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1. INTRODUCTION

This project concerns the design and analysis of algorithms to be run in a
processor-rich environment. We focus primarily on algorithms that require no global
control and that can be run on systems with only local connections among processors.
We investigate the properties of these algorithms both theoretically and experimentally.
The experimental work has been done on the ZMOB, a parallel computer operated by
the Laboratory for Parallel Computation of the Computer Science Department at the
University of Maryland, although recently we have gained access to a BBN Butterfly
computer as well.

The ZMOB consists of 128 processors which communicate by message passing over
a communications network which provides a complete network of connections between
processors. The start-up time for interprocessor communication, the per-word transmis-
sion overhead, and the floating point computation time is all of the same order of magni-
tude.

It is important to be precise about how we use the ZMOB in our research. What
we do not do is to investigate algorithms for the ZMOB itself. Instead we use the fact
that the ZMOB appears to be a completely connected network to simulate various
locally connected networks of processors. Thus we can investigate, in a realistic setting,
the effects on our algorithms of various processor interconnections.

Our activities may be divided into four categories: algorithms, software develop-
ment, theoretical analysis, and experimental analysis.

To give our work direction, we have focused on dense and sparse problems from
numerical linear algebra. We discuss in this summary the research projects that we have
pursued under this grant support over the past year.

2. Summary of Work

Our activities have ranged from theoretical analysis to algorithmic design and
software development. We summarize this work in the following sections. For details,
consult the annotated list of references in Appendix A.
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2.1 Data-Flow Algorithms and Domino

We have based most of our work in this area on the notion of a data-flow algo-

rithm. The computations in a data-flow algorithm are done by independent computa-
tional nodes, which cycle between requesting data from certain nodes, computing, and

sending data to certain other nodes. More precisely, the nodes lie at the vertices of a
directed graph whose arcs represent lines of communication. Each time a node sends

data to another node, the data is placed in a queue on the arc between the two nodes.
When a node has requested data from other nodes, it is blocked from further execution

until the data it has requested arrives at the appropriate input queues. An algorithm

organized in this manner is called a data-flow algorithm because the times at which

nodes can compute is controlled by the flow of data between nodes.

Data-flow algorithms are well suited for implementation on networks of processors

which communicate by message passing. Each node in a computational network is

regarded as a process residing on a fixed member of a network of processors. We allow

more than one node on a processor. Since many nodes will be performing essentially the
same functions, we allow nodes which share a processor also to share pieces of reentrant
code, which we call node programs. Each processor has a resident node communication

and control system to receive and transmit messages from other processors and to

awaken nodes when their data has arrived.

Data-flow algorithms have a number of advantages.

1. The approach eliminates the need for global synchronization.

2. Parallel matrix algorithms, including all algorithms for systolic arrays,

have data-flow implementations.

3. Data-flow algorithms can be coded in a high-level sequential program-
ming language, augmented by two communication primitives for sending

and receiving data.

4. Data-flow computations can be supported by a very simple node com-

munication and control system.

5. The approach allows the graceful handling of missized problems, since

several nodes can be mapped onto one processor.

6. By mapping all nodes in a data-flow algorithm onto a single processor,
one can debug parallel algorithms on an ordinary sequential processor.

Because of the conceptual convenience and practical utility of the data-flow
approach, and because of the absence of any standard for writing transportable
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algorithms for parallel machines, we have implemented these ideas in a node communica-
tion and control system called Domino. We have documented the system and provided
examples of its use in a technical report. The system currently runs on the ZMOB,
Vaxes under Unix or VMS, Sun workstations, and IBM PC's. A Butterfly implementa-
tion is underway. The code is currently being used for numerical analysis and for neural
network studies at Maryland. The system has been very valuable to us in our research,
and will be used in a course on parallel computation taught next fall at Maryland. We
have already received numerous inquiries from potential users in industry and academics
and will make Domino available over the Arpanet through Netlib at Argonne National

Lab.

2.2 Theoretical Developments

Work has been done in the design of parallel architectures and in the analysis of
parallel algorithms.

Our work on the determinacy of our data-flow model for parallel computation led
us to propose a modification of the design of systolic arrays in order to eliminate the
need for global synchronization. Each cell in the array is augmented by a feedback cir-
cuit so that data is sent from one cell to another only when the receiver is ready to pro-
cess it. We call such networks systaltic arrays.

David C. Fisher completed a thesis partially supported by this grant which studies
the complexity of various tasks in matrix computation, assuming that processors perform
computations so fast that the communication delay in sending between physically dis-
tant processors is significant. Lower bounds on execution time were obtained, and
optimal algorithms were derived for several problems.

2.3 Algorithm Design, Analysis, and Testing

The chief difficulty with the data-flow approach is that the behavior of the algo-
rithms cannot be analyzed purely from the local viewpoint of the node programs. This is
one reason for supplementing theory with experiment.

This year, we devised a number of new parallel algorithms. For dense matrices we
developed algorithms for computing the QR factorization of a matrix and a parallel ver-
sion of the QR algorithm for computing eigenvalues. For sparse matrices, we are work-

ing on simultaneous iteration methods for eigenvalues and block conjugate gradient algo-
rithms for solving linear systems.

3. Summary

11 . 1 110, 11, N I I.
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Four papers supported under this grant appeared in refereed journals during this
year, and two were accepted for publication. Invited talks were given at universities and
at conferences whose themes ranged from parallel processing to statistics and mathemat-
ical programming. One graduate student completed his dissertation and two others
made substantial progress. The Domino software has been documented and prepared for

distribution.

Our work resulted in a collection of parallel algorithms for matrix computations, a
data-flow operating system to support experiments, and theoretical investigation into
complexity and determinacy issues in parallel matrix computations.



Appendix

Accomplishments under Grant AFOSR 82-0078

1. Technical Reports

(1) G. W. Stewart, Computing the CS Decomposition of a Partitioned Orthonormal Matrix,
TR-1159, May, 1982.

This paper describes an algorithm for simultaneously diagonalizing by orthogonal transfor-
mation the blocks of a partitioned matrix having orthonormal columns.

(2) G. W. Stewart A Note on Complex Division, TR-1206, August, 1982.

An algorithm (Smith, 1962) for computing the quotient of two complex numbers is
modified to make it more robust in the presence of underflows.

(3) D. P. O'Leary, Solving Sparse Matrix Problems on Parallel Computers, TR-1234,
December, 1982.

This paper has a dual character. The first part is a survey of some issues and ideas for
sparse matrix computation on parallel processing machines. In the second part, some new
results are presented concerning efficient parallel iterative algorithms for solving mesh
problems which arise in network problems, image processing, and discretization of partial
differential equations.

(4) G. W. Stewart, A Jacobi-like Algorithm for Computing the Schur Decomposition of a Non-
Hermitian Matrix, TR-1321, August, 1983.

This paper describes an iterative method for reducing a general matrix to upper triangular
form by unitary similarity transformations. The method is similar to Jacobi's method for
the symmetric eigenvalue problem in that it uses plane rotations to annihilate off-diagonal
elements, and when the matrix is Hermitian it reduces to a variant of Jacobi's method.
Although the method cannot compete with the QR algorithm in serial implementation, it
admits of a parallel implementation in which a double sweep of the matrix can be done in
time proportional to the order of the matrix.

(5) D. P. O'Leary and G. W. Stewart, Data-Flow Algorithms for Matrix Computations, TR-
1366, January, 1984.

In this work we develop some algorithms and tools for solving matrix problems on parallel
processing computers. Operations are synchronized through data-flow alone, which makes
global synchronization unnecessary and enables the algorithms to be implemented on
machines with very simple operating systems and communications protocols. As examples,
we present algorithms that form the main modules for solving Liaponuv matrix equations.
We compare this approach to wavefront array processors and systolic arrays, and note its
advantages in handling missized problems, in evaluating variations of algorithms or archi-
tectures, in moving algorithms from system to system, and in debugging parallel
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algorithms on sequential machines.

(6) G. W. Stewart, W. F. Stewart D. F. McAlister, A Two Stage Iteration for Solving Nearly
Uncoupled Markov Chains, TR-1384, 1984.

This paper presents and analyses a parallizable algorithm for solving Markov chains that
arise in queuing models of loosely coupled systems.

(7) Dianne P. O'Leary and Robert E. White, Multi-Splittings of Matrices and Parallel Solution
of Linear Systems, TR-1362, December, 1983.

We present two classes of matrix splittings and give applications to the parallel iterative
solution of systems of linear equations. These splittings generalize regular splittings and
P-regular splittings, resulting in algorithms which can be implemented efficiently on paral-
lel computing systems. Convergence is established, rate of convergence is discussed, and
numerical examples are given.

(8) David C. Fisher, In Three-Dimensional Space, the Time Required to Add N Numbers is
0 (N1 / 4), TR-1431, August, 1984.

How quickly can the sum of N numbers be computed with sufficiently many processors?
The traditional answer is t = 0 (log N ). However, if the processors are in R 4 (usually
d < 3), addition time and processor volume are bounded away from zero, and transmis-
sion speed and processor length are bounded, t > 0 (N1/4 +1).

(9) Dianne P. O'Leary, G. W. Stewart, On the Determinacy of a Model for Parallel Computa-
tion, TR-1456, November, 1984. (Obsolete: see TR-1553)

In this note we extend a model of Karp and Miller for parallel computation. We show
that the model is deterministic, in the sense under different scheduling regimes each pro-
cess in the computation consumes the same input and generates the same output. More-
over, if the computation halts, the final state is independent of scheduling.

(10) Dianne P. O'Leary, Systolic Arrays for Matrix Transpose and Other Reorderings, TR-1481,
March, 1985.

In this note, a systolic array is described for computing the transpose of an n X n matrix
in time 3n -1 using n 2 switching processors and n 2 bit buffers. A one-dimensional imple-
mentation is also described. Arrays are also given to take a matrix in by rows and put it
out by diagonals, and vice versa.

(11) Dianne P. O'Leary, G. W. Stewart, Assignment and Scheduling in Parallel Matrix Factori-
zation, TR-1486, April, 1985.

We consider in this paper the problem of factoring a dense n X n matrix on a network
consisting of P MIMD processors when the network is smaller than the number of ele-
ments in the matrix (P < n 2 ). The specific example analyzed is a computational network
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that arises in computing the LU, QR, or Cholesky factorizations. We prove that if the
nodes of the network are evenly distributed among processors and if computations are
scheduled by a round-robin or a least-recently-executed scheduling algorithm, then optimal
order of speed-up is achieved. However, such speed-up is not necessarily achieved for other
scheduling algorithms or if the computation for the nodes is inappropriately split across
processors, and we give examples of these phenomena. Lower bounds on execution time
for the algorithm are established

(12) Dianne P. O'Leary, G. W. Stewart, From Determinacy to Syataltie Arrays, TR-1553,
August, 1985.

In this paper we extend a model of Karp and Miller for parallel computation. We show
that the extended model is deterministic, in the sense that under different scheduling
regimes each process in the computation consumes the same input and generates the same
output. Moreover, if the computation halts, the final state is independent of scheduling.
The model is applied to the generation of precedence graphs, from which lower time
bounds may be deduced, and to the synchronization of systolic arrays by local rather than
global control.

(13) David C. Fisher, Matrix Computation on Processors in One, Two, and Three Dimensions,
TR-1556, August, 1985.

Suppose a problem is to be solved on a d -dimensional parallel processing machine. Askime
that transmission speed is finite. Under this and other "real world" assumptions, if a prob-
lem requires I inputs, K outputs and T computations, then time required to solve the
problem is greater than or equal to O (max(I 1 ' ,Kl/d ,T 1 /( '1)). Algorithms for certain
matrix computations are developed. The problems are divided into atoms. The algorithms
are described and analyzed with the use of step and processor assignment functions.
These assign each atom to a step and a processor. Here is a table showing the time for
algorithms presented in this paper:

Linear Grid Square Grid Cubic Grid
Problem I-D (2-D 3-D

Summation of k numbers 0 (k) 0 (k / )  0 k 1/ 3

Multiply a k Xk matrix by a k vector 0 (k2 )  0 (k) 0 (k2/3)

Multiply two k X k matrices 0 (k 2) 0 (k) 0 (k 3/4)

Cholesky factorization of a k X k matrix ... 0 (k) I

Except for matrix multiplication in 3-dimensions, these times are a constant multiple of
the lower bounds. Programs are given which will execute these algorithms on an appropri-
ate parallel processing machine.

(14) D. P. OLeary, G. W. Stewart, R. van de Geijn, DOMINO: a message passing environment
for parallel computation. TR-1648, April, 1986.

This report is a description of DOMINO, a system to coordinate computations on a net-
work of processors. It implements an extension of a model of parallel computation (Karp
and Miller, SIAM J. Appl. Math., 1966), in which computations are synchronized by mes-
sages passed between the processes performing the computations. The system is organized
in such a way that meaningful debugging can be done on a single processor. In order to
make DOMINO transportable, system dependent features have been isolated in two
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interfaces.

(15) G. W. Stewart, Communication in parallel algorithms: an example, April, 1986.

The purpose of this note is to describe and analyze a parallel algorithm for computing the
QR factorization of an n X p matrix. The algorithm is designed to run on a ring of r pro-
cessors that communicate by message passing.

If. Presentations

(1) D. P. O'Leary, Solving Mesh Problems on Parallel Computers,
Bell Laboratory, Murray Hill, N.J., January, 1983
IBM T. J. Watson Laboratory, Yorktown Heights, N.Y., January, 1983.

(2) G. W. Stewart, A Jacobi-like Algorithm for Computing the Schur Decomposition of a Non-
Hermitian Matrix (invited), Symposium on Numerical Analysis and Computational Com-
plex Analysis, Zurich, Switzerland, August, 1983. Also presented at North Carolina State
University, September, 1983, and at University of Houston, November, 1983,

(3) G. W. Stewart, The Structure of Nearly Uncoupled Markov Chains (invited), International
Workshop on Systems Modeling, Pisa, Italy, September, 1983.

(4) G. W. Stewart, Data Flow Algorithms for Parallel Matrix Computations (invited), SIAM
Conference on Parallel Processing for Scientific Computing, Norfolk, VA, November, 1983.

(5) D. P. O'Leary, Parallel Computations for Sparse Linear Systems (minisymposium invita-
tion), SIAM 1983 Fall Meeting, Norfolk, VA, November, 1983.

(6) D. C. Fisher, Numerical Computations on Multiprocessors with Only Local Communica-
tions (poster session), SIAM Conference on Parallel Processing for Scientific Computing,
Norfolk, VA, November, 1983.

(7) G. W. Stewart, Parallel Computations on the ZMOB, Annual meeting of CER participants,
University of Utah, March, 1984.

(8) D. P. O'Leary, Data-flow Algorithms for Matrix Computations (minisymposium invitation),
ACM SIGNUM Conference on Numerical Computations and Mathematical Software for
Microcomputers, Boulder, Colorado, March, 1984.

(9) D. P. O'Leary, Solution of Matrix Problems on Parallel Computers (invited presentation),
Gatlinburg DC Meeting on Numerical Linear Algebra, Waterloo, Ontario, Canada, July,
1984. Also presented at Oak Ridge National Laboratory, September, 1984; National
Bureau of Standards, Boulder, Colorado, March, 1984; Yale University, November, 1984;
Cornell University, January, 1985; Courant Institute, February, 1985.

(10) G. W. Stewart, The Data-Flow Approach to Matrix Computations, Los Alamos Scientific
Laboratory, October, 1984.
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(11) G. W. Stewart, The Impact of Computer Architecture on Statistical Computing, (invited)
SIAM/ISA/ASA Conference on Frontiers of Statistical Computing, October, 1984.

(12) G. W. Stewart, Determinacy, (invited) Symposium in Honor of G. Dahlquist, Stockholm,
January, 1985.

(13) D. C. Fisher, Fast Matrix Multiplication on Square and Cubic Grids of Processors, SIAM
Conference on Applied Linear Algebra, Raleigh, April, 1985.

(14) G. W. Stewart, The Parallel Solution of Sparse Unsymmetric Eigenvalue Problems,
(invited) IBM Workshop on Large Eigenvalue Problems, Oberlech, Austria, July, 1985.

(15) D. P. O'Leary, A Testbed for Parallel Algorithm Development, (invited) SIAM Conference
on Parallel Processing for Scientific Computing, Norfolk, VA, November, 1985.

(16) D. P. O'Leary, G. W. Stewart, Robert van de Geijn, Domino, a Transportable System for
Parallel Computing, Army Research Conference on Parallel Computing and Medium Scale
Multiprocessors, Stanford, CA, January, 1986.

(17) G. W. Stewart, Parallel Scientific Computing, University of Colorado Conference on Com-
puter Science, Boulder, CO, March, 1986.

IV. Publications

(1) G. W. Stewart, "Computing the CS Decomposition of a Partitioned Orthonormal Matrix,"
Numeriseche Mathematik 40 (1982) 297-306.

(2) D. P. O'Leaiy, "Ordering schemes fc- parallel processing of certain mesh problems," SIAM
Journal on Scientific and Statistical Computing 5 (1984) 620-632.

(3) D. P. O'Leary, G. W. Stewart, "Data-flow algorithms for parallel matrix computations,"
Communications of the ACM, 28 (1985) 840-853.

(4) G. W. Stewart, "A Jacobi-like Algorithm for Computing the Schur Decomposition of a
Non-Hermitian Matrix," SIAM Journal on Scientific and Statistical Computing, 6 (1985)
853-864.

(5) D. P. O'Leary, R. E. White, "Multi-splittings of matrices and parallel solution of linear
systems," SIAM Journal on Algebraic and Discrete Methods, 6 (1985) 630-640.

(6) G. W. Stewart "A Note on Complex Division," ACM Transactions on Mathematical
Software 11 (1985) 238-241.

(7) D. P. O'Leary, "Systolic Arrays for Matrix Transpose and Other Reorderings," IEEE
Transactions on Computers, to appear.
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(8) D. P. O'Leary and G. W. Stewart, "Assignment and Scheduling in Parallel Matrix Factori-

zation," Linear Algebra and Ita Applications, to appear.
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