

respectively. The quantity &, represents the defocus phase aberration at

the edge of a circular aperture. It is given by

¢0= (X)(;-ﬁ' (25a)
= nN(% - 1) (25b) L
where
N = a2/)r (26)

is the Fresnel number of the circular aperture as observed from the focus.

The positions of maxima and minima of axial irradiance are obtained by

equating to zero its derivative with respect to z. In the case of a uniform

beam, the minima have a value of zero. They are located at z values

_ -

corresponding to an integral number of waves of defocus as an aberration at

the outer edge of the aperture relative to that at its inner edge, i.e., for

¢, = 2m/(1 - %), n = +1, #2, ... (27a)

or

z/R = {1 + [20/N(1 - €9)]}"1 (27b)
The positions of maxima of axial irradiance are given by the solutions of
tan((1 - €®)9,/2] = (R/2)(1 - €2)d,/2, =z #R (28)

In the case of a Gaussian beam, the positions of minima and maxima of axial

irradiance are given by the solutions of

o
2 % - —>—{cosh[(1 - e2)y] - cos((1 - e2)¢ ]}
® "+ vy °
(]
= -(1 - ¢))sinf{(1 - e2)¢°1 (29)
_25_
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Figure 5 s .ows how the axial irradiance of a uniform focused beam differs
from that for a Gaussian beam when y = 1 and Fresnel number N = 1, 10, and
100. We note that the principal maximum is higher for the uniform beam
compared to that for the Gaussian beam. However, the secondary maxima are
higher for the Gaussian beam. Moreover, whereas the axial minima for the
uniform beam have a value of zero, the minima for the Gaussian beam have
nonzero values. For a given value of ¢, the locations of maxima and minima,
except the principal maximum, are very nearly the same for the two beams. The
effect of the obscuration is to reduce the irradiance at the principal maximum
but increase it at the secondary maxima. Also, the maxima and minima occur at
smaller z values for an annular aperture. These z values correspond approxi-
mately to those axial points at which the annular aperture subtends an odd or
an even number of Fresnel's halfwave zones, respectively. We note that the

curves become symmetric about the focal point z = R as N increases.

Note that even though the principal maximum of axial irradiance does not
lie at the focus, maximum central irradiance on a target at a given distance
from the aperture is obtained when the beam is focused on it. This can be seen
by equating to zero the derivative of axial irradiance, Eqs. (23) and (24),
with respect to R. When doing so, the normalization factor POA/)\ZR2 should be
substituted in these equations with the consequence that the R? factor in
front of their right-hand side disappears. Figure 6 illustrates how the
central irradiance on a target at a fixed distance z varies when the beam is
focused at various distances R along the axis. The irradiance in this figure

is in units of POA/AZzz. The quantity Nz = az/kz represents the Fresnel number

of a circular aperture as observed from the target. As in Figure 2, the maximum

irradiance values for uniform and Gaussian (y = 1) beams are 1 and 0.924,
respectively, when € = 0, and 0.750 and 0.717 when € = 0.5. We note that as

Nz increases, the curves become symmetric about R = z.

Tt is evident from Egqs. (23) and (24) that the axial irradiance depends
on z and R through the inverse-square-law dependence in (R/2)? factor and the
defocus aberration ¢o. The irradiance is symmetric with respect to the sign
of 00' We note from Figures 5 and 6 that as the Fresnel number N or Nz
becomes large, the axial irradiance becomes symmetric about the point z = R.

The reason for this is simple, as may be seen by an examination of Eq. (25).

-26-
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o

When N is very small, z must be much different from R for @o to have a
significant value. For example, when N = 1, a quarter wave of defocus (Qo =

+ 1/2) is obtained for R/z = 1 * 0.5. Similarly, when Nz =1, ¢o = ¢+ /2 for
z/R =1 + 0.5. In either case, the axial irradiance is asymmetric about the
point z = R because of the asymmetry in the defocus aberration as well as in
the inverse-square-law dependence. However, when N or Nz is very large, a
slight difference between z and R gives a large value of ¢0. For example, when
N = 100, a quarter wave of defocus is obtained for R/z =1 * 0.005, or z/R = 1
+ 0,005, Note that, for large N, l¢o| is symmetric about the focal point.
Hence, in the vicinity of focus, where the axial irradiance is appreciable
compared to the focal-point irradiance, the axial irradiance is symmetric
about the focal point. The inverse-square-law dependence has negligible
effect in this case, since z and R are practically equal to each other.
Similar considerations hold when Nz is very large, i.e., the irradiance at

the point of observation is the same for two beams focused symmetrically about
it. These considerations also extend to the transverse irradiance distribu-
tions [see Eq. (30)]. Thus, for example, the transverse irradiance distribu-
tion in the vicinity of the focal plane is symmetric about it only when N is

very large.

4,3 DEFOCUSED DISTRIBUTION

When z # R, we may write the right-hand side of Eq. (11) as the
product of two integrals and retain only its real part, since irradiance is a
real quantity. Thus, the irradiance distribution in a defocused plane can be

written

1 1
I(r;z) = A(R/z)2 1!.1!. ps/T({p)1(s) cos[@o(p2 - sz)]Jo(nrp)Jo(nrs)dpds (30)

If we let r = 0 and note that JO(O) = 1, we obtain a different form of the

expression for axial irradiance, namely

1 .1
1(0;2) = A(R/z)sz psY1(p)1(s) cos[<¥7o(¢)2 - s%))dpds (31)
€ €

-3]1=-




The encircled power (in units of P, with rg in units of Az/D) is given by

1 1
P(ro;z) = 2172f f psVI1(p)1(s) <:<:~s[‘1>o(o2 - sz)]Q(p,s;ro)dpds (32)
€ €

where21

r
(o]

{ Jo(nrp) Jo(ﬂrs)rdr

Q(o,s;ro)

W
)

= (rcz,/Z)[J(z)(nrop) + meos)l if p=s (33a)

[ro/ﬂ(p2 - sz)][le(ﬂrOD) Jo(nros)
-le(nros) Jo(nrop)] if p #s (33b)

The integrals in Eqs. (30)-(32) can be evaluated by the Gauss quadrature method

according to which we may write2?

1 1
ff f(p,s) dp ds = [(1 - e)/zlz[
€ €

i-1
Z W W, f(p.,s.) (34)
2 j=0 *3 1

2
wif(opsj)

ne~-x

i=1

+ 2
i

ne--1z

where M is the number of 1-D quadrature points, w, are the weight factors,

and

[1 +e + (1 - E)xi]/Z (35)

X, being the ith zero of the Mth-order Legendre polvnomial. 1In our calcula-

tions we have used a 24-point (M = 24) Gauss quadrature. Note that by letting

2lAbramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions,
Dover, NY, 1970, p. 484.

221bid., p. 887.
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¢o = 0 in Eqs. (30)-(32), we can calculate the focal-plane distributions as
well. Equations (30)-(35) are generalizations of our earlier work on uniform
circular beams23 to annular apertures and Gaussian beam. Note that with

slight modification, Eqs. (30)-(32) can be applied to diffraction calculations
involving any radially symmetric amplitude and phase distributions at the aper-
ture. For example, if spherical aberration (Asp“) were present, the cosine

factor in these equations would become cos{®(p) - ¢(s)] where ®(p) = ¢opz + Aso“.

An example of defocused distribution is illustrated in Figure 7 for both
uniform and Gaussian (y = 1) beams with a large Fresnel number (so that the
inverse—square-law variation is negligible) when € = 0 and € = 0.5. The
amount of defocus 00 = 2.783 rad (or 0.443)) is such that the central
irradiance for a uniform circular beam is reduced to half the corresponding
focal-point irradiance. (The defocused distributions shown can also be
interpreted as the distributions on a target at a fixed distance z when the
beam 1s focused at a distance R such that ¢o = 2,783 rad. In this case,
the irradiance would be in units of POA/)‘Zz2 and r and T, would be in
units of Az/D.) We note that, as in the case of focal-plane distributions,
the central irradiance for a Gaussian beam is lower than that for a correspond-
ing uniform beam. Note, however, that the defocus aberration does not reduce
the central irradiance for the annular beam as much as it does for the circular
beam, so much so that, for the amount of defocus aberration considered in
Figure 7, the defocused central irradiance for the annular beam is higher than
that for the corresponding circular beam. For the uniform and Gaussian circu-
lar beams, the central irradiance decreases from 1 and 0.924 to 0.500 and 0.483,
respectively. For the annular beams, it decreases from 0.750 and 0.717 to
0.514 and 0.497, respectively. This indicates the well-known fact that the
tolerance for a radially symmetric aberration such as defocus is higher for an
annular beam than that for a circular beam. When € = 0, the encircled power
is higher for a uniform beam for small values of T, compared to that for a
Gaussian beam. When ¢ = 0.5, the difference in encircled power for the two
types of beam changes from positive to negative to positive depending on the

value of r,-

23Mahajan, V. N., "Aberrated Point-Spread Function for Rotationally Symmetric
Aberrations," Appl. Opt., 22, 1983, pp. 3025-3041.
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5. COLLIMATED BEAM

The results for a collimated beam can be obtained from those for a focused
beam by letting R + . Thus, for example, Eq. (11) for the irradiance distri-

bution in a plane at a distance z from the aperture reduces to

! 2
I(r;z) = 44%\ f v/1(p) exp[i‘b0 0?] Jo(nro)pdo (36)
€

where
¢ = A/Az (37)
o

represents the (negative of) phase aberration of a plane wavefront with
respect to a reference sphere centered at a distance z and passing through the
center of the aperture. In Eq. (36), the irradiance in both the aperture and

the observation planes is in units of the aperture irradiance Po/A for a

uniform circular beam. As in Eq. (11), r is in units of Az/D.

In the far field, i.e., for z > D?/A, the phase aberration ¢o < Tm/h
(corresponding to a wave aberration of less than or equal to A/8) and may be
neglected. Hence, the irradiance distribution, and correspondingl the
encircled-power distribution in a far-field plane, is similar to a focal-plane
distribution discussed earlier. The only difference is in scaling of the
diffraction pattern. Similarly, in the near-field, i.e., for z < D?/\, the
irradiance and encircled-power distributions correspond to defocused distri-
butions discussed earlier. The only significant difference is in the definition

of ¢ .
o

If z is in units of the far-field distance D?/A, and we let r = 0 in

Eq. (36), we obtain the axial irradiance (in units of Po/A) for uniform17

and Gaussian beams

1 (052) = (4/(1 - €?)] sin?(n(1 - €2)/82] (38)
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and
Ig(O;z) = {2v/[1 + (4yz/m)?]} {cothly(l - €2)]

- cos[m(1 - €2)/4z)/sinh[y(1 - €%)]} (39)

respectively. For a uniform beam, the maxima of axial irradiance have a value

of 4/(1 - €?) at
z=Q0-€e¥)/4(m+1), n=0,1,2, ... (40)
Its minima have a value of zero at
z = (1 -¢?)/8n , n=1, 2, ... (41)

The positions of maxima and minima of axial irradiance for a Gaussian beam are

given by an appropriate modification of Eq. (29), namely

{2(&:/“)372/[1 + (Ayz/n)zl}{cosh[y(l - €2)]) - cosln(l - €2)/4z2}}

= - (1 - €¥)sin[n(1 - €2)/4z] (42)

Figure 8 illustrates how the axial irradiance of collimated uniform and
Gaussian beams varies with distance z from the aperture. With reference to
Figure 5, Figure 8 corresponds to N = 0., In contrast to Figure 5, the maxima of
axial irradiance of a collimated uniform beam have the same value of 4/(1 - €2).
Moreover, unlike the principal maximum in Figures 5a and 5d, the maximum
farthest from the aperture has a lower value than the maxima closer to it in the

case of a Gaussian beam.
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6. ABERRATION BALANCING

A focused beam emerging from the aperture is aberration free, if its
wavefront passing through the center of the aperture is spherical with a center
of curvature at the focus. Any deviations of the wavefront from this spherical
form represent aberrations. In that case, the spherical wavefront centered at
the focus is referred to as the reference sphere. For small aberrations, the
Strehl ratio (i.e., the ratio of central irradiances with and without an
aberration) is determined by the aberration variance across the
amplitude-weighted aperture.24 The problem of aberration balancing for
25,26

uniformly illuminated circular apertures was discussed by Nijboer. This

24,27 In aberration

has been extended to nonuniformly illuminated apertures.
balancing, a classical aberration of a certain order (which represents a term in
the power series expansion of the aberration function in aperture coordinates)
is mixwd with aberrations of lower order such that the variance of the net
aberration is minimized. Consider, for example, a typical balanced

aberration24 (representing a term in the expansion of the aberration in terms

of a set of "Zernike" polynomials which are orthonormal over the amplitude-

weighted annular aperture)

®(p,0;e) = € m €m Y2(n + 1) R:(p;e)cosme, (43)

where (p,0) are the polar coordinates of a point in the aperture plane, n
and m are positive integers (including zero), n - m > 0 and even, R:(p;e)

is a radial polynomial of degree n in p and has the form

m n-2 m _m
+ bn o + ...+ dn o} (44)

m _ .m n
Rn(o,e) =a o

24Mahajan, V. N., “Zernike Annular Polynomials for Imaging Systems with
Annular Pupils," J. Opt. Soc. Am., 71, 1981, pp. 75-85, 1408.

25Nijboer, B. R, A., "The Diffraction Theory of Aberrations," Ph.D. Thesis
(University of Groningen, Groningen, The Netherlands, 1942).

265ee Ref. 18, Chapter 9.
7523pie1, S., "Aberration Balancing Technique for Radially Symmetric
Amplitude Distributions: A Generalization of the Marechal Approach," J. Opt.
Soc. Am., 72, 1982, pp. 947-956.
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The coefficients a" et cetera, depend on the obscuration ratio € and the
n

aperture amplitude vI(p). The quantity

_1
€ ==, m=0
"2
=1, m# 0 (45)

Unless n = m = 0, the coefficient ¢om represents the standard deviation of

the aberration, i.e. 'y
o = % (46)
where
0¢2 = <¢2> - <<D>2 (47)
and "
1 2w 1 in
<> = ff Y1(p) 8" (p,0)pdpd®, f v1(p) pdpdd (48)
e 0 € 0

From Eqs. (43) and (46), we note that the standard deviation of an aberration
can be obtained immediately by comparing its form with the corresponding
orthonormal aberration represented by Eq. (43), without having to calculate the
integrals in Eq. (48). The variance of an aberration consisting of two or more
terms of the form of Eq. (43) is given by the sum of the variance of each of

the aberration terms.

The radial polynomials corresponding to balanced primary aberrations are
listed in Table 2 for both uniform and Gaussian beams.24 We now consider
spherical aberration, coma, and astigmatism in uniform and Gaussian beams and
compare their balancing with other aberrations to winimize their variance

across the aperture.

6.1 SPHERICAL ABERRATION

First, we consider spherical aberration

4
¢s(p) = Asp (49)
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where AS represents the peak value of the aberration. For a uniform beam,

. . . . 2
the standard deviation of the aberration is given by

o, = [ - €2 - 6" - €% + 45:")1/2

s /3/5]AS (50)

If we mix the aberration with an appropriate amount of defocus Adpz, we

obtain the balanced aberration

2

4
¢bs(p) = Asp + Adp (51)

The value of Ad which minimizes the variance of the balanced aberration can
be obtained by comparing it with the radial polynomial Rg(p;E) given

in Table 2. For a uniform beam it is given by

A, =< (1+¢eHa (52)
du S

The cceresponding standard deviation of the balanced aberration is given by2%4

0., = (1 - e 2/6/51A (53)
su S

Note that for a given value of As, O\ su decreases as € increases.

For a Gaussian circular beam with y = 1

Oy [(20e? - 69e + 40012/ (e - DA (542)

[}

As/3.668 (54b)

The balancing defocus and the standard deviation of the corresponding balanced

aberration are given by

0,0
Adg = (ba/aA)As (55a)
= - 0.933 As (55b)
and
o, = A VS al (56a)
bsg s 4
= As/13.705 (56b)
_az_
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Comparing uniform and Gaussian circular beams aberrated by spherical

aberration, we note the following. For a given value of As

c!sg/csu = 0.91 (57)
Hence, for a given Strehl ratio exp(-0?), where 0% is the variance of the
phase aberration,28 a Gaussian beam can tolerate a slightly higher amount of
spherical aberration than a uniform beam. By balancing with an appropriate
amount of defocus, the standard deviation for a Gaussian beam is reduced by a
factor of 3.74 compared to a factor of 4 for a uniform beam. Comparing the

standard deviation of the balanced aberration for the two beams, we find that
/o = 0.98 (58)

Hence, for a given value of AS, the Strehl ratios for the two beams are
practically the same. We noted earlier that the central irradiance for an
aberration-free Gaussian beam is lower by 7.6% compared to that for a
corresponding unifor- beam. For beams aberrated with a small value of As'
the difference in their peak central irradiances will be slightly smaller.

Comparing the amounts of balancing defocus

= 0. (59
Adg/Adu 0.933 (59)
we note that the defocused plane for a Gaussian beam is closer to the focal
plane than that for a uniform beam. The location of the defocused plane, i.e.,

its z value, is given by

¢o = Ad (60)

For z = R, it is given by
z =R - SAFzAd (61)

where Ad is in units of A.
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To compare the central irradiance in the focal plane, we note that for a
. quarter wave of spherical aberration, a Strehl ratio of 0.8 is obtained for a

28 corresponding to th = 0.22. The corresponding Strehl ratio

- 2
for a Gaussian beam is e 0.22(0.9D% _ 0.83, giving a central irradiance of

uniform beam

0.77 (compared to 0.8 for a uniform beam).

2 6.2 COMA
b
N .
Next we consider coma
4
® (p,8) = A p® cosb (62)
c c
where AC represents the peak value of the aberration. For a uniform beam,
the standard deviation of the aberration is given by24
{ o = [(1+¢e?+ "+ c8/81l/2 (63)
cu c
\
If we mix coma with an appropriate amount of tilt, Atp cosf, we obtain
the balanced aberration
!
: = 34 4
ch(p,G) (Acp Atp) cosH (64)
4 The value of A e? which minimizes the variance of the balanced aberration, can

be obtained by comparing it with the radial polynomial R (p €). For a

uniform beam, it is given by
Ay - (DA + e + e/ + eD)]A (65)

The corresponding standard deviation of the balanced aberration is given byza

_ - e v act e e (66)
obcu 6/7 (1 + ez)l/2 c

28Mahajan, V. N., "Strehl Ratio for Primary Aberrations in Terms of Their
Aberration Variance," J. Opt. Soc. Am., 73, 1983, pp. 860-861,

b4
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For a given value of Ac’ obcu slightly increases as € increases, achieves its

maximum value at € = 0.29, and decreases rapidly for larger values of €.

For a Gaussian circular beam with y = 1

= 1,1
Atg (b3/a13)Ac (67a)
= -0.608 Ac (67b)
and
g = A /2/-2_.a1 (68a)
bcg c 3
= Ac/8.802 (68b)

Comparing uniform and Gaussian circular beams aberrated by coma, we note

the following. For a given value of Ac

o, . /o 0.96 (69)

beg’ “beu -

Therefore, the Strehl ratio for a Gaussian beam is approximately 0,82 when it

is 0.80 for a uniform beam. Accordingly, the peak irradiances for the two
beams are 0.75 and 0.80, respectively. Note, however, that since
A /A  =0.91 (70)

tg tu

the peak irradiance for a Gaussian beam occurs in the focal plane at a point

which is closer to the focal point by 9% compared to that for a uniform beam.
6.3 ASTIGMATISM
Finally, we consider astigmatism

¢ (p,0) = A p? cosze (71)
a a
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where Aa represents the peak value of the aberration. For a uniform beam,

the standard derivation of the aberration is given by
o = (1/&)1 + em2 4 (72)
au a

If we mix astigmatism with an appropriate amount of defocus, we obtain the

balanced aberration
2 2 2
¢ba(p,6) = Aap cos 0 + Adp (73)

For both uniform and Gaussian beams, the amount of defocus that minimizes the
variance of the balanced aberration can be obtained by comparing it with the

Zernike polynomial Rg(p;e)COSZG. It is given by

A, =~ (1/2)a (74)
d a

so that the balanced aberration becomes
o (0,8 = (1/2)A p? cos26 (75)
ba a

For a uniform beam, the corresponding standard deviation is given by

o

oy = (L/2/B)(L + €2 4 SORIEN (76)

a

For a given value of Aa’ %au and % au both increase as € increases. This

is true for a Gaussian beam as well. For a Gaussian circular beam with y =1

Q
]

A /2/6 32 (77a)
bag a 2

Aa/5.609 (77v)

Comparing uniform and Gaussian circular beams, we note that, for given value
of A
a

c:baglcxbau = 0,87 (78)
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Therefore, the Strehl ratio for a Gaussian beam is approximately 0.85 compared
to a value of 0.80 for a uniform beam. Accordingly, the central irradiances

for the two beams are 0.78 and 0.80, respectively.

For easy comparison, tiie standard deviation of primary aberrations and of
the corresponding balanced aberrations is tabulated in Table 3 for uniform and
Gaussian (y = 1) circular beams. It is evident that the standard deviation
for a Gaussian beam is somewhat smaller than the corresponding value for a
uniform beam. Accordingly, for a given small amount of aberration, the Strehl
ratio for a Gaussian beam is higher than the corresponding value for a uniform
beam. Similarly, for a given Strehl ratio, the aberration tolerance for a
Gaussian beam is somewhat higher than that for a uniform beam. We also note
that, whereas aberration balancing in the case of a uniform beam reduces the
standard deviation of spherical aberration and coma by factors of 4 and 3,
respectively, the reduction in the case of astigmatism is only a factor of
1.22, For a Gaussian (Y = 1) beam, the reduction factors have a similar
trend, but the factors are smaller: 3,74, 2.64, and 1.16 corresponding to

spherical aberration, coma, and astigmatism, respectively.

We note that the variance of each of the three primary aberrations is
minimized if it is measured with respect to a reference sphere centered at a
point which is slightly different from the focal point. In the case of
spherical aberration and astigmatism, the balancing aberration is defocus,
i.e., their variance is minimized if they are measured with respect to a
reference sphere centered on an axial point z # R, In the case of coma,
the balancing aberration is tilt; i.e., its variance is minimized if it is
measured with respect to a reference sphere centered at a point in the focal
plane but not at the focal point. For small aberrations, minimum variance has
the consequence that when an aberrated beam is focused on a target at a fixed
distance z from the aperture, the central irradian:e on it is maximum if the
beam is slightly defocused in the case of spherical aberration and astigmatism
and if it is slightly tilted in the case of coma. If the beam is neither
defocused nor tilted, then we can say that for focusing systems with large
Fresnel numbers (so that the highest aberration-free irradiance peak occurs at
the focal point), the highest peak of the three-dimensional irradiance
distribution occurs at the point with respect to which the aberration variance

is minimum.
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Table 3. Standard Deviation of Primary Aberrations and of the Corresponuing
Balanced Aberrations for Uniform and Gaussian (y = 1)
Circular Beams

Standard Deviation
Aberration, &(p,8)
Uniform (y = 0) Gaussian (y = 1)
Spherical
4

Agp Ag/3.35 A /3.67
Balanced Spherical

Ao + Agp? Ag/13.42 Ag/13.71
Coma

Ap’cosd A./2.83 A /3.33
Balanced Coma

(Ap® + App)cosd A./8.49 A./8.80
Astigmatism

Ago?cos?8 Ay/b Ay/b.84
Balanced Astigmatism

A p2cos?6 + Ayt Ay/4.90 Ag/5.61

= (1/2)Agc0s?0 L
Agy = ~Ags Agg = <0.93A, ;i A, = ~(2/3)A,, Ag, = -0.61A ;
Ady = Adg = -Ay/2
-[‘8-
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7. WEAKLY TRUNCATED GAUSSIAN CIRCULAR BEAMS

7.1 IRRADIANCE DISTRIBUTION AND BEAM RADIUS

In this section, we consider a weakly truncated Gaussian circular beam,
i.e., one for which the aperture radius a is much larger than the beam radius
w. When a >> w, i.e., when y is very large, f(y;0) + 2y; therefore, Eq. (5)

for the aperture irradiance distribution may be written

1(p) = 2y exp(-2yp?) (79a)

or
I(p) = (2P _/mu?) expl-2(p/w)?) (79b)

In Eq. (79a), I(p) is in units of Po/A and p is in units of a as stipulated

in Eq. (11). 1In Eq. (79b), no such normalization is used.

For large y, the upper limit of integration in Eq. (11) may be replaced
by infinity with a negligible error. Since we are considering a circular

beam, the lower limit € is zero. Hence, if we let B = nr and o = y - i@o,

the integral in Eq. (11) reduces to the form

0

j exp(-apz)Jo(Bp)pdp (80a)
0

which for Rea > 0 is equal t029

(1/2a) exp(-82/4a) (80b)

Accordingly, it can be shown that, for large Yy, Eq. (11) reduces to

I(r;z) = (R/2)2[2y/(07 + Yz)lexp[-yﬂ2r2/2(¢§ + y2)] (81a)

29Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, Series, and
Products, 4th ed., Academic, NY, 1965, p. 717.
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or
I(r;z) = (2P /ﬂwz) exp(-2r2/w2) (81b)
o Tz z

where
uf = Oz/mw)? + w21 - z/R)? (82)

In Eq. (8la), the irradiance is in units of POA/sz2 and r is in units of
Az/D as was the case in Eq. (11). 1In Eq. (81b), these quantities are not

normalized.
Comparing Eqs. (79) and (81), we note the well-known result that, if the
truncation of the beam by the aperture is neglected, a Gaussian beam propagates

as a Gaussian beam. The beam radius at a distance z from the aperture is w
z

given by Eq. (82).
If we let r = 0 in Eq. (81), we obtain the axial irradiance
= 2 2 2
1(0;2) = (R/z) [27/(®o + 91 (83a)

or
1€0;z) = 2P /mw? (83b)
(o) z

Of course, for large y and € = 0, Eq. (24) reduces to Eq. (83) as expected.

If we let z = R in Eq. (81), we obtain the focal-plane irradiance

distribution

I(r;R) = (2/y)exp(~n?r?/2y) (84a)
or
I(r;R) = (2¢ /mwd) exp(-2r%/wl) (84b)
(] R R
where
wy = AR/ Tw (84c)
-50~




is the beam radius in the focal plane. The focal-point irradiance is given by
I1(0;R) = 2/y (85a)
I(0;R) = 2P w?/A%R? (85b)
a result already obtained in Eq. (22).

If we equate to zero the derivative of Eq. (83) with respect to z, we
obtain the z value at which the axial irradiance is maximum. Note that this

value is given by
z /R = (1 + (y/mn217t (86a)

or

2

z /R = (1+ OR/mw?)2)7! (86b)

Substituting Eq. (86) into Eq. (83), we obtair the peak value of axial irradiance

I(O;zp) = (2/y) + (2y/n?N?) (87a)
or
1(0;z ) = 2P /Mo’ (87b)
P o zp
where
w:p = w1 + (me?/AR)2] (87¢)

Comparing Eqs. (85a) and (87a), we note that the peak axial irradiance is higher
than the corresponding focal-point irradiance by 2y/m?N? (in units of POA/XZRZ)

or by ZPO/ﬂwz. Equations (86a) and (87c) can also be written in the form

z /R=[1+ (mv ) 371 (86¢)
P g
and
2 2 2 N
w® = w1 + (N )] (87d)
Zp g
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respectively, where N = w?/AR is the Gaussian Fresnel number.12 It repre-
sents the number of Fresnel zones in the aperture plane within the Gaussian
beam radius as observed from the focus, just as N represents the number of
zones within the full aperture, provided that there is no obscuration. Since
the axial irradiance is maximum at zp, the beam radius is minimum at this
position. This may also be seen by equating to zero the derivative of Eq. (82)
with respect to z. The minimum beam radius wzp is generally referred to in the

literature as the beam waist.

It is evident that zp < R, i.e., the peak of axial irradiance does not
occur at the focal point but at a point between it and the aperture. Moreover,

wzp < w, i.e., the waist of the diffracted beam is smaller than the beam radius

at the aperture. Note, however, that, as discussed in Section 4, even though
the peak axial irradiance and waist are not located at the focal point (z = R),
the smallest beam radius and maximum central irradiance on a target at a fixed

distance z are obtained when the beam is focused on it.1
The encircled-power distribution in an observation plane is given by
P(r 52) = 1 - expl-yn2r2/2(8% + v5)] (88a)
o o )
or
P(r_;2) = P_ [1 - expl-2r/wd)) (88b)
o’ o o'z
where r_is in units of Az/D in Eq. (88a).
The radius of curvature Rz of the Gaussian spherical wave at a distance
z from the aperture is given by the inverse of the coefficient of -inr? /A
in Eq. (1). Noting that r is in units of Az/D in B = Tr, we find that

z/Rz = (A/Az2)Im(1/a) - 1

= (40 Nz0) 4+ 4] - 1 (89a)

1 - z/R
= -1 (89b)
(1 -2/R)2 + Oz/md?
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At the waist position zp, Rzp = o, implying a plane wave. Similarly, at the
focal plane, R, = -R. A negative value of Rz indicates a diverging spherical

wave.

The results for a weakly truncated collimated Gaussian beam can be

obtained from those for a focused beam by letting R + ®. Thus, for example

I(r;z) = {2v/[1 + (hyz/n)zl} exp{-8yz2r2/[1 + (hYz/n)zl} (90a)

or
I(r;z) = (2P /nwz) exp(-2r2/w2) (90b)

oz z
where

m: = w21 + (Az/muz)zl (90¢)

and
R = -z[1 + (Tw?/x2)?) (90d)

In Eq. (90a), the irradiance is in units of PO/A, r is in units of Az/D
(z is not normalized here), and z is in units of DZ/A. We note from Eq. (90c)
that wz increases monotonically as z increases, i.e., the beam expands as it

propagates.

In this section, we have written equations in two equivalent forms.
Equations (a) are written in a normalized form so that they can be investigated
parametrically. Equations (b) are written without any normalizatioms, and they
are more suitable for evaluating results when the specific parameters involved
are known. Incidentally, note that all equations in this section reduce to the

corresponding quantities in the aperture plane if we let z *+ 0.

Figure 9 shows the focal-plane irradiance and encircled-power distribu-
tions for /; = 2, The solid curves have been obtained by using Eqs. (17) and
(18) [or Eqs. (30 and (32) with ¢, = 0], and the dashed curves represent
their corresponding approximations given by Eqs. (8la) and (88a), respectively,
with 00 = 0. We note that the approximate results agree well with the true
results. The maximum difference, which occurs at the focus, is less than 4%.

For larger Yy, the agreement is found to be even better.

-53-




0-5 tuuunlnuuunluuuul|unululnulnulluuulu 1.0
- \‘ ﬁ = 2 [
£ 031 L 06 &
I o
I 024 L 0.4 !
0.1 - 0.2
] [
0.0 "’l'l'llll"'|lll'l""'l"'Il""'lll]lr["""']“"m" 0.0
0 1 2 3

-l

Note: The irradiance and encircled power are in units of P,A/A?R? and
Py, respectively. The radial distance r or r, in the focal plane are
in units of MR/D. The focal point is at r = 0.

Figure 9. Focal-Plane Irradiance and Encircled-Power Distributions for a
Gaussian Beam with vy = 2
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Figure 10 shows how the axial irradiance of a focused Gaussian beam varies
when /Y = 2 and N = 1, 10, and 100. The irradiance is in units of POA/XZRZ.
Once again, the solid curves in this figure have been obtained by using Eq.
(24), and the dashed curves represent their corresponding approximations given
by Eq. (83a). It is evident that Eq. (83a) represents the true axial irradiance
quite well. The only significant difference occurs when N = 1, in that the true
results show secondary maxima and minima but the approximate result shows only
the principal maximum. For larger values of Yy, e.g., ¥y = 2.5, the
secondary maxima and minima disappear, and the true and approximate results
overlap each other at the scale of Figure 10. Hence, we conclude that the
truncation of an aberration—free Gaussian beam by an aperture has a negligible

effect on the irradiance distribution as the beam propagates when /; > 2.

7.2 ABERRATION BALANCING

When a Gaussian circular beam is weakly truncated, i.e., when vy is

large, the quantity Pe in Table 2 reduces to

s

ps = <p >
= (s/2v) Pg—2
= (s/2)1 v /2 (91)

As a result, we obtain simple expressions for the radial polynomials represent-
ing balanced primary aberrations. They are listed in Table 2, If we normalize
0 by w (instead of by a as in Table 2), then Yy disappears from these
expressions. As in Section 6, the standard deviation of an aberration can be

obtained by comparing its .orm with the corresponding orthonormal aberration of
Eq. (43).

The standard deviation of primary aberrations and of the corresponding
balanced aberrations for a weakly truncated Gaussian beam is given in Table 4.
In this table, p' = /; p is a radial variable in the aperture plane normalized

by the beam radius w, and the aberration coefficients Ai represent the peak
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value of a classical aberration at p' = 1. The reason for defining the
aberration coefficients in this manner should be obvious. Since the power in a
very weakly truncated Gaussian beam is concentrated in a small region near the
center of the aperture, the effect of the aberration in its outer region is
negligible. Accordingly, aberration tolerances in terms of the peak value of

the aberration at the edge of the aperture are not very meaningful.

We note from Table 2 (or Table 4) that the point with respect to which the

variance of an aberration is minimized is given by

d = -(4/Y)A (92a)
o] ]
= =4y A;
A, = -=(2/Y)A, (92b)
= -2/y A!
and
& = =(1/2)A
[o] a
= -(y/D)A;} (92¢)

in the case of spherical aberration, coma, and astigmatism, respectively. From
Table 4, we note that the balancing of a primary aberration reduces its standard
deviation by a factor of /5, /3, and v¥2 in the case of spherical aberration,
coma, and astigmatism, respectively. These reduction factors are listed in
Table 5 for uniform (y = 0) beaw, and e”? truncated (Y = 1) and weakly
truncated (large y) Gaussian beams. It is evident that as y increases, the
reduction factors decrease for each of the three primary aberrations. The
amount of balancing aberration decreases as y increases in the case of
spherical aberration and coma, but it does not change in the case of astig-
matism. For example, in the case of spherical aberration, the amount of
balancing defocus for a weakly truncated Gaussian beam is (4/y) times the
corresponding amount for a uniform beam. Similarly, in the case of coma, the
balancing tilt for a weakly truncated Gaussian beam is (3/y) times the

corresponding amount for a uniform beam.
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Table 4. Standard Deviation of Primary Aberrations in Weakly
Truncated (/?-l 3) Gaussian Circular Beams

Aberration, ®(p,0) ¢
Spherical
Alp'® 2/5 A!
s s
Balanced Spherical
[} [ . 12 [
As(p 4p' %) 2As
Coma
A' p'3 cosH /3 A'
c c
Balanced Coma
] 3 _ ' '
Ac(p 2p')cos8 Al
Astigmatism
v a1 2 2 o3 '
ALp' “cos 0 (1/v2) A
Balanced Astigmatism
t 12 2 _ a1 2 '
Alp' “cos®0 (1/2)Aap (1/2) Al

= (1/2) A; p'? cos280

o' = /Yo, AL = Ag/Y:, AL = A2, Ay = Auly, Ay = Agly,
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Table 5. Standard Deviation Reduction Factor for Primary Aberrations¥

Reduction Factor

Aberration

Uniform (v = 0)

Gaussian (v =

1)

Weaklv Truncated
Gaussian (/v > 3)

Spherical
Coma

Astigmatism

3.74
2.64

1.66

2.24
1.73

1.41

*It represents the factor bv which the standard deviation of a classical
aberration across a circular aperture is reduced when it is optimally halanced

with other abherrations.
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Table 6 gives the reduction factors that relate the peak value Ai of a
primary aberration at the edge of a circular aperture and the standard devia-~
tion of its corresponding balanced aberration for various values of y. In the
case of balanced aberrations, these numbers are given by V5 ag, 22 aé, and
2/6 a§ for spherical aberration, coma, and astigmatism, respectively. For exam-
ple, for spherical aberration Asp“, the standard deviation of the corresponding

balanced spherical aberration when /; = 2 is equal to Ag/18.29.

Comparing the standard deviation results given in Table 6 with those for a
weakly truncated Gaussian beam in Table 4, we find that they agree with each
other with negligible difference for /; > 3. This provides a convenient
definition for a weakly truncated Gaussian beam, namely, that a > 3uw.

30,31 have assumed that /? > 2 provides a sufficient condition

Some authors
for the validity of the aberration analysis of a weakly truncated Gaussian
beam given here. When /; = 2, the standard deviation of balanced spherical
aberration according to the weakly truncated beam assumption is given by
AS/S, while the true value, as stated above, is given by As/18.29, which is
significantly different. When /Yy = 3, the corresponding standard deviations
are given by AS/QO.SO and As/63.52, which are nearly equal to each other.

The difference between the true and approximate results is even less for

Yy > 3.

When /y = 2, even though the true focal-plane distribution obtained from
Eq. (17) or Eq. (30) agrees quite well with that obtained from Eq. (84a), the
true and approximate standard deviations of primary aberrations are
significantly different as pointed out above. The reason for the discrepancy in
the case of an aberrated beam is simple. Even though the irradiance in the
region of the aperture w/a < p < 1 is quite small compared to that at or
near its center, the amplitude in this region is not as small. Moreover, the
aberration in this region can be quite large and thus have a significant effect

on the standard deviation. 1In the case of spherical aberration, it increases

30yoshida, A., "Spherical Aberration in Beam Optical Systems," Appl. Opt., 21
1982, pp. 1812-1816. P SR TRRer 2o

3lherloski, R., "Strehl Ratio for Untruncated Aberrated Gaussian Beams,"
J. Opt. Soc. Am., A2, 1985, pp. 1027-1030.
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Table 6. Standard Deviation Factor for Primary Aberrations for a Gaussian
Circular Beam with Various Values of y

Balanced Balanced Balanced
/; Spherical Coma Astigmatism
0 13.42 8.49 4.90
0.5 13.69 8.53 5.06
) | 1.0 13.71 8.80 5.61
i 1.5 14.90 9.74 6.81
2.0 18.29 12.21 9.08
2.5 26.33 17.62 12,82
3.0 43.52 27.57 18.06
3.5 75.78 42,96 24.51
4.0 128.09 64,01 32.00
4
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Note: The numbers represent the factor by which the peak aberration coefficient
A; must be divided by in order to obtain the standard deviation.




as p*. 1In the case of coma and astigmatism, it increases as p? and pz,
respectively. Hence, we require a larger value of Yy, namely, /;.Z 3,
for the aberrated-beam analysis of this section to be valid. This is also

true of defocus which varies as p2.
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8. CONCLUSIONS

We have compared the effects of diffraction, obscuration, and aberrations
on the propagation of uniform and Gaussian beams.32 This comparison is based
on fixed total power in the beam regardless of the obscuration or the amplitude
across it at the aperture plane. The following general conclusions can be drawn

from the work reported here.

The mirrors in a high~power Gaussian beam train are illuminated unevenly
and must withstand higher flux densities than those in a corresponding uniform
beam train. The uneven illumination will cause thermal distortions of the

mirrors thereby introducing aberrations in the beam.

The focal-point irradiance for a focused Gaussian beam is smaller than the
corresponding value for a uniform beam of the same total power. Also, the
encircled power for small circles is higher for a uniform circular beam, but for

large circles, it is higher for a Gaussian circular beam.

The effect of the Gaussian apodization of the aperture is to increase the
size of the central disc and to decrease the power in the rings of the
diffraction pattern. The effect of a central obscuration is opposite to that of
the Gaussian apodization. It reduces the size of the central disc and increases
the power in the rings of the diffraction pattern. Accordingly, as the
obscuration increases, the difference between the diffraction effects of uniform

and Gaussian beams decreases.

The minima of axial irradiance for a uniform beam have a value of zero,
while those for a Gaussian beam have nonzero values. While the principal
maximum of axial irradiance for a Gaussian beam has a tmaller value than the
corresponding value for a uniform beam, the secondary maxima for a Gaussian beam

have higher values., Even though the principal maximum does not necessarily

32Mahajan, V. N., "Comparison of Uniform and Gaussian Beam Diffraction,”
SPIE Proc., Diffraction Phenomena in Optical Engineering Applications,
560, 1985.
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occur at the focus, maximum central irradiance and encircled energy are obtained
on a target at a given distance from the aperture when the beam is focused on

it, unlike the conclusions of some authors.33

For a < w, the Gaussian beams are somewhat less sensitive to aberrations
than uniform beams. Accordingly, aberration tolerance is somewhat higher for
the Gaussian beams. However, this tolerance increases rapidly as a becomes
larger and larger compared to w. This is understandable since, for a much
greater than w, the power in the aperture is concentrated in a small region
near the center of the aperture; therefore, the aberration in its outer region
has little effect on the irradiance distribution. For a > 2w, the truncation
of an aberration-free Gaussian beam by the aperture has a negligible effect on
its propagation. Accordingly, it remains a Gaussian beam as it propagates.
However, when the beam is aberrated, a > 3w is required in order to neglect the
effect of its truncation by the aperture. When a > 3w, it is more appropriate
to define aberration coefficients as the peak aberrations at the beam radius
w rather than at the aperture edge a, since the power in the beam is
concentrated in a small region near the center of the aperture, and the effect
of an aberration in its outer region is negligible. With the aberration
coefficients defined in this manner, the beam becomes most sensitive to
spherical aberration and least sensitive to astigmatism, rather than being most

sensitive to coma and least sensitive to spherical aberration.

33Tanaka, K., N. Saga, an

ussian Beam Through a
Finite Aperture Lens," -
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