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1. INTRODUCTION

The propagation of Gaussian beams has been extensively explored in the

literature. Most of the early literature neglects the effects of beam

truncation by an aperture with the result that a beam remains Gaussian as it

propagates. I - 5 Often, it is the propagation of collimated beams that is

discussed, 6-10 but lately the emphasis has been on focused beams. 1 1 1 3  With

few exceptions,11,14-16 the discussion is limited to aberration-free circular

beams.

In spite of the vast amount of literature on the propagation of Gaussian

beams, there is little in terms of a quantitative comparison with the

propagation of a uniform beam. Even when results for both types of beams are

occasionally given, 6-8,10,11 they appear in a normalized form in such a way

that some of their quantitative difference is lost. The objective of this

report is to compare quantitatively the effects of diffraction, obscuration, and

aberrations on the propagation of uniform and Gaussian beams. Equations are

derived for the axial and transverse irradiance distributions for a focused

beam. Equations for encircled-power distributions are also given. For a

meaningful comparison between a uniform and a Gaussian beam, the total power

transmitted by the aperture is kept fixed, regardless of the value of the

obscuration or the nature of the beam. It is shown that, in the focal plane,

the irradiance at the focus and in its vicinity is smaller for a Gaussian beam

IGaskill, J. D., Linear Systems, Fourier Transforms, and Optics, John Wiley

and Sons, NY, 1978, Section 10-7.
2Siegman, A. E., An Introduction to Lasers and Masers, McGraw-Hill Book
Company, NY, 1971, Section 8-2.

3Dickson, L. D., "Characteristics of a Propagating Gaussian Beam,"
Appl. Opt., 9, 1970, pp. 1854-1861. (This paper considers the effects of

aperture truncation and derives a condition under which they may be

neglected.)
4Williams, C. S., "Gaussian Beam Formulas from Diffraction Theory,"

Appl. Opt., 12, 1973, pp. 871-876.
Herman, R. M., J. Pardo, and T. A. Wiggins, "Diffraction and Focusing

of Gaussian Beams," Appl. Opt., 24, 1985, pp. 1346-1354.
6Buck, A. L., "The Radiation Pattern of a Truncated Gaussian Aperture

Distribution," Proc. IEEE, 55, 1967, pp. 448-450.

-7-
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than that for a uniform beam. However, away from the focus but within the

central disc of the diffraction pattern, the irradiance is higher for a Gaussian

beam. Accordingly, the encircled power is higher for a uniform beam for very

small circles, but the reverse is true for larger circles. The results for a

collimated beam are obtained as a limiting case of a focused beam, namely, a

beam focused at infinity. The differences between the diffraction patterns for

uniform and Gaussian beams decrease as the obscuration increases.

The problem of aberration balancing is discussed for the two types of

beams. Zernike polynomials representing balanced primary aberration for uniform

and Gaussian annular beams are described. The relationship between the peak

value of a primary aberration and its corresponding standard deviation across a

circular aperture is tabulated for both uniform and Gaussian beams. It is shown

that a Gaussian beam for which the irradiance at the edge of the aperture is

e-2 times the irradiance at its center (if there were no obscuration) is only

somewhat less sensitive to aberrations than a corresponding uniform beam. For a

Gaussian beam with a much weaker truncation by the aperture, the aberration

tolerance increases rapidly. However, in that case, since the beam power is

concentrated in a small region near the center of the aperture, the effect of

aberration in its outer region is negligible. Accordingly, for a weakly

truncated Gaussian beam, the aberration coefficients are defined in terms of the
-2

peak aberration at the e irradiance point in the aperture rather than at its

edge.

7Campbell, J. P., and L. G. DeShazer, "Near Fields of Truncated Gaussian
Apertures," J. Opt. Soc. Am., 59, 1969, pp. 1427-1429.

80laofe, C. 0., "Diffraction by Gaussian Apertures," J. Opt. Soc. Am., 60,
1970, pp. 1654-1657.

9Schell, R. G., and G. Tyra, "Irradiance from an Aperture with Truncated-
Gaussian Field Distribution," J. Opt. Soc. Am., 61, 1971, pp. 31-35.

lONayyar, V. P., and N. K. Verma, "Diffraction by Truncated-Gaussian Annular
Apertures," J. Optics, 9, (Paris), 1978, pp. 307-310.

lt Holmes, D. A., J. E. Korka, and P. V. Avizonis, "Parametric Study of
Apertured Focused Gaussian Beams," Appl. Opt., 11, 1972, pp. 565-574.

1 2Li, Y., and E. Wolf, "Focal Shift in Focused Truncated Gaussian Beams,"

Opt. Comm., 42, 1982, pp. 151-156.
13Tanaka, K., N. Saga, and K. Hauchi," Focusing of a Gaussian Beam Through a

Finite Aperture Lens," Appl. Opt., 24, 1985, pp. 1098-1101.
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Note that the diffraction effects of a uniform or a Gaussian beam are

equivalent to those of a uniform or Gaussian-apodized pupil, respectively, in an

imaging system. Thus, for example, an irradiance distribution transverse to the

direction of beam propagation represents a corresponding point-spread function

of an imaging system.

14 Lowenthal, D. D., "Marechal Intensity Criteria Modified for Gaussian
Beams," Appl. Opt.) 13, 1974, pp. 2126-2133, 2774.

1 5Lowenthal, D. D., "Fa-Field Diffraction Patterns for Gaussian Beams in
the Presence of Small Spherical Aberrations," J. Opt. Soc. Am., 65, 1975,
pp. 853-855.

1 6Sklar, E., "Effects of Small Rotationally Symmetrical Aberrations on the
Irradiance Spread Function of a System with Gaussian Apodization Over the
Pupil," J. Opt. Soc. Am., 65, 1975, pp. 1520-1521.
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2. DIFFRACTION EQUATIONS

Consider an optical beam of wavelength X diffracted by an aperture. If

U(O) represents the amplitude at a point P on the plane of the aperture, then,

in the Fresnel approximation, the amplitude at a point r in an observation plane

parallel to and at a distant z from the aperture plane is given by1 7

U(;z) = U() exp(iko 2 /2z) exp(-ik -/z)do (1)

where k = 2r/X is the wave number of the beam radiation, r = Ir, and o = p1.
The irradiance distribution in a certain plane is equal to the square of the

modulus of the corresponding amplitude distribution. For example, in the

observation plane, it is given by

l(r;z) - lU(r;z)[ 2  
(2)

The corresponding encircled power (or energy) P(r ), i.e., the power in a cir-0

cle of radius r centered at r = 0 in the observation plane, is given by
0

P(r ;z) = I(r;z) dr (3)

0

1 7Mahajan, V. N., "Axial Irradiance and Optimum Focusing of Laser Beams,"
Appl. Opt., 22, 1983, pp. 3042-3053.
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3. APERTURE DISTRIBUTION

Consider an annular aperture of inner and outer radii of Ea and a,

respectively, where 0 < E < 1 is the linear obscuration of the aperture. As

indicated in Figure 1, a beam of outer and inner radii a and Ea, respectively,

is focused at a distance R from the aperture plane. The beam is aberration-

free when a spherical wavefront of the radius of curvature R is centered at

the point of observation and passes through the center of the aperture. For a

fixed total power P transmitted by the aperture regardless of the value of0

E or the nature of illumination (uniform or Gaussian), the irradiance

distribution at the aperture for uniform and Gaussian illumination may be

written

I (p) - (P /A)/(l - E2 ) (4)
u 0

and

I () = (P /A) f(y;0) exp(-2yp2 ) (5)
go

respectively. Here

A = 7Ta 2  (6)

is the area of the unobscured circular aperture

f(y;c) = 2y/(e - 2 Y E 2 e- Y) (7)

and p is in units of a so that E < p < I. The parameter y characterizes

the truncation of a Gaussian beam by the aperture. If we define a Gaussian

beam radius W as the radial distance from the beam center at which the

irradiance is equal to e 2 of the value at the center (if there were no

obscuration), then

y - (a/) 2  (8)
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i.e., / represents the ratio of the aperture radius and Gaussian beam

radius. Note that as y - 0, f(y;E) + (1 - e2)- I and Eq. (5) reduces

to Eq. (4). Hence, the results for a Gaussian beam reduce to those for a

corresponding uniform beam in the limit y - 0.

It is evident from Eq. (4) that the aperture irradiance (in units of
P /A) for a uniform beam increases with c as (1 - 2)-l. For a Gaussian beam,

0

the irradiance decreases exponentially from a maximum value of f(y;c)exp(-2ye2 )

at the inner edge of the aperture to a minimum value of f(y;c)exp(-2y) at the

outer edge. For example, as illustrated in Figure 2a, when y = I and e = 0,

the maximum and minimum values are 2.31 and 0.31, respectively. Thus, the

mirrors in a high-power Gaussian beam train are not only illuminated unevenly,

but they must also withstand considerably higher irradiance levels compared to

those for a uniform beam. For an annular beam, the peak irradiance is even

higher, as illustrated in Figure 2b for y = 1 and e = 0.5, since the same

total power is now distributed across a smaller area. The ratio of the peak

values of the aperture irradiance for Gaussian and uniform beams is given by

I ()/I (C) = (0 - E2) f(y;e)exp(-2yE2)g u

= 2y(l - c')/{l - exp[-2y(l - c2)]} (9)

The variation of this ratio with c is shown in Figure 2c for /y = 0.5, 1,

2, and 3. It is evident that as y(l - £2) increases, the ratio approaches

a value of 2 y(I - £2).
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4. FOCUSED BEAM

For an aberration-free beam focused on the axis of the aperture at a

distance R from it, the amplitude at the aperture can be written

U(p) - /I--T exp(-iAp 2/XR) (10)

If, for example, Rb is the radius of curvature of a spherical wave incident on

a lens of focal length f, then R -I = RbI + f-1 . Substituting Eq. (10) into

Eq. (1), we find that the irradiance distribution in an observation plane

can be written

1

I(r;z) = 4(R/z) 21f /1(P) ex,( iP2(P)] J0 (rrrp) pdp 12 (11)

where

(P)= -) 2 (12)

represents the defocus phase aberration of a beam focused at a distance R with

respect to a reference sphere centered at a distance z and passing through the

center of the aperture. In Eq. (11), various quantities are normalized by the

parameters for a uniformly illuminated circular aperture. The I(p) is in units

of P /A, I(r;z) is in units of P A/X R , p is in units of a, and r = In
0 o

is in units of Az/D, where D = 2a.

We shall refer to the observation plane at z = R where the beam is focused

at as the focal plane and the axial point at z = R as the focus or the focal

point. Similarly, we shall refer to a beam with R = - at the exit of the

aperture as a collimated beam. In imaging applications, the focal plane will be

more appropriately called an image plane, unless the object is at infinity.

-17-



4.1 FOCAL-PLANE DISTRIBUTION

If we let z - R and substitute aperture distributions, Eqs. (4) and (5),

for uniform and Gaussian beams into Eq. (11), we obtain the corresponding

focal-plane distributions. In the case of a uniform beam, it is given by18 ' 19

I (r;R) =( - r2)- (/1--r) - 2 , l2  (13)
U c c

where

IC(r) = [2Jl(Orr)/-nr] 2 (14)

represents the focal-plane irradiance distribution for a uniform circular

(e = 0) beam. It is evident that for the focal-plane distribution, the

variable r is in units of XF, where F = R/D is the f-number of the focused

beam. The encircled power, in units of Po is given by

O1

I

Pu (r;R) = (I - E2)-I[p c (r ) + 2Pc(er) - 4£ fJl(Orro)Jl(nErro)dr/r] (15)
0

where r is in units of XF, and

PC ) = I - J2(r) - J (rr) (16)

represents the focal-plane encircled-power distribution in the case of a uniform

circular beam.

The corresponding results for a Gaussian beam are given by

Ig(r;R) - 4f(y;c) e-y0o(7ro)od (17)

18 Born M., and E. Wolf, Principles of Optics, Pergamon Press, NY, 1975,
p. 4f6.

19 Maha an V. N. "Included Power for Obscured Circular Pupils," Appl. Opt.,
17, 978, pp. 464-968.
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and

r

P (r ;R) = (T1 /2)f I (r;R)rdr (18)
g0 g

Figure 3 shows how the irradiance and encircled-power distributions in the

focal plane compare for the two beams. The uniform beam corresponds to y = 0,

and the Gaussian beam considered in Figure 3 is for y = 1. At and near the

focal point, a uniform beam gives a higher irradiance than a Gaussian beam.

For a circular aperture (Fig. 3a), I > I for r < 0.42. For larger valuesu g

of r, I > 1u, except in the secondary rings where again I > I , as isg u g

well known. The encircled power P u P for r 0 0.63. Of course, as r 0 -,u g o 0

P + P - 1. The Gaussian illumination broadens the central disc but reducesu g

the power in the secondary rings. For annular apertures with E = 0.5 (Fig. 3b),

the differences between the focal-plane distributions for uniform and Gaussian

beams are less compared to those for a circular aperture. The obscuration reduces

the focal-point irradiance, reduces the power in the central disc, and spreads it

into the secondary rings of the diffraction pattern. It reduces the size of the

central disc also. Moreover, the difference in encircled powers P - Pu g

changes its sign from positive to negative to positive as r0 increases. Note

also that because of the obscuration, the secondary maxima are higher and of

nearly equal value for the two types of beams.

For clarity, the irradiance distributions are also plotted on a logarithmic

scale (Figs. 3c and 3d). The positions of maxima and minima and the correspond-

ing irradiance and encircled-power values are given in Table 1. It is evident

that the corresponding maxima and minima for a Gaussian beam are located at higher

values of r than those for a uniform beam. Moreover, whereas the principal

maximum for a Gaussian beam is only slightly lower (0.924 compared to 1), its

secondary maxima are lower by a factor >3 compared to the corresponding maxima

for a uniform beam.

The focal-point irradiance corresponding to uniform and Gaussian beams is

given by

I (O;R) = 1 - £2 (19)

-19-
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Table 1. Maxima and Minima of Focal-Plane Irradiance Distribution and
Corresponding Encircled Powers for Uniform and Gaussian
(y = 1) Circular Beams

Maxima/Minima r,ro  l(r) P(ro )

Max 0 1 0
(0) (0.924) (0)

Min 1.22 0 0.838
(1.43) 0 (0.955)

Max 1.64 0.0175 0.867
(1.79) (0.0044) (0.962)

Min 2.23 0 0.910
(2.33) (0) (0.973)

Max 2.68 0.0042 0.922
(2.76) (0.0012) (0.976)

Min 3.24 0 0.938
(3.30) (0) (0.981)

Max 3.70 0.0016 0.944

(3.76) (0.0005) (0.983)

Min 4.24 0 0.952
(,-29) (0) (0.985)

Max 4.71 0.0008 0.957
(4.75) 0.0002 (0.986)

Note: The numbers without parentheses are for a uniform beam and

those with parentheses are for a Gaussian (y = 1) beam.
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and

I (O;R) = (2/y) tanh[(l - E2 )y/2) (20)
g

respectively. Their ratio is given by
2 0

T1 = I (0;R)/I (0;R)
g u

= tanh[(l - e2 )y/2] (21)

(I - E2)Y/2

Figure 4a shows how q varies with y for several values of E. It is

evident that n decreases as y increases, regardless of the value of C.

However, as shown in Figure 4b, for a given value of y, n increases as c

increases. Note that for large values of y

n - 2/y(l - E2) (22)

The decrease in n due to an increase in y can be due to an increase in

a and/or a decrease in w. If we consider the absolute (unnormalized) values of

the focal-point irradiance, we note that I (O;R) increases quadratically with a,U

but I (O;R) increases only slightly (< 10%) with a for /y- > 3. Similarly,

I (O;R) decreases (nearly) quadratically as w decreases for r > 3. It is

evident that n is always less than 1. A redistribution of the aperture power from

a uniform to any nonuniform distribution reduces the focal-point irradiance.
2 0

4.2 AXIAL IRRADIANCE

17
If we let r 

= 0 in Eq. (1I), we obtain the axial irradiance for uniform

and Gaussian1 1 beams

I (O;z) - (R/z) (I - 2 ) {sin[(l - e2 ) /2]/[(l - £2)( /2]} 2  (23)

20Maha an, V. N., "Luneburg Apodization Problem I," Opt. Lett., 5, 1980,
pp. R7-26.
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and

I (0;z) = (R/z) 2 [2y/(Do 2 + y2 )]{cothE(l - E2 )yl

- cos[(l - E2)4 ]/sinh[(l - e2)y]} (24)0

respectively. The quantity (o represents the defocus phase aberration at

the edge of a circular aperture. It is given by

o =- (25a)

= iTN( - I) (25b)

z

where

N = a2/XR (26)

is the Fresnel number of the circular aperture as observed from the focus.

The positions of maxima and minima of axial irradiance are obtained by

equating to zero its derivative with respect to z. In the case of a uniform

beam, the minima have a value of zero. They are located at z values

corresponding to an integral number of waves of defocus as an aberration at

the outer edge of the aperture relative to that at its inner edge, i.e., for

Po = 2iTn/(l - e2 ), n = +1, +2, (27a)

or

z/R = {I + [2n/N(l - e2)]}- I  
(27b)

The positions of maxima of axial irradiance are given by the solutions of

tan[(l - E2)to/21 = (R/z)(l - 2)4o/2, z 0 R (28)

In the case of a Gaussian beam, the positions of minima and maxima of axial

irradiance are given by the solutions of

2 ~ o ){cosh((l - p
2)yl - cos{( - £2)4 J}

-(1 - E2 )sin[(1 - E2)4o1 (29)
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Figure 5 s'.ows how the axial irradiance of a uniform focused beam differs

from that for a Gaussian beam when y = I and Fresnel number N = 1, 10, and

100. We note that the principal maximum is higher for the uniform beam

compared to that for the Gaussian beam. However, the secondary maxima are

higher for the Gaussian beam. Moreover, whereas the axial minima for the

uniform beam have a value of zero, the minima for the Gaussian beam have

nonzero values. For a given value of e, the locations of maxima and minima,

except the principal maximum, are very nearly the same for the two beams. The

effect of the obscuration is to reduce the irradiance at the principal maximum

but increase it at the secondary maxima. Also, the maxima and minima occur at

smaller z values for an annular aperture. These z values correspond approxi-

mately to those axial points at which the annular aperture subtends an odd or

an even number of Fresnel's halfwave zones, respectively. We note that the

curves become symmetric about the focal point z = R as N increases.

Note that even though the principal maximum of axial irradiance does not

lie at the focus, maximum central irradiance on a target at a given distance

from the aperture is obtained when the beam is focused on it. This can be seen

by equating to zero the derivative of axial irradiance, Eqs. (23) and (24),

with respect to R. When doing so, the normalization factor P A/X 2R2 should be
O

substituted in these equations with the consequence that the R2 factor in

front of their right-hand side disappears. Figure 6 illustrates how the

central irradiance on a target at a fixed distance z varies when the beam is

focused at various distances R along the axis. The irradiance in this figure

is in units of P A/X2z 2 . The quantity N = a2 /Xz represents the Fresnel number
0 Z

of a circular aperture as observed from the target. As in Figure 2, the maximum

irradiance values for uniform and Gaussian (y = 1) beams are I and 0.924,

respectively, when C = 0, and 0.750 and 0.717 when E = 0.5. We note that as

N increases, the curves become symmetric about R = z.
z

It is evident from Eqs. (23) and (24) that the axial irradiance depends

on z and R through the inverse-square-law dependence in (R/z)2 factor and the

defocus aberration D . The irradiance is symmetric with respect to the sign
0

of P . We note from Figures 5 and 6 that as the Fresnel number N or N0 Z

becomes large, the axial irradiance becomes symmetric about the point z = R.

The reason for this is simple, as may be seen by an examination of Eq. (25).
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When N is very small, z must be much different from R for (D to have a
0

significant value. For example, when N =, a quarter wave of defocus (0o =

± ff/2) is obtained for R/z - I ± 0.5. Similarly, when N = 1, ( M ± IT/2 forz 0

z/R - 1 + 0.5. In either case, the axial irradiance is asymmetric about the

point z - R because of the asymmetry in the defocus aberration as well as in

the inverse-square-law dependence. However, when N or N is very large, az
slight difference between z and R gives a large value of 4) . For example, when0

N - 100, a quarter wave of defocus is obtained for R/z = 1 ± 0.005, or z/R = I

+ 0.005. Note that, for large N, I 0 is symmetric about the focal point.

Hence, in the vicinity of focus, where the axial irradiance is appreciable

compared to the focal-point irradiance, the axial irradiance is symmetric

about the focal point. The inverse-square-law dependence has negligible

effect in this case, since z and R are practically equal to each other.

Similar considerations hold when N is very large, i.e., the irradiance at

the point of observation is the same for two beams focused symmetrically about

it. These considerations also extend to the transverse irradiance distribu-

tions (see Eq. (30)]. Thus, for example, the transverse irradiance distribu-

tion in the vicinity of the focal plane is symmetric about it only when N is

very large.

4.3 DEFOCUSED DISTRIBUTION

When z t R, we may write the right-hand side of Eq. (11) as the

product of two integrals and retain only its real part, since irradiance is a

real quantity. Thus, the irradiance distribution in a defocused plane can be

written

I(r;z) - 4(R/z)2  f f ps/I(p)I(s) coS[o (p2 - s2f)J 0 (rrp)J 0 (Trs)dpds (30)
C C

If we let r - 0 and note that J0 (0) -I, we obtain a different form of the

expression for axial irradiance, namely

/II
1(0;z) = 4(R/z)2  f fPs/l-(0)(s) cos[0o (p2 - s2 )ldpds (31)
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The encircled power (in units of Po with ro in units of Xz/D) is given by

1 1

P(r ;z) = 27tE C Psl(p)1(s) cos[(o(02 - s)]Q(P,s;ro )dpds (32)

where
21

r
0

Q(p,s;r ) = 0 3 rp) J (rrs)rdr0o 00

= 2/2)[J (rop) + J2(Orr S) if p = s (33a)
0 0 1 0

= Er/1T(02 - s2 )[pJ 1lOr0P) J0 (nros)

-sJ1 (Oros) J0 OrroP)] if p 0 s (33b)

The integrals in Eqs. (30)-(32) can be evaluated by the Gauss quadrature method

according to which we may write22

f(p,s) dp ds = [(1 - )/212 [ 2 f(p.,s )

E C i1 j

M i-I
+ 2 1 1 W.W. f(Pos (34)

i=2 j=l ' i

where M is the number of I-D quadrature points, w . are the weight factors,
1

and

P i = si

= [l + £ + (1 - £)xi]/2 (35)

x. being the ith zero of the Mth-order Legendre polynomial. In our calcula-1

tions we have used a 24-point (M a 24) Gauss quadrature. Note that by letting

2 1Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions,
Dover, NY, 1970, p. 484.

22Ibid., p. 887.
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0 = 0 in Eqs. (30)-(32), we can calculate the focal-plane distributions aso

well. Equations (30)-(35) are generalizations of our earlier work on uniform

circular beams23 to annular apertures and Gaussian beam. Note that with

slight modification, Eqs. (30)-(32) can be applied to diffraction calculations

involving any radially symmetric amplitude and phase distributions at the aper-

ture. For example, if spherical aberration (A SP4) were present, the cosine

factor in these equations would become cos[(p) - $Cs)] where V(p) = ( 0  + As p.

An example of defocused distribution is illustrated in Figure 7 for both

uniform and Gaussian (y = I) beams with a large Fresnel number (so that the

inverse-square-law variation is negligible) when C = 0 and e = 0.5. The

amount of defocus 0 = 2.783 rad (or 0.443X) is such that the central
0

irradiance for a uniform circular beam is reduced to half the corresponding

focal-point irradiance. (The defocused distributions shown can also be

interpreted as the distributions on a target at a fixed distance z when the

beam is focused at a distance R such that D = 2.783 rad. In this case,
0

the irradiance would be in units of P A/X 2 z2 and r and r would be in

units of Xz/D.) We note that, as in the case of focal-plane distributions,

the central irradiance for a Gaussian beam is lower than that for a correspond-

ing uniform beam. Note, however, that the defocus aberration does not reduce

the central irradiance for the annular beam as much as it does for the circular

beam, so much so that, for the amount of defocus aberration considered in

Figure 7, the defocused central irradiance for the annular beam is higher than

that for the corresponding circular beam. For the uniform and Gaussian circu-

lar beams, the central irradiance decreases from I and 0.924 to 0.500 and 0.483,

respectively. For the annular beams, it decreases from 0.750 and 0.717 to

0.514 and 0.497, respectively. This indicates the well-known fact that the

tolerance for a radially symmetric aberration such as defocus is higher for an

annular beam than that for a circular beam. When E - 0, the encircled power

is higher for a uniform beam for small values of r compared to that for a
0

Gaussian beam. When c - 0.5, the difference in encircled power for the two

types of beam changes from positive to negative to positive depending on the

value of r0 .o

2 3Mahajan, V. N., "Aberrated Point-Spread Function for Rotationally Symmetric

Aberrations," Appl. Opt., 22, 1983, pp. 3025-3041.
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5. COLLIMATED BEAM

The results for a collimated beam can be obtained from those for a focused

beam by letting R - -. Thus, for example, Eq. (II) for the irradiance distri-

bution in a plane at a distance z from the aperture reduces to

1 2

I(r;z) = 0$ 21f /()expfi?D p2 1 J (1Tro)pdp (36)

where

= A/Xz (37)
0

represents the (negative of) phase aberration of a plane wavefront with

respect to a reference sphere centered at a distance z and passing through the

center of the aperture. In Eq. (36), the irradiance in both the aperture and

the observation planes is in units of the aperture irradiance P /A for a
0

uniform circular beam. As in Eq. (11), r is in units of Xz/D.

In the far field, i.e., for z > D2 /X, the phase aberration D 0< 7/4

(corresponding to a wave aberration of less than or equal to X/8) and may be

neglected. Hence, the irradiance distribution, and correspondingl the

encircled-power distribution in a far-field plane, is similar to a focal-plane

distribution discussed earlier. The only difference is in scaling of the

diffraction pattern. Similarly, in the near-field, i.e., for z < D 2 /X, the

irradiance and encircled-power distributions correspond to defocused distri-

butions discussed earlier. The only significant difference is in the definition

of (b
0

If z is in units of the far-field distance D2 /X, and we let r = 0 in

Eq. (36), we obtain the axial irradiance (in "nits of P /A) for uniform1
7

and Gaussian beams

I (0;z) - [4/(1 - Ec)] sin 2 [n(l - E2 )/8z] (38)
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and

I (O;z) = {2y/[l + (4yz/r)2 ]} {coth[y(l - £2)]
g

- cos[7r(l - £2 )/4z]/sinh[y(l - c2)1} (39)

respectively. For a uniform beam, the maxima of axial irradiance have a value

of 4/(0 - E2) at

z = (0 - E2)/4(2n + 1) , n = 0, 1, 2, ... (40)

Its minima have a value of zero at

z = (I - C2 )/8n , n = 1, 2, ... (41)

The positions of maxima and minima of axial irradiance for a Gaussian beam are

given by an appropriate modification of Eq. (29), namely

{2(4z/n) 3y2 /l + (4yz/I) 2I}{cosh[y(l - c2)] - cos[r(l - c')/4z]}

= - (I - C2)sin[n(l - E2 )/4z] (42)

Figure 8 illustrates how the axial irradiance of collimated uniform and

Gaussian beams varies with distance z from the aperture. With reference to

Figure 5, Figure 8 corresponds to N = 0. In contrast to Figure 5, the maxima of

axial irradiance of a collimated uniform beam have the same value of 4/(1 - E2).

Moreover, unlike the principal maximum in Figures 5a and 5d, the maximum

farthest from the aperture has a lower value than the maxima closer to it in the

case of a Gaussian beam.
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6. ABERRATION BALANCING

A focused beam emerging from the aperture is aberration free, if its

wavefront passing through the center of the aperture is spherical with a center

of curvature at the focus. Any deviations of the wavefront from this spherical

form represent aberrations. In that case, the spherical wavefront centered at

the focus is referred to as the reference sphere. For small aberrations, the

Strehl ratio (i.e., the ratio of central irradiances with and without an

aberration) is determined by the aberration variance across the
24

amplitude-weighted aperture. The problem of aberration balancing for

uniformly illuminated circular apertures was discussed by Nijboer. 2 5 ,2 6 This

has been extended to nonuniformly illuminated apertures. 2 4 '2 7 In aberration

balancing, a classical aberration of a certain order (which represents a term in

the power series expansion of the aberration function in aperture coordinates)

is mixed with aberrations of lower order such that the variance of the net

aberration is minimized. Consider, for example, a typical balanced

aberration 2 4 (representing a term in the expansion of the aberration in terms

of a set of "Zernike" polynomials which are orthonormal over the amplitude-

weighted annular aperture)

$(p,O;) = c E /2(n + I) Rm(p;c)cosm, (43)
nm m n

where (p,6) are the polar coordinates of a point in the aperture plane, n

and m are positive integers (including zero), n - m > 0 and even, Rm(P;E)
n

is a radial polynomial of degree n in p and has the form

Rm(P;e) = am n bm n-2 + ... + dm pm (44)
n n n n

2 4 Mahajan, V. N., "Zernike Annular Polynomials for Imaging Systems with

Annular Pupils," J. Opt. Soc. Am., 71, 1981, pp. 75-85, 1408.
2 5 Nijboer, B. R. A., "The Diffraction Theory of Aberrations," Ph.D. Thesis

(University of Groningen, Groningen, The Netherlands, 1942).
2 6 See Ref. 18, Chapter 9.
2 7 Szapiel, S., "Aberration Balancing Technique for Radially Symmetric

Amplitude Distributions: A Generalization of the Marechal Approach," J. Opt.

Soc. Am., 72, 1982, pp. 947-956.
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The coefficients am et cetera, depend on the obscuration ratio c and the
n

aperture amplitude /I-T73. The quantity

Ie =-, m=O

= 1, m 0 (45)

Unless n = m = 0, the coefficient c represents the standard deviation ofnm

the aberration, i.e. 4

C 0r (46)

where

2 = <D2> <>2 (47)

and

1 21T , 21T

<e f) fnp /0)~j CAC f /(-P) 0d6 (48)
C 0 E: 0

From Eqs. (43) and (46), we note that the standard deviation of an aberration

can be obtained immediately by comparing its form with the corresponding

orthonormal aberration represented by Eq. (43), without having to calculate the

integrals in Eq. (48). The variance of an aberration consisting of two or more

terms of the form of Eq. (43) is given by the sum of the variance of each of

the aberration terms.

The radial polynomials corresponding to balanced primary aberrations are

listed in Table 2 for both uniform and Gaussian beams. 24 We now consider

spherical aberration, coma, and astigmatism in uniform and Gaussian beams and

compare their balancing with other aberrations to minimize their variance

across the aperture.

6.1 SPHERICAL ABERRATION

First, we consider spherical aberration

0s(p) = AsP (49)
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F

where A represents the peak value of the aberration. For a uniform beam,

the standard deviation of the aberration is given by
24

a = [(4 - e2 - 6C4 - E6 + 4£E)1/2/3/5]A (50)
U2

If we mix the aberration with an appropriate amount of defocus AdP 2 , we

obtain the balanced aberration

0bs(p) = Asp + Ado (51)

The value of Ad which minimizes the variance of the balanced aberration can

be obtained by comparing it with the radial polynomial R0 (P;E) given
4

in Table 2. For a uniform beam it is given by

Adu - ( I + c2 )A (52)

The cc.cresponding standard deviation of the balanced aberration is given by2 4

'bsu = [( - C2) /6/1As (53)

Note that for a given value of As, Ybsu decreases as E increases.

For a Gaussian circular beam with y = I

O = [(20e 2 - 69e + 40)1/2/(e - I)]A (54a)sg s

= A /3.668 (54b)

S

The balancing defocus and the standard deviation of the corresponding balanced

aberration are given by

= 0 0

A (b4/a4)A (55a)
dg 4 4 s

= - 0.933 A (55b)
s

and

absg = As/ a2 (56a)

= A /13.705 (56b)
s
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Comparing uniform and Gaussian circular beams aberrated by spherical

aberration, we note the following. For a given value of A
S

(sg/asu = 0.91 (57)

Hence, for a given Strehl ratio expC- 2 ), where 02 is the variance of the

phase aberration, a Gaussian beam can tolerate a slightly higher amount of

spherical aberration than a uniform beam. By balancing with an appropriate

amount of defocus, the standard deviation for a Gaussian beam is reduced by a

factor of 3.74 compared to a factor of 4 for a uniform beam. Comparing the

standard deviation of the balanced aberration for the two beams, we find that

a bsg/bsu = 0.98 (58)

Hence, for a given value of A, the Strehl ratios for the two beams are

practically the same. We noted earlier that the central irradiance for an

aberration-free Gaussian beam is lower by 7.6% compared to that for a

corresponding unifor- beam. For beams aberrated with a small value of Asp

the difference in their peak central irradiances will be slightly smaller.

Comparing the amounts of balancing defocus

Adg/A du = 0.933 "(59)

we note that the defocused plane for a Gaussian beam is closer to the focal

plane than that for a uniform beam. The location of the defocused plane, i.e.,

its z value, is given by

ob A (60)
0 d

For z = R, it is given by

z - R 8AF2Ad  (61)

where Ad is in units of A.

d
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To compare the central irradiance in the focal plane, we note that for a

quarter wave of spherical aberration, a Strehl ratio of 0.8 is obtained for a

uniform beam 2 8 corresponding to Ou 2  0.22. The corresponding Strehl ratio

for a Gaussian beam is e = 0.83, giving a central irradiance of

0.77 (compared to 0.8 for a uniform beam).

6.2 COMA

Next we consider coma

c (p,O) = A p 3 cose (62)

where A represents the peak value of the aberration. For a uniform beam,

the standard deviation of the aberration is given by
2 4

a = [(I + C2 + C4 + E)/8i 1/2A (63)
cu c

If we mix coma with an appropriate amount of tilt, Atp cos6, we obtain

the balanced aberration

0bc(p,e) - (Ac p3 + At p) cose (64)

The value of A, which minimizes the variance of the balanced aberration, can

be obtained by comparing it with the radial polynomial RI(p;e). For a

uniform beam, it is given by

Atu = - (2/3)M(l + C2 + E')/(l + £2 )]Ac (65)

The corresponding standard deviation of the balanced aberration is given by
2 4

(I - 62)(1 + 4C 2 + E)1/2

(I -- A (66)
%bcu 6r2 (I + £2)I/2 c

2 8Mahajan, V. N., "Strehl Ratio for Primary Aberrations in Terms of Their

Aberration Variance," J. Opt. Soc. Am., 73, 1983, pp. 860-861.
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For a given value of Ac , 
0bcu slightly increases as E increases, achieves its

maximum value at c = 0.29, and decreases rapidly for larger values of C.

For a Gaussian circular beam with y = 1

Atg =(bi/aI)A (67a)

= -0.608 A (67b)Ac

and

A /2/12 a1I(6a
bcg c 3 (68a)

A /8.802 (68b)
C

Comparing uniform and Gaussian circular beams aberrated by coma, we note

the following. For a given value of A c

Ubcg/ibcu = 0.96 (69)

Therefore, the Strehl ratio for a Gaussian beam is approximately 0.82 when it

is 0.80 for a uniform beam. Accordingly, the peak irradiances for the two

beams are 0.75 and 0.80, respectively. Note, however, that since

Atg/A tu = 0.91 (70)

the peak irradiance for a Gaussian beam occurs in the focal plane at a point

which is closer to the focal point by 9% compared to that for a uniform beam.

6.3 ASTIGMATISM

Finally, we consider astigmatism

S(0,) = A o2 cos 2 (71)
a a
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where A represents the peak value of the aberration. For a uniform beam,a

the standard derivation of the aberration is given by

a - (1/4)(1 + E4)1/2 A (72)
au a

If we mix astigmatism with an appropriate amount of defocus, we obtain the

balanced aberration

Pba(P,) - Aa p2 cos 2 e +  d2 (73)

For both uniform and Gaussian beams, the amount of defocus that minimizes the

variance of the balanced aberration can be obtained by comparing it with the

Zernike polynomial R (p;E)cos2e. It is given by

A = - (1/2)A (74)

so that the balanced aberration becomes

D ba(p,) = (1/2)Aa p2 cos26 (75)

For a uniform beam, the corresponding standard deviation is given by

Obau = (i/2Vr6)(l + + 0)1/2Aa (76)

For a given value of Aa, aau and 0bau both increase as E increases. This

is true for a Gaussian beam as well. For a Gaussian circular beam with y 1

= 2

abag Aa/2,/ a2 (77a)

= A /5.609 (77b)
a

Comparing uniform and Gaussian circular beams, we note that, for given value

of Aa

Obag /ba u u 0.87 (78)
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Therefore, the Strehl ratio for a Gaussian beam is approximately 0.85 compared

to a value of 0.80 for a uniform beam. Accordingly, the central irradiances

for the two beams are 0.78 and 0.80, respectively.

For easy comparison, the standard deviation of primary aberrations and of

the corresponding balanced aberrations is tabulated in Table 3 for uniform and

Gaussian (y = 1) circular beams. It is evident that the standard deviation

for a Gaussian beam is somewhat smaller than the corresponding value for a

uniform beam. Accordingly, for a given small amount of aberration, the Strehi

ratio for a Gaussian beam is higher than the corresponding value for a uniform

beam. Similarly, for a given Strehl ratio, the aberration tolerance for a

Gaussian beam is somewhat higher than that for a uniform beam. We also note

that, whereas aberration balancing in the case of a uniform beam reduces the

standard deviation of spherical aberration and coma by factors of 4 and 3,

respectively, the reduction in the case of astigmatism is only a factor of

1.22. For a Gaussian (y = 1) beam, the reduction factors have a similar

trend, but the factors are smaller: 3.74, 2.64, and 1.16 corresponding to

spherical aberration, coma, and astigmatism, respectively.

We note that the variance of each of the three primary aberrations is

minimized if it is measured with respect to a reference sphere centered at a

point which is slightly different from the focal point. In the case of

spherical aberration and astigmatism, the balancing aberration is defocus,

i.e., their variance is minimized if they are measured with respect to a

reference sphere centered on an axial point z I R. In the case of coma,

the balancing aberration is tilt; i.e., its variance is minimized if it is

measured with respect to a reference sphere centered at a point in the focal

plane but not at the focal point. For small aberrations, minimum variance has

the consequence that when an aberrated beam is focused on a target at a fixed

distance z from the aperture, the central irradian:e on it is maximum if the

beam is slightly defocused in the case of spherical aberration and astigmatism

and if it is slightly tilted in the case of coma. If the beam is neither

defocused nor tilted, then we can say that for focusing systems with large

Fresnel numbers (so that the highest aberration-free irradiance peak occurs at

the focal point), the highest peak of the three-dimensional irradiance

distribution occurs at the point with respect to which the aberration variance

is minimum.
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Table 3. Standard Deviation of Primary Aberrations and of the Corresponuing
Balanced Aberrations for Uniform and Gaussian (y = 1)
Circular Beams

Standard Deviation
Aberration, 4(p,e)

Uniform (y = 0) Gaussian (y 1)

Spherical

Asp 4  As/3.35 A,/3.67

Balanced Spherical

Asp4 + AdP 2  As/13.42 A,/13.71

Coma

Acp 3cose Ac/ 2 .8 3  Ac/ 3 .3 3

Balanced Coma

(Acp 3 + Atp)cose Ac/8.49 Ac/8.80

Astigmatism

AaP2 Cos2 e Aa/4  Aa/ 4 .8 4

Balanced Astigmatism

AaP 2COS 26 + AdP2  Aa/4 .90 Aa/5.61

- (I/2)AacOs2
e

Adu = -As, Adg -- 0.93As ; Atu =-(2/3)Ac, Atg =-0.6lAc

Adu = Adg - -Aa/2
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7. WEAKLY TRUNCATED GAUSSIAN CIRCULAR BEAMS

7.1 IRRADIANCE DISTRIBUTION AND BEAM RADIUS

In this section, we consider a weakly truncated Gaussian circular beam,

i.e., one for which the aperture radius a is much larger than the beam radius

w. When a >> w, i.e., when y is very large, f(y;O) - 2y; therefore, Eq. (5)

for the aperture irradiance distribution may be written

I(p) = 2y exp(-2yp2 ) (79a)

or

I(p) = (2P /ww 2 ) exp[_2(P/W)21 (79b)

In Eq. (79a), I(p) is in units of P /A and p is in units of a as stipulated

in Eq. (11). In Eq. (79b), no such normalization is used.

For large y, the upper limit of integration in Eq. (II) may be replaced

by infinity with a negligible error. Since we are considering a circular

beam, the lower limit c is zero. Hence, if we let a = r and o = y - iD

the integral in Eq. (11) reduces to the form

J0 exp(-ap 
2 )J 0 (Bp)pdp 

(80a)

which for Rea > 0 is equal to29

(1/2a) exp(-a 2 /4a) (80b)

Accordingly, it can be shown that, for large y, Eq. lI) reduces to

I(r;z) - (R/z)2[2y/(2 + y)jexpf-yiT2 r 2/2( + y2) (81a)

2 9Gradshteyn, 1. S., and 1. M. Ryzhik, Tables of Integrals, Series, and

Products, 4th ed., Academic, NY, 1965, p. 717.
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or

I(r;z) = (2P /w 2) exp(-2r 2 /W2) (81b)
0 z z

where

W = (Az/W)2 + w2(1 - z/R)2 (82)

In Eq. (81a), the irradiance is in units of P A/X 2 R 2 and r is in units of

Xz/D as was the case in Eq. (11). In Eq. (81b), these quantities are not

normalized.

Comparing Eqs. (79) and (81), we note the well-known result that, if the

truncation of the beam by the aperture is neglected, a Gaussian beam propagates

as a Gaussian beam. The beam radius at a distance z from the aperture is w
z

given by Eq. (82).

If we let r = 0 in Eq. (81), we obtain the axial irradiance

1(O;z) = (R/z) 2)[2y/( 2 + Y2) (83a)
0

or

1(0;z) = 2P /w 2 (83b)
0 Z

Of course, for large y and E = 0, Eq. (24) reduces to Eq. (83) as expected.

If we let z R in Eq. (81), we obtain the focal-plane irradiance

distribution

I(r;R) = (2/y)exp(-ir2 r2 /2y) (84a)

or

I(r;R) - (2Po/%2) exp(-2r 2f/W) (84b)

where

-(84c)
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is the beam radius in the focal plane. The focal-point irradiance is given by

I(O;R) - 2/y (85a)

I(O;R) = 2TrP W 2/X2R2  (85b)0

a result already obtained in Eq. (22).

If we equate to zero the derivative of Eq. (83) with respect to z, we

obtain the z value at which the axial irradiance is maximum. Note that this

value is given by

z /R = [1 + (y/nN) 2 - (86a)
P

or

z /R = (I + (XR/TW2)2 - (86b)
P

Substituting Eq. (86) into Eq. (83), we obtair the peak value of axial irradiance

I(O;z ) = (2 /y) + (2y/n2N2 ) (87a)
p

or

I(O;z ) = 2P /w2 (87b)
p 0 zp

where

W2= W2/[l + (T 2 /XR) 2 (87c)
zp

Comparing Eqs. (85a) and (87a), we note that the peak axial irradiance is higher

than the corresponding focal-point irradiance by 2y/7r2N 2 (in units of P A/X2R2 )
0

or by 2P /TTw2. Equations (86a) and (87c) can also be written in the form0

z /R = [1 + (OrN ) -2 -1 (86c)
p g

and
2 =2/[1 + (N )21 (87d)
zp g
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respectively, where N = w 2/AR is the Gaussian Fresnel number. 12 It repre-g
sents the number of Fresnel zones in the aperture plane within the Gaussian

beam radius as observed from the focus, just as N represents the number of

zones within the full aperture, provided that there is no obscuration. Since

the axial irradiance is maximum at z, the beam radius is minimum at this

position. This may also be seen by equating to zero the derivative of Eq. (82)

with respect to z. The minimum beam radius w is generally referred to in the
I zp

literature as the beam waist.

It is evident that z < R, i.e., the peak of axial irradiance does notp

occur at the focal point but at a point between it and the aperture. Moreover,

Wzp < w, i.e., the waist of the diffracted beam is smaller than the beam radius

at the aperture. Note, however, that, as discussed in Section 4, even though

the peak axial irradiance and waist are not located at the focal point (z = R),

the smallest beam radius and maximum central irradiance on a target at a fixed

distance z are obtained when the beam is focused on it.I

The encircled-power distribution in an observation plane is given by

P(r ;z) = I - exp[-y2 r 2/2(( 2 + y2)2 (88a)
0 0 0

or

P(r ;z) = P [1 - expf-2r 2/W )] (88b)
0 O 0 z

where r is in units of Xz/D in Eq. (88a).
0

The radius of curvature R of the Gaussian spherical wave at a distance
z

z from the aperture is given by the inverse of the coefficient of -inr 2 /x

in Eq. (1). Noting that r is in units of Xz/D in W = r, we find that

z/R W (A/Xz)Im(l/a) - 1
z

- [A /Xz( 2 + y 2 )i - l (89a)0 0

= I - z/R2 221 (89b)
(l - z/R)

2 + (Xz/j2 )
2
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At the waist position z R = C, implying a plane wave. Similarly, at the
pi zp

focal plane, Rz = -R. A negative value of Rz indicates a diverging spherical

wave.

The results for a weakly truncated collimated Gaussian beam can be

obtained from those for a focused beam by letting R - -. Thus, for example

l(r;z) = {2y/[l + (4'yz/r) 2]} exp{-8yz2 r 2/[1 + (4yz/7) 2} (90a) 4

or

I(r;z) (2P /rw2 ) exp(-2r 2 /W2) (90b)
0 z z

where

W2= W2[l + (Xz/ITW2) 2] (90c)
z

and

R -z[l + (Tw 2 /Xz)2 (9Od)
z

In Eq. (90a), the irradiance is in units of P /A, r is in units of Xz/D2

(z is not normalized here), and z is in units of D 2I. We note from Eq. (90c)

that W increases monotonically as z increases, i.e., the beam expands as itz

propagates.

In this section, we have written equations in two equivalent forms.

Equations (a) are written in a normalized form so that they can be investigated

parametrically. Equations (b) are written without any normalizations, and they

are more suitable for evaluating results when the specific parameters involved

are known. Incidentally, note that all equations in this section reduce to the

corresponding quantities in the aperture plane if we let z - 0.

Figure 9 shows the focal-plane irradiance and encircled-power distribu-

tions for /y = 2. The solid curves have been obtained by using Eqs. (17) and

(18) [or Eqs. (30 and (32) with (o = 01, and the dashed curves represent

their corresponding approximations given by Eqs. (81a) and (88a), respectively,

with 0 - 0. We note that the approximate results agree well with the true0

results. The maximum difference, which occurs at the focus, is less than 4%.

For larger y, the agreement is found to be even better.
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Note: The irradiance and encircled power are in units of PoA/X 2R2 and
Po, respectively. The radial distance r or ro in the focal plane are
in units of ARD. The focal point is at r - 0.

Figure 9. Focal-Plane Irradiance and Encircled-Power Distributions for a
Gaussian Beam with /y-- 2
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Figure 10 shows how the axial irradiance of a focused Gaussian beam varies

when VrY = 2 and N = 1, 10, and 100. The irradiance is in units of P 0A/X2R2 .

Once again, the solid curves in this figure have been obtained by using Eq.

(24), and the dashed curves represent their corresponding approximations given

by Eq. (83a). It is evident that Eq. (83a) represents the true axial irradiance

quite well. The only significant difference occurs when N =1, in that the true

results show secondary maxima and minima but the approximate result shows only

the principal maximum. For larger values of y, e.g., Y'y= 2.5, the

secondary maxima and minima disappear, and the true and approximate results

overlap each other at the scale of Figure 10. Hence, we conclude that the

truncation of an aberration-free Gaussian beam by an aperture has a negligible

effect on the irradiance distribution as the beam propagates when /ly > 2.

7.2 ABERRATION BALANCING

When a Gaussian circular beam is weakly truncated, i.e., when y is

large, the quantity p sin Table 2 reduces to

Ps =<ps>

= (sI2y) p s 2

-(s/2)! Ys/2 (91)

As a result, we obtain simple expressions for the radial polynomials represent-

ing balanced primary aberrations. They are listed in Table 2. If we normalize

P by w (instead of by a as in Table 2), then y disappears from these

expressions. As in Section 6, the standard deviation of an aberration can be

obtained by comparing its Liorm with the corresponding orthonormal aberration of

Eq. (43).

The standard deviation of primary aberrations and of the corresponding

balanced aberrations for a weakly truncated Gaussian beam is given in Table 4.

In this table, P' - /y P is a radial variable in the aperture plane normalized

by the beam radius w, and the aberration coefficients A! represent the peak
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value of a classical aberration at P' = 1. The reason for defining the

aberration coefficients in this manner should be obvious. Since the power in a

very weakly truncated Gaussian beam is concentrated in a small region near the

center of the aperture, the effect of the aberration in its outer region is

negligible. Accordingly, aberration tolerances in terms of the peak value of

the aberration at the edge of the aperture are not very meaningful.

We note from Table 2 (or Table 4) that the point with respect to which the

variance of an aberration is minimized is given by

(D0--(4/y)A s(92a)

= -4y A

At = -(2/y)A c(92bi)

and

00 -(1/2)Aa

- (y/2)A ' (92c)
a

in the case of spherical aberration, coma, and astigmatism, respectively. From

Table 4, we note that the balancing of a primary aberration reduces its standard

deviation by a factor of V5, /3, and v/2 in the case of spherical aberration,

coma, and astigmatism, respectively. These reduction factors are listed in

Table 5 for uniform (y = 0) beam, and e_2 truncated (y = 1) and weakly

truncated (large y) Gaussian beams. It is evident that as y increases, the

reduction factors decrease for each of the three primary aberrations. The

amount of balancing aberration decreases as y increases in the case of

spherical aberration and coma, but it does not change in the case of astig-

matism. For example, in the case of spherical aberration, the amount of

4 balancing defocus for a weakly truncated Gaussian beam is (4/y) times the

corresponding amount for a uniform beam. Similarly, in the case of coma, the

balancing tilt for a weakly truncated Gaussian beanm is (3/y) times the

corresponding amount for a uniform beam.
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Table 4. Standard Deviation of Primary Aberrations in Weakly
Truncated (/7> 3) Gaussian Circular Beams

Aberration, (p,6)

Spherical

L..2/ A' os' ̂  2V5 A '
s5 s

Balanced Spherical

As( -4 - 4p@2 ) 2 A'
S

Coma

A' p, 3 CoO /3- A'
c C

Balanced Coma

A'(p'3 - 2p')cos0 A'
c c

Astigmatism

A' p' 2cos 2e (1/,2) A'a a

Balanced Astigmatism

A'P'2coS 2  - (1/2)A'P' 2  (1/2) A'
aa a

= (1/2) A' p,2 cos20
a

P' = ryP, A' = As/Y 2, A - Ac/y 3 /2, Aa = Aa/y, AA = Ad/y, At = At//y.
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Table 5. Standard Deviation Reduction Factor for Primary Aberrations*

Reduction Factor
Aberration Uniform (y = n) Gaussian (v = 1) Weakly Truncated

Gaussian (-'r > 3)

Spherical 4 3.74 2.24

Coma 3 2.64 1.73

Astigmatism 1.22 1.66 1.41

*It revresents the factor by which the standard deviation of a classical

aberration across a circular aperture is reduced when it is optimally halanced
with other aberrations.
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Table 6 gives the reduction factors that relate the peak value A. of a
i

primary aberration at the edge of a circular aperture and the standard devia-

tion of its corresponding balanced aberration for various values of y. In the

case of balanced aberrations, these numbers are given by / a0 , 22 a', and
24' 3

2/6 a 2 for spherical aberration, coma, and astigmatism, respectively. For exam-
24

ple, for spherical aberration As p, the standard deviation of the corresponding

balanced spherical aberration when /Y - 2 is equal to A s/18.29.

Comparing the standard deviation results given in Table 6 with those for a

weakly truncated Gaussian beam in Table 4, we find that they agree with each

other with negligible difference for /V > 3. This provides a convenient

definition for a weakly truncated Gaussian beam, namely, that a > 3w.

Some authors 30 ,3 1 have assumed that > 2 provides a sufficient condition

for the validity of the aberration analysis of a weakly truncated Gaussian

beam given here. When V/y = 2, the standard deviation of balanced spherical

aberration according to the weakly truncated beam assumption is given by

A /8, while the true value, as stated above, is given by A /18.29, which isS S

significantly different. When / = 3, the corresponding standard deviations

are given by A /40.50 and A /43.52, which are nearly equal to each other.s 5

The difference between the true and approximate results is even less for

vy > 3.

When A/ = 2, even though the true focal-plane distribution obtained from

Eq. (17) or Eq. (30) agrees quite well with that obtained from Eq. (84a), the

true and approximate standard deviations of primary aberrations are

significantly different as pointed out above. The reason for the discrepancy in

the case of an aberrated beam is simple. Even though the irradiance in the

region of the aperture w/a < p < 1 is quite small compared to that at or

near its center, the amplitude in this region is not as small. Moreover, the

aberration in this region can be quite large and thus have a significant effect

on the standard deviation. In the case of spherical aberration, it increases

3 0Yoshida A. "Spherical Aberration in Beam Optical Systems," Appl. Opt., 21,
1982, p.. 1812-1816.

31Herloski R. "Strehl Ratio for Untruncated Aberrated Gaussian Reams,"
J. Opt. oc. 'Am., A2, 1985, pp. 1027-1030.
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Table 6. Standard Deviation Factor for Primary Aberrations for a Gaussian
Circular Beam with Various Values of y

Balanced Balanced Balanced
Spherical Coma Astigmatism

0 13.42 8.49 4.90

0.5 13.69 8.53 5.06

1.0 13.71 8.80 5.61

1.5 14.90 9.74 6.81

2.0 18.29 12.21 9.08

2.5 26.33 17.62 12.82

3.0 43.52 27.57 18.06

3.5 75.78 42.96 24.51

4.0 128.09 64.01 32.00

Note: The numbers represent the factor by which the peak aberration coefficient
Ai must be divided by in order to obtain the standard deviation.
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3 2

as P . In the case of coma and astigmatism, it increases as p and p

respectively. Hence, we require a larger value of y, namely, /-y > 3,

for the aberrated-beam analysis of this section to be valid. This is also

true of defocus which varies as p2
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8. CONCLUSIONS

We have compared the effects of diffraction, obscuration, and aberrations
32

on the propagation of uniform and Gaussian beams. This comparison is based

on fixed total power in the beam regardless of the obscuration or the amplitude

across it at the aperture plane. The following general conclusions can be drawn

from the work reported here.

The mirrors in a high-power Gaussian beam train are illuminated unevenly

and must withstand higher flux densities than those in a corresponding uniform

beam train. The uneven illumination will cause thermal distortions of the

mirrors thereby introducing aberrations in the beam.

The focal-point irradiance for a focused Gaussian beam is smaller than the

corresponding value for a uniform beam of the same total power. Also, the

encircled power for small circles is higher for a uniform circular beam, but for

large circles, it is higher for a Gaussian circular beam.

The effect of the Gaussian apodization of the aperture is to increase the

size of the central disc and to decrease the power in the rings of the

diffraction pattern. The effect of a central obscuration is opposite to that of

the Gaussian apodization. It reduces the size of the central disc and increases

the power in the rings of the diffraction pattern. Accordingly, as the

obscuration increases, the difference between the diffraction effects of uniform

and Gaussian beams decreases.

The minima of axial irradiance for a uniform beam have a value of zero,

while those for a Gaussian beam have nonzero values. While the principal

maximum of axial irradiance for a Gaussian beam has a fmaller value than the

corresponding value for a uniform beam, the secondary maxima for a Gaussian beam

have higher values. Even though the principal maximum does not necessarily

32Mahajan, V. N., "Comparison of Uniform and Gaussian Beam Diffraction,"
SPIE Proc., Diffraction Phenomena in Optical Engineering Applications,
560, 1985.
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occur at the focus, maximum central irradiance and encircled energy are obtained

on a target at a given distance from the aperture when the beam is focused on

it, unlike the conclusions of some authors.
3 3

For a < w, the Gaussian beams are somewhat less sensitive to aberrations

than uniform beams. Accordingly, aberration tolerance is somewhat higher forr the Gaussian beams. However, this tolerance increases rapidly as a becomes

larger and larger compared to w. This is understandable since, for a much

greater than W, the power in the aperture is concentrated in a small region

near the center of the aperture; therefore, the aberration in its outer region

has little effect on the irradiance distribution. For a > 2w, the truncation

of an aberration-free Gaussian beam by the aperture has a negligible effect on

its propagation. Accordingly, it remains a Gaussian beam as it propagates.

However, when the beam is aberrated, a > 3w is required in order to neglect the

effect of its truncation by the aperture. When a > 3w, it is more appropriate

to define aberration coefficients as the peak aberrations at the beam radius

w rather than at the aperture edge a, since the power in the beam is

concentrated in a small region near the center of the aperture, and the effect

of an aberration in its outer region is negligible. With the aberration

coefficients defined in this manner, the beam becomes most sensitive to

spherical aberration and least sensitive to astigmatism, rather than being most

sensitive to coma and least sensitive to spherical aberration.

33Tanaka, K., N. Saga, and K. Hauchi, "Focusing of a Gaussian Beam Through a
Finite Aperture Lens," Apl p. 24, 1985, pp. 1098-1101.
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