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1. INTRODUCTION

Most formalisms for networks in which the specification of a network can be completely
deduced from the specifications for its constituent processes are trace-based. In them, one
specifies and reasons about traces (histories) of the values transmitted along the
communication channels of the network. Trace-based proof systems are defined in [CHS81,
Ho81, Ho85, MC81], but unfortunately they exhibit incompleteness [BA81, Ng85]. Simple

trace logics are modified to increase expressiveness in [-Jo85, Pr82] and to obtain completeness
in [(BA81, HH83, NDGO86, ZRE84]|. The modifications tend to be extensive and cumbersome,
the simplicity of the underlying logic is lost.

This paper explores incompleteness in simple trace-based proof systems and identifies two
extensions that are necessary and sufficient for achieving relative completeness. The first
source of incompleteness is the inability to state and reason about constraints on the temporal
ordering of network events. The second source is the inability to assert that the sequence of
values transmitted along a communication channel is always a prefix of that channel’s
sequence at some later point. These two properties—the temporal ordering and prefix
properties—must be available as reasoning tools in any (relatively) complete proof system.

The need for axiomatizations of these properties is illustrated using two examples, each
consisting of a single process. The examples demonstrate that, while compositionality is an
important feature of trace-based logics, incompleteness is caused not by network composition
but by the inability to express the temporal ordering and prefix properties. We also prove that
adding temporal ordering and prefix axioms to a trace logic suffices for achieving relative
completeness.

Section 2 describes the class of synchronous process networks used in the remainder of the
paper. In Section 3, we define Simple Trace Logic (STL), a formalism and proof system for
network specification and verification that captures the essence of most trace-based systems
The incompleteness of STL is shown in Section 4. To reason about the proof svstem it is
necessary to introduce a computational model, we do this in Section 5. The model is based on
the computation tree, which captures all possible behaviors of a given process or network In
Section B, the ideas discussed in Section 1 are formalized, providing axiomatizations of the ‘/
temporal ordering and prefix properties, along with a proof of their necessity and sutTiciency
Finally, in Section 7 we draw conclusions, explain how our results relate to existing proof

systems, and discuss future work.



2. PROCESS NETWORKS

Consider networks of processes that communicate and synchronize solely by message
passing. Processes and communication channels are uniquely named. Each channel is either
internal or external with respect to a network. An internal channel connects two processes of
the network; an external channel is connected to only one. Channels are unidirectional, and
communication along them is synchronous!, so both processes incident to an internal channel
must be prepared to communicate before a value is actually transmitted. External channels
permit communication with the environment of the network: input or output on an external

channel occurs whenever the incident process is ready. Without loss of generality, we assume:

[2.0.1] Message transmission occurs instantaneously.

[2.0.2] Two message transmissions cannot occur simultaneously. Thus, there is a total order
on the communication events of a given computation.

[2.0.3] There is a fixed domain of values that can be transmitted on communication channels.

Processes send and receive values in this domain only.

A network made up of processes Py, Py, ..., P, is denoted by P; || P2 | ... | Pp, indicating the
parallel execution of the component processes. Fig. 1 illustrates-a network of three processes

and eight communication channels.

cl

cd

c5
-—
c8

c6 c7

Figure 1. A network of processes

1 Extension to asynchronous message-passing 1s straightforward, immaterial to the incompleteness problem, and
therefore not discussed here.
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3. SiMPLE TRACE LOGIC

Our formalism for specifying and verifying networks is called Simple Trace Logic (STL:. It

concisely captures trace-based reasoning.

L0 W an

3.1. Channel Traces

A specification is a first-order predicate that is satisfied by every possible execution of the
process or network it specifies. The predicate is defined over channel traces—the sequences of
values transmitted on communication channels during execution.

Let ¢ be a channel. In a specification, ¢ denotes a finite sequence, {(cg, ¢}, ..., Cy), indicating

the values transmitted along channel ¢, in order. We use the following notational conventions:

¢ ()denotes the empty sequence.
e icldenotes the length of sequence c.

e cl S c2denotes that sequence ¢! is a prefix of sequence c2. Note that € is reflexive.

3.2. Process Specifications

A spec’fication for a process P is a predicate S over the traces of P’s incoming and outgoing
channels. We say that P’s behavior satisfies S, written P sat S, if, at every point during any
computation of P, the traces of the values transmitted on channels incident to P satisfy S. For
example, suppose process P3 of Fig. 1 repeatedly reads an integer from c¢8 and writes its

successor to c4. We cun formulate this in STL as

{3.2.1} P3 sat (Ic81-1<Ic4l=Ic8) A (Vi:0si<lc4l:c4;=c8,+ 1)

3.3. Network Specifications and Proof Rules

A specification for a network N = P; | Py | ... | P, is also a predicate S over the traces of its
(internal and external) channels. N sat S if, given any behavior of N up to any point in time,
the traces of values transmitted along N's channels satisfy S.

The axioms of STL consist of all formulas P sat S, where S is u specification satisfied by
every possible execution of process P A specification of a network is to be based solely on
specifications for its primitive component processes. how these primitive specifications are
obtained—or even how processes are programmed—is not important. This puts STL at a level
of abstraction that hides all details except those relevant to the question of completeness.

Specifications for networks can be derived from specifications for their component processes

by using the foilowing inference rule:

5 NI NSRS AP PE A P X Ay
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[3.3.1] Network Composition Rule: (Vi:1=isn: P, sat S;)

Pi|Pall...| P, sat A\, S,

Conjoining specifications of processes using [3.3.1] results in “linking” any shared channels
because in /\; S;, all ¢’s (say) refer to the same channel trace.

In addition, we have the following inference rule:

[3.3.2] Consequence Rule: N sat SI, S1 =82

N sat S2

These two inference rules, or variants thereof, underlie all trace-based proof systems we know
of, including [CH81, Ho85, MC81, NDGO86].

4. INCOMPLETENESS OF SIMPLE TRACE LOGIC

Specification § is valid for a process or network PN if every execution of PN (up to any point
in time) yields channel traces that satisfy S. We would like STL to be sound—i.e. if we use STL
to prove N sat S, then indeed S is valid for network N. A rigorous soundness proof requires a
computational model [Ap81, CK73, Co78], which we give in Section 5.

We would also like STL to be complete—i.e. if, whenever some specification S is valid for
network N, then N sat S is provable using STL. However, a network specification is derived
using [3.3.1] from specifications for its component processes. If these specifications are valid,
but too weak, then we may not be able to prove a given valid network specification. Thus, what
we really want to know is whether we can prove N sat S when the specifications given for the

primitive processes comprising N are as "strong” as possible.

[4.0.1] Definition: A specification S is precise for a process or network PN ifT:
(1} Sisvalid for PN.

(2) Any computation that satisfies S is a possible computation of PNV

A precise specification for a process or network, then, exactly characterizes its possible
computations. Hence, for completeness, we are merely interested in the provability of N sat$§
when S is valid and the specifications for the processes in V are precise.

STL specifications can involve elements of the data domain from which messages are
drawn, sequences of such elements, and lengths of sequences. Since number theory itself is
incomplete [S67], a valid assertion involving sequence lengths might not be provable in any

system. When designing a programming logic, one actually aims for relative completeness

[Co78]: Assuming that one can prove any valid statement of predicate logic, number theory,
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and the data domain of the network being considered, is the proof system complete?? STL is not

relatively complete, as we now show.

4.1. Temporal Ordering Property

Consider the single-process network of Fig. 2. As an informal description of process .’ we

are given four facts: (1) P reads at most one value from channel i; (2) P reads at most one value

J

Figure 2. Single-process network

from channel j; (3) P reads a value from i before reading from ;. (4) P reads a value from j

before reading from i. A formal specification is
[4.1.1) P sat SI:1is1 A ISl A LIl ATl

Let the data domain for this network be {a}. The following specification is valid for P and is

equivalent to(4.1.1]:
[4.1.2] P sat S2:(i=()~rj=O)) VvV (i=(a)A j=(a))

P is always in one of two states: either no values have been read from i and ; or one a has
been read from each. However, P can reach a state in which ti={a) ~ j=(a)) only if iy and j; are
transmitted simuitaneously. Since this cannot happen (by assumption {2.0.2]), P can never

read a value from i orj. Therefore, a third valid specification for P is
(4.1.3} P sat S3:i=()Aj=().

All three specifications are valid and, in fact, precise. Any computation satisfving S1.82, or
S$3 is a computation of P—no values are ever read on 1 or . However, consider an attempt at
proving [4.1 3] given precise specification S2 (say) of [4.1.2] Since there is onlyv a single

process, the network composition rule is irrelevant, and the only inference we can use is the

consequence rule. But S2 = S3 does not hold. Hence (4.1.3] is unprovable, even though it is
valid.

2 Most proof systems make assumptions about both the provability of predicate logic statements and the
expressiveness of the specification language involved. This is sometimes referred to as Cook completeness Ap#&l,
Co781. We. too. have made an expressiveness assumption in our supposition that precise specifications for the
component processes can be written 1o STL. The reader should convince himself that hur language s powertul
enough to express precise specifications for a large classof primitive processes.

RS L d
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We need a way to formalize the reasoning about event ordering used to obtain [4.1.3]. [t
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must assert the following
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[4.1.4] Temporal Ordering Property. Suppose ¢l and ¢2 are channels of a network .V, ¢I, and
c2, are transmitted as a result of distinct communication events, and in any

computation of N

(1) cl; must be transmitted before c2,, and

(2) ¢2, must be transmitted before c/,.

O

Then (icI1=x A Ic21=<y) holds throughout any computation of N—neither message will

s 0
B

be transmitted.

Property [4.1 4] allows S3 to be deduced from S2, making [4.1.3] provable.

4.2. Prefix Property

Consider a network with one process and one communication channel (see Fig. 3). Suppose

the network has {a, b} as its data domain. Let a precise specification for process P be

(=

Figure 3. Simplest network of all

(4.2.1] P sat S4:i=() v i=@ v t=(b,a).

Since P can send only one value at a time on channel i, i=(b, @) can never be attained—it would
be reachable only from i =(b), which is prohibited by S4. Therefore, [4.2.1] can be simplified to
[4.2 2] P sat S5: (S (a).

However, S4 does not imply S5, and therefore [4.2.2]| cannot be proved from precise

specification [4.2.1]. Here, we need:

[4.2.3] Prefix Property: For any channel ¢ and integers 0=x<y, the trace of ¢ after xr values

have been transmitted is always a prefix of the trace of ¢ after v values have been

transmitted.

By applying the prefix property to S4, we can eliminate the disjunct : =<6, @» and )btain [4 22|

4.3. Augmenting the Proof System

Consider any STL proof that establishes .V sat S for a network N = P; | P> 1P, As '.':
axioms, we are given P;sat Sy, PysatS», | P,satS,, whereS;.So. .S, are precise The ;‘_:-’_j
6
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first rule to be applied in any such proof is necessarily the network composition rule, so we
immediately obtain N sat A, S,. (In Section 5 we show that A, S, is in fact a precise
specification for N.) All remaining steps in the proof must then be applications of the
consequence rule. Since any string of consequence rule applications can be collapsed into one,
we see that N sat S is provable if and only if A, S, = S, a formula of predicate logic. The two
examples given, however, demonstrate that such an implication might not hold. By
strengthening the antecedent, we can guarantee that the implication will be valid. Thus, we
must find a set of axioms such that if A (say) is the conjunction of the axioms in the set, then
(NS, ANA) =S is valid whenever it should be possible to deduce S from A, S,. The temporal
ordering and prefix properties are the basis for such a set of axioms.

The remainder of the paper is a formalization of the concepts and results presented thus far.

5. COMPUTATIONAL MODEL

Proving soundness and (relative) completeness requires a model of network behavior
(Ap81, CK73, Co78]. The model is used to formalize the notions of valid and precise
specifications. We can then prove that STL is sound, we can show that the conjunction of
precise process specifications results in a precise network specificatien, and, most importantly,
we can formalize the temporal ordering and prefix properties, allowing us to prove that they are
necessary and sufficient for relative completeness.

Our model is based on the computation tree. Every process or network is represented by one
computation tree. The structure of the tree describes all and only potential execution sequences
of the process or network; vertices, called trace-sets, are sets of communication channel traces,

and edges represent a single step of execution. In all computation trees

[5.0.1] Therootofthe tree is the trace-set in which all channel traces are empty, corresponding
to the initial state of a computation.

[5.0.2] The children of a trace-set TS within the computation tree are exactly those trace-sets
that extend one channel trace of T'S by one element, where the extension corresponds to

a communication event that might actually be performed

Internal computations of a process are irrelevant when reasoning about network behavior,
except as they affect the values sent and received. Thus the tree does not include such changes
of process state. Since our system allows for reasoning about both finite and infinite
computations, trees can be of finite or infinite depth. The domain of communicable values
corresponds to the breadth of a tree; it too can be finite or infinite. (There is some similarity

here to the CCS synchronization tree [Mi80])

-t i R SRR oA




.
w? efe’e"e"

£y

NN

P )

We first describe computation trees for primitive processes and then show how a

computation tree for a network is built from trees for its component processes.

5.1. Computation Trees for Processes

The behavior of a process P is modeled as a computation tree. As an example, consider the
network of Fig.4. MERGE repeatedly and nondeterministically reads a value from i or j and
then writes it on k. BUFFER simply copies values from & to j, with an arbitrary amount of
internal buffering. Let the data domain for the network be {a}. The initial portions of the

computation trees for MERGE and BUFFER are illustrated in Figs. 5and 6.

{ @ @

Figure 4. Example network

5.2. Computation Trees for Networks

The computation tree for a network is defined in terms of the computation trees for the
network’s constituent processes.3 First, we define compatibility of trace-sets—the criteria for
determining when a group of trace-sets from process computation trees can coexist and hence
can be combined into a single trace-set of a network computation tree. Let TS, TSs, . ., TS, be
trace-sets, one each from the computation trees for processes P;, Py, ..., P, of a network. This
group of trace-sets is compatible iff for all channels ¢ such that a trace of ¢ appears in both TS,
and TS,, the trace of ¢ in T'S; is identical to the trace of c in TS, Thus, trace-sets are compatible
when the exact same transmissions have occurred on any channels they have in common.
When an appropriate set of compatible trace-sets is identified (the identification procedure is
described shortly), they are merged into a single trace-set of the network tree being
constructed. Merging compatible trace-sets simply consists of forming their union.

Let Ty, Ty, ..., T, be the computation trees for processes Py, P», ..., P, respectively, and let

N=P;|Ps}l... | P, Thetree T for network .V is defined by the following construction:

3 We could alternativelv—and equivalently—have chosen to define network trees independently of the compuonent
process trees. but the constructive definition given here is both illustrative of the model and useful in subsequent

peoofs.
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Figure 5. Computation tree for process MERGE

-0
k:(a.a.a)

Figure 6. Computation tree for process BUFFER

(5211 Combine!T;, Ty, ,T,)=
the root of T = the resuit of merging the rootsot Ty, Ty, ., T,.
foreach T, 1<:<n:
let G, be the group of trace-sets consisting of the root of T, and all the root’s
3 children ;
. consider every possible group of trace-sets. G, where G is constructed by choosing
: one trace-set fromeach G,. G is usable if
(1) the trace-sets in G are compatible, and
9



(2) merging the trace-sets in G results in a new trace-set that extends exactly
one trace of T"s root by exactly one element ;
for each usable G
add a child to the root of T, letting this trace-set be the root of the tree defined

by Combine(set of subtrees whose roots are the trace-sets in G).

In each invocation of Combine, one set of process tree trace-sets is merged into a single
network tree trace-set, followed by the identification of all possible trace-sets the network can
achieve in some “next step”. The recursive definition then results in the complete network tree,
even if some or all of the process trees are infinite (the resulting network tree need not also be
infinite) Fig 7 shows the initial part of the network tree for MERGE | BUFFER, obtained by

combining the process trees pictured in Figs. 5 and 6.

Figure 7 Computation tree for MERGE | BUFFER

5.3. Valid and Precise Specifications

We are now ready to define the relationship between STL and the computation-tree model

Define a path in a computation tree to be any connected sequence of trace-sets beginning with

LA At Gt




the root and descending through the tree until a trace-set with no children is reached. (If no
terminal trace-set is reached then the path is an infinite sequence.) A path corresponds to a
computation of the process or network being modeled by the computation tree. For any process
or network PN, define Comps(PN), the set of possible computations, to be the set of all paths in
the computation tree for PN.

Denote any sequence of trace-sets by o = (09, 01, 09, ... ). A specification S is valid for a

process or network PN if
(5.3.1] (Vo0 € Comps(PN): (Yi:0<i<lol: g, = ). ¢

That is, S is valid for PN if every trace-set of every sequence in Comps(PN) satisfies S. For

notational convenience we define an "always” operator , O:

[5.3.2) o =08 iff (Vi:0<i<'gl:g,=8).5

Definition (5.3.1] of validity can now be written as (Vo: 0 € Comps(PN): 0 = 13 S), and we can

establish the soundness of STL.

[5.3.3] Theorem (soundness of STL): Let N be a network and S a specification such that
N sat S is provable using STL. Then S is valid for N.

Proof See appendix.

A sequence of trace-sets is well-formed if it could appear as a path in the computation tree
for some process or network because the sequence does not violate [5.0.1] or [5.0.2]. More

formalily:

(5.3.4] Definition: ois well-formed iff:
(1) Allchannel traces in the initial trace-set of 0 are empty, and
(2) Each trace-set in o, except the first, extends exactly one trace of the preceding

set by exactly one element.
We can now formalize Definition [4.0.1] of a precise specification.

[5.3.5] Definition: A specification S is precise for a process or network PN iff:

4 5. = S holds if the channel traces in ¢. satisfy specification S.

5 Thus version of Z is consistent with the operator Z ("henceforth™ in temporal logic, see e.g. (MP81]. The temporal
logic operator is defined as: 0 = =S iff (Vi 0Si<lgii 0, 0..,, .. = §), but when S itself contains no temporal
aperators, then {(0..0,.,..) =8) = (0, = 8).
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(1) Sisvalid for PN, and

(2) Any well-formed sequence of trace-sets o satisfying 0 S is in Comps(PN).

(In part (2) of [5.3.5] we tacitly assume that the trace-sets of ¢ do not include extraneous
channel traces—i.e. that all traces in o0 are histories of channels actually appearing in PN ) It
turns out that the composition of precise process specifications results in a network

specification that is also precise.

{5.3.6] Theorem (preciseness preseruvation). Let S, be a precise specification for P, 1 <i<n, and

let N = Pi{|Pg|...| Pn. Then A, S, is a precise specification for N.

Proof: See appendix.

6. THE TEMPORAL ORDERING AND PREFIX AXIOMS

Consider a network N = P; || P || ... | P,. Given precise specifications S;, S», ..., S, for the
component processes, N sat S is provable if and only if A, S, = S. We now know, by
preciseness-preservation theorem [5.3.6], that A, §, is a precise specification for N. Therefore,
STL would be relatively complete if SI = S2 whenever S! is a precise specification for a
network N and 82 is a valid specification for .V. The examples of Section 4 showed that the
implication does not always hold and suggested that we define a set of axioms whose
conjunction A guarantees that (SI A A) =2 S2. We will prove that axiomatizations of the
temporal ordering and prefix properties (from Section 4) are necessary and sufficient for such
anA.

There is a fundamental difference between any axiomatization of temporal ordering and
specifications SI and S2, because event ordering is always with respect to an entire
computation—a sequence of trace-sets—while SI and S2 are with respect to individual trace-

sets. We employ O to convert a specification to being on entire computations and introduce

[6.0.1] Revised Consequence Rule: N sat SI, dSI1~A =082

N sat S2

6.1. The Temporal Ordering Axiom

Our first axiom characterizes temporal ordering property [4.1.4]. [f some communication
cl, happens before some c2,, then ic2| cannot exceed v until Icll exceeds x. This can be
expressed as [J(1c21>y =3 Icl1>x). Note that this assertion captures temporal precedence for
any channels ¢! and ¢2 and any indices x and v, even if x=y or ¢l and ¢2 are the same channel.

We are only interested in temporal ordering of distinct events, so the case in which ¢ and ¢2,

are produced by the same event (i.e. x=yvand ¢l and c¢2 are the same channel) is excluded Now,
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if O (leli>x = I1c21>y) as well, then neither cl; nor c¢2, can ever happen, equivalently:
OlellsxAic2isy).

The formalization differs slightly from the preceding discussion, however. All >'s are
changed to 2's in the antecedent of the rule and all <’s are changed to <’s in the consequent.
Doing so allows channel traces of length 0 in the antecedent, thereby asserting that an empty
channel trace temporally precedes all communication events on that channel. Hence we state

the temporal ordering axiom as

[6.1.1] ORDERING: Ifcl and c2 are channels, x=1 and y=0 are indices, and either x=y or c!

and c2 are distinct, then O(lelizx = 1c21=2y) = Odcli<xAlc2I<y).

We require x=1, rather than x =0, because allowing x=y =0 results in a pathological situation
in which the antecedent is trivially true (since trace lengths are always at least 0), but the
consequent is trivially false (since lengths cannot be less than 0).

We must prove that the axiom is sound.

(6.1.2] Theorem (soundness of ORDERING): o = ORDERING for any well-formed sequence of

trace-sets g.

Proof: See appendix.

6.2. The Prefix Axiom

An additional bit of notation is necessary in order to formulate an axiom for prefix property
[4.2.3]. For any i=0 and trace-set sequence o, let Oc ("the next value of ¢”) be defined with
respect to trace-set g; as the trace of channel ¢ in trace-set 0,+1.6 If o is finite, in the last trace-
set let Oc=c (since there is no next trace-set). [n effect, we convert finite sequences to infinite
ones by repeating the final trace-set. Thus, for any sequence ¢, every channel ¢ appearing in o
has a corresponding and well-defined value Oc in each trace-set of the sequence. Intuitively, the
value of Oc at any given time is the value that channel trace ¢ will have after the next
computation step.

We now state the prefix axiom.
(6.2.1]1 PREFIX. Ifcisany channel, then: Ot(c € oc).

The axiom asserts that the value of a channel trace ¢ at any point in time is a prefix of ¢'s trace

at any later time. The axiom is thus equivalent to the prefix property as stated in Section 4.2.

6 Operator O corresponds to the "next” operator of temporal logic [ MP81 ]. Do not confuse this with a second use of O
in temporal logic, where O operates over formulas: 0 = 0S:1ffo. ., =S.
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[6.2.2] Theorem (soundness of PREFIX): o &= PREFIX for any well-formed sequence of trace-

sets 0.

Proof: Let o be any well-formed sequence of trace-sets. ¢ = PREFIX follows directly from the
definition of well-formedness: Since g,+1 extends exactly one trace of g, by exactly one element

(for all 0= i<igi— 1), every channel trace ¢ in g, is a prefix of the corresponding trace inog;+;. If

i=lol =1, then by definition c=0c. Therefore PREFIX is a sound axiomatization of the prefix

property.

a

6.3. Necessity and Sufficiency of the Axioms

By letting A=ORDERING N\ PREFIX, we can prove that if S1 is a precise specification for
network N and S2 is a valid specification for N, then OSI A A = OS2 In addition, we will
argue that ORDERING and PREFIX are necessary axioms for this—if either axiom is removed
from A then we can find a network N with precise and valid specifications SI and S2

: (respectively) such that 0 S and A do not imply (0 S2. We begin with a key lemma.

_ (6.3.1] Lemma (well-formedness). A sequence of trace-sets o is well-formed if and only if
" 0 = ORDERING A\ PREFIX.

Proof: See appendix.

With this lemma in hand, we can easily prove that our two axioms are sufficient for relative

. completeness.

[6.3.2] Theorem (sufficiency of the axioms): If SI is a precise specification for network N and S2

a valid specification for N, then OS! AORDERING N\ PREFIX = T S2

. Proof: We show that that any sequence of trace-sets o satisfying O SI, ORDERING, and
PREFIX, also satisfies (3S2. Since 0 = ORDERING N PREFIX, by Lemma [6 3 1] we know
that o is well-formed. Now recall from the formal definition of preciseness ([5.3 5] that any
well-formed sequence satisfying a precise specification is a path in the computation tree for the
corresponding process or network. Since 0 is well-formed and ¢ = D S, by the preciseness of S/
we conclude that 0 € COMPS(N). Finally, by the validity of S2, every sequence in COMPS(\)
satisfies 10 S2,s0 0 =0 S2.

Thus with ORDERING and PREFIX, we ensure that any valid network specification
follows from a precise specification for the network. (In fact, by preciseness-preservation
theorem (5.3 6], only precise specifications for the component processes are needed.) Both
axioms are necessary for the implication to always hold, as well as sufficient, as is shown in our

final theorem:
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(6.3.2] Theorem (necessity of the axioms): There exist networks NI, N2, and N3, with precise
specifications S1p, S2p, S3p (respectively) and valid specifications S1v, S2y, S3v (respectively),
such that:

(1) ~(OSIpAORDERING = OS1y)
(2) ~(OS2pANPREFIX = 0S2v)
(3) ~(0d83p = OS3vy)

Proof: (1) Let NI be the example network of Section 42 (2) Let N2 be the example network of
Section 4.1. (3) Followsdirectly from(1)and (2) X

7. CONCLUSIONS, COMPARISONS, AND FUTURE WORK

STL is a simple trace-based proof system for networks of processes, with specification
language and inference rules similar to those in most existing trace logics ([Br84, CH81, HHS.,
Ho81, Ho85, Jo85, MC81, Mi80, NDGO86, ZRE84]. Like other simple trace logics [CH81, Ho81,
Ho85, MC81], STL is incomplete, and we have proved that axiomatizations of the temporal
ordering and prefix properties are necessary to achieve relative completeness Since these two
axioms are essential components of a relatively complete proof system, it is interesting to look
at existing complete systems and identify how the axioms are represented.

Several proof systems involve explicit reasoning about every possible interleaving of
communication events (Br84, HH83, Mi80], within the system all possible computations must
actually be listed. It is clear that such a logic will be complete, since an exhaustive list of
potential computations is an exact characterization of process or network behavior, including
(implicitly) the constraints of the temporal ordering and prefix properties. Naturally, the
difficulty is the exponential number of possible computations. Verifying the specification of
any but very simple networks could be a formidable task with such a formalism.

The proof system in [ZRE84] is designed both for the specification of sequential processes
and for the verification of their behavior when connected into a network Thus, Hoare-style
triples and inference rules are given (in the style of [AFR80, LG81)), as well as a means for
reasoning about specifications over channel traces. The logic includes a statement of the prefix
property, written essentially as { Tr=c} Pgm {Tr Cc}, where Pgm is any program segment.
(The interpretation is: If execution of Pgm begun in any state in which channel trace ¢ has
value Tr terminates, then upon termination Tr is a prefix of ¢.) Reasoning about the temporal
ordering property, however, is achieved only by enumerating all possible interleavings of the
communication events of interest. Again, this can result in an exponential number of cases to

consider.



In [ZRE84], the authors also discuss the incompleteness of [MC81] and suggest a rule that
would render it relatively complete. (A similar rule is proposed in [Ng85].) Informally, the rule
asserts the following: Let S be a valid specification for network N and ¢ be an interleaved trace
of all communication events during any computation of N. Then every prefix of ¢ satisfies S.
This rule certainly captures the prefix property, and the temporal ordering property is encoded
as well. To see this, suppose specification S constrains two communication events cI; and c2,
(say) to occur simultaneously. Any trace ¢ including only one of ¢, and c2, will not satisfy S,
and thus cannot be a computation of N. Suppose, then, that both events are included in ¢.
Consider any prefix p of ¢ that contains one event but not the other. (Such a prefix must exist.)
Then p will not satisfy S, since only one of ¢l and c2, appears in p. Hence no computation of N
can include either event.

In [Jo85], the fact (and problem) that valid specifications do not always follow from precise
specifications is identified, but no actual solution is proposed. The author suggests adding a

proof rule of the form
N sat S1I
N sat §2

which can be used whenever SI and S2 are such that any network satisfying SI will also satisfy
S2. With a rule of inference like this, the issues of behavioral properties such as temporal
ordering can essentially be ignored, but consequently there is no formal method for deciding
when a pair of specifications is a candidate for an application of the above rule.

The proof system of [NDGOS86] is based on temporal logic, so it is straightforward to
formulate ordering constraints between network events in the logic. In addition, a number of
axioms for behaviors are defined, including assertions that all traces are initially empty, that
only one communication event can occur in a single time-step, that the prefix property holds.
etc. These axioms for behaviors are also stated in temporal logic.

Our ORDERING and PREFIX axioms could be formulated in temporal logic, since the
operators (J and 0 are subsumed by the corresponding operators of temporal logic. However,
we have actually drawn upon only a relatively small subset of temporal logic In particular, we
use Oc, but do not need the formula version of 0. we use O S, but only in the special case when S
is non-temporal. Although temporal logic is a convenient language in which to perform the
types of reasoning needed for our axioms, temporal logic may be far more powerful than is
necessary. Our contribution here is to identify the subset of temporal logic needed to achieve
relative completeness.

The next step in our work is to extend the language of STL to enable our two axioms to be

expressed. Our goal is to create as simple a trace logic as possible, but one that is still relatively
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complete. Since we have shown that ORDERING and PREFIX are necessary and sufficient
property axiomatizations, they will be our guide in devising such a proof system.
Appendix

[5.3.3] Theorem (soundness of STL): Let N be a network and S a specification such that
X N sat S is provable using STL. Then S is valid for N.

Proof. Since we're assuming validity of process specifications, proving this theorem consists of

showing that whenever the antecedent of an STL inference is valid, s0 is the consequent.

PR AR

[3.3.1) Network Composition Rule: (Vi:1=i<n: P, sat S,)

Pr||P2}f..| P, sat A\ S,

Assume each S, is valid for P,, so (Yo: 0 € Comps(P,): 6 = 1 S,). We must show that (Vo:
0€Comps(N): o =0A,S)), where N = P; | Py ... | P,. Consider an arbitrary conjunct S, and
an arbitrary 0 € Comps(N). Let o, be any trace-set of 0. If we construct g," by removing from o,
all traces of channels that are not incident to process P, then—by the method of constructing

network trees from component process trees—we obtain a trace-set that must appear in some

0 € Comps(P)). Therefore, g, I= §,, because S, is valid, and g, = S, as well, since the traces that
were removed from g, cannot appear in S,. Since g, is an arbitrary trace-set of an arbitrary
sequence in Comps(N), we know (Yo: g € Comps(N): ¢ =[] S,). The conjunct S, was also chosen

arbitrarily, so we can conclude that (Vo: 0 ¢ Comps(N): 0 = O A, S,). Thus A, S, is valid for V.

{3.3.2] Consequence Rule: N sat S1, S1 =52
N N sat S2
l‘
N Let S1 be valid for N. From (Vo: 0 € Comps(N): 0 = 0 SI) and SI = S2, by predicate logic we
N conclude (Vo: 0 ¢ Comps (N): 0 =1 S2). Therefore S2isalso valid for V.
X {5 3.6] Theorem (preciseness preservation). Let S, be a precise specification for P,, 1 <i<n, and
. let N = P;|P3]|l.. | P, ThenA,S,isa precise specification for N
. Proof We must show that A\, S, satisfies both parts of Definition (5.3 .5].
"
v (1) (A, §,is valid for N.) Since the S, are precise specifications for their respective P,, they are
.\_: valid. We must then show that A, S, is valid for N. This was proven in part (1) of Theorem
.'j {5.3 3| (the soundness theorem).
(2) (If 0 is any well-formed sequence of trace-sets such that ¢ = O A, S,, then 0 ¢ CompstN).)
N For any process P, define Project(a, P) to be the sequence of trace-sets ¢' that results from
o
:: restricting the trace-sets in o to those channels that are incident to P and then eliminating all
‘l
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trace-sets that duplicate their immediate predecessor in the sequence. Using Project(a, P) we
can take a path representing a computation of a twork and extract the trace-set sequence
that shows how a single process behaved during this computation. Now, let 0 be any well-
formed sequence of trace-sets such that ¢ = O A, S;. We must show that 0 € Comps(N). Let
o1 =Projectla, P;), 09=Project(a, Pj), etc. By definition, 5, = 2 §,, 1si<n. Thus, by the
preciseness of each of the S,, 0, ¢ Comps(P)). Lastly, we use the algorithm for network tree

construction to conclude that 0 € Comps(N). X

(6.1.2] Theorem (soundness of ORDERING): If o0 is any well-formed sequence of trace-sets,
then 0 = ORDERING.

Proof: Let o be an arbitrarv well-formed sequence of trace-sets. We must show that if
o= 0Ocllzx = (c212y) then o = O (lel1<x A 1¢21<y). Assume that O (iclI=x = Ic212y)
holds for ¢, and suppose, tor the sake of a contradiction, that O (lel'<x A Ic2{<y) does not.
Thus, there is a trace-set of ¢ in which (IcI1=x V Ic212y). Let i be the smallest index for which
this is true: (lcI'=x""Ic212y) is true in g, but does not hold in any g, for j<i. Since (lcll=x
lc212y)istrueir 0, by o = O(lcll=x = Ic212y) we know that (Icl1=2x Alc2I2y) holds in 0,. By
x=1 (recall Definition [6.1.1]), i >0, since all traces in gy are empty. So consider trace-set g, _.
By the definition of a well-formed sequence, g, extends exactly one trace of 6,_; by exactly one
element. Therefore since (lcll=x A 1c21=y) holds in g, (Ic1l=Zx V Ic21=y) must hold in 0,_;.
This contradicts the assumption that i is the smallest index for which o, = (IlclI=2x v Ic21=v),

Thus, o =0 UclI<xAlc21<y)and o = ORDERING.

(6.3.1] Lemma (well-formedness): A sequence of trace-sets o is well-formed if and only if
o= ORDERING N\ PREFIX.

Proof: [=] (If 0is well-formed then ¢ & ORDERING N\ PREFIX.) This is simply a statement
that axioms ORDERING and PREFIX are sound, which was proven in Sections 6.1 and 6.2

[&<=] (If o0 = ORDERING N PREFIX then o is well-formed.) Consider any o that satisfies
ORDERING and PREFIX. we must show that ¢ is well-formed. We prove the (equivalent)
contrapositive: [fois not well-formed, then o does not satisfy ORDERING N\ PREFIX. Let o be

any sequence of trace-sets that is not well-formed. By Definition [5.3 4] of well-formedness, o

then must exhibit at least one of the following conditions:

S

[A.1} Inthe initial trace-set all channeltraces are not empty.

r
a

[A.2] Some channeltrace decreases in length.

[A.3] Some channeltrace increases in length by more than 1.

any. Y

[A.4] Twochannel traces increase in length at the same step.

P

,.. .
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{A.5] Some channel trace element takes on more than one value. (A value changes :

spontaneously between trace-sets on a path)

(The negation of well-formedness condition (1) from Definition (5.3 4] is [A.1], while negating
condition (2) results in [A.2} through [A.5].) We must show that in every case, one of
ORDERING and PREFIX is violated. The proof proceeds by induction on the length of 0.

Base case: lot=1. Since o has only one trace-set, o0 must be ill-formed due to case [A.1}—all
y channel traces are not empty in gg. Let icl=x in gy for some channel ¢ and some x=1. Then
o= (le)20 = Ict=x). Trivially, o = O (lcl2x = le1=20), 50 ¢ = C (1c120 = Icl=2x). By !
ORDERING we conclude 0 &= T (lcl<x A let<0). This last assertion is not true, and thus
ORDERING does not hold for a.

Induction: lol=n+1, n=1. Suppose, as the induction hypothesis, that any o' of length n that is
not well-formed violates ORDERING and/or PREFIX. Now consider 0. If (0p .. 0,_1) is not

+ P IS T )

well-formed, then by the induction hypothesis we are done. So assume that (gp .. 0,_1) is well-
formed. Then the ill-formedness of 0 must occur between trace-sets 6,_1 and g, and must be of

type (A.2],(A.3],(A.4],0or [A.5] above. By cases:

. {A.2] (Some channel trace decreases in length.) Let lcl=x inag,_y and lcl =y in g,, for some ¢
and x>y. Then ¢ S Oc does not hold in 0,, O (¢ G Oc) is not valid for 0, and hence PREFIX is

violated.

. {A.3) (Some channel trace increases in length by more than 1.} Suppose lcl=x in 0,_| and
P icl=x+y ino,, for somec, x, and y=2. Recall that (gg.. 0, 1) is well-formed (by hypothesis}, so

we know (0g.. 0, _1) = O (lcI<x), since lclsxing,_;. Therefore o =0 lcizx+1 2 lci=x+y).
Now since O (lei=x+y = Icl=x+1) holds trivially, we obtain o = C(lciZx+1 = lclZx+y) [t

is not the case, however, that g = O(lct<x+ 1 A icl<x+y). Thus ORDERING does not hold.

[A.4] (Two channel traces increase in length at the same step.) Leticli=xand lc21=yino,_,
and let Icll=x+1 and Ic2l=y+1 in 0,_, for some cl, ¢2, x, and y. Since (gg .. 0, ) is well-
formed, ¢ = O (Iclizx+1 = 1c2I1=2x+y). Then by ORDERING it should be the case that
o= OuUcli<x+1 2 1c21<x+y). Thisassertion is not valid, so ORDERING is violated.

[A.5] (A channel trace element takes on more than one value.) Suppose there is a channel trace
element ¢, such that cc=a in g, _1, ¢ = b in 0,, and data items a and b are not identical Then

¢ € oc does not hold in 0,, "(c € Oc¢) is not valid for 0, and PREFIX does not hold

l.- " .' .I

We have shown that if o exhibits one of the five cases above, then o does not satisfy both of

ORDERING and PREFIX. Suppose that in fact o is ill-formed in more than one way. Then

a®

consider a condition that involves a single channel—only case (4) involves two channels—and

I
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reasoning as above guarantees that one of ORDERING and PREFIX is still violated. Thus we
have shown that any o satisfying ORDERING and PREFIX is well-formed. Together with the

first half of the proof: a sequence of trace-sets o is well-formed if and only if 0 & ORDERING N\

PREFIX.

X
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