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distribution of the bubbles,

Several numerical codes were implemented as a result of the multibubble cloud

l theory developed in this program. These codes have been exercised to investigate

. ! bubble cloud behavior, A cumulative effect is observed which tends to reinforce any

: pressure deviations from the ambient value due to bubble dynamics. The most dramatic
effect is observed during bubble collapse. The cumulative effect is mainly due to the
fact that each bubble ends its collapse under the influence of pressures generated by oy
the collapse of the other bubbles orders of magnitude higher than the imposed ambient -
pressure. This would tend to explain the observed high erosion intensities and the
bending of scme propeller trailing edges. Mass and heat transfer are both seen to
reduce bubble growth rate. Bubble interactions also play a significant role in |
bubble gdrtwth -- mainly by the modification of the pressure field, This interaction ;
results in a reduced growth rate which makes the bubble radius at any given time
smaller than wouldbe found for an isolated bubble, The dissolved gas concentration in
. the liquid exhibits similar behavior. The effective gas campression law is seen then
i to vary rapidly from an adiabatic behavior at the begimning of the growth to an

*  isothermal behavior.
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1.0 INTRODUCTION

The design criteria for high-speed ship propellers involve
tradeoffs between efficiency and cavitation, and strength and
vibration of the propeller. Operating in ship wakes at
relatively low cavitation numbers, the propeller will, at least

LSS

intermittently, cavitate, inducing erosion of the blades, loss
of efficiency, noise, vibration, and occasionally structural
failure of nearby plating. These harmful effects are mainly due
to the collapse of unsteady cavities. These include individual
bubbles as well as sheet cavities and "clouds" (Figure 1.1).

Adequate and increasingly sophisticated theories for
individual bubble growth and collapse exist (see the reviews by
Plesset and Prosperetti, 1977, and Hammitt, 1980). While the
52' transition to sheet cavity is not well understood, a large
number of experimental observations of sheet cavitation are
available (Shen and Peterson, 1979, Bark and Barlekom, 1979, and

Bark, 1985). A steady, then unsteady, theory for sheet

s'a%e 0 2" s

cavitation was recently developed (Tulin, 1980, and Tulin and
Hsu, 1980). Downstream of a "steady" sheet cavity a region of
high population of tiny bubbles can be observed and is
especially known to be associated with erosion. However, as
concluded from observations by Tanabayachi and Chiba (1977), an
unsteady sheet cavity is required for the formation of coherent
E clouds of very fine bubbles. These clouds are either detached
from the frothy mixture at the trailing end of the unsteady
sheet, or generated in a finite region of the liquid downstream
of the unsteady sheet where significant fluctuating pressures

L el
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exist.
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As the pressures generated by single bubble collapse are
not strong enough to explain the intense erosion in the subject
region and the high forces needed, for example, to bend the
trailing edge, cloud cavitation has been held responsible since
Van Manen's (1963) work. This is supported experimentally by a
very close correlation between the dynamics of these clouds and
the sharpest and highest pressure pulses detected on an
oscillating hydrofoil (Bark and Barlekom, 1979). Similar
phenomena have been observed with ultrasonic cavitation (Hanson
and Mérch, 1980).

Apart from some information on the frequency of generation
of cloud cavitation, the experimental observations and
measurements are very qualitative and do not allow at the
present time any quantitative predictions. In addition, the
lack of understanding of the dynamics of such cavities makes it
impossible to explain any scaling effects and to correct for
them. Theoretical and fundamental studies are thus needed as
guidance for future design and experimentation.

To our knowledge, since the early work of Van Wijngaarden
(1964) only a few publications by M¢grch (1977, 1980, and 1982)
and Hanson and Mgrch (1980) have dealt theoretically with the
problem of "collective bubbles collapse"™ or "cavity cluster
collapse."” However, a large amount of literature has been
devoted to the modeling of bubble-liquid mixture behavior using
either a continuum medium approach or a "two-fluid" approach
(Zwick, 1959; Van Wijngaarden, 1972, 1976, 1980, and 1982;

tuber, 1964; Ishii, 1975). This subject has recently regained a

lot of interest as is shown by several very recent publications
(D'Agostino and Brennen; 1983, Rubinstein, 1985; Caflish, et.
al, 1985a-b; Ng and Ting, 1986; Miksis and Ting, 1986;...etc.)
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In order to explain the phenomenon of propeller blades bent at
the trailing edge, Van Wijngaarden (1964) considered the case of
a uniform layer of cavities on a solid wall. He studied its
unidimensional collective collapse when the surrounding fluid is
suddenly exposed to a pressure increase. He derived the
continuity and momentum equations for the layer, neglecting the
convective and dissipative terms and assuming that the volume
fraction of gas is small enough to warrant such approximations.
However, he did take into account the individual bubble radial
motion and translation, neglecting viscous effects. Solving the
derived system of equations, Van Wijngaarden found a
considerable increase of the pressure along the wall due to
collective effects.

Recently d'Agostino and Brennen (1983), using an approach
similar to that of Van Wijngaarden, considered the unidimen-
sional problem of a spherically symmetric cloud. Considering
small harmonic fluctuations of the tar field pressure, they
investigated the cloud response for various oscillating
frequencies. Neglecting bubble-liquid relative motion and
bubble interactions, they obtained very interesting results on
the oscillations of the whole cloud comprised of equal sized
bubbles. Cases for which the natural frequency of the cloud is
much smaller than the bubble frequency were found. A shielding
of the cloud core by the outer layer was obtained when the
forcing frequency was higher than the individual bubble
frequency. The neglect of the bubble translation velocity and
of bubble interactions are, however, major assumptions which

require further analysis.

Mdrch (1977, 1980), concerned with ultrasonic cavitation
fields, considered the collapse of a hemispherical "cluster"
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p/ near a wall, which he extended by symmetry to the case of a
spherical cloud. He characterized the cloud only by its radius
and a uniform void fraction, a, constant in time, and developed
the following model. A pressure rise in the liquid leads to the
formation of a shock wave on the "cloud boundary."” The shock

PP e

moves toward the cloud center leaving no bubbles behind it and
thus constitutes the cloud boundary at each time. The collapse
time of a spherical cloud was found to be a times the Rayleigh
collapse time of a spherical bubble of the same initial radius.
Although a very interesting approach, especially for the
calculation of the collapse time, this model (like Rayleigh's

%

model for spherical bubble collapse) is incapable of adequately
calculating the pressure field. At the end of the collapse the

L AR RN N

cloud radius is zero, and the velocities and pressures are

™

infinite since the model does not allow the bubbles to contain
noncondensibles. The main physical assumption (presence of a
shock wave dividing the space in two regions, one containing
bubbles which do not sense the pressure variations until a later
time stage, and another one where all bubbles have collapsed) is
valid only for relatively high void fractions. The case of a
spherical single cavity of the same size as the whole cloud is
the perfect extreme example of the domain of validity of this
approach. Hanson and Mprch (1980) and Mgprch (1982) extended the
same model to a cylindrical cloud and a layer of bubbles on a

N A

solid plate.

In this report we extend the singular perturbation theory
earlier developed to study the interaction between collapsing

bubbles (Chahine and Bovis, 1981) to an asymptotic theory for

AANVVY

the collective behavior of a multibubble system. A general
- theory including mass and heat transfer is first presented, then

»

within the constraints of simplifying assumptions, particular
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studies are developed. The study of the purely dynamical
behavior of the bubble cloud is the most advanced, and codes for
a system of N equi-sized symmetrically distributed bubbles
(Chahine 1982 a,b,c; Chahine and Shen, 1985} as well as a code
for any given distribution of bubbles were developed and
extensively used. For instance, the symetrical program was
applied to the study of the use of a venturi as a cavitation
susceptibility meter and has been recently improved to include
gravity effects and the corresponding bubble liquid relative
velocity. Heat (Chahine and Liu, 1983, 1984, and 1985) and mass
transfer across the bubble-liquid interface are the subjects of
two separate studies. In both cases we have considered the
simplifying assumptions of a symmetrical bubble configuration
and of a thin boundary layer in which either temperature or gas
concentration varies. Two separate codes were developed, based
on these two studies, and some illustrative examples are
presented here. Liquid compressibility is modeled in an
additional code by use of an artificially input finite sound
speed and time duration for propagation from one bubble to
another. Systematic experimental observations of spark
generated bubbles near complex wall geometries simulating a
multibubble system were made in order to validate the theory.
Simultaneously, pressuresgenerated by the simulated cloud were
measured and analyzed (Chahine and Sirian, 1985). Acoustic
transmission through a sheet of bubbles was investigated using
bubbles generated by air injection and emitting and receiving
hydrophones.
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2.0 GENERAL FORMULATION OF THE PROBLEM

As a first step to study the general problem of a bubble
cloud in a flow field and near solid boundaries, let us consider
a cloud of bubbles in an unbounded medium of uniform pressure,

P., concentration of dissolved gas, C.,, and temperature,
T.. This corresponds to the case where the size of the cloud

' is small compared to the flow field characteristic length

- scale. P,, Csn, and T, are then the local values of the
pressure, the concentration, and the temperature in the flow
field in the absence of the cloud. We further assume the liquid
to be inviscid and incompressible and the flow irrotational.

These assumptions are commonly accepted and are justified in

: cavitation and boiling heat transfer studies except in the last
phases of bubble collapse. The neglect of finite sound speed

’: effects can also be unacceptable in the very early phases of
bubble growth (Baumeister and Hamill, 1969). However, we will
not be concerned with these early times (t<10‘as), especially
since numerical experiments have shown that the later history is

influenced very little by the value of the initial time at which

the computation is started. The bubble cloud behavior is sought

when the ambient pressure, P,(t), is time dependent.
In order to determine the flow field in the bubble liquid

medium and to obtain the motion and deformation of any bubble in
the cloud, one must solve the Laplace equation for the velocity

potential, ¢

A = 0 , (2.1)

subjected to kinematic and dynamic conditions on the bubbles’

surfaces.

PR xS
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The equation of a bubble surface in a coordinate system

moving with velocity Bl in the direction e;, is

k r = Ri(e,¢,t). qgi and Ei are respectively the local
curvature of the surface of bubble Bl and its unit normal
vector at the point M(r,6,¢). vy and TR are respectively the
surface tension of the liquid and its temperature at the bubble

; wall. Pg and P, are the partial pressures of the
noncondensible gas and the vapor inside the bubble. The

boundary conditions can then be written:

i i i i
- n . = [RM e+be]n ' (2.2)
lr=Rl(e,¢>,t) t 2
[ 3 1 2 i i
p[d - Ble_ + ve|?] = P_(t) - P.(T.) - P_(t)
-2 7 ' |r=Rl(0,¢,t) v R g
+ 2 yi(TR)gA (8, 60t) (2.3)

. where ¢ and the operator V are expressed in the moving
j coordinate system. Due to the low value of the vapor density,
py, the pressure of the gas and the vapor inside the bubble

can be assumed to be uniform as long as the spherical symmetry

is preserved.

Due to the relatively very short time of vaporization
compared to bubble dynamics and gas diffusion characteristic
times, the vapor is considered to instantaneously flow in and
out of the bubble, and P& is taken equal to the value of the
equilibrium vapor pressure of the liquid at the bubble wall

. temperature. When the bubble shape deviates moderately from a

: sphere we will assume that both the temperature along the bubble

wall and the value of the vapor pressure vary accordingly.

P Under this assumption, the pressure, P&, may be uniform inside

the bubble far from the bubble surface but accomodates itself to

...............
''''''''''

................
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------
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the temperature controlled value in the vicinity of the
interface. More details of the way this happens inside the
' bubble are not needed here since the flow field of the vapor is
\ of no relevance as long as the velocities are subsonic. The gas
: and the vapor are taken to comprise an ideal gas mixture and
possess the same temperature. The partial pressure of the gas,
Py, is determined using the ideal gas law as well as an energy
balance of the bubble content. The concentration of dissolved
gas at the bubble surface is related to the partial pressure of
; the gas within the bubble by Henry's Law,

Pl = u ct(rY , (2.4)

¥ 9
4
J »
” where H is Henry's constant.
d f? The values of the equilibrium vapor pressure Py(TgR) and
5 of the surface tension Y(TR) constitute the coupling between
5 the dynamic and the heat problems.

Similarily the value of P;(t) constitutes the coupling
v between the dynamic and the mass transfer (gas diffusion)
¥ problem. To determine the temperature at the bubble wall,

Tr( 6, ¢,t), one needs to solve the energy equation in the
liquid,

T + V6 « YT = D + AT, (2.5)

where D is the thermal diffusivity of the liquid. Equation
(2.5) is subjected to a boundary condition on the bubble wall
stating that the heat locally lost at any point of the interface
is used to vaporize an amount of liquid determined by the local

- ﬂ? bubble volume expansion rate. If py is the vapor density, L
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the latent heat of the liquid, and K its thermal conductivity,
the heat balance equation over the bubble surface can be written
in spherical coordinates:

2

R [f QET i R' (e,4,t) sine deds =
dn r=R(6,¢,t)
(2.6)
d RE1(0,6,t)
= DVLE [ff———~—3—"—- sin® 46 d¢] .

This equation is satisfied if the following elementary
equilibrium equation applies locally at the bubble surface:

9T = _V
— = K R . (2.7)

an i
r=R"(9,¢,t)

The concentration of gas in the liquid, C(r,e,4¢,t), is
determined by the diffusion equation

c’+g¢-gc=og-ac, (2.8)

where Dg is the molar diffusivity of the gas in the liquid.
This equation is subjected at the bubble wall to the condition
that the concentration at the interface is equal to the
saturation concentration at the partial pressure of the gas in
the bubble

cRY) = c. . . (2.9)

Csat is related to Pg by Henry's law, (2.4). The molar rate

of transport of gas across the interface, ﬁg, is related to
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-':.a -1 0-

the gradient of gas concentration in the liquid at the bubble
wall by the relation

. aC i? .
n_ = D /] = R™ (6,¢,t) sino do d¢ (2.10)

: 9 g I ,
- M |r=r(s,,t)

> &

Time integration of (2.10) determines at every instant the total
number of moles of gas, ng, in the bubble. The partial gas
pressure inside the bubble is then related to its volume and to

Ll

ng by a perfect gas equation of state. The only remaining

Dt

variable needed to apply this perfect gas law is the gas
temperature inside the bubble. The application of the first law
) energy balance for the bubble interior relates this temperature
to the boundary work due to volume change, the enthalpy transfer
X due to transport of gas and vapor across the bubble wall, and
4> change in internal energy of the bubble contents. This is

B expressed in detail in Section 6.

Equations (2.1) to (2.10) form, with the bubble energy
equation and the initial and at-infinity conditions (known T,
and P,(t)), a complete set of equations which must be solved
to determine the flow, concentration, and temperature fields.

<
o
-
-
]
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3.0 DYNAMICS PROBLEM: SINGULAR-PERTURBATION THEORY
3.1 Method

The following approach is applicable to a cloud of bubbles
of low void fraction. Provided that the characteristic size of
a bubble in the cloud, Ibor is small compared to the
characteristic distance between bubbles, &5, we can assume, in
the absence of an initial relative velocity between the bubble
and the surrounding fluid, that each of the individual bubbles
reacts, in first approximation, to the local pressure variations
spherically as if isolated. To the following order of
approximation, interactions between bubbles induce bubble motion
and deformation and are taken into account. This approach is an
extension of the earlier studies by Chahine and Bovis (1981) and
Bovis and Chahine (1981) on the collapse of a bubble near a
solid wall and a free surface (later presented more generally
for nonspherical bubbles by Chahine, 1982).

Since the problem possesses two different length scales,
2o and rp,, we can consider two subproblems: one
concerned with the macroscale and the other one with the
microscale. The "outer problem" is that considered when the
reference length is set to be tg. This problem addresses the
macrobehavior of the cloud, and the bubbles appear in it only as
singularities. The "inner problem" is that considered when the
lengths are normalized by b, and its solution applies to
the vicinity of the considered individual bubble of center
Bli. The presence of the other bubbles, all located at
infinity in the "inner problem", is sensed only by means of the
matching condition with the "outer problem". That is to say,

physically the boundary conditions at infinity for the "inner
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problem" are obtained, at each order of approximation, by the
asymptotic behavior of the outer solution in the vicinity of
Bl., Mathematically, one has to match term by term the inner
expansion of the outer solution with the outer expansion of the
inner solution using the same asymptotic sequence in the two
expansions.

3.2 First Order Approximation

The determination of the flow field and the dynamics of any
of the individual bubbles, Bi, is accessible once the boundary
conditions at infinity in the corresponding "inner region" are
known. Here we impose the restrictive assumption that the void
fraction is low enough so that the information about the
variation of the ambient pressure around the cloud, P4(t), is
transmitted to the microscale in a time scale much shorter than
the bubble collapse time. Therefore, in the absence of a slip
velocity between the considered bubble and the surrounding fluid
and when interactions are neglected, the only boundary condition ‘
at infinity is the imposed pressure variation P,(t).

When a finite value of the sound speed in the cloud medium
must be accounted for, P.(t) can be approximated by P, (t')
where t' = t -x/c and x represents the minimum thickness of the
cloud shell at the bubble location. To address the problem more
rigourously one must solve the two-phase medium flow equation
using, for example, a method similar to that proposed in Section
7.0. The "inner problem" is therefore spherically symmetric and
its solution is given by the well known Rayleigh-Plesset
equation. With the assumption that the liquid is inviscid and
incompressible, this equation can be written as follows when

mass and heat transfer are neglected
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a‘3k

= -P _(t) + P_ (a]

- -1 - a=1
1) + We (1 ag ) . (3.1)

This equation is slightly modified when P, and Pg are
dependent on the transfer of hcat or mass across the surface.
It is rewritten in those cases in the corresponding sections.
In this equation, where the superscript i is omitted for
convenience, ap(t) is the radius of bubble Bl normalized by
Tbho* The times are normalized by the Rayleigh time, T,
based on by and a characteristic value of the pressure
variations, AP. All pressures are normalized by AP. Pgo is
the initial normalized gas pressure in the bubble. Thus,

c>1/2/(:51>)1/2

To =ry R (3.2)
o
Pgo = Pgo/(m ' (3.3)
P (t) = (P _(t) =P ) / (&) . (3.4)

The Weber number is related to the surface tension, y, AP, and
b, by:
W =r s (&P) / 2y . (3.5)

The noncondensible gas pressure inside the bubble, Py is
assumed to have a polytropic behavior, Pg agk= constant,
where k is the polytropic coefficient (1 < k < cp/cv).

For a given P4,(t), Equation (3.1) can be solved for the
variation of the bubble radius, ag{(t). This allows the
subsequent determination of the pressure field around the bubble

of center Bi, by the use of
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p(BY, r, ) =B _(t) + r~1 (22, a2+ ald) - al dZ/2c",(3.6)

2
o O o O o

where r is the distance between Bl and a given point M in the
fluid.

3.3 1Interactions

When interactions cannot be neglected, but an "inner
region"™ enclosing the bubble Bl can still be defined, the
boundary conditions at infinity can be much more complex.
First, the macroscale pressure in the cloud at Bi, P(Bi, t),
can be very different from the imposed far field pressure
Po{(t). Second, a relative velocity between the bubble and the
surrounding fluid, U(Bi, r, t) can exist causing the bubble to
be nonspherical. Both P and U can be determined only by solving
the equations of motion of the two-phase medium (see Section
7.0). In this section we will limit ourselves to a small
perturbation theory whose interest will be to give the behavior
of the solution when the perturbation grows continuously. In
that case P(B1, t), which is the driving pressure for the
collapse of the bubble Bi, is only a perturbation of the
imposed far field pressure, P,(t), and U(Bi, r, t) is a
perturbation of the spherical velocity due to the bubble volume

variation.

If we assume that the liquid flow is irrotational, we can
define a velocity potential for the macroscale ("outer
problem"), ¢(Bi, t), and a velocity potential for the
microscale ("inner problem"), 2i(BiM, t) such as:

Ad = ¢t =0 (3.7)
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The matching condition between these two potentials expresses
the at-infinity conditions for ¢i, and replaces the conditions

on P(Bi, t) and U(Bi, r, t). This is written:

. kd .
lim, o'(B'M, t) = 0 + ¢ ¢1(B, t) + e24,(BY, t) + ...
BIM » o (3.8)

Since bubble interactions vanish when e goes to zero, in the
absence of relative velocity between the surrounding fluid and
the bubbles in the cloud, ¢, = 0. ¢,, ¢,, ... are the
contributions of the whole cloud to the boundary condition at
infinity for the inner problem (i). Using the results obtained
with the interaction of two bubbles (Chahine and Bovis, 1981)
and the property of addition of potential flows, this condition

can be written:

, . N '} . . .
-lim ¢l(BlM, t) = Y —ol—.- (e qg + €? qJI + €3 q% + ...\ +
r +» ® :]"'1 2 J
(o]

g \2 . . .

o) 2 ] 3 ] 1)
+ (Fi) <€ qO + € q + ..-) r cos® +

(o]

. _ .
+ (_?_,) (53 q + ) t? P, (cose™d) + ... . (3.9)

where the superscript (j) denotes quantities corresponding to
the other bubbles, B). 1) is the initial distance between
the bubble centers Bi and BJ. 6iJ is the angle MBiBj,

and r the distance BiM, where M is a field point in the fluid
(see Figure 3-1). gn(cose) is the Legendre polynomial of
order n and argument cos®. q% is the correction of order eN
of the strength, qg = é% (a%)z, of the source representing
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the first-approximation spherical oscillations of the bubble
Bl.

Expressed in physical terms (velocities, pressures), the
boundary condition (3.9) states that the first order correction,
(e), to the nonperturbed spherical behavior, ag(t), of the
bubble Bl is a spherical modification of the collapse driving
pressure. This would introduce, as for two bubbles, a spherical
correction a;(t) of the variations ag(t). At the following
order, (ez), a second correction of the uniform pressure
appears, as well as a uniform velocity field accounting for a
slip velocity between the bubble and the surrounding fluid.
Again, as in the two-bubble case, this induces a spherical
correction, a,(t), of ag(t), and a nonspherical correction
f%(t) cos 819, where 619 is a direction to be determined from
all the 8il, Things become more complex at the order of

expansion el

, where in addition to the uniform pressure and
. 1 1 : .

velocity corrections, az(t) and f3(t) coseld, a velocity

gradient is to be accounted for, to generate a nonspherical

i .
correction, g3(t) (3 cos %0i9-1)/2.

As a result, the equation of the surface of the bubble Bi

can be written in the form:

R 8%, t) = al(t) + eaj(t) + e? [aj(t) + ei(t) + cosell] +
+ €3 [aé(t) + f%(t) cose'd + g%(t) 3?2 (coselJ)] + ..., (3.10)

where ag(t) is given by the Rayleigh-Plesset Equation (3.1),
while the other corrections are obtained by solving the
following differential equations in which the superscripts (i)
are omitted for convenience:

S s
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* o 10 'J
a,a) + 3aoa1 + alFo(ao, we, Pgo, K) = zJ - ;T* q; ’
o

£ .
e * hd (o] .
a°a3 + 3a aj + a3Fo + Fz(ao,al,a Z,We 'Pg +K) Z] - (—:—r) qu ’

o 1]
o 2’0
2 2 : .
. * _ - _?_'- . J .J
aod2 + 33062 = Zj 3 (113) (aoqO + aoqo) ’ (3.11)
o
2 2
LA L] — o hd j
aod3 + 3a053 + 3F3(a0, a;) d, = zj 3 (;;3) (aoq1+aoq1+qu) '
o}
2 \3 . .
. L _ .o - 2 = _ _(')_'- 2 oJ . J
aog3 + 3a093 (aO 6/weao) g3 zj 5 (213) (aoqo+2aoaoqo) .
(o}

In these equations Fo, F,, F,, F3 are known functions
depending on the physical constants, We and Pgo' and on

the calculated preceding orders of approximation. The
deformations f,, f3 of the bubble Bl and the motion of its
center toward BJ, £,, 23, have been replaced by d,, d; which
indicate the total motion of *he point E; (Figure 3.1),

d.z = Ez - ;.2; é3 = f3 - i3 (3.12)

When all the initial radii of the bubbles in the cloud are
identical, these right-hand sides are obtained by multiplying
the two-bubble case right-hand sides by one of the geometrical

constants ¢,;, C,, C3:
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= i)
C Ej (10/10 ) ’

- ijy2 | ij
cz = Iy (/1,7 cos 8 , (3.13)

= ij,3 , i3
C3 Zj (10/9.o ) épz (cos8™”) .
We can now compute the behavior of Bi by solving the obtained

differential equation using a multi-Runge-Kutta procedure. The
behavior of the whole cloud can then be obtained.

Comparison of Equations (3.11) with those obtained in the
case of two-bubbles shows that the N-bubbles in the cloud other
than Bl can be replaced by a unique bubble of strength, q%?,
located at G!, a distance 1%@ from Bl in the direction
defined by the angle MBigl = i), As this equivalent
bubble should induce the same pressure and velocities as defined

by (3.9), its characteristics are obtained by the equations:

. . N
ai9/2}9 = ]

1oalse? (3.14)
]

1

el -
J

o2

€y ay/h? o, (3.15)

é

where élg and ;lj are unit vectors of the directions
B1G! and BiBJ] respectively (Figure 3.1), and n is the
order of approximation. These equations define the angle pig,
and the direction in which d;(t) is measured (Equations (3.10)

and (3.12)).
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i: 3.4 Pressure Field
r. Once the "inner problems" are solved, the nondimensional
. outer potential, ¢, can be written:
: i i i |
o - o q1 , 92 , (93 by ig 3
3 ¢(M,t) = ~L, — + € —r + €% — + ¢ — = — COSs?H + 0(e”),
il =1 -1 =1 -1 . 2
r r r r .
(3.16)
- where bars denote nondimensional "outer" gquantities, and tildes
:3 nondimensional "inner" quantities.
: < - . 2 i i, 3 =i _ i
y ¢ ¢ sTo/rbo, q, q, To/rb y I r /20 (3.17)
.
s
< To is the characteristic time of the bubble collapse and ri
) f? is the distance between a field point M and Bl. The Bernoulli
o equation enables one to calculate the pressure, P, using
. Equation (3.16). 1In the nondimensional form we have:
i - _ P(M,t) - P=(t) _ __ 3¢ _ 1 4 2
- p(M,t) i e 5t > € jwl . (3.18)
- AP is the amplitude of the pressure driving the collapse and t =
. t/To: where
E: T, = rbo-Vp/Ap' . (3.19)
_ As an illustration, in a uniform field of bubbles any bubble has
. the same geometrical position relative to the others, and thus
> the same behavior. The general expression (3.8) simplifies
N considerably to become:
A
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AR
" p(M,t) = (e q_ + €? q; + e3 52 + € 33) D l* +
'e} 1 El
: > cos 619 4 éé L 2 N
-f - h2 Zi _iZ -g T . Vzi -_l?i- ! + 0(5 ) . (3.20)

In this expression, the two first summations are geometrical
constants similiar to ¢;, ¢, (3.4). The last one is more
complex, but is more easily calculated when written as follows:

- 2 2

- = 1 -1 >im
- v, —-r =1, {—) e ' (3.21)
i [ 1 rl] [ 1(;12) ]

N >,
where é1M jis the unit vector of the direction BM. If one
, kncws the direction, MV,, of the velocity at M, at the first
{:, order of approximation, and if alV is the angle BiMVo

' 2
1v
[zi (E°—S-i—)] (3.22)
_12
r

In the general case when the bubbles do not all behave
identically an expression similar to (3.20) applies in which the

(Figure 3.1), then:

'l
| — |
Il
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H-
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S
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3 summation sign concerns not only the geometry but also the
$ source and dipole intensities, gl and hi.
\Y.
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4.0 DYNAMICS PROBLEM: NUMERICAL STUDY AND RESULTS

4.1 Numerical Codes Developed

Several numerical codes have been developed during this
study. For treating only dynamics (mass and heat transfer
neglected), two main numerical programs can be distinguished:
CLDSYM and MULTIBBL. Other programs were also implemented that
are improvements or modifications of these two codes. The two
main programs are distinguished by the cloud geometry: either
symmetrical or arbitrarily described.

When all the bubbles have the same initial size, and when
their initial geometrical configuration is symmetrical, they all
behave identically by reason of symmetry. At a given order, all
the functions qg, which appear in Equation (3.9) are the
same. Therefore, the summation applies only to geometrical
constants which are known at the beginning of the computation
and depend only on the bubbles' distribution. The three
constants, c¢,, c,, and c3, defined in (3.13) are then needed to
compute the seven components of R(6,t) up to the order el
included. They are used as input to the numerical program
dubbed CLDSYM, which uses a multi-Runge-Kutta procedure to
compute the bubble motion as well as the generated flow and
pressure field. Pigure 4.1 shows a simplified flow chart of the

numerical procedure.

When the bubbles have different initial radii, and when
their distribution in the liquid does not correspond to any
particular symmetrical configuration, the simplification
described above does not apply. A second numerical program
dubbed MULTIBBL has been developed for this more general case.

T T NI
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The flow chart in Figure 4.2 describes this program. In this
flow chart Qp represents the right-hand side of Equation (2),
while gy represents the strength of the flow sources obtained

) at the order of approximation m. This program allows the
computation of more realistic cases where the bubble sizes and

- distribution are input and do not correspond to any idealized

= perfect configuration as with CLDSYM. More realistic pressures
. in the far field as well as on nearby walls are then obtained
since the different bubble collapses are not in phase as for the
case of a symmetrical configuration of equal sized bubbles.

A third program dubbed CLDMAIN2 was implemented for the
cases where the computation spans over several thousand times

the bubble characteristic time. This program adapts a variable
time step scheme to the symmetrical bubble cloud case. An
!; England Runge-Kutta procedure is used. This method computes the
- numerical errors introduced at each time step and determines the
time increment needed to both minimize computation time and to
not exceed an imposed acceptable margin of error. A major
advantage of this code is its capacity to describe very rapid
bubble radius variations such as occurs during strong explosive
f growth or collapse. This code was used for the analysis of
bubble dynamics in a venturi cavitation susceptibility meter and
about a hydrofoil.

A fourth program dubbed MULTICOMP was derived from MULTIBBL
and employs a finite sound speed input. The information
propagation from one bubble to another is retarded by an amount
equal to the ratio between the interdistance and this finite
sound speed. This program was used to study the influence of

- time lags creating phase differences between bubble oscilla-

- tions.
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These four programs were used to analyze several variables.
The objectives of exercising these programs were to debug them,
demonstrate their performance, and obtain trends of behavicc.
Below we illustrate some of the results obtained in order to
gain some understanding of the behavior of a bubble cloud and
how it differs from the behavior of isolated bubbles. The
influence of the main parameters will be stressed.

4.2 Preliminary Discussion on Bubble Interaction

It is helpful, in order to understand the various numerical
results, to consider the pressure field generated by the
collapse of an individual bubble. Let us consider the pressure
history at a point M at a distance 2, from an isolated bubble
when the ambient pressure is submitted to a sudden pressure
jump. As we can see from Figure 4.3, the resulting perturbation
pressure, i.e., the difference between the pressure at ¢4 and
the far field pressure, is negative for t<0.75 for the
considered case. Later, for t>0.75, the pressure at 2,
increases rapidly to 2.3 times the imposed pressure at the end
of the bubble collapse. This observation is a key to the
understanding of multibubble behavior in a sudden pressure
increase. 1Indeed, if a fictitious bubble which does not
influence the process is centered in B,, it will first sense a
less important and more gradual increase in the surrounding
pressure at the beginning of the collapse. In the case
considered (Figure 4.3), instead of a nondimensional surge of
the pressure from 0 to 1, P jumps only to 0.84 then rises
slowly, not attaining 1 until t=0.75. This induces a relative
decrease in the intensity of the first phase of the bubble
collapse and affects the bubble radius variation with time
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exactly as seen later in Figure 4-6. Later, the sharp rise in
the pressure field makes the subsequent end of the collapse much
more violent.

Figure 4-4 illustrates the case where the ambient pressure
field is modified by the collapse of more than one bubble. This
figure is intended to explain both cumulative effects due to a
multibubble system and modification due to different bubble
size, bubble interdistance, and delay times (compressibility)
effects, The figure illustrates these effects by considering
two bubbles. Had the two bubbles, A and B, been of the same
size and at equal distance from M, the two corresponding
pressure time profiles would have superimposed.

In this case, both effects described above (initial relative
pressure reduction and subsequent dramatic pressure increase)
will be doubled (without any additional consideration of the
interaction such as modification of the pressure histories).
The interaction between bubbles A and B would amplify the
phenomena described above. Now, if bubbles A and B are either
at a different distance from M or are not of equal size, the
pressure profiles will not overlap. If they are of equal size
but at different distances from M, the pressure peaks would
occur simultaneously unless compressibility effects are
included. A delay time corresponding to the difference in the
travel paths will then occur between the two peaks.

From the above discussion it is evident that the behavior
of a fictitious bubble located at M will strongly depend on both
the sizes of the other interacting bubbles and their space
distribution. Compressibility would have the same effect as a

nonsymmetric bubble distribution in addition to its influence on
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the collapse intensity and amplitude of the generated pressures.
It would therefore tend to reduce the collective effect expected
from the incompressible symmetrical case.

4.3 sSimple Case of a Step Function for the Ambient Pressure
Field

We consider a distribution of bubbles centered on the
surface of a sphere, and we admit that each of the bubbles has
the same position relative to the others. 1In this case the
numerical computation time is reduced. As examples, we will
consider the bubble behavior and the pressures generated for two
types of ambient pressure time functions. In both cases the
bubbles are at equilibrium with the ambient pressure, P,, at
t = 0. Then, in case A, the ambient pressure jumps to a new
constant value, P, + AP, at the following instant. In the
second case B, the imposed pressure drops first to a constant
value, P, - AP, keeps this value until t = AT, and then comes
up again to the initial value P, (Figure 4.5). As an
illustration we will consider the pressures generated a) in the
center of the sphere; b) at the location of the bubble Bl if
it were removed and c¢) at a point outside the cloud at a
distance Tbe from Bl. We will compare the results with
the isolated bubble case.

Knowing the initial bubble configuration and thus c¢,, c,,
and cj3 the relation between the cloud radius, R, and g is:
R =1/2 25 c;/c3. In the cloud center, position (a), the
three summations in (3.20) have, respectively, the values N/R,
N/R, and 0. In position (b) these values are ¢, ¢,, and cg3,

and at a distance Tb from Bl the values are approximated

by c, + C—l, Cy - E-z, and (C2 + 6—2)2.
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Various spherically symmetrical cloud configurations were
investigated numerically. In Figure 4.6 the results of five
different computations for a sudden jump in the imposed ambient
pressure are compared, expansions being conducted up to e3. The
ratio, € = rbo/zo, was kept constant and at a value of
0.05. The cases of two, three, and twelve bubbles are presented
together with that of an isolated bubble. The fifth case is an
intermediate situation between the configurations of three and
twelve bubbles. This case is arbitrary and is only determined
by the choice of ¢}, ¢, and c3. In each case the variation
with time of the distance, BiEl, between the extreme point
on a bubble El, and its initial center, Bi, is chosen to
represent the bubble dynamics. Taking the bubble collapse in an
unbounded fluid as reference, it is easy to see from Figure 4.6
how increasing the number of bubbles changes the dynamics of the
one studied. We can observe first that, during the early slow
phase of the implosion process, the collapse is significantly
delayed. At any given nondimensionsal time the distance between
Bi and ELl (and simultaneously the bubble characteristic
size) is greater when the number, N, of interacting bubbles
increases. Then, in the final phase of the implosion the
tendency is reversed: the phenomenon speeds up and, in a
shorter total implosion time, the final velocities of the motion
are higher when N increases. The effect is explained by
accounting for the modification of the driving pressure of the
collapse of any bubble due to the dynamics of the other bubbles
as described in Section 4.2.

Figure 4.7 shows the behavior of the bubbles in the case of
a pressure variation of type B (Figure 4.5). The cases of an
isolated bubble and two, three, five, and twelve bubbles are
investigated again, and the variations of BIEL with time are
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represented. The ratio ¢ and the duration AT of the pressure
drop are kept constant and at the particular values of 0.1 and

L2 W B

0.8 respectively. Here, as in the preceding figure, noticeable
changes can be observed when the degree of interaction

SIS

increases. First, the growth is slowed down and retarded in

. comparison with the isolated case. Then, the collapse is

- accelerated and as a result the total implosion time decreases
8 with an increase in the number of bubbles, N. While for N = 2,
the total implosion time is greater than that of an isolated
bubble, for N = 12 the time is significantly smaller. As we
will see below this acceleration of the collapse makes the

o generated pressures at the end of the collapse higher than for
the single bubble case.

S Figure 4.8 compares for the same cloud configuration
€=" (twelve bubble, € = 0.1) the bubble behavior for three values of
the duration, AT, of the pressure drop. The greater AT is, the
longer the bubble is allowed to grow. As a result the maximum
size it attains is bigger, but its lifetime is smaller. Thus,

the resulting collapse is much stronger,

As explained in Section 4.2, using Figure 4.3, the
observations made above for a sudden pressure jump can be
explained by considering how the presence of a reacting bubble

J- modifies the local pressure field from that imposed at

infinity. The same type of reasoning can be applied to the case
of a finite-time pressure drop. As we can see in Figure 4.9, in
the first time period, AT, the pressure sensed at a distance

Lo from the bubble center, B,, is higher than the imposed

one. As a result, a second fictitious bubble placed at this
distance from B, would have a slower growth during this first

e period, AT. This phenomena is however reversed in the second

L N I
RO




a8 6 2" @

Tracor Hydronautics

~28-

phase as an expansion wave is generated by the growing bubble
Bo. In the third and last phase a compression wave increases
the driving pressure for collapse making this one more intense.

In Figure 4.10, we see an example of the pressures
generated during the bubble history at two locations: a) the
center of the cloud and b) the center of one bubble, Bi, in
its absense. These pressures are compared with those generated
during the growth and collapse of an isolated bubble at a
distance equal to the spherical cloud radius. We have selected
the case of a finite time, AT = 0.6, pressure drop. The same
observations made while interpreting Figure 4.9, can be repeated
here but with much more accentuated values of the pressure
rises. After the imposed ambient pressure increases, the
nondimensional pressures generated by the twelve bubble cloud
are first positive, then a pressure expansion period is observed
for 1.9 < t < 3.4, followed by a high pressure surge at the end
of the collapse. The corresponding bubble radius variation with
time is that represented in Figure 4.8 (12 bubbles AT = 0.6).

Figure 4.11 is a collection of the results obtained from
several cases studied. The maximum nondimensional pressures
generated during the cloud collapse are represented versus the
number of bubbles in the cloud. The cumulative effect is
obvious since the values obtained vary over a range of several
orders of magnitude. The numbers presented should not be
considered accurate since other scales for times, pressure, and
lengths are needed at the end of the collapse. Instead, they
are presented here to give an indication of how tremendous .
pressures can be generated with an increasing number of |
interacting bubbles, and to give an idea of the trend of this

increase. 1In this figure, the maximum pressures are presented
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at the cloud center, C, at Bl when it is removed and at a
distance rp  from the center of one of the bubbles in the
cloud.

These results show the important role played by the gas
content of the bubbles which was neglected in Mprch's contribu-
tions. 1Increasing Pgo from 0.1 to 0.2 has dramatically
reduced the generated pressures. This is mainly due to the
cushioning effect of the gas which significantly reduces the
velocities attained at the end of the implosion.

Another very interesting observation from Figure 4.11 is
that the imposed pressure variation B (pressure drop of finite
duration followed by a recompression) moves the maximum
pressures generated at the end of the collapse toward much lower
values than for pressure jump case A. This effect is not due to
the apparent higher gas content in this case. 1Indeed, the value
of Pg to consider for comparison purposes should be for all
cases that at the start of the collapse -- when the bubble has
its maximum volume. For example, for the case of twelve bubbles
and a pressure drop (AT = 0.8, Pgo = 0.53) the value of
Rpax/Ro is 1.63 (Figure 4.7). Then, accounting for the gas
expansion, the gas pressure at the beginning of the collapse is
Pg = Pgo (1.63)~4-2 = 0,07. The effective gas content
is thus smaller, and since the value of ¢ is bigger (0.2 instead
of 0.1), the observed pressure drop is intrinsically related to
the imposed pressure function. The pressure attenuation
observed is explained by the initial influence of the cumulative
effect on the bubble behavior in the cloud which is not the same
at the start of the growth or at the collapse (Figures 4.3 and
4.9). In the classical pressure jump case the initial

cumulative effect is to prevent the bubble size

POy .
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from being small when the collapse pressure surge starts.
Conversely, the initial cumulative effect in the second type of
imposed ambient pressure (case B) is to reduce the size of the
bubble when the collapse pressure surge occurs. As a result the
potential energy for collapse in case B is relatively smaller.

Finally, Figure 4.12 shows the influence of the duration of
the pressure drop on the maximum pressures generated. By
applying the same reasoning as above to the initial gas
pressures one can conclude that the increase of the maximum
pressure with AT is mainly due to a decrease in the effective
initial gas content at the start of the collapse since the
maximum bubble radius increases with AT.

The above results show that even for very low void
fractions, collective bubble collapse can generate pressures
orders of magnitude higher than those produced by single bubble
collapse. This would tend to explain the observed high erosion
intensities and the bending of trailing edges. The cumulative
effect comes from the fact that the interaction increases the
driving pressure of collapse of each individual bubble. This
augments the violence of its implosion and thus the interaction
with the other bubbles. Thus, each bubble ends its collapse not
under the effect of a pressure of the same order as the ambient,
but orders of magnitude higher. This cumulative effect would
not exist if the void fraction is high enough for the cloud to
behave as a single bubble. This leads us to believe that there

exists a critical value for the void fraction for maximum

erosion.
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4.4 Comparison to Spark Generated Simulated Multibubble

3 Configurations

We describe in Section 8.0 some experimental tests

conducted to simulate symmetrical bubble cloud configurations.

a4k

A spark-generated bubble method is used in combination with
high-speed photography and sound measurements. Bubbles were
generated in the vicinity of complex wall configurations such
that the generated bubble and its images in the walls comprise a
symmetrical multibubble set. The ratio e of bubble character-

3 istic size to interbubble distance was varied by changing the
distance between the electrodes and the walls, This parameter

was one of the main measurable quantities in the experiments.

. )
A R4 u‘ .

The other parameters were bubble size history and pressure
histories at selected points in the experimental tank. However,
KRN one key parameter which is not readily measurable is the gas

- pressure inside the generated bubble. Since knowledge of

- ﬁgo is essential for any quantitative comparison with
experiment, we have selected to use it as a free parameter and
see 1f it is possible to match the experimental results by

selecting a particular value of Pgo.

Figure 4.13 shows an example of the influence of 590
on the collapse of 4 bubbles (or a bubble in a two-dimensional
corner). As mentioned earlier, the collapse is significantly

softened when the initial gas pressure (or the initial amount of

O N M DA

gas) in the bubble is increased (behavior similar to the
isolated bubble case). The bubble oscillates smoothly for

590 > 0.15, while a significant violent implosion is

A PR A IR A

observed for ﬁgo < 0.10. This behavior is further enhanced
-~ for larger values of e, This can be seen in Figure 4.14 for the

- o same case of a four-bubble cloud (590 = 0.1), and in more
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detail in Figures 4.15 and 4.16 for a twelve bubble
configuration. These three figures show the behavior of a
bubble in the cloud when either the bubble sizes are increased
with the same spacing or the spacing is decreased for the same
bubble size. First, the classical lenghtening effect of the
bubble period is observed (Figure 4.15, € = 0.01 and Figure
4,16, ¢ = 0.02). For larger values of ¢, however, the same
effect as an increase in the number of bubbles (Figure 4.6) is
observed -- namely an initial slowing down of the collapse
process followed by a very significant enhancement. As a
result, the collapse time is shortened. For larger values of e,
€ > 0,.07b in Figure 4.15 and € > 0.14 in Figure 4.16, the
asymptotic method obviously fails. A reversal of the collapse
process is observed and cannot be easily explained. There might
be, however, some correspondance between these trends and the
experiments which indicate the presence of an optimum value of e

for maximum collapse intensity (see Section 8.0).

Figures 4.17 to 4.19 attempt to quantitatively compare the
theoretical model and the spark-generated bubble experiments.
As mentioned earlier, the difficulty with the experiment is the
inability to control, or even to simply measure, the initial gas
pressure in the bubble. This raises some questions about the
accuracy of the results obtained. With this in mind we ran
several sets of numerical cases in which 590 and the number
of bubbles was maintained constant and ¢ varied. In each case,
the value of the normalized time at which the bubble radius
achieved its first minimum was noted, and the values compared
with the experimental observations. Figures 4.17 to 4.19 show
plots of these values of the bubble "first period of oscilla-
tion" as function of e. Even if the comparison does not seem to

be very encouraging at first, a closer look enables one to make
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several interesting observations. Oscillations in the
theoretical curves indicating strong nonlinearities appear as
for the experimental curves. This is particularily visible in
Figure 4.17 for the case of a four-bubble cloud. These
oscillations are particularily important when the initial
normalized gas pressure 590 is high. The combination of the
experimental points and the theoretical curves seem to indicate
that for the four~bubble case 590 was in the range 0.1 to

0.2. Examination of Figures 4.18 and 4.19 indicate lower values
for the two other series of experiments -- simulated
eight-bubble case (bubble in a three-dimensional corner) or
twelve-bubble case (bubble in a pyramidal corner). A value
lower than 0.1 seems to apply for Figure 4.19, and Ego =

0.05 seems to apply to Figure 4.18. These differences with the
same spark generation system in the same work conditions can be
related to different degrees of water degasing, or to the
rearrangement of the electrodes between one set of experiments
and another. Scatter and/or oscillations of the results seem to
be reduced with ﬁéo' However, the general trend of the
existence of minimum values of bubble oscillation period or
higher collapse pressure (see Section 8.0) seems to be confirmed
by both theory and experiment. Shima, et al. (1983) have made

similar observations for another range of values of ¢, ¢ > 1.

4.5 Study of Multibubble Dynamics in a Venturi Cavitation

Susceptibility Meter

4.5.1 Introduction

The development of techniques toO measure cavitation nuclei
distribution in laboratories and oceans has been intensified in

recent years. Review studies on the subject have been presented
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. recently by Shen and Peterson (1983) and Billet (1984). One of
’ the devices being developed and to which the multibubble study

. will be applied here is the Cavitation Susceptiblity Meter
(CSM). This is a venturi system with a specially tailored
geometry for cavitation nuclei measurements (Oldenziel, 1982 and
Lecoffre and Bonnin, 1979). Microbubbles entering the venturi
grow at the throat and are detected either optically or
acoustically. In the first case they have to exceed a certain
size to be perceived, while in the second case the noise

DR B D

generated during the implosion of these bubbles has to exceed a
b certain acoustical level. Therefore in this method a "critical
. pressure”, Poy, at the venturi throat, below which cavitation

- events are detected by the CSM, is measured.

The classical cavitation number, o, (Thomas number) has

‘ . . . . . -«
!;‘ been widely used in scaling cavitation inception between model

and prototype:

PR A

‘I

(4.1)

N In this expression P, and V, are the characteristic pressure

. and velocity, p the liquid density, and Py, the liquid vapor

: pressure. This definition assumes that cavitation inception

N occurs when the liquid pressure drops below vapor pressure.

. However, it has been recognized for a long time, using static
equilibrium theory, that there exists for each initial nuclei
size a critical pressure, usually much lower than p,, below
which unstable bubble growth occurs. Since in a liquid, nuclei
are distributed in a relatively wide range of sizes, the
definition of a "liquid critical pressure” can only be done by

introducing an inception criterion such as a threshold amplitude
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and rate of the detected cavitation "events." It has been
demonstrated experimentally that if py is replaced by such a
"critical pressure" of the liquid, the correlation of cavitation
inception observed experimentally between different model sizes
is greatly improved (Keller, 1984). It is implied that by doing
so one accounts for differences in the nuclei population without
having to determine the actual bubble size distribution. With
the CSM a "critical pressure" at the venturi throat is
determined by varying the throat velocity and counting the
occurrence of cavitation bursting optically or acoustically.

If, in addition, there exists a thorough theoretical knowledge
of the relationship between fluid flow characteristics, nuclei
initial size and needed critical pressures to initiate
cavitation events, the TSM might be useful as a bubble nuclei
size detector. Thi section attempts to improve on this
knowledge by considering bubble dynamics and interactions
between bubbles and with the main flow into the venturi. This
investigation is to be added to earlier studies by d'Agostino
and Acosta (1983) and Shen and Gowing (1984).

Cavitation susceptibility meters are designed in such a way
that when in operation there is only one bubble in the venturi
throat at a given time (See, for instance, the paper of
d'Agostino and Acosta, 1983). However, in practice multibubbles
appear occasionally in the venturi and invalidate the method of
detection. In this section multibubble interaction is included
in the study of cavitation inception in the CSM venturi system,

and its influence on the inception criterion is investigated.

Due to the restriction of the pipe wall, the velocity field
and the pressure field in a venturi system are altered when the
microbubbles begin to grow. This subject has been studied by
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d'Agostino and Acosta (1983) for a single spherical bubble
entering from a reservoir into a semi-infinite pipe of constant
cross-section. In the present paper we consider the case where
multiple bubbles are present in a venturi and we derive an
expression for the pressure correction due to the wall
restriction. This correction is included as an option in the
symmetrical multibubble code, CLDMAIN1, when the bubbles are
grouped together as a cloud. The growth and collapse of a
single bubble and multibubbles in a venturi system with
contraction, throat, and diffuser zones of various diameters are
computed considering the venturi wall restriction.

4.5.2 Single Bubble Static Equilibrium and Dynamics

We have earlier defined the critical pressure of a liquid
it as the pressure (or tension) below which significant bubble
growth or activity is detectable. 1In fact, as can be deduced
from the dynamic stability analysis of the static equilibrium of
isolated spherical bubbles, there is a different critical
pressure for each initial bubble size considered. The balance
of pressure across the bubble interface can be written:

P =P, + Pg - 2 y/R ' (4.2)

where P is the ambient pressure, Py and y are the liquid vapor
pressure and surface tension and R is the equilibrium bubble
radius. Pg is the pressure of noncondensible gas inside the
bubble. If we neglect gas diffusion (see Section 6) we can
assume that the gas behaves ideally with the law of compression:

P R3K = Constant ' (4.3)

9
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the polytropic constant K lies between 1 (isothermal case) and
cp/cy (adiabatic case). The relationship between the

ambient pressure, P, and the equilibrium radius, R, is therefore
univocally defined for a given reference value R,, or
Pgo,corresponding to a reference pressure Pg:

3K f
Ro 2y
- P = Pv + Pgo = - " ' (4.4)
with
2Y
P =P -P + = . (4.5)
4 go o v Ro

Figure 4.20 shows an example of the static equilibrium curves
a~ P(R) for the isothermal case, K = 1.

The unstable portions of these curves correspond to
dP/dR > 0, while the critical pressure, Poy and radius, Rgyp,
are given by dP/dR = 0. These critical values are related to
each other and to the initial conditions by the relations:

\Y

3K P R
&,
N 3K-1 go °

Rcr = 3y ’ (4.6)

g 3K-1 2y
: P -P = =/ . = .
. v cr 3K Rcr

(4.7)

Therefore a bubble of initial size Ry, at the ambient pressure
P, would explosively grow (no static equilibrim) if the
pressure around it drops below P.,. One should note that j

Poy is always lower than Py and tends toward it when Ry is

- very large.
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A guestion of great interest to the venturi CSM as an
eventual bubble size detector is, for a given reference
pressure P, (depth of submergence) and throat velocity Vg,
what is the initial radius of the bubble or nucleus which would
reach the critical size at the throat pressure, Pyp? All
bubbles of larger radius would then be unstable, while smaller
bubbles would remain undetectable. 1In terms of the maximum
throat velocity (accounting for pressure loss by viscous
effects) Pyn can be written

o vg , (4.8)

_ 1
Peh =P *3 Cpmin
and the relation between Ry and the critical throat velocity,
Vtc, iS

- 2 _
P P, = Pyt o Cpmin Vee Py

-1

2v(1-3K) 3kR_ (p_-p_) | 3%~
———— 3K + [e] (o] v
3KR_ 7y .

(4.9)

For a given critical throat velocity, Vi., any bubble larger
than R, would grow explosively. Conversely for a given bubble
size any V¢ larger than the critical velocity would render the
pressure at the throat below the bubble critical pressure.
Figure 4.21 shows the relationship between Ry and V. for
various ambient pressures and for K = 1,4, Note the sensitivity
to the critical velocity for relatively "large" radii (e.g.,
Rop > 1 um). Very small changes in V. induce large changes

in Rg. This underlines the major practical problem in the use
of the CSM as a bubble size detector. Much less sensitivity
would be obtained if Py, were the variable controlled in the

experiments (see Figure 4.20).
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The original concept for the use of the venturi cavitation
susceptibility meter was based on the above static equilibrium
approach. Actually, the above reasoning can be invalidated when
bubble dynamics is taken into account in the two following
configurations (Darrozes and Chahine, 1983):

a. The pressure in the throat drops below the critical
pressure but the considered bubble does not remain long enough
in this region to grow explosively.

b. The imposed pressure is always above the critical
pressure but pressure variations are great enough for an intense
collapse and therefore a strong acoustical signal to be
generated.

In order to account for the above phenomena, the complete
bubble dynamical equation must be solved for the particular
venturi CSM pressure field. 1In the case of a single bubble of
negligible size compared to the throat diameter, the classical
Rayleigh-Plesset equation adequately describes the bubble radius
variations. The external pressure in this equation, P(t), is
the pressure "felt"™ by the bubble during its traverse of the
venturi. It is the pressure in the liquid in the absence of the
bubble at the location of its center. The bubble position x(t)
is obtained from the bubble translation velocity Vp(t)

t

x(t) = /s

Vb(t) dt . (4.10)

If we neglect relative velocity between the bubble and the
liquid, V, is the fluid velocity which varies along the
venturi. Actually the slip velocity could be important and

should be included in future developments of this study (see
Section 4.5.5).
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When the bubble growth rate is large enough to signifi-
cantly modify the liquid flow rate into the venturi, the
pressure field in the venturi has to be modified to account for
the resulting pressure variations. Similarly, the Rayleigh
Plesset equation alone is not adequate to describe the case
where interaction between several bubbles crossing simultane-
ously the venturi is considered.

4.5.3 Multibubble Interaction with Venturi Mean Flow

Under the basic assumption of small bubble radius size J
relative to bubble spacing and to flow characteristic length
(for instance throat radius), in first approximation each bubble
behaves independently and the basic flow is undisturbed by the
presence of the cloud. With this approach and at this order of
approximation, the pressure field to which each bubble in the
cloud reacts is that existing at the location of its center in
its absence. At higher orders bubbles interact with each other,
and due to the restricted nature of the flow in the venturi they
modify the main flow into the venturi. The influence of the
cloud dynamics on the basic flow becomes important when the
cloud volume rate attains a significant fraction of the mean
volume flow rate. We will try here to account for this
correction since its implementation is rather simple.

Let‘ff(t) be the total volume of bubbles present at time t
in the venturi (these bubbles could be either a certain number
of isolated separated bubbles or a bubble cloud). The
difference between the upstream and downstream flow rates into
the venturi is equal to 17. With a unidimensional approach to
the venturi flow it is reasonable to write that the mean flow

entering the venturi is then modulated as follows:
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v, =U, - a Y/A . (4.11)

where Ay is the area of the venturi at its entrance and Ug

the undisturbed velocity at this location. a 1is the fraction
of the displaced liquid volume rate due to the bubble which
propagates upstream during the bubble growth. a needs to be
determined with an additional equation not available presently.
We will assume from here on that a = 0.5. If all bubbles were
concentrated at x = X then, between the venturi entrance (x = 0)
and X, the velocity in the venturi can be related to the
undisturbed velocity U(x) by an relation equivalent to (4.11),
valid in the small perturbation approach:

a v

V(X) = U(X) - 'ZA—(-X—)' H X S_ X . (4.12)

If in addition the flow is assumed to be potential, then the

velocity potential can be written:

_ i} x ¥V
o(x) = ¢ (x) [ sy 98 (4.13)

Bernoulli's theorem between x and a field point upstream where
the pressure is P; and the fluid is at rest can be written:

P 2
P(x) , 3e(x) 1 [éiiil] (4.14)

-a
)

o ot 2 oX

We can now define a perturbation pressure p'(x) such that

P(x) = 'st (x) + p'(x) , (4.15)

where Pg¢ is the steady state pressure in absence of bubbles.

Combining (4.13), (4.14), and (4.15) one obtains the following
expression for p'(x) where a higher order term in (ﬁVVA)z has
been neglected.
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o
,

p'(x) . ff., da + U(x)

(4.16)

2A( a) 2A(x) :

In a matched asymptotic approach the imposed pressure field
around any bubble or cloud at location X is given by (4.15), and
for the corresponding first order bubble the imposed pressure
term combines the undisturbed pressure in the venturi at the
bubble location and the correction p'(x) given by (4.16).

If the bubble cloud is composed of N bubbles of equal size
then

Y = 4 » NR3/3 , (4.17)

and the Rayleigh Plesset equation becomes:
ar. - 3K

: R
o 2.2 5_ (o) _ 2y
pIRR+2R]+4uR—Pgo(—-R) + P = °

- [P(X(t)) + 2mpN (R_:l(*_g;_"_) « X ZR—fj#B dx)].(4.18)
D'Agostino and Acosta (1983) derived a similar equation for a
semi-infinite pipe of constant cross section Agp. Equation
(4.18) combined with the system of Equations (3.11) can be
solved numerically using a multi-Runge-Kutta procedure, to
investigate interaction of bubbles with the venturi main flow
and with each other.

4.5.4 Numerical Results and Interpretation

- A series of computer runs were made using the above
: described method. The objective of this investigation was to

....................

.............................

.................................
----------------
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compare the behavior of an isolated spherical bubble with that
of a bubble in a cloud. Both sets of cases were considered for
the NSRDC venturi shown in Figure 4.22 with and without pressure
correction due to the modification of the mean flow by the
presence of the bubbles. The results obtained are illustrated
in the following examples and figures. Due to viscous effects a
Cpmin ©f -1.22 was measured at NSRDC for this venturi (see

Shen, et al., 1984) and was accounted for in the following
computations.

The bubble wall motion during its traverse through the
venturi is illustrated in Figure 4.23 for a bubble of 10 um
initial radius. In most cases computations were started at the
throat entrance (X = 0.825 cm) in order to reduce computation
time. This is acceptable since comparative tests have shown
that no significant error is then introduced. A typical bubble
radius history can be described as follows. Near the throat
entrance the bubble radius oscillates for a certain number of
cycles which decreases with increasing flow velocity. Then, if
this velocity is large enough a continual growth is observed
until the bubble reaches the venturi expansion area. This is
followed by a more or less violent bubble implosion which may be
detected acoustically. Since this behavior is primarily
controlled by a balance between gas pressure inside the
bubble and the imposed ambient pressure, a key factor is the
polytropic constant, K. The isothermal case (K = 1) is the
most easily manageable mathematically and has therefore been
studied by many investigators. Its use is justified when the
bubble wall motion is slow enough so that the gas temperature
remains constant. However; the value of K can vary widely
during the bubble history (see Plesset and Prosperetti, 1977 and
Section 6). Figure 4.23 shows the importance of K by comparing
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the results for the two classical values of K: 1 and 1.4.
Larger maximum radil are obtained with K = 1, Two velocities at
the throat are also considered in Figure 4.23. Here we see that
for a slight variation of Vy the maximum bubble radius can be
doubled. Therefore, if the criterion of cavitation inception 1is
thatbubble radius exceeds, let us say, 150 um then V¢ = 25.0

m/s would be below inception and Vy = 25.2 m/s would be

slightly above it. The static equilibrium curves (Figure 4.21)
derived from Equation (4.9) give, however, a lower value for the
critical throat velocity, V¢ = 24.95 m/s. This relatively

small difference of about 0.8 percent is significant for the
precision needed in the measurement of Vi in order to use the
CSM venturi effectively. Note that if the throat velocity at
inception was 24.95 m/s the critical pressure would be -500
pascals while one obtains -8000 pascals with 25.2 m/s. The
difference in P, is therefore very significant between the

static and dynamic approaches.

Figures 4.24 and 4.25 show the maximum size attained by a
bubble crossing the venturi CSM as a function of the velocity at
the throat. Bubbles of different initial sizes at the same
initial reference pressure are considered. Single bubble
results are compared with symmetrical multibubble configura-
tions. Several very interesting observations can be made from
studying these figures and the corresponding numerical results.
Bubble size scaling effects are observed as follows. At the
lower velocities bubbles exhibit an oscillatory behavior all the
way through the venturi (e.g., V¢ < 25.1 m/s for Ry = 5um;

Ve < 24.8 m/s for Rg= 20um). Their radius oscillates

between a fraction of R, and a maximum radius of a few times
Ry. At the higher velocities the bubbles experience an
explosive growth followed by a strong implosion. Bubble size

...............................................
..........
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scaling effects are expressed by the fact that while initially
larger bubbles have a larger growth rate at the low venturi
throat velocities, the trend is reversed at higher velocities
(Figure 4.24). The result of this scaling effect is that at
large velocities (e.g., V¢ = 25.8 m/s for the cases

considered) single isolated bubbles of 5, 20, and 50 um initial
size attain the same maximum size. This could be seen on Figure
4,24 where the dimensional variables are represented for the
same data points as in Figure 4.25. This result is also related
to the fact that the considered venturi has a long enough throat
to allow the above bubbles to grow to significant sizes.

The effects of bubble interactions and restricted mean flow {
correction show up in a similar way when single bubble and
multibubble results are compared. At lower velocities bubble
oscillations in the throat area close to the entrance are
amplified when the collective behavior of the bubble cloud is
considered (see Figure 4.27 for details). As a result larger
maximum sizes are obtained with multibubbles but also very early
collapses are achieved in the throat section before reaching the
expansion. At higher velocities the opposite phenomenon is
observed. An explosive bubble growth is then achieved, and the
multibubble effect is to inhibit the growth rate of each bubble
in the cloud. This is mainly due to a reduction of the pressure
drop around each bubble induced by the motion of the other
bubbles. One can notice in both Figures 4.24 and 4.25 that
while multibubble effects weakly modify the 5 micron bubble
curves, a dramatic change is seen for the 20 micron bubble, 1In
the latter case bubble interactions are much stronger and shift
the behavior of the bubble from an explosive growth to strong

occillations which induce an early collapse even for velocities

as high as 25.6 m/s. At higher values of ¢ (bubbles closer to
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each other) this effect can be seen even for the 5um bubble at
Ve = 25.8 m/s (case e = 0.05 on Figures 4.24 and 4.25).

Figures 4.24 and 4.25 could also be used to determine
dynamic cavitation inception. This could be done by using
either an "acoustical” criterion, Ryax/Rpo 9greater than a
certain value, or an "optical" criterion, the actual bubble size
exceeding a given value. If we adopt criteria used earlier in
the literature we have the following value for Vi at inceptior

as compared to static equilibrium values.

Criterium Ro Vt Static Vt Single Bubble Vt 5-Bubble
u m m/s m/s m/s

R/Ro > 10 5 25.08 25.17 25.13

R > 150 um 5 25.08 25.24 25.22

R/Ro > 10 20 24.89 25.13 25.70

R > 150ym 20 24.89 25.08 25.62

From the above table one can notice that predictions with
static theory are conservative. For a given bubble size they
show earlier inception. Similarly, for a given velocity, static
theory predicts the activation of a broader range of nuclei.
For instance, at 25.08 m/s all bubbles larger than 5um are
predicted to be unstable while dynamics show that only those
above 20um will be observed with the optical criterion. Larger
differences between statics and dynamics result for the case of
a multibubble system. One should however recognize that
differences in V¢ are relatively small especially when
considering present practical considerations in the control of
this velocity. On the other hand, note that the resulting

critical pressure varles 1n a very wide range between the

various approaches. The difference between these values is very
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important to account for in cavitation tunnel tests where the

ambient pressure is low. This encourages effort toward a better

control of V¢ or Por. This, as well as additional

information given below, might explain the discrepencies between
optical and CSM measurements of bubble distributions. Large
size bubbles in a cloud formation are not excited at the
velocities expected from static theory and are therefore not
counted when interpreting experimental (SM results.

Figures 4.26 and 4.27 illustrate some details of the results
presented in Figures 4.24 and 4.25. The influence of the
velocity at the venturi throat on the dynamics of a bubble of
initial radius 5 um can be seen in Figure 4.26. One can observe
an earlier explosive growth of the bubble at the higher velocity
as well as the achievement of a greater maximum bubble radius.
The bubble reaches its maximum size in the venturi diffuser zone
after leaving the throat. This is due to its response time to a
change in the ambient pressure. At higher velocities the
maximum is achieved farther downstream. The influence of
multibubble interaction and of restricted mean flow modification
on the bubble dynamics can also be seen in Fiqure 4.26. The
explosive growth, as observed in Figures 4.24 and 4.25, is
inhibited by multibubble interaction more significantly at the
higher velocities. The location, x, of maximum radius and the
location of the collapse are then closer to the throat exit.
This effect increases with the ratio between bubble size
and distance, . For a larger ¢ the influence of oscillations
is very much increased and the bubble collapses much earlier in
the venturi throat (e.g., for ¢ = 0.05, the collapse is x = 1,30

cm instead of x = 2.8 cm).




NN A

Pt

PR SRR

"'.'»"'Il.l

‘|

CACSCNERTARS

ate il Gy

p|

LN
(\:;

Tracor Hydronautics

-48-

Figure 4.27 shows the influence of the initial size of a
bubble on its dynamics and the modification of the behavior by
interbubble and mean flow interactions. All cases are
considerea for the same ambient pressure and throat velocity.
The larger bubbles achieve their maximum size further downstream
inside the venturi diffusion section. When interactions are
considered the bubble of initial radius Ry = 5 um has its
behavior moderately modified, similar to what is shown in Figure
4.26. However, for the 20 um bubble the modification of the
behavior is dramatic. Large oscillations are induced through
interactions and an early collapse at X = 1.35 cm occurs inside
the venturi throat. Such a bubble cloud would not be detected
optically and probably not acoustically if the intensity of the

collapse is not strong enough.

For the present user of the Venturi Cavitation
Susceptibility Meter, the curves relating the initial radius of
a detectable bubble to the critical velocity at the throat are
the most useful. Figure 4,21 showed those curves based on
static equilibrium considerations. Any bubble of initial radius
larger than that given by these static predictions would grow
explosively at the corresponding velocity. The discussions
above pertaining to Figures 4.24 to 4.27 have shown that the
problem is more complex when dynamics and interactions are taken
into account. This fact can be illustrated, as in Figure 4.28,
by comparing R, versus V. obtained by both static and
dynamic considerations., Here one can observe significant
discrepencies at the larger bubble radii and also at the higher
velocities. Again these theoretical differences are relatively
small when expressed in terms of V. but reflect very large

differences in the critical pressures. The most interesting

results seems to be the presence of a minimum in the dynamic
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curve. This implies that at a given velocity above a minimal
value (25.1 m/s in the case of Figure 4.28) only a finite range
of bubble radii are excited. Compare this prediction with the
conclusion from statics that all bubbles above a critical radius
become active. This may also explain the experimentally
observed lower number of detected bubbles in the venturi CSM as
opposed to the scattering method.

The information obtained in this work on bubble size
history in the venturi as a function of the imposed flow
conditions and initial bubble radii should be complemented and
could be used to determine nuclei population., This could be
implemented if the venturi CSM is instrumented to measure bubble
sizes in the venturi at several locations. This could be done
by simple optical sensors,

The analyses should be refined and extended to include
bubble~liquid slip velocity and a fine description of bubble
collapse. Slip velocity could modify the bubble time response
and quantitatively change the results obtained. A precise
description of the implosion would allow us to accurately
compute the pressures generated and therefore would be very
helpful for acoustic detection.

4.5.5 Extension of Study to the Flow Around a Hydrofoil

The program developed to study bubble behavior in a
"slowly-varying" pressure field (relative to the bubble period
of oscillation) has been extended from the venturi case to that
of a hydrofoil. The program is CLDMAIN2. The user inputs the
pressure profile in terms of coefficients of a polynomial. The

study differs from that of the venturi by the fact that gravity
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forces have been included. Therefore, slip velocity between the

bubble and the surrounding liquid had to be included. This is

obviously necessary if the bubble dynamics in the wake are to be

monitored. The presence of gravity introduces also a

modification of the input pressure field. The pressure driving

the bubble behavior is now dependent on the position of the

bubble relative not only to the foil but also to a free surface.

The balance of forces on the bubble is at each instant
< between buoyancy, drag, and acceleration forces. This can be

written for a bubble of center B(t), radius a(t) and velocity
Vg(t):

dVB 3
. + 2pg) I = 4 nm yua (VB - Vz) - 2n a” vVp +

2 3
3 "ma (p

™ 2 1 oo azé(vl—v

.,, . ) . (4-19)

B

3 Here p is the liquid viscosity, pg and pg are the liquid and
o
gas densities, Vp is the pressure gradient and V, is the

liquid velocity. These two are related by the approximate

- relation

vp = av /dt (4-20)

and for the present case (bubble behind foil)

Vp = - pg9 . (4-21)

Therefore, Equation (4.19) can be written in terms of the
relative velocity, V.
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+2gqg , (4-22)

<
L]
|
o
|
+
w
wie
<

v, =V, =V . (4-23)

Equation (4.22) was solved using a Runge~Kutta procedure similar
to those used for the various bubble radius components and was
implemented in CLDMAIN2. This implementation is in fact very
similar to that needed for the general case of a slip velocity
(due to inertial and drag effects) between the bubble and the
surrounding liquid.

4.6 Asymmetric Bubble Cloud Configurations

In this section we present a few illustrations of
multibubble dynamics when all bubbles in the cloud do not behave
identically due to symmetry. To do so we have used the
developed code MULTIBBL (see flow chart, Figure 4.2) in which
the position and size of the bubbles are entered using cartesian
or spherical coordinates. Figures 4.29 and 4.30 show the
results for the simple example of a configuration of three
bubbles of different sizes. The comparison between the bubble
behavior when isolated and in the presence of the two other
bubbles shows interesting results. When two large bubbles
collapse in the presence of a smaller one, the rate at which
their radii decrease with time is slightly reduced (Figure 4.29)

and the oscillation period is increased. However, the behavior

of the smaller bubble is dramatically modified. Following the
end of the first collapse, the rebound of the bubble (due to the
presence of noncondensibles) is much stronger and is presumably
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intensified by the perturbation pressure field due to the two !
other bubbles' implosion (see Figure 4.4). Later the small
bubble has a weak growth and implodes strongly for t=~0.93 when

the local pressure field attains a peak.

The case of two small bubbles and one large one (Figure
4.30) shows the same trends. However, in this case the large
bubble is much less influenced by the presence of two
smaller ones than by the presence of one smaller and one -
identical bubble as in Figure 4.29. The deviation of the small
bubbles' radii from the isolated case is also much less

dramatic.

Figures 4.31 and 4.32 address the question of the influence
of cloud geometry (bubble space distribution) on cloud
dynamics. Three multibubble configurations, all having the same

Sy N v e

global void fraction (total bubble volume over volume in which
they are distributed), are compared. 1In the three cases, twelve
bubbles of equal initial sizes (Ry=1) are located on or inside a
sphere of nondimensional radius 15. 1In the first case, the
centers of all twelve bubbles are located on the sphere of
radius 15. In the second case, six are centered on the same
sphere while the six others are on a concentric sphere of radius
7.5. The third configuration is composed of four bubbles 3
centered on the outer sphere of radius 15, four others are
centered on a sphere of radius 10, and the innermost layer of :
four bubbles is on a sphere of radius 5. Figures 4.31 and 4.32 A
show that the cumulative effect is greatly enhanced for the

inner layer of bubbles. The initial weakening of the implosion n
as well as its later amplification are more pronounced (even for 3
the outer shell of bubbles) when, for the same global void

fraction, the number of shells is increased. Similarly in the
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same cloud the effects are more pronounced for the inner-most
layer of bubbles. Apparently, the predominant factor is the
relative bubble size and spacing (parameter e=rb0/lo in the
theory). 1In both figures the formation of a reentering jet at
each bubble's wall occurs when the radius becomes zero. The
negative values seen in the figure are meaningless, and the
computation should be stopped at that point. One can notice
that this occurs much earlier for the shell closest to the cloud
center (Figure 4.32).

Figure 4.33 is intended to show the capabilities of the
program MULTIBBL as well as the complexity of the bubble
behavior for a random bubble configuration. Here, twelve
bubbles have been located randomly in a space enclosed within a
sphere of radius 7. Similarly, the initial bubble radii were
chosen in a random fashion between 0 and 1. Both these are
shown via the table in Figure 4.34. We will not try to dwell
too much on the interpretation of this figure since the
randomness makes any rapid analysis empirical. As a general
statement, we can say that while each bubble has the tendency to
collapse at its own period of oscillation, the interactions make
the behaviors at the rebounds, and the following collapses quite
independent of the initial radius. 1In addition, the smaller the
initial bubble size, the more influence of the interaction can

be seen.

Figures 4.35-4.37 consider the case of the growth and
collapse of a symmetrical configuration of six bubbles near a
solid wall. A pressure drop of finite duration, AT = 0.8, has
been imposed on the six-bubble cloud. Four of the bubbles are

in a plane parallel to the wall and at a normalized distance of

12.5 from this wall. The two last bubbles are on a line

-l A
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perpendicular to the wall and are centered respectively at 5 and
20 bubble radii from the wall. The presence of the wall creates
the asymmetry and shows three different behaviors of the
initially identical bubbles. The geometrical configuration
being such as described above, the four bubbles in the plane
parallel to the solid wall behave identically (bubble 3 in the
figure). The two remaining bubbles on the axis perpendicular to
the solid wall have different behaviors. The bubble closest to
the wall is bubble No. 1 in the figures and the farthest away

is bubble No. 6 in the figures. Figures 4.35 and 4.36 indicate
that the four bubbles in the midplane seem to be the most
influenced by bubble interactions. They are followed by the
bubble closest to the wall. This result is probably due to the
fact that the distance to the wall is not small enough from the
image cloud to influence the closest bubble in the analyzed case
(bubble radii=1, location of centers on sphere of radius=7.5,
and distance from wall=5),

The comparison between Figures 4.35 and 4.36 shows the
influence of a finite sound speed in the liquid on the bubble
radius history. For a normalized sound speed of 30 (actual
speed = 3020/(rb0 p/ AP)), Figure 4.36 shows a weakened
interaction compared to the infinite sound speed case. As
discussed in Section 4.2, this is due to the fact that a finite
sound speed induces a time delay between the emission of the
pressure oscillations from one bubble and its arrival to
another. The flow due to a point source of intensity q(t), for
instance, at a distance r is r‘zq(t-r/c) instead of
r'zq(t). The result shown in Figures 4.35 and 4.36 is,
however, not general since a time delay could, depending on its
amount and the shape of the various bubble pressure functions,
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act in such a way as either to intensify or dampen the

implosion.

: Figure 4.37 shows the shape of the bubbles at different
times during the implosion process. The three bubble behavior
types described above (four bubbles in the middle plane,
farthest, and closest bubble to the wall) are shown side by
side. These profiles give a better idea of the behavior and
deformation of the three bubble types.

a>
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5.0 INCLUSION OF HEAT TRANSFER AT THE
BUBBLE WALL: SUPERHEATED LIQUIDS

5.1 1Introduction

Many modern processes deal with various fluids in

> conditions where both heat transfer effects and inertia

= contribute in controlling the bubble behavior. Examples of such
fluids are hydrocarbons, liquid metals, cryogenic fluids,and

- demineralized hot water at temperatures as high as 300°C. Heat
transfer boiling or cavitation appears with these liquids in

K- such applications as high speed flows of sodium-cooled
fast-breeder reactors in nuclear power engineering, circulation
L4 of cryogenic liquid in pumps in aerospace engineering, and flow
2 of hot water in nozzles and tubes in steam power plants.

ﬁ;- Accidents, such as loss of vacuum insulation in cryogenic

storage tanks and loss of coolant in nuclear power plants, are

Pt D
DI T S B

sources of boiling nucleation and of major safety concern
(Plesset, 1980).

In the previous sections, we investigated analytically and
numer ically the collapse of a bubble cloud due to an increase of

YNCE N

the ambient pressure neglecting heat transfer. A cumulative

4

effect was shown leading to pressures generated during the

-

collapse significantly larger than would be computed by adding

R

the effects of individual bubbles. This explained the

&

observations of the bent trailing edge of propellers subjected
to cloud cavitation. 1In this section, we extend the singular

o« 8 3 B

perturbation approach earlier developed to study the cases where

-
-

heat transfer effects cannot be neglected. We then investigate

1R

numerically the growth of a bubble cloud in a superheated fluid

= following a sudden depressurization. Both a general approach
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and a thermal boundary layer approximation are studied
\ analytically, and methods of numerical solution are described. .

Numerical computations are then conducted only for a symmetrical

cloud bubble configuration with the boundary layer anoroximation

and when deviations from sphericity are very moderate.

The general equations of the problem have been presented in

Section 2.0 and will not be rewritten here. Similarly, we

consider a singular perturbation theory as in Section 3.0

assuming a small ratio of bubble size to bubble interdistance.

5.2 Singular Perturbaton Approach

5.2.1 Normalizations

In order to make asymptotic expansions (and thus to compare

orders of magnitudes) an accurate choice of characteristic scale

variables is fundamental. For the length scales, we chose as in
Section 3,0 the bubble characteristic radius b, in the
inner problem, and the interbubble distance ¢5 in the outer.

However, the relationship between Iby and the characteristic

Taa VAR

initial bubble radius, Ry, 1is not obvious. Indeed, while in
the case of bubble collapse, the bubble radius stays of order

Ro, in the mathematical sense, (R(e) = O(Rg) if there exist:
: a constant ) independent of ¢ such that ,R' < A,Rol); such is
. not the case for the bubble cloud growth studied here. :

Therefore rp, is chosen arbitrarily much larger than R,

but such that the inequality

r, /& = € << 1
bo o

.................................

.........



w
of

"

Dl 0¥ B TS R J

s
K

>

Tracor Hdydronautics

-58-

is valid. Consequently, the results of the computations will be
valid only as long as the radius of any bubble in the cloud does
not greatly exceed Ibe»

The time scale choice is simple once b, is known. 1In
the case of a significant pressure drop, as for the problem of
sudden depressurization of a superheated system, this time scale
is related to the pressure drop AP, through

o = Ty p/ AP . (5.2)

AP could also be the order of magnitude of the imposed pressure
fluctuations when P,(t) is a prescribed function of time.

As mentioned earlier, in both the "inner" and the "outer"
regions, the flow in the first approximation is that due to a
distribution of dynamic sources and heat sinks. The character-
istic strength of the dynamic sources is gqg = rboa/ro,
and depending on whether one considers the "inner" or the
"outer”™ problem, the resulting velocity potential, ¢, has the
scales:

3
- 2 out _
) = I, /T ’ Qo rbo /loto . (5.3)

Since the maximum temperature drop occurs near the bubble
wall,and since a lower bound for this temperature is the boiling
temperature of the liquid, Tp, at the imposed ambient

pressure, P,, the temperature departure from T, is scaled

with the amount of superheat, (Te - Tp)-.
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With these characteristic scales, nondimensional variables
all of order wunity are introduced through the following
definitions, where bars denote outer nondimensional variables
and tildes inner ones:

r = r/rb ;i r = r:/iz.o ;
(o}
2 t) = M)/ B(E) = Bro/ry, ;

- (5.4)
t=t=1t/1g; T=T=T/(T-T);

p(t) p(t) = p(t)/ap

-e

out

s(t) = oiM(t) /el ; B(e) = ©Ut()/e2ut,

Each of the unknowns, X, is then expanded in a power series of ¢
as follows:

X = Xg+teX; + €2X, + €% 3 + 0(¢ed). (5.6)

5.2.2 PFirst Order of Approximations ( €°)

When e goes to zero, the distance between bubbles goes to
infinity, interactions vanish, and in the absence of a
slip velocity between the test bubble and the surrounding fluid,
the only boundary condition at infinity is the imposed ambient
pressure variation Pg(t). The "inner problem™ 1is therefore
spherically symmetrical and its solution is given by the well-
known Rayleigh-Plesset equation. This can be written with the

superscript (i) omitted for convenience:
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% y ¢t . 2W
ag + 5 al= -p_(t) + 7 (t) -

Y. (¢) - P . (5.7)

o

a9

The nondimensional parameters are defined by the relations:

. P_(t) - P_(0)

P”(O) - PV(O)
Pw(t) AP

AP

®

.8
p,(t) - p,(0) B (5-8)

_ _y(o)
"o (t) AP =

r
e rb AP
o

L}
X

;(t) = y(t)/v(o).

Here y(t) and py(t) are, respectively, the surface tension
coefficient and the liquid vapor pressure at the bubble wall
temperature at time t. The initial equilibrium condition at the
bubble interface is

1

P + 2W," /R =0 (5.9)

For a given P,(t), equation (5.7) can be solved for the
variations of the bubble radius, aoi(t). This allows the
subsequent determination of the higher order approximations of
the bubble radius.

When the temperature at the surface of the bubble departs
significantly from the ambient temperature, it is necessary to
couple equation (5.7) with the energy equation to account for
the dependence of py and y on temperature. At this order, the
problem is spherically symmetrical, and the energy equation,
(2.5), reduces to the following nondimensional equation:
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where the Peclet number, Po, is the ratio of the thermal dif-

fusion time, rbOZ/D, to the bubble characteristic time 1g,

_ 2
Pe = rbo/(D ro) (5.11)

The heat balance on the bubble-liquid interface reduces at this
order of approximation to the following normalized equation

r 2
o, L by N 2
ETTTT " % = a, (5.12)

5.2.3 1Interactions

a. Order ¢

In the asymptotic theory presented here, the local
pressures and temperatures driving the yrowth of any bubble
B(1) are a perturbation of the imposed far field pressure,
P,(t), and temperature, T,. Since these perturbations are
due to the presence of the other bubbles in the flow field, the
leading terms can be obtained directly once the first order
behavior of all the bubbles in the cloud is determined. For
instance, once equations (5.7), (5.10), and (5.12) are solved,
the variations with time of the radius, aoj(t), of any cavity
in the cloud are determined. This allows the determination of
the intensity of all sources qoj(t):

. . 2 ~
~J = ] 2]
qo(t) ao ao .
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Consequently, the resultant "outer" potential flow is deter-

mined to this order by:
3
95 (t)

: ’E_J, ’ (5.14)

® NX
o j=

g

where M is a field point, and B) the center of the bubble
B(j), and also the location of the source (j). The asymptotic
7: expansions of $p(M,t), when the normalized distance
- '§§i| = ¢ rl goes to zero, contain additional terms other

than the leading source term, qgl/ri, corresponding to the
- order zero "inner" potential flow,

i i 7i
¢ = qo(t)/r . (5.15)

!; These terms express the interactions and are responsible for the
flow and bubble shape corrections. For instance, by application
of the matching principle (n - m rule, Van Dyke, 1964), the
order € term will determine the boundary condition at infinity
for the order ¢ "inner" velocity potential, i.e.,

- lim oy = § —%j) d (5.16)
- rl s ® J#1 A
where 2,1J is the initial distance between the two cavities’
centers Bl and BJ.

In addition to the at-infinity boundary condition (5.16)

A the first correction, Oli, of the undisturb¢s potential flow,
¢oi, has to satisfy the Laplace equation, (2.1), as well as
boundary conditions on the surface of the bubble B(1), fThese

e are the contributions to order ¢ of the expansions in powers of
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e of Conditions (2.2) and (2.3) made dimensionless., Similarly,

£ a_ T %

the first correction, Ty, of T, has to satisfy the equations
derived from (2.5) and (2.7).

Due to Condition (5.16) the dynamic problem remains
spherical. To this order the effect of the other bubbles does

not introduce any asymmetries, and only changes the level of the
velocity potential. Therefore, the correction at this order A
stems from a modification in the "inner" problem of the pressure
imposed at infinity by the time derivative of the added

I A AT

at-infinity velocity potential, (5.16). As a result, the
solution of the dynamic problem at order ¢ is given again by a
source term which corrects the leading term ¢oi. This
solution can be written:

i

qy (t) L -

= o) 3 !
= + z ( :H ) qo(t), (5.17) ¥

~ » $ 13
r 1
J o

oy =, 4

where the source intensity, qli, is given by:

-~ -~ ~

+ 2a

at . (5.18)

L2,
= a a

i .
o 1 a

i ei
o o

In order to satisfy the boundary conditions at the bubble
surface, the first correction, ali, of the bubble radius has
to satisfy the following differential equation, where the
superscript i has been omitted:

-
- -~ 4

co ~ ~ --. -1
+ + -
a_a) 3ao aj aj(a 2we a

-2 9’0
) == (=3 &Q+ mue). (5.19)
J#1 !.o

o]

ARRIAANR

Here w,(t) is a correction of =,(t) and expresses the second

approximation of the value of the vapor pressure at the bubble

PSS .-_' ._“.~ .
PRGN S
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2 o4
wall. Using the expansions of the temperature in powers of e as
in (5.6), mo(t) and wn;(t) can be expressed as
molt) = [p (T (a_,t)) - p(T)]/ & , (5.20)
aTo dpV
m(t)=[p (T1(a ,t)) + a) 35— (aj,t) g7 (T (a ,t))]/aP. (5.21)
For the study of the heat problem it is useful to introduce
the following variable (again omitting the superscripts i):
y =5 [£?-R%(o,0)] , (5.22)
by analogy with the spherical bubble case (Prosperetti and
Plesset, 1978). With this variable change, the normalized
energy equation can be written:
>
B S0 (T2 e Sady o=l a0ty et
T + W [ 3 R ] = Pe { ‘3‘§ (r —a-y— +
1 d : T , _ 3 -2 R 3
t——— [ 55 (sine 55 ) - 535 (R? 55 sine = )]} + o(e?).(5.23)
r“siné
After replacing T by its value derived from (5.22), and
accounting for the expansions of R(6,t), we obtain at the orders
e’ and ¢, the relations:
° 1 aT
~ -" 2 4 0 -
To Py 3y (n Ty ) =0 , (5.24)
and
. -1 aT 1 -~ ~_ 2T
T, - 3 4 __“y=p - 3 2 "o

A where

A e e e e e e e e L. . . -
e e e AT et T T e e, SR e e e e e e e e e e e e
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n=(ad+ '3, (5.26)

Similarly, the heat balance condition on the bubble wall
becomes at order ¢° and e:

@
@
3

2 o _‘#L
a -— = a ‘ (5.27)
o 9dy y=0 o
and - - -
..2 3T1 aji BTO -~
ao ( Ti— + 2 -— ) =,,da1 . (5.28)
ap Y y=0

b. Higher Orders

Continuing the same procedure as in the preceding section,
one can derive the successive equations for the flow field, the
temperature field and the bubble motion. The solution of the
problem is made easier by the use of series expansions of the
velocity potential in spherical harmonics, and of the bubble
surface equation and the temperature field in Legendre
polynomials, P,(cos@). The boundary condition at infinity for
any particular "inner" problem (i), obtained by expanding the
expression of ¢ near Bi (Chahine and Bovis, 1983; Chahine,

1982) can then be shown to be up to order e3:

. i - _ 3o 2 2 37 ij -3
lim " (M,t) .2_{ € Aijqo € (Aijqor cos 67 + Aijq1)+
i#j
r <> o
31,3 3.2 ij 2 3. ij 3
€ [Aijqor P,(cos8 )+Aijq1r coso 7 + Aij T, ]+ ...}, (5.29)

Here qnj is the correction at order ¢D of qoj, the

strength of the source representing the first-approximation
spherical volume change of the bubble B(3), and
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. _ ij
: Aij = (zo/lo ) . (5.30)
¢ The superscript j denotes quantities corresponding to the other

bubbles, B(J), and 8l] is the angle MBiBJ between
Bi,Bj, and a field point in the fluid, M, (see Figure 1),

Expressed in physical terms (velocities, pressures), the
boundary condition (5.29) indicates that the order ¢ correction
to the nonperturbed spherical flow field around the test bubble
is a spherical modification of the collapse driving pressure.
This introduces, as we have seen in the preceding section, a
spherical correction ali(t) to the radius variations
aoi(t). At the following order, ez, a second correction of
the at-infinity uniform pressure appears, and a uniform velocity

as field expressing a slip velocity between the bubble and the

surrounding fluid is to be added. Going through the expansions

“

of the boundary conditions at the bubble surface, one can show
that this induces a spherical correction, azi(t), of aoi(t),

[N B N

and a nonspherical correction fzi(t)-coseig (Chahine and

Bovis, 1983, Chahine, 1982). 819 jis an angle which can be
compounded from all the 8id's (see Figure 3.1). Things become
more complex at the order of expansion e3, where in addition to
the uniform pressure and velocity corrections, a velocity
gradient generated by the flow field associated with the motion
of all the other bubbles, is to be accounted for to generate a
nonspherical correction of form Pz(coseig).

Resulting from the above remarks on the at-infinity
boundary condition, one can show that the equation of the
surface of the bubble B{(1) and the temperature can be written

as:
-~
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rRi(e19,t) = aé(t) + calt (t) + €2 [ab(t) + £3 (t) + cosei9] +

+ €3 [;g(t) + E%(t)-coseig + g%(t) P, (coseig)] + o(edy,
(5.31)

T(r,elg,t)=To(r,t) + € Ty(r,t) + e?[T,o(r,t)+T,,(x,t) «cose’d ]+

+ 53[T30(r,t) + T31(r,t)-coselg+T32(r,t)- Pz(coselg)}+o(53),
(5.32)

provided that the initial bubble shape is spherical. Therefore,

3 each inner problem is axisymmetric, and the

up to the order ¢
axis of symmetry for every bubble is in the direction, BiG, of

its motion towards the bubble c¢loud "center".

We introduce d, defined as the sum of the deformation
rate, Enr and of the origin of axis translation velocity,

. '.ll‘
., .‘.’

gn, both of form cos$8:

d =f +b_ . (5.33)

One then obtains the following differential equations for the

2

order €° radius components, and d,, similar to (3.11).

. - - .
~ ¥ - w -

aja, t 3 éoéz +a; (aj - 2w a

- H "1 ~ -‘3 .,

2 - a;a; - 2w, af a_ + Hy(t) - ¥ A, g3, (5.34)
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In the above equations, the superscript i has been omitted,
and ag(t) and a,(t) are obtained at the preceding orders by
solving the differential equations (5.7) and (5.19). 1Ipn(t)
are higher order approximations of the nondimensional difference

between the vapor pressure at any time and its initial value.
The indexes n,m correspond to those used in the expansions of

the temperature, Equation (5.32).

The energy equations at order e?

can be written using

- 1/ 3
n = (ag” + 3y) ' (5.36)
: -1 4 T,
Tzo - Pe (n —ay— =
1 -~ ~ - ~ aT -~ ~ 3T
-1 2 2 4 2 =2 o 2 1
|4 - 4a _a + 4a‘a + 2a’a —— + 4a‘a T
e dy [« 0%, 0% 2" 0%, ) 3y 01" By '(5-37)
. aT -~
~ -1 3 b 21 -2 -
T21 P, [3§ (n —3§—) -2n T,y ] =
2h, " - - -2 o o cosed - ar
(— + 24 _ a fo, + a’"f, + AL g —_— nc) =— +
n oo o i#3 1j "o ,se9 3y
~ =~ 2T ~ ~_ 9T
-1 -2 _2 [} 3 2 o
P, [2n7° &l £, w (4n £, a v )] . (5.38)
The corresponding conditions of heat balance on the bubble wall
are
- 2.. - - -2 -
- 3T20 a) aTI ags a) oT -
2 o
a + + 2 (—+—=) =2 ] o =fa, ,(5.39)
o 3y 30 y 3 gg Iy y=0
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; Similar equations can be derived for order el (Chahine and Liu,

1983) and are not presented here for conciseness.

* .

5.3 Numerical Solution

N
S 5.3.1 General Solution
y
- The system of equations derived up to order e3 constitutes
i a set of 14 equations for the 14 unknown components of
y Ri(6,t), and Ti(e,t) (expansions (5.31) and (5.32)). By
N solving this system one determines completely the flow and
N f;' temperature fields as well as the Dbubble motion and
; deformation. A numerical solution of these equations is
: feasible and could be performed using the same procedure as
. Dalle Donne and Ferranti (1975). Their study dealt with a
- single bubble growth and thus solved only equations (5.7},
v (5.10), and (5.12). Here the same approach would have to be
- performed for all seven components of the bubble radius (up to
- e3).
% Since the equations are not independent, the procedure
3 would start by determining at a given time step the
temperature at the lowest order of approximation (e°) and the

. corresponding radius approximation. Knowing this, one can
; compute the successive temperature corrections, and the
f successive radius corrections. At each time step an iteration

- process would be used to insure a good correspondence between
W the obtained temperature and radius values. Stepping in time of
-

e
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the computation could be obtained with a Runge-Kutta procedure
which solves each differential equation yielding the bubble
radius values,. The determination of the temperature field is
more elaborate and requires a stepping in both time and in
space. This latter involves writing a finite difference scheme
and replacing the integration field with a grid of mesh points.
This general solution is not developed here. We considered
instead the cases where large initial superheats make a thermal
boundary layer approximation valid.

5.3.2 Thermal Boundary Layer Approximation

If the distance § in which the temperature rises from its
value at the bubble wall to approximately the imposed ambient
temperature, T, 1s small compared with the bubble radius, R,
an approximate solution can be obtained more easily than with
the method described in the preceding paragraph. By considering
heat diffusion in the liguid, spherical bubble growth rate, and
a heat balance at the bubble-liquid interface, Plesset and
Prosperetti (1977) estimate §/R by:

(3
ks

DL »p _
v VoL _ =37l (5.41)

R K(T,-T) » C(T_~-T.)

Thus, a boundary layer approximation is valid as long as the
Jacob number, J, 1is much larger than one. For a spherical
bubble, comparisons between numerical computations obtained
using this approximation and those obtained by solving the exact
equations gave very close agreement for J > 3, (Prosperetti and
Plesset 1978 and Plesset, 1980).

........
.............
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When the boundary layer approximation is used, the system
of heat equations, presented above, simplifies considerably.
Indeed, in that case the temperature departs from T, only in
the liquid region close to the bubble-liquid interface, and the
values of r which are of interest are close to R(9,t). The
variable, y, defined in (5.22), is then small compared to a3,

and we can write

y=¢tya’ , (5.42)

where y and ap are of order 1, and ¢ is a small parameter
[£=O(J‘1)]. The problem considered then contains two small
parameters ¢ and £, and an asymptotic solution uniformly valid
when both € and £ go to zero can be obtained when a
relationship between the two parameters is defined through the
use of the principle of least degeneracy (Darrozes, 1971).

Considering the heat equation, (5.23), one can determine
the relation needed between € and & to conserve the maximum
number of terms in the leading orders of approximation. In

order to prevent the order el

expansion, (5.24), from
degenerating when £ goes to zero, the Peclet number has to be

large enocugh to satisfy

2

P, = 0(g ) : (5.43)

in which <case both terms of the equation are conserved.
Similarly, to conserve the maximum terms at the following order,
€, one needs to keep together the leading terms coming from the
expansions in powers of € and those from expansions in power of
E (e.g., in the expansions of n“). This "least degeneracy" 1is
obtained when

£ = 0(¢) . (5.44)
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Using the relationships (5.43) and (5.44) between P,, £, and
e, the expansions become straightforward.

The equations obtained at the first order expansion in both
parameters (orders €° and £°) are those for the case of an
isolated bubble. These equations are the Rayleigh-Plesset
equation (5.7) and the heat equation (5.24) in which n"“ takes
the value ay and which becomes:

. 1 3 y aTo
T0+ Pe 3—y ao 'a—y-— = 0 (5.45)

A solution is readily available for this case and was derived by
Plesset and 2Zwick (1952) and Forster and Zuber (1954) using
Laplace transform methods. The nondimensional temperature at
the bubble wall is given by:

2
O

1/ 2 ry -
I D o t
To(ao,t)*T;‘(—iT—o') . m)' foL(x)pv(x)

; (x) 5o(x)

- 1/2dx'
[ ftag(y) dy]
X (5.46)

where, to be consistent with the assumptions made in deriving
this solution, D and K are constant and evaluated at T, while
L and p, are functions of time. The numerical procedure is
greatly simplified now that an analytical expression for the
temperature at the bubble wall is known. The finite difference
method which would have been used in the general case is here
replaced by a numerical computation of the integral equation
(5.46). An iteration procedure is required to insure that the
computed value of Ty(ap,t) does not differ significantly

from the value presumed in the computation of the integrand.

LI
N,




.................................

Tracor Hydronautics

Plesset and Zwick (1952) also gave the solution of the

problem when equation (5.46) contains a right hand side which is ]

a known function of time (heat source term). Using a matched

asymptotic procedure they also computed the following order of

approximation, 0(&). These solutions correspond to the

following order equations in powers of € and { for the
multibubble problem. For simplicity these equations will not be

listed here.

5.4 Numerical Examples for Symmetrical Clouds

In order to illustrate the method presented above we
consider numerical solutions for a cloud of simple geometry.
The bubbles are distributed in a symmetrical configuration and
are initially of equal size. With this configuration all

f;- bubbles have the same radius history. All summations in the

A dynamic equations (5.19, 5.34, 5.35) reduce to multiplications

of the characteristics of a single bubble by one of the three
geometrical constants c;, c,, c3 defined earlier in (3.13).

An additional simplification of the numerical solution can
be introduced if one notices that during the bubble growth the
departure from the initial spherical shape happens very late in
the bubble history and only when the asymptotic approach starts
losing its validity. This is not true for the cloud collapse

(see preceding section). Figure 5.1 shows the variation with

time of the major radius of an individual bubble in a cloud

N configuration of N bubbles symmetrically located on a sphere.

For this figure, heat transfer has been neglected. We observe,
for the isolated bubble, the well known asymptotic linear growth
behavior. However, when the number of interacting bubbles

increases, the pressure field associated with the dynamics of

................

.......................................
..............
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the other bubbles in the cloud reduces the growth

rate of the test bubble. This deviation increases with the
number of bubbles, N, until for N = 12 for the case studied, the
method apparently fails for t > 0.1. The radius corrections
(illustrated in the figure by the amount of deviation of the
radius in an N-bubble case from the isolated bubble case) become
large compared with the order zero radius. Figure 5.2 shows,
for the same bubble configuration, the ratio of the nonspherical
to the spherical part of R(6,t) in the expansion (5.31). 1In all
cases but the obvious one where the method breaks down, the
relative deformations remain 1less than 4 percent while the
bubble radius is 2,000 times its initial value. Based on this
observation and as a first step towards a more precise solution,
we have neglected in the numerical program developed the
contribution of nonsphericity to the heat transfer problem.
Therefore, the temperature field was approximated by a
spherically symmetrical field. However, this field accounts for
interactions and differs from that of the isolated bubble case
because of the contributions of the higher order spherical terms
of the bubble equation. 1Indeed, Equation (5.46), relating the
bubble wall temperature to a spherical bubble radius history,
was applied to the spherical part of the bubble radius, i.e.,
to

~ ~ -

Alt)=ag(t)+e aj(t) + €2 an(t) + e az(t) . (5.47)

With this simplification, at any time step all dynamical
equations are solved using the value of the vapor pressure
corresponding to the liquid temperature at the radial distance
A(t). This temperature is computed at the preceding time step
using egquation (5.46). The nonspherical part of the bubble
shape is not disregarded and is computed neglecting variations

- Ny T T el AT e ettt e ot .
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of the 1liquid temperature along the bubble surface. This 1is
valid as long as the bubble deformation is negligible. Since

we restrict this study to that case, the validity of the results
is checked by monitoring the relative value of the computed
nonspherical to the spherical components of the bubble surface

‘ equation. The computation is stopped when an imposed limit is

g exceeded. Figure 5.3 presents a flow chart of the developed
code HOTCLD.

A series of numerical cases was studied using a VAX 11/750

s, A AN

computer. We have considered different variations of the number
of bubbles and configuration, the ambient pressures, the initial
bubble radius, and the amount of superheat. The duration of a
typical run was about 10 minutes of CPU time (for 2,000 time
steps). The computation involves the solution of the heat and

e dynamical equations for an N bubble configuration, the study of
the corresponding case of an isolated bubble with and without
heat transfer, and the computation of pressure histories at
three locations in the flow field.

In all the presented figures, the curves are stopped when
the computations become invalid due to large bubble
interactions. Figure 5.4 shows clearly the influence of
interactions on the bubble radius history. Since the bubble
does not remain spherical, the value of R(eig) represented in
S this figure corresponds to the point on the bubble closest to
the cloud center, the "lower-minor radius.” (See Figure 3.1.)
The classical results of asymptotic growth in t for the
: inertia-controlled bubble expansion and in t® for the
E heat-controlled bubble expansion can be seen. If there was

no pressure drop a would be 1/2. However, here a is much closer

L to 1, as obtained by earlier studies on single bubbles (Jones
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and Zuber, 1978; Theofanous et al., 1969; and Cha and Henry,
1981). The most important result obtained here is that Lbubble
growth is inhibited by bubble interactions. Very clearly at a
given time the bubble size decreases with the number of
interacting bubbles. This decrease exceeds 20 percent for a 5
bubble system for nondimensional times larger than 10, or one
millisecond after the start of the growth (case of Figure 5.4).

Figure 5.5 shows the effect of bubble interactions on the
liquid temperature at the bubble wall. The presence of other
growing bubbles in the field is seen to reduce the heat trans-
fer at the bubble wall and thus the temperature drop in its
vicinity. For example, for a five-bubble system the deviation
from the isolated bubble case of the temperature drop is more
than 30 degrees one millisecond after the initial pressure
drcp. This result, coupled with that obtained for the
variations of the bubble radius, 1s important for any practical

computation of heat transfer in a two-phase medium.

Figure 5.6 shows the modification of the bubble shape
during its growth for the same N-bubble systems shown in Figures
5.4 and 5.5. Represented are the bubble shapes at two instants
during the growtnh process. As expected, in the presence of an
N~bubble cloud, the side of the bubble facing the cloud center
is seen to be slightly "pushed away" from the cloud center and
the bubble is secn to elongate in a direction tangential to the
sphere. However, any puint on its surface always remains inside
the corresponding fictitious isolated bubble growing under the

same conditions. The deformation decreases as the number of

interacting bubbles increases.
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Figures 5.7 and 5.8 show the influence of the amount of
pressure drop and initial superheat on the bubble growth. These
2 figures consider an isolated bubble as well as a five-bubble
system. The same remarks made in the preceding paragraphs apply
here when the influence of the number of bubbles is considered.
N In all cases the initial bubble radius is the same, and the

pressure drops to the same value. However, since the initial
. pressures vary from one case to another and since all bubbles
5 are considered to be initially at equilibrium, the initial
- temperature and thus the initial amount of superheat varies from
one case to another. To isolate the two effects one has to
consider the case where the bubbles are not initially at
3 equilibrium. Another option would be to have the same initial
y pressure, radius and temperature and to vary the value of
> Pinf- We consider this case below. Figures 5.7 and 5.8 show
4; that the normalized bubble radii and growth rates are larger at
- any given time when the amounts of pressure drop and superheat
¢ are greater. In the absence of heat transfer, scaling effects
- are mainly due to the differences in the Weber number, W, and
‘ the initial pressure parameter . When heat transfer effects
'3 are included, there is an additional parameter, the Jacob
E number. These effects counterbalance each other in real time,
o and one observes a minor influence of the initial value of the
pressure (for the same 1initial radius) when the radius
variations are plotted with dimensional variables (Chahine and
Liu, 1983).

A similar result is seen when, for the same initial bubble
radius and liquid temperature, the ambient pressure drops from
the same initial pressure to different subsequent values. 1In
this case the initial amount of superheat is the same for all
the cases of pressure drop studied. However, the subsequent
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amounts of superheat differ from one case to another. The use
of nondimensional variables decreases (but does not cancel, :
because of nonlinearities) the influence of dynamic factors,
however it does not alter thermal effects. The results (Figure
5.9) show again a larger bubble radius during the growth period
for higher pressure drops. The comparison with the five-bubble
case can also be observed and shows again the retarding effect
on bubble growth due to collective bubble behavior. Figure 5.10
Y completes the picture by showing the temperature drop at the
bubble wall for the different cases studied. The same |
observations as those made above are repeated, namely higher
temperature drops for smaller pressure drops or higher number of

interacting bubbles.

The last series of results consider the influence of the
!!3 initial bubble size for given fixed pressure conditions. With
the assumption that the bubble is initially at equilibrium, the
modification of the initial bubble size also corresponds to a
change of the amount of superheat. Figure 5.11 shows the pre-
dominance of the effect of the amount of superheat factor on the
bubble growth; initially smaller bubbles attain greater sizes
because of larger amounts of superheat. This effect is,
however, coupled with the nonlinearities of the dynamical
equations which favor smaller initial bubble radii in the first
phase of the growth. Figure 5.12 shows the same effect with
nondimensional variables and compares a five-bubble system with
the isolated bubble case. One can notice that the inhibition
effect due to bubble interactions 1is larger for smaller initial

bubbles or larger amounts of superheat. Finally, Figure 5.13

describes the temperature drop at the bubble wall for the same

cases.
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The results obtained show that a significant influence of
3 bubble interactions on bubble growth and heat transfer exists.
| The effects of this influence can be summarized as follows:

a. The growth rate of the bubbles is reduced,

b. The radius of any bubble at a given time is smaller
than would be found for an isolated bubble, and

c. The temperature drop at the bubble wall is smaller at
any given time than would be found for an isolated bubble.

- These effects increase with the number of interacting
bubbles as well as with the amount of superheat and pressure
drop. These results, which were obtained using small

a perturbations assumptions, are expected to remain valid and

become more significant when the void fraction becomes larger.

Accounting for these effects is important for increasing the

accuracies of the existing transient two-phase flow codes.

g

The study presented here could be improved by introducing a

2

finite speed wave propagation in the cloud and by accounting for

" a

the compressibility of the medium. The analytical equations
derived for the general bubble configuration case (no symmetry
and unequal bubble size) could be expanded to a numerical
approach in a relatively simple manner. The resolution of the

xe

problem could also be extended to low superheat cases (small
Jacob numbers) and to larger interactions and bubble
deformations by numerically implementing the analytical approach
presented above which was not used in the numerical examples.
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6.0 INCLUSION OF GAS DIFFUSION AT THE BUBBLE WALL

b 6.1 Introduction

An analysis was developed for the inclusion of the effects
- of gas diffusion into and out of cavitation bubbles in clouds.
X The solution scheme is similar to that used by Chahine and Liu
(1985) for heat transfer to a bubble in a superheated liquid
(see Section 5). The equations governing mass diffusion have

AN

been coupled to those governing bubble dynamics and

P

non-spherical deformations. The equations solved include the
Rayleigh-Plesset equation for bubble dynamics, the transport

..

eqiration for the dissolved gas in the liquid, and an energy
equation for the bubble (first law of thermodynamics). An ideal
 $ gas equation of state is assumed for the bubble which is taken
ﬁ;; to contain a mixture of noncondensible gas and vapor. These two

components are considered to form an ideal gas mixture. Due to

the relatively very short characteristic time of vaporization

e €A B8]

compared to bubble dynamic and gas diffusion characteristic
times, the quantity of vapor in the bubble is assumed to vary
instantaneously such that the vapor pressure remains constant
and at the equilibrium value for the liquid temperature. A

atatn el

boundary layer solution analogous to that of Plesset and Zwick
(1952) is utilized for the gas transport equation. This

VY

provides an expression for the gas concentration at the bubble

surface as a function of time. The concentration of dissolved

sl s -

gas at the bubble surface is related to the partial pressure of
the gas within the bubble by Henry's law. The gas concentration
varies from the ambient initial value in the liguid to the
bubble wall value over a thin boundary layer.
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6.2 Equations Governing Mass Diffusion

FERSXs

6.2.1 General Equations

. The transport of noncondensible gas in the liquid medium is
governed by

== + v . ¥ =D v (6.1)

CAL A
PR

«

subject to the boundary and initial conditions:

-

C »C for r + « ,

s
e

c=¢C for t < 0andr >R , (6.2)

Jl '.n /d

c=2¢C r=R, t>0 .

sat’
©>
Here, C is the concentration of dissolved gas in the liquid in
units of moles per unit volume, Dy is the molar diffusivity of
the gas component in the liquid, and R is the radial location of
the bubble wall. 1In general, R = R(6,¢,t). The gas concentra-
% tion is taken to be saturated at the bubble wall: C = Cgat-.
With this assumption, the gas concentration at the bubble wall
can be related to the partial pressure of that gas component in
the bubble by Henry's Law:

g Pg = H CSat =H « C(r=R) , (6.3)

where Pg is the partial pressure of noncondensible gas within
the bubble (taken to be uniform throughout the bubble) and H is

™ Henry's constant at the liquid temperature, a property of the

o

gas-liquid combination.

"l “L .‘— ¢
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As the bubble grows or shrinks, noncondensible gas will be
transported across the bubble wall. The net transport of gas
into the bubble can be related to the gradient of gas concentra-
tion in the liquid at the bubble wall:

aC -
Dy Sf 35 |e=g 98 = ng (6.4)

where S is the surface of the bubble, n is the direction normal
to the bubble surface, and fg is the time rate of change of
the total number of moles of gas, Ng s within the bubble.

6.2.2 Boundary Layer Solution for Gas Concentration

A general, detailed solution of equations (6.1-6.3) would
likely involve a time consuming numerical approach, such as a
space and time dependent finite difference scheme, and is not
necessary for many cases of interest. Plesset and Zwick (1952)
and Forster and Zuber (1954) obtained a solution to (6.1-6.3)
for the case of an isolated spherical bubble for which
appreciable concentration gradients are confined to a boundary
layer of thickness &8 which is small compared to the bubble

radius:

p /2 r2 X
c=c_-[2] rt or_lr - R dx. (6.5)
¥ L LR oay ]2

&

This expression applies to the first order approximation of the
bubble radius, R = ag(t). A similar relation is found
applicable to R = apg(t) in the heat transfer study (see

Section 5.0 and Equation 5,46). Equation (6.4) can then be

expressed as
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’| a
, ac i
: ao _a_r r=a = 4D ’ (6.6)
\ ] © g
o
v and substituted into (6.5) to obtain
) 2
o = N
. C=C,-% [ng]”2 fg - 2" g 77 dx. (6.7)
- [ J; a5 (y) dy ]
; We now nondimensionalize the variables in (6.7) and define
:
c = c/c_, ,
i
N n. = n_/n
.' g g’ 9, '
e - - -
L‘\.; t, x, y = t/1, x/ 1, y/ 1 ’ (6.8)
NS
a = a /r '
; o (o] bo
X _
r = r/rb '
" °
where
¢ Ce is the gas concentration for r +e,
4
3 Tbg is a reference characteristic bubble radius,
Ngo is the number of moles of gas in a bubble of radius
N rp, at equilibrium at t=0, and
L

- T = rbo\/p/AP'ls the characteristic time for growth of a
- bubble of radius The -
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Equation (6.7) becomes, in nondimensional form:

1/2 ng = n
= - 1 o t g =
¢=1- s, i o o T 177 9% (69
by " [ [ 3y (v)dy]

Let pq, be the initial density of the gas in the bubble,
Then

4
n, =m /M =3 mr) p /M , (6.10)
o
where Mg is the gas molecular weight and Mg, is the mass

of gas in the reference bubble of radius Ibg* Equation
(6.9) can then be written as

rbz 1/2 pg _ -
C = - 1_ o (o) t g -
I 9 [ ff 3" (9rav]

o]
X

for C, expressed in moles per unit volume, and Pgq in mass
per unit volume. If the dissolved gas concentration is

expressed as a volume fracticn (e.qg., cm 3 of gas per cm?d of
water), we will let C, be the concentration at infinity and

C = C M /o . (6.12)

Then equation (6.11) becomes

- v W oW V¥

~ % W v

-
Ll
-
-
-
-
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r 2 1/2 =
o= - P ] [E °g ax , (6.13
- 3¢V mt D o T -y = .- 172 x o+ (6.13)
- g [ JZ a5 (y)ay]

X
where CV is now a volume fraction concentration

. . . v . .
nondimensionalized on C,. We will use expression (6.13) for

the transport of noncondensible gas across the bubble wall.

6.2.3 Eguation of State Within the Bubble

The gas and vapor within the bubble are taken to comprise
an ideal gas mixture, and the equation of state for that mixture
is given by

(6.14)
where

Pg, Py = partial pressures of gas and vapor,
Vp = volume of bubble,

Ng, Ny = number of moles of gas and vapor within the

bubble,
Ry = Universal gas constant, and
Tg = Absolute temperature of the gas and vapor mixture

within the bubble.

The temperatures of the gas and vapor phases are taken to be the

same, Tq. For an ideal gas mixture, each component also obeys

the ideal gas law:
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2
PV = n_ R T
g b g g '/
P, V, = n, R, Tg . (6.15)
In this analysis, the partial pressure of the vapor is fixed (at
the equilibrium value for the constant liquid temperature) while
Pg is allowed to vary with bubble behavior, mass transfer, and
the bubble energy balance.
We nondimensionalize with the characteristic value of pressure
change, AP, and the equilibrium values at the characteristics
bubble radius, rbo:
Pg, P, = Pg/AP, P,/
n.,n = n_/n n_/n
‘—‘ gl v g/ go’ V/ go [4
T = v/( 2.3 = 38 (6.16)
b b 3 bo o ' :
The temperature is normalized on the liquid temperature, T;
- T =
N Tg Tg/Tl’ (6.17)

Equation (6.14) can then be written as

=

(P +P ) V. = 8 (n. + n)

gt B Yy g * R Ty (6.18)

............................
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Ru ngo T1 Pgo _
g = T3 = = w - Pg ' (6.19)
3 rb AP o
since
ngo Ru Tl
Pg = 3 (6.20)
° 3"

the partial pressure of gas in a reference bubble of radius

rp, at equilibrium for the initial liquid pressure and
temperature. Thus, the quantity B can be viewed both as a ratio
of the reference bubble gas partial pressure to driving liquid
pressure change or as a dimensionless universal gas constant.

Similarly, we write

S
el

P 7 =
gbsgg’

=1
3!

Pv vb = B v g

(6.21)
Use of the ideal gas equations of state has introduced
another unknown, Tg, and thus necessitates use of another
condition. This is provided by the first law energy balance of
the ideal gas mixture within the bubble. Two cases are
considered. 1In the first case, the approximation is made that
the gas and vapor mixture temperature is constant and equal to
that of the liquid. This approximation is valid when the bubble
is initially at the liquid temperature, and changes in bubble
size occur slowly enough such that heat transfer can equilibrate
the bubble and liquid temperatures. The second, more compli-

cated case, involves writing the first law energy balance for
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the bubble with mass transfer across its surface. This formula-
tion allows for Tgq to differ from T; without an arbitrary
adoption of a polytropic constant. 1Its use actually enables
determination of the effective polytropic constant.

In the first approach, the change in state of the
isothermal ideal gas is given by

PV PV
9 b _ constant = 2P = P ,
n n R = r 9
g g = b
o
n n
P = P 2 =5 3 (6.22)
E % v, e ag

This provides a simple relation between the number of moles of
gas, the gas partial pressure, and the bubble volume at
different times.

6.2.4 Energy Balance

For the second approach, we consider the bubble wall to
constitute a deformable and permeable control surface and write

the first law energy balance for the control volume bounded by
that surface:

du = -dw+ ] n hy dt ;3 i=v, g, (6.23)
i

where

dU = Change in internal energy of the control volume in
time dt,
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dW = Work done by the control volume on its surroundings in

T TT—

time dt,
nj = Net molar rate of mass transfer of component i into
[ the control volume, and
hj = Specific enthalpy of component 1i.

In (6.23), we have neglected changes in kinetic and potential
energies of the bubble and any heat exchange between gas and
liquid. We further assume that the bubble wall remains at the
liquid temperature T3, although the gas and vapor mixture
within the bubble is free to assume any temperature dictated by
(6.23). This is consistent with the neglect of heat transfer
into the liquid. The partial pressure of the vapor, Py,

within the bubble is taken to be constant and equal to the

ar N ECE I FL NN PSSR, (%S SN WS NPPr)  WN

equilibrium vapor pressure at T;. Thus Py, remains constant
due to the assumption that the bubble wall temperature remains

at Ty. Although Py is constant, ny will change as the

bubble volume changes and vapor will condense or liquid vaporize
at the bubble wall. This results in a form of heat or energy
exchange between the bubble and the liquid that is accounted for

Tt e ata EEM Y

by the term ﬁvhv of (6.23). The temperature of both gas and
vapor components crossing the control surface in either
direction is taken to be T;, the temperature of the bubble

wall.

. e e e e enmmmy

With these assumptions and the previous assumption of ideal
gas behavior for both the vapor and noncondensible gas

components, we can write

- -9 g
au oy d(n, Tg) + Cv,g d(ng Tg) , (6.24)
. _ . l * l
E n, h; = (n, cp'v + ng cp'g) T, . (6.25)
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m . .
Here, c¢j 5 is the molar specific heat of component j evaluated

at temperature Tp. The notation can be summarized as:
i = p, specific heat at constant pressure,
i = v, specific heat at constant volume,
j = g, specific heat of the gas component,
j = v, specific heat of the vapor component,

m = g, evaluated at the gas-vapor mixture temperature,
Tg and

m = 1, evaluated at the bubble wall or liquid temperature,
Ty.

The work term in (6.23) can be expressed as the boundary work in
moving the bubble surface

(6.26)

dw = (Pv + Pg) dVb . ;

Combining (6.23-6.26) and rearranging, we obtain

g d
Cy,v dt (nv Tg) + Cv,g dt (ng Tg)

° . l
- (Pv + Pg) V., + (n

1
+
v p,v ¥ "9 %p,g

) T, . (6.27)

b 1

We use the same nondimensionalizations as before and

-m _ m
cij = Ci,j /Ru (6.28)

T T T PR N P S N T S e T T e e T
R, 2 LR AT o - - SRR RO R R e R
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We then write (6.27) in dimensionless form and obtain:

-g d - = =g d - m =
= T + - =
cv,v at (nv g) cv,9 dt (ng 9)
-1 B +5B) Vo+ (E SR ) . (6.29)
8 v g’ ‘b Vv TP,V g 'p.g '

Recall that B8 can be viewed as a dimensionless gas constant or
as the ratio of Pg to AP.
o

Equation (6.29) together with the ideal gas equations of
state (6.18, 6.21) are the equations which must be solved for
the nonisothermal case in place of (6.22) for the isothermal
case. The complete set of simultaneous equations to be solved
consists of the bubble dynamics equations (3.11), the boundary
layer approximation for gas diffusion subject to Henry's Law
(6.3) and conditions (6.2, 6.3), and either the isothermal ideal
gas change of state equation (6.22) or the ideal gas equations
of state (6.18, €.21) together with the first law energy balance
(6.29). This set of equations accounts for both dynamic and gas
diffusion effects on bubble behavior.

6.3 Solution of the Equations Due to Mass Diffusion

We now describe the schemes adopted for solution of the
coupled sets of equations described above for including bubble
dynamics and mass diffusion effects in bubble behavior. we
first approach the solution of the energy balance (6.29) by
choosing to allow it to_determine the gas partial pressure Pq
and its rate of change ég: With this scheme, we then utilize
(6.3, 6.13) to solve for ﬁg and Eg. This format is somewhat

arbitrary. However, we have found this to be much better
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behaved numerically then using (6.3, 6.13) to determine ig,
differentiating to find ég and using (6.29) to determine 5§
and ﬁg.
Combining (6.21) and (6.29) we obtain
- - - - e - - = s o -1 =1 _
cv,vpvvb+cv,g( ng+ Vng)+(Pv+Pg)Vb B(nvcp'v+ngcp’g)—0 ,(6.30)
where the condition that Py is constant is employed. We
eliminate n, as a variable by relating it to ﬁg using (6.21)
n, = ng PV/Pg ’
\ = Y E - n P. 52 . -
n, P, (ng/ g ng g/ g) (6.31)
) Thus (6.30) becomes
1 g o - - . - - - Y
3 [Cv,v By Y ¥ S5, g (Bg ¥y + U, Py + (B 4 B) vy ]
7 P_ P
_ =1 v -1 - v g _ =zl .
‘eovz "9 T °pv g 52 °pig Mg T 0 - (6.32)
9 g

The relation between specific heats for an ideal gas in

dimensional form is given by

or in dimensionless form

c. =c¢c_-1 ., (6.33)
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We can thus express all values of EV in terms of the
corresponding Ep quantities.

Using these expressions, equation (6.32) can be arranged in the
form of a differential equation for Pg:

3 <5 - -
P_ (A + + P D-E/P_+F =
g ( B/Pg) 9 / g F 0

[4

where A,...,F are defined as:

A

_g - \.’ _ —l -
°p,v v Vb /8 = Sp,q Ng

Equation (6.34)
expressed as

is solved by a Runge~Rutta procedure when

E/P_ - D
/ 9
A + B/P

- F
9

2
g

where A,...,F are taken constant and known for a given time
step.
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The values of the specific heats, Cg,gr ¢p,g g v

-4 .
and Cp,ur are taken to vary only with temperature (a

"semi-perfect"™ gas assumption) and are evaluated using the
correlations of Van Wylen and Sonntag (1973, p. 683).

c. =(a+b o +ad 6+ e oF)/R
p u

where 6 = T/100, T is in °K, and Cp is the dimensionless
specific heat. Values of the constants are:

34.19 -43.868 19.778 -0.88407

0, 8.9465 0.0048044 -42.679 56.615

N, 9.3355 -122.56 256,38 -196.08 -1.5 -3

These correlations are stated to be within an accuracy of less
than 0.5 percent for temperatures (in degrees K} in the range
300 < T < 3500. For temperatures below or above this range, the
specific heats are taken as being constant at the values for
T=300 or T=3500 respectively.

Air is treated as a mixture of nitrogen and oxygen such
that cplair) = 0.21 cp(0,) + 0.79cp(N;). Since the l1qu1d
temperature is taken to be fixed for a given problem, cp g and
cp,v do not vary and are evaluated once from (6.37) for the
specified liquid temperature. The specific heats dependent on
Tgq are evaluated each time (6.36) is solved knowing the
dimensional value of the gas temperature Tqg = Tq T
where from (6.21)
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: ) B 3}
P = T oo, = 2 ° , p | (6.38)
g g 1 8 n 1

The specific heats are evaluated each time Equation (6.36) is
solved using this value of Tq based on the old value of ﬁg.

If isothermal conditions are assumed, Equation (6.22) is used to
solve for Pg.

“»
i The quantity of noncondensible gas in the bubble at any
< time is obtained by rewriting equation (6.13). The interval of
integration in (6.13) can be split into two intervals to

f separate out the current time step:
>
< I(0,8) = I(0,t-h) + I(t-h,t) , (6.39)
&

an . . :

s where h is the time step size and
N n

b g -
I(a,b) = [ dx . (6.40)
a b -4 ;=4 1/2
[ /3 a5 ay]
. The second integral is evaluated to avoid the singularity in
. (t-x)~1/2;
- £ n

: I(t-h,t) = [: J dx =
3 £ a 2 (t-x)/?
X o
; 2 4 %=t ~ -
o -2 n = -
N = —9 (t-x0)1/? .= 2 -qh' n /ag . (6.41)
N 32 x=t-h 9
“ ao

a
v .
o
o,
o
xS
2
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e

where the tildes denote an average values over the interval from
t-h to t. We approximate these average values as:

g = ng(t) ’ (6.32)

+
o 5 . (6.43)

Wi
1]

Expression (6.42) for Eg was found to be better numerically
than the mean of the values of ﬁg at t and t-h. Then

- - - (t)
I(t-h,t) =8 4/h — 9 - (6.44)
[ao(t) + a_(t-h)]
4° Equations (6.13, 6139, 6.44) can be combined to provide an
b expression for ﬁg(t):
- fa_(t) + a_(t-h)]? =V, = _
no(t) = —2 o =€ L&) _ 1(0,8-n)] , (6.45)

9 8 40’ o

where
rbz 1/2
. = — o)
14
3 Cz T Dg
= t-h ﬁg(x)
I(0,t-h) = fo dx . (6.46)
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Equation (6.45) is used to calculate ng(t). The value of
ﬁg(t) can then be obtained by a simple trapezoidal rule
integration:

n (€) = n_(t-h) + h[n_(t) + n_(t-h) /2 .

ng () = ng(t-h) [ng (E) g(t-h) 1/
A higher order approximation could also be easily implemented.

The values of 59 and ﬁg are utilized in solving (6.36) or
(6.22).

The algorithm employed can be summarized as follows:
1. At a time t*, all variables are known.

2. At time t*+h, the bubble dynamics equations are solved
for 56, ;o with all other parameters evaluated at t=t*.
Then, the differential equations for all other components of the
bubble surface equation (see Equation 3,10) are solved with the
same evaluation of the parameters at the preceding time step.

3. Equation (6.45) for ng(t*+h) is solved using the
values of ag, ap at t*+h and the value of Py at t*. It is
then integrated to obtain ﬁé(t*+h).

4. Equation (6.36) or (6.22) is solved for ﬁg using the
values of ag, dp, and ng at t*+h and the values of the
other parameters at t*, Use of Henry's law yields EV(t*+h).

5. Iteration is performed between stcps 3 and 4 above
until the calculated values of Pg for successive iterations

are within a specified difference - or error bound. During this
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process, the "most current" values of the variables are used at

s s AT

each step of the iteration.

6. When the criterion of step 5 is satisfied, all
variables are known at t=t*+h and the calculation returns to
step ' with all variables known at time t=t*+h,

o This process is continued until a desired time is reached.
Figure 6.1 shows a flow chart of the program GASCLD based on the

above algorithm,

6.4 Numerical Examples and Interpretation

- A series of numerical cases were run on a VAX 11/750 '
: computer using the developed program GASCLD. Only a few
‘\ variables were investigated in order to demonstrate the

capabilities of the code and to gain some insight into the

influence of gas diffusion on bubble cloud dynamics. Figures

6-2 to 6-11 illustrate the results obtained. Bubble growth has

been considered following a sudden ambient pressure drop. Two

arbitrary particular values of the initial and subsequent

ambient pressures were considered. In these figures comparisons

are made between the behavior of an isolated dynamic-controlled
bubble (no gas diffusion), an isolated bubble with gas
diffusion, and a multibubble configuration with gas diffusion.

A preliminary investigation of the influence on bubble growth of
the initial concentration of dissolved gas in the liquid and of
the ratio e between characteristic bubble size and characteris-
tic interbubble distance was also conducted.

a8 a8 & #

o Figures 6-2 to 6-5 each show a collection of cases of

normalized bubble radii, T = r/rbo, versus normalized times,

LA e N e ST e e Lt e T . . « e, .- .
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t = t/rp \p/(Po - Pipg). In all four figures the

isolated bubble cases are presented for reference. When mass
transfer is neglected at the bubble-liquid interface a poly-
tropic compression law,

P vk = (P vEy at £ =0 , (6.48)

has been adopted. For an isolated bubble comparisons are made
between the two extreme cases of no-gas diffusion: k = 1
(isothermal behavior) and k =1.4 (adiabatic behavior), and the
case where the mass transfer and the energy balance equations
are solved. For both cases considered here the adiabatic
assumption in the absence of gas diffusion gives closer results
to the solution of the diffusion problem. Based on the perfect
gas law (6.15), this result is to be expected when during the
bubble growth the increase in the number of moles of gas
entering the bubble overcomes the decrease in gas temperature in
the product (ng Tg) leading therefore PV to grow with V (and
not remain constant as k = 1 presumes)., As we will see later in
Figure 6.10 the temperature drops in the initial phase of the
growth but recovers rapidly to maintain its value later in the
bubble growth history. 1In addition, with our assumptions of no
direct heat exchange between the content of the bubble and the
liquid, the initial phase of the bubble growth is adiabatic.
Comparison between isothermal, adiabatic and complete solution
results show that deviation between the three cases is more
significant when the growth is pursued for a much longer
nondimensional time. This is the case in Figure 6.2 where, the
pressure drop being less violent than in Figure 6.3, the growth

rate is slower.
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Comparisons between two initial gas concentrations can be
seen in Figure 6.2 As expected, for an isolated bubble, an
increase in the initial gas concentration, C,, leads to an
increase in the bubble radius attained at any time mostly due to
an increase in the amount of moles transferred. (As we will see
below in Figures 6.6 to 6.8, this change in C, affects more
significantly the effective polytropic coefficients. 1In a
multibubble system interactions become very significant when the
bubble sizes approach the interbubble distance. This is
reflected by an oscillation in the bubble radius similar to that
obtained in the heat transfer problem. 1Initially during the
bubble growth the modification of the imposed pressure field by
the presence of the other bubbles in the cloud reduces the
bubble size achieved. At any instant the bubble radius is
smaller than that of an isolated bubble. Two such radii are
shown in the figures (R, and R3) and correspond to the sketch in
Figures 3.1 and 8.5. R, is the measurement of the bubble radius
along the cloud center direction, while R3 is measured in the
opposite direction. Figure 6.3 shows the variation of these two
dimensions as functions of time for a set of values of the
spacing parameter e. It is obvious from this figure that bubble
interaction and deformation increase when the spacing between
bubbles is reduced. The presence of multiple bubbles introduces
a flattening of the bubble on its side closer to the cloud
center. This side has a slower growth than the other side. The
computed shrinking and oscillation of the bubble shape in the
latter stage of the growth needs to be investigated to assure it
does not result from a failure of the asymptotic approach. This
behavior, seen in Figure 6.3 for e =0.2, occurs at larger times
for the smaller values of e. All the computations presented

here were performed with a logarithmic increment in the time

steps. Fiqures 6.4 and 6.5 present some of the results of
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Figures 6.2 and 6.3 with logarithmic time scales. A smoother

behavior of the curves can be seen with these scales.

Figures 6.6 to 6.10 show for various conditions the time
variations of the effective gas polytropic coefficients when gas
diffusion is taken into account. The two effective coefficients
used in these figures are defined as follows. The total
effective polytropic coefficient, K is defined base on the
Relation (6.48) and is computed at each time step using

K = (Log Pg/PgO)/(Log V/Vo) . (6.49)

The local effective polytropic coefficient, K,, is based on a

compression law which applies locally between two computation

steps
(pg VE0)y = (g VED), (6.50)
It is therefore computed using the relation
K2 = (Log Pg./Pg )/ (Log Vi/vi+1) . (6.51)

1 i+1

Figures 6.6 to 6.9 show that the total effective polytropic
coefficient drops rapidly, at the beginning of the growth from
the value 1.4 to a minimum value which depends on the initial
gas concentration, C,. As seen in the figures this value can
become significantly smaller than one. Since at these later
times the gas temperature becomes practically constant, the
lower is the minimum value of K the stronger is the relationship
between the number of moles of gas diffusing into the bubble and

the bubble volume change. This can be reflected by the

apprcximate equation
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(V/vo)“K = n_/n X (6.52)

derived from the ideal gas law with Tq assumed constant. This
might explain why the minimum value of K is smaller when C, is
increased. The local effective coefficient of compression, K,
decreases much more significantly than K. From the initial
value of 1.4, K, decreases practically to 0 later during the
growth expressing the fact that Pgq and T4 become practically
constant during the growth.

The variation of both K and K; are much more sensitive to
the initial conditions, (such as initial gas concentration,
Cor and initial bubble size, Rg), than the actual bubble
radius history. This is probably due to the fact that K and
K, express only the gas thermodynamic behavior while the
bubble radius behavior includes gas and vapor thermodynamic and
dynamic phenoma (pressure drop). These results are well
illustrated in Figure 6.9 where the influence of the initial
bubble radius is seen. No difference between the two cases of
initial bubble radii was seen in the radii versus time curves.
However, the effective gas polytropic coefficients are very much
dependent on these initial conditions. Figure 6.10 presents the
temperature histories for these two initial bubble radii. This
figure is typical of all temperature versus time curves.
Initially, the temperature drops significantly and attains a
minimum. Later, the temperature inside the bubble recovers to
reach the initial temperature and remains practically constant.
The minimum temperature achieved and the time to achieve this
minimum are functions of the initial conditions. This result is
related to the variations of K and Ky. The influence of

temperature change on the effective coefficients K can be seen
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in Figure 6.11 where the solution based on the energy equation
is compared with that where the temperature was imposed to
remain constant.

The above results should be extended to actual pressure
fields where the pressure variations are more realistic than a
sudden pressure drop and, more importantly, to longer
computation times where gas diffusion effects become more
significant. For such more practical situations the influence
of the magnitude of the pressure drop, Py - Pjnhg, should be
investigated carefully.
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7.0 CONTINUUM MEDIUM APPROACH

7.1 Introduction

One major assumption of the approach presented above is
that in first approximation the imposed ambient pressure is
assumed to be instantaneously transmitted to the vicinity of
each bubble in the cloud. Therefore, both the compressibility
of the bubble medium and the influence of the liquid
motion generated by the other bubbles on the dynamics of the
bubble considered were neglected in the first order
approximation. This limits the validity of the study to very
low void fractions. The incompressibility assumption is valid
as long as the fluid velocity does not approach the speed of
sound. For single bubble dynamics, this does not usually happen
until the final phase of the collapse. Here, however, two
factors contribute to 1limit the wvalidity of the assumption.
First, the rate of implosion is higher for a cloud than for a
single bubble, and second, more importantly, the velocity of
sound drops considerably when the void fraction increases. This
underlines the need to account for the behavior of the cloud as
a whole in order to determine a more accurate value of the local
pressure driving the collapse of the individual bubbles. 1In
addition, this would have the advantage of limiting, for the
following orders of approximations, the number of bubbles
directly influencing the considered one through a time delay of
the propagation of the information from one bubble to another.
Indeed, the asmyptotic theory shows that the effective parameter
of the expansions is ec,, (where c¢,;, defined by (3.13), is a
direct function of the number of bubbles), rather than
€ = rbo/zo. Introducing a motion equation for the bubbly
medium would limit the number of influencing bubbles to those in
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the direct vicinity of the considered one, through a time delay
of the propagation of the information from one bubble to
another. In summary, if we account for a motion equation in the
cloud medium, the first order approximation of the preceding
approach becomes more accurate, and as a consequence the
following corrections will be smaller, making the approach valid
for higher void fractions, a.

7.2 Volume Average Method

Basically the classic methods used to describe a two-phase
medium are not much different from the singular perturbation
method presented above. The final description deals only with
the macroscale of the cloud.

The description of the macroscale of the cloud can be
obtained by averaging the various physical quantities defined in
the microscale. The two-phase medium is assumed to be
constituted of "particles" containing the host liquid and few
bubbles. This "particle" is small enough to be able to
distinguish the gaseous and liquid constituents, but large
enough to enable one to define significant volume average
quantities in the two-phase continuum. Therefore, each
"particle®™ appears in the macroscale as a fluid point M allotted
various physical and kinematic properties: a(M,t) is the local
void fraction, pp(M,t) is the local medium density, Ugp(M,t)
is the velocity, and Py (M,t) the pressure, ...,etc. 1In such a
volume averaging descriptirn, if Vp is the volume of the
particle, X(M,t) the considered average gquantity and x(m,t) its
local value in the microscale, we have the following definition:
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X(M,t) = ¢ [ x(me) dv (7.1)
P \'
P
The density of the medium is therefore defined by the
relation:
pp(Mst) = p, [1-a(M,t)] + pg a(M,t) . (7.2)
The liquid is assumed to be incompressible and p, constant.
The void fraction, a(M,t), is defined as the relative volume of
: gas in the particle. Usually pg & is neglected, and the
) density of the medium is written:
on(Mst) = o, [1 - a(M,t)] . (7.3)
v If Ug(M,t) is the average velocity of the liquid in the
- =
{ . particle and gg(M,t) the average velocity of the gas, we
obtain comparable results to (7.2) and (7.3):
Pm B = P8 (1-a) + pg gg a , (7.4)
- Pm U = P2y (P - @) (7.5)
. and combining with (7.3),
- O =Y, - (7.6)
i: The continuity equation is obtained by writing the mass
L conservation of a volume of the bubble medium followed during
- its motion. Using the average quantities defined above we can
» write:
L4
-
? g | g )
! p d = + p V U av =0 . (7.7)
' Q dt vie) ™ vit) t m =m
N
-
>
i
3 R R R TR N L
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Here the material derivative pertains to the medium velocity
Un or, with our assumptions, to U, because of Equation
(7.6):

d/dt = 3/t + U, 7 . (7.8)

Since Equation (7.7) is valid for any volume V, we obtain the
general equation:

apm

=tV (pUp) = 0 . (7.9)

A similar equation can be written concerning the number of
bubbles, n(M,t). Neglecting any complete bubble disappearance
or sudden generation, as well as bubble splitting and
coalescence, we can write:

Dn _
-D—t-+nV-gg—O ’ (7.10)

the material derivative, D/Dt, being defined as:

b/Dt = 3/3t + U_ V¥ . 7.11
/ / 95 V. ( )

The momentum equation of the bubbly medium can be obtained
in the same manner by using the momentum equations of both
constituents in the microscale and integrating over the
"particle™ volume Vp. If we neglect the viscous forces, this
can be written:

diUi

\
P

------

...
------
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the index i designating the liquid or the gaseous phase
depending on the position of the element of volume dV in the
microscale. If we account for the incompressibility of the
liquid this equation becomes:

du DU
- =t 9 _ . =
Py (1= @) FE + o0 5y Py / U, VU, av [ apiav =0

Vp Vp (7.13)

If we neglect the gas contribution to the momentum, and we
account for (7.6) we obtain the following approximate classical

momentum equation:

Uy
Py (1 - a) I + Vv Pm =0 . (7.14)
!" where it is assumed that
fv bp; 4 V = jA p;nds = V- VP, . (7.15)
P P

7.3 Bubble-Liguid Relative Motion

The only equation left is that giving the bubble
translation velocity, Eg' which reflects the interaction
between the two phases of the bubbly medium. The study of this
equation is a whole subject of research in itself. Several
contributions exist which have dealt with more and more
complicated situations. When viscous drag is neglected, a very
interesting general expression for the motion of a deformable
bubble in a nonuniform potential flow was derived by Landweber
and Miloh (1980). If we admit, however, that the liquid flow
around an isolated bubble is linearly accelerated, and that the

4?! bubble remains in first approximation spherical, we can write,

neglecting the bubble mass, a simpler equation as follows:
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In this equation, the virtual mass of the bubble is considered
to be 2/3naaopz and the material derivative is related to

the bubble velocity as discussed by Prosperetti and Van
Wijngaarden (1976).

When other bubbles are present in the flow, corrections are
to be introduced in this expression, following Landweber's
calculations. Van Wijngaarcen (1976) performed similar
corrections for a rigid sphere and obtained the expression:

e [30+2.78 ayw, - v J= (- a0%u,. (7.17)

LY
‘j A relationship similar to (7.16) or (7.17) was implemented
in the program CLDMAIN2 to account for gravity effects.

7.4 Micromorphic Continuum Description

In classical continuum mechanics the fluid is described
geometrically by a field point M and kinematically by a velocity
field U(M). The averaging approach of the cloud medium, as
described in the preceding paragraph, is in this sense
classical. However, when a medium contains microstructure, as
is the case for a bubbly medium, a more refined description can
be obtained by assigning to M, in addition to the macroscale
velocity, U(M), other quantities which reflect the microscale
behavior in the "particle®". 1In a first gradient theory, in
addition to the velocity field, U(M), a field of the gradients
of relative velocities in the microscale scale, X, is added

Q which defines kinematically the medium. The description can be
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further refined by using higher order gradient theories.
Germain (1973) considered such approaches and, using the method
of virtual power, was able to derive the equation of motion of
the continuum medium accounting for the macrostresses, o, and
the microstresses, S. -

In a first gradient theory the velocity in the microscale
can be written as

U'(m) = U(M) + X(M) + Mm , (7.18)

where m is a point in the microscale (see Figure 7.1).
Consequently the acceleration, I', of m is derived and, by
equating at dynamical equilibrium the virtual power of all the
internal and external forces acting on the considered particle
(volume Vp) to the material derivative of the virtual power of
mass velocity of Vp, One obtains a dynamical equation of the

medium relating S, a, and I'.

To define X we consider the motion on a scale which is of
the same order as the microstructure. To do so for a bubble
cloud, let us divide the cloud medium into fluid "cells" each
enclosing an isolated bubble. 1In addition, we assume for
simplicity that the bubble center of mass and the "cell" center
of mass coincide at the considered time. Let U(M) be the
velocity in M induced by the rest of the cloud in absence of the
bubble, and V(B) the velocity of the bubble center, B. U(M)
would be the value of the velocity field assigned to M in a
classical fluid mechanics description.

The bubble radius is ag and its variations with time are

given by the Rayleigh Plesset equation. This radial motion of
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the bubble surface induces at a point m of the cell (Figure 7.1)
a velocity of value (ur + er'), where e,' is the unit
vector of the direction Mm. The total velocity u', at m is:
e 2 3
a a a
99 .e '+ v [=2

u'(m) = U(M) +
- - ] —r ]
r 2r

(U(M) - ¥(B)) «e ']+ ...
(7.19)

where r' is the distance between M and m. The second term in
this expression is a source term due to the spherical bubble
oscillations, while the last term is a dipole due to the slip
velocity between the spherical bubble and the £fluid, and could
include first order corrections of the bubble shape. For
further corrections for nonsphericity of the bubble, other terms
(singularities of higher orders) have to be included. By
differentiating (7.19) with respect to time and space one can
define an acceleration vector, T'', and a strain rate tensor,
D'. Following Germain's approach, and using the principle of
virtual powers, one could then derive an equation of motion of
the cloud medium. We decided instead to start with a first
gradient theory and replace (7.20) by its Taylor expansion. We
follow in doing so the first calculations done by Michelet
(1980) in his graduate thesis.

The basic approximation used in this linearization approach
is based on the fact that Equation (7.19) is only valid in the
liquid portion of the "cell" (r > ag). It seems therefore
logical to write the velocity at m, close to the bubble
boundary, as a Taylor expansion of the value of u' computed on a
point of the bubble surface, S, (figure 7.1). This has the
advantage of eliminating the singularity of (7.19) for r'

]
o
.

The obtained expression for u'(m) is then:
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) v
' - - o _t
u (m) = U(M) + [Bao + 4V, cos® r' (2 3 + 3 3 cose> e,
o o
.3 \ .
+ (2 v, sins Za_ r' v, sine] e, (7.20)

where Vy = |g(a) - u(m|.

When V¢ is not accounted for, the expression of u'(m) reduces
to a form comparable to (7.18), which is much easier to
interpret than equation (7.20). 1In that case we obtain:

G (M) = UMM 4 K - Mm o+ g v (7.21)

where X and a are both tensors assigned to M and defined as:

a

(o]
=
-
fi=
[}
w
o
I~
-

(7.22)

1 is the spherical unit tensor. We notice that in comparison to
(7.18), which describes a first gradient homogeneous
deformation, in (7.21) there is in addition to the gradient
tensor, X, a tensor g reflecting the presence of a source in the
cell, Eaﬁation (7.26) reflects in addition to this the presence
of a dipole. It could be written as

u'(m') = U(M) + X HMm+ X' - |Mm| e +a-e +a -e

- 9 L
+ (6Vt cos® 73; r Vt cos 8) Er ' (7.23)

where e, is the unit vector of the direction of U and V; X'
and a' play the same role as X and a but are applied just to the
direction of the translation. The last inhomogeneous ter.. is

more difficult to put in simple form.
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From the expression (7.20) we can now compute the
acceleration, then apply the principle of virtual power, to
obtain the equation of motion. Here again in the absence of
translation velocity V¢, the results are simpler to
interpret. In the absence of viscous effects these results can
be written as follows:

au a
gt *t 3K —2-a—)]=-\7p, (7.24)

where K depends unfortunately on the cell geometry

oo K = fv p;e, dV . (7.25)

c

If the cell and the bubble are symmetrical with regard to the
center of mass M, then K = 0, and (7.25) reduces to the
classical equation of motion (7.14). Although it is unfortunate
that the cell shape seems to play a role in the model, K might
rather reflect an effect of the nonsphericity of the bubble.

When V¢ 1is taken into account a whole series of "inertia"
integrals like (7.25) appear in the calculations. 1In order to
see what such a model might indicate we considered the case of a
spherical bubble in a spherical cell. 1In this case the motion
equation becomes:

2

a
2 =67 +0(a)J(V-U)}=-vp. (7.26)

a

alo,
rlic

+ (3 +

&) w
m!w

P |

o
(o}

Here, R is the radius of the cell, and if we write
R = aoa“1/3

, we have the result:

.......
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au a _
L {—(§E+3-a—(2 [a 173 (71-+ a1/3—2a2/3+ ...)](\_J—U)}=— vp

(7.27)

This surprising result (dependence on a'1/3) might be compared

Y with that obtained for the apparent viscosity of a bubbly flow,

. which is 4u/3 - a~! (Batchelor (1967), Van Wijngaarden (1972)).
In addition, due to the linearization of the velocity field

N (first gradient theory) this model loses it validity for low

> a's.

7.5 Example of a Spherically Symmetrical Cloud

Let us consider a finite-sized spherical cloud of bubbles
N and define its radius, R(t), at time t, as the position of the
e last outer shell of bubbles. The space is therefore divided
) into two regions. For r > R(t), the medium is an incompressible
liquid of density py, while the interior of the sphere,
r<R(t), is filled with a two-phase medium which can be defined

AN YN

as in Section 7.3. We define at a point M(r), a radial liquid
velocity u,(r,t) and a radial bubble translation velocity
ug(r,t). Similarly, we define a local void fraction af(r,t),
density pp(r,t), bubble radius ag(r,t), number density n(r,t),
and medium velocity up(r,t). The matching between the two
media states that at r = R(t) there is a continuity of

velocities and pressures:

L R(t) = ug(r,t) ’ (7.28)

P,(R,t) = lim pP'(R, r', t) ' (7.29)

r'+>

v
LA
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where r' is the distance in the microscale between a bubble
center and a cell field point. The continuity and momentum
equations in the liquid medium (r>R(t)) are easy to solve and
give, after neglecting viscous effects:
= 2
ul(r) = Vg/4nr ’ (7.30)
aP p \; \; 2
Lo 1 3., 9 . (7.31)
ar 4 2 5
r r
Vg is the total volume of the bubbles in the cloud,
- v =41 Rar?dar . (7.32)
- gl o
4 Inside the bubbly medium, due to the spherical symmetry,
the continuity equation also gives
Y
- () ¢
Uz(rrt) - “—_—E 7 R(t) ’ (7-33)
4nr
- with
¥ Vir) = 4n [F a(x,t) x? ax . (7.34)
; °
If we are interested in the problem of the collapse of the cloud
- under an imposed ambient pressure variation, Pg(t), (20) can
- be integrated between the cloud radius and infinity to give:
. .
P v $ 2
Y - =2 )9 _1 v
N P_(t) + PJR) e [R ) “]. (7.35)
N R
Nd
“
>
) Using (7.29), Pg(R) can be related to the behavior of any
N individual bubble of radius agy in the last outer shell of the

............
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cloud, using the Rayleigh-Plesset equation. Equation (7.35)

becomes:

ag 3k
-P(t) + P+ P ) =

9o \ a

g v ;Y o 3 s 2

- —3—-7 —9T +agap + 5 ap . (7.36)
R

The cloud radius motion can be obtained by using an equation of
the bubble motion, for example, (7.16). This gives the
following second relation between R, ag,, and Vg:

e
I

Rae3 08 3 [’\i-\1‘3—3+iﬂ-g \7] i (7.37)
ao 4xr%2 | 9 2R3 9

A third equation, in addition to (7.36) and (7.37), is
needed to solve for R, aj, and Vg. Without an assumption on a
proportionality between Vg(t) and aj(t) or without penetrating
the cloud and solving for all ag(r,t) to determine Vg, there
is no hope of solving the problem. We do not think the
proportionality assumption is generally justifiable even if at
t = 0 all bubbles in the cloud have the same size, since P(r,t)
would not generally be the same for any location r at a
subsequent time. However, an assumptlon similar to that done by
Morch (1980) could be done stating the Vg = n waz
the number of bubbles in the outer shell. The need in general

a where n is

to solve the whole problem is to be expected and is very
important because it shows that defining the cloud by just one
parameter, as a unique void fraction, is not sufficient to
describe its dynamics. Number and bubble size distribution are

other important variables to consider.
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The problem presented above can be solved by combining the
multibubble approach with the global descriptions presented in
Sections 3.1 and 3.3. The approach of d'Agostino and Brennen
(1983) is very close to that presented in this section with the
additional assumption of small radius and pressure oscillations
and the neglect of bubble-liquid relative motion and bubble
interactions.
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8.0 CLOUD CAVITATION THROUGH A SIMULATED MULTIBUBBLE SYSTEM )

8.1 Description of Experiment

Since it is difficult to measure the quantities involved
within an actual cavitation cloud produced, for example, ~n a
cavitation tunnel, we have resorted to the same techniques used
to study single bubble collapse, namely spark generated
bubbles. The fast discharge of high voltage condensors across
two submerged electrodes produces a bubble which, once attaining
its maximum volume, is not in equilibrium with the ambient
pressure. The growth, rapid collapse, and motion of the bubble
can be recorded by high-speed photography. In addition, the )
pressure fluctuations caused by the bubble's dynamics can be .
monitored by means of a pressure transducer. The idea we have
used based on this principle consists of placing a system of
nearby solid walls which, through reflections, generates a
fictitious cloud of bubbles composed of the actual bubble and
its images. We know from the method of images in potential
flows, that solid walls behave schematically as mirrors. For
this study, wall structures which depict symmetrical -
configurations of N = 4, 8, 12, and N > 12 bubbles were used.

A vacuum/pressure tank was built containing the electrodes,
transducer, hydrophone, and one of the various multiple wall
structures. The location of the spark gap was varied in the
test tank in order to control 8, the ratio of the maximun
characteristic radius of the bubble produced, Ry, to the
distance between the electrode tips and the apex of the wall
structure, dg. B8 is directly related to ¢, the ratio between
bubble characteristic radius and the bubble spacing. This

relation is a simple factor of proportionality which is geometry
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dependent. The spark-generating system was capable of obtaining
a voltage charge up to 16 kV on a 0.95 ufd capacitor. For the
purpose of these tests, a charge voltage of 12 kV was
consistently used. The system was made more versatile through
the addition of an electronic circuit which allows it to fire at
a controlled repetition rate which could be of a high

frequency. The relative locations between the components were
varied independently so as to study the effect of changing the
distance between the bubble and the walls.

The signals from the transducers and/or the hydrophone were
captured on a Nicolet 2090 digital oscilloscope and then stored
on floppy disks for later analysis. This oscilloscope has a
maximum digitizing rate of 50 ns per point and a bandwidth of up
to 7 MHz with a vertical resolution of 0.4 percent. The
oscilloscope was triggered either from the initial pressure
pulse caused by the spark or from a signal from a variable time
delay circuit if the collapse of the bubble was to be
investigated using an expanded time scale. A Digital Equipment

Corp. VAX 11/750 computer was interfaced with the oscilloscope

allowing the digitized pressure-time data to be analyzed with a
Fast Fourier Transform. Figure 8.1 is a photograph of the
overall spark bubble test facility showing the spark generator,
test tank, and data acquisition equipment. Figure 8.2 is a
photograph showing the test tank, the electrodes, transducer,
and the multiple walls structure, in this case a cone. Figure
8.3 shows a representative curve of the pressure time signal for
a spark induced bubble and Figure 8.4 the Fourier transform of
the same data. For this particular case, the electrodes were
located 2.25 in. from the top of the cone. The ambient pressure
inside the tank was 13.1 kPa.
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In this study, we tested a two-sided 90 degree corner (two
solid plates perpendicular to each other), a three-sided 90
degree corner (three solid plates perpendicular to each other),
a pentagonal base pyramid (five equi-sized triangles held
together), and a cone with a 60 degree angle at its apex. A
series of tests was run varying the distance from the apex of
each of the wall structures to the electrodes. For all tests,
the transducer was fixed at 6 inches below the electrodes, and
the ambient pressure was approximately 14 kPa. High-speed
movies were taken of the bubble growth and collapse for each
test, and the bubble radius history was measured from the films.

8.2 Discussion of Results

To analyze the high-speed films of the spark generated
bubbles, the model shown in Figure 8.5 was used consistently,
and shall also be used for the results presented in this
report. It shows the selected characteristic dimensions of the
bubble shape measured relative to the initial bubble center, B,
and the apex of the wall structure, point O. Point O also
represents the center of the fictitious symmetrical cloud
configurations. Variation of R, with time represents a
measurement of the re-entering jet advancement. From the
high-speed films, it was observed that for all tests,
theoretically predicted, this re-entering jet formed and was
always oriented in the direction of the apex, or cloud center,
point O.

The details of this jet formation (time of formation and
speed of advancement) differs significantly between the various
test cases. Figures 8.6-8.9 show the time histories of R2

measured for several values of B in configurations of N = 4, 8, r
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12, and N > 12 bubbles. These configurations correspond to the
wall structures of the 2-D c¢orner, the 3-D corner, the
pentagonal pyramid, and the 60 degree cone, respectively. All
the curves have been normalized using the following procedure
which tends to minimize the influence of spark energy variations
and ambient pressure variations between one case and another.
All bubble dimensions were normalized with an average maximum
bubble radius Ry,

RO = (2R1 + R2 + R3)/4.

Time was also normalized using Ry, the measured absolute
pressure in the tank, P, and the vapor pressure, Py. The
characteristic time used for this purpose is the Rayleigh time,

TRy

where p is the liquid density.

Close examination of these plots suggests that increasing
the number of bubbles increases the strength of the re-entering
jet, (R, becomes more negative). While the results from the
simulated 4 bubble configuration show that the jet did not
penetrate past the original center of the bubble, B, at all, the
results from the simulated 12 bubble configuration and the
circular cone tests show a penetration past this point of more
than 40% of the maximum radius in some cases. Since the
strength of the re-entering jet gives an indication of the
degree of erosion from cavitation, these results verify the

theoretical predictions about the increased cavitation erosion,

-------



s

s s e 0l

RN

]
AR
N

.

LA -'.".‘.

........

4>

.

Tad. ‘8 at S : ol 4 nalk i < - L i g L g A el aia M W S T
~ '\ e A & s - W ST s R PNl R - - LR

Tracor Hydronautics

-122-

(increased strength of the collapse), from a cloud as compared
to a single bubble.

Another trend which is noticeable from these results is
that the jet penetrates further inward for higher values of 8
(or €). This trend is shown in Figures 8.6-8.9 for all of the
bubble configurations, but becomes much more noticeable for the
higher density configurations (pyramid and cone tests) and the
closer interacting bubbles. Since higher B8's correspond
theoretically to higher void fractions, this result agrees with
the theory in that stronger collapses are occurring for these
cases. This is also shown, perhaps more clearly, in Figure
8.10, which presents the variation of the minimum value of R,
with B. One can also see that for the N=4 and N=8 bubble cases,
a strong minimum also occurs at 0.09 < B < 0.11. This minimum
is noticed slightly for the N=12 bubble case and not at all for
N > 12 bubbles. This result which proved to be hard to check
with certainty with our testing facility indicates that there
exist optimum values of B (or e¢) for maximum collective effect

(increased collapse intensity, erosion, or noise capability).

Figures 8.11-8.14 show the radius histories for R3, the
measurement of the bubble radius along a direction toward the
center of the cloud. From these results, one can see that this
measurement is closely tied to R2. After the first collapse, R3
is seen to grow with increased B8, and the bubble moves closer to
the center of the cloud. Again, the net result is that the void
fraction for the simulated cloud increases, subsequently

increasing the strength of the collapse as long as the generated
bubble does not touch the walls,
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Figure 8.15 shows the period of bubble oscillation with
respect to B for the various symmetrical configurations. It
suggests a lengthening effect in the bubble period for small and
large values of B, with a minimum period occuring in the region
.07 < B8 < .13 for all the cases considered. One can see that
the strongest minimum occured during the tests run with the 60°
circular cone. The data from this figure and that of Figure
8.10 suggest an optimum value for B for maximum noise and
erosion within the range considered for the test. This optimum
seems to be at or near B = 0.1 for all of the bubble
configurations. This result is consistent with the noise
measurements performed using a hydrophone. Figure 8.16 shows
the peak pressures plotted against B8 for each of the bubble
configurations. One can see that the highest pressures were
recorded within a small range of B8, (0.7 < B < 0.13). Also, the
peak pressure increases with higher bubble density configuration
(higher N here) as the theory predicts. This data again
suggests the existence of an optimum value for 8 fairly close to
that mentioned above. At this optimum value, the effect of high
field pressures and large jet penetration seem to exist
simultaneously.

For all of the tests considered above, the designated
original center of the bubble was seen to move more or less
significantly toward the center of the cloud. This is shown
graphically in Figures 8.17-8.20, which show the motion of
the bubble center. The distance, § = R3 - R,, is shown versus
time for the different bubble configurations. One can see that
very little bubble "center"™ motion was occuring before the first
collapse. However, once collapsed, the bubbles both grow again
and move rapidly toward the center of the cloud. The shift

toward the center is greater for the higher density bubble
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configuration. This, again, relates directly to the results
discussed above, since large values for 6§ correspond to smaller
values for R,, or larger penetratio: of the re-entering jets.
Figures 8.2)1 and 8.22 show typical sequences of pictures taken
from high speed movies. Bubble deformation and motion towards
the cone apex can be clearly observed.

8.3 Conclusions

A very extensive set of experiments was run to study the
influence of bubble number and spacing on the dynamics of a
simulated multibubble system. High speed photography and noise
measurements allowed us to follow with precision the dynamics of
spark—-generated bubbles. However, as already discussed in
Section 4.4, a major impediment to confident conclusions is the
repeatibility of the tests. 1Indeed, the greatest source of
error in the interpretation of the results is the amount cf gas
in the bubble which is not easily controlled. With this in
mind, there is a strong indication that the collapse of the
simulated cloud is very intense for an optimum value of ¢, the
ratio of characteristic bubble size to bubble interdistance.
When € increases (starting from zero) the bubble period of
oscillation increases first, and the collapse pressure decreases
slightly. Later, a strengthening of the implosion occurs
accompanying an increase of bubble collapse and a shortening
of the bubble period. These results match, qualitatively at
least, the predicted theoretical behavior. As € keeps
increasing, the experiments show other pressure peaks, or a
collapse period minimum for certain particular values of .
This result, at first unexpected, seems to correspond to
theoretical predictions for the case of high gas content in the
bubbles (see Section 4.4).
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9.0 ACOUSTIC DAMPING OF A PRESSURE FIELD BY A BUBBLE SCREEN

9.1 Objectives

In order to complement the spark-generated bubble
experience where simulated symmetrical cloud configurations were
submitted to strong oscillations, the acoustical behavior of a
bubble cloud (screen) was investigated. Here no symmetry of the
bubble configuration or size was involved and the imposed
pressure oscillations were moderate. The main objective of this
preliminary study was to find correlations between bubble size
distribution and bubble concentration and the transmission of
various frequency sound waves through the cloud. From single
bubble studies it is known that there is a linear relation
between bubble size and bubble natural frequency. The acoustic
behavior of the bubble is also known to be a function of the
relative magnitudes of the natural frequency and the frequency
of the excitation. Acoustic resonance occurs when both
frequencies are the same. 1In the present tests interaction
between bubbles of different sizes in the screen come into play,

and the overall results should account for these effects.

9.2 Description of Experiment

To experimentally determine a relationship between bubble
size, density, and acoustic damping, a number of tests were
conducted varying the density of air bubbles in water and
recording the change in amplitude of acoustic signals across a
path of the bubbles. The signals ranged in frequency from S5kHz
to 70kHz. Photographs were taken at the time of each test to

determine numerical values for bubble size distribution.
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The tests were conducted in a large plexiglass tank
approximately 5 feet x 4 feet x 1 foot. The tank was filled
with water to a depth of 3.5 feet. Four porous nylon tubes,
HYDROPERM tubes, 5/8 inch diameter, 11 inches long, and 2
inches apart were placed in the bottom of the tank to generate
bubbles. The approximate pore size for these tubes was 1-3
microns. All but the top portion of the circumference of the
nylon tubes was sealed off in order to avoid the coalescence of
bubbles from the sides and bottom of the tubes. Each porous
tube was connected to a common pipe at one end. This pipe was
then attached to a compressed air line to regulate and measure
the pressure of the air being forced into the porous tubes. For
the purpose of these tests, the air pressure in the tubes ranged
from 6 psig to 16 psig.

Two hydrophones were placed in the water 9 inches apart and
21 inches below the surface of the water. One hydrophone served
as a signal transmitter, and the other as a signal receiver.
The transmitting hydrophone was a rubber booted, ceramic
cylinder type with a practically flat response up to 15kHz and
+3dB deviation between 15 and 30 kHz. A KSP UT-114 hydrophone,
having a flat response up to 30 kHz and %3dB oscillations up to
50kHz, was used as a signal receiver. Signals were produced at
various frequencies using a Wavetek Model 113 frequency
generator, amplified with a McIntosh MC75 audio amplifier, then
transmitted by the hydrophone. The signal was then picked up by
the receiving hydrophone, where it was first amplified then
filtered to eliminate excessive low frequency noise (f< 500
Hz). The received signals were monitored with a Hewlett Packard
3580A frequency analyzer, (maximum frequency of 50 kHz), a
Keithley 197 digital multimeter, and a Nicolet 2090 digital
oscilloscope. Figure 9.1 is a diagram of this experimental
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set-up. Figure 9.2 shows a photograph of the actual tank itself
with the production of bubbles by 16 psig air pressure being fed
through the porous tubes. It shows the arrangement and lccation
of the two hydrophones with bubbles passing between them.

Signals of various frequencies were first generated with no
air bubbles being produced in the tank. The strengths of these
signals as measured by the multimeter were recorded for later
comparison with those transmitted across a stream of air
bubbles. 1In this manner, the amount of signal damping which
occurred at each frequency due to the bubbles could be
determined. This could then be related to a characteristic
bubble size distribution by analyzing the photographs taken at
the time of each test.

- q:- 9.3 Experimental Results and Discussion

3

i Figure 9.3 shows the results of some of the early tests run
with the above described apparatus. The values for the air

.- pressure ranged from B8 psig to 16 psig and the results were

somewhat encouraging. The highest damping (ratio of rms signal
emitted minus signal detected to signal emitted ) occurred at

e evs e aw
P

the higher bubble densities, as is expected. However, the sharp
drop in the amount of damping which occurred at around 40 kHz
for most of the tests could not be explained from the
characteristics of the bubbles themselves.

After some searching, it was discovered that the behavior
of the curves shown in Figure 9.3 was due, in fact, more to the
response of the hydrophones than to the size of the bubbles. To
. correct this, the receiving hydrophone was replaced with the
one described above; whereas before, this hydrophone had been
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one similar to the transmitting hydrophone. With two practically
identical hydrophones being used, the variations of the
frequency response which were occurring at the higher
frequencies were being overly amplified. Figure 9.4 shows the

calibrated frequency responses of both hydrophones.

With the new receiving hydrophone in place, a new series of
tests was conducted to determine the range of frequencies at
which the most acoustic damping would occur. Figure 9.5 shows
the results of a test run at an air pressure of 10 psig. The
plot presents both the percentage damping which occurred with
bubbles and the amplitude of the received signal with no bubbles
being generated in the tank. It suggests that most of the
damping is occurring with frequencies in the range of 20-50kHz.
But the response of the signals with no bubbles is still
suspicious with sharp spikes at about 35 and 50kHz. To
determine any effect this may still be having on the shape of
the damped signal, a voltmeter was added to the experimental
set-up to monitor the input signal to the transmitting
hydrophone. A new test was run maintaining the output signal
constant in the absence of bubbles and recording the input
voltage necessary to do so over the range of frequencies of
interest. Then, with bubbles being produced, the measured input
voltage at each particular “requency was matched to that
recorded with no bubbles. The corresponding amplitude of the
output signal was then recorded. The results of this test are
shown in Figure 9.6. One can see that, although the maximum
amount of damping is slightly lower than that shown in Figure

9.7, the overall behavior is still very much the same.

Figures 9.7 and 9.8 are photographs taken from the front of ﬂ
the tank of the bubbles at 10 and 16 psig air pressures,
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respectively. The photos suggest that there exists a range of

bubble sizes and that the sizes changed very little with the
increasing air pressure in the tubes., This would explain
qualitatively the results presented above. The distribution of
bubble sizes is responsible for the range of frequencies over
which acoustical damping of the signals has occurred. Similar
results for tests of various air pressures in the porous tubes
suggest that the bubble sizes were similar for all the tests, as
is evidenced by these two photographs.

In the two photographs, Figures 9.7 and 9.8, can be seen
three small wires, 5, 10, and 15 mils, used for scaling purposes
when analyzing the photographs for bubble size distribution.
Figure 9.9 shows the spectrum of bubble radii as was determined
from the photo in Figure 9.7. 1t shows that most of the bubble
radii fall within a range of 0.05 mm to 0.30 mm. This is only a
rough estimate of the sizes due to the fact that the bubbles are
too small to be accurately measured. However, when comparing to
theoretical considerations, these results seem to be accurate.
Figure 9.10 shows graphically the theoretical relationship
between bubble size and resonance frequency for an isothermal
compression law. From it, one can see that the particular
bubble size range given above corresponds theoretically to
frequencies of 10-55kHz. This is a very good match with the
experimental results presented above. The wide range of
frequencies that are significantly damped (15 < f < 60 KHz, in
Figure 9.6) corresponds to the measured bubble sizes. However,
as seen in Figure 9.9, the acoustical measurements seem to
indicate a higher content of smaller bubbles than visually
observed. This could be due to higher modes of bubble
oscillations or to deviations from the simple resonance

frequency-bubble size relationship shown in Figure 9.10.
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To further verify the relationship between bubble size and
acoustically attenuated frequencies, the experimental apparatus
described earlier was slightly altered in two separate ways in
an effort to increase the size of the bubbles being produced in
the tank. 1In addition to these alterations, bubbles were also
produced by electrolysis with electrical wires. These bubbles
proved to be too small for our purposes (i.e., natural frequency
too high for the instrumentation). The first change consisted
of placing in the tank a set of stainless steel sintered tubes,
(pore size = 5 microns), in much the same arrangement as the
original nylon tubes. These tubes were again sealed along all
but the very top portion of the circumference. Signals of
frequencies ranging from 1-50 kHz were generated in the tank and
the results showed that a considerable amount of damping was
occurring at practically all the frequencies within this
spectrum. While these results were useful in showing
attenuation of lower frequencies than the HYDROPERM tubes, they
did not exhibit the definite shift in frequency bandwidth as had
been hoped for with this new apparatus. Apparently, with the
sintered tubes, bubbles with a very wide range of sizes were
being produced.

As a second attempt to produce bubbles of a noticeable
difference in size from those produced by the nylon tubes, an
aluminum tube with drilled holes, 0.006 inch diameter, was used
to generate bubbles at the bottom of the test tank. Figures
9.11 and 9.12 show photographs of the bubbles produced from this
apparatus taken at air pressures of 3 and 7 psig, respectively.
Again, inspection of these two figures shows that the size
distribution of the bubbles being produced at these pressures
changed very little if at all. As before, a size distribution

was dete.mined from the photographs and is given in Figure
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9.13. This figure suggests that most of the bubble radii were
within a range of 1.22-1.45 mm. From Figure 9.10, the damped
frequencies for this range of bubble sizes should fall between
1.9 and 2.2 kHz. Figure 9.14 shows the actual experimental
results of the tests run with these bubbles. Problems related to
data reproduction at various dates can be observed in this
figure. Peak damping occurred at about 2 kHz and a much
narrower bandwidth of frequencies was being attenuated by the
presence of the bubbles. This corresponds very well with
theoretical considerations since a spectrum of larger bubble
radii (>1 mm) results in very little variation in resonant
frequency, whereas a range of bubble radii <0.5 mm will produce
a much larger bandwidth of resonant frequencies. For the purpose
of these tests, no results could be obtained at frequencies
lower than 2 kHz because of an increased noise to signal ratio
at these frequencies, but the results do show the shift toward
lower frequencies with increased bubble size as was expected.
This set of tests give some preliminary but very useful
information on the study of acoustic wave propagation through a
bubbly medium .
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10.0 CONCLUSIONS AND SUMMARY

The main achievement of the study described in this report
is the extension of the study of single bubble dynamics to
multibubble dynamics. Within the restriction that
characteristic bubble size is small compared to interbubble
distance, the dynamics of a bubble cloud was investigated.
Dynamic effects in the absence of heat and mass transfer were
first considered. The matched asymptotic expansion method was
used and enabled derivation of differential equations for the
bubble shape components at the various orders of approximation.
These were solved numerically using a multi-Runge-Kutta
procedure, and the corresponding numerical code was implemented.

Later, heat then mass transfer were accounted for. When,
during a significant portion of the imposed pressure field
history, the liquid is superheated (its temperature is higher
than the liquid vaporization temperature at the imposed
pressure) or gas supersaturated (the concentration of dissolved
gas is higher than the saturation concentration at the
noncondensible gas pressure in the bubbles), heat and mass
transfer at the interface occur at a rate high enough to
interfere with the dynamics of the bubble growth or
oscillations. 1In that case, the dynamic equation of a bubble in
the cloud is coupled to the heat or mass transfer equation by
the value of one (or both) of the partial pressures of the
liquid vapor and noncondensible gas inside the bubble which are
then transfer dependent. We have solved this problem when (as
for single isolated bubbles) the liquid properties or conditions
are such that the variation of the liquid temperature or the gas
concentration in the liquid occurs primarily in a thin boundary
layer at the bubble wall. In that case an integral equations
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relates bubble dynamics and heat or mass transfer at the bubble
interface. Two numerical codes were developed to deal with the
two transfer problems.

Other aspects of the problem were also considered in this
study but were not pursued as deeply as the multibubble approach
due either to limited time and resources or to their showing
little promise based on initial feasibility efforts. The most
promising of these approaches have been summarized in this
report. Some others, such as the determination of the unsteady
pressure field generated behind an oscillating sheet cavity have
not been addressed in this report. The task turned out to be
much more involved than originally thought if a significant new
contribution was to be achieved. The effort was redirected
towards a more thorough analysis of the other tasks.

A continuum medium approach was developed for the general
description of the two phase medium composing the cloud that
shows promise. As do most continuum approaches, this method
applies to the case of low void fractions. It enables
expression of the conservation equations in the cloud medium.
The micromorphic method used consists in decomposing the medium
into cells in which the bubble dynamics are considered. One
shortcoming is the appearance of an additional term arising from
the averaging procedure which depends on the geometry of the
cell. Dependence of the equations on an inverse power of the
void fraction indicates they are invalid for extremely low void
fractions. These difficulties are classic with averaging
methods and can now be dealt with using newly developed
renormalization techniques. This should be the next step
towards the improvement of this continuum theory.
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A fundamental experimental program was conducted in

..‘ ﬁﬁ

parallel with the theoretical effort described here. Systematic
observations of bubble dynamics using high speed photography and
measurements of acoustical pressures were conducted.
Spark-generated bubbles were produced at precise locations near

complex solid wall geometries. By application of the method of

| PR

images, the bubble behavior near the solid boundaries is similar
to that in the presence of a set of bubble images in the wall.

e
“"l.“

By varying the wall geometry the number of simulated interacting

(]

N bubbles can be varied. The interbubble distance was set by
controlling the distance between the electrode tips and the

solid walls. The size of the bubble generated was varied by
changing the discharge voltage and the tank ambient pressure.

PN AL

L

b

Observations confirmed and complemented the theory since cases
P of both low and high void fractions could be studied. Within
o the experimental error, (mainly due to a lack of control of the
amount of gas in the bubble), preferred void fractions (or
ratios of bubble characteristic radius to interbubble distance)
which generated the strongest bubble collapse and the highest
pressures were observed. These results qualitatively confirmed

the theoretical results.

LAV s ‘A‘_ ) vl .

A set of experiments of a more preliminary nature concerned
sound wave propagation through a sheet of bubbles. Bubble
sheets were generated in a large tank using microporous,
sintered, and drilled tubes. Sound pressure waves were then

O

emitted on one side of the sheet using an active hydrophone.
The transmitted wave was detected with another hydrophone. By
varying the frequency of the emitted signals and the

AN

characteristics of the bubble generator, correlations could be

-~ made between the attenuation of the acoustic wave through the
bubble screen and the size distribution of the bubbles,.
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! Several numerical codes were implemented as a result of the
multibubble cloud theory developed in this program. These
programs consider several aspects of the problem. CLDMAIN
neglects heat and mass transfer and allows the user to study the
behavior of a symmetrical bubble cloud configuration. 1In its
latest verison, CLDMAIN2, several pressure field shapes can be
investigated -- e.g., sudden pressure rise, pressure drop for a
finite time period, pressure field due to a venturi or over a
foil shape, ... etc. The error at each step of computation can
be bounded by an imposed value. This procedure is used to
continuously adjust the calculation time step to minimize both
errors and total computation time. This code has been
extensively exercised to investigate bubble cloud behavior. Due
to the symmetry of the cloud, very dramatic results can be
observed. A cumulative effect is observed which tends to
reinforce any pressure deviations from the ambient value due to
bubble dynamics. For instance, during the initial bubble growth
period the positive deviations in the presence of several
bubbles reinforce each other to slow down the initial bubble
growth. This effect can, however, be reversed later when the
deviation pressure becomes negative and can lead to large bubble
sizes. The most dramatic effect is observed during bubble
collapse. It is known that large pressure rises are generated
at the end of the collapse. These pressures are increased when
several bubbles are present and also reinforce the collapse of
each individual bubble. Therefore, collective bubble collapse
can generate pressures orders of magnitude higher than those
" produced by single bubble collapse. The cumulative effect is
mainly due to the fact that each bubble ends its collapse under
. the influence of pressures generated by the collapse of the
o other bubbles orders of magnitude higher than the imposed
ambient pressure. This would tend to explain the observed high
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erosion intensities and the bending of some propeller trailing
edges.

oL

When the bubble cloud geometry is asymmetrical the
pressures generated by the various bubbles are not necessarily
- in phase. Cumulative effects are therefore reduced in intensity
and the very large increases in the collapse energy found with
s the symmetrical CLDMAIN code are tempered. A similar result is
: obtained when bubble initial sizes are not identical or when a
5 finite sound speed is taken into account to delay pressure
) propagation from one bubble to another. Two main codes have
o been developed to deal with these asymmetries: MULTIBBL and
MULTICOMP. For both codes the user inputs bubble size and
distribution, and the program computes the individual bubble
o dynamics under the influence of the other bubbles in the cloud.
- In addition, MULTICOMP accounts for time delays between the
arrival of pressure signals from different bubbles based on a

- finite sound speed imposed by the user.

For heat and mass transfer, two separate codes have been
implemented: HOTCLDS and GASCLD. Both consider a symmetrical
cloud configuration and couple the multibubble dynamics problem
with the problem of heat or mass transfer at the bubble liquid
interface. Mass and heat transfer are both seen to reduce
bubble growth rate. Bubble interactions also play a significant
role in bubble growth -- mainly by modification of the pressure

(AR AV MUY

field. This interaction results in a reduced growth rate which

makes the bubble radius at any given time smaller than would be

ateeta s’

found for an isolated bubble. The temperature drop at the
bubble wall in a multibubble configuration is smaller than would
‘ be found for an isolated bubble, The dissolved gas concentra-

tion in the liquid exhibits similar behavior. The effective gas
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compression law is seen then to vary rapidly from an adiabatic
behavior at the beginning of the growth to an isothermal

behavior.

In conclusion, we have conducted an in-depth study on the
fundamental aspects of multibubble cloud cavitation. The
results of this study explain the intense erosion associated
with the phenomena. Several codes were developed and
implemented as a result of the theoretical study and can be
used as tools for further study of various aspects of the

problem under particular conditions of interest.
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' TABLE 1. VALUES OF THE NUMERICAL CONSTANTS
) USED IN THE COMPUTATIONS
»
S N C, C, C;
. 1 0 0 0
. 2 1 1 1
N 3 2 1.732 1.25
N

5 3 2 1
“
<\
s
o 12 8.616 4.53 0.41
N

>

= N: Number of bubbles
G
; c1 = 1 Mj
-:. c, = ) (Ai4) 2co0s 813 /cos 019
.

c3 = § (1ij) %(3 cos?eil-1)/(3 cos ?ei9-1)
-
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FIGURE 4.20 - VARIATION OF BUBBLE RADIUS WITH AMBIENT PRESSURE
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. Tracor Hydronautics
BUBBLE NO. COORDINATES RADIUS
X Y 4
1 6 3 6 0.335
. 2 5 3 3 0.841
3 3 1 1 0.159
4 5 2 1 0.520
5 7 7 3 0.415
6 4 4 5 0.377
a
FIGURE 4.34 - RANDOM BUBBLE DISTRIBUTION AND SIZES
(Corresponds to results on Figure 4.33)
a
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PB=2 ATH, PINF=0.5 ATH, TINF=1177.7 OEC.. Ro=1 cr, EPS=08.1
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: FIGURE 5.6 - VARIATION WITH TIME OF BUBBLE SHAPE CHARACTERISTICS
\ AT TWO SELECTED TIMES, P_ = 2 atm, P; .= 0.5 atm, ¢ = 0.05,

= = -5 = ° = °
Rbo =0.01 m, RO =2.5x 10 "m, Tb = 809.3°C, Tinf 1177.71°C,
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ELECTRODES AND PRESSURE TRANSDUCER :
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B : INITIAL BUBBLE CENTER;
OR ELECTRODE GAP

B' : NEW POSITION OF BUBBLE
CENTER

O : BUBBLE CLOUD CENTER;
OR PYRAMID APEX

e FIGURE 8.5 - PRINCIPAL GEOMETRICAL CHARACTER-
ISTICS OF A BUBBLE DURING ITS MOTION
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T FIGURE 8.21 - GROWTH AND COLLAPSE OF A SPARK GENERATED BUBBLE
INSIDE CONE. d_ = 4 inches, AP = 1.4 x 10%ra, TIME

PER FRAME = 0.249 ms.
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. FIGURE 8.22 - GROWTH AND COLLAPSE OF SPARK GENERATED BUBBLE

INSIDE CONE. d_ = 1} inches, &P = 1.6 x 10%Pa, TIME
PER FRAME = 0.294 ms.
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FIGURE 9.9 - BUBBLE SIZE DISTRIBUTION AS MEASURED FROM
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