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PHYSICAL REVIEW B, in press

THERMAL RELAXATION OF ADSORBED ATOMS IN AN INTENSE LASER FIELD

Henk F. Arnoldus, Sander van Smaalen and Thomas F. George

Departments of Physics & Astronomy and Chemistry
" 239 Fronczak Hall

State University of New York at Buffalo
Buffalo, New York 14260

ABSTRACT

Adsorbed atoms on the surface of a harmonic lattice are immersed in a strong

laser field. The optical Bloch equations are derived, which include the

thermal relaxation and the coherent excitation of the adbond. This is

accomplished by a transformation to dressed states, which diagonalizes the

interaction with the laser. The single-phonon couplings are then understood

as transitions between dressed states. The radiative contributions for

arbitrary strong fields are obtained in the master equation, and it is shown

that the coherences with respect to the dressed states decay exponentially,

due to the phonon relaxation. General properties of the competing phonon-

induced redistribution and optical excitation of the level populations are

presented, and exemplified by an explicit elaboration of a three-level

system. The results are amenable to analytical evaluation once the

interaction potential is prescribed, and extensions of the approach to

include multiphonon processes are straightforward.
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I. INTRODUCTION

Relaxation or desorption of an atom in a vibrational bond with a

surface of a crystal with finite temperature is fairly described by a Pauli-

1-6
type master equation and has been studied extensively. The vibrational

levels of the adbond are coupled by the phonon field of the crystal, and

phonon-exchange reactions of the bond with the crystal, which acts as a

thermal bath, cause the relaxation or desorption. The latter process can be

either a result of successive resonant single-phonon excitations up the

ladder of vibrational states or, when the level separations are larger than

* the Debye frequency wD, as a one-step multiphonon process. Besides the

academic interest in these processes, the thermal desorption of adatoms is

the major technical method to obtain clean surfaces. However, when the

distances between the lower levels are large in comparison with wD, the

desorption rate might be very low, since the first excitations can only

occur through multiphonon processes.

An obvious way to enhance the desorption is by irradiation of the

surface with infrared laser light. The laser, with frequency wL, is tuned

in resonance with a vibrational transition. In this fashion one can

efficiently populate a high-lying state, such that the transition to the

continuum can be established by a resonant one-phonon process.7 - 1 1 There is

obviously a competing effect, which diminishes the efficiency of this

procedure. An optically-excited bond can decay to a lower state under

emission of a phonon into the crystal. This can be considered as a

conversion of a photon into a phonon, and the net result is an energy flux

into the crystal, without desorption of the atom. On a much larger time-

scale however, this process heats the crystal, and consequently the

desorption is again enhanced.

2-*e- e... .,f. -.. *.
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The problem of irradiation of an adsorbed atom, in combination with

thermal relaxation due to the coupling with the phonon reservoir, has been

12-18
treated in the weak-field limit with a perturbative approach and for

19
special choices of the coupling potential (harmonic, Morse). A systematic

development of a concise theory for strong laser fields, which does not rely

on a specific form of the potential, is apparently not available yet. In

this paper, we investigate the interaction of an intense radiation field

with the bounded atom. We interpret the results in terms of transition

diagrams, and we identify the contributions of pure-phonon, phonon-photon

exchange and one-phonon/two-photon processes to the laser-assisted

redistribution of the level populations and to the decay of the coherences.

Common features are illustrated by an example.

II. EQUATION OF MOTION

We consider an atom with mass m, which is adsorbed on the surface of a

harmonic-lattice crystal. The van der Waals forces are represented by the

potential V between the adatom and its nearest surface atom, and by an

effective surface-potential i. The lateral motion of the atom will be

neglected, since it couples only weakly to the phonon field, and the

direction perpendicular to the surface will be denoted by z. If we choose

the origin of our coordinate system at the equilibrium position of the

surface atom, with mass M, and indicate the position of m by zeL and of M by

* u, then V will only depend on the distance IzeL - ul. Since lul is much

smaller than Izi, we can expand the potential as

~d
V(Ize±_ - Ui) = V0 (Z) - u.e_ d- V0 (z) ... , (2.1)

where V 0(z) is defined as the interaction for u = 0. We will only retain

oo0

";"-"'*\.**. *4, .*. . . . . . . . . . . . ..". . .... . . . . . ..".'"•" -.'." >; " ": . ,:"" " : "- '0 ""



these two terms, which implies that we neglect multiphonon processes. This

will keep the formulation concise and the interpretation transparent. It

is, however, straightforward to retain higher-order terms. The atomic part

of the interaction is abbreviated as

S = V0 (z) , (2.2)

. and the amplitude of the phonon field for the surface atom M will be

,*" represented by2 0

Av' (1/2 s(a + a k)ek (2.3)
," u = kMw(k)j  aks + ~

ks

Here v and v' are the volumes of the crystal and unit cell, respectively,

*ks is the unit polarization vector of the phonon mode ks, aks and aks are

the annihilation and creation operator for the mode ks, and w(k) is the

dispersion relation. With this notation, the vibrational coupling of the

adbond to the crystal is accounted for by the Hamiltonian K + V0 + 0 + Hph

u.eS, with K the kinetic energy of m and Hph the free-field phonon

Hamiltonian,

H , k a (2.4)Hph = i(k) ks aks

ks

The pure atomic part K + V0 + 0 of the Hamiltonian will be termed the

bare-atom Hamiltonian, since it describes the atomic bond with u = 0 and

without a laser field. Its eigenvalues Aw. and eigenstates 1i0 are defined
1

by

(K + V0 + )Ii> = ii> , (2.5)

,, . - -- - - - - - . -. "° . . -, - . - . . - . - . - .. o- -, " ' . - .*, " .. . .. . ' -. .- .1"
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and explicit representations in coordinate space can easily be found for a

number of potentials.2 1 A prime example here is the Morse potential, which

provides a fair representation of the binding potential well, and for which

analytical expressions for *w . and Ji> are known. With respect to its own

eigenvectors, we can write the bare-atom Hamiltonian as

H K + V = V iW Pi , (2.6)

i

with

P. = fi><iI (2.7)1

the projector onto the eigenstate li>. We shall assume that for the atomic

part S of the interaction with the phonon field, the diagonal matrix

elements <iIS~i> vanish. This is only an approximation in the presence of a

laser field, since the <iIS~i>-term will give rise to a small radiative

contribution, but not to pure phonon transitions.

A continuous single-mode laser is tuned into resonance with a specific

transition of the vibrational bond. The electric component of the

electromagnetic field at the position of the bond is

E(t) = E Re[E exp(-iwLt)] , (2.8)

and the coupled levels will be denoted by le> and Ig>. This excited state

and ground state (which is not necessarily the lowest state) are separated

by w e- W > 0, and the frequency mismatch with wLO the detuning, will bee g

indicated by a - wL - (We - W ). The strength of the dipole coupling iseg

expressed in terms of the Rabi frequency
2 2'2 3

J1 IfIE 0 <eIP.C[g> ,(2.9)
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which contains the dipole-moment operator p of the vibrational bond. The

interaction Hamiltonian is then -p.E(t).

The full equation of motion can now be summarized as

dt (H,p] , p+ p , Trp - 1 (2.10)

where p(t) is the density operator of the atomic bond and the phonon field.

The Hamiltonian is given explicitly by

H = H +H - (a + at ) S
b ph Oks ks ks~

ks

S { e><ge + elWLt Ig><e[) , (2.11)

with the free evolution of the adbond Hb and the phonon field Hph given by

Eqs. (2.6) and (2.4), respectively. The coupling parameter with the phonon-

mode ks is given by

1/2

8ks =2Mvw(k)) ks" " (2.12)

III. DRESSED STATES

The interaction between the bare states and the laser mode can be

diagonalized directly. To this end we introduce the transformed density

24
operator o(t) by

-iwLtPgp wttP

a(t) - e Lg p(t) e L (3.1)

with P the projector onto the ground state. This transformation eliminates~g

the oscillatory factors in the interaction term -p.E(t), but at the expense

of the appearance of a time-dependent coupling with the phonon field. The

equation of motion for o(t) reads

"P
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doiI -IH + Hp , o
t d ph

- 8ks [(aks + aks) q(t) , a] (3.2)

ks

with

q(t) - e -i P9S e it 9(3.3)

The dressed-atom Hamiltonian Hd is defined as

Hd = 'flw.P

ire,g

+ +(WL + W + w )(P + P )-"A(P -P)
2e g e g ! (e Pg

- 44Q(le><gi + lg><el) , (3.4)

which has the interpretation of the bare atom Hb dressed with the photons of

25
the laser field, including the interaction.

Similarly to Eq. (2.6), we now write

Hd = i , (3.5)

i

with f1iLi the eigenvalues of Hdo and .i the projectors onto the eigenstates

Ii), of Hd. The eigenvalue equations of Hd are readily derived from Eq.

(3.4). We obtain

Hdli> = Awili> , i - bare , i = e,g (3.6)

Hd_> = 4iw_> (3.7)

with

t ( + W + W (3.8)
2 L e 

-
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where

D, - A(l + /a )/2 (3.9)

Hence the dressed states are identical to the bare states, provided that i 9

e~g. The states le> and Ig> are coupled to form I+> and 1-> according to

I+> - Je> cose/2 + jg> sin8/2 , (3.10)

1-> - Ig> cose/2 - le> sin8/2 , (3.11)

which is a parametrization in terms of the angle 8/2, where 9 is defined

by26

6 = arctan(Q/A) (3.12)

For weak driving fields (Q - 0) we have I+> -le> and 1-> - Ig>, but for

strong fields we find I±> - (Ig> ± e>)/ 1V2. The summation in Eq. (3.5) runs

over the bare states i * eg, and over i - ±, where P± - I±><±I. This

diagonalizes the laser interaction. The relation between the eigenvalues of

H and Hd is illustrated in Fig. 1.

The coupling to the phonon field is now regarded as an interaction

between the dressed bond and the free phonons. The time dependence of this

2interaction is embodied in q(t) from Eq. (3.3). With the property P2 = P gg

we can expand the exponentials as

tiLtP ±iwLt
e g W 1 - P + e P , (3.13)g g

which allows us to write

q(t) = + e P S + e iwLtSP . (3.14)

g g

Here we used that (glSlg> = 0, and we introduced the time-independent part
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of the interaction by

9- S - PgS-S (.5

The identification of the contributions to the interaction of the three

frequencies in Eq. (3.14) will facilitate the following computations

considerably.

IV. INTERACTION PICTURE

In contrast to the photon field, where only the laser mode is occupied,

the phonon field consists of many modes ks, which all contribute to the

interaction. This prohibits an immediate diagonalization, so other methods

have to be applied. In this section we set up the notation and write down

e the basic equation. To this end, we introduce the density operator in the

interaction picture by

f(Hd + H )t (Hd + Hp)t
0(t) = e O(t) e

When there is no coupling between the dressed system and the phonon field,

*- we have o(t) = o(O) = -(0). The equation of motion for 6(t) follows from

Eq. (3.2), and we obtain

A j6(t) -[W(t) , 6(t)] (4.2)dt

The interaction Hamiltonian W(t) is then

W(t) = - s (a e- iw(k)t + ats e iw(k)t q(t) (4.3)
L ks ks ks
ks

with the transformed atomic part given by

NHdt !Hat
A id -d(4)q(t) e q(t) e (4.4)

** 2,
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If we expand the exponentials in the projectors on the dressed states and

use the expression (3.14) for q(t), we obtain

jA ikt -iWLt iw t

qI(t) de k { + e PgS w e SP (4.5)

kE

where

kf =  "(4.6)

is the level separation between the dressed states Ik> and I>. Besides the
usual time-dependence exp(iA t) in the interaction picture, we now also

* find exp(i(akE ± WL)t).

Since the system of interest is the adbond, we define the reduced

density operator of the dressed atom by

ao0(t) - Trph o(t) (4.7)

and similarly for 0 (t). Taking the trace over the phonon field in Eq.

(4.1) yields

-Hd t  I if t

i fid
a0(t) = e a0(t) e , (4.8)

and therefore it is sufficient to derive an equation for 0(t). If we

" iterate the first integral of Eq. (4.2) twice, differentiate the result with

respect to time, and take the trace over the phonon field, we obtain

td - (t) Tr f dt' [W(t) , ](t') ,) (4.9)

dt 00 f,2 ph 0

The right-hand side of this equation accounts for the phonon interaction in

the evolution of a (t).
0
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V. PHONON RESERVOIR

29-31
The phonon field will be considered as a large reservoir, or heat

bath, with a short recovery time. Then the integral in Eq. (4.9) can be

.' 29-33
evaluated by standard techniques, so here we merely state the result.

Care should be exercised, however, since the atomic part of the interaction,

i(t), contains three frequencies for a single kt matrix element. This gives
S.

rise to a number of cross terms, which do not appear without a laser field.

The average number of phonons in mode w for the crystal in thermal

equilibrium at temperature T is

n(w) = [exp(&w/k T) - 11"  (5.1)
B

We extend the definition of n(w) to negative values of w, which enables us

to write

n(w) + 1 - -n(-w) (5.2)

This will simplify the notation considerably. Next we introduce another

function of w by

f(w) = d I k2 ( (l) [n(w) + 11 (5.3)

o. with

= '(5.4)

in terms of the dispersion relation k = k(w), which is the inverse of w =

w(k). This f(w) enters because of the summation over all modes ks of the

reservoir.

After these preliminary definitions, we can evaluate the integral in

Eq. (4.9). We obtain the simple result
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d .t 2 I 1k f(A ) (P k (t) + 0(t)P -2P <kl0(t)k>

kZ

1 22 Lt. IsgE 1 f(&±z WL

St z

xP a 0o(t) + 5 0(t)P ±  2P t<±15 0(t)l±>)

g+ ISgki f(A k±+ WO

9 -gg_JSeg2 (f(WL) + f(-wL)) j +a(t) P_ (5.5)
±

The first term comes from the time-independent part 5 of the interaction,

and is proportional to .k12 
= J<kl'9£>l2  Here the summation runs over

all dressed states k,t. The second and the third terms only connect the

dressed states ± with all other states. In the first term, the overall

factor contains f(A k), which depends only on the level distance w - WEI

but in the other two terms, this frequency is shifted by the optical

frequency wL" Furthermore, they involve the geometrical factors

9gt = <±IP 1±> , (5.6)

e.g., the matrix elements of the projector on the ground state with respect

to the dressed states. This factor is only non-vanishing for the states J+>

and i->, which explains the limited summations in the last two terms. For

later purposes we note that g+ can be expressed in terms of the optical

parameters 0' and A according to

9+ ' + A (5.7)
= 20'

as can be found from the definitions (3.10) and (3.11) of the dressed

states.

Zen
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Notice that the operator equation (5.5) for o0(t) involves only well-

defined quantities. The projectors inside the curly brackets select a

specific matrix element of -0 (t) with respect to the dressed states, and the

prefactors contain f(w), a given function of w and the temperature, and the

matrix elements of S = dV 0 /dz. Besides that, the optical parameters g

appear, which are known functions of 02 and the detuning A. In view of Eq.

(2.9), the parameter 92 is proportional to the laser intensity and to the

square of the transition-dipole moment. It is this combination that

determines whether a laser field can be treated as a weak field

(perturbation), or not. We address this item in more detail in Section VII.

The temperature enters parametrically through f(w) from Eq. (5.3). If the

laser heating of the crystal is considerable, the temperature will depend on

time, and hence an additional macroscopic heat-transport equation has to be

supplied. However, if the direct heating is dominant, the details of the

atomic evolution and the radiative excitation of the adbond have no

importance. Therefore, we assume an "adiabatic following" with temperature

in this paper.

VI. THE BLOCH EQUATIONS

For a given transition Ik> - 1> there might be a contribution from

more than one term in Eq. (5.5) if k = ± or t = ±. In order to distinguish

between the various contributions in every transition, we rearrange the

terms. Furthermore, we will express all matrix elements of S and 9 in terms

of bare-state matrix elements. This implies that the optical parameters

will appear in the overall factors, and hence the effect of the laser is

tracked down explicitly in every transition.

From the definition of 9, Eq. (3.15), it follows immediately that

<kII> = <kISi> , if k , , (6.

IL p. . ............... ... '.. ....
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so that for states Ik>,It>, which are not directly coupled by the laser, we

can replace 9 by S. If one of these states equals I+> or i->, we obtain

Is Al 2 - ,sek
12 , if k * ± , (6.2)

+

and again g_ accounts for the optical effects. We note that these matrix

elements connect the excited state le> with 1k>. Finally, we find

<ki oi> = 0 (6.3)

if both Ik> and It> are one of the states I+> or 1->. For the matrix

elements of S itself, as they appear in the second and the third terms of

Eq. (5.5), we find

Isg 2= g ISg12 . (6.4)

A transition 1k> -- IV) might gain contributions from more than one term

in Eq. (5.5), but for the time evolution of o0 (t) these terms add up.

Hence, we can define the effective rate constants a'k for every specific

transition Ik> - It>. The radiationless coupling between two bare states is

governed by

akZ = ( ) ktI , k t ± , . - • (6.5)

For k = E this rate constant is zero, because we assumed Skk 0. If one of

the states equals I+> or i->, we obtain

a±, = g f( E) i e Se2 + g f( - L)  2 (6.6)

.

2 21
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for t * ±, k * t. The transition rates between the two It> doublets are

determined by

2

a+2 - a+ - g2 g[f(-.L) + f(w) 1Se , (6.8)

2 2 2

+.- rg+2 f(-Q' - L + £. f(-0' + w )1 lsel , (6.9)

. I- f(a' WO + g+ f(O' + w )  ISeg 2 (6.10)

We note that akk * 0 if k - + or k - -.

With these identifications of the various contributions, Eq. (5.5) can

be summarized as

d t ) akt [Pk 0(t ) + (t)Pk - 2P<klo(t)Ik>]
dtoOt 0 2 t Lk LkOt Ok2 0

kt

".: -a++ P , ; O( t ) P -  (6.11)

for the atomic density operator in the interaction picture. Transforming

back with Eq. (4.8) then yields the optical Bloch equations for this system.

We find

d

i;' ! .o(t) - [Hd ao(t)] - iArao(t) , ao(t)t . ao(t) , Troo(t) - 1

(6.12)

where the Liouville operator r is defined by its action on an arbitrary

operator p according to

rp =2 akt(pkp + Pk - 2Pt<kllk>) + a. P P P _ (6.13)

kt +

Here the summation runs over all dressed states. This r represents the

relaxation of the adbond due to single-phonon transitions, and it

incorporates the combined phonon-photon processes, as will be explained in

the next section.

". .%. -V. - " . .. "" . * -" ", . . . .. ... ..
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VII. DIAGRAMS

The structure of the relaxation operator r is quite transparent. Every
1II

kt-combination assumes the form -(P 0 + ao - 2P <kloolk>) times a2 k 0 0k t 0

constant akt, and in the next section it will become clear that this action

on 00 corresponds to a transition Ik> - It> at a rate of a k times the

population of level 1k>. Therefore, akt is termed the rate constant or the

inverse lifetime of the transition. On the other hand, we actually know

which term corresponds to which transition, because every term reflects a

single-phonon excitation or decay. The particular transition can then be

inferred from the definition (6.5)-(6.10) of the rate constants, since any

appearance of a factor f(w) displays the occurrence of a single-phonon

transition with phonon frequency IwI. Here a positive argument w pertains

to a downward transition, and w < 0 corresponds to an excitation. Both f(w)

and f(-w) appear for every transition, and the inverse lifetime for a decay

is always larger than for an excitation. For zero temperature we have n(w)

0 0, so that the upward transitions disappear identically, and we are left

with a pure decaying system. The occurring transitions between dressed

states with their optical part of the rate constants are pictorially

represented in Fig. 2, and in Fig. 3 we plot the explicit dependence on the

optical parameters 0 and A.

At this stage it is elucidating to consider the limit of a weak driving

2 2
field. The laser intensity is proportional to 0 . For Q2 0 we find from

Eq. (5.7)

_ 2

g1- g ,g+ (7.1)
4A2

for the parameters which determine the transition rates. Furthermore, the

dressed states of Fig. 1 approach the bare states, since 0' A. If we
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inspect the transitions of Fig. 2, we can now also consider them as bare-

state transitions, where every appearance of a factor g+ corresponds to one

photon. This is illustrated in Fig. 4 for single-phonon excitations. We

obtain three diagrams without photons, and five radiation-assisted

transitions, which disappear for a zero intensity.

VIII. MATRIX ELEMETS

Equation (6.12) contains all information about the state of the bounded

atom, including its interaction with the phonon field and the radiation. 
It

is a condensed operator equation, but in order to solve it, we have to

rewrite it in matrix form. This is easily accomplished if we use the

explicit form (6.13) of the damping operator. The equation of motion for

the ki-th matrix element of a (t) attains the form

iI,'4 d

Tt<j!~~t <(-kloot)It 41+ atn)

nn

-+ 6 kt a S <nloo(t)ln>•

- a <klo 0(t)lt> k± (8.1)

Now we can distinguish two cases. First, for k t f and k and L not both

equal to + or - we find

d_ <klOo( t > - (-i(- - t) - 1(k + At)) <kloo(t)lt> , (8.2)

where we introduced the abbreviation

A k ak~'in .(8.3)

n

Equation (8.2) is an equation for a single coherence of ao(t), and we note

that its time evolution decouples from the evolution of the other matrix

........ .. " , " "- ".."."...-.............-....."....-.".-"......-."....."..."..".."...........'..." . .
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elements. The solution is

<kjoo(t)IL> = e -i(e - )t e 2 k + Adt <kloo(Ol> (8.4)

for a given initial state oo(O). For t >> (Ak + At)-1 we find <klo 0(t)It> -

0 for any initial state ao0(0). This justifies the random-phase

approximation with respect to dressed states and in the long-time limit.

Since the coherences between dressed states vanish, they do not disappear

with respect to the bare states, as is commonly assumed in a random-phase

approximation.

For k - t we obtain the master equation

d nk (t)t) + a kn (t) (8.5)

where we have denoted the population of the k-th level by

nk(t) - <ka 0(t)ik> . (8.6)

Equation (8.5) involves the populations of all levels, but it does not

couple with the coherences. This shows that a master-equation approach is

only correct with respect to the dressed states, since a transformation of

Eq. (8.5) to bare states involves coherences. In the bare-state basis we

have to include all matrix elements simultaneously, which is a cumbersome

procedure.

Equation (8.5) for the populations is a simple set of linear first-

order differential equations with time-independent coefficients, and it can

be solved easily for any configuration of states lk>. The set (8.5) has to

be accompanied by the normalization

j nk(t) Tro0 (t) 1 (8.7)

k

" •. ' .- .. , " .-....% -, ... ...... ... . ...Ii
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The structure of Eq. (8.5) is obvious. The population of 1k> decays

exponentially with an inverse lifetime Ak due to decay/excitation to all

other levels, and it is modified by the gain-term a tknL(t) from every other

level It>. This shows that a Jk> - > transition occurs at a rate

aktnk(t). as already mentioned in Section VII. Furthermore, level 1k>

decays with a total rate Aknk(t), and the coherence between 1k> and It>

decays with (Ak + A.). This also clarifies, at that stage, the arbitrary
1

factor ., which was separated from the overall factors in Eq. (5.5).

IX. DECAY OF DRESSED STATES

The rate constants ak for every transition 1k> -+ 1> between dressed

states are defined in Eqs. (6.5)-(6.10). They are also defined for k or t

equal to e or g in Eq. (6.5). We now make a slight approximation in the

level-distance dependence of the constants by assuming that f(w) does not

vary significantly over one I±>-doublet. This is exact for weak fields and

perfect resonance. Then we can express the rate constants entirely in the

bare-atom transition constants (6.5) and the laser parameters g We obtain

a±, =g; aet + g± agt , (9.1)

+

9; ae +g± a, k(9.2)

a+ a g+ g +(aeg age) (9.3)

2 +g2 a (9.4)
+_ + ge aeg

2 2 (9.5)a_+ g- age eg

In analogy with the definition (8.3) for the total decay constant AK of a

dressed state, we now define

- -. € -'.-. '.-'.- -o-.' - - .' ..- . . - .- ' - .'-,- ' -. ',' . "'. ., , - - . ,. . . . -
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Ak akn , k - bare , (9.6)

n - bare

which would be the relaxation constant for the bare state 1k> if the laser

field were not present. Now it can be proven ilnmediately from Eqs. (9.1)-

(9.5) that the definition (9.6) is identical to

A a k - bare , (9.7)

n dressed

provided that we define ags and ae± as in Eq. (9.2). This remarkable result

states that the decay constant for the bare state ak>, including k = e and k

- g, is unaffected by the presence of the laser.

The decay of the dressed states 1±> can now easily be expressed in

terms of the rate constants of the bare levels le> and Ig>. The result is

A =g A + g± A g (9.8)A± S_ Ae

Here A and A are defined by Eq. (9.6). and they are independent of opticalSe g

parameters. The g -factors enter into Eq. (9.8), so that the decay of the

dressed states does depend on 0 and A. From g+ + g_ = 1 it follows that

A+ + A A +A (9.9)
e gaenodrc pyia

which is not so obvious, since A+ + A or Ae + A have no direct physical

interpretation. Recall that the loss rate from the doublet 1±> equals

A+n+(t) + A n (t).

X. STEADY STATE

The master equation (8.5) can be solved immediately for any initial set

of populations nk(O). The transient behavior of the solution is however

trivial, since we have a pure exponentially-decaying system. Furthermore,

- ~~~~~~~~~~~~~. . .. ......-. ........... .... ...-.. .. ....-. , -..' 'w. . _,. .
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it is experimentally not feasible to prepare the system in a well-defined

initial state. Due to the relaxation however, every Oo(O) will evolve to a

steady-state o, defined as

Slima o(t) (10.1)
t _*M

which is not necessarily unique. Similarly, we denote nk(=) by nk. In this

limit, the master equation reduces to

Aknk a k H E J (10.2)

= dressed

or equivalently

)j (n a~k " kak)0 (10.3)

E. = dressed

We will now derive some salient features of the steady-state solution.

We recall that the coherences vanish with respect to the dressed states, so

that i is given by

j k (10.4)

k = dressed

in terms of the solution of Eq. (10.3) and the projectors Pk on the dressed

states. With the definition of the It> states in Eqs. (3.10) and (3.11),

we can transform the density matrix a to the bare-state representation,

which yields

n k Pk +  2-, (n+ - n-)(e><gl + lg><el) (10.5)

k bare

Here Rk is the same as nk in Eq. (10.4) for k * e,g, and the relation

between the populations ne e n and t is explicitly
e g ±

"" " " " " "I "I" '"" ' .... '...".........".."........."...."...."........".....-"...."."..-....-"."..'.'. • ""
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n.g - + + g+n. (10.7)

Equation (10.5) shows that a non-vanishing coherence <ej-jg> appears in the

bare-state representation. With the aid of Eqs. (10.6) and (10.7), we

find the relation

n+ - n (10.8)+ 9+ g.

and with the expression (5.7) for g±, we obtain for the coherence

<e"g> a (h - ig) (10.9)

In the absence of a laser we have 9 0, and <elalg> vanishes.

Relations (10.6) and (10.7) can be inverted to express n in terms of

n and i . If we subsequently use Eq. (9.8) for the relation between the
e g

rate constants, we find

A- +Ai_ A n + A H (10.10)++ ee g g

This identity expresses that the total loss rate of It> equals the sum of

the loss rates of le> and Is>, as could be expected.

An advantage of the application of dressed states is that the master

equation (10.3) has a simple form. With the relations of Section IX, we can

transform Eq. (10.3) to its bare-state equivalent. We find

A nk ,k~ e,g

tk A n + 2 A + A)(n- ii) k g,

t AAbare
n2

A i " - (A + A )(Rg - ne) , k = e , (10.11)
ee 42 e g g e
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where all quantities pertain to bare-state properties. This result is

remarkably simple also. The laser only modifies the master equation for k =

g and k - e in the form of an additional term, and the optical parameters

2 2
only appear in the combination Q2/a . The set (10.11) couples, however,

between all k-values, and therefore the extra terms affect all populations

ik" We notice that the right-hand side of the master equation for k- e and

k = g contains the same radiative contribution. If we add the two

equations, we are left with

i ~ (g++ A~ * (10.12)nkak + ake) = gg e e

k bare

and the laser has disappeared completely in this combination.

Let us now consider a specific situation. Suppose that the ground

state Ig> is the lowest state and that its separation from every other level

is larger than the Debye frequency. Then the single-phonon transition rates

from and to Ig> can be neglected in comparison with the radiative

coupling to le>. From Eq. (10.11) for k - g, it then follows that

n n , (10.13)g e

and the master equation reduces to

nE a tk= Akkn k (10.14)

t = bare

for every bare state lk>. This is, however, the Master equation in the

absence of the laser, and it might seem that the laser has no effect at all.

Such is not the case. The master equation always provides one superfluous

equation, which allows us to impose the normalization (8.7) on the solution.

Now we have the restriction ne = n g so Eq. (8.7) should be replaced by the

constraint
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25e + n nk=1 (10.15)

k e,g

This proves that for this specific configuration the distribution of

population over the states is purely thermal for k * g, e.g., independent of

the laser intensity. The normalization (10.15) indicates that we can ignore

the ground state completely, provided that we take into account that there

is a population equal to ne missing. The desorption rate is determined bye

the populations of the upper levels, which implies that the presence of the

laser enhances the desorption. Indeed, population which would be trapped in

the ground state is now continuously pumped upwards to the desorptive

states.

XI. SIMPLE THREE-LEVEL EXAMPLE

In order to demonstrate the applicability of our approach, we elaborate

an example. Suppose that we have, beside the levels le> and fg>, one other

level In>. Three independent rate equations are then
g2n

neag qng g g 4A2nag+ n ag = Ai +!L- (Ae +Ag)(ig -ie) , (11.1)

na + n a -Au , (11.2)
e en 9 gg n n

n + n + -1 , (11.3)

e g n

which are Eq. (10.11) for k = g, k - n and the normalization. If we add Eq.

(11.1) to Eq. (10.11) for k = e, we obtain Eq. (11.2). The solution of the

set (11.1)-(11.3) is easily found. For n we obtain

= g2

nn {a egag + ageaen + agaen + 4 (Ae + Ag)(aen + a g)}

(a A +a A +a A + a a + a aeg n gn e ne g en ng ge en

. :; -' ";-:; ,;: '- ;; " "-- - -. , - - - - . - . . . . . . . . . ..•, - • - "- -" •. - -
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+ agage + 22 (Ae + A)(a + a + 2A)1 (11.4)
g42  en gn n

and similar expressions hold for ne and ii . This result displays explicitlye g
2 2

the dependence on the optical parameter f2 /A and the laser-independent

inverse lifetimes.

If we now set wq w > g D and w W > wD, Eq. (11.4) reduces to

a
n= e
ri a + 2a r1 .eq TBe

and the populations of e and n are.. e g

aii n = e(11.6)
e g a + 2a

eq q

This shows that in this limit the dependence on the laser intensity indeed

vanishes, as stated in general in the previous section. Without a laser,

the stationary state for this limit becomes

n n =0 , n ml . (11.7)
n e g

Hence the laser sustains a finite population of the states le> and In>,

which have a finite desorption rate.

XII. CONCLUSIONS

We have studied the interaction of a physisorbed atom with strong

coherent radiation. The mechanisms of spontaneous phonon transitions of the

vibrational atomic bond and the photon absorptions and stimulated emissions

all give rise to a redistribution of the level populations. The thermal

relaxation, due to phonon-exchange reactions, drives the system towards

equilibrium with the phonon reservoir, but the irradiance tends to maintain

a temperature gradient between the adbond and the phonon field. This can be
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understood from the underlying photon-phonon exchange reactions via the

adbond, as pictorially displayed in Fig. 4. Since the absorption rate does

not necessarily equal the rate of stimulated emission, a net photon

absorption rate will remain. For strong fields this simple picture does not

apply anymore, and we have to consider multiphoton processes as well. This

was accomplished by the introduction of the dressed states, which are

schematically presented in Fig. 1. The Hamiltonian of the atom plus the

laser, including the interaction, is diagonal with respect to these dressed

states. The interaction with the phonon field was restricted to single-

phonon transitions, which were assumed to be dominant. For situations where

this is not the case, higher-order processes can easily be included. In

practical situations only two, not necessarily adjacent, levels will be

coupled resonantly by the laser. The generic idea is to drive a Ig> - le>

transition, with jg> as one of the low-lying states and Je> as close as

possible to the continuum. This configuration prohibits resonant coupling

of other transitions and gives a maximum enhancement of the desorption.

Besides that, the optical frequency will be larger than wD, and consequently

the direct crystal-heating is absent. Hence, our two-level and adiabatic

approach can be regarded as quite general.

The dressed states appear to be a convenient basis set for the

derivation of the optical Bloch equations for this configuration. The

master equation was obtained by taking the matrix elements of the full

operator equation, and it was shown that the populations obey the Pauli

equation. The coefficients involve, however, the optical parameters 0 and

6, and hence the lifetimes of the transitions depend on the properties of

the driving field. Furthermore, it was shown that the coherences with

respect to the dressed states decay exponentially to zero. The master

- -. . . . . . • -. . . . . . .". + " "." "" " " " ".' "." .'+- "- " -" .' *.* " "-" ' ' " -'. -- '' "-'.- + , . ' " \-' , , .
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equation in the bare-state repre-entation and in the steady state was

obtained by applying the relation between dressed states and bare states.

We found that the master equation greatly resembles the radiationless

equations, and that the presence of the laser could be incorporated entirely

by the addition of a few terms.

The general theory was exemplified by the simple case of a three-level

system. We achieved the explicit steady-state solution for the bare-state

populations, and it was pointed out that the system can be desorptive due to

the continuous optical excitation, whereas the bond would be completely in

its lower, non-desorbing state in the absence of the irradiance.
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Figure Captions

Fig. 1. The energy levels of the bare system plus the free laser field are

represented by the diagram on the left-hand side. The detuning A is taken

positive. The number of photons in the laser mode is indicated by n. If

the dipole coupling -U.E is included, a new diagonalization yields the

dressed energy-level system on the right-hand side. The level separations A

and wL in the bare system now become 0l' and wL' where 0' is always larger

than a due to Q2 9 0. This is the ac-Stark shift. 2 7 The state Ik>, which

is not coupled to another level by the laser, remains unaltered. In

general, we suppress the quantum number n and represent the dressed atom as

an infinite ladder of states I±>, which is the famous Jaynes-Cumnmings model

for the interaction of a two-level system with a strong radiation field.2 8

Fig. 2. Illustration of the single-phonon transitions, whenever a I+> or

1-> state is involved. The parameters near the arrows are the optical parts

of the prefactors as they occur in the transition rates. Without a driving

- laser, the g+ vanishes, and hence only the double-arrowed transitions

survive. For weak incident fields, the single arrows appear, and only for

sufficiently strong fields will the dashed transition 1+> - 1-> be present.

We note that there are no transitions in a single doublet. Furthermore, the

corresponding downward transitions have the same optical factor but a

different f(w), e.g., a different temperature dependence. Besides these

transitions, we have single-phonon processes between any two bare states Ik>

and I>, which are obviously independent of the laser parameters.

2 2
Fig. 3. The optical factors in the transition rates as a function of Q2/6

For strong fields or small detunings, both g+ and g_ tend to their

2 2
asymptotic value of 1/2, which is the upper dotted line, and g+, g. and
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g+g_ will approach 1/4 in this limit. For weak fields or large detunings,

2 2we have g- g - 1 and g g = - 0. For increasing field

strengths, the g transition will diminish very strongly, in favor of the

other three processes between the I±> doublets.

FiR. 4. Single-phonon excitations in the low-intensity limit. For a

small, we can consider the transitions between the dressed states, as given

in Fig. 2, as photon-assisted transitions between the bare states. The

diagrams in this picture have the same order as the transitions in Fig. 2.

- Here every diagram connects two of the three bare states lk>, le> or lg>,

since we cannot populate a virtual level (dotted lines). A straight line

indicates a phonon, and a wiggly arrow is a photon with frequency wL . The

three double-arrow transitions in Fig. 2 are the three radiationless

" transitions, so they persist even if we switch off the laser field. The

single arrows from Fig. 2. appear to correspond to one-photon transitions in

this diagram, so they arise already for low intensities. The diagram on the

right-hand side is a two-photon process, which consequently appears for

relatively strong fields only. It is the dashed g2 transition form 1+> to++
*-> in Fig. 2. The phonon-decay processes correspond to the inverse

diagrams (reverse the direction of all arrows). In this figure we only draw

the phonon excitations, which correspond to the absorption of a phonon by

the adbond from the crystal. The third diagram represents the absorption of

a photon from the laser field, but all other diagrams give rise to

stimulated emissions of photons.

4%_. |
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