
AD- I? S 31 A R -BASED PATTERN NOTCHING SYSTEM FOR THE V /1
RECOGNITION OF THREE-DINENSI.. (U) CLARKSON UNIV POTSDAM
NY DEPT OF ELECTRICAL AND COMPUTER ENGI.. Y S FONG

UNCLASSIFIED 1986 NOSI14-85-C-2421 F/G 9/2 NLa/Ea/eeEEEEE
mEE~hEEEEEEEEI
EllhhEEllllgI
lEEEEEEEEEEEEEE smhhhhmmmhholIIIIIIIIIIIIII

L. 132 *,,,,

*O I11111205

1.

MICROCOPY RESOLUTION TEST CHART

NA IEGNAt AUFAL All Th > N1 D A ,M A[A

o'I

'C-i

1.81

C...---.j %'., v-Vrrt

IIIJI25 1.

A RULE-BASED PATTERN MATCHING SYSTEM

FOR THE RECOGNITION OF THREE-DIMENSIONAL .. %.

LINE DRAWN OBJECTS:- A FOUNDATION FOR VIDEO TRACKING

o Submitted by

Y.S. Fong

Assistant Professor
.

Electrical and Computer Engineering

Clarkson Universitv

Potsdam, NY

NRL Contract No: N00014-85-C-2421 -~-

2ECTE fAUG i L

9111(11STATFMFNT A A. ~APProved for public relecwoj %'"-
Distribution~ Unlimited

86 (3 08

.-
.. , .,,...

ABSTRACT

Object recognition is an important subtask in image understanding,

moving object tracking, and scene analysis. When identifying an object in a

scene, it is essential that the same object is recognized as being so from

different view angles. Also, in cases where the object is occluded or the

image is noisy, the recognition is expected to function under the existence

of uncertainty.

In this report, a system for object recognition, with emphasis on view

angle independence, is studied. The system uses simple line drawn objects as

the input image. An algorithm to extract important information from the

image is developed. A rule-based pattern matching scheme is used to

recognize the object in the image. In each decision made, a confidence

factor is associated to indicate the system's certainty in making this

decision.

This study shows that the rule-based pattern matching system is a useful

and flexible framework for object recognition and scene analysis.

Accesion For'

NTIS CRA&I

DTIC ABJD 'non, c~d E

J. i t f T, C3

BY
Di.I t b he./ ~ r--

.Lb;:y Codes

A.
Di.t

i -,a . ,, l, (

STABLE orF ao

Page No.

i ABSTRACTi

TABLE OF CONTENTSi

LIST OF FIGURES iv

CHAPTER 1 INTRODUCTION

1.1 General Description 1

1.2 Outline of Chapters 2

CHAPTER 2 REVIEW OF RELATED WORK AND PROBLEM DESCRIPTION

2.1 Introduction to Pattern Recognition 3

2.2 Three-Dimensional Object Recognition 13

2.3 Problem Definition and Explanation 16

CHAPTER 3 DESCRIPTION OF SCANNING ALGORITFM

3.1 General Description 20

* 3.2 Searching Edge Lines 23

3.3 Detection of Corners 26

3.4 Table maintenence 27

3.5 Sumary of Algoritryn 28

3.6 Special cases 31

.. ii

-°- - -.. .

CHAPTER 4 RBCOGNIT10N OF THREE-DIMENSIONAL OBJECTS

4.1 Description of three-dimensional objects 33

4.2 Ambiguity in Recognition 37

4.3 Noisy or Incomplete Images 42

CHAPTER 5 RESULTS

5.1 Programming Envirornent 46

5.2 Results 48

CHAPTER 6 DISCUSS ION AND CONCLUS IONS

6.1 Limitations of the present system 57

6.2 Suggested Modifications 58

6.3 Conclusions 62

REFERENCES 63

APPENDIX I 65

APPENDIX 11 75

CA

.. . . .

LIST OF FIGURES

Page No.

2.1 General Pattern Recognition system block diagram 5

2.2 Decision-theoretic Pattern Recognition system block diagram 10

2.3 Syntactic Pattern Recognition system block diagram 10

2.4 General Rule-based system block diagram 12

2.5 Block diagram of proposed system 17

3.1 Directions of scanning 22

3.2 Data structure for storing extracted information 22

3.3 Window used to scan edges 25

3.4 Sample image and information table 30

4.1 Junction types 34

4.2 Sample output of recognition program 38

4.3 Objects yielding image in Figure 4.2 39

4.4 Structure of knowledge base 40

4.5 Examples of noisy images 43

5.1 Set of test objects 47

5.2 Test result 1 50

5.3 Test result 2 51

5.4 Test result 3 52

5.5 Test result 4 53

5.6 Test result 5 54

5.7 Test result 6 55

5.8 Test result 7 56

6.1 Modified system block diagram 61

ii

N V-x-'-.-

CHAPTER I

INTRODUCTION

1.1 General Description:

In video image tracking, the goal is to establish correspondence of

objects in one frame of image with those in the next. To establish this

correspondence, the same object in the two consecutive frames hap to be

recognized as being so. Since the relative position between the image sensor

and the object changes as the object moves across the field of view, the

recognition rules used have to be independent of the consequential changes in

view angles.

This report concerns object recognition using image processing and

pattern recognition methods. Specificially, it proposes the use of

rule-based system as the recognition mechanism. The main interest is to

ac* ieve recognition capability independent of the viewing angle. Simple line

drawn objects are used in the image initially. An algorithm to extract

relevant information from the image wa& developed. A rule-based pattern

matching scheme is used to recognize the object in the image. The system

tries to recogni7e the object as being one of a fixed set of objects which

are recognizable by it. A confidence factor is also associated with each

,* decision.

-"- .,*i*** -~.. % ' ~ 9

* b .. . - . - ._U.

1.2 Outline of Report:

A brief introduction to the topics associated with pattern recognition

" and a discussion of the various schemes that have been used is covered in

Chapter 2. Chapter 2 also describes some of the research work done in this

area and the objectives of this thesis. In Chapter 3. the scanning algorithm

which scans the image to create a positional and linking information table of

the object in the image is described. Also, some of the observations based

on which this algorithm was developed are included. Chapter 4 covers the

topics which are related to the task of recognition of three-dimensional

objects. The feature extraction and matching methods are explained. Chapter

4 also covers the schemes used to recognize incomplete images or images of

* objects with uncertain identity. In Chapter 5, some results of the

experiments performed on the system are presented. Finally, Chapter 6

discusses some modifications tD improve the capabilities of the system and

also includes the conclusions of this work.

2
• /. ,.,,.,..,.,:.,'....-.,.. ,.o. v; -. . - -, .,.-.,".:...-" .%,, ., .. , .-.-..- v ".''""-" "k -"." ' ," " -. '-2'

CHAPTER II

REVIEW OF REXATE) WORK AND PROB[EM DESCRIPTION

2.1 Introduction

The advent of the digital computer has stimulated an

ever-increasing effort to expand the domain of computer applications.

The motivation for this effort comes mainly from the need to find more

efficient ways of doing things that machines have never done before.

The area of computer vision has evolved from this motive.

One goal of computer vision research is to give computers

human-like vision capabilities so that machines can sense the

environment in their field of view. The problems, thus, shift from one

of sensing the data to a much more difficult one of understanding it.

Though the process of vision is so obvious to us, it is something that

no one really understands. Numerous studies in psychology and

physiology have resulted in many interesting facts about perception, but

not sufficient for us to duplicate the process on a machi:ne.

Since the entire problen of vision is an extremely difficult one,

most of the research work in this field has been in trying to solve more

modest problems related in part to the process of vision. Many of these

involve pattern classification or the asslljrinent of d pnysica'. oujezt or

.*-- : : - SI > . -..- - 2

event to one of several prespecified categories. An excellent

introduction to pattern recognition systems is provided in a paper by

K.S. Fu [8] and in a text by Duda and Hart [6]. The following pages

constitute an overview of pattern recognition systems presented in the

above mentioned sources.

Pattern Recognition

A primary area of research which is of direct importance to

computer vision is Pattern Recognition. A pattern recognition system

would try to classify given data as belonging to one of the several

classes in a defined set.

Some examples of the applications of pattern recognition systems are

blood sample classification

fingerprint classification

classification of solid objects

scene analysis

machine part classification

target identification

medical diagnosis

speech and signal analysis

A general form of a pattern recognition system would be like the

one shown in Figure 2.1. The transducer senses the input and converts it

into a form more suitable for machine processing. The feature extractor

4

I

C)

PI
C)

N 0

C)

~J >(
C.-

C)
C)
Ct a)

4

0

E

C)

0

-J C)
0

CC)

22

C,,

1 -

d

...- *-...

extracts revelant information from the data. This information is used

by the classifier to assign the input data to one of a finite number of

categories or classes.

In computer vision systems, the transducer is a camera which

converts the scene into a digitized gray-scale intensity image.

Intensity images are arrays of numbers that indicate brightness at

points on a regularly spaced grid. This data contains no explicit

information about depth, and though people can easily infer depth

relationships between image regions, automatic inference of such

relationships is difficult.

An alternative to intensity images has become available in recent

years, which is digitized range data. Range data are in the form of

arrays of numbers, where the numbers quantify the distances from the

sensor focal plane to the object surfaces within the field of view along

rays emanating from points on a regularly placed grid. Since correct

depth information depends only on geometry and not on illunination and

refectivity, intensity image problems with shadows and surface marking

do not occur. Therefore, the process of recognizing objects by their

shape should be less difficult in range images than dn intensity images.

The next step after the image has been obtained from the

transducer, is to try to transform tnis pixel iinage into somethinA which

is more meaninofui for th ana.ysis if tne imace. For this, the further

processing of data is carried out in a number of ways. The many methods

proposed can be grouped into three major categories

Template matching approach

Decision-theoretic or discriminant approach

Syntactic and structural approach

Template Matching In the template matching approach, a set of

templates or prototypes, one for each pattern class, is stored in the

machine. The input pattern is matched or canpared with the template of

each class, and the classification is based on a preselected matching

criterion or similarity measure (e.g. correlation). In other words, if

the input pattern matches the template of the ith pattern better than it

matches any other template, then the input pattern is classified as

being frcm the ith pattern class. For machine simplicity, input

patterns and the templates are usually represented in their raw data

form.

The template matching approach has been used in printed-character

recognizers. The main difficulties with this approach lie in selecting

a good template for each pattern class and in defining a good matching

criterion, especially when large variations and distortions are expected

in the patterns under study.

Decision theoretic In this approach, a pattern is represented by

-* * **-j4 ~ *

a set of N features or an N-dimensional vector. The decision making

process is based on a similarity measure which is expressed in terms of

a distance measure or a discriminant function. (see Figure 2.2)

The task of feature extraction is very much problem dependent. The

basic function of a feature extractor is to map each data point onto a

point in the 'feature space'. To do this, it must compute for each data

point the values for a number of features (e.g. intensity, gradient,

etc.). The problem of classification is in essence one of partitioning

the feature space into regions, one region for each category or class.

Ideally, one would like these regions to be non-overlapping so that the

decision made is never in doubt. But, if this is not possible, the

objective should be to reduce the probability of error or uncertainty in

the decision.

Applications of decision-theoretic pattern recognition include

character recognition, biomedical data analysis, processing of seisnic

waves and target detection and identification.

Syntactic In toe structural and syntactic approach, a pattern is

represented as a string, tree, or a graph of pattern primitives and

* their relations. The decision-making process is, generally, a syntax

analysis or parsing procedure. Conventional parsing requires an exact

match between the unknown input sentence and a sentence generated by the

pattern grammar. This limits the applicability of the syntactic

.. ~ '.. ~&~ h .2k .M.~~.2~.X)% -.- !

Ph

approach to noise-free or artificial patterns. To overcame this

limitation, a parsing procedure called error-correcting parsing has been

developed. (see Figure 2.3)

Applications of syntactic pattern recognition include character

recognition, speech recognition, waveform analysis, target recognition,

and geological data processing.

Recent Trends in Ccoputer Vision

Artificial Intelligence tools like expert systems can be employed

in the final stage of a structural method for object classification in

an image. These artificial intelligence techniques have been applied in

a nLunber of ways [17] rule-based inference, prototype or model

building, fuzzy pattern matching, etc. These methods are especially

useful when no a priori probability laws for an object to belong to

different classes are known (i.e. statistical methods cannot be used).

A rule-based system can be considered as a structural pattern

recognition system. It usually implies two steps

(1) Many parameters describing the shape and the position of the

object are measured in the image.

(2) This representation of the object is matched with a model,

known in terms of the same parameters.

A general form of a ruie-based system is shown in Fiqure 2.4.

9- -..---.--. ~- -I

REC3V :

Z -a -~e Or .es r-T e3-e7 I -;a77, e r- recog., ion sse

ED V E~ S TRJ2TJ-l f-1

CO: ',,203 IT I IONSI

The long term memory (LTM) embodies the model representing the

system knowledge. The short term memory (STM) is the storage area for

the input image parameters. Primitive Recognition is responsible for

the actual pattern matching process. Gecmetrical inference refers to a

soecial set of rules used to analyze the structural and positional

relationships between the various regions of the object. The system has

to update the input parameters (in STM) occasionally to record how far

it has proceeded in recognizing the object. The STM is manipulated by

the Modification block. The primitive recognition module uses a set of

rules to start the process of matching the input parameters to the

stored models in a logical manner. Further rules are invoked, depending

on the success or failure of the present rules. This continues until

the object has been classified.

Such a system, thus, presents a ccanplete sepration of the

knowledge from the control structure. The main advantage of this system

is its flexibility. The system can be expanded to accammodate more

'recognizable objects' by the addition of new rules in the knowledge

base and slight modifications in the control structure. The rules

themselves can be modified to be more strict or relaxed about the

constraints necessary for a pattern to be classified as an object.

Recently, several systems using these approaches have been used to

perform various tasks from low-level image segmentation [14] to such

complex problems as Interpretation of aerial images [12] and Scene

Analysis [5].

.A.*.- - A * **~ * *~ *-i *

AOW F i CAT ION

4-~ INFERENCE

Figjre 2 *4 BlocK Diagram of a Rulte-base.' System

AI.-.

2.2 Three Dimenional Object ,ecoition

The problem of three-dimensional object recognition is a

non-trivial one. A lot of effort has been done in trying to analyze how

human-beings process information about an object to finally recognize

it. A plausible explanation is that we work with certain expectations

about the scene and that we have a database of possible objects from

which we choose the most likely candidate. This seems to be reasonable

as it is quite likely that we cannot make a judgement from views of an

object we have never seen before and are more likely to identify the

unusual view as being caused by something we have seen before.

The process of three-dimensional object recognition involves

several basic operations. First, we need to describe and characterize

the three-dimensional objects (knowledge representation). Next, we must

extract revelant information from the scene (this involves segmentation,

edge detection, feature extraction). Finally, the extracted information

must be processed and compared with the three-dimensional objects.

One of the first researchers to be concerned with three-dimensional

objects was L.G. Roberts [15). Roberts' approach involved describing

the three-dimensional envirorinent which generated the image rather than

describing the picture itself. He represented each type of object in a

three-dimensional coordinate system; this representation is called a

model. By using a transformation matrix, each model was tried to

p.-.13

d.

transform into the scene object. The object was then classified

according to the model that best fitted it.

Falk [7] used fixed models of the objects that could appear in the

scene. With the models and a large set of heuristics, Falk's program

followed a hypothesize-and-test strategy to identify objects.

In recent years, more interest has concentrated on developing

better representation schemes for three-dimensional objects. There are

currently three major representation schemes : volume, surface and

skeleton representations.

A very famous system for three-dimensional interpretation of

two-dimensional images is the model-based ACRONYM system (Brooks et al.

[2]). It is flexible and modular in design, uses view-independent

volumetric object models and has a complex, large-scale nature. The

system is based on the prediction-hypothesis-verification paradigm.

There are many other 3-D object recognition schemes based on

intensity images. Mulgaonkar et al [13] devised a scene analysis system

that recognized 3-D objects using geometric and relational reasoning.

The modeling scheme used is the 'generalized blob' model proposed by

Shapiro [16].

Lee and Fu [10] proposed a design for a general computer vision

system that would be capable of 3-D object recognition using a single

image. Their aim was to create a system that allows for the proper

interaction of the top-down (model-guided) analysis and bottom-up

data driven) analysis.

Chakravarty and Freeman [31] have developed a technique that uses

characteristic views as a basis for intensity image 3-D object

14

recognition. The set of all possible perspective projection views of an

object is partitioned into a finite set of topological equivalence

classes, which are represented by characteristic views. Matching is

performed using line-junction labelling constraints on detected edges.

Some 3-D object recognition techniques are based purely on object

silhouettes and cannot distinguish between objects that have the same

set of silhouettes. McKee and Aggarwal [il] have worked on recognizing

3-D curved objects from a partial silhouette description.

Wallace and Wintz [18] have used global 2-D shape descriptors to

recognize 3-D airraft shapes by matching against a stored library of

shape descriptc~s. ')ne shape descriptor set is computed and compressed

for each discrete viewing angle. This gives the system view

independence at the cost of storing many descriptors. Given an

arbitrary view of a known aircraft, two-dimensional shape descriptors

are computed and matched against each precomputed view description in

the library for each possible aircraft.

-

.11

2.3 Problem Definition and Explanation

Judging fran the number of published works, there certainly has

been a great amount of research in the area of object recognition. When

identifying an object in a scene, it is essential that the sane object

be recognized as such from different view angles. Also, in cases where

the image is noisy, the recognition system is expected to function

correctly though it might incorporate an element of uncertainty in its

decision. The use of a rule-based system for object recognition would

be appropriate because of its flexibility and capability of

incorporating contextual information into the recognition process.

A rule-based system for the recognition of line-drawn objects is

suggested. Line drawing is selected in this study because lines and

edges are the most important features extracted by the human vision

system from a scene. Obtaining line drawings of an object from its

image involves many processes like image segmentation and edge

detection. There are numerous algorithms available to perform these

tasks and they will not be discussed here.

A block diagram of the system is shown in Figure 2.5. There are two

levels in the system. These two levels are responsible for two separate

processing functions. The lower level has the line drawn image at its

input. In this level, information about the object in the image is

extracted using an algorithm which scans the image for corner points.

When all the corner points have been located, information about the

16

"----'-- -,.'...- -"..."-.............,---..... --..--... 2-:2.-;.-....<.--->.-;-

EATJRE FEATURET
-. ,TRE SET t.IATCHIIlN& OR

. DEC I SIO l '

Ex T!ACT I 0r.

Dic' ~agramncs :'e

L7

It

-, '.- - -c . .----•- -oc . DiZ>X-I&U,-~a2&,§ -,'s.-

object will be stored in a table. The table contains information about

the location of every corner point. It also contains the linking

information which explains the connections between the corners and the

direction of these connecting edges. Information about the type of each

corner is also recorded; the type of a corner is decided by studying the

nr ber and direction of the lines meeting at that corner. Information

in this table is then translated into a set of features. These features

form the input to the upper level.

The upper level uses the features to recognize the object. The

features are simple descriptions about the number of vertices detected

in the object, their locations, junction types and some other

information which is used to complete the line drawing in case the

original image was incomplete. The upper level uses stored knowledge

about the objects. By matching the features obtained from the image

selectively with the stored features, a decision about the identity of

the object is made. A perfect match indicates that the object has been

identified correctly. If no match has been found and the extracted

information indicates that there are some noisy regions in the image due

to which some features could not be detected, the system tries to

restore the line drawing by adding lines or vertices, starting with the

most probable one. This transforms the oricinal features into a new set

of features and the system undergoes a search to identify the object. A

confidence factor is associated with every decision to indicate the

certainty with which the systen has made the decision.

18

In the next two chapters, the two levels are described in detail.

Chapter 3 explains all the key issues in the feature extraction level

such as edge scanning and corner detection. Chapter 4 discusses the

features used for the pattern matching process and also covers issues

involved in recognition of noisy images.

"d " - " - " . ' - - ' ' - " - - ' " " ' - - . " - , , . . - . - ' , , . " . - . - . • . - , . .

', ,* " . v ,_" .' -" ' '- " " "'i '/ -. " "' ' a" ._" " " - -'-_ ,-' ' ' '' L.. . . ." -. ,' " - -" a'" . " " ." - -"." - " '. -. !

CHAPTER III

DESCRIPTION OF SCANNING ALGORITHM

3.1 General Description

This algoritih is used to extract information about the edges and

corners in the line drawing of the object. The image is assumed to

contain a bi-level line drawing of a polyhedral object. In other words,

the imaqe is assumed to be segmented and the edges detected to give this

line drawing representation of the o3ect. The algoritrn searches for

the first pixel in the line drawing and starting from this point, it

scans the edge lines until a corner point is reached. This process is

repeated until all the corners have been recorded.

In tnis discussion and in the next chapter, 'corner' and 'junction'

have oeen used intercnangeably. The description begins with the

explanation of tne assumptions made and the data structures involved in

the algorithm. Scanning the edge lines and locating the corner points

are the key el-nents of tnis algorithm and are described in separate

sections. Examples are included to explain some points which need

clarification. The output of the algorithm includes a combined

coordinate and linkinj tacle. From this table, information about the

position of every corner point and its connectivity to other corner

points can oe obtained.

The algorithrm starts with scanning the image frame from the upper

left corner until it detects the first non-zero pixel, which is assumed

to belong to the line drawing. The search is then directed by the edges

of the line drawing in one of eight basic directions in the order shown

in Figure 3.1. The basic data structure is an array type in which each

elcaent of the array corresponds to one corner point. Each element of

the array, hence, should contain all the positional and linking

information associated with that corner point. To accmplish this, a

data structure illustrated in Figure 3.2 is used. In this figure, CORNER

is the array in which each element contains information about a corner

point. px and py are the coordinates of the corner point; NEBOR is the

array that contains information about the neighbouring corners of a

corner point. nx and ny are the coordinates of a neighbouring corner to

which the corner (px,py) is connected; the direction of the connecting

line is dir. The maximum number of corners can be changed easily, but

for simple polyhedral objects eight corners seen reasonable. The number

of neighbouring corners is limited to four since it is unlikely to

encounter an object with more than four planes meeting at a point.

However, the limit on the number of neighbours can also be changed, if

needed.

The Scanning Process Initially, the table entries are all set to

zero. When the first non-zero pixel is detected, its coordinates are

entered in the table for the first corner point. Then, a procedure to

detect if this point has any neighbouring points is invoked. These

Points form tn= startii-, location for a search for a possible corner

. A

-7

4

3

Figure 3. '1 Directions of scanning

CO RN ER-3 4,.1l,

NEBOR

pxpy j 12. -- - -

nx fly dir

II

j D---,re 5u.2:Da stru:T re use zTo rezord pSitionl ant linking

rCrM .7

point located in the direction along the neighbouring point. We have

assumed that the first non-zero pixel will always be a point on the line

drawing. This is true for all complete line drawings. If the image has

some spurious points, then it is possible that the first non-zero pixel

is in no way associated with the object of interest. To handle such

situations, the algorithn assumes the point to be a corner and locates

its neighbouring corner. If no neighbouring points are found or if the

neighbouring corner is at a distance less than a set threshold (about 8

pixels), then the original point which was assumed to be a corner is

discarded and the search proceeds to find the next pixel which could be

on the line drawing. A corner is always defined to be those points in

the image in which the direction of the edge changes by a large amount.

This factor depends on the number of directions that can be assigned to

a line. In this case, there are only eight directions. Hence, the

change in slope at the corner points should be large enough to indicate

a change in direction of the line being scanned.

3.2 Searching Edge Lines

*The selection of the neighbouring point is critical since it

decides the direction along which the search is to be conducted. If we

take the immediate neighbours of the corner point, the direction cannot

be determined with any amount of certainty. This is because even though

a neighbouring point may be in one particular direction, its neighbours

along the same edge may end up going in a different direction. A good

23

K K .

way to decide the direction in which a line is proceeding is to observe

the sequence of the directio-s frcn a pixel to its neighbour in the

general direction along the line. A perfectly vertical or horizontal

line will indicate the same direction from one pixel to its neighbour,

but, an inclined line may go something like two pixels horizontally and

three pixels vertically. By observing the sequence for sane length

along the line, the direction of the line can be accurately determined.

The method used in this algorithm is not so strict in determining

the direction, but is a general method implemented after observing many

lines of different slopes. It was observed that there is always a

cluster of image points around a corner point. These points in the

local area around the 3unction corner group along several narrow strips

radiating from the junction. If observed very close to the junction

corner, the points form a meaningless cluster, but when seen from a

distance they take the shape of lines moving out of the corner point.

So, to determine the direction of links, a window is placed at the

corner point and the points along the periphery of the window are taken

to be the neighbouring points. The direction of the lines is then

determined from the location of the neighbouring point with respect to

the corner point itself. This is illustrated in Figure 3.3. The window

size is chosen such that when the point on the window edge is scanned,

there is only one neighbour in the direction that was determined

earlier. In tnis algorithm, a 9 x 9 window was found to operate well.

The scanni g process then proceeds along the line until a new corner

point is reached.

24

,:. .. , ' -' .' -, ..- / .,- .- .- ".. ." -. "., , -.. -. -o....... -..... p *. .- *.. . * .- - b
- -* " - .- -I i -'- " l %u " ' ' "-:''' ' " ''" -', . . - . . . ,- ..., .. J. . Ai',L1.',IJ .L ,,'__

* ~ ~ -Lne~

ROW
X

Line 3
(di r =3)

'i cu re v.~ incow used to scan edges around pixel (x,y)

3.3 Detection of Corners

In the discussion below, neighbouring points refer to the immediate

surrounding points (on a 3 x 3 window) and not the neighbours along the

edge of the 9 x 9 window used to describe the neighbours of a corner in

Section 3.2. Usually, there will be a lot of image points around a

corner. Using this fact, by keeping count of the nunber of neighbours

obtained during the scanning process (it is usually 1 during the middle

portion of the edge lines), it is possible to determine the presence a

corner. It should be noted that when scanning along an edge line, three

neighbouring pixels are scanned; the one in the direction of the edge

line and the ones on either side of it. This method will not lead to

the exact location of the corner point since the clustering of points

around the corner might extend to more than a couple of pixels away fron

it. To correct for this, a threshold is used which overflows when the

direction of scanning changes from the direction that was set originally

for more than a couple of pixel intervals. Since the direction of edge

lines at corners are different, the threshold will also indicate the

presence of a corner point. By ccmbining both these methods, the corner

points can be located to within two pixel positions.

Let us use the image in Figure 3.3 to illustrate how this method

works. Assune that the scanning is along line 1 in the direction

towards the corner at (x,y). Until the scanning reaches the non-zero

pixel that is one pixel away from (x,y), there would be only one

neighbour obtained each time. For the pixel at (x,y+l), there are two

" o ". "-= - 26

............... .P................

.-• . - . " . . ' 1 -- . ., I : , : : . .j .. , .L ? : _ -

neighbours in the scanned direction (dir = 1). The most likely one is

(x,y) since it is closest to the specified direction (dir = 1).

Continuing from (x,y) along line 2, after one pixel the number of

neighbours reduces to one. The algorithm decides that a corner point

has been passed since it crossed the crowded area in which a corner is

located. Thus, the corner can be located to within two pixels. In case

line 2 were not present, the scanning would proceed along line 3. But

the direction of scanning would now change to 3 from the original

direction of 1. This would cause the scanning to stop within two pixels

from (x,y) due to the overflow of a set threshold.

3.4 Table maintenance

Each time a corner is located, the table is searched to see if this

point occurs anywhere in it. if the point has never been recorded then

it is recorded as a new corner and corresponding entries are made in the

'neighbour' field for both the new corner and the corner from which the

scanning originated. If the corner has been recorded earlier, then only

the necessary 'neighbour' field entries are made, if they were not

present already. If the corner was recorded as a new corner, the

algorithm takes it as the originating corner and goes through the

scanning process in a recursive manner. When all the neighbours of all

the corners have been searched the process stops. At this stage the

table is completed and all the entries for each corner are correctly

recorded.

2,

..-- . :- -. '. ". : .';i'. . i'-:
.

, .. ,.~ .- . ; .. .,.., .. ,. , . . . > ;

3.5 Summary of Algorithm:

The Algorithm to create the position and linking information table

can be summarized in the following steps

(1) Seek the first corner point (or the first non-zero pixel scanned).

(2) Scan its neighbouring points at the window edge.

(3) For each neighbour, scan in the corresponding direction until a

corner point is reached; if no more neighbours then END.

(4) Update the table to indicate the presence of the line scanned above.

(5) Scan neighbouring points of new corner; if no new neighbour then

return to (3) for previous corner else make recursive call to (2).

A recursive call means that the current status of the corner point

is stored on a stack and the programs loops back to execute the same

code. The status information would include location of the point,

location and direction of the corner at which the scan originated before

reaching the current corner point, neighbours of the current point. If

no new neighbour is found in step 5, the status is popped off the stack

and the scan proceeds from that point as if it were uninterrupted.

28

A sample image frame and its corresponding information table are

shown in Figure 3.4. The first non-zero pixel found is (30,10) and it is

recorded as corner 1. It is found to have three neighbours. Starting

with the leftmost one, the edge is scanned till corner 2 at (10,40) is

reached. This corner has two neighbours, but the neiqhbour along the

edge connecting corners 1 and 2 is not considered for scanning since it

has already been done. Starting at corner 2, the scanning process

reaches corner 3 at (40,50). Each time a new corner is reached, the

table is updated to include the new links found. Fran corner 3 which

has three neighbours, corner 4 is reached and corner 4 leads the

scanning to corner 1. Since corner 1 has already been recorded in the

table, the program returns to corner 4 and since there are no other

unscanned corners fran corner 4, corner 3 becomes corner under

consideration. Since the link to corner 1 from corner 3 is the only one

remnaining to be scanned, this process is done and the next corner is

corner 2. As there are no new neighbours at corner 2, the scanning

process returns to corner 1. From here, the two edges to corners 3 and

4 are scanned separately and then the process stops. At this point, the

table would look as shown in Figure 3.4b.

2.29

44

II

3

Figure 3.4a Sample image frame

-ORNER NEBOR

px py nx ny dir

1 10 40 2

2 40 50 3
30 10 3 50 30 4

4 0 0 0

1 30 10 6
' 2 40 5

2 10 0 0 0 0
4 0 0 0

1 10 40 1
2 50 30 6

3 50 3 30 10 7
.-+ 0 0

,1 -40 50C

0 to
50 30 3 0 31o

-4 0 0 0

<-i: >

3.6 Special cases

Modifications for objects with curved edges

The algorithm discussed above was primarily written for objects

with straight line edges. For objects with curved edges, like sphere,

cylinder, or cones, sane modifications need to be made.

For spheres, any view angle would produce a circle in the image

frame. Theorotically, a circle should be traced as a single line. One

would expect that the tracing of the circle would result in a single

point and indicate no corner points. In practice, the digitized image

of a circle is far from being a single line. It is in the form of a lot

of short lines connected around the circunference. A test run of an

image containing a circle resulted in about sixteen segments, each

segment being connected to a segment at its two ends. Thus, by

increasing the number of corner elements in the table, the presence of a

sphere in the image can be easily detected.

In the case of cylinders the problem is slightly more ccmplex. In

addition to the elliptical outline, there are two straight edges and

another curved edge. We would need more corner elements in the

information table to represent a cylinder. Furthermore, there would be

four cGrner points which form a junction of three edges. This fact can

be used in addition to the large number of corner points to detect a

cylindrical object.

31

".".- -. -, - ,; -.].' * - . d'....... .. ~ _ S

The situation can be summarized as follows

It is generally more difficult to handle objects with curved edges

because of the limitations in the digitization of curved lines. Curved

lines look like a set of connected short segments. So, it is difficult

to distinguish a curved object from a polyhedral solid with many

vertices.

p3

-32

-' -. . .. '-. ..- ...- . .- - .- --. . 2..----- .

CHMP'VER IV

RECON(ITION OF THREE DIMENIONAL OBJECTS

4.1 Description of three dimensional objects

After the linking and position table has been created, the next

step is to select certain features from it which form the elements of

the matching process for recognition. These features must be chosen

such that the object can be described and distinguished from the other

objects. For this, it is essential that these features form answers to

a number of questions concerning the elements and structure of the

geometrical figure.

How many faces can be seen ?

What are the comon edges ?

What 2-D figures do the separate faces represent ?

What are the position of the faces in relation to each other ?

What kind of geometrical object does the line drawing represent ?

A lot of structural information can be obtained by simply studying the

corners or vertices of the objects. A limited set of junction types are

used to Cescribe the vertices. Junctions are classified depending on

the geometrical configuring of their incident lines (lines meeting at

the 3unction) [9]. The junction types considered here are illustrated

in Fi*ure 4.1 and Hescribed below

. .~..3

re) EA

L Forms the outline of a face and does not indicate any intersection

of faces.

Y Formed by the intersection of three faces; in Figure 4.1b, regions 1

and 2, 2 and 3, 1 and 3 are linked.

ARROW : Formed by the intersection of two faces at the junction; in

Figure 4.1c, regions 1 and 2 are linked at the head of the arrow and the

stem is the common edge of the two faces.

T : Indicates the meeting of two regions as above but the view angle is

different (Figure 4.1d); this type of edge is important when a pair of

them occur with their stems collinear since it indicates that the two

junctions might have been formed by the same body.

X : Formed the intersection of four (or more) faces which meet at a

common point (Figure 4.le ; this type of junction is found in

pyramid-type of objects.

Peak Indicates the meeting of several faces at a common point; in

Figure 4.1f all the ad3acent regions are linked; this type of junction

is also found in pyramid-type obeects.

35

The recognition phase has to be made independent of the view angle

(location of the camera). Hence, the use of dimensions and angles

becomes a problem since these measures will differ with the view. If

dimensions are to be used in the matching process of recognition, then,

we might have to use some kind of transformation on these measures based

on the a priori knowledge of the position of the camera. Yet this

method provides independence in a single dimension only. If the object

is viewed from a different angle, it is very likely to produce a

completely different view.

Thus, it is extremely difficult to have only one stored model of an

object and try to use transformations on it to get a match with the

object for all views. A simple solution, tnen, is to store a model for

every possible view and try to match the object with every model. If

the object matches with any one of the stored models then it is

recognized. Still, features like length of edges, angles between edges,

etc. will be very difficult to handle. So, the features must be chosen

such that they will not be affected by small changes in viewing

position. Using the corner points and their junction type is a very

simple alternative.

Using the number of visible corners and their junction type as the

features does not give a complete description of the object, but it may

be sufficient to distinguish an object from the others.

36

4.2 Ambiguity in recognition

However, it is still likely that an object when viewed from a particular

angle looks like another object. This will lead to an ambiguity and the

recognition phase might not be able to recognize the object as one

particular object. Hence, it is necessary to include a measure of the

system's certainty (or uncertainty) with the decision it makes. This is

done by associating each model of an object with a confidence factor

which is indicative of the certainty with which that model fits the

description of the object. In other words, a precanputed confidence

factor is also stored alongside the features of the object for each

model. With this modification, what is achieved is that when an image

that fits the possible description of two or more objects is

encountered, the syE n indicates its uncertainty about the identity of

the object by ma,,cning it to all the possible objects and associating a

confidence measure alongside each object.

A sample session is shown in Figure 4.2. After scanning the image,

the features extracted will indicate that there were six corners, of

which two corners have three incident edges (type 3) and four corners

have two incident edges (type 2). The system is instructed to recognize

the object by the user input object?. Using tne extracted information,

the program searches the knowledge base for a matching set of features.

The stored knowledge about the objects is arranged as shown in Figure

4.4. All views of all possible objects are searched to find a match.

37

~wvr{w-. r; r 4 V' r~ r r - - - - r.rr'.~.r7 -r r rr r r r

I>. *Z - *,.

.*9*,

.4 * -. -r I
- - - - I

III

I ..
I -

I - -. - -

- I -
I *~ I

4.
'4-.

* P.~ -
- - . - - - - -

* *1';- I.'' - -

- I

-II: :Cfflcle zut2uT or reco§2:t on ~rogram

I
S-mw... %...%.%4~,.tA 4

C ''~- *-:~c&.-::: .4% - * - -*--> . . - * --- ~--- -
* .. *~ * * ~ -* .t Jr -'- - **,. .-- ~r.- ~

I.

J

4

4

'p

'p

1'

S.
I

9.

'S

9.

9.
9.

9..

rvz'e 4.3 c~arne >nace obtained ~ror'~ ~~Y-:r-ert &D

'viewed tr;rn di~terenT anqIe~

39

9...-.
* *.~.*. . *.*.*. .. * ..

4.*.* 4... .*. *.* ./* ~*.. * , ~

co eo~co ern aeec 6

,ype 2 =4

p roD 35

F i re l rj-,rre ot, -ne Know leoce base

Whenever a particular feature set (correspondingj to a particular

view angle) of an object matches the extracted features, the program

informs the user that a match is found and also the confidence factor

which was associated with the stored features of the object (prob). The

first object looked up is a cube. One set of features stored for a cube

had the same values for number of corners and types of corners. A match

is found between the extracted features and these stored features. For

this view of a cube, the confidence factor stored was 35. Hence, the

system responds with the identity of the object (object cube) and the

certainty of its decision (prob = 35).

The system first searches for a match with different feature sets

of the same object. Whenever a match is found, the remaining sets are

not considered. If no match w- , found, the next object is considered

for matching. In any case, the search covers all the objects. In this

case, the object could have been a cubical one (prob = 35) or a prism

(prob = 15) or a L-shaped object (prob = 25) or a T-shaped object (prob

= 25). These confidence measures can be adjusted according to past

experience about the objects. Figure 4.3 shows the viewing angle which

would result in this image for each of the above mentioned objects.

When an object cannot be completely identified using the elementary

features of corner types, it may be necessary to invoke more rules to

eliminate some of the choices made earlier. To do this, the system will

have to study more detailed features like number of visible faces and

the shapes of the individual faces.

41

4.3 Noisy or incomplete line drawings

We have till now assumed that the line drawing that we started out with

was ccmplete, i.e. it had perfect, continuous edges and no part of the

line drawing was faded or erased. This may not be true in a practical

situation if the line drawing was obtained from a camera image of the

object. Adverse lighting conditions or shadows can cause sane edges of

the object to be unidentifiable as edges since there isn't enough

contrast. Figure 4.5 shows some disformations that can occur in the

line drawn image.

Such incomplete line drawings cannot be handled by the system. In

other words, the system will fail to find any match for the object and

cannot make a decision. In such cases, it is desirable to be able to

detect the errors in the input. To detect that the line drawing is

flawed, a simple rule is invoked. It can be clearly observed that when

the line drawing is incomplete, there will be some corners present in

the image which will be connected to only one other corner (refer to

Figure 4.5). Alternatively, it can be said that if a corner exists

which has only one neighbouring corner then the line drawing has some

discontinuity. Any solid object cannot have a corner or vertex that is

connected to less than two other vertices. Using this rule, it is

possible to determine that the features extracted from the object are

not correct and some modifications have to be made. Modifications will

involve alterations of the database itself. Features of the original

object will have to be removed and features corresponding to the

42

• -' " -:.. - -- ; .+ . -, ;.-++- .. - -.. .+. . -+. + -- - . - .++ .. +. - -. . - - -. . . -. . . --- . --.-- - . -

.11 5r e. ~\m s 3t n oi S"/ a

-. 4 a) %lissing edge

4 Incompere -g

l) issin, :orner-

modified object will have to be inserted into the database. When the

alterations are completed or there are no other unconnected corners, the

matching process can be started as before.

Modifications are done based upon the number of defective corners

seen in the object. If there is only one corner which is not completely

connected, then it is linked to the closest corner under the condition

that this linking is possible, i.e. this new link should form a new

face and not intersect any other links. To determine the number of

faces, the linking information is used to trace the edges to find all

possible sets of edges which close on themselves. Intersection of links

are approximated by using the positional information to determine

whether any of the other corners lie within a zone; the zone is the box

which has the two corners being linked as diagonal points. The system

also uses its knowledge about the corner type to finally decide to which

corner the unconnected corner should be linked (higher preference is

given to the corner with less number of incident lines). Under these

conditions in Figure 4.5a, corner 7 can only be linked to corner 4.

If there are two defective corners, then there are two

possibilities.

(1) The two defective corners are not actual corners, but are part

of the same edge. In Figure 4.5b, corners 5 and 7 should be linked.

(2) The two defective corners are part of the same corner which is

missing from the image. In Figure 4.5c, corners 7 and 12 should be

linked to form a corner.

44

: --: ~~~~~~~~~~~~~~~~~~~~~~~~~....... """ ' l '..-....-.,../.... i''2'............. "... - .>."."...-"

in the first case, the only modification is to reduce the number of

corners by two since no new corners are supposed to exist. In the

second case, the number of corners are reduced by one and its type is

also included in the database.

Similar rules are framed for cases where there are more defective

corners to come up with a possible model of the original object.

Whenever a modification is made on the original image, it means that

there is more uncertainty about the actual identity of the object. So,

the system reduces the confidence factor associated with its decisions

for every modification made. Actually, the modification is done before

the matching process. Depending on the type of modification, the system

starts out with a negative confidence factor. So, when a matching set

of features is found for the object, the original confidence factor is

automatically reduced.

45 -

~i- ~~..YA-- ~ -.

J

CHAPTER V

RESULTS

5.1 PROGRAMMING ENVIRONME.

The rule-based systen was test-d Dy using different types of

regular polyhedral solids. A Z-100 was used to perform all the tests.

The feature extraction program was coded in Pascdi and the rule-based

recognition program was coded in Prolog. A database containing eight

object descriptions was used for testing. The set of oojects consisted

of prisms, pyramids, composite objects like L-shaped and T-shaped solids

and also spheres and cylinders (see Figure 5.1). The input is in the

form of a line drawing of one of these objects in a 64 x 64 image frame

in which the lines are indicated by a higher intensity than the

background of uniform intensity. The line drawing was generated by

using simple graphic routines. All the pixels in a 64 x 64 frame

enclosing the line drawing were stored in a data file. All the corners

in the line drawing were required to be more than a certain threshold (8

pixel positions) apart. This restriction was imposed to avoid error due

to some spurious points in the data file.

The data file formed the input to the scanning program which

generates the table containing the coordinate positions of all the

vertices in the drawing and also their connections -o the other

46

*~~~~~~~ r,. 7..~~P *WW~P~P*

vertices. The feature extraction part of the program, then, extracts

certain predefined features by going through all the entries in the

table. The features consist of position of each vertex, information

about which vertices are linked by the edges, description of the

vertices (junction type). These features were stored in another data

file. The features should be in a specific format that can be read by

the Prolog program which does the task of identifying the object.

5.2 RESULTS

Several data files of different objects were created for testing.

The view angles for the objects were also changed. The program was

successful in deciding the possible objects that the image could be

representing. The output consists of the choice of the systz about the

identity of the object and an associated confidence factor. The

confidence factor is a measure of the system's certainty in that

decision. The program was also tested for incamplete line drawings.

The program first guesses the lines to be added to complete the drawing

and then goes through tne usual process of identification.

A sample output corresponding to the input image in Figure 5.2a is

shown in Figure 5.2b. The input image is a complete line drawing of a

cube. The system guesses that the object is cube and the confidence

factor is 100.

When the same image but with one edge missing (Figure 5.3a) is

48

input, the system still decides that tne object is a cube. The

confidence factor, however, is reduced to 75.

For an input image as shown in Figure 5.4a, the object is

identified as either a prisn or a pyramid, both being equally likely

(see Figure 5.4b).

The same drawing as before, but with an incomplete edge is shown in

Figure 5.5a and the corresponding output is shown in Figure 5.5b. The

result is the same except that there is more uncertainty in the second

case with the incomplete edge.

Another sample run for a different object are shown in Figures 5.6

and 5.7. The systEn was able to identify the object when there was a

missing corner in the original image.

Figure 5.8a shows an image with some random noise. The object in

the image is recognized as a cube in spite of the noise. In this case,

tne program that scans the image takes care of the noise as explained in

Chapter 3.

49

o .-.* .*

F igure 5.2 Test result 1

(a) Input

-- .~ Cb)output

;7

50

Figure 5.3 Test result 2

(a) Input

(b) Output

II

M" d," ' i , " r'':b

Ij

51

-?

. ,. , . P II. IIJ ... L q ; M mm , - , . IF-_;, ;:.95.1

-w

I.

Figure 5.5 Test result 4

(a) Input
a I

*5 1.'

(b) OutpuT

~r: q P.g re: . d2

~1dc LU U, - P'R 0 L ' I

cictf. ra fI 11 d prb 4 0C

53

• .N:

Figure 5.6 Test result 5

(a) Input

(b) Output

P. I

I 54

Figure 5.7 :Test result 6:

' I

-. .

(a) Input

(ol OurpuT:

I i I

!~ 1'

t '

#5

'*%.%*'*~~~~~~~ !] " '%..W.'8'X..' , ' 'v*: g.-:gs'-%*--

Figure 5.3 Test result 7

(a) Input

(b) Output

56.

DISCUSSION AID CONCLUSIONS

6.1 Limitations of the present system:

The systen discussed so far can be considered as a nall portion of

a large computer vision system. It does not contain any high level

geaetrical concepts of 3-D objects, but only sane basic properties of

polyhedra concerning edges and vertices. This limitation comes as a

result of enphasizing on generality. The decisions are not based on

particular shapes or topologies, but only on general laws.

The capabilities of the present system can be enhanced by the

addition of more tasks and distributing these tasks between several

levels. The present system can be thought of as having only two levels

other than the user. The first level is the one which accepts the

segmented binary image with the edges of the object enhanced and

produces a table containing all the relevant information about the

object. Then, a few preselected features are extracted and made

available to the second level. The second level is a rule based

interpreter which tries to classify the feature set as that belonging to

one of several prespecified objects. This process is guided by a set of

rules. In this case, the first level tries to provide the second level

with as much information as it can gather from the image. The second

57

level, then, uses as much information it needs to classify the object.

This scheme, evidently, does not have any interaction between the two

levels.

6.2 Suggested Modifications

A better approach would be to have a separate feature extraction

level which is controlled by the classifier or interpreter. Initially,

only a simple set of features is extracted and then more features can be

requested from the feature extractor according to the needs developed by

the classifier. e.g. if the classifier has reached a point where it

seems like two objects could have developed the present set of features,

then it can ask for some more information like the types of faces and

angles between the edges. In this way, the classifier gets whatever

information it needs without the feature extractor having to provide

more features than is required. For simple objects, it could come to a

decision faster using fewer rules and features and for more complicated

objects it would fire more rules which would call for more features.

This would make the system faster and more efficient.

This can be accomplished by employing a rule-based strategy for

feature extraction in which the rules for getting new features are fired

from the classifier. Since, some of the features involve a lot of

searching, sorting and calculations to be done, the process of feature

extraction is quite intensive computationally. At present, the image

scanning program is written in Pascal and che classifier is coded in

58

Prolog. The version of Prolog used is not very powerful for numerical

computations and hence the feature extraction process is also done by a

Pascal program. With the help of a more powerful language, it might be

possible to integrate these two separate process within the same

program.

A robust method for feature extraction would be to include some

general rules of feature selection in the rule database. Using these

rules and a few test data, the details of which are provided to the

system by the user, the system should be able to 'learn' something about

the sample objects. When actual data is encountered, this knowledge is

used to select the proper features and proceed with the feature matching

process for recognition.

Another interesting modification is to enhance the user

interaction. For some problems, the system might not be able to

conclude anything from the given input data. In such instances, if the

system had the capability to request and receive more information from

the user, rather than trying to search for it on its own, it would

become more efficient. This problem falls more into the area of expert

systems. The major problem of this enhancement is the user-program

interface. The interface should be such that the user as well as the

interactive process should be able to understand the information being

exchanged. In all simplicity, this would require the system to have

natural language processing capabilities so that it can communicate with

the user in a language that can be understood by the user, like

59

English. Language processing is a very big problem in itself. It could

still be possible to maintain communication by a simple 'yes-no' type of

session. For the simple objects that this system was originally

expected to recognize, a user interface was not deemed necessary, but it

is certainly a useful addition for future work.

Finally, to make this system of practical use, it sfr ild be able to

recognize objects in a scene rather than when they are presented

individually. This needs the introduction of more levels into the

system. A block diagram of such a system with its functional units is

shown in Figure 6.1. At the lowest levels, the image will have to be

segmented to separate the regions in the image frame where the

individual objects are likely to be found. Then the next level of

processing is to detect the edges of the object in each region. When

this is ccmplete, each object has to be identified as before by going

through the subsequent upper levels. All these processes have to be

controlled by a control unit. There are rules for every kind of

processing that needs to be done. The control unit has to fire the

correct rules depending on the level of recognition that has been

established and try to identify the object with the minimum amount of

uncer ta inty.

.

* FEATURE

MATCHI NG

t KNOWLEDGE

BASE

FEATURE

CONTROL' EXTRACTION

RULES

II
EDGE

DETECT ION

4 SEGMENTATION

IMAGE

- 'ure B lock Diagram of Modified system

-~ -* - .l

6.3 CONCUSIONS

In this thesis, an attempt was made to develop a simple and

flexible system to recognize objects. The emphasis is on generality

rather than specifics about the shape, dimensions and other 3-D

descriptions of the object. An attempt was nade to make the decision

process as independent of the viewing position as possible. This was

tried out on simple polyhedral objects. Since only basic shapes of

ob3ects were considered, simple features were used to describe the

object. For more complicated objects it is necessary to increase the

nunber and type of features. But since the aim is to only identify the

object, it is sufficient to distinguish the object fron the others

rather than obtaining a complete description of it. The present system

performs this task satisfactorily. It identified objects even when the

input drawing had some irregularities or some parts were missing.

Compared to the conventional methods of statistical pattern recognition

or direct pattern matching, the use of rules to guide the recognition

process is definitely more efficient and powerful. Its main strength

lies in its non-rigid structure. It can be modified or enhanced with

simple changes in the rules. Sane possible modifications have been

suggested in chapter 5. Overall, the results showed that reasonably

accurate identification is possible in most cases.

4.

,- 62

. " ,• - , . . ,. ,, . . i. •y .- , . ' ,

REFERENCES

(1) Brooks R.A., Model-based three-dimensional interpretations of

two-dimensional images, IEEE trans. on Pattern Analysis and Machine

Intelligence, Pami-5, No.2, 1983.

(2) Brooks R.A., Greiner R., Binford T.O., The ACRONYM model-based

vision system, Proc. of International Joint Conference on

Artificial Intelligence, IJCAI 1979.

(3) Chakravarty I., Freeman H., Charateristic views as a basis for

reccognition of three-dimensional objects, IPL-TR-034, Renneselear

Polytechnic Institute, 1982.

(4) Clocksin W.F., Mellish C.S., Programing in Prolog,

Springk-r-Verlag, 1981,1984.

(5) Douglass R.J., Interpreting three-dimensional scenes A model

building approach, Canputer Graphics Image Processing, vol.17,

1981.

(6) Duda R.O., Hart P.E., Pattern Classification and Scene Analysis,

John Wiley and Sons, 1973.

(7) Falk G., Interpretation of imperfect line data as a

three-dimensional scene, Artificial Intelligence, No.3, 1972.

(8) Fu K.S., Pattern Recognition for Automatic Visual Inspection, IEEE

Computer, Dec. 1982.

(9) Guzman A., Decomposition of a visual scene into three-dimensional

bodies, AFIPS Fall Joint Conference, 1968.

(10) Lee H.C., Fu K.S., A computer vision system for generating object

descriptions, Proc. of Pattern Recognition and Image Processing

Conf., 1982.

(l) McKee J.W., Aggarwal J.K., Conputer Recognition of partial views of

63

thre -dimensional curved objects, Comp Sci Tech Rep 17, Univ of

Texas, Austin, 1975.

(12) McKeown D.M., Harvey W.A., McDermott J., Rule-Based Interpretation

of Aerial Imagery, IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol.PAMI-7, no.5, 1985.

(13) Mulgaonkar P.G., Shapiro L.G., Haralick R.M., Recognizing

three-dimensional objects single from single perspective views

using geometric and relational reasoning, Proc. of Pattern

Recognition and Image Processing Conf., 1982.

(14) Nazif A.M., Levine M.D., Low Level Image Segmentation An expert

system, IEEE trans. on Pattern Analysis and Machine Intelligence,

vol.PAMI-6, no.5, 1984.

(15) Roberts L.G., Machine perception of three-dimensional solids,

Optical and Electro-Optical Information Processing, MIT press,

1965.

(16) Shapiro L.G., Mulgaonkar P.G., Moriarty J.D., Haralick R.M., A

Generalized Blob Model for Three-Dimensional Object Description,

Second IEEE Workshop on Picture Description and Management, August

1980.

(17) Thonnat M., Granger C., Berthod M., Design of an expert system for

object classifying through an application to the classification of

galaxies, Proceedings, IEEE Computer Vision and Pattern Recognition

Conference, June 1985.

(i8) Wallace T.P., Wintz P.A., An efficient three-dimensional aircraft

recognition algorithm using normalized Fourier descriptors,

Computer Graphics Image Processing, vol.13, 1980.

64

V1 -4 - - 'u -'

APPENDICES3

65

7 W.-77 - - .-

APPENDIX I

Listing of the program to scan the image

PROGRAM LINESERCH(output);

{ This program is used to extract positional and linking
information from a 64 x 64 image frame containing
a line drawing of regular solid polyhedron.
The image is stored in a two-dimensional array 'pix'.
The information is stored in another array 'corner'.

t$R+,W4}
const maxcor=8;maxnebor=4;minlen=48;

* type map=record
xn,yn : integer;

npdir : 0..8;
end;

point=record
xp,yp : integer;
nebor : array[l..maxnebor] of map;

end;

narray=array[l..321 of integer;

var pix : array[l..64,1..64] of integer;

corner : array~l..maxcor] of point;

i,j,line,col,dat,indir : integer;
startrestart : boolean;
data: text;

* PROCEDURE CHECK (px,py,nx,ny,dir: integer;var found:boolean);

{ This procedure is used to update the entries in the
information table. The entry parameters are the

co-ordinates of the starting and ending corner points
of the edge most recently scanned.
At exit, the table is updated and 'found' is set to
indicate whether the last corner was a new one.

var ncor,nnebor,corl,cor2: integer;

exit: boolean;

66

begin {checki
found:= false; exit:=:false;corl: =0;cor2: =0;
ncor:=1;
while((ncor~xnaxcor)and not(exit)) do
beg in

with corner Incor) do '4

begin
if((abs(xp-px)(3)and(abs~yp-py)<3)) then corl:=ncor;
if ((abs (xp-nx) (3) and(abs (yp-ny) <3)) then
beg in

cor2: =ncor; found:=true;
end;
if((xp=0)and(yp=0)and not(found)) then
beg in

xp: =nx;yp: =ny;cor2: =ncor;exit:=true;
end;

end; twithi
ncor: =ncor+1;

end; {while}
with corner (corl] do
begin '

exit:=false;nnebor:=1;
while((nnebor<rnmaxnebor) and rot(exit)) do
beg in

with neborlinebori do
begin

if((abs(xn-nx)<3)and(abs(yn-ny)Z3)) then
exit:=true;
if((xn=0O)and(yn=0)) then
beg in

xn:=nx;yn:=ny;npdir:=dir;exit:=true;N
end;

end;
nnebor :=nnebor+1;

end;
end;

with corner[cor2] do
beg in

nnebor: =1; exit: =false;
while((nnebor(=-maxnebor)and not(exit)) do
beg in

with nebor[nnebor] do

bgnif((abs(xn-px)<3)and(abs(yn-py)<3)) then
exit:=true;
if((xn=0)and(yn=0)) then
beg in

xn:=px;yn:=py;
njxdir:=(dir+4)mod 8;
if npdir=0 then npdir:=8;
exit: =true;

67 -

end;-7

end;

nnebor:=nnebor+i;
end;

end;

end; lof procedure CHECKI

* PROCEDURE SCANCORNER(px,py,dir:integer;var nx,ny:integer);

* { This procedure starts scanning a possible edge in the
specified direction starting at the corner points whose
co-ordinates are specified. It uses a threshold 'thresh'
and 'maxcount' to determine whether the other corner of
edge is obtained. If so, it returns the co-ordinates of
the new corner point.}

var x,y,count,maxcount,minval,minpos,thresh,i: integer;
n :arrayll. .81 of integer;
finish :boolean;

begin {procedure}
nx:=px;ny:=py;count:=(O;maxcount:=0;finish:=false;thresh:=;
while not(finish) do
beg in

x:=px;y:=py;count:=0;
for i:=1 to 8 do n[i]:=0;
if ((dir~l) or (dir=2) or (dir=8))then
if pixllx,y-lI=l then
beg in

n[l] :=l;count:=count+l;
if dir(>l then thresh:=thresh+l else thresh:=O;

end;
if((dir=1)or(dir=2)or(dir=3)) then
if pix(x+l,y-11=I then
beg in

n[23 :=;count:=count+l;
if dir<>2 then thresh:=thresh+l else thresh:=0;

end;
if((dir=2)or(dir=3)or(dir=4)) then
if pixtx+l,y]=l then
beg in

nL3] :=l;count:=count+l;
if dir(>3 then thresh:=thresh+l else thresh:=0;

end;
if((dir=3)or(dir=4)or(dir=5)) then

* if pix[x+1,y+lj=l then
*begin

n(4] :=l;count:=count+l;

68

if dir(>4 then thresh: thresh+l else thresh:=0;
end;
if((dir=4)or(dir=5)or(dir=6)) then
if pixllx,y+111=1 then
beg in

n[5] :=1;count:=count+l;
if dir<)5 then thresh:=thresh+l else thresh:=0;

end;
if((dir=5)or(dir=6)or(dir=7)) then
if pixllx-1,y+il]=1 then
beg in

n[61 :=1;count:=count+l;
if dir(>6 then thresh:=thresh+l else thresh:=O;

end;
if((dir=6)or(dir=7)or(dir=8)) then
if pix[x-1,y]1l then
beg in

n1171:=1;count:=count+1;
if dir07 then thresh:=thresh+l else thresh:=O;

end;
if((dir=7)or(dir=3)or(dir~l)) then
if pix[x-l,y-11=1 then
beg in

n[8]:=l;count:= count+1;
if dir<>8 then thresh:=thresh+l else thresh:=O;

end;

if((maxcount~count)and(thresh<2)) then
beg in

if count-1 then
begin

for i:= 1 to 8 do
if n~i]1l then

* beg in
case i of
1,5: px: =x
2,3,4:px:=x+l;
6,7,8:px:=x-1;
end;
case i of
1,2,8:py:=y-l;

4,5,6:py:=y+1;
end; [of case)
nx: =px; ny: =py;

end;
end
else
beg in

for i:=l to 8 do
beg in

4 if n[i1=1 then ntlil:=abs(i-dir) else n(i]:=25;

69

Irv T7-

end;

i:=2;minval:=n [1] ;minpos:=l;
while i<=8 do
begin

if n~i]<minval then
begin

minval:=n[i] ;minpos:=i;
end;

i:=i+l;
end;
case minpos of
1,5:px:=x;
2, 3,4:px:=x+l;
6,7,8:px:=x-1;
end;
case minpos of
1,2,8:py:=y-l;
3,7:py:=y;
4 ,5,6:py:=y+l;
end; [of case)

nx: =px;ny:=py;
maxcount: =count;
end;

end
else finish:=true;
end; {of while not finish)

end; {of procedure SCANCORNER}

PROCEDURE NEBOR(x,y: integer;var n:narray);

This procedure scans the pixels along the edge of a
4x4 window surrounding the specified points and returns
a 33 element array 'narray' which indicates the status
of every pixel that was scanned.

var i,tx,ty :integer;

begin
tx: =x; ty: =y-4;
for i:=0 to 4 do
begin

if pix[tx+i,ty]=l then n[i+l]:=l else n[i+l]:=O;
if i>0 then
begin

if pix[tx-i,ty]=l then n[33-i]:=i else n[33-i]:=0;
end;

end;
tx:=x+4;ty:=y;
for i:=-3 to 4 do

70

if pix[tx,ty+i]=l then n[9+iJ:=l else n19+ij:0O;
tx:=x-4;ty:=y;
for i:=-3 to 3 do
if pixlltx,ty+iI=l then n[25-.iI:=l else n[25-i]:=0;
tx:=x;ty:=y+4;
for i:=Qi to 3 do
beg in

if pix~tx+i,ty]~l then n1117-iI:=l else n[17-ij:=0;
if pix[tx-i-l,tyll then n[lB+i):1l else n[18+ijj:=0;

end;
end; (of procedure NEBOR

PROCEDURE SCANNEBOR(x,y,from: integer);

{This procedure searches for corners connected to the specified
corner in all directions except the one which led the scanning
to this point, specified by 'from'. If it finds a neighbouring
corner, it updates the information table and then scans for its
neighbours and continues this recursive operation. If a
corner was found to be entered in the table, then it searches
for the other neighbours until all are exhausted.

var i,px,py,nx,ny,pdir integer;
dir : 18
n : narray;
found : boolean;

beg in
nebor(x,y,n);
if from=4 then pdir:=8 else pdir:= (from+4)mod 8;
for i:=l to 32 do
beg in

if n(iJ=l then
beg in

case i of
1,2,32: dir:=l;
3,4,5,6,7 : dir:=2;
8,9,10: dir:=3;
11,12,13,14,15 :dir:=4;
16,17,18: dir:=5;
19,20,21,22,23: dir:=6;
24,25,26: dir:=7;
27,28,29,30,31: dir:=8;
end; [of casel
if (i = 3) then

if pix[x+2,y-51 = I then dir 1= ;
if (i = 7) then

if pix[x+5,y-21 = I then dir :=3;
if (i = 11) then

* t. 1 ~ .~%~.*-%*fV*-/- ~ 71

if pix[x+5,y+21 = 1 then dir :=3;
if (i = 15) then

if Pix Lx+2,y+5] = 1 then dir :=5;
if (i = 19) then

if pixx-2,y15] = 1 then dir :=5;
if (i = 23) then

if pix[x-5,y+2J 1 then dir :=7;
if (i = 27) then

if pixlx-.5,y-2] = 1 then dir :=7;
if (i = 31) then

if pixtx-2,y-51 = 1 then dir :=1;

if dir<>pdir then
beg in

if i<=5 then
beg in

px:=x+i-1;py:=y-4;
end

else if((i>5)and(i<=13)) then
beg in

px:=x+4;py:=y+i-9;
end
else if((i>13)and(i<=21)) then
beg in

px:=x+17-i;py:=y+4;
end
else if((i>21)and(i<=29)) then

.4. begin
px: =x-4;py:=y+25-i;

end
else
begin

px:=x+1-33;py:=y-4;
end; [of if)

scancorner (px,py,dir,nx,ny);
if((sqr(x-nx) + sqr(y-ny))>minlen) then
beg in

check(x,y,nx,ny,dir,found);
if not(found) then scannebor(nx,ny,dir);

end;
end; (of if not previos dirl
end;

end;
end; f of recursive procodure SCANNEBOR}

begin tmainl

tread the image frame from file 'datafile.dat'

72

4z,

assign (data, 'datafile.dat');
reset (data);
for i:=1 to 64 do
beg in

for j:=l to 64 do
beg in

read(data,dat);
pix[i,jI :=dat

* end;
end;
close(data);

{initialise data table 'corner'}

for i:=l to maxcor do

bgnwith corner[i] do
beg in

xp:=O;yp:=O;
for j:=l to maxnebor do
beg in

with nebor~j] do
begin

xn:=0;yn:=0;npdir:=0;
end; {withl

end; (for}
end; (withl

end; {for)

tinital part of scanning process; seek first pixell

line: =2;col:=2;start:=false;
while((line<=63)and(not(start))) do
beg in

if col=63 then
beg in

line:=line + 1;
col: =2;

* end
else col:=col+l;

if(pixllline,colI=l) then
beg in

start:=true;
corner[l].xp:lIine;cornertl).yp:=col;indir:=-4;
scannebor(line,col,indir);
restart:=false; i:=1
while((i<=maxcor)and not(restart)) do
beg in

if((corner~iI.xp=O~)and(corner~iI.yp=0)) then
* restart := true;

i:=il

73

end;
if (i<=2) then start false;

end;
end; {of while}

{ output to screen the co-ordinates of all the detected corners }

writeln('corner# x co-ord y co-ord ');
for i:=l to maxcor do
begin

writeln(i:20,corner[i].xp:20,corner[i].yp:20);
end;

*: end.

47

.4.

"4

-I'

.9.

* 74
- "! ', n :h I ,1; a "" " " " "" " " ;' " '"

'
.'-', ,., . .- { .,, 'e

APPENDIX II

Listing of the program for recognition

This program uses a rule-based matching strategy to recognize an

object. The features of the object are assumed to be stored separately

and this feature file should be included in the Prolog database when the

interpreter is run. The program expects the user to type in the

question 'object?' when the prompt occurs to begin the process of

pattern. The program informs the user cf the identity of the object and

the confidence factor when a match has been found.

Listing of Program RECOGNIZ

pnh([) :- nl.

phh([HITI) :- write(H),tab(l),phh(T).

eq(Diml,Dim2) :- Diml =- Dim2.

linear(X,Y) :- X == Y + 4;
Y X + 4;
X Y.

, initialise(A,B,C,D) numcor(A),
cor(4,B),
cor(3,C),

. cor(2,D).

init(P) nummis(M),
initt(M,P).

75

initt(M,P) M == 0,
p is 0.

initt(M,P) M =1

ml is 1,
adjusti (M1,P).

initt(M,P) M == 2,
Ml is 1, M2 is 2,
adjust2 (Ml,M2,P).

adjustl(M,P) miscor(M,P1,D), near(P1,N),
cor (2,Q) , QI is Q + 1,
retract(cor(2,Q)), assert Ccor(2,Ql)),
type(N,T), cor(T,Y), Y1 is Y - 1,
retract(cor(T,Y)), assert(cor(T,Yl)),
TI is T + 1,
cor(Tl,Z), Zi is Z + 1,
retract(cor(TI,Z)), assert(cor(Tl,Zl)),
retract(nurris(l)), assert(numiis(0)),
P is -25.

adjust2(M1,M2,P) :- iscor(Ml,Pl,D1),
mi sco r(M2, P2, D2) ,
linear (D1,D2),!,
numcor(X), Xl is X - 2,
retract (riumcor (X)) assert (nrfcor (Xl)) ,
retract (nurmis (2)), assert (numnis (0)),
P is -10.

adjust2(M1,M2,P) :-miscor(M1,Pl,D1), miscor(M2,P2,D2),
not(linear (D1,D2)) ,!,
numcor (X) , Xl is X - 1,
retract(numcor(X)), assert(numncor(X1)),
cor(2,Y) , Y1 is Y + 1,
retract (cor (2,Y)), assert(cor(2,Yl)),
retract (numuis (2)) , assert (nunis (0)),
P is -20.

cube(N,T3,T2,P,Pl) eq(N,6), eq(T3,2), eq(T2,4),Pl is P + 35.

* cube(N,T3,T2,P,P1) eq(N,7), eq(T3,4), eq(T2,3),P. is P + 10I0.
cube(N,T3,T2,P,PI) eq(N,4),eq(T2,4),P1 is P + 15.

p:ynrtd(N,T4,T3,T2,P,Pl) eq(N,5),eq(T4,1),eq(T3,2),eq(T2 ,2),Pl is P + 100.

pyrrnd(N,T4,T3,T2,P,P1) eq(N,5),eq(T4,I),eq(T3,4),Pl is P + 100.

pyrmd(N,T4,T3,T2,P,P1) :-eq(N,5) ,eq(T3,4) ,eq(T2,1) ,P1 is P + 100.

pyrmd(N,T4,T3,T2,P,Pl) :-eq(N,5),eq(T3,2),eq(T2,3),Pl is P + 50~.

pyrind(N,T4,T3,T2,P,PI) eq(N,4),eq(T2,4),P1 is P + 15.

76

07 W7, r"v W

pyrmd(N,T4,T3,T2,P,P1) eq(N,4),eq(T3,2),eq(T2,2),Pl is P + 100U.

pynnd(N,T4,T3,T2,P,Pl) eq(N,3),eq(T2,3),Pl is P + 50.

Lprlscn(N,T3,T2,P,PI) eq(14,6), ecpT3,2), eq(T2,4),P1 is P + 15.

prism(N,T3,T2,P,Pl) eq(N,6), eq(T3,4), eq(T2,2),P1 is P + 100.

prism(N,T3,T2,P,Pl) eq(N,5), eq(T3,2),eq(T2,3),Pl is P + 50.

priszn(N,T3,T2,P,PI) eq(N,4), eq(T2,4),PI is P + 15.

prism(N,T3,T2,P,P1) :-eq(N,3), eq(T2,3),P1 is P + 50.

Ishape(N,T3,T2,P,Pl) eq(N,6), eq(T3,2), eq(T2,4),P1 is P + 25.

*lshape(N,T3,T2,P,Pl) eq(N,6), eq(T2,6),P1 is P + 100.

lshape(N,T3,T2,P,Pl) :-eq(N,4), eq(T2,4),Pl is P + 15.

lshape(N,T3,T2,P,Pl) eq(N,9), eq(T3,4), eq(T2,5),Pl is P + 100.

lshape(N,T3,T2,P,Pl) :-eq(N,10), eq(T3,6), eq(T2,4),Pl is P + 50.

lshape(N,T3,T2,P,P1) :-eqCN,11), eq(T3,8), eq(T2,3),Pl is P + 100.

lshape(N,T3,T2,P,P1) eq(N,11), eq(T3,6), eq(T2,5),P1 is P + 100.

tshape(N,T3,T2,P,Pl) eq(N,6), eq(T3,2), eq(T2,4),Pl is P + 25.

tshape(N,T3,T2,P,Pl) :-eq(N,8), eq(T3,4), eq(T2,4),P1 is P + 100.

tshape(N,T3,T2,P,P-) :-eq(N,
4), eq(T2,4),Pl is P + 15.

* tshape(N,T3,T2,P,Pl) :-eq(N,8), eq(T2,8),P1 is P + 100.

tshape(N,T3,T2,P,PI) :-eq(N,10), eq(T3,6), eq(T2,4),P1 is P + 50.

tshape(N,T3,T2,P,P1) :-eq(N,10), eq(T3,2), eq(T2,8),P1 is P + 100.

tshape(N,T3,T2,P,P1) :-eq(N,12), eq(T3,6), eq(T2,6),P1 is P + 100.

tshape(N,T3,T2,P,P1) :-eq(N,13), eq(T3,6), eq(T2,7),P1 is P + 100.

tshape(N,T3,T2,P,Pl) :-eq(N,14), eqCT3,6), eq(T2,8),P1 is P + 100.

tshape(N,T3,T2,P,P1) :-eq(N,14), eq(T3,10), eq(T2,4),Pl is P + 100.

*tshape(N,T3,T2,P,Pl) :-eq(N,15), eq(T3,10), eq(T2,5),Pl is P + 100.

* objl(P)
initialise(N,T4,T3,T2),
cube (N,T3,T2,P,P1) ,
phh([object,: ,cube,>,prob,=,P1).

obj2(P)
initialise(N,T4,T3,T2),
pyrmd(N,T4,T3,T2, P,P1),
phh(Lobject,:,pyramid,>,PrOb,=,PlJl).

obj3(P)
initialise (N,T4,T3,T2),
prism(N,T3,T2,P,P1),
phh([object,: ,prisn,>,prob,=,P1I).

obj4(P)
initialise (N,T4,T3,T2),
lshape(N,T3,T2,P,P1) ,
phh([object,:,lshape,>,prob,=,Pl]).

77

obj 5(P)
initialise (N,T4,T3,T2),
tshape (N ,T3 ,T2, 2, 2),
phh([object,:,tshape,>,prob,=,PlI).

obj(P) obji (2).
* obj(P) obj2 (2).

obj(P) obj3 (2).
obj(P) obj4 (2).
obj(P) obj5(P).

* object init(P) ,obj (2).

78

4.
I~ 'd\

I
4..

.4

4

I

%y.K:K.<>.K.?.:'~..:. 2: ~ 2 ***<.>>K.<: -'-~:-: -:*v *. -

