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1.0 INTRODUCTION

The design criteria for high-speed ship propellers involve

tradeoffs between efficiency and cavitation, and strength and

vibration of the propeller. Operating in ship wakes at

relatively low cavitation numbers, the propeller will, at least

intermittently, cavitate, inducing erosion of the blades, loss

of efficiency, noise, vibration, and occasionally structural

failure of nearby plating. These harmful effects are mainly due

to the collapse of unsteady cavities. These include individual

bubbles as well as sheet cavities and "clouds" (Figure 1.1).

Adequate and increasingly sophisticated theories for

individual bubble growth and collapse exist (see the reviews by

Plesset and Prosperetti, 1977, and Hammitt, 1980). While the

transition to sheet cavity is not well understood, a large

number of experimental observations of sheet cavitation are

available (Shen and Peterson, 1979, Bark and Barlekom, 1979, and

Bark, 1985). A steady, then unsteady, theory for sheet

cavitation was recently developed (Tulin, 1980, and Tulin and

Hsu, 1980). Downstream of a "steady" sheet cavity a region of

high population of tiny bubbles can be observed and is

especially known to be associated with erosion. However, as

concluded from observations by Tanabayachi and Chiba (1977), an

unsteady sheet cavity is required for the formation of coherent

clouds of very fine bubbles. These clouds are either detached

from the frothy mixture at the trailing end of the unsteady

_" sheet, or generated in a finite region of the liquid downstream

of the unsteady sheet where significant fluctuating pressures

exist.
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As the pressures generated by single bubble collapse are

not strong enough to explain the intense erosion in the subject

region and the high forces needed, for example, to bend the

trailing edge, cloud cavitation has been held responsible since

Van Manen's (1963) work. This is supported experimentally by a

very close correlation between the dynamics of these clouds and

the sharpest and highest pressure pulses detected on an

oscillating hydrofoil (Bark and Barlekom, 1979). Similar

phenomena have been observed with ultrasonic cavitation (Hanson

and Mgrch, 1980).

Apart from some information on the frequency of generation

of cloud cavitation, the experimental observations and

measurements are very qualitative and do not allow at the

present time any quantitative predictions. In addition, the

lack of understanding of the dynamics of such cavities makes it

impossible to explain any scaling effects and to correct for

them. Theoretical and fundamental studies are thus needed as

guidance for future design and experimentation.

To our knowledge, since the early work of Van Wijngaarden

(1964) only a few publications by Morch (1977, 1980, and 1982)

and Hanson and Morch (1980) have dealt theoretically with the

problem of "collective bubbles collapse" or "cavity cluster

"- collapse." However, a large amount of literature has been

devoted to the modeling of bubble-liquid mixture behavior using

either a continuum medium approach or a "two-fluid" approach

(Zwick, 1959; Van Wijngaarden, 1972, 1976, 1980, and 1982;

Luber, 1964; Ishii, 1975). This subject has recently regained a

lot of interest as is shown by several very recent publications

(D'Agostino and Brennen; 1983, Rubinstein, 1985; Caflish, et.

al, 1985a-b; Ng and Ting, 1986; Miksis and Ting, 1986;...etc.)

'- ; - < . : * . . . .. -* * .. -*, - • , -.. .** * . * * * - . . - . - - . - . • . .* • * . - . ". . --... . . .•.
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In order to explain the phenomenon of propeller blades bent at

the trailing edge, Van Wijngaarden (1964) considered the case of

a uniform layer of cavities on a solid wall. He studied its

unidimensional collective collapse when the surrounding fluid is

suddenly exposed to a pressure increase. He derived the

continuity and momentum equations for the layer, neglecting the

convective and dissipative terms and assuming that the volume

fraction of gas is small enough to warrant such approximations.

However, he did take into account the individual bubble radial

motion and translation, neglecting viscous effects. Solving the

derived system of equations, Van Wijngaarden found a

considerable increase of the pressure along the wall due to

collective effects.

Recently d'Agostino and Brennen (1983), using an approach

similar to that of Van Wijngaarden, considered the unidimen-

sional problem of a spherically symmetric cloud. Considering

small harmonic fluctuations of the tar field pressure, they

investigated the cloud response for various oscillating

frequencies. Neglecting bubble-liquid relative motion and

bubble interactions, they obtained very interesting results on

the oscillations of the whole cloud comprised of equal sized

bubbles. Cases for which the natural frequency of the cloud is

much smaller than the bubble frequency were found. A shielding

of the cloud core by the outer layer was obtained when the

forcing frequency was higher than the individual bubble

frequency. The neglect of the bubble translation velocity and

of bubble interactions are, however, major assumptions which

require further analysis.

Mdrch (1977, 1980), concerned with ultrasonic cavitation

fields, considered the collapse of a hemispherical "cluster"
44

. . . . . . .
. . . .. '.
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near a wall, which he extended by symmetry to the case of a

spherical cloud. He characterized the cloud only by its radius

and a uniform void fraction, a, constant in time, and developed

the following model. A pressure rise in the liquid leads to the

formation of a shock wave on the "cloud boundary." The shock

moves toward the cloud center leaving no bubbles behind it and

thus constitutes the cloud boundary at each time. The collapse

time of a spherical cloud was found to be a times the Rayleigh

". collapse time of a spherical bubble of the same initial radius.

Although a very interesting approach, especially for the

calculation of the collapse time, this model (like Rayleigh's

model for spherical bubble collapse) is incapable of adequately

calculating the pressure field. At the end of the collapse the

cloud radius is zero, and the velocities and pressures are

infinite since the model does not allow the bubbles to contain

• ., noncondensibles. The main physical assumption (presence of a

shock wave dividing the space in two regions, one containing

bubbles which do not sense the pressure variations until a later

time stage, and another one where all bubbles have collapsed) is

valid only for relatively high void fractions. The case of a

spherical single cavity of the same size as the whole cloud is

the perfect extreme example of the domain of validity of this

approach. Hanson and Mjrch (1980) and M5rch (1982) extended the

same model to a cylindrical cloud and a layer of bubbles on a

solid plate.

In this report we extend the singular perturbation theory

earlier developed to study the interaction between collapsing

.bubbles (Chahine and Bovis, 1981) to an asymptotic theory for

the collective behavior of a multibubble system. A general

theory including mass and heat transfer is first presented, then

within the constraints of simplifying assumptions, particular

...
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studies are developed. The study of the purely dynamical

behavior of the bubble cloud is the most advanced, and codes for

a system of N equi-sized symmetrically distributed bubbles

(Chahine 1982 a,b,c; Chahine and Shen, 1985) as well as a code

for any given distribution of bubbles were developed and

extensively used. For instance, the symetrical program was

applied to the study of the use of a venturi as a cavitation

susceptibility meter and has been recently improved to include

gravity effects and the corresponding bubble liquid relative

velocity. Heat (Chahine and Liu, 1983, 1984, and 1985) and mass

transfer across the bubble-liquid interface are the subjects of

two separate studies. In both cases we have considered the

simplifying assumptions of a symmetrical bubble configuration

and of a thin boundary layer in which either temperature or gas

concentration varies. Two separate codes were developed, based

on these two studies, and some illustrative examples are

presented here. Liquid compressibility is modeled in an

additional code by use of an artificially input finite sound

speed and time duration for propagation from one bubble to

*. another. Systematic experimental observations of spark

generated bubbles near complex wall geometries simulating a

multibubble system were made in order to validate the theory.

Simultaneously, pressuresgenerated by the simulated cloud were

measured and analyzed (Chahine and Sirian, 1985). Acoustic

transmission through a sheet of bubbles was investigated using

bubbles generated by air injection and emitting and receiving

hydrophones.

-* 4.. * * -+ * . *. -.- -.. .. *.. +-. +. . . . . .....-. **,,.-,.'*-*-v-**-. .***.*,*** - - •.****** - -- ' . +. . . . . . .
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2.0 GENERAL FORMULATION OF THE PROBLEM

As a first step to study the general problem of a bubble

cloud in a flow field and near solid boundaries, let us consider

a cloud of bubbles in an unbounded medium of uniform pressure,

P., concentration of dissolved gas, C., and temperature,

T.. This corresponds to the case where the size of the cloud

is small compared to the flow field characteristic length

scale. P., C,,, and T . are then the local values of the

pressure, the concentration, and the temperature in the flow

field in the absence of the cloud. We further assume the liquid

to be inviscid and incompressible and the flow irrotational.

These assumptions are commonly accepted and are justified in

cavitation and boiling heat transfer studies except in the last

phases of bubble collapse. The neglect of finite sound speed
4'
* .- effects can also be unacceptable in the very early phases of

bubble growth (Baumeister and Hamill, 1969). However, we will

not be concerned with these early times (t<10- s), especially

since numerical experiments have shown that the later history is

influenced very little by the value of the initial time at which

the computation is started. The bubble cloud behavior is sought

when the ambient pressure, P.(t), is time dependent.

In order to determine the flow field in the bubble liquid

medium and to obtain the motion and deformation of any bubble in

the cloud, one must solve the Laplace equation for the velocity

potential, 0

AO = 0 , (2.1)

subjected to kinematic and dynamic conditions on the bubbles'

surfaces.

%* .. -.- 4 4 4 4 4. 4 - 4 %
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The equation of a bubble surface in a coordinate system

moving with velocity Si in the direction ez, is

r = Ri(e,,,t). Vi and ni are respectively the local

curvature of the surface of bubble Bi and its unit normal

vector at the point M(r,e,f). y and TR are respectively the

surface tension of the liquid and its temperature at the bubble

wall. Pg and Pv are the partial pressures of the

noncondensible gas and the vapor inside the bubble. The

boundary conditions can then be written:

VIri( , = [ r + 6!ie ] n1  (2.2)

-- ie + i ,,, 1- P (t) - P (T P (t)Z r=Ri( e, ,t) v g

+ 2 yi(TRIVI( 0, ,t) , (2.3)

where 0 and the operator V are expressed in the moving

coordinate system. Due to the low value of the vapor density,

pv, the pressure of the gas and the vapor inside the bubble

can be assumed to be uniform as long as the spherical symmetry

is preserved.

Due to the relatively very short time of vaporization

compared to bubble dynamics and gas diffusion characteristic

times, the vapor is considered to instantaneously flow in andi
out of the bubble, and Pv is taken equal to the value of the

equilibrium vapor pressure of the liquid at the bubble wall

temperature. When the bubble shape deviates moderately from a

sphere we will assume that both the temperature along the bubble

wall and the value of the vapor pressure vary accordingly.i
Under this assumption, the pressure, Pv, may be uniform inside

the bubble far from the bubble surface but accomodates itself to

,. * * . * . -. , - -

,o. * * , .4~
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the temperature controlled value in the vicinity of the

interface. More details of the way this happens inside the

bubble are not needed here since the flow field of the vapor is

of no relevance as long as the velocities are subsonic. The gas

and the vapor are taken to comprise an ideal gas mixture and

possess the same temperature. The partial pressure of the gas,

Pg, is determined using the ideal gas law as well as an energy

balance of the bubble content. The concentration of dissolved

gas at the bubble surface is related to the partial pressure of

the gas within the bubble by Henry's Law,

P = H C i(R i ) , (2.4)g

where H is Henry's constant.

*The values of the equilibrium vapor pressure Pv(TR) and

of the surface tension y(TR) constitute the coupling between

the dynamic and the heat problems.

Similarily the value of Pg(t) constitutes the coupling

between the dynamic and the mass transfer (gas diffusion)

problem. To determine the temperature at the bubble wall,

TR(8,*,t), one needs to solve the energy equation in the

liquid,

T+ V0 VT = D • AT, (2.5)

where D is the thermal diffusivity of the liquid. Equation

• (2.5) is subjected to a boundary condition on the bubble wall

". stating that the heat locally lost at any point of the interface

is used to vaporize an amount of liquid determined by the local

bubble volume expansion rate. If Pv is the vapor density, L

.•
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the latent heat of the liquid, and K its thermal conductivity,

the heat balance equation over the bubble surface can be written

in spherical coordinates:

dT2
K If dT R (0,O,t) sine dedo =d. dn I r=R (6101 t)

R3  (2.6)

=PvL d R (0,0,t) sine de do]v t3

This equation is satisfied if the following elementary

equilibrium equation applies locally at the bubble surface:

IT p v L  i

n i r=Ri( ,t) R (2.7)

The concentration of gas in the liquid, C(r,6,O,t), is

determined by the diffusion equation

+ VO • VC = Dg • 6C , (2.8)

where Dg is the molar diffusivity of the gas in the liquid.

This equation is subjected at the bubble wall to the condition

that the concentration at the interface is equal to the

saturation concentration at the partial pressure of the gas in

the bubble

C(R ) = (2.9)

Csat is related to Pg by Henry's law, (2.4). The molar rate

*of transport of gas across the interface, Ag, is related to

* * *.,. * .. * * *-- &-**
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the gradient of gas concentration in the liquid at the bubble

wall by the relation
ng Dg C R i

ff R(e,,t) sine de d* (2.10)
an Ir=Ri(8,1,t)

Time integration of (2.10) determines at every instant the total

number of moles of gas, ng, in the bubble. The partial gas

pressure inside the bubble is then related to its volume and to

ng by a perfect gas equation of state. The only remaining

variable needed to apply this perfect gas law is the gas

temperature inside the bubble. The application of the first law

energy balance for the bubble interior relates this temperature

to the boundary work due to volume change, the enthalpy transfer

*, due to transport of gas and vapor across the bubble wall, and

47 change in internal energy of the bubble contents. This is

expressed in detail in Section 6.

Equations (2.1) to (2.10) form, with the bubble energy

equation and the initial and at-infinity conditions (known T.

and P.(t)), a complete set of equations which must be solved

to determine the flow, concentration, and temperature fields.

4M

S.-
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3.0 DYNAMICS PROBLEM: SINGULAR-PERTURBATION THEORY

3.1 Method

The following approach is applicable to a cloud of bubbles

of low void fraction. Provided that the characteristic size of

a bubble in the cloud, rbo, is small compared to the

characteristic distance between bubbles, to, we can assume, in

the absence of an initial relative velocity between the bubble

and the surrounding fluid, that each of the individual bubbles

reacts, in first approximation, to the local pressure variations

spherically as if isolated. To the following order of

approximation, interactions between bubbles induce bubble motion

and deformation and are taken into account. This approach is an

extension of the earlier studies by Chahine and Bovis (1981) and

Bovis and Chahine (1981) on the collapse of a bubble near a

solid wall and a free surface (later presented more generally

for nonspherical bubbles by Chahine, 1982).

Since the problem possesses two different length scales,

to and rbo, we can consider two subproblems: one

concerned with the macroscale and the other one with the

microscale. The "outer problem" is that considered when the

reference length is set to be to. This problem addresses the

macrobehavior of the cloud, and the bubbles appear in it only as

singularities. The "inner problem" is that considered when the

lengths are normalized by rbo and its solution applies to

the vicinity of the considered individual bubble of center

Bi. The presence of the other bubbles, all located at

infinity in the "inner problem", is sensed only by means of the

matching condition with the "outer problem". That is to say,

-'"physically the boundary conditions at infinity for the "inner
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problem" are obtained, at each order of approximation, by the

asymptotic behavior of the outer solution in the vicinity of

Bi. Mathematically, one has to match term by term the inner

expansion of the outer solution with the outer expansion of the

inner solution using the same asymptotic sequence in the two

expansions.

3.2 First Order Approximation

The determination of the flow field and the dynamics of any

of the individual bubbles, Bi , is accessible once the boundary

conditions at infinity in the corresponding "inner region" are

known. Here we impose the restrictive assumption that the void

fraction is low enough so that the information about the

variation of the ambient pressure around the cloud, P.(t), is

transmitted to the microscale in a time scale much shorter than

the bubble collapse time. Therefore, in the absence of a slip

velocity between the considered bubble and the surrounding fluid

and when interactions are neglected, the only boundary condition

at infinity is the imposed pressure variation P.(t).

When a finite value of the sound speed in the cloud medium

must be accounted for, P.(t) can be approximated by Pm(t')

where t' = t -x/c and x represents the minimum thickness of the

cloud shell at the bubble location. To address the problem more

rigourously one must solve the two-phase medium flow equation

using, for example, a method similar to that proposed in Section

7.0. The "inner problem" is therefore spherically symmetric and

its solution is given by the well known Rayleigh-Plesset

equation. With the assumption that the liquid is inviscid and

4ft incompressible, this equation can be written as follows when

" mass and heat transfer are neglected

* ~ ~ % ~ ."~ ~ * ' ' * ,.* *
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ao 0 ° + 3 2 = -P"(t) + P (a-3k - 1) + We
1 (1 - a-') . (3.1)

Sgo e

This equation is slightly modified when Pv and Pg are

dependent on the transfer of heat or mass across the surface.

It is rewritten in those cases in the corresponding sections.

In this equation, where the superscript i is omitted for

convenience, ao(t) is the radius of bubble Bi normalized by

rbo. The times are normalized by the Rayleigh time, TO,

based on rbo and a characteristic value of the pressure

variations, AP. All pressures are normalized by AP. Pgo is

the initial normalized gas pressure in the bubble. Thus,

T r P 1/2 /( A)1/2(32T= r b AP , (3.2)

g090" g =  Pgo0/(AP) ,(3.3)

P=(t) = (P (t) - P0 ) / (AP) . (3.4)

The Weber number is related to the surface tension, y, AP, and

rbo by:

We = rb • (Al') / 2y . (3.5)

The noncondensible gas pressure inside the bubble, Pg, is

assumed to have a polytropic behavior, Pg a0 = constant,

where k is the polytropic coefficient (1 < k < cp/cv).

For a given P.(t), Equation (3.1) can be solved for the

variation of the bubble radius, ao(t). This allows the

subsequent determination of the pressure field around the bubble

of center Bi, by the use of
99

.

. . . .. . . . . . . . . . . . . . . . . . . . . . .
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- 2 go a4  2 /2r, 1 3.6)

Po(B1, r, t) = P0 (t) + r- (2 ao a2 + a 2  a' S
00 0 0 0 00

where r is the distance between B i and a given point M in the

fluid.

3.3 Interactions

When interactions cannot be neglected, but an "inner

region" enclosing the bubble Bi can still be defined, the

boundary conditions at infinity can be much more complex.

First, the macroscale pressure in the cloud at Bi, P(Bi, t),

can be very different from the imposed far field pressure

P.(t). Second, a relative velocity between the bubble and the

surrounding fluid, U(B i , r, t) can exist causing the bubble to

be nonspherical. Both P and U can be determined only by solving

* the equations of motion of the two-phase medium (see Section

7.0). In this section we will limit ourselves to a small

perturbation theory whose interest will be to give the behavior

of the solution when the perturbation grows continuously. In

that case P(Bi, t), which is the driving pressure for the

collapse of the bubble Bi, is only a perturbation of the

imposed far field pressure, P,(t), and U(B i , r, t) is a

perturbation of the spherical velocity due to the bubble volume

variation.

If we assume that the liquid flow is irrotational, we can

define a velocity potential for the macroscale ("outer

problem"), ,(Bi, t), and a velocity potential for the

microscale ("inner problem"), 0i(BiM, t) such as:

A = = 0 (3.7)

.. = .. .. 4. . - . .. :. . * .- *;* * * ... - . . *-*.. ... . . . *..*.-...-. . . .. ,'...., -,. - . . ., , .. ,
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The matching condition between these two potentials expresses

the at-infinity conditions for *i, and replaces the conditions

on P(Bi, t) and U(Bi, r, t). This is written:

* i 2 t
lir i(B'M, t) = 0 + c (B , t) + C2 0 2 (B I t) +

B M + (3.8)

Since bubble interactions vanish when £ goes to zero, in the

absence of relative velocity between the surrounding fluid and

the bubbles in the cloud, $o0 0. 0i1 02, ... are the

contributions of the whole cloud to the boundary condition at

infinity for the inner problem (i). Using the results obtained

with the interaction of two bubbles (Chahine and Bovis, 1981)

and the property of addition of potential flows, this condition

can be written:
4-

-lim 0 (BiM, t) = . ) j + s2 q 1 + E3 q 2 + + 

20

(ri q+ cc .. ) r o='

+ )2 (2 q i C + r.. ~cose ~ j +.] . 39

where the superscript (j) denotes quantities corresponding to

the other bubbles, BJ. Iii is the initial distance between

the bubble centers Bi and B3. OiJ is the angle MBiBj,

and r the distance BiM, where M is a field point in the fluid

(see Figure 3-1). fn(cose) is the Legendre polynomial of

order n and argument cose. q] is the correction of order En

of the strength, q] = ii (aj) 2 , of the source representing

0 0 0
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the first-approximation spherical oscillations of the bubble
BJ.

Expressed in physical terms (velocities, pressures), the

boundary condition (3.9) states that the first order correction,

(c), to the nonperturbed spherical behavior, ao(t), of the

bubble Bi is a spherical modification of the collapse driving

pressure. This would introduce, as for two bubbles, a spherical

correction al(t) of the variations ao(t). At the following

order, (e2), a second correction of the uniform pressure

appears, as well as a uniform velocity field accounting for a

slip velocity between the bubble and the surrounding fluid.

Again, as in the two-bubble case, this induces a spherical

correction, a2 (t), of ao(t), and a nonspherical correction

f2 (t) coseig, where 6ig is a direction to be determined from

*> all the OiJ. Things become more complex at the order of

expansion e3, where in addition to the uniform pressure andi i
velocity corrections, a3 (t) and f 3(t) cosig, a velocity

gradient is to be accounted for, to generate a nonsphericali
correction, g 3 (t) (3 cos 2eig-1)/2.

As a result, the equation of the surface of the bubble Bi

can be written in the form:

iR eJ , t) = aa(t) + c a (t) + C2 [a'(t) + f2 (t) coseiJi +

+ 3 [ai(t) + fi3(t) cose'J + g' 3(t) Y2 (cosOiJ) + ... , (3.10)

where ao(t) is given by the Rayleigh-Plesset Equation (3.1),

while the other corrections are obtained by solving the

following differential equations in which the superscripts (i)

are omitted for convenience:

4"

(..q~ .~. 7.. * .* * . . . . . . .
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a a , + 3 ;+ a2 F (a°' e, Pg o K) 0
00

a 0 a 3 + 3a 0 a 3 + a 3 F 0 e g0 K 03

2

ad+ 3d 2 = Z. 4j)--Io 2 + 3 o 3 _q + , (3.11)

S 2

a d 3 + 3a A 3 + 3F 3 (ao, a ,) d 2 = - 3 ° (ao q+aq+Fq3)
o0 0 J \lj 00

1£ 0

a +3aog- (ao-G/W a 2) g3 = Ej- 5 (a20+2a q j)
0O 4, (- W 0 3) 0 0ILJ 00 0

In these equations Fo , F 1, F 2, F 3 are known functions

depending on the physical constants, We and Pgo, and on

the calculated preceding orders of approximation. The

deformations f2, f 3 of the bubble Bi and the motion of its

center toward BJ, £2, £3, have been replaced by d 2 , d 3 which

indicate the total motion o1 the point Ei (Figure 3.1).

2= -2i; 8 3 = i3- £3 (3.12)

When all the initial radii of the bubbles in the cloud are

identical, these right-hand sides are obtained by multiplying

the two-bubble case right-hand sides by one of the geometrical

constants cl, c 2 , c 3 :

;. . . .
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0 00. ~C2 0 j(o/1ij 20osi (3.13)

C 3 = 1(/ ) 3 . Y2 (cOSij3)

We can now compute the behavior of Bi by solving the obtained

differential equation using a multi-Runge-Kutta procedure. The

behavior of the whole cloud can then be obtained.

Comparison of Equations (3.11) with those obtained in the

case of two-bubbles shows that the N-bubbles in the cloud other

than Bi can be replaced by a unique bubble of strength, qig,

located at Gi, a distance Lig from Bi in the direction

defined by the angle MBiG i = eiJ. As this equivalent

bubble should induce the same pressure and velocities as defined

by (3.9), its characteristics are obtained by the equations:

N
" en/.ig I qJ/* / , (3.14)

j=
e1g9n/ ( t£  ) 2 + i 1 £3e q, (3.15)

where eig and eij are unit vectors of the directions

BiGi and BiBj respectively (Figure 3.1), and n is the

order of approximation. These equations define the angle eig,

and the direction in which dn(t) is measured (Equations (3.10)

and (3.12)).

4,
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3.4 Pressure Field

Once the "inner problems" are solved, the nondimensional

outer potential, 0, can be written:

q, q q3 h 2i
= + + + C q - oE 0 ),O(lti 0coseig)+ 3Jl~

r (3.16)

where bars denote nondimensional "outer" quantities, and tildes

nondimensional "inner" quantities.

2 -i i ,3 -
*=. 0T/r b 0 qn =qn T0/r b 0 r r (3.17)

To is the characteristic time of the bubble collapse and ri

- is the distance between a field point M and Bi. The Bernoulli

equation enables one to calculate the pressure, P, using

Equation (3.16). In the nondimensional form we have:

P(Mt) = (M,t) -M _CIt _L F4 2
AP )= - - - 1 s V 2 . (3.18)

AP is the amplitude of the pressure driving the collapse and t =

t/TO , where

T o  rb (3.19)
0

As an illustration, in a uniform field of bubbles any bubble has

the same geometrical position relative to the others, and thus

the same behavior. The general expression (3.8) simplifies

considerably to become:

.Si
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2 3

p(M,t) (e qo + e ql + C 2 + 3 ) q2 -+ +
r

2 's 424-C h Vi E2 + 0( (3.20)
2. Z.2 ~1- r Ir

In this expression, the two first summations are geometrical

constants similiar to C1 , c2 (3.4). The last one is more

complex, but is more easily calculated when written as follows:

( ) ei , (3.21)
-i2-

where eim is the unit vector of the direction B'M. If one

knows the direction, MVo, of the velocity at M, at the first

A- order of approximation, and if aiv is the angle BiMVO

(Figure 3.1), then:

(L (oei ] (3. 22)

In the general case when the bubbles do not all behave

identically an expression similar to (3.20) applies in which the

summation sign concerns not only the geometry but also the

source and dipole intensities, qi and hi.

AM

. . . . . . . . - - * . - - . .i.
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4.0 DYNAMICS PROBLEM: NUMERICAL STUDY AND RESULTS

4.1 Numerical Codes Developed

Several numerical codes have been developed during this

study. For treating only dynamics (mass and heat transfer

neglected), two main numerical programs can be distinguished:

CLDSYM and MULTIBBL. Other programs were also implemented that

are improvements or modifications of these two codes. The two

main programs are distinguished by the cloud geometry: either

symmetrical or arbitrarily described.

When all the bubbles have the same initial size, and when

their initial geometrical configuration is symmetrical, they all

behave identically by reason of symmetry. At a given order, all

the functions qJ, which appear in Equation (3.9) are the
n

same. Therefore, the summation applies only to geometrical

constants which are known at the beginning of the computation

and depend only on the bubbles' distribution. The three

constants, c1, c 2 , and c 3, defined in (3.13) are then needed to

compute the seven components of R(8,t) up to the order e

included. They are used as input to the numerical program

dubbed CLDSYM, which uses a multi-Runge-Kutta procedure to

compute the bubble motion as well as the generated flow and

pressure field. Figure 4.1 shows a simplified flow chart of the

numerical procedure.

When the bubbles have different initial radii, and when

their distribution in the liquid does not correspond to any

particular symmetrical configuration, the simplification

described above does not apply. A second numerical program

dubbed MULTIBBL has been developed for this more general case.
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The flow chart in Figure 4.2 describes this program. In this

flow chart Qm represents the right-hand side of Equation (2),

while qm represents the strength of the flow sources obtained

at the order of approximation m. This program allows the

computation of more realistic cases where the bubble sizes and

distribution are input and do not correspond to any idealized

perfect configuration as with CLDSYM. More realistic pressures

in the far field as well as on nearby walls are then obtained

since the different bubble collapses are not in phase as for the

case of a symmetrical configuration of equal sized bubbles.

A third program dubbed CLDMAIN2 was implemented for the

cases where the computation spans over several thousand times

the bubble characteristic time. This program adapts a variable

time step scheme to the symmetrical bubble cloud case. An

England Runge-Kutta procedure is used. This method computes the

numerical errors introduced at each time step and determines the

time increment needed to both minimize computation time and to

not exceed an imposed acceptable margin of error. A major

advantage of this code is its capacity to describe very rapid

bubble radius variations such as occurs during strong explosive

growth or collapse. This code was used for the analysis of

bubble dynamics in a venturi cavitation susceptibility meter and

about a hydrofoil.

A fourth program dubbed MULTICOMP was derived from MULTIBBL

and employs a finite sound speed input. The information

propagation from one bubble to another is retarded by an amount

equal to the ratio between the interdistance and this finite

sound speed. This program was used to study the influence of

__ time lags creating phase differences between bubble oscilla-

tions.

[ . . <. *' v*. *,.x-.: * .."---.. ., . - '...-.-. .....- -. *,.'-'.-..'.-..-...--..-.-,.q
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These four programs were used to analyze several variables.

The objectives of exercising these programs were to debug th)em,

demonstrate their performance, and obtain trends of behaviuc.

Below we illustrate some of the results obtained in order to

gain some understanding of the behavior of a bubble cloud and

how it differs from the behavior of isolated bubbles. The

influence of the main parameters will be stressed.

4.2 Preliminary Discussion on Bubble Interaction

It is helpful, in order to understand the various numerical

results, to consider the pressure field generated by the

collapse of an individual bubble. Let us consider the pressure

history at a point M at a distance to from an isolated bubble

when the ambient pressure is submitted to a sudden pressure

to. jump. As we can see from Figure 4.3, the resulting perturbation

pressure, i.e., the difference between the pressure at to and

the far field pressure, is negative for t<0.75 for the

considered case. Later, for t>0.75, the pressure at £

increases rapidly to 2.3 times the imposed pressure at the end

of the bubble collapse. This observation is a key to the

understanding of multibubble behavior in a sudden pressure

increase. Indeed, if a fictitious bubble which does not

influence the process is centered in B1 , it will first sense a

less important and more gradual increase in the surrounding

pressure at the beginning of the collapse. In the case

considered (Figure 4.3), instead of a nondimensional surge of

the pressure from 0 to 1, P jumps only to 0.84 then rises

slowly, not attaining 1 until t=0.75. This induces a relative

decrease in the intensity of the first phase of the bubble

collapse and affects the bubble radius variation with time
.A.
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exactly as seen later in Figure 4-6. Later, the sharp rise in

the pressure field makes the subsequent end of the collapse much

more violent.

Figure 4-4 illustrates the case where the ambient pressure

field is modified by the collapse of more than one bubble. This

figure is intended to explain both cumulative effects due to a

multibubble system and modification due to different bubble

size, bubble interdistance, and delay times (compressibility)

effects. The figure illustrates these effects by considering

two bubbles. Had the two bubbles, A and B, been of the same

size and at equal distance from M, the two corresponding

pressure time profiles would have superimposed.

In this case, both effects described above (initial relative

pressure reduction and subsequent dramatic pressure increase)

will be doubled (without any additional consideration of the

interaction such as modification of the pressure histories).

The interaction between bubbles A and B would amplify the

phenomena described above. Now, if bubbles A and B are either

at a different distance from M or are not of equal size, the

pressure profiles will not overlap. If they are of equal size

but at different distances from M, the pressure peaks would

occur simultaneously unless compressibility effects are

included. A delay time corresponding to the difference in the

travel paths will then occur between the two peaks.

From the above discussion it is evident that the behavior

of a fictitious bubble located at M will strongly depend on both

the sizes of the other interacting bubbles and their space

distribution. Compressibility would have the same effect as a

nonsymmetric bubble distribution in addition to its influence on

. .. . . . . . . . . . . . . .-... 7 A2 ... .
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the collapse intensity and amplitude of the generated pressures.

It would therefore tend to reduce the collective effect expected

from the incompressible symmetrical case.

4.3 Simple Case of a Step Function for the Ambient Pressure

Field

We consider a distribution of bubbles centered on the

surface of a sphere, and we admit that each of the bubbles has

the same position relative to the others. In this case the

numerical computation time is reduced. As examples, we will

consider the bubble behavior and the pressures generated for two

types of ambient pressure time functions. In both cases the

bubbles are at equilibrium with the ambient pressure, PO, at

t = 0. Then, in case A, the ambient pressure jumps to a new

constant value, Po + AP, at the following instant. In the

second case B, the imposed pressure drops first to a constant

value, Po - AP, keeps this value until t = AT, and then comes

up again to the initial value Po (Figure 4.5). As an

illustration we will consider the pressures generated a) in the

"" center of the sphere; b) at the location of the bubble Bi if

it were removed and c) at a point outside the cloud at a

distance rbo from Bi . We will compare the results with

the isolated bubble case.

Knowing the initial bubble configuration and thus cl, c 2,

and c 3 the relation between the cloud radius, R, and to is:

R = 1/2 to c1/c 2 - In the cloud center, position (a), the

three summations in (3.20) have, respectively, the values N/R,

N/R, and 0. In position (b) these values are cl, c 2 , and c 3,

and at a distance rbo from Bi the values are approximated

by cl + c-1 1 C -2 and (c 2 + - 2)2.

, * 2- - **E , 2*. * .• * *.
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Various spherically symmetrical cloud configurations were

investigated numerically. In Figure 4.6 the results of five

different computations for a sudden jump in the imposed ambient

pressure are compared, expansions being conducted up to . The

ratio, e = rbo/to, was kept constant and at a value of

0.05. The cases of two, three, and twelve bubbles are presented

together with that of an isolated bubble. The fifth case is an

intermediate situation between the configurations of three and

twelve bubbles. This case is arbitrary and is only determined

by the choice of cl, c2 , and c 3. In each case the variation

with time of the distance, BiEi, between the extreme point

on a bubble Ei, and its initial center, Bi, is chosen to

represent the bubble dynamics. Taking the bubble collapse in an

unbounded fluid as reference, it is easy to see from Figure 4.6

how increasing the number of bubbles changes the dynamics of the

*one studied. We can observe first that, during the early slow

phase of the implosion process, the collapse is significantly

delayed. At any given nondimensionsal time the distance between

B1 and El (and simultaneously the bubble characteristic

size) is greater when the number, N, of interacting bubbles

increases. Then, in the final phase of the implosion the

tendency is reversed: the phenomenon speeds up and, in a

shorter total implosion time, the final velocities of the motion

are higher when N increases. The effect is explained by

accounting for the modification of the driving pressure of the

collapse of any bubble due to the dynamics of the other bubbles
as described in Section 4.2.

Figure 4.7 shows the behavior of the bubbles in the case of

a pressure variation of type B (Figure 4.5). The cases of an

isolated bubble and two, three, five, and twelve bubbles are

* ." investigated again, and the variations of BiEi with time are
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represented. The ratio c and the duration AT of the pressure

drop are kept constant and at the particular values of 0.1 and

0.8 respectively. Here, as in the preceding figure, noticeable

changes can be observed when the degree of interaction

increases. First, the growth is slowed down and retarded in

comparison with the isolated case. Then, the collapse is

accelerated and as a result the total implosion time decreases

with an increase in the number of bubbles, N. While for N = 2,

the total implosion time is greater than that of an isolated

bubble, for N = 12 the time is significantly smaller. As we

will see below this acceleration of the collapse makes the

generated pressures at the end of the collapse higher than for

the single bubble case.

Figure 4.8 compares for the same cloud configuration

(twelve bubble, e = 0.1) the bubble behavior for three values of

the duration, AT, of the pressure drop. The greater AT is, the

longer the bubble is allowed to grow. As a result the maximum

size it attains is bigger, but its lifetime is smaller. Thus,

the resulting collapse is much stronger.

As explained in Section 4.2, using Figure 4.3, the

observations made above for a sudden pressure jump can be

explained by considering how the presence of a reacting bubble

modifies the local pressure field from that imposed at

infinity. The same type of reasoning can be applied to the case

of a finite-time pressure drop. As we can see in Figure 4.9, in

the first time period, AT, the pressure sensed at a distance

to from the bubble center, Bo , is higher than the imposed

one. As a result, a second fictitious bubble placed at this

distance from Bo would have a slower growth during this first

period, AT. This phenomena is however reversed in the second

- . ,' . . °*p - *. ** *. **-% * :.* . - . .- ...- *. ....
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phase as an expansion wave is generated by the growing bubble

Bo . In the third and last phase a compression wave increases

the driving pressure for collapse making this one more intense.

In Figure 4.10, we see an example of the pressures

generated during the bubble history at two locations: a) the

center of the cloud and b) the center of one bubble, Bi, in

its absense. These pressures are compared with those generated

during the growth and collapse of an isolated bubble at a

distance equal to the spherical cloud radius. We have selected

the case of a finite time, AT = 0.6, pressure drop. The same

observations made while interpreting Figure 4.9, can be repeated

here but with much more accentuated values of the pressure

rises. After the imposed ambient pressure increases, the

nondimensional pressures generated by the twelve bubble cloud

a are first positive, then a pressure expansion period is observed

for 1.9 < t < 3.4, followed by a high pressure surge at the end

of the collapse. The corresponding bubble radius variation with

time is that represented in Figure 4.8 (12 bubbles AT = 0.6).

Figure 4.11 is a collection of the results obtained from

several cases studied. The maximum nondimensional pressures

generated during the cloud collapse are represented versus the

number of bubbles in the cloud. The cumulative effect is

obvious since the values obtained vary over a range of several

orders of magnitude. The numbers presented should not be

considered accurate since other scales for times, pressure, and

lengths are needed at the end of the collapse. Instead, they

are presented here to give an indication of how tremendous

pressures can be generated with an increasing number of

interacting bubbles, and to give an idea of the trend of this

increase. In this figure, the maximum pressures are presented
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at the cloud center, C, at Bi when it is removed and at a

distance rbo from the center of one of the bubbles in the

cloud.

These results show the important role played by the gas

content of the bubbles which was neglected in M1rch's contribu-

tions. Increasing Pg0 from 0.1 to 0.2 has dramatically

reduced the generated pressures. This is mainly due to the

cushioning effect of the gas which significantly reduces the

velocities attained at the end of the implosion.

Another very interesting observation from Figure 4.11 is

that the imposed pressure variation B (pressure drop of finite

duration followed by a recompression) moves the maximum

pressures generated at the end of the collapse toward much lower

values than for pressure jump case A. This effect is not due to

the apparent higher gas content in this case. Indeed, the value

of Pg to consider for comparison purposes should be for all

cases that at the start of the collapse -- when the bubble has

its maximum volume. For example, for the case of twelve bubbles

and a pressure drop (AT = 0.8, Pg0 = 0.53) the value of

Rmax/Ro is 1.63 (Figure 4.7). Then, accounting for the gas

expansion, the gas pressure at the beginning of the collapse is

Pg =Pgo (1.63)-4-2 - 0.07. The effective gas content

is thus smaller, and since the value of £ is bigger (0.2 instead

of 0.1), the observed pressure drop is intrinsically related to

the imposed pressure function. The pressure attenuation

observed is explained by the initial influence of the cumulative

effect on the bubble behavior in the cloud which is not the same

at the start of the growth or at the collapse (Figures 4.3 and

*4.9). In the classical pressure jump case the initial

cumulative effect is to prevent the bubble size

4
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from being small when the collapse pressure surge starts.

Conversely, the initial cumulative effect in the second type of

imposed ambient pressure (case B) is to reduce the size of the

bubble when the collapse pressure surge occurs. As a result the

potential energy for collapse in case B is relatively smaller.

Finally, Figure 4.12 shows the influence of the duration of

the pressure drop on the maximum pressures generated. By

applying the same reasoning as above to the initial gas

pressures one can conclude that the increase of the maximum

pressure with AT is mainly due to a decrease in the effective

initial gas content at the start of the collapse since the

maximum bubble radius increases with AT.

The above results show that even for very low void

a* .fractions, collective bubble collapse can generate pressures

orders of magnitude higher than those produced by single bubble

collapse. This would tend to explain the observed high erosion

intensities and the bending of trailing edges. The cumulative

effect comes from the fact that the interaction increases the

driving pressure of collapse of each individual bubble. This

augments the violence of its implosion and thus the interaction

with the other bubbles. Thus, each bubble ends its collapse not

under the effect of a pressure of the same order as the ambient,

but orders of magnitude higher. This cumulative effect would

not exist if the void fraction is high enough for the cloud to

behave as a single bubble. This leads us to believe that there

exists a critical value for the void fraction for maximum

erosion.

.C
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4.4 Comparison to Spark Generated Simulated Multibubble

*Configurations

We describe in Section 8.0 some experimental tests

conducted to simulate symmetrical bubble cloud configurations.

A spark-generated bubble method is used in combination with

high-speed photography and sound measurements. Bubbles were

generated in the vicinity of complex wall configurations such

that the generated bubble and its images in the walls comprise a

symmetrical multibubble set. The ratio e of bubble character-

istic size to interbubble distance was varied by changing the

distance between the electrodes and the walls. This parameter

was one of the main measurable quantities in the experiments.

The other parameters were bubble size history and pressure

histories at selected points in the experimental tank. However,

one key parameter which is not readily measurable is the gas

pressure inside the generated bubble. Since knowledge of

Pg0 is essential for any quantitative comparison with

experiment, we have selected to use it as a free parameter and

see if it is possible to match the experimental results by

selecting a particular value of Pgo

Figure 4.13 shows an example of the influence of Pg0

on the collapse of 4 bubbles (or a bubble in a two-dimensional

corner). As mentioned earlier, the collapse is significantly

softened when the initial gas pressure (or the initial amount of

gas) in the bubble is increased (behavior similar to the

isolated bubble case). The bubble oscillates smoothly for

Pg0 > 0.15, while a significant violent implosion is

observed for Pg0 
< 0.10. This behavior is further enhanced

for larger values of c. This can be seen in Figure 4.14 for the

. same case of a four-bubble cloud (Pgo 0.1), and in more

I-
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detail in Figures 4.15 and 4.16 for a twelve bubble

configuration. These three figures show the behavior of a

bubble in the cloud when either the bubble sizes are increased

with the same spacing or the spacing is decreased for the same

bubble size. First, the classical lenghtening effect of the

bubble period is observed (Figure 4.15, c = 0.01 and Figure

4.16, e = 0.02). For larger values of e, however, the same

effect as an increase in the number of bubbles (Figure 4.6) is

observed -- namely an initial slowing down of the collapse

process followed by a very significant enhancement. As a

result, the collapse time is shortened. For larger values of c,

c > 0.07b in Figure 4.15 and c > 0.14 in Figure 4.16, the

asymptotic method obviously fails. A reversal of the collapse

process is observed and cannot be easily explained. There might

be, however, some correspondance between these trends and the

experiments which indicate the presence of an optimum value of E

for maximum collapse intensity (see Section 8.0).

Figures 4.17 to 4.19 attempt to quantitatively compare the

theoretical model and the spark-generated bubble experiments.

As mentioned earlier, the difficulty with the experiment is the

inability to control, or even to simply measure, the initial gas

pressure in the bubble. This raises some questions about the

accuracy of the results obtained. With this in mind we ran

several sets of numerical cases in which Pgo and the number

of bubbles was maintained constant and e varied. In each case,

the value of the normalized time at which the bubble radius

achieved its first minimum was noted, and the values compared

with the experimental observations. Figures 4.17 to 4.19 show

plots of these values of the bubble "first period of oscilla-

tion" as function of c. Even if the comparison does not seem to

be very encouraging at first, a closer look enables one to make

L.!
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several interesting observations. Oscillations in the

theoretical curves indicating strong nonlinearities appear as

for the experimental curves. This is particularily visible in

Figure 4.17 for the case of a four-bubble cloud. These

oscillations are particularily important when the initial

normalized gas pressure Pgo is high. The combination of the

experimental points and the theoretical curves seem to indicate

that for the four-bubble case Pgo was in the range 0.1 to

0.2. Examination of Figures 4.18 and 4.19 indicate lower values

for the two other series of experiments -- simulated

eight-bubble case (bubble in a three-dimensional corner) or

twelve-bubble case (bubble in a pyramidal corner). A value

lower than 0.1 seems to apply for Figure 4.19, and Pgo

0.05 seems to apply to Figure 4.18. These differences with the

same spark generation system in the same work conditions can be

related to different degrees of water degasing, or to the

rearrangement of the electrodes between one set of experiments

and another. Scatter and/or oscillations of the results seem to

be reduced with Pgo However, the general trend of the

existence of minimum values of bubble oscillation period or

higher collapse pressure (see Section 8.0) seems to be confirmed

by both theory and experiment. Shima, et al. (1983) have made

similar observations for another range of values of e, E > 1.

4.5 Study of Multibubble Dynamics in a Venturi Cavitation

Susceptibility Meter

4.5.1 Introduction

The development of techniques to measure cavitation nuclei

distribution in laboratories and oceans has been intensified in

recent years. Review studies on the subject have been presented

-.
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recently by Shen and Peterson (1983) and Billet (1984). One of

the devices being developed and to which the multibubble study

will be applied here is the Cavitation Susceptiblity Meter

(CSM). This is a venturi system with a specially tailored

geometry for cavitation nuclei measurements (Oldenziel, 1982 and

Lecoffre and Bonnin, 1979). Microbubbles entering the venturi

grow at the throat and are detected either optically or

acoustically. In the first case they have to exceed a certain

size to be perceived, while in the second case the noise

generated during the implosion of these bubbles has to exceed a

certain acoustical level. Therefore in this method a "critical

pressure", Pcr, at the venturi throat, below which cavitation

events are detected by the CSM, is measured.

The classical cavitation number, a, (Thomas number) has

been widely used in scaling cavitation inception between model

and prototype:

p -p00 vy =2 1 (4.1)

In this expression P. and V. are the characteristic pressure

and velocity, p the liquid density, and Pv the liquid vapor

pressure. This definition assumes that cavitation inception

occurs when the liquid pressure drops below vapor pressure.

However, it has been recognized for a long time, using static

equilibrium theory, that there exists for each initial nuclei

size a critical pressure, usually much lower than Pv, below

which unstable bubble growth occurs. Since in a liquid, nuclei

are distributed in a relatively wide range of sizes, the

Af definition of a "liquid critical pressure" can only be done by

introducing an inception criterion such as a threshold amplitude

!'
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and rate of the detected cavitation "events." It has been

demonstrated experimentally that if pv is replaced by such a

"critical pressure" of the liquid, the correlation of cavitation

inception observed experimentally between different model sizes

is greatly improved (Keller, 1984). It is implied that by doing

so one accounts for differences in the nuclei population without

having to determine the actual bubble size distribution. With

the CSM a "critical pressure" at the venturi throat is

determined by varying the throat velocity and counting the

occurrence of cavitation bursting optically or acoustically.

If, in addition, there exists a thorough theoretical knowledge

of the relationship between fluid flow characteristics, nuclei

initial size and needed critical pressures to initiate

cavitation events, the CSM might be useful as a bubble nuclei

size detector. Thi section attempts to improve on this

'4. knowledge by considering bubble dynamics and interactions

between bubbles and with the main flow into the venturi. This

investigation is to be added to earlier studies by d'Agostino

and Acosta (1983) and Shen and Gowing (1984).

Cavitation susceptibility meters are designed in such a way

that when in operation there is only one bubble in the venturi

throat at a given time (See, for instance, the paper of

d'Agostino and Acosta, 1983). However, in practice multibubbles

appear occasionally in the venturi and invalidate the method of

detection. In this section multibubble interaction is included

in the study of cavitation inception in the CSM venturi system,

and its influence on the inception criterion is investigated.

Due to the restriction of the pipe wall, the velocity field

and the pressure field in a venturi system are altered when the

microbubbles begin to grow. This subject has been studied by
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d'Agostino and Acosta (1983) for a single spherical bubble

entering from a reservoir into a semi-infinite pipe of constant

cross-section. In the present paper we consider the case where

multiple bubbles are present in a venturi and we derive an

expression for the pressure correction due to the wall

restriction. This correction is included as an option in the

symmetrical multibubble code, CLDMAIN1, when the bubbles are

grouped together as a cloud. The growth and collapse of a

single bubble and multibubbles in a venturi system with

contraction, throat, and diffuser zones of various diameters are

computed considering the venturi wall restriction.

4.5.2 Single Bubble Static Equilibrium and Dynamics

We have earlier defined the critical pressure of a liquid

* as the pressure (or tension) below which significant bubble

growth or activity is detectable. In fact, as can be deduced

from the dynamic stability analysis of the static equilibrium of

isolated spherical bubbles, there is a different critical

pressure for each initial bubble size considered. The balance

of pressure across the bubble interface can be written:

P = P + P - 2 y/R , (4.2)

where P is the ambient pressure, Pv and y are the liquid vapor

pressure and surface tension and R is the equilibrium bubble

radius. Pg is the pressure of noncondensible gas inside the

bubble. If we neglect gas diffusion (see Section 6) we can

assume that the gas behaves ideally with the law of compression:

P R3K = Constant (4.3)
g

.°. . ..°
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the polytropic constant K lies between 1 (isothermal case) and

Cp/Cv (adiabatic case). The relationship between the

ambient pressure, P, and the equilibrium radius, R, is therefore

univocally defined for a given reference value Ro, or

Pgo,corresponding to a reference pressure Po:

P = P + Pgo 2 y (4.4)v + Pg (4R

with

Pg o - + L. (4.5)
00

Figure 4.20 shows an example of the static equilibrium curves

P(R) for the isothermal case, K = 1.

The unstable portions of these curves correspond to

dP/dR > 0, while the critical pressure, Pcr and radius, Rcr,

are given by dP/dR = 0. These critical values are related to

each other and to the initial conditions by the relations:

3K P R 3 K

R3K-I g0  0
cr 2y , (4.6)

3K-I 2yP - P - -. (4.7)
v cr 3K Rcr

Therefore a bubble of initial size Ro at the ambient pressure

Po would explosively grow (no static equilibrim) if the

pressure around it drops below Pcr" One should note that

Pcr is always lower than Pv and tends toward it when R. is

very large.

".. ,- ,-..... . ... '.-.*.-. ... .. ,
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A question of great interest to the venturi CSM as an

eventual bubble size detector is, for a given reference

pressure Po (depth of submergence) and throat velocity Vt,

what is the initial radius of the bubble or nucleus which would

reach the critical size at the throat pressure, Pth? All

bubbles of larger radius would then be unstable, while smaller

bubbles would remain undetectable. In terms of the maximum

throat velocity (accounting for pressure loss by viscous

effects) Pth can be written

Pth Po +  Cpmin P V , (4.8)

and the relation between Ro and the critical throat velocity,

Vtc, is

= +1 V2  p
4' Pth 0v o 2 PCpmin tc v

2y(1-3K) 3KR(P -P 3k- 1

3KR° o(4.9)

For a given critical throat velocity, Vtc, any bubble larger

than Ro, would grow explosively. Conversely for a given bubble

size any Vt larger than the critical velocity would render the

pressure at the throat below the bubble critical pressure.

Figure 4.21 shows the relationship between RO and Vt for

various ambient pressures and for K = 1.4. Note the sensitivity

to the critical velocity for relatively "large" radii (e.g.,

-R o >1 um). Very small changes in Vt induce large changes

in Ro . This underlines the major practical problem in the use

of the CSM as a bubble size detector. Much less sensitivity

would be obtained if Pth were the variable controlled in the

experiments (see Figure 4.20).

% . %%% " ... ..... -. .......... %.....
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The original concept for the use of the venturi cavitation

susceptibility meter was based on the above static equilibrium

approach. Actually, the above reasoning can be invalidated when

bubble dynamics is taken into account in the two following

configurations (Darrozes and Chahine, 1983):

a. The pressure in the throat drops below the critical

pressure but the considered bubble does not remain long enough

in this region to grow explosively.

b. The imposed pressure is always above the critical

pressure but pressure variations are great enough for an intense

collapse and therefore a strong acoustical signal to be

generated.

In order to account for the above phenomena, the complete

bubble dynamical equation must be solved for the particular

venturi CSM pressure field. In the case of a single bubble of

negligible size compared to the throat diameter, the classical

Rayleigh-Plesset equation adequately describes the bubble radius

variations. The external pressure in this equation, P(t), is

the pressure "felt" by the bubble during its traverse of the

venturi. It is the pressure in the liquid in the absence of the

bubble at the location of its center. The bubble position x(t)

is obtained from the bubble translation velocity Vb(t)

x(t) = J0  Vb(t) dt . (4.10)

If we neglect relative velocity between the bubble and the

liquid, Vb is the fluid velocity which varies along the

venturi. Actually the slip velocity could be important and

should be included in future developments of this study (see

Section 4.5.5).
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When the bubble growth rate is large enough to signifi-

cantly modify the liquid flow rate into the venturi, the

pressure field in the venturi has to be modified to account for

the resulting pressure variations. Similarly, the Rayleigh

Plesset equation alone is not adequate to describe the case

where interaction between several bubbles crossing simultane-

ously the venturi is considered.

4.5.3 Multibubble Interaction with Venturi Mean Flow

Under the basic assumption of small bubble radius size

relative to bubble spacing and to flow characteristic length

(for instance throat radius), in first approximation each bubble

behaves independently and the basic flow is undisturbed by the

presence of the cloud. With this approach and at this order of

a' approximation, the pressure field to which each bubble in the

cloud reacts is that existing at the location of its center in

its absence. At higher orders bubbles interact with each other,

and due to the restricted nature of the flow in the venturi they

modify the main flow into the venturi. The influence of the

cloud dynamics on the basic flow becomes important when the

cloud volume rate attains a significant fraction of the mean

volume flow rate. We will try here to account for this

correction since its implementation is rather simple.

Let '//(t) be the total volume of bubblcs present at time t

in the venturi (these bubbles could be either a certain number

of isolated separated bubbles or a bubble cloud). The

difference between the upstream and downstream flow rates into

the venturi is equal to r. With a unidimensional approach to
the venturi flow it is reasonable to write that the mean flow

entering the venturi is then modulated as follows:

:-:- . -.: :,, , %, :,' :. ..-- -' * .-4 'q .. ' . .- 4 *. '* . .. *'.-'. .- *,.:.. ..: . .- .' _ -.. .. . . .
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V0 = U - ' Y/A °  , (4.11)

where Ao is the area of the venturi at its entrance and U.

the undisturbed velocity at this location, a is the fraction

of the displaced liquid volume rate due to the bubble which

propagates upstream during the bubble growth. a needs to be

determined with an additional equation not available presently.

We will assume from here on that a = 0.5. If all bubbles were

concentrated at x = X then, between the venturi entrance (x = 0)

and X, the velocity in the venturi can be related to the

undisturbed velocity U(x) by an relation equivalent to (4.11),

valid in the small perturbation approach:

V(x) = U(x) - x < X . (4.12)

4' If in addition the flow is assumed to be potential, then the

velocity potential can be written:

(x) = * (x) - L ds (4.13)0 2A(s)

Bernoulli's theorem between x and a field point upstream where

the pressure is Pa and the fluid is at rest can be written:

Pa a P(x) + W(x) + 1 aW(x)(.
P Pat 2 a x

We can now define a perturbation pressure p'(x) such that

P(x) = s (x) + p'(x) , (4.15)J st"

where Pst is the steady state pressure in absence of bubbles.

Combining (4.13), (4.14), and (4.15) one obtains the following

expression for p'(x) where a higher order term in (Y//A)2 has

been neglected.

[del
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p'(x) fx da + U(x) (4.16)
p -O 2A(a) 2A(x) (

In a matched asymptotic approach the imposed pressure field

*. around any bubble or cloud at location X is given by (4.15), and

* for the corresponding first order bubble the imposed pressure

term combines the undisturbed pressure in the venturi at the

bubble location and the correction p'(x) given by (4.16).

If the bubble cloud is composed of N bubbles of equal size

then

4 r NR 3/3 , (4.17)

and the Rayleigh Plesset equation becomes:

R- 3K

[ IRR + 3 ] + 4 g g (2) + PV - +

2'R ___R___ R

-P(X(t)) + 2irpN RU(X) + -x 2R 2+RR d" (4.18)

D'Agostino and Acosta (1983) derived a similar equation for a

semi-infinite pipe of constant cross section Ao . Equation

(4.18) combined with the system of Equations (3.11) can be

solved numerically using a multi-Runge-Kutta procedure, to

investigate interaction of bubbles with the venturi main flow

and with each other.

4.5.4 Numerical Results and Interpretation

AA series of computer runs were made using the above

- described method. The objective of this investigation was to

S.. *
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compare the behavior of an isolated spherical bubble with that

of a bubble in a cloud. Both sets of cases were considered for

the NSRDC venturi shown in Figure 4.22 with and without pressure

correction due to the modification of the mean flow by the

presence of the bubbles. The results obtained are illustrated

in the following examples and figures. Due to viscous effects a

Cpmin of -1.22 was measured at NSRDC for this venturi (see

Shen, et al., 1984) and was accounted for in the following

computations.

The bubble wall motion during its traverse through the

venturi is illustrated in Figure 4.23 for a bubble of 10 pm

initial radius. In most cases computations were started at the

throat entrance (X 0.825 cm) in order to reduce computation

time. This is acceptable since comparative tests have shown

that no significant error is then introduced. A typical bubble

radius history can be described as follows. Near the throat

entrance the bubble radius oscillates for a certain number of

cycles which decreases with increasing flow velocity. Then, if

this velocity is large enough a continual growth is observed

until the bubble reaches the venturi expansion area. This is

followed by a more or less violent bubble implosion which may be

detected acoustically. Since this behavior is primarily

controlled by a balance between gas pressure inside the

bubble and the imposed ambient pressure, a key factor is the

polytropic constant, K. The isothermal case (K = 1) is the

most easily manageable mathematically and has therefore been

studied by many investigators. Its use is justified when the

bubble wall motion is slow enough so that the gas temperature

remains constant. However; the value of K can vary widely

? during the bubble history (see Plesset and Prosperetti, 1977 and

Section 6). Figure 4.23 shows the importance of K by comparing
*1*
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the results for the two classical values of K: 1 and 1.4.

Larger maximum radii are obtained with K = 1. Two velocities at

the throat are also considered in Figure 4.23. Here we see that

for a slight variation of Vt the maximum bubble radius can be

doubled. Therefore, if the criterion of cavitation inception is

thatbubble radius exceeds, let us say, 150 pm then Vt = 25.0

m/s would be below inception and V t = 25.2 m/s would be

slightly above it. The static equilibrium curves (Figure 4.21)

derived from Equation (4.9) give, however, a lower value for the

critical throat velocity, Vt = 24.95 m/s. This relatively

small difference of about 0.8 percent is significant for the

precision needed in the measurement of Vt in order to use the

CSM venturi effectively. Note that if the throat velocity at

inception was 24.95 m/s the critical pressure would be -500

pascals while one obtains -8000 pascals with 25.2 m/s. The

* difference in Pcr is therefore very significant between the

static and dynamic approaches.

Figures 4.24 and 4.25 show the maximum size attained by a

bubble crossing the venturi CSM as a function of the velocity at

the throat. Bubbles of different initial sizes at the same

initial reference pressure are considered. Single bubble

results are compared with symmetrical multibubble configura-

tions. Several very interesting observations can be made from

studying these figures and the corresponding numerical results.

Bubble size scaling effects are observed as follows. At the

lower velocities bubbles exhibit an oscillatory behavior all the

way through the venturi (e.g., Vt < 25.1 m/s for Ro = 5um;

Vt < 24.8 m/s for Ro= 20um). Their radius oscillates

between a fraction of Ro and a maximum radius of a few times

_R o . At the higher velocities the bubbles experience an

-- explosive growth followed by a strong implosion. Bubble size
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scaling effects are expressed by the fact that while initially

larger bubbles have a larger growth rate at the low venturi

throat velocities, the trend is reversed at higher velocities

(Figure 4.24). The result of this scaling effect is that at

large velocities (e.g., Vt = 25.8 m/s for the cases

considered) single isolated bubbles of 5, 20, and 50 pm initial

size attain the same maximum size. This could be seen on Figure

4.24 where the dimensional variables are represented for the

same data points as in Figure 4.25. This result is also related

to the fact that the considered venturi has a long enough throat

to allow the above bubbles to grow to significant sizes.

The effects of bubble interactions and restricted mean flow

correction show up in a similar way when single bubble and

multibubble results are compared. At lower velocities bubble

oscillations in the throat area close to the entrance are

amplified when the collective behavior of the bubble cloud is

considered (see Figure 4.27 for details). As a result larger

maximum sizes are obtained with multibubbles but also very early

collapses are achieved in the throat section before reaching the

expansion. At higher velocities the opposite phenomenon is

observed. An explosive bubble growth is then achieved, and the

multibubble effect is to inhibit the growth rate of each bubble

in the cloud. This is mainly due to a reduction of the pressure

drop around each bubble induced by the motion of the other

bubbles. One can notice in both Figures 4.24 and 4.25 that

while multibubble effects weakly modify the 5 micron bubble

curves, a dramatic change is seen for the 20 micron bubble. In

the latter case bubble interactions are much stronger and shift

the behavior of the bubble from an explosive growth to strong

oLillations which induce an early collapse even for velocities

as high as 25.6 m/s. At higher values of c (bubbles closer to

. . ..-. .o . ... .
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each other) this effect can be seen even for the 5Pm bubble at

Vt = 25.8 m/s (case c = 0.05 on Figures 4.24 and 4.25).

Figures 4.24 and 4.25 could also be used to determine

dynamic cavitation inception. This could be done by using

either an "acoustical" criterion, Rmax/Ro greater than a
certain value, or an "optical" criterion, the actual bubble size

exceeding a given value. If we adopt criteria used earlier in

the literature we have the following value for Vt at inception

as compared to static equilibrium values.

Criterium R Vt Static Vt Single Bubble Vt 5-Bubble
m a r/s mn/s mn/s

R/R > 10 5 25.08 25.17 25.13
0

R > 150mm 5 25.08 25.24 25.22

, R/R > 10 20 24.89 25.13 25.70
0

R > 150um 20 24.89 25.08 25.62

From the above table one can notice that predictions with

static theory are conservative. For a given bubble size they

show earlier inception. Similarly, for a given velocity, static

theory predicts the activation of a broader range of nuclei.

For instance, at 25.08 m/s all bubbles larger than 5um are

predicted to be unstable while dynamics show that only those

above 20wm will be observed with the optical criterion. Larger

differences between statics and dynamics result for the case of
a multibubble system. One should however recognize that

differences in Vt are relatively small especially when
considering present practical considerations in the control of

this velocity. On the other hand, note that the resulting

critical pressure varies in a very wide range between the

various approaches. The difference between these values is very

l. .......-.-.-...-....-.-..-........................ ....................- .
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important to account for in cavitation tunnel tests where the

ambient pressure is low. This encourages effort toward a better

control of Vt or Pcr. This, as well as additional

information given below, might explain the discrepencies between

optical and CSM measurements of bubble distributions. Large

size bubbles in a cloud formation are not excited at the

velocities expected from static theory and are therefore not

counted when interpreting experimental CSM results.

Figures 4.26 and 4.27 illustrate some details of the results

presented in Figures 4.24 and 4.25. The influence of the

velocity at the venturi throat on the dynamics of a bubble of

initial radius 5 om can be seen in Figure 4.26. One can observe

an earlier explosive growth of the bubble at the higher velocity

as well as the achievement of a greater maximum bubble radius.

The bubble reaches its maximum size in the venturi diffuser zone

after leaving the throat. This is due to its response time to a

change in the ambient pressure. At higher velocities the

maximum is achieved farther downstream. The influence of

multibubble interaction and of restricted mean flow modification

on the bubble dynamics can also be seen in Figure 4.26. The

explosive growth, as observed in Figures 4.24 and 4.25, is

inhibited by multibubble interaction more significantly at the

higher velocities. The location, x, of maximum radius and the

location of the collapse are then closer to the throat exit.

This effect increases with the ratio between bubble size

and distance, e. For a larger e the influence of oscillations

is very much increased and the bubble collapses much earlier in

the venturi throat (e.g., for c = 0.05, the collapse is x 1.30

cm instead of x = 2.8 cm).
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Figure 4.27 shows the influence of the initial size of a

bubble on its dynamics and the modification of the behavior by

interbubble and mean flow interactions. All cases are

considerea for the same ambient pressure and throat velocity.

The larger bubbles achieve their maximum size further downstream

inside the venturi diffusion section. When interactions are

considered the bubble of initial radius Ro = 5 pm has its

behavior moderately modified, similar to what is shown in Figure

4.26. However, for the 20 =m bubble the modification of the

behavior is dramatic. Large oscillations are induced through

interactions and an early collapse at X = 1.35 cm occurs inside

the venturi throat. Such a bubble cloud would not be detected

optically and probably not acoustically if the intensity of the

collapse is not strong enough.

For the present user of the Venturi Cavitation

Susceptibility Meter, the curves relating the initial radius of

a detectable bubble to the critical velocity at the throat are

the most useful. Figure 4.21 showed those curves based on

static equilibrium considerations. Any bubble of initial radius

larger than that given by these static predictions would grow

explosively at the corresponding velocity. The discussions

above pertaining to Figures 4.24 to 4.27 have shown that the

problem is more complex when dynamics and interactions are taken

into account. This fact can be illustrated, as in Figure 4.28,

by comparing Ro versus Vt obtained by both static and

dynamic considerations. Here one can observe significant

discrepencies at the larger bubble radii and also at the higher

velocities. Again these theoretical differences are relatively

small when expressed in terms of Vt but reflect very large

differences in the critical pressures. The most interesting

results seems to be the presence of a minimum in the dynamic
4"

. . . '..,.-
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curve. This implies that at a given velocity above a minimal

value (25.1 m/s in the case of Figure 4.28) only a finite range

of bubble radii are excited. Compare this prediction with the

conclusion from statics that all bubbles above a critical radius

become active. This may also explain the experimentally

observed lower number of detected bubbles in the venturi CSM as

opposed to the scattering method.

The information obtained in this work on bubble size

history in the venturi as a function of the imposed flow

conditions and initial bubble radii should be complemented and

could be used to determine nuclei population. This could be

implemented if the venturi CSM is instrumented to measure bubble

sizes in the venturi at several locations. This could be done

by simple optical sensors.

The analyses should be refined and extended to include

bubble-liquid slip velocity and a fine description of bubble

collapse. Slip velocity could modify the bubble time response

and quantitatively change the results obtained. A precise

description of the implosion would allow us to accurately

compute the pressures generated and therefore would be very

helpful for acoustic detection.

4.5.5 Extension of Study to the Flow Around a Hydrofoil

The program developed to study bubble behavior in a
"slowly-varying" pressure field (relative to the bubble period

of oscillation) has been extended from the venturi case to that

of a hydrofoil. The program is CLDMAIN2. The user inputs the

pressure profile in terms of coefficients of a polynomial. The

study differs from that of the venturi by the fact that gravity
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forces have been included. Therefore, slip velocity between the

bubble and the surrounding liquid had to be included. This is

obviously necessary if the bubble dynamics in the wake are to be

monitored. The presence of gravity introduces also a

* modification of the input pressure field. The pressure driving

*. the bubble behavior is now dependent on the position of the

bubble relative not only to the foil but also to a free surface.

The balance of forces on the bubble is at each instant

between buoyancy, drag, and acceleration forces. This can be

written for a bubble of center B(t), radius a(t) and velocity

VB( t):

2 sdV B3
3 i a (P + 2 Pg) dt - 4 iT P a (VB - V£) - 27 a Vp +

22 pa a (V -VB) (4-19)

Here u is the liquid viscosity, pt and pg are the liquid and

gas densities, Vp is the pressure gradient and Vt is the

liquid velocity. These two are related by the approximate

relation

Vp = dV /dt , (4-20)

and for the present case (bubble behind foil)

Vp = - pg . (4-21)

Therefore, Equation (4.19) can be written in terms of the

relative velocity, Vt.

.1.
... , ..- ;... -,...... -.. . .. -........-. .... . ...-.. . ,. . _.. ,.. . .,.. ,-..-,-. . N.,.. ~ ., .- ,
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aa[6- 2 3 Vt + 2 g ,(4-22)

where v is the liquid kinematic viscosity and

V t = VB -Vt . (4-23)

Equation (4.22) was solved using a Runge-Kutta procedure similar

to those used for the various bubble radius components and was

implemented in CLDMAIN2. This implementation is in fact very

similar to that needed for the general case of a slip velocity

(due to inertial and drag effects) between the bubble and the

, surrounding liquid.

- 4.6 Asymmetric Bubble Cloud Configurations

In this section we present a few illustrations of

multibubble dynamics when all bubbles in the cloud do not behave

identically due to symmetry. To do so we have used the

developed code MULTIBBL (see flow chart, Figure 4.2) in which

the position and size of the bubbles are entered using cartesian

or spherical coordinates. Figures 4.29 and 4.30 show the

results for the simple example of a configuration of three

bubbles of different sizes. The comparison between the bubble

behavior when isolated and in the presence of the two other

bubbles shows interesting results. When two large bubbles

collapse in the presence of a smaller one, the rate at which

their radii decrease with time is slightly reduced (Figure 4.29)

and the oscillation period is increased. However, the behavior

of the smaller bubble is dramatically modified. Following the

end of the first collapse, the rebound of the bubble (due to the

presence of noncondensibles) is much stronger and is presumably

*.*** * * . * ** .



Tracor Hydronautics

-52-

intensified by the perturbation pressure field due to the two

other bubbles' implosion (see Figure 4.4). Later the small

bubble has a weak growth and implodes strongly for t-0.93 when

the local pressure field attains a peak.

The case of two small bubbles and one large one (Figure

4.30) shows the same trends. However, in this case the large

bubble is much less influenced by the presence of two

smaller ones than by the presence of one smaller and one

identical bubble as in Figure 4.29. The deviation of the small

bubbles' radii from the isolated case is also much less

dramatic.

Figures 4.31 and 4.32 address the question of the influence

of cloud geometry (bubble space distribution) on cloud

dynamics. Three multibubble configurations, all having the same

global void fraction (total bubble volume over volume in which

they are distributed), are compared. In the three cases, twelve

bubbles of equal initial sizes (R 0=1) are located on or inside a

sphere of nondimensional radius 15. In the first case, the

centers of all twelve bubbles are located on the sphere of

radius 15. In the second case, six are centered on the same

sphere while the six others are on a concentric sphere of radius

7.5. The third configuration is composed of four bubbles

centered on the outer sphere of radius 15, four others are

centered on a sphere of radius 10, and the innermost layer of

four bubbles is on a sphere of radius 5. Figures 4.31 and 4.32

show that the cumulative effect is greatly enhanced for the

inner layer of bubbles. The initial weakening of the implosion

as well as its later amplification are more pronounced (even for

the outer shell of bubbles) when, for the same global void

fraction, the number of shells is increased. Similarly in the

. . . . . . . .. . . . . . . . . .



Tracor Hydronautics

-53-

same cloud the effects are more pronounced for the inner-most

layer of bubbles. Apparently, the predominant factor is the

relative bubble size and spacing (parameter e=rb 0/zo in the

theory). In both figures the formation of a reentering jet at

each bubble's wall occurs when the radius becomes zero. The

negative values seen in the figure are meaningless, and the

computation should be stopped at that point. One can notice

that this occurs much earlier for the shell closest to the cloud

center (Figure 4.32).

Figure 4.33 is intended to show the capabilities of the

program MULTIBBL as well as the complexity of the bubble

behavior for a random bubble configuration. Here, twelve

bubbles have been located randomly in a space enclosed within a

sphere of radius 7. Similarly, the initial bubble radii were

chosen in a random fashion between 0 and 1. Both these are

shown via the table in Figure 4.34. We will not try to dwell

too much on the interpretation of this figure since the

randomness makes any rapid analysis empirical. As a general

statement, we can say that while each bubble has the tendency to

collapse at its own period of oscillation, the interactions make

the behaviors at the rebounds, and the following collapses quite

independent of the initial radius. In addition, the smaller the

initial bubble size, the more influence of the interaction can

be seen.

Figures 4.35-4.37 consider the case of the growth and

collapse of a symmetrical configuration of six bubbles near a

solid wall. A pressure drop of finite duration, AT = 0.8, has

been imposed on the six-bubble cloud. Four of the bubbles are

in a plane parallel to the wall and at a normalized distance of

" 12.5 from this wall. The two last bubbles are on a line
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perpendicular to the wall and are centered respectively at 5 and

20 bubble radii from the wall. The presence of the wall creates

the asymmetry and shows three different behaviors of the

initially identical bubbles. The geometrical configuration

being such as described above, the four bubbles in the plane

parallel to the solid wall behave idcntically (bubble 3 in the

figure). The two remaining bubbles on the axis perpendicular to

the solid wall have different behaviors. The bubble closest to

the wall is bubble No. I in the figures and the farthest away

is bubble No. 6 in the figures. Figures 4.35 and 4.36 indicate

that the four bubbles in the midplane seem to be the most

influenced by bubble interactions. They are followed by the

bubble closest to the wall. This result is probably due to the

fact that the distance to the wall is not small enough from the

image cloud to influence the closest bubble in the analyzed case

(bubble radii=l, location of centers on sphere of radius=7.5,

and distance from wall=5).

The comparison between Figures 4.35 and 4.36 shows the

influence of a finite sound speed in the liquid on the bubble

radius history. For a normalized sound speed of 30 (actual

speed = 3010/(rb 0 V-pl
7 1 ), Figure 4.36 shows a weakened

interaction compared to the infinite sound speed case. As

discussed in Section 4.2, this is due to the fact that a finite

sound speed induces a time delay between the emission of the

pressure oscillations from one bubble and its arrival to

another. The flow due to a point source of intensity q(t), for

instance, at a distance r is r- 2q(t-r/c) instead of

r- 2 q(t). The result shown in Figures 4.35 and 4.36 is,

however, not general since a time delay could, depending on its

amount and the shape of the various bubble pressure functions,

a

...........................
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act in such a way as either to intensify or dampen the

implosion.

Figure 4.37 shows the shape of the bubbles at different

times during the implosion process. The three bubble behavior

types described above (four bubbles in the middle plane,

farthest, and closest bubble to the wall) are shown side by

side. These profiles give a better idea of the behavior and

deformation of the three bubble types.

4
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4

5.0 INCLUSION OF HEAT TRANSFER AT THE

BUBBLE WALL: SUPERHEATED LIQUIDS
4

5.1 Introduction

Many modern processes deal with various fluids in

conditions where both heat transfer effects and inertia

contribute in controlling the bubble behavior. Examples of such

fluids are hydrocarbons, liquid metals, cryogenic fluids,and

demineralized hot water at temperatures as high as 300°C. Heat

transfer boiling or cavitation appears with these liquids in

such applications as high speed flows of sodium-cooled

fast-breeder reactors in nuclear power engineering, circulation

of cryogenic liquid in pumps in aerospace engineering, and flow

of hot water in nozzles and tubes in steam power plants.

Accidents, such as loss of vacuum insulation in cryogenic

storage tanks and loss of coolant in nuclear power plants, are

sources of boiling nucleation and of major safety concern

(Plesset, 1980).

In the previous sections, we investigated analytically and

numerically the collapse of a bubble cloud due to an increase of

the ambient pressure neglecting heat transfer. A cumulative

effect was shown leading to pressures generated during the

collapse significantly larger than would be computed by adding

the effects of individual bubbles. This explained the

observations of the bent trailing edge of propellers subjected

to cloud cavitation. In this section, we extend the singular

perturbation approach earlier developed to study the cases where

heat transfer effects cannot be neglected. We then investigate

numerically the growth of a bubble cloud in a superheated fluid

following a sudden depressurization. Both a general approach

'" " % "" " • " " - ' - . -" "" " . ° . -" - o " "' " " "" "" "" " " '. "- "- ". % • - " , "" " ," " " .-- ' •
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and a thermal boundary layer approximation are studied

analytically, and methods of numerical solution are described.

Numerical computations are then conducted only for a symmetrical

cloud bubble configuration with the boundary layer a',oroximation

and when deviations from sphericity are very moderate.

The general equations of the problem have been presented in

Section 2.0 and will not be rewritten here. Similarly, we

consider a singular perturbation theory as in Section 3.0

assuming a small ratio of bubble size to bubble interdistance.

5.2 Singular Perturbaton Approach

5.2.1 Normalizations

In order to make asymptotic expansions (and thus to compare

orders of magnitudes) an accurate choice of characteristic scale

variables is fundamental. For the length scales, we chose as in

Section 3.0 the bubble characteristic radius rbo in the

inner problem, and the interbubble distance to in the outer.

However, the relationship between rbo and the characteristic

initial bubble radius, Ro, is not obvious. Indeed, while in

the case of bubble collapse, the bubble radius stays of order

Ro in the mathematical sense, (R(e) = O(Ro ) if there exist-

a constant A independent of c such that IRI < XIRoI); such is

not the case for the bubble cloud growth studied here.

Therefore rbo is chosen arbitrarily much larger than Ro

but such that the inequality

rb /to = < < 1 (5.1)
0
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is valid. Consequently, the results of the computations will be

valid only as long as the radius of any bubble in the cloud does

not greatly exceed rbo.

The time scale choice is simple once rbo is known. In

the case of a significant pressure drop, as for the problem of

sudden depressurization of a superheated system, this time scale

is related to the pressure drop AP, through

T rb (5.2)
0

AP could also be the order of magnitude of the imposed pressure

fluctuations when P.(t) is a prescribed function of time.

As mentioned earlier, in both the "inner" and the "outer"

regions, the flow in the first approximation is that due to a

distribution of dynamic sources and heat sinks. The character-

istic strength of the dynamic sources is qo = rbo 
3 /To,

and depending on whether one considers the "inner" or the
"outer' problem, the resulting velocity potential, t, has the

scales:
in out3

in = 2/T = r b /Zt . (5.3)
0 rbO O b '0

o o

Since the maximum temperature drop occurs near the bubble

wall,and since a lower bound for this temperature is the boiling

temperature of the liquid, Tb, at the imposed ambient

pressure, P., the temperature departure from T. is scaled

with the amount of superheat, (T.- Tb).

""
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With these characteristic scales, nondimensional variables

all of order unity are introduced through the following

definitions, where bars denote outer nondimensional variables

and tildes inner ones:

r r/rb ; = r/0
00

-'i(t) = LiJ(t)/ 0; b(t)= bT/rb;

(5.4)

t = t/T 0 ; T T = T/(T -T

p(t) = p(t) = p(t)/AP

0(t) = in(t)/Oin ; 0(t) = °u(t)/°t

0"

Each of the unknowns, X, is then expanded in a power series of e

as follows:

X2 + 3 X 3 + 0( e 3). (5.6)

5.2.2 First Order of Approximations (eo)

When E goes to zero, the distance between bubbles goes to

infinity, interactions vanish, and in the absence of a

slip velocity between the test bubble and the surrounding fluid,

the only boundary condition at infinity is the imposed ambient

pressure variation P.(t). The "inner problem" is therefore

spherically symmetrical and its solution is given by the well-

known Rayleigh-Plesset equation. This can be written with the

superscript (i) omitted for convenience:

.. . .. . . . . . . . . . . . . . . . . . . . . . . ..l.?..
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- -" " -2W
a 0a + (t) y (t) - . (5.7)

a0

The nondimensional parameters are defined by the relations:

- P0.(t) - P (o) P (o) - P v(O)
P (t) = AP AP '

(t) V(t) - Pv (O) (5.8)

O AP e rb AP
0

Y(t)= y(t)/y(o).

Here y(t) and pv(t) are, respectively, the surface tension

coefficient and the liquid vapor pressure at the bubble wall

temperature at time t. The initial equilibrium condition at the
4%
-- bubble interface is

1
+ 2W e /Ro = 0 (5.9)

For a given P.(t), equation (5.7) can be solved for the

variations of the bubble radius, a0i(t). This allows the

subsequent determination of the higher order approximations of

the bubble radius.

When the temperature at the surface of the bubble departs

significantly from the ambient temperature, it is necessary to

couple equation (5.7) with the energy equation to account for

the dependence of Pv and y on temperature. At this order, the

problem is spherically symmetrical, and the energy equation,

(2.5), reduces to the following nondimensional equation:

0 0 - P a - r 2 (5.10)

at 2 e ~2
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where the Peclet number, Pe, is the ratio of the thermal dif-

fusion time, rbo 2/D, to the bubble characteristic time To,

Pe = rb 2/(D T) . (5.11)
0

The heat balance on the bubble-liquid Interface reduces at this

order of approximation to the following normalized equation

23T o  PvL
pL r

0 V 0

3r K To(T ,T a (5.12)

5.2.3 Interactions

a. Order c

* In the asymptotic theory presented here, the local

pressures and temperatures driving the growth of any bubble

B(i) are a perturbation of the imposed far field pressure,

Pw(t), and temperature, T.. Since these perturbations are

due to the presence of the other bubbles in the flow field, the

leading terms can be obtained directly once the first order

behavior of all the bubbles in the cloud is determined. For

instance, once equations (5.7), (5.10), and (5.12) are solved,

the variations with time of the radius, a 0 J(t), of any cavity

in the cloud are determined. This allows the determination of

the intensity of all sources q0 j(t):

o-2

q(t) V (5.13)
S0

.- - 7
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Consequently, the resultant "outer" potential flow is deter-

mined to this order by:

N qJ (t)

0 (M, t) = , (5.14)
0 j=1 MBJlI

where M is a field point, and BJ the center of the bubble

B(J), and also the location of the source (j). The asymptotic

expansions of 00 (Mt), when the normalized distance

JMBij = e r i goes to zero, contain additional terms other

than the leading source term, q 0 i/ri, corresponding to the

order zero "inner" potential flow,
~i ~i

o = qo(t)/r (5.15)
0 0

These terms express the interactions and are responsible for the

flow and bubble shape corrections. For instance, by application

of the matching principle (n - m rule, Van Dyke, 1964), the

order e term will determine the boundary condition at infinity

for the order e "inner" velocity potential, i.e.,

lim * = [ (_o qo ' (5.16)

iji 1)
r ~ ®O

where t0 J is the initial distance between the two cavities'

centers Bi and BJ.

In addition to the at-infinity boundary condition (5.16)

the first correction, *i
i , of the undisturbt-'- potential flow,

00i , has to satisfy the Laplace equation, (2.1), as well as

boundary conditions on the surface of the bubble B(i). These

are the contributions to order e of the expansions in powers of

""7"
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c of Conditions (2.2) and (2.3) made dimensionless. Similarly,

the first correction, T1 , of To has to satisfy the equations

derived from (2.5) and (2.7).

Due to Condition (5.16) the dynamic problem remains

spherical. To this order the effect of the other bubbles does

not introduce any asymmetries, and only changes the level of the

velocity potential. Therefore, the correction at this order

stems from a modification in the "inner" problem of the pressure

imposed at infinity by the time derivative of the added

at-infinity velocity potential, (5.16). As a result, the

solution of the dynamic problem at order c is given again by a

source term which corrects the leading term 00i . This

solution can be written:

-iS"i q1  (t) -O ) q (t) (5.17)

r j*i 0

where the source intensity, q 1
1 , is given by:

i.2 .i 1.Lqi= a I + 2a0 a a i  (5.18)
0 0 1 

In order to satisfy the boundary conditions at the bubble

surface, the first correction, al i , of the bubble radius has

to satisfy the following differential equation, where the

superscript i has been omitted:

a + 3a0 a, + al(a 0-2We a2) (t). (5.19)
J*1 L0

Here r1(t) is a correction of wo(t) and expresses the second

approximation of the value of the vapor pressure at the bubble



Tracor Hydronautics

-64-

wall. Using the expansions of the temperature in powers of e as

in (5.6), wo(t) and wl(t) can be expressed as

W O(t) = [pv (T0 (aot)) - Pv(T.)] / AP , (5.20)

aTo  dpv

W,(t)=[pv(T,(aoIt)) + a, ---- (ao't) d- (T (aot))]/AP. (5.21)

For the study of the heat problem it is useful to introduce

the following variable (again omitting the superscripts i):

y [ - R ( ,t)] , (5.22)

by analogy with the spherical bubble case (Prosperetti and

Plesset, 1978). With this variable change, the normalized

energy equation can be written:

S@T [r2 30 2R = Pe { (r 4 DT +
I [ay 3r e a a

+ 2s - (sine - (R 2 -a sine - ]} + O( ).(5.23)

r sine e )e 3- 9Y (

After replacing r by its value derived from (5.22), and

accounting for the expansions of R(e,t), we obtain at the orders

c' and c, the relations:

aT
T -p 0o -e " ( = 0 , (5.24)

and

3T 9 T
pe- 'a n " a2 0

T-e P= Pe (4 n a ) ,(5.25)

where
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= (a 3 + 3y) 3  (5.26)

Similarly, the heat balance condition on the bubble wall

becomes at order e° and e:

-aT o

20 = , (5.27)

and - - -
a2 ( 2a T.a + 2 0 : a, (5c.28)

0  y=O

b. Higher Orders

Continuing the same procedure as in the preceding section,

one can derive the successive equations for the flow field, the

" temperature field and the bubble motion. The solution of the

problem is made easier by the use of series expansions of the

velocity potential in spherical harmonics, and of the bubble

surface equation and the temperature field in Legendre

polynomials, Pn(cOse). The boundary condition at infinity for

any particular "inner" problem (i), obtained by expanding the

expression of $ near Bi (Chahine and Bovis, 1983; Chahine,

1982) can then be shown to be up to order d3:

+-lim i (Mt)X (X? r cos a + xijq)

i *j 1
r +

4 1  %r ) 1~J - [O ? )3 2 P2 Cos ae'j)+ X?.q~r cose'3 + X. - qJ] + . }. ( 29- j 'r  P2(~ i  13 1 °i 13 2 1J ]+ ...1}. (5.29)

Here qn j is the correction at order en of q 0
j , the

strength of the source representing the first-approximation

spherical volume change of the bubble B(J), and
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=A t /El) (5.30)

The superscript j denotes quantities corresponding to the other

bubbles, B(J), and eiJ is the angle MBiBj between

Bi,Bj, and a field point in the fluid, M, (see Figure 1).

Expressed in physical terms (velocities, pressures), the

boundary condition (5.29) indicates that the order c correction

to the nonperturbed spherical flow field around the test bubble

is a spherical modification of the collapse driving pressure.

This introduces, as we have seen in the preceding section, a

spherical correction ali(t) to the radius variations• 2

a 0i(t). At the following order, , a second correction of

the at-infinity uniform pressure appears, and a uniform velocity

field expressing a slip velocity between the bubble and the

surrounding fluid is to be added. Going through the expansions

of the boundary conditions at the bubble surface, one can show

that this induces a spherical correction, a 2i(t), of a0i(t),

and a nonspherical correction f2i(t).cosig (Chahine and

Bovis, 1983, Chahine, 1982). eig is an angle which can be

compounded from all the 8ij's (see Figure 3.1). Things become

more complex at the order of expansion 3, where in addition to

the uniform pressure and velocity corrections, a velocity

gradient generated by the flow field associated with the motion

of all the other bubbles, is to be accounted for to generate a

nonspherical correction of form P 2 (coseig).

Resulting from the above remarks on the at-infinity

boundary condition, one can show that the equation of the

surface of the bubble B( i) and the temperature can be written

as:
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(e gt) = a 0 (t) + e a' (t) + £2 (a(t) + f2 (t) • cosO] +

+ [ai(t) + fl(t) COS 8 i
g + g(t) "P2 (c 0 i)] + (3)

(5.31)

T(r,eigt)=T (r,t) + e TI(r,t) + c2[T20(r,t)+T21(r,t) .cosoig]+

+ C3 [T 3 0 (r,t) + T31(rt) .cos@ig+T32(rt) • P 2(cos0
ig ) ]+0 ( 3),

(5.32)

provided that the initial bubble shape is spherical. Therefore,

up to the order c3 each inner problem is axisymmetric, and the

axis of symmetry for every bubble is in the direction, BiG, of

its motion towards the bubble cloud "center".

We introduce dn defined as the sum of the deformation

.p rate, fn, and of the origin of axis translation velocity,

bn, both of form cosO:

n n + n . (5.33)
n n n

One then obtains the following differential equations for the

order C2 radius components, and d 2, similar to (3.11).

- 2 1 - -
a0 a 2 + 3 AoA 2 + a2 (a0 - 2W 1e ao2) 0

32 _a a - 2W + 12(t )  Xij q, (5.34)

i ,j
aod 2 + 3 ad 2 1 (t) - 3 + ao) COSI i j

00 2 i j 13 0d A cos Oig

(5.35
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In the above equations, the superscript i has been omitted,

and ao(t) and al(t) are obtained at the preceding orders by

solving the differential equations (5.7) and (5.19). Unm(t)

are higher order approximations of the nondimensional difference

between the vapor pressure at any time and its initial value.

The indexes n,m correspond to those used in the expansions of

the temperature, Equation (5.32).

The energy equations at order c2 can be written using

1/3
n= (a, 3 + 3y) , (5.36)

T 2 0 - Pe (4 0y

. .. .3T - Tj

_I 012 4aoa 2 n+2 n ) --- + 4a ]-~-JPe T [(4aoa 2n+ 42an+ 2aa2 n- 2 o +a2ain
e 2 T1 01 a 5.37)

n -T21 -T 21 Pe a[ ( an 2n T21]:

io
2h 2  " " " . cos i DT

(- + 2Aoaf 2 + a2 2 + ) 3. n 2  o
00o2 0 1) 0 co g1  9Y

i3 ¢jcoseBg )@

- T- - T

Pe- 1 [2n- 2 a2 f 2  + -L (4n f 2 a2 3T ) . (5.38)

The corresponding conditions of heat balance on the bubble wall

are

- aT 2 0  2a, 3T, a 2  a1  T
a2 ao y + 2 + a Jyo=~d.%2 (5.39)

0 Y-a ao ao
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a 0 T2 + 2 - + aT J= 0 4f 2  (5.40)

a 0

Similar equations can be derived for order c3 (Chahine and Liu,

1983) and are not presented here for conciseness.

5.3 Numerical Solution

5.3.1 General Solution

The system of equations derived up to order 3 constitutes

a set of 14 equations for the 14 unknown components of

Ri(e,t), and Ti(e,t) (expansions (5.31) and (5.32)). By

solving this system one determines completely the flow and

temperature fields as well as the bubble motion and

deformation. A numerical solution of these equations is

feasible and could be performed using the same procedure as

Dalle Donne and Ferranti (1975). Their study dealt with a

single bubble growth and thus solved only equations (5.7),

(5.10), and (5.12). Here the same approach would have to be

performed for all seven components of the bubble radius (up to

Since the equations are not independent, the procedure

would start by determining at a given time step the

temperature at the lowest order of approximation (c° ) and the

corresponding radius approximation. Knowing this, one can

compute the successive temperature corrections, and the

successive radius corrections. At each time step an iteration

process would be used to insure a good correspondence between

the obtained temperature and radius values. Stepping in time of
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the computation could be obtained with a Runge-Kutta procedure

which solves each differential equation yielding the bubble

radius values. The determination of the temperature field is

more elaborate and requires a stepping in both time and in

space. This latter involves writing a finite difference scheme

and replacing the integration field with a grid of mesh points.

This general solution is not developed here. We considered

instead the cases where large initial superheats make a thermal

boundary layer approximation valid.

5.3.2 Thermal Boundary Layer Approximation

If the distance 6 in which the temperature rises from its

value at the bubble wall to approximately the imposed ambient

temperature, T., is small compared with the bubble radius, R,

an approximate solution can be obtained more easily than with

the method described in the preceding paragraph. By considering

heat diffusion in the liquid, spherical bubble growth rate, and

a heat balance at the bubble-liquid interface, Plesset and

Prosperetti (1977) estimate 6/R by:

6D Lp v v L -

R K (T T p C(T Tb) - . (5.41)

Thus, a boundary layer approximation is valid as long as the

Jacob number, J, is much larger than one. For a spherical

bubble, comparisons between numerical computations obtained

using this approximation and those obtained by solving the exact

equations gave very close agreement for J > 3, (Prosperetti and

Plesset 1978 and Plesset, 1980).

.O

* " : 5"..%o't.,* .*-'. .* .' ;.'..-...... .o...'. .-.. . .
" . = .- - . .-.. ...- -.. .- -. . . .' -.- -".
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When the boundary layer approximation is used, the system

of heat equations, presented above, simplifies considerably.

Indeed, in that case the temperature departs from T. only in

the liquid region close to the bubble-liquid interface, and the

values of r which are of interest are close to R(O,t). The
3

variable, y, defined in (5.22), is then small compared to a ,

and we can write

y y a ,. (5.42)

where y and ao are of order 1, and E is a small parameter

[E=O(J-) ]. The problem considered then contains two small

parameters e and , and an asymptotic solution uniformly valid

when both c and go to zero can be obtained when a

relationship between the two parameters is defined through the

use of the principle of least degeneracy (Darrozes, 1971).

Considering the heat equation, (5.23), one can determine

the relation needed between c and E to conserve the maximum

number of terms in the leading orders of approximation. In

order to prevent the order e 0 expansion, (5.24), from

degenerating when & goes to zero, the Peclet number has to be

large enough to satisfy

_2

P = 0(E ) , (5.43)e

in which case both terms of the equation are conserved.

Similarly, to conserve the maximum terms at the following order,

e, one needs to keep together the leading terms coming from the

expansions in powers of E and those from expansions in power of

A (e.g., in the expansions of n4) This "least degeneracy" is

obtained when

= 0(e) . (5.44)

d%
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Using the relationships (5.43) and (5.44) between Pe, E, and

E', the expansions become straightforward.

The equations obtained at the first order expansion in both

parameters (orders e° and E°) are those for the case of an

isolated bubble. These equations are the Rayleigh-Plesset

equation (5.7) and the heat equation (5.24) in which n4 takes

the value a0 and which becomes:

a+ P + ay ) =0 (5.45)

A solution is readily available for this case and was derived by

Plesset and Zwick (1952) and Forster and Zuber (1954) using

Laplace transform methods. The nondimensional temperature at

the bubble wall is given by:

1/ 2 rb aO (x) (x)
T o(aot)=T _ b 0 KftL(x)p(x ) 0 2dx,

So [b T ao(Y) dy 1/

x (5.46)

where, to be consistent with the assumptions made in deriving

this solution, D and K are constant and evaluated at Tb while

L and Pv are functions of time. The numerical procedure is

greatly simplified now that an analytical expression for the

temperature at the bubble wall is known. The finite difference

method which would have been used in the general case is here

replaced by a numerical computation of the integral equation

(5.46). An iteration procedure is required to insure that the

computed value of To(ao,t) does not differ significantly

* from the value presumed in the computation of the integrand.

' -f.

. . . . . . . . . . .N- %. -K-N AI A,. -
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Plesset and Zwick (1952) also gave the solution of the

problem when equation (5.46) contains a right hand side which is

a known function of time (heat source term). Using a matched

asymptotic procedure they also computed the following order of

approximation, O(E). These solutions correspond to the

following order equations in powers of c and for the

multibubble problem. For simplicity these equations will not be

listed here.

5.4 Numerical Examples for Symmetrical Clouds

In order to illustrate the method presented above we

consider numerical solutions for a cloud of simple geometry.

The bubbles are distributed in a symmetrical configuration and

are initially of equal size. With this configuration all

* bubbles have the same radius history. All summations in the

dynamic equations (5.19, 5.34, 5.35) reduce to multiplications

of the characteristics of a single bubble by one of the three

geometrical constants cl, c 2 , c3 defined earlier in (3.13).

An additional simplification of the numerical solution can

be introduced if one notices that during the bubble growth the

departure from the initial spherical shape happens very late in

the bubble history and only when the asymptotic approach starts

losing its validity. This is not true for the cloud collapse

(see preceding section). Figure 5.1 shows the variation with

time of the major radius of an individual bubble in a cloud

configuration of N bubbles symmetrically located on a sphere.

For this figure, heat transfer has been neglected. We observe,

for the isolated bubble, the well known asymptotic linear growth

behavior. However, when the number of interacting bubbles

increases, the pressure field associated with the dynamics of

. i.- .- : .- .. ,- .... _,. :: : .. :. .- .. -. - : . . . -_ .. . . . . .. . .: -... :--
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the other bubbles in the cloud reduces the growth

rate of the test bubble. This deviation increases with the

number of bubbles, N, until for N = 12 for the case studied, the

,o method apparently fails for t > 0.1. The radius corrections

*. (illustrated in the figure by the amount of deviation of the

" radius in an N-bubble case from the isolated bubble case) become

large compared with the order zero radius. Figure 5.2 shows,

for the same bubble configuration, the ratio of the nonspherical

to the spherical part of R(6,t) in the expansion (5.31). In all

cases but the obvious one where the method breaks down, the

relative deformations remain less than 4 percent while the

bubble radius is 2,000 times its initial value. Based on this

observation and as a first step towards a more precise solution,

we have neglected in the numerical program developed the

contribution of nonsphericity to the heat transfer problem.

S .- Therefore, the temperature field was approximated by a

spherically symmetrical field. However, this field accounts for

interactions and differs from that of the isolated bubble case

-* because of the contributions of the higher order spherical terms

of the bubble equation. Indeed, Equation (5.46), relating the

bubble wall temperature to a spherical bubble radius history,

was applied to the spherical part of the bubble radius, i.e.,

to

A(t)=a 0 (t)+C a,(t) + C2 a 2 (t) + C3 a3(t) . (5.47)

With this simplification, at any time step all dynamical

equations are solved using the value of the vapor pressure

corresponding to the liquid temperature at the radial distance

A(t). This temperature is computed at the preceding time step

using equation (5.46). The nonspherical part of the bubble

shape is not disregarded and is computed neglecting variations

-°

• ' I ' ' t ' ' '' ''._ " ' ' ' . ' ' , . / " , -t > ' " ' " ,"/ : 5 .:, "C ,:
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of the liquid temperature along the bubble surface. This is

valid as long as the bubble deformation is negligible. Since

we restrict this study to that case, the validity of the results

is checked by monitoring the relative value of the computed

nonspherical to the spherical components of the bubble surface

equation. The computation is stopped when an imposed limit is

exceeded. Figure 5.3 presents a flow chart of the developed

code HOTCLD.

A series of numerical cases was studied using a VAX 11/750

computer. We have considered different variations of the number

of bubbles and configuration, the ambient pressures, the initial

bubble radius, and the amount of superheat. The duration of a

typical run was about 10 minutes of CPU time (for 2,000 time

steps). The computation involves the solution of the heat and

dynamical equations for an N bubble configuration, the study of

the corresponding case of an isolated bubble with and without

heat transfer, and the computation of pressure histories at

three locations in the flow field.

In all the presented figures, the curves are stopped when

the computations become invalid due to large bubble
interactions. Figure 5.4 shows clearly the influence of

interactions on the bubble radius history. Since the bubble

does not remain spherical, the value of R(sig) represented in

this figure corresponds to the point on the bubble closest to

the cloud center, the "lower-minor radius." (See Figure 3.1.)

The classical results of asymptotic growth in t for the

inertia-controlled bubble expansion and in ta for the

heat-controlled bubble expansion can be seen. If there was

no pressure drop a would be 1/2. However, here a is much closer

-.'- to 1, as obtained by earlier studies on single bubbles (Jones

o .,- o ,, , * , .. * . ,..,-,* -~ - -4 . .- .. ,* o . -.. -. , , . * -" . *-" '-''
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and Zuber, 1978; Theofanous et al., 1969; and Cha and Henry,

1981). The most important result obtained here is that b'ibble

growth is inhibited by bubble interactions. Very clearly at a

given time the bubble size decreases with the number of

interacting bubbles. This decrease exceeds 20 percent for a 5

bubble system for nondimensional times larger than 10, or one

millisecond after the start of the growth (case of Figure 5.4).

Figure 5.5 shows the effect of bubble interactions on the

liquid temperature at the bubble wall. The presence of other

growing bubbles in the field is seen to reduce the heat trans-

fer at the bubble wall and thus the temperature drop in its

vicinity. For example, for a five-bubble system the deviation

from the isolated bubblP case of the temperature drop is more

than 30 degrees one millisecond after the initial pressure

. drop. This result, coupled with that obtained for the

variations of the bubble radius, is important for any practical

computation of heat transfer in a two-phase medium.

Figure 5.6 shows the modification of the bubble shape

during its growth for the same N-bubble systems shown in Figures

5.4 and 5.5. Represented are the bubble shapes at two instants

during the growth process. As expected, in the presence of an

N-bubble cloud, the side of the bubble facing the cloud center

is seen to be slightly "pushed away" from the cloud center and

the bubble is seen to elongate in a direction tangential to the

sphere. However, any po.int on its surface always remains inside

the corresponding fictitious isolated bubble growing under the

same conditions. The deformation decreases as the number of

interacting bubbles increases.

.

l.
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Figures 5.7 and 5.8 show the influence of the amount of

pressure drop and initial superheat on the bubble growth. These

figures consider an isolated bubble as well as a five-bubble

system. The same remarks made in the preceding paragraphs apply

here when the influence of the number of bubbles is considered.

In all cases the initial bubble radius is the same, and the

pressure drops to the same value. However, since the initial

pressures vary from one case to another and since all bubbles

are considered to be initially at equilibrium, the initial

temperature and thus the initial amount of superheat varies from

one case to another. To isolate the two effects one has to

consider the case where the bubbles are not initially at

equilibrium. Another option would be to have the same initial

pressure, radius and temperature and to vary the value of

Pinf" We consider this case below. Figures 5.7 and 5.8 show

that the normalized bubble radii and growth rates are larger at

any given time when the amounts of pressure drop and superheat

are greater. In the absence of heat transfer, scaling effects

are mainly due to the differences in the Weber number, We and

the initial pressure parameter . When heat transfer effects

are included, there is an additional parameter, the Jacob

number. These effects counterbalance each other in real time,

and one observes a minor influence of the initial value of the

pressure (for the same initial radius) when the radius

variations are plotted with dimensional variables (Chahine and

Liu, 1983).

A similar result is seen when, for the same initial bubble

radius and liquid temperature, the ambient pressure drops from

the same initial pressure to different subsequent values. In

this case the initial amount of superheat is the same for all

the cases of pressure drop studied. However, the subsequent
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amounts of superheat differ from one case to another. The use

of nondimensional variables decreases (but does not cancel,

because of nonlinearities) the influence of dynamic factors,

however it does not alter thermal effects. The results (Figure

5.9) show again a larger bubble radius during the growth period

for higher pressure drops. The comparison with the five-bubble

case can also be observed and shows again the retarding effect

on bubble growth due to collective bubble behavior. Figure 5.10

completes the picture by showing the temperature drop at the

bubble wall for the different cases studied. The same

observations as those made above are repeated, namely higher

temperature drops for smaller pressure drops or higher number of

interacting bubbles.

The last series of results consider the influence of the

initial bubble size for given fixed pressure conditions. With

the assumption that the bubble is initially at equilibrium, the

modification of the initial bubble size also corresponds to a

change of the amount of superheat. Figure 5.11 shows the pre-

dominance of the effect of the amount of superheat factor on the

bubble growth; initially smaller bubbles attain greater sizes

because of larger amounts of superheat. This effect is,

however, coupled with the nonlinearities of the dynamical

equations which favor smaller initial bubble radii in the first

phase of the growth. Figure 5.12 shows the same effect with

nondimensional variables and compares a five-bubble system with

the isolated bubble case. One can notice that the inhibition

effect due to bubble interactions is larger for smaller initial

bubbles or larger amounts of superheat. Finally, Figure 5.13

describes the temperature drop at the bubble wall for the same

cases.

.. . . ........ °',... .... ... " .... . . .. . .* . . .o " . .
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The results obtained show that a significant influence of

bubble interactions on bubble growth and heat transfer exists.

The effects of this influence can be summarized as follows:

a. The growth rate of the bubbles is reduced,

b. The radius of any bubble at a given time is smaller

than would be found for an isolated bubble, and

c. The temperature drop at the bubble wall is smaller at

any given time than would be found for an isolated bubble.

These effects increase with the number of interacting

bubbles as well as with the amount of superheat and pressure

drop. These results, which were obtained using small

perturbations assumptions, are expected to remain valid and

become more significant when the void fraction becomes larger.

Accounting for these effects is important for increasing the

accuracies of the existing transient two-phase flow codes.

The study presented here could be improved by introducing a

finite speed wave propagation in the cloud and by accounting for

the compressibility of the medium. The analytical equations

derived for the general bubble configuration case (no symmetry

and unequal bubble size) could be expanded to a numerical

approach in a relatively simple manner. The resolution of the

problem could also be extended to low superheat cases (small

Jacob numbers) and to larger interactions and bubble

deformations by numerically implementing the analytical approach

presented above which was not used in the numerical examples.

- .

'4

........ ....... ......... ......-.



Tracor Hydronautics

-80-

6.0 INCLUSION OF GAS DIFFUSION AT THE BUBBLE WALL

6.1 Introduction

An analysis was developed for the inclusion of the effects

of gas diffusion into and out of cavitation bubbles in clouds.

The solution scheme is similar to that used by Chahine and Liu

(1985) for heat transfer to a bubble in a superheated liquid

(see Section 5). The equations governing mass diffusion have

been coupled to those governing bubble dynamics and
non-spherical deformations. The equations solved include the

Rayleigh-Plesset equation for bubble dynamics, the transport

eqration for the dissolved gas in the liquid, and an energy

equation for the bubble (first law of thermodynamics). An ideal

gas equation of state is assumed for the bubble which is taken

to contain a mixture of noncondensible gas and vapor. These two

components are considered to form an ideal gas mixture. Due to

the relatively very short characteristic time of vaporization

compared to bubble dynamic and gas diffusion characteristic

times, the quantity of vapor in the bubble is assumed to vary

instantaneously such that the vapor pressure remains constant

and at the equilibrium value for the liquid temperature. A

boundary layer solution analogous to that of Plesset and Zwick

(1952) is utilized for the gas transport equation. This

provides an expression for the gas concentration at the bubble

surface as a function of time. The concentration of dissolved

gas at the bubble surface is related to the partial pressure of

the gas within the bubble by Henry's law. The gas concentration

varies from the ambient initial value in the liquid to the

bubble wall value over a thin boundary layer.

S

J
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6.2 Equations Governing Mass Diffusion

6.2.1 General Equations

The transport of noncondensible gas in the liquid medium is

governed by

aC + v VC=D V2C (6.1)
-t T "g

subject to the boundary and initial conditions:

C + C for r + ,

C =C for t < 0 and r > R (6.2)

C =Csat' r =R, t > 0

Here, C is the concentration of dissolved gas in the liquid in

units of moles per unit volume, Dg is the molar diffusivity of

the gas component in the liquid, and R is the radial location of

*the bubble wall. In general, R = R(8, ,t). The gas concentra-

tion is taken to be saturated at the bubble wall: C = Csat.

- With this assumption, the gas concentration at the bubble wall

can be related to the partial pressure of that gas component in

the bubble by Henry's Law:

P H C H C(r=R) (6.3)
g sat

where Pg is the partial pressure of noncondensible gas within

the bubble (taken to be uniform throughout the bubble) and H is

Henry's constant at the liquid temperature, a property of the

gas-liquid combination.

4%
P-.
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As the bubble grows or shrinks, noncondensible gas will be

transported across the bubble wall. The net transport of gas

into the bubble can be related to the gradient of gas concentra-

tion in the liquid at the bubble wall:

Dg f~ anC r=R dS = (6.4)
S

where S is the surface of the bubble, n is the direction normal

to the bubble surface, and hg is the time rate of change of

the total number of moles of gas, ng, within the bubble.

6.2.2 Boundary Layer Solution for Gas Concentration

A general, detailed solution of equations (6.1-6.3) would

likely involve a time consuming numerical approach, such as a

-. '. space and time dependent finite difference scheme, and is not

necessary for many cases of interest. Plesset and Zwick (1952)

and Forster and Zuber (1954) obtained a solution to (6.1-6.3)

for the case of an isolated spherical bubble for which

appreciable concentration gradients are confined to a boundary

layer of thickness 6 which is small compared to the bubble

radius:

D 1/2 R 2 C

C t rI dx. (6.5)0- 0 ]fo t R4 (y) dy 11/2I

This expression applies to the first order approximation of the

bubble radius, R = ao(t). A similar relation is found

applicable to R = ao(t) in the heat transfer study (see

Section 5.0 and Equation 5.46). Equation (6.4) can then be

expressed as
I.

1
d
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ao B I = ng

a 2  ac (66
0 Dr r=a 0  4irD ' (66)o g

and substituted into (6.5) to obtain

jo ax
C C. [w Dg -1 / 2 t a - dx. (6.7)

4 =  C - 4-- a (y) dy 1/2

We now nondimensionalize the variables in (6.7) and define

= c/c.

n = n/n
g go

t, X = t/ T, X/T, Y/T , (6.8)

a. = ao/rb
0

r= r/rb
0

where

C. is the gas concentration for r-,

is a reference characteristic bubble radius,

ng ° is the number of moles of gas in a bubble of radius

rbo at equilibrium at t=O, and

= rboNP-WiP is the characteristic time for growth of a

bubble of radius rbo.

•... -- -, '.. .. . . . . . . . . . -. . . -. . . . . ' - . . . . . . . . . " . . . " % . - . . - . - . . " . , , " --. ,
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Equation (6.7) becomes, in nondimensional form:

n
1 I 1/2 90 ft g 1 dx .(6.9)

W Dg 2 0 -
/ 2

r t - ao (y)dy]

Let Pgo be the initial density of the gas in the bubble.

Then

ng g = 4 7 ro3 / Mg (6.10)
9 0 g 0 9

where Mg is the gas molecular weight and mg° is the mass

of gas in the reference bubble of radius rbo. Equation

(6.9) can then be written as

2 1/2r Pg

"/ D Mo / dx, (6.11)[:=i 3 [, g g =[ f . a (y )dy]-~f -- y /

a 0
x

for C. expressed in moles per unit volume, and Pgo in mass

per unit volume. If the dissolved gas concentration is

expressed as a volume fracticn (e.g., cm 3 of gas per cm 3 of

water), we will let C. be the concentration at infinity and

C = C Mg/P (6.12)

Then equation (6.11) becomes
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r b 1/2

1 [ 0  1 ] 17/2 dx (6.13)
= C-- WTu 0 f ! / "~3c g (y)dy]

x

where Cv is now a volume fraction concentration
v

nondimensionalized on C.. We will use expression (6.13) for

the transport of noncondensible gas across the bubble wall.

6.2.3 Equation of State Within the Bubble

The gas and vapor within the bubble are taken to comprise

an ideal gas mixture, and the equation of state for that mixture

is given by

(Pg + Pv) V = (ng + nv) Ru  T , (6.14)

where

Pg, Pv = partial pressures of gas and vapor,

Vb = volume of bubble,

ng, nv = number of moles of gas and vapor within the

bubble,

Ru = Universal gas constant, and

Tg = Absolute temperature of the gas and vapor mixture

within the bubble.

The temperatures of the gas and vapor phases are taken to be the

same, Tg. For an ideal gas mixture, each component also obeys

the ideal gas law:

* . ... *.--*-** **j-': -.. .. ... . . . .. . --. ..-.--.- *|.
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P V = n R Tg

v b g u g
Pv Vb = n v Ru Tg .(6.15)

In this analysis, the partial pressure of the vapor is fixed (at

the equilibrium value for the constant liquid temperature) while

Pg is allowed to vary with bubble behavior, mass transfer, and

the bubble energy balance.

We nondimensionalize with the characteristic value of pressure

change, AP, and the equilibrium values at the characteristics

bubble radius, rbo:

PgP = Pg/AP, Pv/AP
g v g v

n 'v = n/n nv/n
g g g 0  v 0

"Vb4 3) 3
Vb Vb/( 4 7 rb a3 (6.16)

The temperature is normalized on the liquid temperature, T1

Tg T /T I , (6.17)

Equation (6.14) can then be written as

(P +P V (n+ n) T (6.18)
g v b g v g(6

where

Aft

, ,%% .
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Ru n T1 Pgo
4 3 = (6.19)

3 rb 0 &P g0
3

since

ng R T1

Pg 9 1 (6.20)

b0

the partial pressure of gas in a reference bubble of radius

rbo at equilibrium for the initial liquid pressure and

temperature. Thus, the quantity B can be viewed both as a ratio

*- of the reference bubble gas partial pressure to driving liquid

pressure change or as a dimensionless universal gas constant.

Similarly, we write

g b = flg Tg

Pv V = B nv T (6.21)

Use of the ideal gas equations of state has introduced

another unknown, Tg, and thus necessitates use of another

condition. This is provided by the first law energy balance of

the ideal gas mixture within the bubble. Two cases are

considered. In the first case, the approximation is made that

the gas and vapor mixture temperature is constant and equal to

that of the liquid. This approximation is valid when the bubble

is initially at the liquid temperature, and changes in bubble

size occur slowly enough such that heat transfer can equilibrate

the bubble and liquid temperatures. The second, more compli-

cated case, involves writing the first law energy balance for

I

.1
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the bubble with mass transfer across its surface. This formula-

tion allows for Tg to differ from T1 without an arbitrary

adoption of a polytropic constant. Its use actually enables

determination of the effective polytropic constant.

In the first approach, the change in state of the

isothermal ideal gas is given by

PVb gV
g b constant = gV =

0nn nng

Pn2 = P -- 1 (6.22)

9 9 9 -3g go Vb 0 a 0

This provides a simple relation between the number of moles of

gas, the gas partial pressure, and the bubble volume at

different times.

6.2.4 Energy Balance

For the second approach, we consider the bubble wall to

constitute a deformable and permeable control surface and write

the first law energy balance for the control volume bounded by

that surface:

d U = - d W + ni hi dt ; i = v, g , (6.23)

where
*1

dU = Change in internal energy cf the control volume in

time dt,

J.V
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*1

dW = Work done by the control volume on its surroundings in

time dt,

ni = Net molar rate of mass transfer of component i into

the control volume, and

hi = Specific enthalpy of component i.

In (6.23), we have neglected changes in kinetic and potential

energies of the bubble and any heat exchange between gas and .1
liquid. We further assume that the bubble wall remains at the

liquid temperature T3, although the gas and vapor mixture
within the bubble is free to assume any temperature dictated by
(6.23). This is consistent with the neglect of heat transfer

into the liquid. The partial pressure of the vapor, Pv,

within the bubble is taken to be constant and equal to the

equilibrium vapor pressure at T1. Thus Pv remains constant

due to the assumption that the bubble wall temperature remains

at TI. Although Pv is constant, nv will change as the

bubble volume changes and vapor will condense or liquid vaporize

at the bubble wall. This results in a form of heat or energy

exchange between the bubble and the liquid that is accounted for

by the term nvhv of (6.23). The temperature of both qas and

vapor components crossing the control surface in either

* direction is taken to be TI, the temperature of the bubble

wall.

With these assumptions and the previous astmption of ideal

gas behavior for both the vapor and noncondensible gas

components, we can write

dU = cg  d(nv Tg) + c d(n Tg) (6.24)
VgV v,g

n h. = ( c + n c I  T 1  (6.25)

i.. . . i 1 V p*..g.p.g)*". .
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m

Here, ci,j is the molar specific heat of component j evaluated

at temperature Tm. The notation can be summarized as:

i = p, specific heat at constant pressure,

i = v, specific heat at constant volume,

j = g, specific heat of the gas component,

j = v, specific heat of the vapor component,

m = g, evaluated at the gas-vapor mixture temperature,

Tg, and

m = 1, evaluated at the bubble wall or liquid temperature,

TI .

The work term in (6.23) can be expressed as the boundary work in

*, moving the bubble surface

dW = (Pv + P ) dVb (6.26)

Combining (6.23-6.26) and rearranging, we obtain
cg d 9 d

c,v - (nv Tg) + c (n Ttv,g HE (ng Tg)

(P + Pg) Vb + (nv c l  + c 1 T1 . (6.27)= -) + (A p,v g p,g

We use the same nondimensionalizations as before and

c11m. = . /R (6.28)
49 cij
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We then write (6.27) in dimensionless form and obtain:

g d (n T ) + cg d (g ) =
v,V dE vg Vg d gg

1 P + Pg9) V b + (v cP,v + ml f (.9
Pg(Pv pv n fg Cp,g) . (6.29)

Recall that 8 can be viewed as a dimensionless gas constant or

as the ratio of P9  to AP.

Equation (6.29) together with the ideal gas equations of

state (6.18, 6.21) are the equations which must be solved for

the nonisothermal case in place of (6.22) for the isothermal

case. The complete set of simultaneous equations to be solved

consists of the bubble dynamics equations (3.11), the boundary

layer approximation for gas diffusion subject to Henry's Law

(6.3) and conditions (6.2, 6.3), and either the isothermal ideal

gas change of state equation (6.22) or the ideal gas equations

of state (6.18, 6.21) together with the first law energy balance

(6.29). This set of equations accounts for both dynamic and gas

diffusion effects on bubble behavior.

6.3 Solution of the Equations Due to Mass Diffusion

We now describe the schemes adopted for solution of the

coupled sets of equations described above for including bubble

dynamics and mass diffusion effects in bubble behavior, we

first approach the solution of the energy balance (6.29) by

choosing to allow it to determine the gas partial pressure Pg

and its rate of change Pg. With this scheme, we then utilize

(6.3, 6.13) to solve for ng and ng. This format is somewhat

arbitrary. However, we have found this to be much better

| ..................................
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behaved numerically then using (6.3, 6.13) to determine Pg.

differentiating to find Pg and using (6.29) to determine ng
and ng.

Combining (6.21) and (6.29) we obtain

cgPV+C (PV +  )+(P+P)V- 8(nvclv+ngcPg)= (6.30)
v,v v b v,gg b b+g v v g) =0 ( 6

where the condition that Pv is constant is employed. We

eliminate nv as a variable by relating it to Ag using (6.21)

nv =n P/Pg
nV g vg9

= p (g/P - n g 2 ) (6.31),nv v g g "

Thus (6.30) becomes

[1cg  Pv + cg  ( Pg +V ) + (P + P q
S , v b v, g Vb + Vb Pg) + g b]

- p p - -
-ic + ci ng v g _ g 0 .(6.32)
p,v g pv g 2 p,g (3

g g

The relation between specific heats for an ideal gas in

dimensional form is given by

cp cv Ru

or in dimensionless form

cv =c -1 . (6.33)

.
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We can thus express all values of cv in terms of the

corresponding cp quantities.

Using these expressions, equation (6.32) can be arranged in the

form of a differential equation for Pg:

g (A + B/P ) +P - E/P + F = 0 , (6.34)

where A,...,F are defined as:

p,v g v

p,g b 8  Cpg 03a 0-gl

E = i P
p,v g v

-1

-c9  P V /b - c n (6.35)p,v v b p,g g "

Equation (6.34) is solved by a Runge-Kutta procedure when

expressed as

- E/P - D P - F
P = g, (6.36)
g A + B/Pg

where A,...,F are taken constant and known for a given time

step.

-a.. . .*
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The values of the specific heats, p,g

and cp, u , are taken to vary only with temperature (a
"semi-perfect" gas assumption) and are evaluated using the

correlations of Van Wylen and Sonntag (1973, p. 683).

c = (a + b OP + d eq + e r )/R (6.37)
pu

where 8 = T/100, T is in *K, and cp is the dimensionless

specific heat. Values of the constants are:

a b d e p q r

H 20 34.19 -43.868 19.778 -0.88407 0.25 0.5 1

02 8.9465 0.0048044 -42.679 56.615 1.5 -1.5 -2

N 2  9.3355 -122.56 256.38 -196.08 -1.5 -2 -3

These correlations are stated to be within an accuracy of less

than 0.5 percent for temperatures (in degrees K) in the range

300 < T < 3500. For temperatures below or above this range, the

specific heats are taken as being constant at the values for

T=300 or T=3500 respectively.

Air is treated as a mixture of nitrogen and oxygen such

that cp(air) = 0.21 cp(O 2 ) + 0.79cp(N 2). Since the liquid

temperature is taken to be fixed for a given problem, Cp,g and
z.

cp,v do not vary and are evaluated once from (6.37) for the

specified liquid temperature. The specific heats dependent on

Tg are evaluated each time (6.36) is solved knowing the

dimensional value of the gas temperature Tg = Tg T1

where from (6.21)
4'
'I
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T g . TI Tg 0 T 1  t6.38)
S g g

The specific heats are evaluated each time Equation (6.36) is

° solved using this value of Tg based on the old value of Pg.

If isothermal conditions are assumed, Equation (6.22) is used to

solve for Pg.

The quantity of noncondensible gas in the bubble at any

time is obtained by rewriting equation (6.13). The interval of

integration in (6.13) can be split into two intervals to

separate out the current time step:

I(0,t) = I(0,t-h) + I(t-h,t) , (6.39)

* where h is the time step size and

b nI(a,b) : f a4g dy] 1/2 dx . (6.40)

The second integral is evaluated to avoid the singularity in

(t-x)-1/ 2 :

En
I(t-h,t) = 9t-h dx =

a 2 (t_) 1 /2
0

-2 n E-- 1/2L 2 ig/a2 (6.41)
:_2 Ix=t-h 9

a o0

' - -.p.. - , , . . , . . ,. , , - - . -. - , - . .. . . . . , . , . . , . . < , . . , . , . . . . . . . . ,
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where the tildes denote an average values over the interval from

t-h to t. We approximate these average values as:

n n (t) ,(6.32)

-~ a O(t) + a 0(t-h)
a 0 (6.43)

Expression (6.42) for ng was found to be better numerically

than the mean of the values of hg at t and t-h. Then

+~-ht a0(t-h)} (6.44)

Equations (6.13, 6.39, 6.44) can be combined to provide an

expression for 6()

- - ([a (t) + a (-
fl t)= 0 0 _____-I(Olt-h) ] ,(6.45)

where

[r b2]-/
2 ,

f(O1-hhn (x) dx . (6.46)
fth a( dy]"
f 0( )

OR................................................................
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Equation (6.45) is used to calculate ng(t). The value of

fg(t) can then be obtained by a simple trapezoidal rule

integration:

n (t) = n (t-h) + h[n (t) + A g (t-h)]/2

A higher order approximation could also be easily implemented.

The values of g and ng are utilized in solving (6.36) or

(6.22).

The algorithm employed can be summarized as follows:

1. At a time t*, all variables are known.

2. At time t*+h, the bubble dynamics equations are solved

for ao , ao with all other parameters evaluated at t=t*.

Then, the differential equations for all other components of the

bubble surface equation (see Equation 3.10) are solved with the

same evaluation of the parameters at the preceding time step.

3. Equation (6.45) for Ag(t*+h) is solved using the

values of ao , ao at t*+h and the value of Pg at t*. It is

then integrated to obtain ng(t*+h).

4. Equation (6.36) or (6.22) is solved for P using the

values of a O , Ao, and ng at t*+h and the values of the

other parameters at t*. Use of Henry's law yields Cv(t*+h).

5. Iteration is performed between stcps 3 and 4 above

until the calculated values of Pg for successive iterations

* are within a specified difference - or error bound. During this
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process, the "most current" values of the variables are used at

each step of the iteration.

6. When the criterion of step 5 is satisfied, all

variables are known at t=t*+h and the calculation returns to

step 1 with all variables known at time t=t*+h.

This process is continued until a desired time is reached.

Figure 6.1 shows a flow chart of the program GASCLD based on the

above algorithm.

6.4 Numerical Examples and Interpretation

A series of numerical cases were run on a VAX 11/750

computer using the developed program GASCLD. Only a few

- variables were investigated in order to demonstrate the

capabilities of the code and to gain some insight into the

influence of gas diffusion on bubble cloud dynamics. Figures

6-2 to 6-11 illustrate the results obtained. Bubble growth has

been considered following a sudden ambient pressure drop. Two

arbitrary particular values of the initial and subsequent

ambient pressures were considered. In these figures comparisons

are made between the behavior of an isolated dynamic-controlled

bubble (no gas diffusion), an isolated bubble with gas

diffusion, and a multibubble configuration with gas diffusion.

A preliminary investigation of the influence on bubble growth of

the initial concentration of dissolved gas in the liquid and of

the ratio c between characteristic bubble size and characteris-

tic interbubble distance was also conducted.

AFigures 6-2 to 6-5 each show a collection of cases of

normalized bubble radii, F = r/rbo, versus normalized times,



Tracor Hydronautics

-99-

= t/rb o VP/(Po - Pinf). In all four figures the

isolated bubble cases are presented for reference. When mass

transfer is neglected at the bubble-liquid interface a poly-

tropic compression law,

Pg Vk = (Pg V k ) at t = 0 (6.48)

has been adopted. For an isolated bubble comparisons are made

between the two extreme cases of no-gas diffusion: k = 1

(isothermal behavior) and k =1.4 (adiabatic behavior), and the

case where the mass transfer and the energy balance equations

are solved. For both cases considered here the adiabatic

assumption in the absence of gas diffusion gives closer results

to the solution of the diffusion problem. Based on the perfect

gas law (6.15), this result is to be expected when during the

.- bubble growth the increase in the number of moles of gas

entering the bubble overcomes the decrease in gas temperature in

the product (ng Tg) leading therefore PV to grow with V (and

not remain constant as k = 1 presumes). As we will see later in

Figure 6.10 the temperature drops in the initial phase of the

growth but recovers rapidly to maintain its value later in the

bubble growth history. In addition, with our assumptions of no

direct heat exchange between the content of the bubble and the

liquid, the initial phase of the bubble growth is adiabatic.

Comparison between isothermal, adiabatic and complete solution

results show that deviation between the three cases is more

significant when the growth is pursued for a much longer

nondimensional time. This is the case in Figure 6.2 where, the

pressure drop being less violent than in Figure 6.3, the growth

rate is slower.

40 '..-..~2* -- - **
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Comparisons between two initial gas concentrations can be

seen in Figure 6.2 As expected, for an isolated bubble, an

increase in the initial gas concentration, Co , leads to an

increase in the bubble radius attained at any time mostly due to

an increase in the amount of moles transferred. (As we will see

below in Figures 6.6 to 6.8, this change in CO affects more

significantly the effective polytropic coefficients. In a

multibubble system interactions become very significant when the

bubble sizes approach the interbubble distance. This is

reflected by an oscillation in the bubble radius similar to that

obtained in the heat transfer problem. Initially during the

bubble growth the modification of the imposed pressure field by

the presence of the other bubbles in the cloud reduces the

bubble size achieved. At any instant the bubble radius is

smaller than that of an isolated bubble. Two such radii are

shown in the figures (R 2 and R 3) and correspond to the sketch in

Figures 3.1 and 8.5. R 2 is the measurement of the bubble radius

along the cloud center direction, while R 3 is measured in the

opposite direction. Figure 6.3 shows the variation of these two

dimensions as functions of time for a set of values of the

spacing parameter c. It is obvious from this figure that bubble

interaction and deformation increase when the spacing between

bubbles is reduced. The presence of multiple bubbles introduces

a flattening of the bubble on its side closer to the cloud

center. This side has a slower growth than the other side. The

computed shrinking and oscillation of the bubble shape in the

latter stage of the growth needs to be investigated to assure it

does not result from a failure of the asymptotic approach. This

behavior, seen in Figure 6.3 for c =0.2, occurs at larger times

for the smaller values of c. All the computations presented

here were performed with a logaLithmic increment in the time

steps. Fiqures 6.4 and 6.5 present some of the results of
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Figures 6.2 and 6.3 with logarithmic time scales. A smoother

behavior of the curves can be seen with these scales.

Figures 6.6 to 6.10 show for various conditions the time

variations of the effective gas polytropic coefficients when gas

diffusion is taken into account. The two effective coefficients

used in these figures are defined as follows. The total

effective polytropic coefficient, K is defined base on the

Relation (6.48) and is computed at each time step using

K (Log P /P )/(Log V/Vo) (6.49)
(g 0g

The local effective polytropic coefficient, KX, is based on a

compression law which applies locally between two computation

steps

(Pg VK Z (PgV K Z) (6.50)g i  9p i+1

It is therefore computed using the relation

Ki = (Log Pg/Pg )/(Log Vi/Vi+i) (6.51)

Figures 6.6 to 6.9 show that the total effective polytropic

coefficient drops rapidly, at the beginning of the growth from

the value 1.4 to a minimum value which depends on the initial

gas concentration, Co . As seen in the figures this value can

become significantly smaller than one. Since at these later

times the gas temperature becomes practically constant, the

lower is the minimum value of K the stronger is the relationship

between the number of moles of gas diffusing into the bubble and

the bubble volume change. This can be reflected by the

apprcximate equation

.. . . - .. .- . . . . . . . " - . .. . • . . . *
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(V/Vo) 1-K = ng/ng (6.52)

derived from the ideal gas law with Tg assumed constant. This

might explain why the minimum value of K is smaller when Co is

increased. The local effective coefficient of compression, Kt

decreases much more significantly than K. From the initial

value of 1.4, KZ decreases practically to 0 later during the

growth expressing the fact that Pg and Tg become practically

constant during the growth.

The variation of both K and K, are much more sensitive to

the initial conditions, (such as initial gas concentration,

Co, and initial bubble size, Ro), than the actual bubble

radius history. This is probably due to the fact that K and

K, express only the gas thermodynamic behavior while the

" bubble radius behavior includes gas and vapor thermodynamic and

*" dynamic phenoma (pressure drop). These results are well

illustrated in Figure 6.9 where the influence of the initial

bubble radius is seen. No difference between the two cases of

initial bubble radii was seen in the radii versus time curves.

However, the effective gas polytropic coefficients are very much

dependent on these initial conditions. Figure 6.10 presents the

temperature histories for these two initial bubble radii. This

figure is typical of all temperature versus time curves.

Initially, the temperature drops significantly and attains a

minimum. Later, the temperature inside the bubble recovers to

reach the initial temperature and remains practically constant.

The minimum temperature achieved and the time to achieve this

minimum are functions of the initial conditions. This result is

related to the variations of K and Kt. The influence of

* _temperature change on the effective coefficients K can be seen
A'.

A.

A.. . . . . . . .* . . .. . . .. . . . . . . . . . . . . -
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in Figure 6.11 where the solution based on the energy equation

is compared with that where the temperature was imposed to

remain constant.

The above results should be extended to actual pressure

fields where the pressure variations are more realistic than a

sudden pressure drop and, more importantly, to longer

computation times where gas diffusion effects become more

significant. For such more practical situations the influence

of the magnitude of the pressure drop, P0 - Pinf, should be

investigated carefully.

%

.4

'4
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7.0 CONTINUUM MEDIUM APPROACH

7.1 Introduction

One major assumption of the approach presented above is

that in first approximation the imposed ambient pressure is

assumed to be instantaneously transmitted to the vicinity of

each bubble in the cloud. Therefore, both the compressibility

of the bubble medium and the influence of the liquid

motion generated by the other bubbles on the dynamics of the

bubble considered were neglected in the first order

approximation. This limits the validity of the study to very

low void fractions. The incompressibility assumption is valid

as long as the fluid velocity does not approach the speed of

sound. For single bubble dynamics, this does not usually happen

until the final phase of the collapse. Here, however, two

* factors contribute to limit the validity of the assumption.

First, the rate of implosion is higher for a cloud than for a

single bubble, and second, more importantly, the velocity of

sound drops considerably when the void fraction increases. This

underlines the need to account for the behavior of the cloud as

a whole in order to determine a more accurate value of the local

pressure driving the collapse of the individual bubbles. In

addition, this would have the advantage of limiting, for the

.' following orders of approximations, the number of bubbles

directly influencing the considered one through a time delay of

the propagation of the information from one bubble to another.

Indeed, the asmyptotic theory shows that the effective parameter

of the expansions is cc,, (where cl, defined by (3.13), is a

direct function of the number of bubbles), rather than

c = rbo/10. Introducing a motion equation for the bubbly

medium would limit the number of influencing bubbles to those in

4.
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the direct vicinity of the considered one, through a time delay

of the propagation of the information from one bubble to

another. In summary, if we account for a motion equation in the

cloud medium, the first order approximation of the preceding

approach becomes more accurate, and as a consequence the

following corrections will be smaller, making the approach valid

for higher void fractions, a.

7.2 Volume Average Method

Basically the classic methods used to describe a two-phase

medium are not much different from the singular perturbation

method presented above. The final description deals only with

the macroscale of the cloud.

The description of the macroscale of the cloud can be

obtained by averaging the various physical quantities defined in

the microscale. The two-phase medium is assumed to be

constituted of "particles" containing the host liquid and few

bubbles. This "particle" is small enough to be able to

distinguish the gaseous and liquid constituents, but large

enough to enable one to define significant volume average

quantities in the two-phase continuum. Therefore, each

"particle" appears in the macroscale as a fluid point M allotted

various physical and kinematic properties: a(M,t) is the local

void fraction, pm(M,t) is the local medium density, Um(M,t)

is the velocity, and Pm(M,t) the pressure, ...,etc. In such a

volume averaging descriptirn, if Vp is the volume of the

particle, X(M,t) the considered average quantity and x(m,t) its

local value in the microscale, we have the following definition:
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X(Mt) 1 f x(m,t) d V (7.1)
p V

The density of the medium is therefore defined by the

relation:

Pm(Mt) = p, [1-a(M,t) ] + p c(M,t) . (7.2)

The liquid is assumed to be incompressible and pt constant.

The void fraction, a(M,t), is defined as the relative volume of

gas in the particle. Usually pga is neglected, and the

density of the medium is written:

P (M,t) pt [1 - a(Mt) ] (7.3)
m

If Ut(M,t) is the average velocity of the liquid in the

particle and Ug(M,t) the average velocity of the gas, we

obtain comparable results to (7.2) and (7.3):

Ma (7.4)

~Rm PLI!, (1 - )(7.5)

and combining with (7.3),

Um U . (7.6)

The continuity equation is obtained by writing the mass

conservation of a volume of the bubble medium followed during

its motion. Using the average quantities defined above we can

write:

d ddpm
f-d Pm d  f JV( [t + PMV U d VI 0 (7.7)
V(t) v(t) 0 7
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Here the material derivative pertains to the medium velocity

Um or, with our assumptions, to UX because of Equation

(7.6):

d/dt = a/at + U V (7.8)
.4

Since Equation (7.7) is valid for any volume V, we obtain the

general equation:

S--+ V (PmUm) = 0 . (7.9)at m

A similar equation can be written concerning the number of

bubbles, n(M,t). Neglecting any complete bubble disappearance

or sudden generation, as well as bubble splitting and

coalescence, we can write:

• " Dn
+ n 7 • U = 0 , (7.10)Dt -

the material derivative, D/Dt, being defined as:

D/Dt = a/at + U V. (7.11)-g

The momentum equation of the bubbly medium can be obtained

in the same manner by using the momentum equations of both

constituents in the microscale and integrating over the
"particle" volume Vp. If we neglect the viscous forces, this

can be written:

[ i dt + AP d V 0 , (7.12)

a.p

I

I

* i



Tracor Hydronautics

-108-

the index i designating the liquid or the gaseous phase

depending on the position of the element of volume dV in the

microscale. If we account for the incompressibility of the

liquid this equation becomes:

di!t %.
P (1- a) d + Pga D f U V-U dV f AP.dV = 0

p p (7.13)

If we neglect the gas contribution to the momentum, and we

account for (7.6) we obtain the following approximate classical

momentum equation:

dU"
-(1 + V P = 0 (7.14)z£ ( - dt m"

where it is assumed that

VApi d V f pi pds V • 7 P (7.15)
V A

p p

7.3 Bubble-Liquid Relative Motion

The only equation left is that giving the bubble

translation velocity, Ug, which reflects the interaction

between the two phases of the bubbly medium. The study of this

equation is a whole subject of research in itself. Several

contributions exist which have dealt with more and more

complicated situations. When viscous drag is neglected, a very

interesting general expression for the motion of a deformable

bubble in a nonuniform potential flow was derived by Landweber

and Miloh (1980). If we admit, however, that the liquid flow

around an isolated bubble is linearly accelerated, and that the

bubble remains in first approximation spherical, we can write,

neglecting the bubble mass, a simpler equation as follows:

Z7!
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DU DU a0
3 = 3 - . ¢7.16)

Dt Dt a 0 (t -U

In this equation, the virtual mass of the bubble is considered

to be 2/3wa 3opt and the material derivative is related to

the bubble velocity as discussed by Prosperetti and Van

Wijngaarden (1976).

When other bubbles are present in the flow, corrections are

to be introduced in this expression, following Landweber's

calculations. Van Wijngaaren (1976) performed similar

corrections for a rigid sphere and obtained the expression:

d d
-- [ 2 (1 + 2.78 a)(U - UL) a = (1 - d (7.17)

A relationship similar to (7.16) or (7.17) was implemented

in the program CLDMAIN2 to account for gravity effects.

7.4 Micromorphic Continuum Description

In classical continuum mechanics the fluid is described

o geometrically by a field point M and kinematically by a velocity

field U(M). The averaging approach of the cloud medium, as

described in the preceding paragraph, is in this sense

classical. However, when a medium contains microstructure, as

is the case for a bubbly medium, a more refined description can

be obtained by assigning to M, in addition to the macroscale

velocity, U(M), other quantities which reflect the microscale

behavior in the "particle". In a first gradient theory, in

addition to the velocity field, U(M), a field of the gradients

of relative velocities in the microscale scale, X, is added

which defines kinematically the medium. The description can be

*4
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further refined by using higher order gradient theories.

Germain (1973) considered such approaches and, using the method

of virtual power, was able to derive the equation of motion of

the continuum medium accounting for the macrostresses, a, and

the microstresses, S.

In a first gradient theory the velocity in the microscale

can be written as
U'(m) = U(M) + XM) • Mm , (7.18)

where m is a point in the microscale (see Figure 7.1).

Consequently the acceleration, r', of m is derived and, by

equating at dynamical equilibrium the virtual power of all the

internal and external forces acting on the considered particle

(volume Vp) to the material derivative of the virtual power of

mass velocity of Vp, one obtains a dynamical equation of the

medium relating S, c, and r'.

To define X we consider the motion on a scale which is of

the same order as the microstructure. To do so for a bubble

cloud, let us divide the cloud medium into fluid "cells" each

enclosing an isolated bubble. In addition, we assume for

simplicity that the bubble center of mass and the "cell" center

of mass coincide at the considered time. Let U(M) be the

velocity in M induced by the rest of the cloud in absence of the

bubble, and V(B) the velocity of the bubble center, B. U(M)

would be the value of the velocity field assigned to M in a

classical fluid mechanics description.

The bubble radius is ao and its variations with time are

-given by the Rayleigh Plesset equation. This radial motion of

-... " . ,. . . . - .. -----.. -. .- "-- .. -.. ..-.-.-.- -. ' -'-'-~.. . . ., "-- .... € ..-.-.. - *.' -. , .,...',, ;.. .. • ..
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the bubble surface induces at a point m of the cell (Figure 7.1)

a velocity of value (ur " ! r'), where .Ir' is the unit

vector of the direction Mm. The total velocity u', at m is:

2oa a3

a'
u'(m) = U(M) + 00 , e ' + V [_0 (U(M) - V(B)) • e ') +

r 2 -r 2r' 2 -- -r (7.19)

where r' is the distance between M and m. The second term in

this expression is a source term due to the spherical bubble

oscillations, while the last term is a dipole due to the slip

velocity between the spherical bubble and the fluid, and could

include first order corrections of the bubble shape. For

further corrections for nonsphericity of the bubble, other terms

(singularities of higher orders) have to be included. By

differentiating (7.19) with respect to time and space one can

define an acceleration vector, r', and a strain rate tensor,

D'. Following Germain's approach, and using the principle of

virtual powers, one could then derive an equation of motion of

the cloud medium. We decided instead to start with a first

gradient theory and replace (7.20) by its Taylor expansion. We

follow in doing so the first calculations done by Michelet

(1980) in his graduate thesis.

The basic approximation used in this linearization approach

is based on the fact that Equation (7.19) is only valid in the

liquid portion of the "cell" (r > ao). It seems therefore

logical to write the velocity at m, close to the bubble

boundary, as a Taylor expansion of the value of u' computed on a

point of the bubble surface, S, (figure 7.1). This has the

advantage of eliminating the singularity of (7.19) for r' = 0.

*The obtained expression for u'(m) is then:

----------------------------------- ... *.*4 %. *. *1. * . . .
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u '(m) U(M) + [3a O + 4Vt cos - r 2 o + ao
0 0

31

+ [2 Vt sine - 2a r Vt sine] e (7.20)

where Vt = Iv(B) - U(M) I

When Vt is not accounted for, the expression of u'(m) reduces

to a form comparable to (7.18), which is much easier to

interpret than equation (7.20). In that case we obtain:

u '(M') U(M) + X • Mm + a • e (7.21)
-o - -- - -r"

where X and a are both tensors assigned to M and defined as:

X I-2 0 1, 3 a 1 (7.22)
0

I is the spherical unit tensor. We notice that in comparison to

(7.18), which describes a first gradient homogeneous

deformation, in (7.21) there is in addition to the gradient

tensor, X, a tensor a reflecting the presence of a source in the

cell. Equation (7.20) reflects in addition to this the presence

of a dipole. It could be written as

u' (m') M-U(M) + X- Mm + X' IMm e a - e +a e
-- - -Z z -r -Z

9
+con -(6 r' V cose) e , (7.23)t 6V a t -

0

where ez is the unit vector of the direction of U and V; X'

and a' play the same role as X and a but are applied just to the

direction of the translation. The last inhomogeneous ter,., is

more difficult to put in simple form.

.-..
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From the expression (7.20) we can now compute the

acceleration, then apply the principle of virtual power, to

obtain the equation of motion. Here again in the absence of

translation velocity Vt, the results are simpler to

*' interpret. In the absence of viscous effects these results can

*. be written as follows:

dU a
Pm [ -t + 3 K (a - 2 - , (7.24)

a0

*owhere K depends unfortunately on the cell geometry

Pm K= f Pi er dV . (7.25)

* V

c

If the cell and the bubble are symmetrical with regard to the

center of mass M, then K -0, and (7.25) reduces to the

classical equation of motion (7.14). Although it is unfortunate

that the cell shape seems to play a role in the model, K might

rather reflect an effect of the nonsphericity of the bubble.

When Vt is taken into account a whole series of "inertia"

integrals like (7.25) appear in the calculations. In order to

see what such a model might indicate we considered the case of a

spherical bubble in a spherical cell. In this case the motion

equation becomes:

dU a3 a
Pm - + [3+ - R- _ 6 a- + 0(a)](V - U) } = -vp. (7.26)

O 0

Here, R is the radius of the cell, and if we write

R aoa-I/ 3 , we have the result:

, -
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dU a
P {= + 3 -- -c1/3  + ci' - 2a2 + ](V U) - Vp

Mdt a 4
0 (7.27)

This surprising result (dependence on a-I/3 ) might be compared

with that obtained for the apparent viscosity of a bubbly flow,

which is 4u/3 . a-1 (Batchelor (1967), Van Wijngaarden (1972)).

In addition, due to the linearization of the velocity field

(first gradient theory) this model loses it validity for low

as5l'.

7.5 Example of a Spherically Symmetrical Cloud

Let us consider a finite-sized spherical cloud of bubbles

and define its radius, R(t), at time t, as the position of the

last outer shell of bubbles. The space is therefore divided

into two regions. For r > R(t), the medium is an incompressible

liquid of density pt, while the interior of the sphere,

r<R(t), is filled with a two-phase medium which can be defined

as in Section 7.3. We define at a point M(r), a radial liquid

velocity uk(r,t) and a radial bubble translation velocity

ug(rt). Similarly, we define a local void fraction c(r,t),

density Pm(r,t), bubble radius a0 (r,t), number density n(r,t),

and medium velocity um(r,t). The matching between the two

media states that at r = R(t) there is a continuity of

velocities and pressures:

R(t) = u (r,t) , (7.28)g

P (R,t) = lim p'(R, r', t) , (7.29)
r'-

4.

I r

i
% aE
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where r' is the distance in the microscale between a bubble

center and a cell field point. The continuity and momentum

equations in the liquid medium (r>R(t)) are easy to solve and

give, after neglecting viscous effects:

u (r) = Vg/4 r 2  (7.30)
-. , (7.31)

apt - t V - 2r. (7.31)

Vg is the total volume of the bubbles in the cloud,

4 fR dr . (7.32)
g 0

Inside the bubbly medium, due to the spherical symmetry,

the continuity equation also gives

0

u (r,t) (r) ; r < R(t) (7.33)

with

V(r) = 4 J r a(x,t) x2 dx (7.34)
0

If we are interested in the problem of the collapse of the cloud

under an imposed ambient pressure variation, P.(t), (20) can

be integrated between the cloud radius and infinity to give:

-P (t) + P (R) 4 2 R 4  (7.35)

Using (7.29), PL(R) can be related to the behavior of any

individual bubble of radius a 0 in the last outer shell of the

. .. ..- .. ... .-.. ... ., . ._ .. ... .... _. . . . .. ... .. ... .. -. " .... ,. .-.. .. . ,.: .- . , A,.:.
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cloud, using the Rayleigh-Plesset equation. Equation (7.35)

becomes:

-P(t) + Pv + Pg

21PI V + a 0 a 0 + 3 2 (7.36)

The cloud radius motion can be obtained by using an equation of

the bubble motion, for example, (7.16). This gives the

following second relation between R, a0 , and Vg:

a0  Vg2 a0+ 3 - + - V~ (7.37)
a0  4 wR2 2R 3  ao(3

A third equation, in addition to (7.36) and (7.37), is

needed to solve for R, a0 , and Vg. Withou% an assumption on a

proportionality between Vg(t) and a0 (t) or without penetrating

the cloud and solving for all a0 (r,t) to determine Vg, there

is no hope of solving the problem. We do not think the

proportionality assumption is generally justifiable even if at

t = 0 all bubbles in the cloud have the same size, since P(r,t)

would not generally be the same for any location r at a

subsequent time. However, an assumption similar to that done by

Morch (1980) could be done stating the Vg = n wa2a where n is

the number of bubbles in the outer shell. The need in general

to solve the whole problem is to be expected and is very
important because it shows that defining the cloud by just one

parameter, as a unique void fraction, is not sufficient to

describe its dynamics. Number and bubble size distribution are

other important variables to consider.

-I
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The problem presented above can be solved by combining the

multibubble approach with the global descriptions presented in

Sections 3.1 and 3.3. The approach of d'Agostino and Brennen

(1983) is very close to that presented in this section with the

additional assumption of small radius and pressure oscillations

and the neglect of bubble-liquid relative motion and bubble

interactions.

.4

-p

U
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8.0 CLOUD CAVITATION THROUGH A SIMULATED MULTIBUBBLE SYSTEM

8.1 Description of Experiment

Since it is difficult to measure the quantities ir.volved

within an actual cavitation cloud produced, for example, .n a

cavitation tunnel, we have resorted to the same techniques used

to study single bubble collapse, namely spark generated

bubbles. The fast discharge of high voltage condensors across

two submerged electrodes produces a bubble which, once attaining

its maximum volume, is not in equilibrium with the ambient

pressure. The growth, rapid collapse, and motion of the bubble

can be recorded by high-speed photography. In addition, the

pressure fluctuations caused by the bubble's dynamics can be

monitored by means of a pressure transducer. The idea we have

used based on this principle consists of placing a system of

nearby solid walls which, through reflections, generates a

fictitious cloud of bubbles composed of the actual bubble and

its images. We know from the method of images in potential

flows, that solid walls behave schematically as mirrors. For

this study, wall structures which depict symmetrical

configurations of N 4, 8, 12, and N > 12 bubbles were used.

A vacuum/pressure tank was built containing the electrodes,

transducer, hydrophone, and one of the various multiple wall

structures. The location of the spark gap was varied in the

test tank in order to control 0, the ratio of the maximum

characteristic radius of the bubble produced, Ro , to the

distance between the electrode tips and the apex of the wall

structure, ds . B is directly related to c, the ratio between

bubble characteristic radius and the bubble spacing. This

relation is a simple factor of proportionality which is geometry
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dependent. The spark-generating system was capable of obtaining

a voltage charge up to 16 kV on a 0.95 pfd capacitor. For the

purpose of these tests, a charge voltage of 12 kV was

consistently used. The system was made more versatile through

the addition of an electronic circuit which allows it to fire at

a controlled repetition rate which could be of a high

frequency. The relative locations between the components were

varied independently so as to study the effect of changing the

distance between the bubble and the walls.

The signals from the transducers and/or the hydrophone were

captured on a Nicolet 2090 digital oscilloscope and then stored

on floppy disks for later analysis. This oscilloscope has a

maximum digitizing rate of 50 ns per point and a bandwidth of up

to 7 MHz with a vertical resolution of 0.4 percent. The

* *. oscilloscope was triggered either from the initial pressure

pulse caused by the spark or from a signal from a variable time

delay circuit if the collapse of the bubble was to be

investigated using an expanded time scale. A Digital Equipment

Corp. VAX 11/750 computer was interfaced with the oscilloscope

allowing the digitized pressure-time data to be analyzed with a

Fast Fourier Transform. Figure 8.1 is a photograph of the

overall spark bubble test facility showing the spark generator,

test tank, and data acquisition equipment. Figure 8.2 is a

photograph showing the test tank, the electrodes, transducer,

and the multiple walls structure, in this case a cone. Figure

8.3 shows a representative curve of the pressure time signal for

a spark induced bubble and Figure 8.4 the Fourier transform of

the same data. For this particular case, the electrodes were

located 2.25 in. from the top of the cone. The ambient pressure

inside the tank was 13.1 kPa.

S.
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In this study, we tested a two-sided 90 degree corner (two

solid plates perpendicular to each other), a three-sided 90

degree corner (three solid plates perpendicular to each other),

a pentagonal base pyramid (five equi-sized triangles held

together), and a cone with a 60 degree angle at its apex. A

series of tests was run varying the distance from the apex of

each of the wall structures to the electrodes. For all tests,

the transducer was fixed at 6 inches below the electrodes, and

the ambient pressure was approximately 14 kPa. High-speed

movies were taken of the bubble growth and collapse for each

test, and the bubble radius history was measured from the films.

8.2 Discussion of Results

To analyze the high-speed films of the spark generated

bubbles, the model shown in Figure 8.5 was used consistently,

and shall also be used for the results presented in this

report. It shows the selected characteristic dimensions of the

bubble shape measured relative to the initial bubble center, B,

and the apex of the wall structure, point 0. Point 0 also

represents the center of the fictitious symmetrical cloud

configurations. Variation of R 2 with time represents a

measurement of the re-entering jet advancement. From the

high-speed films, it was observed that for all tests,

theoretically predicted, this re-entering jet formed and was

always oriented in the direction of the apex, or cloud center,

point 0.

The details of this jet formation (time of formation and

speed of advancement) differs significantly between the various

test cases. Figures 8.6-8.9 show the time histories of R2

• measured for several values of 0 in configurations of N = 4, 8,

*. '-<.:.'. *.*.-~*~-'.*: ..* . - .* * . . . . . . .
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12, and N > 12 bubbles. These configurations correspond to the

wall structures of the 2-D corner, the 3-D corner, the

pentagonal pyramid, and the 60 degree cone, respectively. All

the curves have been normalized using the following procedure

which tends to minimize the influence of spark energy variations

and ambient pressure variations between one case and another.

All bubble dimensions were normalized with an average maximum

bubble radius RO ,

Ro = (2R 1 + R2 + R 3 )/4.

Time was also normalized using Ro , the measured absolute

pressure in the tank, Pa, and the vapor pressure, Pv. The

characteristic time used for this purpose is the Rayleigh time,

TR,

TR = R0
,. a v

where p is the liquid density.

Close examination of these plots suggests that increasing

the number of bubbles increases the strength of the re-entering

jet, (R2 becomes more negative). While the results from the

simulated 4 bubble configuration show that the jet did not

penetrate past the original center of the bubble, B, at all, the

results from the simulated 12 bubble configuration and the

circular cone tests show a penetration past this point of more

than 40% of the maximum radius in some cases. Since the

strength of the re-entering jet gives an indication of the

degree of erosion from cavitation, these results verify the

*theoretical predictions about the increased cavitation erosion,

*.. . * . '. .-... - .. - . . .-... - ,.. . * .- . -
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*(increased strength of the collapse), from a cloud as compared

to a single bubble.

Another trend which is noticeable from these results is

that the jet penetrates further inward for higher values of B

(or e). This trend is shown in Figures 8.6-8.9 for all of the

bubble configurations, but becomes much more noticeable for the

higher density configurations (pyramid and cone tests) and the

closer interacting bubbles. Since higher 's correspond

theoretically to higher void fractions, this result agrees with

the theory in that stronger collapses are occurring for these

cases. This is also shown, perhaps more clearly, in Figure

8.10, which presents the variation of the minimum value of R 2

with 8. One can also see that for the N=4 and N=8 bubble cases,

a strong minimum also occurs at 0.09 < B < 0.11. This minimum

£ is noticed slightly for the N=12 bubble case and not at all for

N > 12 bubbles. This result which proved to be hard to check

with certainty with our testing facility indicates that there

exist optimum values of 8 (or e) for maximum collective effect

(increased collapse intensity, erosion, or noise capability).

Figures 8.11-8.14 show the radius histories for R3, the

measurement of the bubble radius along a direction toward the

center of the cloud. From these results, one can see that this

measurement is closely tied to R2. After the first collapse, R3

is seen to grow with increased B, and the bubble moves closer to

the center of the cloud. Again, the net result is that the void

fraction for the simulated cloud increases, subsequently

increasing the strength of the collapse as long as the generated

bubble does not touch the walls.

. -. * * -.
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Figure 8.15 shows the period of bubble oscillation with

respect to 8 for the various symmetrical configurations. It

suggests a lengthening effect in the bubble period for small and

large values of 8, with a minimum period occuring in the region

.07 < 8 < .13 for all the cases considered. One can see that

the strongest minimum occured during the tests run with the 60 °

circular cone. The data from this figure and that of Figure

8.10 suggest an optimum value for 8 for maximum noise and

erosion within the range considered for the test. This optimum

seems to be at or near 8 = 0.1 for all of the bubble

configurations. This result is consistent with the noise

measurements performed using a hydrophone. Figure 8.16 shows

the peak pressures plotted against 8 for each of the bubble

configurations. One can see that the highest pressures were

recorded within a small range of 8, (0.7 < 8 < 0.13). Also, the

peak pressure increases with higher bubble density configuration

(higher N here) as the theory predicts. This data again

suggests the existence of an optimum value for 8 fairly close to

that mentioned above. At this optimum value, the effect of high

field pressures and large jet penetration seem to exist

simultaneously.

For all of the tests considered above, the designated

original center of the bubble was seen to move more or less

significantly toward the center of the cloud. This is shown

graphically in Figures 8.17-8.20, which show the motion of

the bubble center. The distance, 6 = R 3 - R 2, is shown versus

time for the different bubble configurations. One can see that

very little bubble "center" motion was occuring before the first

collapse. However, once collapsed, the bubbles both grow again

and move rapidly toward the center of the cloud. The shift

toward the center is greater for the higher density bubble
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configuration. This, again, relates directly to the results

discussed above, since large values for 6 correspond to smaller

values for R 2, or larger penetratio of the re-entering jets.

Figures 8.21 and 8.22 show typical sequences of pictures taken

from high speed movies. Bubble deformation and motion towards

the cone apex can be clearly observed.

8.3 Conclusions

A very extensive set of experiments was run to study the

influence of bubble number and spacing on the dynamics of a

simulated multibubble system. High speed photography and noise

measurements allowed us to follow with precision the dynamics of

spark-generated bubbles. However, as already discussed in

Section 4.4, a major impediment to confident conclusions is the

repeatibility of the tests. Indeed, the greatest source of

error in the interpretation of the results is the amount cf gas

in the bubble which is not easily controlled. With this in

mind, there is a strong indication that the collapse of the

simulated cloud is very intense for an optimum value of c, the

ratio of characteristic bubble size to bubble interdistance.

When c increases (starting from zero) the bubble period of

oscillation increases first, and the collapse pressure decreases

slightly. Later, a strengthening of the implosion occurs

accompanying an increase of bubble collapse and a shortening

of the bubble period. These results match, qualitatively at

least, the predicted theoretical behavior. As e keeps

increasing, the experiments show other pressure peaks, or a

collapse period minimum for certain particular values of e.

This result, at first unexpected, seems to correspond to

theoretical predictions for the case of high gas content in the

bubbles (see Section 4.4).
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9.0 ACOUSTIC DAMPING OF A PRESSURE FIELD BY A BUBBLE SCREEN

9.1 Objectives

In order to complement the spark-generated bubble

experience where simulated symmetrical cloud configurations were

submitted to strong oscillations, the acoustical behavior of a

bubble cloud (screen) was investigated. Here no symmetry of the

bubble configuration or size was involved and the imposed

pressure oscillations were moderate. The main objective of this

preliminary study was to find correlations between bubble size

distribution and bubble concentration and the transmission of

various frequency sound waves through the cloud. From single

bubble studies it is known that there is a linear relation

between bubble size and bubble natural frequency. The acoustic

- behavior of the bubble is also known to be a function of the

relative magnitudes of the natural frequency and the frequency

of the excitation. Acoustic resonance occurs when both

frequencies are the same. In the present tests interaction

between bubbles of different sizes in the screen come into play,

and the overall results should account for these effects.

9.2 Description of Experiment

To experimentally determine a relationship between bubble

size, density, and acoustic damping, a number of tests were

conducted varying the density of air bubbles in water and

recording the change in amplitude of acoustic signals across a

path of the bubbles. The signals ranged in frequency from 5kHz

to 70kHz. Photographs were taken at the time of each test to

determine numerical values for bubble size distribution.

7
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The tests were conducted in a large plexiglass tank

approximately 5 feet x 4 feet x 1 foot. The tank was filled

with water to a depth of 3.5 feet. Four porous nylon tubes,

HYDROPERM tubes, 5/8 inch diameter, 11 inches long, and 2

inches apart were placed in the bottom of the tank to generate

bubbles. The approximate pore size for these tubes was 1-3

microns. All but the top portion of the circumference of the

nylon tubes was sealed off in order to avoid the coalescence of

bubbles from the sides and bottom of the tubes. Each porous

tube was connected to a common pipe at one end. This pipe was

then attached to a compressed air line to regulate and measure

the pressure of the air being forced into the porous tubes. For

the purpose of these tests, the air pressure in the tubes ranged

from 6 psig to 16 psig.

#. Two hydrophones were placed in the water 9 inches apart and
21 inches below the surface of the water. One hydrophone served

as a signal transmitter, and the other as a signal receiver.

The transmitting hydrophone was a rubber booted, ceramic

cylinder type with a practically flat response up to 15kHz and

±3dB deviation between 15 and 30 kHz. A KSP UT-114 hydrophone,

having a flat response up to 30 kHz and ±3dB oscillations up to

50kHz, was used as a signal receiver. Signals were produced at

various frequencies using a Wavetek Model 113 frequency

generator, amplified with a McIntosh MC75 audio amplifier, then

transmitted by the hydrophone. The signal was then picked up by

the receiving hydrophone, where it was first amplified then

filtered to eliminate excessive low frequency noise (f< 500

*, Hz). The received signals were monitored with a Hewlett Packard

3580A frequency analyzer, (maximum frequency of 50 kHz), a

*. Keithley 197 digital multimeter, and a Nicolet 2090 digital

oscilloscope. Figure 9.1 is a diagram of this experimental

.* .".." .* * * .. . . . . - - "-"- " • . . .' . - *- ..... .
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set-up. Figure 9.2 shows a photograph of the actual tank itself

with the production of bubbles by 16 psig air pressure being fed

through the porous tubes. It shows the arrangement and iccation

of the two hydrophones with bubbles passing between them.

Signals of various frequencies were first generated with no

air bubbles being produced in the tank. The strengths of these

signals as measured by the multimeter were recorded for later

comparison with those transmitted across a stream of air

bubbles. In this manner, the amount of signal damping which

occurred at each frequency due to the bubbles could be

determined. This could then be related to a characteristic

bubble size distribution by analyzing the photographs taken at

the time of each test.

.4.* 9.3 Experimental Results and Discussion

Figure 9.3 shows the results of some of the early tests run

with the above described apparatus. The values for the air

pressure ranged from 8 psig to 16 psig and the results were

somewhat encouraging. The highest damping (ratio of rms signal

emitted minus signal detected to signal emitted ) occurred at

the higher bubble densities, as is expected. However, the sharp

drop in the amount of damping which occurred at around 40 kHz

for most of the tests could not be explained from the

characteristics of the bubbles themselves.

After some searching, it was discovered that the behavior

of the curves shown in Figure 9.3 was due, in fact, more to the

response of the hydrophones than to the size of the bubbles. To

correct this, the receiving hydrophone was replaced with the

one described above; whereas before, this hydrophone had been

* ................
.
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one similar to the transmitting hydrophone. With two practically

identical hydrophones being used, the variations of the

frequency response which were occurring at the higher

frequencies were being overly amplified. Figure 9.4 shows the

calibrated frequency responses of both hydrophones.

With the new receiving hydrophone in place, a new series of

tests was conducted to determine the range of frequencies at

which the most acoustic damping would occur. Figure 9.5 shows

the results of a test run at an air pressure of 10 psig. The

plot presents both the percentage damping which occurred with

bubbles and the amplitude of the received signal with no bubbles

being generated in the tank. It suggests that most of the

damping is occurring with frequencies in the range of 20-50kHz.

But the response of the signals with no bubbles is still

suspicious with sharp spikes at about 35 and 50kHz. To

determine any effect this may still be having on the shape of

the damped signal, a voltmeter was added to the experimental

set-up to monitor the input signal to the transmitting

hydrophone. A new test was run maintaining the output signal

constant in the absence of bubbles and recording the input

voltage necessary to do so over the range of frequencies of

interest. Then, with bubbles being produced, the measured input

voltage at each particular Frequency was matched to that

recorded with no bubbles. The corresponding amplitude of the

output signal was then recorded. The results of this test are

shown in Figure 9.6. One can see that, although the maximum

amount of damping is slightly lower than that shown in Figure

9.7, the overall behavior is still very much the same.

Figures 9.7 and 9.8 are photographs taken from the front of

the tank of the bubbles at 10 and 16 psig air pressures,
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respectively. The photos suggest that there exists a range of

bubble sizes and that the sizes changed very little with the

increasing air pressure in the tubes. This would explain

qualitatively the results presented above. The distribution of

bubble sizes is responsible for the range of frequencies over

which acoustical damping of the signals has occurred. Similar

results for tests of various air pressures in the porous tubes

suggest that the bubble sizes were similar for all the tests, as

is evidenced by these two photographs.

In the two photographs, Figures 9.7 and 9.8, can be seen

three small wires, 5, 10, and 15 mils, used for scaling purposes

when analyzing the photographs for bubble size distribution.

Figure 9.9 shows the spectrum of bubble radii as was determined

from the photo in Figure 9.7. It shows that most of the bubble

radii fall within a range of 0.05 mm to 0.30 mm. This is only a

rough estimate of the sizes due to the fact that the bubbles are

too small to be accurately measured. However, when comparing to

theoretical considerations, these results seem to be accurate.

Figure 9.10 shows graphically the theoretical relationship

between bubble size and resonance frequency for an isothermal

compression law. From it, one can see that the particular

bubble size range given above corresponds theoretically to

frequencies of 10-55kHz. This is a very good match with the

experimental results presented above. The wide range of

frequencies that are significantly damped (15 < f < 60 KHz, in
Figure 9.6) corresponds to the measured bubble sizes. However,

as seen in Figure 9.9, the acoustical measurements seem to

indicate a higher content of smaller bubbles than visually

observed. This could be due to higher modes of bubble

oscillations or to deviations from the simple resonance

frequency-bubble size relationship shown in Figure 9.10.
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To further verify the relationship between bubble size and

acoustically attenuated frequencies, the experimental apparatus

described earlier was slightly altered in two separate ways in

an effort to increase the size of the bubbles being produced in

the tank. In addition to these alterations, bubbles were also

produced by electrolysis with electrical wires. These bubbles

proved to be too small for our purposes (i.e., natural frequency

too high for the instrumentation). The first change consisted

of placing in the tank a set of stainless steel sintered tubes,

(pore size = 5 microns), in much the same arrangement as the

original nylon tubes. These tubes were again sealed along all

but the very top portion of the circumference. Signals of

frequencies ranging from 1-50 kHz were generated in the tank and

the results showed that a considerable amount of damping was

occurring at practically all the frequencies within this

spectrum. While these results were useful in showing

attenuation of lower frequencies than the HYDROPERM tubes, they

did not exhibit the definite shift in frequency bandwidth as had

been hoped for with this new apparatus. Apparently, with the

sintered tubes, bubbles with a very wide range of sizes were

being produced.

As a second attempt to produce bubbles of a noticeable

difference in size from those produced by the nylon tubes, an

aluminum tube with drilled holes, 0.006 inch diameter, was used

to generate bubbles at the bottom of the test tank. Figures

9.11 and 9.12 show photographs of the bubbles produced from this

apparatus taken at air pressures of 3 and 7 psig, respectively.

Again, inspection of these two figures shows that the size

distribution of the bubbles being produced at these pressures

*changed very little if at all. As before, a size distribution

was dete.mined from the photographs and is given in Figure
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9.13. This figure suggests that most of the bubble radii were

within a range of 1.22-1.45 mm. From Figure 9.10, the damped

frequencies for this range of bubble sizes should fall between

1.9 and 2.2 kHz. Figure 9.14 shows the actual experimental

results of the tests run with these bubbles. Problems related to

data reproduction at various dates can be observed in this

figure. Peak damping occurred at about 2 kHz and a much

narrower bandwidth of frequencies was being attenuated by the

presence of the bubbles. This corresponds very well with

theoretical considerations since a spectrum of larger bubble

radii (>1 mm) results in very little variation in resonant

frequency, whereas a range of bubble radii <0.5 mm will produce

a much larger bandwidth of resonant frequencies. For the purpose

of these tests, no results could be obtained at frequencies

lower than 2 kHz because of an increased noise to signal ratio

at these frequencies, but the results do show the shift toward

lower frequencies with increased bubble size as was expected.

*This set of tests give some preliminary but very useful

information on the study of acoustic wave propagation through a

bubbly medium

4.
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10.0 CONCLUSIONS AND SUMMARY

The main achievement of the study described in this report

is the extension of the study of single bubble dynamics to

multibubble dynamics. Within the restriction that

characteristic bubble size is small compared to interbubble

distance, the dynamics of a bubble cloud was investigated.

Dynamic effects in the absence of heat and mass transfer were

first considered. The matched asymptotic expansion method was

used and enabled derivation of differential equations for the

bubble shape components at the various orders of approximation.

These were solved numerically using a multi-Runge-Kutta

procedure, and the corresponding numerical code was implemented.

Later, heat then mass transfer were accounted for. When,

during a significant portion of the imposed pressure field

history, the liquid is superheated (its temperature is higher

than the liquid vaporization temperature at the imposed

pressure) or gas supersaturated (the concentration of dissolved

* gas is higher than the 3aturation concentration at the

noncondensible gas pressure in the bubbles), heat and mass

transfer at the interface occur at a rate high enough to

interfere with the dynamics of the bubble growth or

oscillations. In that case, the dynamic equation of a bubble in

the cloud is coupled to the heat or mass transfer equation by

the value of one (or both) of the partial pressures of the

liquid vapor and noncondensible gas inside the bubble which are

then transfer dependent. We have solved this problem when (as

for single isolated bubbles) the liquid properties or conditions

are such that the variation of the liquid temperature or the gas

concentration in the liquid occurs primarily in a thin boundary

layer at the bubble wall. In that case an integral equations
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relates bubble dynamics and heat or mass transfer at the bubble

interface. Two numerical codes were developed to deal with the

two transfer problems.

Other aspects of the problem were also considered in this

study but were not pursued as deeply as the multibubble approach

due either to limited time and resources or to their showing

little promise based on initial feasibility efforts. The most

promising of these approaches have been summarized in this

report. Some others, such as the determination of the unsteady

pressure field generated behind an oscillating sheet cavity have

not been addressed in this report. The task turned out to be

much more involved than originally thought if a significant new

contribution was to be achieved. The effort was redirected

towards a more thorough analysis of the other tasks.

A continuum medium approach was developed for the general

description of the two phase medium composing the cloud that

shows promise. As do most continuum approaches, this method

applies to the case of low void fractions. It enables

expression of the conservation equations in the cloud medium.

The micromorphic method used consists in decomposing the medium

into cells in which the bubble dynamics are considered. One

shortcoming is the appearance of an additional term arising from

the averaging procedure which depends on the geometry of the

cell. Dependence of the equations on an inverse power of the

void fraction indicates they are invalid for extremely low void

fractions. These difficulties are classic with averaging

methods and can now be dealt with using newly developed

renormalization techniques. This should be the next step

* towards the improvement of this continuum theory.
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A fundamental experimental program was conducted in

parallel with the theoretical effort described here. Systematic

observations of bubble dynamics using high speed photography and

measurements of acoustical pressures were conducted.

Spark-generated bubbles were produced at precise locations near

complex solid wall geometries. By application of the method of

images, the bubble behavior near the solid boundaries is similar

to that in the presence of a set of bubble images in the wall.

By varying the wall geometry the number of simulated interacting

bubbles can be varied. The interbubble distance was set by

controlling the distance between the electrode tips and the

solid walls. The size of the bubble generated was varied by

changing the discharge voltage and the tank ambient pressure.

Observations confirmed and complemented the theory since cases

of both low and high void fractions could be studied. Within

the experimental error, (mainly due to a lack of control of the

amount of gas in the bubble), preferred void fractions (or

ratios of bubble characteristic radius to interbubble distance)

which generated the strongest bubble collapse and the highest

pressures were observed. These results qualitatively confirmed

the theoretical results.

A set of experiments of a more preliminary nature concerned

sound wave propagation through a sheet of bubbles. Bubble

sheets were generated in a large tank using microporous,

sintered, and drilled tubes. Sound pressure waves were then

emitted on one side of the sheet using an active hydrophone.

The transmitted wave was detected with another hydrophone. By

varying the frequency of the emitted signals and the

characteristics of the bubble generator, correlations could be

made between the attenuation of the acoustic wave through the

bubble screen and the size distribution of the bubbles.

*. m % .* . . % .. * . s;- . . *. . 7 ' ..
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Several numerical codes were implemented as a result of the

multibubble cloud theory developed in this program. These

programs consider several aspects of the problem. CLDMAIN

neglects heat and mass transfer and allows the user to study the

behavior of a symmetrical bubble cloud configuration. In its

latest verison, CLDMAIN2, several pressure field shapes can be

investigated -- e.g., sudden pressure rise, pressure drop for a

finite time period, pressure field due to a venturi or over a

foil shape, ... etc. The error at each step of computation can

be bounded by an imposed value. This procedure is used to

continuously adjust the calculation time step to minimize both

errors and total computation time. This code has been

extensively exercised to investigate bubble cloud behavior. Due

to the symmetry of the cloud, very dramatic results can be

observed. A cumulative effect is observed which tends to

reinforce any pressure deviations from the ambient value due to

bubble dynamics. For instance, during the initial bubble growth

period the positive deviations in the presence of several

bubbles reinforce each other to slow down the initial bubble

growth. This effect can, however, be reversed later when the

deviation pressure becomes negative and can lead to large bubble

sizes. The most dramatic effect is observed during bubble

collapse. It is known that large pressure rises are generated

at the end of the collapse. These pressures are increas-d when

several bubbles are present and also reinforce the collapse of

each individual bubble. Therefore, collective bubble collapse

can generate pressures orders of magnitude higher than those

produced by single bubble collapse. The cumulative effect is

mainly due to the fact that each bubble ends its collapse under

the influence of pressures generated by the collapse of the

*other bubbles orders of magnitude higher than the imposed

ambient pressure. This would tend to explain the observed high

S~.]
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erosion intensities and the bending of some propeller trailing

edges.

When the bubble cloud geometry is asymmetrical the

pressures generated by the various bubbles are not necessarily

in phase. Cumulative effects are therefore reduced in intensity

and the very large increases in the collapse energy found with

the symmetrical CLDMAIN code are tempered. A similar result is

obtained when bubble initial sizes are not identical or when a

finite sound speed is taken into account to delay pressure

propagation from one bubble to another. Two main codes have

been developed to deal with these asymmetries: MULTIBBL and

MULTICOMP. For both codes the user inputs bubble size and

distribution, and the program computes the individual bubble

dynamics under the influence of the other bubbles in the cloud.

In addition, MULTICOMP accounts for time delays between the

arrival of pressure signals from different bubbles based on a

finite sound speed imposed by the user.

For heat and mass transfer, two separate codes have been

implemented: HOTCLDS and GASCLD. Both consider a symmetrical

cloud configuration and couple the multibubble dynamics problem

with the problem of heat or mass transfer at the bubble liquid

interface. Mass and heat transfer are both seen to reduce

bubble growth rate. Bubble interactions also play a significant

role in bubble growth -- mainly by modification of the pressure

field. This interaction results in a reduced growth rate which

makes the bubble radius at any given time smaller than would be

found for an isolated bubble. The temperature drop at the

bubble wall in a multibubble configuration is smaller than would

be found for an isolated bubble. The dissolved gas concentra-

tion in the liquid exhibits similar behavior. The effective gas
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compression law is seen then to vary rapidly from an adiabatic

behavior at the beginning of the growth to an isothermal

behavior.

In conclusion, we have conducted an in-depth study on the

fundamental aspects of multibubble cloud cavitation. The

results of this study explain the intense erosion associated

with the phenomena. Several codes were developed and

implemented as a result of the theoretical study and can be

used as tools for further study of various aspects of the

problem under particular conditions of interest.
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TABLE 1. VALUES OF THE NUMERICAL CONSTANTS

USED IN THE COMPUTATIONS

N C1  C 2  C 3

10 0 0

2111

3 2 1.732 1 .25

5 3 2 1

12 8.616 4.53 0.41

N: Number of bubbles

C3 A ()j) 3(3 COS 2ei-1 )/(3 COS li-
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BUBBLE NO. COORDINATES RADIUS

x y Z

1 6 3 6 0.335

2 5 3 3 0.841

3 3 1 1 0.159

4 5 2 1 0.520

5 7 7 3 0.415

6 4 4 5 0.377

FIGURE 4.34 -RANDOM BUBBLE DISTRIBUTION AND SIZES
(Corresponds to results on Figure 4.33)
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FIGURE 8.1 -OVERALL VIEW OF THE SPARK BUBBLE
GENERATOR FACILITY
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FIGURE 8.21 -GROWTH AND COLLAPSE OF A SPARK GENERATED BUBBLE
INSIDE CONE. d.= 4 inches, AP =1.4 x 104Pa, TIME

PER FRAME =0.249 ins.
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