
AD-A?7U76 PROOF SYSTEMS(U) CORNELL UNIY ITHACR MY DEPT OF

COMPUTENER NCOIPL TESSOTRC-E NTOA
COMPUTER SCIENCE J WIDOM ET AL. JUL 86

UNLASIFIED, CU-CSD-TR-86-766 N99914-86-K-0092 F/O 1712 ML

mEEEELhEAh

,Jilli = ll

L136

II111 =''1112.
: Illll IllllIII 8

11111125 N~fl~14 .

MICROCOPY RESOLUTION TEST CHART

N A,, N~t A~t t < t

I

z. .. . : . -. , i V .V - " ., . - . -. Z- . - .

U nclass-ified

AD-A170 710 PORT DOCUMENTATION PAGE

"b RESTRICTIVE MARK NGS

Unclassified
'a. SECURITY CLASSiFiCATiON AUTHiORITY 3 DISTRIBUT,ON, AVAILABILITY OF REPORT

2b DECLASSiFiCAT ON, DOWNGRADING SCHEDULE Unlimited

.1 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

TR86-766

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Cornell University Office of Naval Research

6c. ADDRESS ,City. State. and ZIPCode) 7b ADDRESS (Cty, State, and ZIP Code)
Department of Computer Science 800 North Quincy Street
Cornell Univerity Arlington, VA 22217-5000
Ithaca, NY 14853

Sa. NAME OF ;-UNDING, SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT :NSTRUMENT DENTIFCAT!ON NUMBER
ORGANIZATION (If applicable)

Office of Naval Research N00014 -8 6-K-0092
8c. ADDRESS (Cry, State, and ZIP Code) 10 SOURCE OF ;UNDING NUMBERS
800 North Quincy Street PROGRAM PROJECT TASK WORK JNIT
Arlington, VA 22217-5000 ELEMENT NO NO NO ACCESS ON NO

* rIT-E (Include Security Classification)

Completeness and Incompleteness of Trace-Based Network Proof Systems

2 ERSONAL AUTOR(S)
Jennifer Widom, David Gries, Fred B. Schneider

3a 7YPE OF REPORT 13b TIME COVERED .4 DATE OF REPORT (Year, Month. Day) 15 ,AGE COUNT
interim :ROM TO July 1086 I !

'6 SUPPLEMENTARY NOTATION

-7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
E;) GROUP SUB-GROUP verification, networks, trace logics

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)
Most trace-based proof systems for networks of processes are known to be incomplete.
Extensions to achieve completeness are generally complicated and cumbersome. In this paper,
a simple trace logic is defined and two examples are presented to show its inherent
incompleteness. Surprisingly, both examples consist of only one process, indicating that
network composition is not required for incompleteness. Axioms necessary and sufficient for
the relative completeness of a trace logic are then presented. The axioms are substantially
simpler than existing extensions intended to achieve the same goal. , | I ,,

_ECTE

0 DfSTiBuTON, AVAILABILTY OF ABSTRACT 21 ABSTRACT SECI'RiTY CLAS., CA, ON
0 _'j'CLASSiF;ED,'UNL!MITED C1 SAME AS RPT E Dr:C JSERS

2a %..ME OF RESPONSIBLE NDIVIDUAL 22b 7ELEPHO Eftnruoe AreaCoiel 22 - .
Fred B. Schneider 607-255-9221

DO FORM 1473. 34 MAR S3 APR eoLt.n may oe 'sea until exnaustea E (' ('J r'F "i __

A-ll Oti'r .?dit:or,& dre onsolete 6 I
6 J

Completeness and Incompleteness of
Trace-Based Network Proof Systems*

Jennifer Widom
David Gries

Fred B. Schneider

TR86-766
July 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract. Most trace-based proof systems for networks of processes are known
to be incomplete. Extensions to achieve completeness are generally

complicated and cumbersome. In this paper, a simple trace logic is defined and

two examples are presented to show its inherent incompleteness. Surprisingly,

both examples consist of only one process, indicating that network composition
is not required for incompleteness. Axioms necessary and sufficient for the

relative completeness of a trace logic are then presented. The axioms are

substantially simpler than existing extensions intended to achieve the same

goal.

This work was -udper'ed b% the Nat'c.na! Science Fourdation un,- r-int DCR-S320274
Scnneider is al,,o up-p,,ctd by Ot'E.:e o Na al Research c,.ntrac: ulJ,) 1 4-36-K-0092

1. INTRODUCTION

Most formalisms for networks in which the specification of a network can be completely

deduced from the specifications for its constituent processes are trace-based. In them, one

specifies and reasons about traces (histories) of the values transmitted along the

communication channels of the network. Trace-based proof systems are defined in [CH81,

HoSl, Ho85, MC81, but unfortunately they exhibit incompleteness [BA81, Ng85I. Simple

trace logics are modified to increase expressiveness in [Jo85, Pr82] and to obtain completeness

in (BA81, HH83, NDGO86, ZRE84]. The modifications tend to be extensive and cumbersome,

the simplicity of the underlying logic is lost.

This paper explores incompleteness in simple trace-based proof systems and identifies two

extensions that are necessary and sufficient for achieving relative completeness. The first

source of incompleteness is the inability to state and reason about constraints on the temporal

ordering of network events. The second source is the inability to assert that the sequence of

values transmitted along a communication channel is always a prefix of that channel's

sequence at some later point. These two properties-the temporal ordering and prefix

properties-must be available as reasoning tools in any (relatively) complete proof system.

The need for axiomatizations of these properties is illustrated using two examples, each

consisting of a single process. The examples demonstrate that, while compositionality is an

important feature of trace-based logics, incompleteness is caused not by network composition

but by the inability to express the temporal ordering and prefix properties. We also prove that

adding temporal ordering and prefix axioms to a trace logic suffices for achieving relative

completeness.

Section 2 describes the class of synchronous process networks used in the remainder of the

paper- In Section 3, we define Simple Trace Logic (STLI, a formalism and proof system for

network specification and verification that captures the essence of most trace-based systems

The incompleteness of STL is shown in Section 4. To reason about the proof system it is

necessary to introduce a computational model, we do this in Section 5. The model is based on

the computation tree, which captures all possible behaviors of a given process or network In

Section 6, the ideas discussed in Section 4 are formalized, providing axiomatizations of the 4"
temporal ordering and prefix properties, along with a proof of their necessity and sufficiency

Finally, in Section 7 we draw conclusions, explain how our results relate to existing proof

systems, and discuss future work.

N J "

2. PROCESS NETWORKS

Consider networks of processes that communicate and synchronize solely by message

passing. Processes and communication channels are uniquely named. Each channel is either

internal or external with respect to a network. An internal channel connects two processes of

the network, an external channel is connected to only one. Channels are unidirectional, and

communication along them is synchronous', so both processes incident to an internal channel

must be prepared to communicate before a value is actually transmitted. External channels

permit communication with the environment of the network, input or output on an external

channel occurs whenever the incident process is ready. Without loss of generality, we assume:

[2.0.11 Message transmission occurs instantaneously.

[2.0.21 Two message transmissions cannot occur simultaneously. Thus, there is a total order

on the communication events of a given computation.

[2.0.31 There is a fixed domain of values that can be transmitted on communication channels.

Processes send and receive values in this domain only.

A network made up of processes PI, P2 , P, is denoted by PIll P2 II . P,, indicating the

parallel execution of the component processes. Fig. 1 illustrates-a network of three processes

and eight communication channels.

cl

.l c4 i

c5

c6 c ' 7 :.

Figure 1. A network of processes

Extension to asynchronous message-passing is straightforward, immaterial to the incompleteness problem. and
therefore not discussed here.

e.:e,

A

2

:-'-,. :/- -i -- ',-'- " " .":" "-"'"- .:- ¢'-" " * " " " -" "": "-" " " ":" " " "'" " "" '"' "" " " " " .4."

3. SIMPLE TRACE LOGIC

Our formalism for specifying and verifying networks is called Simple Trace Logic (STL". It

concisely captures trace-based reasoning.

3.1. Channel Traces

A specification is a first-order predicate that is satisfied by every possible execution of the

process or network it specifies. The predicate is defined over channel traces-the sequences of

values transmitted on communication channels during execution.

Let c be a channel. In a specification, c denotes a finite sequence, (co, cl, ..., ck), indicating

the values transmitted along channel c, in order. We use the following notational conventions:

* () denotes the empty sequence.

SI cl denotes the length of sequence c.

* cl C c2 denotes that sequence cl is a prefix of sequence c2. Note that 9 is reflexive.

3.2. Process Specifications

A spec'fication for a process P is a predicate S over the traces of P's incoming and outgoing

channels. We say that P's behavior satisfies S, written P sat S, if, at every point during any

computation of P, the traces of the values transmitted on channels incident to P satisfy S. For

example, suppose process P3 of Fig. 1 repeatedly reads an integer from c8 and writes its

successor to c4. We cun formulate this in STL as

[3.2.1] P3 sat (c81-1<_1c41<_1c8) A (Vi:Oi<Ic4I:c4i=c8,+ 1).

3.3. Network Specifications and Proof Rules

A specification for a network N = P1 11 P2 ... P,, is also a predicate S over the traces of its

(internal and external) channels. N sat S if, given any behavior of N up to any point in time,

the traces of values transmitted along N's channels satisfy S.

The axioms of STL consist of all formulas P sat S, where S is U specification satisfied by

every possible execution of process P A specification of a network is to be based solely on

specifications for its primitive component processes, how these primitive specifications are

obtained-or even how processes are programmed-is not important. This puts STL at a level

of abstraction that hides all details except those relevant to the question of completeness.

Specifications for networks can be derived from specifications for their component processes

by using the following inference rule

3 "

[3.3.1] Network Composition Rule: (Vi: 15i!n: P, sat S,)

P1 IP2 II ... 1I Pn sat A, S,

Conjoining specifications of processes using [3.3.11 results in "linking" any shared channels

because in Ai Si, all c's (say) refer to the same channel trace.

In addition, we have the following inference rule:

[3.3.21 Consequence Rule: N sat SI, SI S2

N sat S2

These two inference rules, or variants thereof, underlie all trace-based proof systems we know

of, including [CH81, Ho85, MC81, NDGO86].

4. INCOMPLETENESS OF SIMPLE TRACE LOGIC

Specification S is valid for a process or network PN if every execution of PN (up to any point

in time) yields channel traces that satisfy S. We would like STL to be sound-i.e. if we use STL

to prove N sat S, then indeed S is valid for network N. A rigorous soundness proof requires a

computational model [Ap8l, CK73, Co78], which we give in Section 5.

We would also like STL to be complete-i.e. if, whenever some specification S is valid for

network N, then N sat S is provable using STL. However, a network specification is derived

using [3.3.11 from specifications for its component processes. If these specifications are valid,

but too weak, then we may not be able to prove a given valid network specification. Thus, what

we really want to know is whether we can prove N sat S when the specifications given for the

primitive processes comprising N are as "strong" as possible.

[4.0. 11 Definition: A specification S is precise for a process or network PN iff:

(1) S is valid for PN.

(2) Any computation that satisfies S is a possible computation of PN

A precise specification for a process or network, then, exactly characterizes its possible

computations. Hence, for completeness, we are merely interested in the provability of N sat S

when S is valid and the specifications for the processes in N are precise.

STL specifications can involve elements of the data domain from which messages are

drawn, sequences of such elements, and lengths of sequences. Since number theory itself is

incomplete [S671, a valid assertion involving sequence lengths might not be provable in any

system. When designing a programming logic, one actually aim. for relative completeness

[Co781: Assuming that one can prove any valid statement of predicate logic, number theory,

4

.,.

-7.4

.0

and the data domain of the network being considered, is the proof system complete 9 2 STL is not

relatively complete, as we now show.

4. 1. Temporal Ordering Property

Consider the single-process network of Fig. 2. As an informal description of process . we

are given four facts: (1) P reads at most one value from channel i; (2) P reads at most one value

P

Figure 2. Single-process network

from channel j; (3) P reads a value from i before reading fromj. (4) P reads a value fromj

before reading from i. A formal specification is

[4.1.11 P sat SI: Ii11 A Ijll A IjIl 1il A Iil5ljl.

Let the data domain for this network be {a}. The following specification is valid for P and is

equivalent to [4.1.1]:

[4.1.2] P sat S2:(i=()Aj=()) V (i=(a)Aj=(a))

P is always in one of two states: either no values have been read from i and j or one a has

been read from each. However, P can reach a state in which (i = (a) ',j(a)) only if io and jfo are

transmitted simultaneously. Since this cannot happen (by assumption [2.0.21), P can never

- read a value from i orj. Therefore, a third valid specification for P is

- [4.1.3] P sat S3:i=(j=O.

All three specifications are valid and, in fact, precise. Any computation satisfying SI S2, or

S3 is a computation of P-no values are ever read on L orj. However, consider an attempt at

proving [4.1 3] given precise specification S2 (sav) of [4.1.21. Since there is only a single

process, the network composition rule is irrelevant and the only inference we can us', is the

consequence rule. But S2 = S3 does not hold. Hence4 1.31 is unprovable, even though it is

valid.

2 Most proof systems make assumptions about both the provability of predicate hogic staternents ind the

expressivaness of the specification language involved, This is sometimes refered to as Cook comp&leeness Ap~l
C.)781. We. too. have made an expressiveness assumption in our supposition that precise specifications for the
component processes can be written in STL. The reader should convince himself that)ur language is pAertul
enough to express precise specifications for a large class ofprimitive processes.

5

-. :. !i - .- p I

We need a way to formalize the reasoning about event ordering used to obtain [4.1.31. It

must assert the following

[4.1.41 Temporal Ordering Property: Suppose cl and c2 are channels of a network N, cl, and

Ic2y are transmitted as a result of distinct communication events, and in any

computation of N

(1) cl must be transmitted before c2, and

(2) c2, must be transmitted before c1l.

Then (Ic11 -x , Ic21I5y) holds throughout any computation of N-neither message will

be transmitted.

Property [4.1.41 allows S3 to be deduced from S2, making [4.1.31 provable.

4.2. Prefix Property

Consider a network with one process and one communication channel (see Fig. 3). Suppose

the network has {a, bj as its data domain. Let a precise specification for process P be

Figure 3. Simplest network of all

[4.2.11 P sat S4: i=() V i=(a) v t= ba).

Since P can send only one value at a time on channel i, i = (b, a can never be attained-it would

be reachable only from i = (b), which is prohibited by S4. Therefore, [4.2. 1I can be simplified to

[4.2 21 P sat S5: i 9 (a).

However, S4 does not imply S5, and therefore [4.2.21 cannot be proved from precise

specification [4.2. 11. Here, we need:

[4.2.31 Prefix Property: For any channel c and integers O-x!_y, the trace of c after x values

have been transmitted is always a prefix of the trace of c after Y values have been

transmitted.

By applying the prefix property to S4, we can eliminate the disjunct i =(b, a and ,btain [4 2'21

4.3. Augmenting the Proof System

Consider any STL proof that establishes N sat S for a network N P1 !IP :1 il P, .

axioms, we are given P1 sat S1, P2 sat S.. P, sat S., where S. S,2 are prcise The

6 ?

.................

first rule to be applied in any such proof is necessarily the network composition rule, so we

immediately obtain N sat A, S, (In Section 5 we show that A, S, is in fact a precise

specification for N.) All remaining steps in the proof must then be applications of the

consequence rule. Since any string of consequence rule applications can be collapsed into one,

we see that N sat S is provable if and only if A, S, S, a formula of predicate logic. The two

examples given, however, demonstrate that such an implication might not hold. By

strengthening the antecedent, we can guarantee that the implication will be valid. Thus, we

must find a set of axioms such that if A (say) is the conjunction of the axioms in the set, then

A S, A A) =* S is valid whenever it should be possible to deduce S from A, S, The temporal

ordering and prefix properties are the basis for such a set of axioms.

The remainder of the paper is a formalization of the concepts and results presented thus far.

5. COMPUTATIONAL MODEL

Proving soundness and (relative) completeness requires a model of network behavior

(Ap81, CK73, Co781. The model is used to formalize the notions of valid and precise

specifications. We can then prove that STL is sound, we can show that the conjunction of

precise process specifications results in a precise network specification, and, most importantly,

we can formalize the temporal ordering and prefix properties, allowing us to prove that they are

necessary and sufficient for relative completeness.

Our model is based on the computation tree. Every process or network is represented by one

computation tree. The structure of the tree describes all and only potential execution sequences

of the process or network; vertices, called trace-sets, are sets of communication channel traces,

and edges represent a single step of execution. In all computation trees

[5.0. 11 The root of the tree is the trace-set in which all channel traces are empty, corresponding

to the initial state of a computation.

[5.0.21 The children of a trace-set TS within the computation tree are exactly those trace-sets

that extend one channel trace of TS by one element, where the extension corresponds to

a communicaton event that might actually be performed

Internal computations of a process are irrelevant when reasoning about network behavior,

except as they affect the values sent and received. Thus the tree does not include such changes

of process state. Since our system allows for reasoning about both finite and infinite

computations, trees can be of finite or infinite depth. The domain of communicable values

corresponds to the breadth of a tree; it too can be finite or infinite. (There is some similarity

here to the CCS synchronization tree [Mi8OJ1.)

7

We first describe computation trees for primitive processes and then show how a

computation tree for a network is built from trees for its component processes.

5.1. Computation Trees for Processes

The behavior of a process P is modeled as a computation tree. As an example, consider the

network of Fig.4. MERGE repeatedly and nondeterministically reads a value from i or j and

then writes it on k. BUFFER simply copies values from k to j, with an arbitrary amount of

internal buffering. Let the data domain for the network be {a . The initial portions of the

computation trees for MERGE and BUFFER are illustrated in Figs. 5 and 6.

j

k

Figure 4. Example network

5.2. Computation Trees for Networks

The computation tree for a network is defined in terms of the computation trees for the

network's constituent processes. 3 First, we define compatibility of trace-sets-the criteria for

determining when a group of trace-sets from process computation trees can coexist and hence

can be combined into a single trace-set of a network computation tree. Let T1Sz, TS 9, ... , TS, be

trace-sets, one each from the computation trees for processes PI, P2 ... , P, of a network. This

group of trace-sets is compatible "ff for all channels c such that a trace of c appears in both TS,

and TS,, the trace of c in TSi is identical to the trace of c in TS. Thus, trace-sets are compatible

when the exact same transmissions have occurred on any channels they have in common.

When an appropriate set of compatible trace-sets is identified (the identification procedure is

described shortly), they are merged into a single trace-set of the network tree being

constructed. Merging compatible trace-sets simply consists of forming their union.

Let TI, T2 , ... , T, be the computation trees for processes PI, P2, .., P, respectively, and let

N= Pz 1 1 P, 11... IP,. The tree T for network N is defined by the following construction

3 We could alternatively-and equivalently-have chosen to define network trees independently of the component

process trees, but the constructive definition given here is both illustrative of the model and useful in subsequent

proofs.

8
.**..- . * .-* -*. *

Figure 5. Computation tree for process MERGE

W4

J: 6.mutto j: (

k: (a) kaa: (a

b). Figure 5. Computation tree for process BMFFER

[5 211 Combine fT1 , T,, ,T 1)

the root ofT = the result of merging the roots of T1 , T2 .. T .

for each T1, I s- <- n:

let G, be the group of trace-sets consisting of the root of" Th and all the root's

children

consider every possible group of trace-sets. G, where G is constructed by choosing

one trace-set from each G .G is usable if

S1) the trace-sets in G are compatible. and

J9

, -

(2) merging the trace-sets in G results in a new trace-set that extends exactly

one trace of T's root by exactly one element.

for each usable G:

add a child to the root of T, letting this trace-set be the root of the tree defined

by Combineset of subtrees whose roots are the trace-sets in G).

In each invocation of Combine, one set of process tree trace-sets is merged into a single

*network tree trace-set, followed by the identification of all possible trace-sets the network can

achieve in some "next step". The recursive definition then results in the complete network tree.

even if some or all of the process trees are infinite (the resulting network tree need not also be

infinite) Fig 7 shows the initial part of the network tree for MERGE il BUFFER, obtained by

combining the process trees pictured in Figs 5 and 6.

J: 0

J: (:)

k: (

i: (a)a : a

J: a) : a

k: (a) k w

t: , a) z(a

J: t) : a)

k: (a, a) : (a.a

t. (a, a. a) L. (. a) . a, a) : (a)

3:)J j-a) I -a)j)O

k: (aa) k: ea.a) k: (a, k a. a

Figure 7 Computation tree for MERGE 1 BUFFER

* 5.3. Valid and Precise Specifications

We are now ready to define the relationship between STL and the computation-tree model

- Define a path in a computation tree to be any connected sequence of trace-sets beginning with

10"

the root and descending through the tree until a trace-set with no children is reached. (If no

terminal trace-set is reached then the path is an infinite sequence.) A path corresponds to a

computation of the process or network being modeled by the computation tree. For any process

or network PN, define Comps(PN), the set of possible computations, to be the set of all paths in

the computation tree for PN.

Denote any sequence of trace-sets by a = (00, 01, 02, ...). A specification S is valid for a

process or network PN if

(5.3.11 (Va: a Comps(PL): (Vi: 0Si<li: io S)).

That is, S is valid for PN if every trace-set of every sequence in Comps(PN) satisfies S For

notational convenience we define an "always" operator, 1.

[5.3.21 a 0-S iff (Vi: 0!51 < '10: t= S).5

Definition 15.3.11 of validity can now be written as (Vo: a (Comps(PY): o E 2 S), and we can

establish the soundness of STL.

[5.3.31 Theorem (soundness of STL): Let N be a network and S a specification such that

N sat S is provable using STL. Then S is valid for N.

Proof See appendix.

A sequence of trace-sets is well-formed if it could appear as a path in the computation tree

for some process or network because the sequence does not violate [5.0.11 or [5.0.21. More

formally:

[5.3.4] Definition: ais well-formed iff:

(1) All channel traces in the initial trace-set of o are empty, and

(2) Each trace-set in a, except the first, extends exactly one trace of the preceding

set by exactly one element.

We can now formalize Definition [4.0. 1] of a precise specification.

[5.3.5] Definition: A specification S is precise for a process or network PN iff:

4 (, - S holds if the channel traces in . satisfy specification S.

5 This version of -- is consistent with the operator : ("henceforth") in temporal logic, see e.g. [MPSI I. The temporal
logic operator is defined as: G P - S iff (Vi: 0si<Iloi: a., a.. ... S), but when S itself contains no temporal

operators, then ((a..a...... S 5) w (a. = S).

11

-o . . .o o . o wo 1 ' - ', . * . .' ° .< V ' ° .o" ~ " .* * .**.- . .' . - o. o% " . . ' . . . - ' ' '

(1) S is valid for PN, and

(2) Any well-formed sequence of trace-sets a satisfying 0 S is in Comps(PN).

(In part (2) of [5.3.51 we tacitly assume that the trace-sets of a do not include extraneous

channel traces-i.e. that all traces in a are histories of channels actually appearing in PN.) It

turns out that the composition of precise process specifications results in a network

specification that is also precise.

[5.3.6] Theorem (preciseness preservation): Let S, be a precise specification for P,, l !5 i! n, and

let N = PI P2 i1.. I P,. Then A, S, is a precise specification for N.

Proof See appendix.

6. THE TEMPORAL ORDERING AND PREFIX AxIois

Consider a network N = P 1 1 P2 I ... I P. Given precise specifications S1, S2 . . . , S, for the

component processes, N sat S is provable if and only if A, S, S. We now know, by

preciseness-preservation theorem [5.3.61, that A, S, is a precise specification for N. Therefore,

STL would be relatively complete if S1 t S2 whenever Si is a precise specification for a

network N and S2 is a valid specification for N. The examples of Section 4 showed that the

implication does not always hold and suggested that we define a set of axioms whose

conjunction A guarantees that (Si A A) S2. We will prove that axiomatizations of the

temporal ordering and prefix properties (from Section 4) are necessary and sufficient for such

anA.

There is a fundamental difference between any axiomatization of temporal ordering and

specifications S1 and S2, because event ordering is always with respect to an entire

computation-a sequence of trace-sets-while Si and S2 are with respect to individual trace-

sets. We employ C to convert a specification to being on entire computations and introduce

[6.0.11 Revised Consequence Rule: N sat Si, CSI', A = OS2

N sat S2

6.1. The Temporal Ordering Axiom

Our first axiom characterizes temporal ordering property [4.1.4]. If some communication

cl, happens before some c2y, then Ic21 cannot exceed v until Icll exceeds x. This can be

expressed as C (Ic21 >y ici >x). Note that this assertion captures temporal precedence for

any channels cl and c2 and any indices x andy, even ifx=y or cl and c2 are the same channel.

We are only interested in temporal ordering of distinct events, so the case in which cI, and c2,

are produced by the same event ie. x=y andcl and c2 are the same channel) is excluded Now,

12

,. , . .. , .. . - ..., -. - * ,5 • ,.. %,. *,... '. -,

a

if 0 (Icli>x :* ic21>y) as well, then neither clx nor c2Y can ever happen, equivalently:
[] (ICll 1!5x A Ic21 5;y).

The formalization differs slightly from the preceding discussion, however. All >'s are

changed to -'s in the antecedent of the rule and all S's are changed to <'s in the consequent.

Doing so allows channel traces of length 0 in the antecedent, thereby asserting that an empty

channel trace temporally precedes all communication events on that channel. Hence we state

the temporal ordering axiom as

[6.1.11 ORDERING: If cl and c2 are channels, x>1 and yz- 0 are indices, and either x=yv or ci

andc2aredistinct, then J(iclil-x = Ic2lay) =0 E-(Icll<xAic2I<y).

We require x- 1, rather than x->0, because allowing x=y= 0 results in a pathological situation

in which the antecedent is trivially true (since trace lengths are always at least 0), but the

consequent is trivially false (since lengths cannot be less than 0).

We must prove that the axiom is sound.

[6.1.2] Theorem (soundness of ORDERING): a = ORDERING for any well-formed sequence of

trace-sets a.

Proof. See appendix.

6.2. The Prefix Axiom

An additional bit of notation is necessary in order to formulate an axiom for prefix property

[4.2.3]. For any i>0 and trace-set sequence a, let Oc ("the next value of c") be defined with

respect to trace-set a, as the trace of channel c in trace-set 0,+ .6 If a is finite, in the last trace-

set let oc=c (since there is no next trace-set). In effect, we convert finite sequences to infinite

ones by repeating the final trace-set. Thus, for any sequence o, every channel c appearing in a

has a corresponding and well-defined value oc in each trace-set of the sequence. Intuitively, the

value of oc at any given time is the value that channel trace c will have after the next

computation step.

We now state the prefix axiom.

[6.2.1] PREFIX. Ifc is any channel, then: El (cC- od.

*' The axiom asserts that the value of a channel trace c at any point in time is a prefix of c's trace

*, at any later time. The axiom is thus equivalent to the prefix property as stated in Section 4.2.

S 6 Operator O corresponds to the 'next" operator oftemporal logic [MP81]. Do not confuse this with a second use of 0
S"in temporal logic, where 0 operates over formulas: ,7 OS iff o. - S.

'.

13

~~~~.-. . ..-.................... ,,..-.-.......-...-. .... .. %= -,.... ... . . ...........'.','. *.t , ." ," ' n* '" * " '- 'n - :" " t ': " ' "'"i '" '" " : ;': %



[6.2.21 Theorem (soundness of PREFIX): a PREFIX for any well-formed sequence of trace-

sets a.

Proof' Let a be any well-formed sequence of trace-sets. a PREFIX follows directly from the

definition of well-formedness: Since a, + I extends exactly one trace of a, by exactly one element

(for all 0i <ol - 1), every channel trace c in oi is a prefix of the corresponding trace in o, .- If

i = lol - 1, then by definition c = oc. Therefore PREFIX is a sound axiomatization of the prefix

property. []

6.3. Necessity and Sufficiency of the Axioms

By letting A = ORDERING A PREFIX, we can prove that if SI is a precise specification for

network N and S2 is a valid specification for N, then Si A A C S2. In addition, we will

argue that ORDERING and PREFIX are necessary axioms for this-if either axiom is removed

from A then we can find a network N with precise and valid specifications Si and S2

(respectively) such that C1 SI and A do not imply C3 S2. We begin with a key lemma.

[6.3.11 Lemma (well-formedness): A sequence of trace-sets o is well-formed if and only if

a m ORDERING A PREFIX.

Proof See appendix.

With this lemma in hand, we can easily prove that our two axioms are sufficient for relative

completeness.

[6.3.21 Theorem (sufficiency of the axioms): If Si is a precise specification for network N and S2

a valid specification for N, then C Si A ORDERING A PREFIX Cl S2.

Proof. We show that that any sequence of trace-sets o satisfying Cl Si, ORDERING, and

PREFIX, also satisfies C S2. Since o ORDERING A PREFIX, by Lemma 16.3 11 we know

that a is well-formed. Now recall from the formal definition of preciseness ([5.3 51) that any

well-formed sequence satisfying a precise specification is a path in the computation tree for the

corresponding process or network. Since o is well-formed and a m E Si, by the preciseness of SI

we conclude that a E COMPS(N). Finally, by the validity of S2, every sequence in COMPS(.V

satisfies C S2, so a - C S2. []

Thus with ORDERING and PREFIX, we ensure that any valid network specification

follows from a precise specification for the network. (In fact, by preciseness-preservation

theorem [5.3.61, only precise specifications for the component processes are needed ) Both

axioms are necessary for the implication to always hold, as well as sufficient, as is shown in our

final theorem:

14

- '. N



(6.3.21 Theorem (necessity of the axioms): There exist networks N1, N2, and N3, with precise

specifications SIp, S2 p, S3p (respectively) and valid specifications SI v, S2v, S3 v (respectively),

such that:

(1) -- (SIpA ORDERING * 11Siv)

(2) - (C S2p A PREFIX * C S2v)
(3) - (C S3p = 0 S3v)

Proof (I) Let NI be the example network of Section 4.2 (2) Let N2 be the example network of

Section4.1. (3) Follows directly from (1) and (2) Z

7. CONCLUSIONS, COMPARISONS, AND FUTURE WORK

STL is a simple trace-based proof system for networks of processes, with specification

language and inference rules similar to those in most existing trace logics [Br84, CH81, HH8:,,

Ho8l, Ho85, Jo85, MC81, Mi80, NDGO86, ZRE841. Like other simple trace logics [CHSl, Ho8l,

Ho85, MC811, STL is incomplete, and we have proved that axiomatizations of the temporal

ordering and prefix properties are necessary to achieve relative completeness Since these two

axioms are essential components of a relatively complete proof system, it is interesting to look

at existing complete systems and identify how the axioms are represented

Several proof systems involve explicit reasoning about every possible interleaving of

communication events [Br84, HH83, Mi801; within the system all possible computations must

actually be listed. It is clear that such a logic will be complete, since an exhaustive list of

potential computations is an exact characterization of process or network behavior, including

(implicitly) the constraints of the temporal ordering and prefix properties. Naturally, the

difficulty is the exponential number of possible computations. Verifying the specification of

any but very simple networks could be a formidable task with such a formalism.

The proof system in [ZRE841 is designed both for the specification of sequential processes

and for the verification of their behavior when connected into a network Thus, Hoare-style

triples and inference rules are given (in the style of [AFR80, LG81I), as well as a means for

reasoning about specifications over channel traces. The logic includes a statement of the prefix

property, written essentially as Tr=c Pgm Tr _ c , where Pgrn is any program segment.

(The interpretation is: If execution of Pgm begun in any state in which channel trace c has

value Tr terminates, then upon termination Tr is a prefix of c.) Reasoning about the temporal

ordering property, however, is achieved only by enumerating all possible interleavings of the

communication events of interest. Again, this can result in an exponential number of cases to

consider.

- 15

" **, . - - - " " "" - '' """"""""" -"" '""" - b"""""- - %" " *" -4" .' " -*" " , "' '.** - " "- "' **-. 
'

- ' , . '



. _ . . -. ._ V- 1, _ . . . . , .

In [ZRE84], the authors also discuss the incompleteness of [MC81] and suggest a rule that

would render it relatively complete. (A similar rule is proposed in [Ng85].) Informally, the rule

asserts the following: Let S be a valid specification for network N and t be an interleaved trace

of all communication events during any computation of N. Then every prefix of t satisfies S.

This rule certainly captures the prefix property, and the temporal ordering property is encoded

as well. To see this, suppose specification S constrains two communication events cl and c2,

(say) to occur simultaneously. Any trace t including only one of cl, and c2,. will not satisfy S,

and thus cannot be a computation of N. Suppose, then, that both events are included in t.

Consider any prefix p of t that contains one event but not the other. (Such a prefix must exist.)

Then p will not satisfy S, since only one of cl, and c2, appears in p. Hence no computation of N

can include either event.

In [Jo85], the fact (and problem) that valid specifications do not always follow from precise

specifications is identified, but no actual solution is proposed. The author suggests adding a

proof rule of the form

N sat Si

N sat S2

which can be used whenever S1 and S2 are such that any network satisfying SI will also satisfy

S2. With a rule of inference like this, the issues of behavioral properties such as temporal

ordering can essentially be ignored, but consequently there is no formal method for deciding

when a pair of specifications is a candidate for an application of the above rule.

The proof system of [NDGO86I is based on temporal logic, so it is straightforward to

formulate ordering constraints between network events in the logic. In addition, a number of

axioms for behaviors are defined, including assertions that all traces are initially empty, that

only one communication event can occur in a single time-step, that the prefix property holds.

etc. These axioms for behaviors are also stated in temporal logic.

Our ORDERING and PREFIX axioms could be formulated in temporal logic, since the

operators El and o are subsumed by the corresponding operators of temporal logic. However.

we have actually drawn upon only a relatively small subset of temporal logic In particular, we

use Oc. but do not need the formula version ofo: we use [] S, but only in the special case when S

is non-temporal. Although temporal logic is a convenient language in which to perform the

types of reasoning needed for our axioms, temporal logic may be far more powerful than is

necessary. Our contribution here is to identify the subset of temporal logic needed to achieve

relative completeness.

The next step in our work is to extend the language of STL to enable our two axioms to be

expressed. Our goal is to create as simple a trace logic as possible, but one that is still relatively

16



complete. Since we have shown that ORDERING and PREFIX are necessary and sufficient

property axiomatizations, they will be our guide in devising such a proof system.

Appendix

[5.3.3] Theorem (soundness of STL): Let N be a network and S a specification such that

N sat S is provable using STL. Then S is valid for N.

Proof Since we're assuming validity of process specifications, proving this theorem consists of

showing that whenever the antecedent of an STL inference is valid, so is the consequent.

[3.3.1] Network Composition Rule: (Vi: 1:-i-n: P, sat S,)

PI 1 P2 1...I P sat A, S,

Assume each S, is valid for P,, so (Vo: o E Comps(P,): o C S,). We must show that (Vo:

a E Comps(N): a 0 A, S,), where N = PI 11 P2 11 ... 11 P,. Consider an arbitrary conjunct S, and

an arbitrary a E Comps(N). Let a, be any trace-set of a. If we construct a,' by removing from a,

all traces of channels that are not incident to process P, then-by the method of constructing

network trees from component process trees-we obtain a trace-set that must appear in some

a E Comps(P,). Therefore, aj' S,, because S, is valid, and a, S, as well, since the traces that

were removed from a. cannot appear in S,. Since a2 is an arbitrary trace-set of an arbitrary

sequence in Comps(N), we know (Vo: a ( Comps(N): a P C S,) The conjunct S, was also chosen

arbitrarily, so we can conclude that (Vo: a E Comps(N): a 3 A, S,). Thus A, S, is valid for ,V.

(3.3.21 Consequence Rule: N sat Si, SI S2

N sat S2

Let SI be valid for N. From (Vo: a E Comps(N): a C1 SI) and SI =t S2, by predicate logic we

%5 conclude (Va: a E Comps (N): a C S2). Therefore S2 is also valid for N. 2

[5 3.61 Theorem (preciseness preservation): Let S, be a precise specification for P,, 1 i!5 n, and

let N = P [lIP2 11 ... 11 P,- Then A, S, is a precise specification for N

Proof We must show that A, S, satisfies both parts of Definition [5.3.5].

(I1) A Sl is valid for N.) Since the S, are precise specifications for their respective P,, they are

valid. We must then show that A, S, is valid for N. This was proven in part (1) of Theorem

[5.3 31 (the soundness theorem).

(2) if o is any well-formed sequence of trace-sets such that a I C A, S,, then a E Comps N).)

For any process P, define Project(o, P) to be the sequence of trace-sets a' that results from

restricting the trace-sets in a to those channels that are incident to P and then eliminating all

1"7



trace-sets that duplicate their immediate predecessor in the sequence. Using Project(o, P) we

can take a path representing a computation of a twork and extract the trace-set sequence

that shows how a single process behaved during this computation. Now, let o be any well-

formed sequence of trace-sets such that o C3 A, S. We must show that a E Comps(N). Let

oz=Project(o, P1 ), o2=Project(o, P2 ), etc. By definition, o, 7 S,, 15i!_n. Thus, by the

preciseness of each of the S,, a, ( Comps(P,). Lastly, we use the algorithm for network tree

construction to conclude that a E Comps(N). Z

[6.121 Theorem (soundness of ORDERING): If o is any well-formed sequence of trace-sets,

then a ORDERING.

Proof Let a be an arbitrary well-formed sequence of trace-sets. We must show that if

a 1-=C{clax m Ic2l>_y) then a t= E (Icll<x A Ic2l<y). Assume that D tIcli>x = ic2?y)

holds for a, and suppose, for the sake of a contradiction, that C1 (Icl!<x A Ic21<y) does not.

Thus, there is a trace-set of a in which (Icl L-x V Ic21 -y). Let i be the smallest index for which

this is true: (Icl_x 'c21!_y) is true in a, but does not hold in any a, forj<i. Since (Icl x

c2l -y) is true ir a, by o E l (Icll -x - Ic21 >y) we know that (Icll -x / ic21 -y) holds in a. By

x2! I (recall Definition [6 1.11), i >0, since all traces in oo are empty. So consider trace-set o,-

By the definition of a well-formed sequence, a, extends exactly one trace ofoa, - by exactly one

element. Therefore since (lcllI>x 1\ Ic2 1>_y) holds in az, (IclIx V c21 -v) must hold in a,-,.

This contradicts the assumption that i is the smallest index for which a, Icli -x ," 1c21 _y).

Thus, a C (IclI <x A Ic21 <y) and a ORDERING. 21

[6.3.1] Lemma (well-formedness): A sequence of trace-sets a is well-formed if and only if

a = ORDERING A PREFIX.

Proof: [*] (If a is well-formed then a m ORDERING A PREFIX.) This is simply a statement

that axioms ORDERING and PREFIX are sound, which was proven in Sections 6.1 and 6.2

[-] (If c ORDERING A PREFIX then o is well-formed.) Consider any o that satisfies

ORDERING and PREFIX. we must show that o is well-formed. We prove the (equivalent)

contrapositive: If o is not well-formed, then c does not satisfy ORDERLNG A PREFIX. Let o be

any sequence of trace-sets that is not well-formed. By Definition [5.3.41 of well-formedness, a

then must exhibit at least one of the following conditions:

[A. I I In the initial trace-set all channel traces are not empty.

[A.21 Some channel trace decreases in length.

[A.31 Some channel trace increases in length by more than I.

[A.41 Two channel traces increase in length at the same step.

18
---------------- * . .-... . ,-. . . . . y ,',, .?; .y .,: . ,-..! 7 .i •; , -.



(A. 51 Some channel trace element takes on more than one value. (A value changes

spontaneously between trace-sets on a path)

(The negation of well-formedness condition (1) from Definition (5.341 is [A. l], while negating

condition (2) results in [A.2] through [A.5].) We must show that in every case, one of

ORDERING and PREFIX is violated. The proof proceeds by induction on the length of a.

Base case: lol = I. Since a has only one trace-set, a must be ill-formed due to case [A.1I-all

channel traces are not empty in a(). Let lcl = x in ao for some channel c and some x >- 1. Then

,a (1cl ( 0 = jcl x). Trivially, a C (Ici-x = IciaO), so a I>0 icl --x). By

ORDERING we conclude a C EI OcI<x A Ict<0). This last assertion is not true, and thus

ORDERING does not hold for a.

Induction: Iol = n + 1, n > 1. Suppose, as the induction hypothesis, that any a' of length n that is

not well-formed violates ORDERING and/or PREFIX. Now consider a. If (0o .. a4- 1) is not

well-formed, then by the induction hypothesis we are done. So assume that (o0.. o4 -t) is well-

formed. Then the ill-formedness of a must occur between trace-sets o,_ and 0, and must be of

type (A.21, [A.31, [A.41, or [A.51 above. By cases:

(A.21 (Some channel trace decreases in length.) Let lcl=x in a,- and lcl=y in ao, for some c

and x>y. Then c 9 oc does not hold in 0,, C1 (c C Oc) is not valid for a, and hence PREFIX is

violated.

[A.31 (Some channel trace increases in length by more than 1.) Suppose Icl =x in a,- and

cl =x4+y in ao, for some c, x, andy-2. Recall that (00.. a, -) is well-formed (by hypothesis), so

we know ao.. a,-,) [(Ic-0 x), since Iclsx ina,_j. Therefore a C](Icl-x+1 = Ici -x+y.

Now since C(icl-x+y * icl>-x+ 1) holds trivially, we obtain a C{icl>x+l Icl>.t-y). It

is not the case, however, that a C (Ic < x + 1 .\ tci< x + y). Thus ORDERING does not hold.

[A.41 (Two channel traces increase in length at the same step.) Let ci =x and 1c21 =yin on_I,

and let Icll=x+l and ic2i=y+l ina_, for somecl, c2, x, andy. Since(00.. a,-I) is well-

formed, a m C (IclI -x+l Ic21-x+y). Then by ORDERING it should be the case that

a r-C (Cci I < x + 1 ^" Ic21 < x + v). This assertion is not valid, so ORDERING is violated.

[A] (A channel trace element takes on more than one value.) Suppose there is a channel trace

element c, such that c,=a in o,_ I, c =b in 0,, and data items a and bare not identical Then

c ; oc does not hold in a., C (c (; oc) is not valid for a, and PREFIX does not hold

We have shown that if a exhibits one of the five cases above, then a does not satisfy both of

ORDERING and PREFIX. Suppose that in fact a is ill-formed in more than one way. Then

consider a condition that involves a single channel--only case (4) involves two channels-and

19* .I* S . . . . . .*-. S* ~

", ', ,i ,- '. ,,- . " . " - ' ' s" . '" - ' 'v " ' ' - ' . . " .. " "" " " -' " " . .- - "" " = .S"=,P ." .' . " ' " " "" '



reasoning as above guarantees that one of ORDERING and PREFIX is still violated. Thus we

have shown that any a satisfying ORDERING and PREFIX is well-formed. Together with the

first half of the proof: a sequence of trace-sets a is well-formed if and only if a ORDERING A

PREFIX. 21

Acknowledgment

We are grateful to Abha Moitra and Prakash Panangaden for valuable discussions

References

tAp81] K.R. Apt. Ten years of Hoare's logic: a survey - part 1. Trans. on Programirnng Languages and S% stems

3 (Octo'ier 1981 ),431-483.

[AFR801 K.R. Apt, N. Francez, and W.P. de Roever. A proof system for communicating Sequential processes.

Trans. on Programming Languages andSystems 2 (July 1980),359-385.

[BA81] J.D. Brock and W.B. Ackerman. Scenarios: a rrodel of non-determinate computation Formalization of

Programming Concepts, Lecture Notes in Computer Science 107, Springer Verlag, New York, 1981,252-

259.

Br84] S.D. Brookes. A semantics and proof system for communicating processes. Logics of Programs. Lecture
Notes in Computer Science 164. Springer Verlag, New York, 1984, 68-85.

CK73] C.C. Chang and H. J. Keisler. Model Theory. North-Holland, Amsterdam. 1973.

fCH81 1 Z.C. Chen and C.A.R. Hoare. Partial correctness of communicating processes and protocols. Technica

monograph PRG-20, Programming Research Group, Oxford Universit.% Computing Laboratory. May

1981.

[Co781 S.A. Cook. Soundness and completeness ofan axiom system for program verification. SIAM Journal on

Computing 7 February 1978),70-90.

[HH831 E.C.R. Hehner and C.A.R. Hoare. A more complete model of communicatng processes. Theorptical

ComputerScience 26 (September 1983) ,105-120.

Ho81] C.A.R. Hoare. A calculus of tot "orrectness for conmmunicating processes. Sc.e'ce of Computer

Programming I tOctober 1981).49-, -

:H,)851 C.A.R. Hoare. CommunicatingSequentialProcesses. Prentice Hall. Engle, ,odCifTs. Ne Jersey. 1985

rJo85] B. Jonsson. A model and proof system for asynchronous netwo rks. P-oc ACMS .IGACT.SIGOPS Simp

on Principles ofDistributed Computing (August 1985., 49 58.

'LG8I] G.M. Levin and D. Gries. A proof technique for communicatng sequental processes Acta In'orrnautc,

15,3' 19811,,281-302.

%fps I ] Z. Manna and A. Pnueli. Verification of concurrent programs: the temporal framework. The Corre('tnes

Problem in Computer Sczence i R.S. Boyer and JS. Moore, eds. ), International Lecture Series in (mputer

Science, Academic Press, London. 1981,215-273.

_M801 R. Milner A calculus of communicating systems. Lecture Notes in Computer Science 92, Springer

Verlag. New York, 1980.

MC811 J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans. on Software Engineering 7

,July 1981.417-426.

20

... -. s *,.**J >.2.



[Ng851 V. Nguyen. The incompleteness of Misra and Chandy's proof systems. Information Processing Letters 21

(August 1985). 93-96.

[NDGO861 V. Nguyen, A. Demers. D. Gries, and S. Owicki. A model and temporal proof system for networks of

processes. Distributed Computing I (January 1986), 7-25.

[Pr82 VR. Pratt. On the composition of processes. Proc. 9th ACM Symp. on Principles of Programming

Languages (January 1982),213-223.

rS671 J.R. Schoenfield. Mathematical Logic. Addison- Wesley, Reading Mass., 1967.

[ZRE841 J. Zwiers. W.P. de Roever. and P van Emde Boas. Compositionality and concurrent networks: soundness

and completeness of a proofsvstem. Report 57. Informatica/Computer Graphics. Faculty of Science,

Nijmegen U niversity. The Netherlands. December 1984

21
- ..N-" -- - ""- "" ": ", "-",- "..- " '-,-" .'-?.-. i :. .. .- :-]..

• 1 un 1 - ia | / i d i k ! . . .a - it - in i ' " J



* . -. .- ..

- * . -~-.-~-



...... ... .f.f


