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ABSTRACT

This research compares the performance of three filters

which have been applied to the problem of orbit determina-

tion using actual satellite tracking data obtained from

ground based radars. The states estimated are the osculat-

ing classical orbital elements and the satellite ballistic

coefficient. The dynamics used to propagate the state

vector forward include the two-body acceleration plus

perturbations due to atmospheric drag, zonal harmonics in

the geopotential through 4 and tesseral harmonics in the

geopotential through J44. The atmospheric density model
L4

used is an exponential model that includes diurnal varia-

tions and variations in the decimeter solar flux. The

observations used to update the state vector estimates are

slant range, azimuth, and elevation relative to a radar

The three filters investigated in this research are a

nonlinear least squares filter, an Extended Kalman filter,

and a Gauss second order filter. Data are processed for

three different satellites. The first is a high altitude

(1000km at perigee), non-circular (e=0.015), orbit. The

second satellite orbit is a low altitude (250km at perigee),

non-circular (e=0.01), orbit. The final orbit is a low

altitude (300km), nearly circular (e=0.0003), orbit.

'i i~i~N M W W =~
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The filters are compared using four criteria: estima-

tion errors, prediction errors, computer time of operation,

and computer storage requirements. The Gauss second order

filter is shown to provide a substantial improvement in

orbit determination accuracy for satellites subject to

significant perturbing accelerations.

1f

S
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CHAPTER 1

INTRODUCTION

1.1. Problem Statement

The orbit determination problem consists of two basic

parts; propagation of the state estimates forward in time

and updating the state estimate based upon new measurements

of parameters which are functions of the states. The prob-

lem is complicated by the following three factors. First,

*the initial state vector, the satellite's orbital elements,

is not known exactly. Next, the dynamics model used to

propagate the state forward is only an approximate model.

Finally, the measurements are corrupted by noise.

The states to be estimated are the classical orbital

elements and the ballistic coefficient of the satellite.

These elements are:

a - semi-major axis,

e - eccentricity,

Si- inclination,

Q - longitude of ascending node,

w- argument of perigee,

M - mean anomaly, and

- B - ballistic coefficient

The classical orbital elements were chosen due to their

descriptive nature. The semi-major axis and eccentricity
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determine the size and shape of the orbit. The inclina-

tion and longitude of ascending node describe the orien-

tation of the orbital plane in inertial space. The

argument of perigee describes the orientation of the orbit

in the orbital plane. Finally, the mean anomaly locates

the satellite within the orbit. The ballistic coefficient

is also estimated since it is not known for many objects

orbiting the Earth and its estimate can incorporate uncer-

tainty in the atmospheric model.

The dynamics model used to propagate the state vector

forward in time for a satellite must contain the two-body

equations of motion and any perturbations which are con-

sidered significant. The method used in this work is a

variation of parameters formulation of the equations of

motion which are integrated using special perturbations

theory. The perturbations include atmospheric drag, zonal

terms J2 - J6 in the geopotential, and tesseral terms

J22 - J44 in the geopotential. Since no model is exact,

there are errors in the equations of motion. These errors,

called process noise, are modeled as zero-mean, white,

Gaussian noise.

Similarly, the measurements used to update the states

are not exact, but are corrupted by noise in the observation

data. These errors are also modeled as zero-mean, white,

Gaussian noise.
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The problem of satellite orbit determination is a

very important one which has received much attention in

the literature. In this work we will compare the accuracy

and efficiency of several different filters for orbit

determination. Among previous researchers who have made

such comparisons are Kolenkiewicz and Fuchs (1) and Myers

(2). The standard for comparison is a batch, nonlinear,

least squares filter. This method has been used for years

and has prov~n to be accurate when applied to the problem

0of orbit determination for a large number of satellites

in different orbits. Currently, the Air Force Space Com-

mand uses a nonlinear least squares filter for element set

maintenance for all objects orbiting the Earth (3). These

objects, including active payloads, rocket bodies, and

satellite fragments, number over 5000. The other filters

considered are all recursive filters. Shavers (4) compares

the performance of batch and recursive filters for orbit

determination. Among the advantages of recursive filtering

are a state estimate based on the most recent data avail-

able and the lack of a need to store the data for batch

processing. One type of recursive filter is the Extended

Kalman Filter. The final type of filter is a second order

filter, which derives its name from the inclusion of the

second order terms from the Taylor series expansion used

to linearize the filter dynamics and observation equations.
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The second order terms occur in the dynamics, observations,

and filter gain equations. Tapley and Choe (5) compared

the performance of a second order filter with the perform-

ance of an Extended Kalman filter for interplanetary orbit

determination. They investigated the effect of the second

order terms in the dynamics, observations, and filter

gain separately, concluding that the second order term in

the filter gain resulted in the most significant improvement

over the Extended Kalman filter. Taylor (6) calculated

the magnitude of the bias terms in the dynamics and obser-

vations for the determination of an orbit of an Earth

satellite. He concluded that inclusion of the observation

bias terms should improve the filter performance, but that

the inclusion of the dynamic bias terms should not alter

filter performance. However, Taylor (6) did not verify

or quantify the improvement due to second order terms as

they were never employed in the filters he used. Athans,

Wishner, and Bertolini (7) compared the performance of a

0 second order filter to the performance of a first order

filter when applied to the problem of estimating the posi-

tion and velocity of a vertically falling body. They con-

cluded that the second order filter yields superior perform-

ance when nonlinearities are significant. They also

concluded that the major improvement was due to the bias

correction term in the dynamics.
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In this research the orbit determination accuracy and

efficiency of two recursive filters, an iterated-extended

Kalman filter (EKF) and a Gaussian second order filter (GSF)

will be compared to that of a batch least squares filter

(LSF). Actual observation data for satellites in three

different types of orbits will be used. The Gaussian

second order filter will be examined in greatest detail.

Following the approach of Tapley and Choe (5), the effect

of the second order terms in the dynamics, observations,

and gain will be evaluated individually. The efficiency of

the filters, expressed as computer time of operation and

required storage, will be compared.

1.2 Assumptions

The assumptions made in this research are:

a. The system dynamics are continuous with process

noise modeled by zero-mean, white, Gaussian noise.

b. The measurements are discrete and are cor-

* rupted by zero-mean, white, Gaussian noise.

c. The process noise and measurement noise are

uncorrelated.

d. The satellite ballistic coefficient is an

-unknown constant.

e. The most significant perturbing forces are

due to atmospheric drag and the geopotential terms

'~
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J2 - J6 and J22 - J44 . All other forces may be neglected.

f. The satellites are considered to be non-

maneuver ing.

1.3. Thesis Overview

The purpose of this thesis is to compare the perform-

ance of various filters applied to the orbit determination

problem. Chapter 2 is a description of the mathematical

system dynamics model used to propagate the state vector

forward and the observations used to update the estimates

of the states.

Chapter 3 provides an overview of the estimation prob-

lem and a detailed description of each of the filter

algorithms used in this research.

Chapter 4 describes the satellite orbits and the data

used to compare the filter performance.

Chapter 5 presents the results .obtained by the filters

using actual observational data. Results are presented

regarding estimation errors, prediction errors, computer

storage requirements, and computer operation time.

Finally, Chapter 6 contains the conclusions of this

research and recommendations for future work.

S
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CHAPTER 2

SYSTEM MODEL

2.1. Introduction

The propagation of the satellite state vector requires

a an accurate force model in the equations of motion and a

means of integrating the equations of motion. The method

used in this research is to express the equations of motion

in terms of Gauss' variation of parameters equations. The

equations of motion are then integrated numerically using

the method of special perturbations.

In addition to the dynamics model, the mathematical

relationship between the observations and states must be

defined in order for the filters to process the data and

update the estimates of the states. The observations used

in this research are slant range (p), azimuth (Az), and

elevation (El) relative to the radar site.

2.2. Dynamics

The equations of motion of a satellite orbiting the

Earth are given by Newton's 2nd Law as:
I

r+ r=ap 2.1
r

where:

r is the position vector of the satellite from

the center of the Earth,
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P is the Earth's gravitational constant, and

a are the perturbing accelerations.-p

These equations can be integrated directly, an approach

called Cowell's method, but this approach is rather slow

and inefficient due to the large changes in the magnitudes

of the components of the satellite position vector and

S velocity vector. An alternate approach, called the Varia-

tion of Parameters, takes advantage of the periodic nature

of equation 2.1. If only the two-body system is considered,

0equation 2.1 becomes:

+ !- r = 0. 2.2
- 3-r

If the equations of motion are now written in terms of the

classical orbital elements, a system of six first order

differential equations result in which all the derivatives

are equal to zero except for mean anomaly which is:

= n, 2.3

* where:

n = /4/a, the mean motion.

Writing the perturbing accelerations in terms of the classi-

cal orbital elements, the system equations of motion become:

= f(x(t),t) 2.4

@4
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where:

x is the seven-component state vector containing

the classical orbital elements and the satellite ballistic

coefficient, and

f is the vector containing the perturbing accel-

erations and the mean anomaly rate (Eq. 2.3).

- The perturbations most significant for low-Earth orbit

determination are acceleration due to atmospheric drag and

acceleration due to a non-spherical Earth. The mathematical

model of acceleration due to atmospheric drag is:

aD = -Bpvaa/2 2.5

where:

aD is the acceleration due to atmospheric drag,

B is the satellite ballistic coefficient,

p is the atmospheric density, and.

va is the velocity of the satellite relative to

the atmosphere.

The accelerrtion due to atmospheric drag must now be ex-

pressed in terms of the state vector, x(t). The approach

used in this thesis is that developed by King-Hele (8).

0. The resulting variational equations for an oblate atmos-

phere with rotational velocity equal to the Earth's

rotational velocity are:
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= -pBFa2 v 3 /I

= pBFv(e+cos(f))
* =_v2 1/2 . 2

e-pvr 2 (F/Up) sin(i)cos2 (u/2) 2.6

= pvr 2W e (F/Up) 1/2 sin(u)cos(u)

= - Cos (i)

where:

F (l-rp e cos(i)/v
pe p

rp is the radius of perigee,

Vp is the velocity at perigee,

f is the satellite true anomaly,

u = +f,

we is the Earth's rotational velocity, and

p is the semi-latus rectum.

A major computational effort in calculating the per-

turbation due to atinospheric drag is in determining the

density, p. The simplest atmospheric model assumes a

spherically symmetric density which varies exponentially

with altitude:

p = POexp(-(h-h0 )/H) 2.7

wher e:

PO is the density at hof

h is the altitude above the surface of the Earth,

h is the reference altitude, and

H is the scale height.E 1111I 6



A more sophisticated model developed by Jacchia (9)

includes a diurnal variation due to solar heating and

variations in the decimeter solar flux, F10.7. The model

used in this research is the 1960 Jacchia model with

modifications described in Reference 3. For this model the

density for altitudes less than 700km is:

p = PO 0.85F10.7[1+0.2375(exp(0.0102h)-l.9)(l+cos(ip))3

2.8

* where:

logl op0 = -15.738-0.00368h+6.363exp(-0.0048h),

p is the density in slug/ft
3,

F10.7=1.5+0.8cos(rd/2010)

d is the number of days since 31 Dec. 1957,

h is the altitude above the surface of the Earth

in nautical miles, and

p is the angle between the satellite and the

subsolar atmospheric bulge.

Above 700km the density is

p = 0.00504F10.7h - 8 [ /8( 1 + c os )3 (h3_6xl0 6)+6x06 1 2.9

The density scale height, H, varies with altitude and is

obtained from a stored table.

The other major perturbation affecting the motion of

a satellite in a low-Earth orbit is caused by the
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gravitational attraction of the non-spherical Earth. The

perturbing potential due to the axially symmetric part

of the Earth's gravitational field is (10):

F=(i/r) Z J (R/r) n p (sin(L)) 2.10

n=2 nn

where:

the Jn are the zonal harmonic coefficients of the

Earth's mass distribution,

R is the Earth's mean equatorial radius,

Pn are Legendre polynomials of degree n, and

L is the geocentric latitude, sinL=sinisin(w+f).

The perturbing acceleration may be determined from the

potential function:

a -VF. 2.11

-p

A convenient coordinate frame for expressing the compo-

nents of acceleration is the STW frame where:

S is the component along the radius vector,

T is perpendicular to S in the orbit plane in

the direction of motion, and

W is normal to the orbit frame so that the STW

frame forms a right-hand coordinate set.

The components of the disturbing acceleration are then:

S = aF/3r,

T = (1/r)3F/3u, and 2.12

W = (1/rsin(u))3F/ai.

LI4
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The components of the disturbing acceleration due to

the first five terms (n=2,. ..,6) of the disturbing geopoten-

tial, eq. 2.9, are given by Merson (11):

S=U(i/r 2) [(3/2)J2 (R/r) 2(3A 2_ )+2j3 (R/r) 3(5A 3_3A)

+(3/8)j 4 (R/r) 4'(35A 4 _30A 2+3)

+(3/4)J 5 (R/r) 5(63A 5 -70A 3+15A)

+(7/16)J 6 (R/r) 6 (231A 
6 _315A 4 +105A 2 _5)], 2.13

T=-(ii/r 2)sinicosu[3j2 (R/r) 2A+(3/2)j 3 (R/r) 3(SA -_1)

+ +(5/2) J4 (R/r) 4(7A 3_3A)

+(15/8)j,(R/r) (21A 4-14A +1)

+(21/8)j 6 (R/r) 6(33A -30A .4-A1 2.14

W-(ii/r 2)cosiflbracketed term in eq. 2.14]'. 2.15

where:

A = sin(i)sin(u)

J= 1082.628x10-
6

J 3 = -2. 538x10-6

J= -1.593x10-
6

1 = -O0.230xl10 6

1= Q.502x106'IThe values of the geopotential coefficients are those
derived by Kozai (12).

Having expressed the perturb ing acceleration in the STW

coordinate frame the most convenient set of perturbation

equations is the Gaussian form of the Lagrange planetary
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perturbation equations:

A= (2/n) (1-e2 ) /2esin(f)S+(p/r)TI

= (1-e 2 ) 1/ 2 / (na) (sin(f)S+(cos(f)

+(e+cos(f) )/(l+ecos(f)) )T]
1 = rcos(u)/(na2 ( 2) 1/2)W

= rsin(u)/(na2(1-e2 ) /2sin(i))W 2.16

-- (l-e 2 ) 1/2/(nae) [-cos(f)S

+sin (f) (l+r/p) T] -Cos (iW

M = n+l/(na2e[ ((pcos(f)-2er)S-(p+r)sin(f)T]

where S, T, and W are given by eqs. 2.13-2.15.

Finally, eqs. 2.16 are combined with eqs. 2.6 to form the

system equations of motion (eq. 2.4).

In addition to the zonal terms in the geopotential

which vary with latitude, longitude dependent terms,

called tesseral terms, in the geopotential can be included

in the equations of motion. Kaula (13) derived an expres-

sion for the geopotential, VZm, as a function of the classi-

cal orbital elements:I -i
V 9M=(iu/a)(R/a) Z F m(i) q G pq (e)S 9mp q (,MOl ) ,p=0

2.17

where:

the F Zmp( W are the inclination functions,

the GZpq(e) are the eccentricity functions,

0



15

s =Ci ZZ-rn even
S mpq S Xim od co s E(2 ) w + (Z -2p+q) m

+muz-)] +I mI -rn even sin([(-2P)cjCzim o-rn

+(29,-2p+q)M+m(n2-e)], and

the Cm and the Sim are the geopotential coeffi-

cients.

The inclination functions, eccentricity functions, and the

geopotential coefficients are given in Appendix A.

The variational equations of motion due to the tesseral

'A terms in the geopotential can be calculated by applying

Lagrange's planetary equations due to a disturbing poten-

tial:

a=(2/na) a

e=(1/na e)t[(1-e 2)- (1-e2 )1/ 9m

i 1 /(na(l-e 2) 12) (cot~i W -a9- - csc(i) a I

=csc(i)/(na 
2 (1-e) 1 /2) uVmn 2.18

2 1/2 2 aVzm a

w (1-e ) /(na e) ae

-cot(i)/(na 2(1-e 2) 12) 3 ,X and

0=-(l-e 2 )/ 2 e) VZM-/n)'
ae a

The tesseral harmonics are of small amplitude and toI " first order cause no secular variations in the state,

causing only periodic variations in the classical orbital

elements (10).

0
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Two assumptions were made when determining the

variations due to the tesseral harmonics. First, only

the terms through V4 4 were included. The indices for the

potential, V, are therefore Z=2,3,4 and m=l, ..., Z.

The terms in the geopotential for m=O are the zonal varia-

tions and are included in equation 2.16. The second

*assumption is that the eccentricity is small and can be

neglected in the variational equations for the tesseral

harmonics.

Finally, equations 2.18 are combined with equations

2.16 and 2.6 to form the system equations of motion

(eq. 2.4).

Other forces acting on the satellite, such as solar

radiation or third-body gravitation due to the sun or the

moon, are not included in the dynamics model. Errors caused

by neglecting these forces, as well as errors in the

dynamics model due to uncertainties in parameters such

as atmospheric density and geopotential coefficients will

be compensated for in the process noise matrix described

in Chapter 3.

2.3. Observations

The observations used to update the estimate of the

state vector are slant range, azimuth, and elevation

relative to a radar site. A mathematical model must be

provided which relates the observations, z, to the states,

IF I
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x, i. e.

z = h(x(t),t). 2.19

The approach used in this work is to first express the

satellite position vector, r, in terms of the state

vector, x, in the perifocal (PQW) coordin-:e system (14):

r = rcos(f)P+rsin(f)Q 2.20

A A

where P and Q are unit vectors in the orbital plane; P is
* A A

in the direction of perigee and Q is perpendicular to P in

the direction of motion.

The next step is to rotate the position vector from

the perifocal frame to the geocentric equatorial coordinate

(GEC) frame and then to the topocentric horizon coordinate

(THC) frame (14):

(r] THC =M 2t(r] GEC

=M 2 M3 (r PQW 2.21

where:

S3 (1,1) =cos(SI)cos (w) -sin(-1) sin (cMcos(i)

* M3 (1,2) =-cos(SI)sin(w)-sin(Sflcos(ci)cos(i)

M 3 (1,3) =sin(n2)sin(i)

M3 (2,1) = sin(s2)cos(w)+cos(Z) sin(cw)cos(i)

M 3 (2,2) = -sin(2) sin(w)+cos(Q)cos(w~)cos(i)

M 3(2,3) = -cos(M)sin (i)



M (3,1) = sin(AJ)sin(i)

M3 (3, 2) = cos M sin (i)

M3 (3, 3) = cos (i)

sin(L)cos(e) sin (L) sin (e) -cos(L)

M2 = -sin(e) cos(e) 0

Lcos (L) cos (e) cos(L)sin(e) sin(L)1

L is the geocentric latitude of the radar site,

and

8 is the local sidereal time of the radar site.

With the position vector, r, expressed in the THC

frame, the slant range vector is now:

p = r-R = p S4 +~ PEE p z 2.22

where R is the position vector of the radar site on an

oblate Earth in the THC frame. Finally, the observations,

z, can be expressed as functions of the slant range vector,

p.

P P2 + P2 + 21/2
s E

Az = sin -1(-A + P21/ 2.23

El = sin (p /p)

M)5



CHAPTER 3

ESTIMATION

3.1. Introduction

The primary purpose of estimation is to provide an

estimate of the state vector, x(t), based on a system

dynamics model, f(x(t),t), and observations known to be

corrupted by noise, z(t). For the orbit determination

*O problem a continuous, nonlinear, systems model with errors

modeled by white-Gaussain noise, w(t), is used with dis-

crete measurements corrupted by white-Gaussian noise, v(t).

The system equations are:

A(t) = f(x(t),t)+w(t), w(t) = N(O,Q), 3.1

z(tk) = Zk = hk(X(t))+Vk and

V(tk) !Lk = N(, R). 3.2

where:

Q is a diagonal process noise matrix, and

R is a diagonal measurement noise matrix.

Also, v and w are assumed to be independent.

One method of updating the state estimate with noisy

observations is a batch least squares filter. This approach

determines an estimate of the state that minimizes the sum

of the squares of the residuals. A residual is defined to
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be the value of the actual observation minus the predicted

value based on the state estimate. The batch, least

squares filter will provide the base-line filter for

evaluating the performance of other filters considered in

this research.

Two disadvantages of the least squares filter are

first that it does not use information about the process

noise to update the state. Second, it is a batch processor.

This requires that sufficient data for an update must be
4

stored prior to the update. Also, the current estimate

of the state vector from the batch processor does not con-

tain information based on the most recent data, but is based

on the data prior to the last update.

A second class of filters considered in this research,

called recursive filters, include process noise in their

state estimates and provide a state estimate based on all of

the data, up to and including the most recent observation.

For a linear problem with zero-mean, white, Gaussian noise

the optimal estimator is the Kalman filter (15). For the

nonlinear problem, the Kalman filter may no longer provide

the optimal estimate of the state; however, the extended

Kalman filter has been successfully applied to several

nonlinear problems described by Maybeck (16), Gelb (17),

and Jazwinski (18) and will therefore be considered in this

research. The extended Kalman filter is based on a first
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order Taylor series expansion of equations 3.1 and 3.2

about the state estimate. Retention of second order terms

in the expansions results in truncated and Gaussian forms

of second order filters. Only the Gaussian form of the

second order filter will be considered in this research.

The following sections provide a description of each

of the filters investigated along with the algorithm used

for updating each filter.

3.2. Least Squares Filter

The basic principle of the method of least squares is

that the best estimate of the state vector is the estimate

which minimizes the sum of the squares of the residuals.

Define the residual to be

r = z - h(x), 3.3

where:

z are the actual observations.-o

Since the actual value of the state, x, is not known, h(x)

must be approximated. This is accomplished using a Taylor

series expansion of h(x) about the nominal trajectory, x:

h(x) = h(x_) + -- I(x-*) + H.O.T. 3.4
ax=

= z + H6x, 3.5

where:

zare the predicted values of the observations.

011RM M
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The residuals are expressed as:

r = (zo-Zc) -Hx . 3.6

The weighted least squares criteria is now

(x rT Wr) - ax- ([z -zc-H 6x] TW[ -z -H x l ) =O 3.7
Sa0-

where

W is the weighting matrix.

The update equations for the state estimate are

6x = (HTwH)-IHTw(z -Z_) 3.8

x + dx 3.9

Because of the nonlinearities in the problem, this process

(eqs 3.8-3.9) must be iterated until the solution converges,

i.e. Sx approaches zero.

The matrix W represents the confidence, or expected

accuracy, of each observation relative to the other obser-

vations. In this study the same weighting matrix is used

for all the radar sites providing observations of slant

range, azimuth, and elevation. This means that all of the

slant range measurements are weighted equally, as well as

all of the azimuth measurements and the elevation measurements.

The weights used for the slant range, azimuth, and elevation

were based on ADCOM D06 Technical. Note 79-4 (19) describing

4
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sensor accuracies. The average standard deviation of the

error in the range measurements was 47 m or about 7.4X10
6

DU (1 DU=6378.145 km). The average standard deviation of

the error in the azimuth and elevation measurements was
-4

0.014 deg, or about 2.4X10 rad. This indicates that a

weighting factor for the slant range measurements should be

about 1000 times the weighting factor of the azimuth and

elevation measurements; however, faster convergence was

achieved using a ratio of 100.
0

The H-matrix is a 3x7 matrix relating changes in the

slant range, azimuth, and elevation at the time of the ob-

servation to changes in the state at the epoch time, to.

These partial derivatives are calculated analytically rather

than numerically to reduce the computational load of the

filter. H is evaluated using the chain rule, i.e.

H = M1M 2M3M4M 5  3.10

where:

M1 is-.a 3x3 matrix containing the partial derivatives

of slant range, azimuth, and elevation with

respect to components of a vector in the THC

frame (3).

-cos(Az)cos(El) sin(Az)cos(El) sinCEl)

M1  sin(Az)/(pcos(E1)) cos(Az)/(pcos(El)) 0

Lcos (Az)si ( l -sin )sin(El / cos (El) / j

3.11

won
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M2 is a 3x3 coordinate transformation from the THC

frame to the GEC frame (eq. 2.21)

M3 is another coordinate transformation, this time from

the GEC frame to a coordinate frame (UVW) with

the Q and 0 basis vectors in the orbital plane

and Q aligned with the position vector of the

satellite. M3 is given in equation 2.18 with

u=f+w replacing w.

M is a 3x7 matrix relating changes in the position

vector in the UVW frame to changes in the state

at some time, t. Since the UVW frame is not

inertial, changes in the direction of the unit

vectors must be included. The non-zero elements

of M4 are given below.

M4 (l,l) = r/a

M4 (1,2) = (r-a)/e
M4 (1,6) = aesin(f)/(l-e 2 1/2-v/n

M4 (2,4) = rcos(i) 3.12

M4 (2,5) = r

M4 (2,6) = a 2 (1-e2)i/2/r

M4 (3,3) = rsin(u)

M4 (3,4) = -rsin(i)cos(u)

M5 is the 7x7 state transition matrix. It is approxi-

mately letting

x =o + (t-t0Uc 3.13

S
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and evaluating A using values of the state at epoch,

to. Only secular and long-period variations in

the elements due to drag and the zonal harmonics

in the geopotential are included in the calcula-

tion of the state transition matrix.

Equation 3.13 is adequate for the variation in the

elements due to the geopotential, but does not apply to the

variations in the elements due to atmospheric drag due to

*; the presence of position and velocity in the variational

equations. King-Hele (8) shows that for small (t-t ),

the variations of the elements due to atmospheric drag are

governed by:

a -- ao-QnBa2pp exp (-z) (I (z)+2eI (z)) (t-t O)

e = e -QnBap exp(-z)(I,(z)-e/2(lo-I2 ))(t-t O)

i = io-1/4aeBQl/2 ppexp(-z)sin(i)(I -2eI1

3.14
•+(12- 2eI 1)cos(2w) ](t-t)

2 = Qo-1/4aw eBQ1 /2P pex p ( - z) [o-2eI 1 sin(2)(t-t 0 )

W = W 0 +i/4aw eBQ1 /2 p exp(-z)cos(i) [I o-2 eI11

sin(2w) (t-t O )

where:

Q = (1-rpwecos(i)/v p),

pe p
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p is the density at perigee,

z = ae/H, and

the I are the modified Bessel Functions of order n.n

The state transition matrix is given in Appendix B.

The algorithm used to estimate the state using a least

squares filter is presented below.

1. Select a batch size, m, for processing the data.

Batch sizes of 15 - 25 sets of observations (slant

range, azimuth, and elevation) are used in thisI
research.

2. Read in the next m sets of observations and save

as zo"

3. Propagate the state, x, to each observation time,

ti , using eq 2.4 and calculate-c (t i ) and H(ti).

Combine the zc(ti) 's and H(t.) 's to form z (t)

and H(t).

4. Calculate 6x from eq 3.8.

5. Update x, eq. 3.9.

6. Repeat 3 - 5 until solution converges.

7. Propagate x, eq 2.4, to new epoch time (time of

last processed observation) and read in next m

data sets.

8. Repeat until all of the data are processed.
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3.3. Extended Kalman Filter (EKF)

The Kalman filter is a sequential estimator providing

an estimate of the state vector based on the system dynamics

model and information from all of the previous observations.

For a linear problem with Gaussian additive noise the

Kalman filter provides an optimal estimate of the state

vector. However, for the nonlinear problem, the Kalman

N Filter no longer guarantees an optimal solution. This is

due to the fact that the optimal estimate requires knowledge

of the probability density function of the states, p(x,t).

For a nonlinear problem, p(x,t) will not remain a Gaussian

density function even though the initial state may be

Gaussian and the process noise and observation noise are

Gaussian. If p(x,t) is not Gaussian, the estimation of the

optimal state vector requires the knowledge of the entire

density function, which is not feasible. Therefore, some

form of a suboptimal estimator is required. The simplest
.5

form is the linearized Kalman filter. The linearized Kalman

Filter (16) provides an optimal estimate of the error in

the state, x(t). This error is then added to the nominal

state x(t) to determine the total state:

- x(t)=x (t)+ 3x(t) 3.15

This form of the Kalman filter is adequate if the nominal

state is nearly the same as the "true" state; however, if

II
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the nominal state and the "true" state differ by a large

amount the linearization is no longer appropriate.

The extended Kalman filter is an attempt to reduce

the effect of this problem. The EKF relinearizes about

the "new" state after each measurement update. This reduces

the difference between the optimal state and the "true" state
othus enhancing the assumption that a linearization of the

dynamics and observations is valid. The linearized system

dynamics and observation equations are obtained by using aI

Taylor series expansion of the equation about the nominal

trajectory. A derivation of the EKF equations is presented

by Maybeck (16) and will not be presented here. The result-

ing EKF equations are (16):

Propagation:

A(t) f= R _ _ )=T

P(t) = F(^,t)P(t) + P(t)F T(,t) + Q, 3.16

Update:

K = P(-)HT (k C[H(k(-)P(-)HT((S)) + R]I ,

S _(+) = R(-) + K[Z - h(k(-))], and
-*0

P(+) = P(-) - KH((-) )P(-), 3.17

where:

P is the state covariance matrix,

F is the linearized dynamics matrix,

Q is the process noise matrix,

K is the filter gain matrix,

6OW



29

H is the linearized observation matrix, and

R is the measurement noise matrix.

The initial values of the state and covariance matrix

must be input to the filter. The initial values of the

state, called the epoch values, are described in Chapter 4

for each case. The initial value of the covariance is a

measure of the confidence in the epoch values of the state.

The initial covariance matrix is assumed to be a diagonal

matrix with each of the diagonal elements equal to 1E-06.

The process noise matrix, Q, is a measure of the uncertainty

in the dynamics model. Sources of error in the dynamics

include unmodeled forces such as third body perturbations

or higher order terms in the geopotential, uncertainties in

the modeled geopotential coefficients, and errors in the

atmospheric density model. The process noise matrix used

in this research is described in Chapter 5. The H-matrix

is the same as the H-matrix used in the least squares

filter and is described in the previous section. Finally,

the measurement noise matrix is a measure of the accuracy of

the observations: slant range, azimuth, and elevation.

The EKF equations allow the flexibility to use different

weights for each type of observation; slant range, azimuth,

or elevation, and for each radar site. For the radar sites

used in this work, the standard deviations of the measure-

ments did not vary significantly from site to site (19) and
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therefore only one measurement noise matrix is used. R is

assumed to be a diagonal matrix. The diigonal elements

are equal to the variances in the slant range, azimuth,

and elevation measurements respectively. Initial values

for the variances were calculated by squaring the average

of the standard deviations for each of the radar sites.

The average standard deviation of the slant range measure-

ments is 47 m which results in a variance of about 1E-11 DU

Similarly, the average standard deviations of the azimuth

and elevation are 0.14 deg which result in variances of

5E-08 rad 2 . The values of the elements of the R-matrix

were later altered to improve the filter performance. The

values used are reported in the results section, Chapter 5.

Several modifications to the EKF can be incorporated

to improve the filter performance. One change is the

inclusion of "pseudonoise" (16) in the Q-matrix and the

R-matrix to compensate for unmodeled errors and errors due

to nonlinearities in the problem. This method is used to

alter the filter gain and achieve a balance between ignoring

the new data (low filter gain) and tracking the noise in

the data (high filter gain). Another modification to com-

pensate for nonlinearities in the problem is to add

iterations in the propagation and update equations. An

iterated, extended Kalman filter which incorporates

iterations in the update equations is investigated in

this research. The modified update equations are (16):

4
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K(t) = P(-)H T(x(i) ,t)

[H((i) ,t) P(-)H T(x(i) ,t) + R] - 1

x(i+l) - x(-) + K(t){z -z -H(x(i),t)

[x(-) - x(i)]}I, 3.18

where:

P(-) is the covariance just before the update,

and

x(1) is the estimate from eq. 3.17,

= + K[z - _ _

Equations 3.18 are iterated until the solution converges or

a maximum number of iterations is reached. After the itera-

tion of equations 3.18, the new P-matrix is calculated from

equation 3.17.

The algorithm used for the extended Kalman filter is

listed below.

1. Read in the initial state vector, covariance matrix,

and epoch time.

2. Read in the first data set.

3. Propagate the state vector and covariance matrix to

the time of the first observation (eq. 3.16).

4. Calculate the H-matrix and F-matrix.

5. Calculate the gain matrix and update the state

vector (eq. 3.17).

6. Repeat 4 and 5 until the solution converges using

equation 3.18 to calculate the new gain and the
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new state vector.

7. Calculate the updated covariance matrix usinq

equation 3.17.

8. Update the epoch time to the time of the last

observation.

9. Read in next data set and repeat steps 3 - 9 until

all of the data are processed.

3.4. Second Order Filters

* If the nonlinearities in the problem are significant,

inclusion of second order terms in the Taylor series

expansions of the dynamics and observation equations along

with assumptions about the conditional density function of

. the state based on the observations should improve the filter

performance (16). Two filters of this type are developed by

Maybeck (16). Only the Gaussian form of the second order

filter will be investigated.

As stated before, the optimal estimate of the state,

x(t), based on all of the previous measurements requires

the knowledge of the entire conditional probability density

function of the state based on the measurements. Since this

is not feasible, certain assumptions about the density

function must be made. One set of assumptions is to first

assume that the density function is symmetric about its

mean, thus all of the odd moments of order three and higher

are zero. Also, assume that the density function is
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concentrated about the mean so that the fourth order and

higher order even moments may be neglected. Combining

these assumptions with the inclusion of the second order

terms in the Taylor series expansions of the dynamics and

observation equations results in the truncated second

order filter. If the additional assumption that the pro-

cess noise is time invariant is made, the resulting

modified truncated second order filter eouations are

(16):

Propagation:

S_(t) = f (t),t + (t),
tTd

P(t) = F(x(t),t]P(t) + P (t) t),t] + Q, 3.19

where:

F and Q are the same as in the EKF, and

bd(t) is an n-vector whose kth element is:

d 2 fk

bdk(t) = (i/2)tr{--- P(t)};
dx x~k

Update:

TT
A(t) = g[x(t-),t]P(t-)HT[x(t - ) ,t

K (t) = P(t-)HT[A_(t_ 1 ,t]A-lI(t),

11 I 1"", 11
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(t+) = _x(t-) + K(t) oz z -b (t-)], and

P(t+) = P(t-) - K(t) H[x(t-) ,t]P(t-), 3.20

where:

H and R are the same as in the EKF, and

b (t) is an m-vector whose kth element is:

- bmk (t-) = (1/2)tr{-1j P(t-)

Similarly, the Gaussian second order filter is derived

by assuming that the conditional probability density function

remains Gaussian. The third order and higher order odd

moments of a Gaussian density function are zero and the

fourth order and higher order even moments can be expressed

in terms of the covariance. If only the fourth order moment

is considered and the process noise matrix is assumed to

be time invariant, the resulting modified Gaussian second

order filter equations are the same as the truncated second

order filter with the exception of the filter gain, A(t),

* which is now (16):

=TA (t) = H [x (t-) , t]P (t-) HT[x (t - ) , t]

+ B(t-) + R(t), 3.21

where:

B(t-) is an m-by-m matrix with kith element:

2 h k 2h1
Bkl(t-) = (/2)trI P(t- I P(t-)}.

x =x ax x=x
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The differences between the EKF and the second order

filters are the additional terms in the dynamics equations,

state update equations, and the filter gain. These addi-

tional terms in the filter equations can be considered bias

terms. These bias terms can be included individually into

the filters, making it possible to investigate the effect

of each term separately. The dynamics and update bias

terms are the same for the two second order filters, so the

only difference between the two second order filters is the

0 bias term in the filter gains.

The calculation of the bias terms in the second order

filters requires the evaluation of the second partial

derivatives of the states at time t, x(t), with respect

to the states at time tO, x(t o) . Since these terms are

already second order, only the two-body dynamics plus

secular variations due to the Earth's oblateness, J2 , and

atmospheric drag are considered in the bias terms. The

derivations of the second order bias terms used in this

* research are presented in Appendix C.

The algorithm used for the second order filters is

the same as the algorithm used for the EKF with the inclu-

sion of the bias terms where appropriate.

The system dynamics and observation equations described

in Chapter 2 can now be combined with the filter equations

described in this chapter to solve the orbit estimation

11 H
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problem. The four cases used to compare the performance

of the various filters are presented in the next chapter.

a

6
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CHAPTER 4

OBSERVATIONAL DATA

4.1. Introduction

The objective of this research is to compare the per-

formance of several filters using actual satellite tracking

data. The first step in the process is to verify the filter

algorithms. This is accomplished using synthetic data

which is free of process noise and measurement noise. In

addition to this test case, observational data obtained

from tracking three different satellites are processed in

order to compare the performance of the filters. The first

satellite orbit is a high altitude (1000 km at perigee),

non-circular (e=0.015), polar (i=90 deg) orbit. The

second orbit is a low altitude (250 km at perigee), non-

circular (e=0.01), inclined (i=72 deg) orbit. The third

satellite orbit is a low altitude (300 km), nearly circular

*(e=0.0003) orbit with an inclination of 50 degrees.

-The epoch values for the test case and the three satel-

lite orbits are presented in the next section and a discus-

sion of the data is presented in Section 4.3.

4.2. Epoch Values of the Satellite Orbits

The epoch values for the test case and the three

satellite orbits considered in this research are presented
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in Tables 4-1 through 4-4. The epoch values for satellites

4507, 6633, and 1 299 are the singularly averaged classical

elements provided by the Air Force SPACECOM/DOA. The epoch

values for the test case are based on satellite 4507 with

small variations in the elements representing initial

errors in the state estimate.

Table 4-1

Epoch Values for the Test Case

Time: 4:24:28.999 on day 19, 1984.

Semi-major axis: 1.1703 DU

Eccentricity: 0.0147

Inclination: 90.076 deg

Longitude of Ascending
Node: 293.363 deg

Argument of Perigee: 214.900 deg

Mean Anomaly: 316.080 deg

Ballistic Coefficient: 0.00698 m2/kg
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Table 4-2

Epoch Values for Satellite 4507

Time: 4:24:28.999 on day 19, 1984

Semi-major Axis: 1.1703 DU

Eccentricity: 0.01475

Inclination: 90.077 deg

Longitude of Ascending
Node: 293.363 deg

Argument of Perigee: 214.908 deg

Mean Anomly: 316.078 deg

Ballistic Coefficient: 0.00698 m2/kg

Table 4-3

Epoch Values for Satellite 10299

Time: 23:41:24.000 day 245, 1977

Semi-major Axis: 1.0401 DU

Eccentricity: 0.00955

Inclination: 72.844 deg

Longitude of Ascending
Node: 115.989 deg

Argument of Perigee 56.617 deg

Mean Anomaly: 106.653 deg

Ballistic Coefficient: 0.0010 m 2/kg

0N
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Table 4-4

Epoch Values for Satellite 6633

Time: 22:44:40.000 day 69, 1979

Semi-major Axis: 1.0545 DU

Eccentricity: 0.0003

Inclination: 50.500 deg

Longitude of Ascending
Node: 283.827 deg

Argument of Perigee: 169.807 deg

Mean Anomaly: 348.612 deg

Ballistic Coefficient: 0.0120 m2 /kg

4.3. Data Summary

.9 The observational data used in this research consists

of radar passes and observations. A radar pass is the hori-

zon to horizon coverage of a satellite orbit by a particular

radar site. An observation is the measured slant range,

azimuth, and elevation of a satellite with respect to a

* particular radar site at a given time. The radar site

locations, provided by Air Force SPACECOM/DOA, are given

in Appendix D.

The observational data for the test case are synthetic

V " data based on the epoch values of satellite 4507. The data

are generated by propagating the initial state forward using

the dynamics described in Section 2.2. When the satellite

is visible to a radar site a set of look angles; predicted

0*.
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slant range, azimuth, and elevation, are calculated. For

this synthetic data, a radar pass consists of ten sets of

look angles, each separated by 60 seconds. These look

angles are saved and are used as noise free observational

data. There are a total of 100 observations; ten radar

passes with ten observations per pass, over a 24 hour

period in the test data. This gives one radar pass every

1.35 satellite revolutions. The maximum time between

observations is 5.18 hours.

The data for the other three satellites are actual

observational data provided by Air Force SPACECOM/DOA. The

data include time of observation, satellite number, radar

site number, and slant range, azimuth, and elevation of

the satellite relative to the site. The radar passes

vary from two to 15 observations per pass and the obser-

vations in a particular pass are separated by six seconds

up to one minute. Also, due to the geometry of the orbits

and tasking requirements, radar passes are separated by

from a few minutes up to seven hours.
Three days of data, days 19 - 21 in 1984, containing

35 radar passes, are processed for satellite 4507. There

are a total of 215 sets of observations, resulting in an

average of one radar pass every 1.18 satellite revolutions

and an average of 6.1 sets of observations per radar pass.

The maximum time between observations is 5.33 hours.
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One day of observational data, day 246, 1984, contain-

ing 15 radar passes and 72 sets of observations are pro-

cessed for satellite 10299. This results in an average of

one radar pass every 1.07 satellite revolutions and an

average of 4.8 sets of observations per radar pass. The

maximum time between observations is 4.63 hours.

Finally, the observational data for satellite 6633

consists of 12 radar passes with 68 sets of observations

from 22:44 on day 69 through day 70, 1979. This results in

an average of one radar pass every 1.37 satellite revolutions

with an average of 5.7 observations per radar pass. The

maximum time between observations for satellite 6633 is

7.2 hours.

The data are summarized in Table 4-5.

Table 4-5

Observational Data

Radar Number Revs/ Obs/ Maximum
A Satellite Hours Passes of Obs Pass Pass Outage (hrs)

Test 24 10 100 1.35 10 5.18

4507 72 35 215 1.18 6.1 5.33

10299 24 15 72 1.07 4.8 4.63

6633 25 12 68 1.37 5.7 7.20
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CHAPTER 5

RESULTS

5.1. Introduction

The performance of the filters investigated in this

research are compared using four criteria. These criteria

are estimation errors, prediction errors, computer time

of operation, and computer storage requirements.

0 Estimation errors are based on the state estimate at

time t(i) using all of the observations up to and including

time t(i). A measure of the filter estimation errors is

obtained by comparing the residuals (observed value minus

predicted value) in the observations; slant range, azimuth,

and elevation, for each filter. Estimation errors are

compared in Section 5.2.

Similarly, prediction errors are based on the state

estimate at time t(i) based on observations up to the time

*t(j) where t(i) is greater than t(j). Again, a measure of

the predction errors is obtained by comparing the observation

residuals of the filters. Prediction errors are compared

in Section 5.3.

*Finally, computer time of operation and computer storage

requirements are discussed in Sections 5.4 and 5.5 respec-

tively.

0.
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5.2. Estimation Errors

The estimation errors of the filters are compared by

comparing the residuals in slant range, azimuth, and eleva-

tion for each filter. The filters all start with the same

epoch values for each satellite and process three days of

data for satellite 4507 and one day of data for the test case

(synthetic data based on orbit of satellite 4507), satellite

10299, and satellite 6633. As the data are processed the

value of the magnitude of the residuals based on the state

estimate after the final iteration are saved and used to

calculate the average residuals for each filter. Only the

last observation residual from each radar pass is used to

calculate the average residual.

The accuracy and stability of the Kalman filter and

Gauss filter depend upon the values of the initial covari-

ance matrix, process noise matrix, and measurement noise

matrix. If these matrices are not modeled correctly two

problems can occur. One possibility is that the estimates

of the standard deviations of the state vector, the diagonal

elements of the covariance matrix, get very small. This

implies that the filter "knows" the state very well and

ignores the new data. The true standard deviations of the

state vector become much larger than the estimated standard

deviations and the filter subsequently diverges. The

opposite situation occurs when the estimated standard
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deviations of the state are much larger than the true

standard deviations of the state. In this case the filter

estimate begins tracking the noise in the data and the filter

overcompensates for the errors in the state estimate. Values

of the initial covariance matrix, process noise matrix, and

measurement noise matrix are adjusted by trial and error

until satisfactory filter performance is achieved.

The initial value of the covariance matrix is based on

the confidence of the initial state vector. The initial

state vector is the singularly averaged classical orbital

element set provided by SPACECOM/DOA. The state vector in

this research consists of the osculating classical orbital

elements which differ from the singularly averaged elements

by the inclusion of short period variations in the osculating

elements. Therefore, the errors in the initial elements are

due to differences between these two sets of elements. For

example, the magnitude of the short period variation in

semi-major axis due to J2 is about 8 km, or 1.OE-03 DU.

This results in a standard deviation of 1.OE-06 for the

semi-major axis. Similar calculations for the other ele-

ments provide the remaining diagonal elements for the initial

covariance matrix. Starting with these values the diagonal

elements of the initial covariance matrix are then varied

by trial and error until satisfactory filter performance

is achieved. The values for the initial covariance matrix
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for the Kalman filter and Gauss filter used for the follow-

ing comparisons are:

P = diag(l.OE-06,...,l.OE-06) 5.1

where the units are DU2 for the semi-major axis, rad 2 for

the angles, and (m 2/kg)2 for ballistic coefficient.

The process noise matrix, Q, is a function of the

unmodeled dynamics and uncertainties in the parameters used

in the dynamics model. The initial values of the process

noise matrix are based on the values used by Taylor (6).

The values are again adjusted by trial and error until

satisfactory performance is achieved. The values used in

the filters are:

Q = diag(l.OE-l0,lE-16,...,lE-06). 5.2

The units for the elements of Q are (DU) 2/TU for the semi-

major axis, l/TU for eccentricity, (rad)2/TU, for the angles,

and (m 2/kg)2/TU for the ballistic coefficient.

The measurement noise matrix, R, represents the uncer-

tainty in the observations. Starting values for R are based

on sensor statistics described in Chapter 2. The same matrix0.'
is used for all of the radar sites. The measurement noise

matrix used here is:

R = diag(l.OE-l0,l.OE-07,l.OE-07). 5.3

2 2 2The units are (DU) I (rad)2 , and (rad)

, (rad)F
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The first satellite data investigated in this research

is the test case used to verify the filter algorithms which

contains no process noise and no measurement noise. The

filter estimation errors are presented in Table 5-1.

Table 5-1

Estimation Residuals of the Test Case

Filter SR Res (m) Az Res(deg) El Res(deg)

LSF 129 0.012 0.0047

* EKF 96 0.0028 0.0028

GSF 96 0.0027 0.0029

The errors in Table 5-1 are due in part to the evalua-

tion of the H-matrix and the time between observations. In

the formulation of the H-matrix, it was assumed that the

orbital elements were nearly constant over the period

between the observations so that

x(t) = x(t ) + _(t )(t-t ). 5.4

This approximation is valid for small (t-t ) or if the mag-

nitudes of the variation of the elements, x(t), are small.

However, the average time between observations is a little

more than two hours, or 1.35 satellite revolutions. Over

this time period, the elements propagate through more than

one complete revolution of the short period variations.

The magnitude of the short period variations are large

eo5
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enough to reduce the accuracy of the filters. Since there

is no process noise and no measurement noise in the data for

the test case, the errors in Table 5-1 are representative

of the errors caused by the assumptions made in the use

of equation 5-4.

The next satellite investigated in this research is

satellite 4507. The orbit of satellite 4507 is nearly polar,

has an eccentricity of 0.015, and an altitude of 1000 km.

At this altitude atmospheric drag has very little effect on

the orbit. The residuals for satellite 4507 are presented

in Table 5-2.

Table 5-2

Estimation Residuals for Satellite 4507

Filter SR Res (m) Az Res (deg) El Res (deg)

LSF 140 0.012 0.014

EKF 425 0.070 0.029

GSF 426 0.070 0.028

4
The residuals in Table 5-2 are based on three days of

observations and are the mean of the magnitudes of the last

observation residual for each radar pass.

The difference in the magnitude of the residuals

between the least squares filter and the recursive filters

is due in part to the problem of trying to estimate an

unobservable state. At an altitude of 1000 km the atmospheric

I
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density is nearly zero so that the effect of atmospheric

drag is insignificant. The orbit of the satellite is

independent of the ballistic coefficient so the observa-

tions of the orbit provide no information about the ballis-

tic coefficient. This can be checked numerically by check-

ing the condition number of the covariance matrix (20).

The condition number of a square, symmetric matrix is a

scalar which is the ratio of the maximum eigenvalue to the

* minimum eigenvalue of the matrix. The magnitude of the

condition number is a measure of the numerical stability of

the algorithm; the larger the condition number the greater

the loss of accuracy in the estimation problem. The condi-

tion number of the covariance matrix for the Extended

Kalman filter for satellite 4507 is approximately 1E+10.

It is difficult to say much about this case alone, but the

condition number for this case can be compared to the condi-

tion number for satellite 10299, where the ballistic coeffi-

cient should be more observable. The condition number of

the covariance matrix for satellite 10299 is 1E+06.

The condition number itself does not provide information

about which state is unobservable; however, for satellite

4507 it is reasonable to assume that the unobservable state

is the ballistic coefficient. It is also reasonable to

reduce the order of the filter in this case since assuming

that the ballistic coefficient is a constant and not

WM1
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estimating it will not significantly alter the system

dynamics; however, it should remove the unobservable state

from the problem. The orders of both the Kalman filter

and the Gauss filter were reduced by not estimating the

ballistic coefficient for satellite 4507. The results of

the estimation problem are presented in Table 5-3.

Table 5-3

Estimation Residuals for Satellite 4507
Using Reduced Order Filters

Filter SR Res (km) Az Res (deg) El Res (deg)

EKF 341 0.069 0.030

GSF 341 0.069 0.030

The condition number for the reduced order Kalman filter

covariance matrix is 1E+07.

The next satellite orbit investigated is that of

satellite 10299, in a low-altitude (hp = 250 kin), non-

circular (e = 0.01) orbit, with an inclination of 72

degrees. The estimation residuals for satellite 10299 are

shown in Table 5-4.

Table 5-4

Estimation Residuals for Satellite 10299

Filter SR Res (m) Az Res (deg) El Res (deg)

LSF 185 0.048 0.035

EKF 221 0.059 0.057

GSF 189 0.052 0.041

I



The condition number for satellite 10299 is 1E+06.

The improvement of the Gauss filter over the Kalman

filter can be further investigated by considering each bias

term individually. The bias terms in the Gauss filter

have been described in Chapter 3. There are bias terms in

the dynamics, observations, and filter gain. The data for

satellite 10299 is processed using the Gauss filter, first

with no bias terms, then with only the dynamic bias term,

the observation bias term, and the gain bias term individ-6
ually. The results are presented in Table 5-5.

Table 5-5

Effect of Bias Terms in the Gauss Filter
for Satellite 10299

Bias Term SR Res (m) Az Res (deg) El Res (deg)

None 221 0.059 0.057

Dynamics 221 0.059 0.057

Observations 189 0.052 0.041

Gain 220 0.059 0.057

All 189 0.052 0.041

The results indicate that the bias term in the observa-

tion equations provides the most significant improvement for

the Gauss filter. It is also noted that the Causs filter

with no bias terms reduces to the Kalman filter.

The final satellite case considered is satellite 6633,

which is in a nearly circular (e=0.0003), low altitude

I 6 L
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(h=300 km) orbit with an inclination of 50 degrees. Satel-

lite 6633 is known to be Skylab which is non-symmetric

and tumbling; therefore, the ballistic coefficient is not

constant. The estimation residuals for satellite 6633 are

presented in Table 5-6.

or Table 5-6

Estimation Residuals for Satellite 6633

Filter SR Res (m) Az Res (deg) El Res (deg)

LSF 106 0.028 0.013

EKF 512 0.098 0.151

GSF 474 0.090 0.150

As was done for satellite 10299, the bias terms for the

Gauss filter can be investigated individually for satellite

6633. The results are presented in Table 5-7.

Table 5-7

Effect of Bias Terms in the Gauss Filter

for Satellite 6633

Bias Term SR Res (m) Az Res (deg) El Res (deg)

None 512 0.098 0.151

Dynamics 512 0.098 0.151

Observations 614 0.117 0.140

Gain 485 0.093 0.151

All 474 0.090 0.150
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The condition number for the Kalman filter covariance

matrix for satellite 6633 is 1E+08 which is about 100 times

larger than the condition number for satellite 10299. This

indicates that there may be an unobservable state for this

case also. An attempt was made to process the data using

the reduced order filter described previously (where all

elements but ballistic coefficient are estimated); but the

filter eventually diverged and did not yield meaningful

results. Prior to the filter divergence the condition

number was the same as before, 1E+08, indicating that the

unobservable state(s) is not ballistic coefficient. This

is reasonable since for a circular orbit the argument of

perigee and mean anomaly are undefined. The condition

number does not identify the unobservable state(s); however,

the physical situation indicates that the argument of peri-

gee and mean anomaly are unobservable for satellite 6633.

The large condition number can be used.to explain the

large residuals for the recursive filters. A large condi-

tion number indicates numerical instability and the recursive

filters are inherently less robust than the least squares

filter. This is further supported by the increase in the

residuals when only the observation bias term is included

S. in the Gauss filter. Normally, the inclusion of second

order terms in the filter should improve the filter per-

formance, or at worst, not change the filter performance.
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In this case, including the observation bias term, the

additional term in the filter equations caused the filter

to diverge, resulting in larger residuals.

5.3. Prediction Errors

The filter prediction errors are those errors which

result from propagating the filter states forward in time

without updating the state vector estimate using the obser-

vations. The prediction errors are based on the state

estimate at time t(i) based on observations up to time

t(j), where t(j) is less than t(i). The state vector esti-

mates used in this section to determine the prediction

errors are the final values of the state vectors used in

Section 5.2. The state vector estimate at time t(j) is the

state vector at the time of the last observation processed

in the estimation problem. This estimate is then propa-

gated forward using the full equations of motion described

in Chapter 2. The prediction errors are calculated by

[4 comparing the predicted value of the observations with

actual radar observations of the various satellites.

r = z -z 5.5.- -o -c

The vector of residuals is made up of residuals in slant

range, azimuth, and elevation.

Figures 5-1 to 5-3 show the prediction errors for

satellite 4507 (h=100okm, e=0.015, i=90 deg). The epoch

I
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values of the state vector estimate are the final values

of the state vector after processing three days of obser-

vational data using the full order filters; the filters

estimate the classical orbital elements plus ballistic

coefficient. The prediction errors are evaluated for three

days following the last measurement update. The points

shown in the figures are the average residual for the

previous ten observations.

Figures 5-4 to 5-6 are again prediction errors for

satellite 4507. These plots are based on the state vector

estimate from the reduced order filters; ballistic coeffi-

cient is not estimated. For both sets of filters the

prediction errors for the two recursive filters, the

Extended Kalman filter and the Gauss Filter, are nearly

identical to satellite 4507. Also, there is little differ-

ence in the prediction errors between the original filters

and the reduced order filters. Finally, the prediction

errors for the recursive filters appear to be steady while

the least squares filter errors appear to be growing line-

arly. This linear growth in the prediction errors is due

to an error in the estimate of the semi-major axis at the

beginning of the prediction span. This initial error in

the semi-major axis results in a timing error in the pre-

diction of the position of the satellite. In other words,

the predicted position of the satellite may be very accurate,

Jill
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but the satellite arrives either earlier or later than

the predicted time. At the time of the observation for

which the residuals are calculated the predicted position

of the satellite is calculated for a different point in the

orbit. The position of the satellite in the orbit, the

true anomaly of the satellite, is calculated by integrating

the mean motion of the satellite which is a function of

the semi-major axis. Therefore, errors in the semi-major

axis are integrated forward with time, resulting in a linear

growth in the predicted true anomaly of the satellite.

This linear growth in the residuals is apparent in the

plots of residuals for the least squares filter.

An important observation can be made from comparing

the estimation errors with the prediction errors for satel-

lite 4507. Even though the estimation errors for the least

squares filter are smaller than the estimation errors for

both the Kalman and Gauss filters, the prediction errors

for the Kalman and Gauss filters start out nearly the

same as the least squares filter and remain small while the

prediction errors for the least square filters have a

linear growth. This indicates that even though the least

squares filter is fitting the data better (smaller estima-

tion residuals), the Kalman and Gauss filters have a better

estimate of the true state vector (smaller prediction

residuals). The estimation residuals are obtained by

e.J



63

only fitting the position data (range, azimuth, and eleva-

tion) from the radar observations. The propagation of the

orbit forward in time without measurement update requires

a knowledge of the velocity as well as the position of

the satellite. Therefore, the least squares filter

* appears to be providing a better estimate of the position

of the satellite, and the Kalman and Gauss filters appear

to be providing poorer estimates of the position but better

estimates of the velocity of the satellite.

Similar results were obtained for the prediction errors

for satellite 4507 when the state estimates from the filters

at different times were used to generate the prediction

residuals.

The prediction residuals for satellite 10299 (h = 250km,

e=0.01, i=72 deg) are shown in Figures 5-7 to 5-9. The

filter state vector estimates are propagated forward one

day. The points on the plots represent the average of the

five previous residuals. The state estimate for the Gauss

filter is the state estimate using all three biases;

dynamics, observations, and gain, in the filter equations.

The linear growth in the residuals is present for the least

squares filter and the Kalman Filter for this satellite;

however, the residuals for the Gauss filter are nearly

constant. Since the orbit of the satellite is affected by

drag the growth in the residuals due to a timing error also

6
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!4 has a quadratic term. In addition to the integration of the

initial errors in the semi-major axis, errors in the semi-

major axis and ballistic coefficient result in errors in the

magnitude of the drag perturbation. These errors are inte-

grated once to obtain the semi-major axis and once again to

obtain the true anomaly, resulting in a quadratic growth in

the timing error and therefore in the prediction residuals.

Figures 5-7 through 5-9 clearly show the advantage of

* including the second order terms in the filter equations.

The predicted orbit based on the state vector estimate

from the Gauss filter provides a much better match to the

observed orbit (position and velocity) than the estimate

from either the least squares filter or the Kalman filter.

Figures 5-10 through 5-12 are the prediction residuals

for satellite 6633 (h=300km, e=0.0003, i=50 deg). The state

estimates are propagated forward for two days and the points

on the curves represent the average of the previous five

residuals. Again, the state vector estimate for the Gauss

filter is based on the estimate using all three bias terms

in the filter equations. Significant growth in the resid-

uals appears in the plots for the Kalman and Gauss filters;

however, the prediction errors for the least squares filter

are nearly constant. The initial errors for the Kalman

and Gauss filters are also much larger than for the

previous cases. The large initial residuals in the

0.
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propagated states are indicative of large errors in the

state vector estimate at the end of the estimation

sequence. This result is not unexpected since the condi-

tion number for the covariance matrix for satellite 6633

is 100 times larger than that for satellite 10299. This

large condition number indicates one or more unobservable

states. Loss of numerical accuracy and instability can be

expected when the condition number is large. Physically

this is reasonable because the orbit for satellite 6633 is

nearly circular making it very difficult to determine argu-

ment of perigee and mean anomaly. In spite of these

numerical problems, the estimate from the least squares

filter does not diverge and provides an adequate estimate

of the orbit of the satellite for re-acquisition based on

the predicted look angles.

5.4. Computer Time of Operation

The computer time of operation is the computer execu-

tion time required to process the data used in Section 5.2

to determine the estimation residuals. The data are

described in Chapter 4. The time of operation for the

Gauss filter is presented for several different cases.

GSF(D) is the Gauss filter with the dynamic bias only,

GSF(O) if the Gauss filter with only the observation bias,

GSF(G) is the Gauss filter with the gain bias only, and

, ' IMIlli
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GSF(A) is the Gauss filter with all of the bias terms

included.

The computer times for the filters for each satellite

case are shown in Table 5-8.

Table 5-8

Computer Time of Operation (sec)

Filter Satellite

Test Case 4507 10299 6633

LSF 89.3 125.3 98.2 216.1

EFK 18.1 39.0 19.5 29.6

GSF (D) - - '32.9 55.7

GSF (O) - 25.8 36.4

GSF (G) - - 26.0 36.7

GSF(A) 32.1 77.4 38.8 59.6

The Air Force Space Command is responsible for main-

taining current orbital element sets for about 6000

objects orbiting the Earth. Of the objects, 300 - 350

are active satellites and the remainder are debris. The

reduction in the amount of computer time required for the

problem of element set maintenance for the satellites

listed in Table 5-8 becomes even more significant when

applied to a large number of satellites.
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5.5. Computer Storage Requirements

The computer storage requirements for the three filters

are compared in this section. The data shown in Table 5-9

are the computer memory required to load and run the object

codes and supporting software for each of the filters.

There is not a significant difference; however, the data

do not include the memory required for storing data prior

to batch processing for the least squares filter. This

amount of storage can become significant for element set

maintenance for a large number of satellites.

Table 5-9

Computer Storage Requirements (k of memory)

Filter Storage (k)

LSF 126.0

EKF 120.1

GSF 123.0

I "I -'~ -
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1. Conclusions

Several conclusions can be drawn from the results pre-

sented in Chapter 5.

1. The state vector estimate from the Gauss filter

provides the best estimate for propagating the state vector

forward in time for satellites 4507 and 10299. The predic-

* tion residuals for satellite 10299 clearly show that the

smallest residuals result from the. propagation of the GSF

state vector. The orbit of satellite 10299 (h=250km) is

typical of a large number of satellites currently in orbit

around the Earth. These orbits are non-circular and have

low altitudes where the perturbations due to the non-

spherical Earth and to atmospheric drag are most significant.

For satellite 4507 the prediction residuals for the EKF and

GSF are nearly identical and smaller than the LSF residuals.

The nearly identical results from the Kalman and Gauss

filters for satellite 4507 are not unexpected. The orbit

of satellite 4507 is at a high altitude (h=1000km) where

the perturbations due to a non-spherical Earth and atmos-

pheric drag are nearly zero; therefore, the second order

terms in the Taylor series should have little effect on

the problem of orbit determination. The estimates from
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the Kalman and Gauss filters for satellite 6633 diverged

due to singularities in the orbit determination problem

for this orbit (e=0.0003); however, the least squares

filter provided an adequate estimate of the state vector

for predicting the future position and velocity of the

satellite.

2. The least squares filter estimate of the state

vector results in the smallest estimation residuals when

processing data for all three satellites. The largest

difference in estimation residuals is for satellite 6633

which is in a nearly circular orbit. The problem of

determining the classical orbital elements of a circular

satellite is singular. For nearly circular orbits, the

Kalman and Gauss filters experience numerical problems and

the estimates diverge. The LSF appears to be more robust

and less susceptible to numerical problems.

3. The Gauss.filter estimation residuals are equal to

or smaller than the estimation residuals for the Kalman

Filter. The biggest improvement is for satellite 10299.

The orbit of satellite 10299 is low altitude (h=250 kin)

and noncircular (e=0.01) representing a case where the

determination of the classical orbital elements is non-

singular. In addition, the perturbing accelerations due to

atmospheric drag and the non-spherical Earth are significant.

Little or no improvement in the estimation residuals for

the Gauss fi lter is observed for satel lite 4507 where the

0i,
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perturbing accelerations are nearly zero. This is in agree-

ment with the conclusions of Tapley and Choe (5) and

Athens et al. (7). They both report that the second order

filters provide the greatest improvement over the Kalman

filter when the perturbations are the most significant.

Little can be concluded from the results for satellite

6633 due to the singularities in the problem.

4. The Extended Kalman filter is much faster than the

least squares filter and the Gauss filter. The EKF is

about twice as fast as the GSF in processing the data for

all three satellites and nearly five times as fast as the

LSF. The GSF processes the data two to three times faster

than the LSF. These differences in process time become

even more significant when applied to the problem of

maintaining current orbital element sets for 6000 satel-

lites.

5. The computer storage requirements are nearly the

same for all three filters. The computer storage require-

ments do not address the need to store the observations of

the satellites prior to batch processing by the least

squares filter.

6. The most significant second order terms in the

filter equations are found in the observation equations.

The inclusion of the bias terms for the dynamics and gain

in the filter equations result in no measurable improvement
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in the Gauss filter performance. Taylor (6) also reported

that greatest effect due to the nonlinearities in the

orbit determination problem are caused by nonlinearities

in the observation equations. This is in contrast to the

work of Tapley and Choe (5), who reported that the most

significant bias term in the interplanetary problem is

the gain bias term while Athans, et al. (7) reported that

the dynamic bias term was the most significant bias term

for a vertically falling body. This problem can be ex-

plained by the fact that these two estimation problems

are qualitatively quite different from the determination
of the orbit of an Earth satellite.

The inclusion of the bias term for the observations

in the filter improves the Gauss filter performance for

satellite 10299, but results in no change for satellite

4507. Little can be concluded for satellite 6633 due to

the singularity in the problem of determining the classi-

cal orbital elements for a nearly circular orbit.

7. The reduced order filters (in which ballistic

coefficient was removed from the estimation state vector)

for the high altitude satellite 4507 reduce the estimation

residuals for the Kalman and Gauss filters.

6.2. Recommendations for Future Work

1. The orbit determination problem for satellite

6633 presents several problems due to the singularities
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in the classical orbital elements. Also, estimating the

osculating elements results in large short period varia-

tions in the state vector over relatively short time

periods. This presents two problems. First, the step

size for the numerical integrator is a function of the

magnitude of the variations of the state vector. Also, the

assumptions made in equation 3.13 to calculate the state

transition matrix introduces errors into the problem when

the elements of the state vector are not constant over the

* iperiod of interest. A transformation of variables from the

.state vector used in this research to a set of mean,

non-singular elements should improve the filter perform-

ance. One set of elements well suited to the orbit

determination problem is the set of mean equinoctial

elements (3). The equations of motion and observation

equations described in Chapter 2 should be converted to the

mean, equinoctial set of orbital elements and the filter

comparisons described in Chapter 5 should be repeated.

2. A large portion of the computer operation time

is required to propagate the state vector from one obser-

vation to the next. This method of special perturbations

is accurate but time consuming. Semi-analytical orbit

theory reduces the amount of computer time required for

numerical integration of the equations of motion by

solving a portion of the equations of motion analytically
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(6 and 21). The solution of the filter equations of

motion should include semi-analytic orbit theory where

applicable.

3. Third-body perturbations due to the sun and moon

should be included in the equations of motion to solve the

orbit determination problem for high altitude satellites.

4. Different methods of calculating the state transi-

tion matrix should be investigated. This should be done

in conjunction with suggestion one. Estimating mean orbi-

tal elements instead of osculating orbital elements may

make the assumption in equation 3.13 more valid.

5. The assumption that the process noise matrix,

Q, and the measurement noise matrix, R, are diagonal

matrices should be relaxed. The effect of off diagonal

elements in both matrices should be investigated.

6. Additional tracking data for low, non-circular

orbits should be processed to confirm and cruantify the

precision and advantages of the Gauss filter.
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APPENDIX A

FUNCTIONS AND COEFFICIENTS FOR TESSERAL HARMONICS

This appendix contains the expressions for the incli-

nation functions and the eccentricity functions found in

the tesseral terms in the geopotential as a function of the

classical orbital elements, equation 2.17. Also contained

in this appendix are the values for the qeopotential

* coefficients SZm and Cmzm found in e uuation 2.17.

J Table A-1

Inclination Functions F mp (13)

£ m P FZm p (i)

2 2 0 3(l+cosi) 2/4

2 2 1 3sin 2 i/2

2 2 2 3(1-cosi) 2/4

3 1 0 -15sin 2i (l+cosi)/16

3 1 1 15sin 2 i (1+3cosi)/16-3 (l+cosi)/4

3 1 2 15sin 2 i(1-3cosi)/16-3(l-cosi)/4

3 1 3 -15sin 2 i (1-cosi)/16

3 2 0 15sini(l+cosi) 2/8

3 2 1 15sini(l-2cosi-3cos 2i)/8

3 2 2 -i5sini(1-2cosi-3cos 2i)/8

3 2 3 -15sini(l-cosi) 2/8

3 3 0 15(1+cosi) 3 /8

,6 " .. .."'r ' r 'IIli i



83

Table A-1 (Continued)

z. m P F zm(i)
3 3 1 5sin i~l~osimp

3 3 2 45sin2.i(l-cosi)/8

3 3 3 15 (1-cosi) 3 /8

4 1. 0 -J5sin3 i(1+cosi) /32

4 1 1 35sinrij(1+2cosi)/l6-15(1+cosi)sili/8

4 1. 2 cosi(15sini/4-1O5sin 3 i/16)

4 1. 3 -35sin i(l-2cosi)/l6+l5sini(l-cosi)/8

04 1 4 35sii 3 i(l-cosi)/32

4 2 0 -lO5sin 2j(2.+cosi) 2/32

4 2 1 105(sin 2 cosi(l+cosi)/8-15(l+cosi) 2/8

4 2 lossin 2i(1-3cos 2 i/61sn2i/

4 2 3 -105sin 2 icosi (1-cosiY8-15 (J.-cosi) 2 /

4 2 4 -lO5sin 2 (l-cosi) 2 /32

4 3 0 1O5sini(l+cosi)3/16

4 3 21 105sini(2.-3cos 2i-2cos 3 i)/8

4 3 2 -3l5sin 3 icosi/8

4 3 3 -1O5sini(2.-3cos2 i+2cos 3 i)/8

4 3 4 -l05sini(I-cosi)3/.6

4 4 0 105(1+cosi)4/16

*4 4 2. 1O5sin2 i(l+cosi)2/4

4 4 2 3l5sin 4i/8

4 4 3 lO5sin 2 i(1-cosi) 2/4

4 4 4 105(1-cosi)4 /16

L
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Table A-2

Eccentricity Functions GY-pq (e) (13)

1 p q 1 p q GZpq (e)

2 0 -1 2 2 1 -e/2

2 0 0 2 2 0 1

2 0 1 2 2 -1 7e/2

2 1 -1 2 1 1 3e/2

2 1 0 1

3 0 -1 3 3 1 -e

3 0 0 3 3 0 1

3 0 1 3 3 -1 5e

3 1 -1 3 2 1 e

3 1 0 3 2 0 1

3 1 1 3 2 -1 3e

4 0 -1. 4 4 1 -3e/2

4 1 0 0 4 4 0 1

4 0 1 4 4 -1 13e/2

4 1 -1 4 3 1 e/2

4 1 0 4 3 0 1

4 1 1 4 3 -1 9e/2I '4 2 -1 4 2 1 5e/2

4@2
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Table A-3

Tesseral Coefficients (22)

2.m CIm E-06  S Lm E-06

2 2 1.5577 -. 8806

3 1 2.1277 .4157

3 2 .3047 -!2168

3 3 .0957 .1995

4 1 -. 5027 -. 4627

4 2 .0738 .1579

4 3 '.0591 -. 0092

4 4 -. 0017 .0072
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APPENDIX B

STATE TRANSITION MATRIX

The state transition matrix, 0, is used to calculate

the linearized observation matrix, H. Specifically, it is

the matrix of partial derivatives of the state vector at

some time t with respect to the state vector at epoch

time, to. The method of determining the state transition

matrix in this research is based on eq. 3.13:

0 = I + (t-to)F, B-I

where:

I is the identity matrix, and

F is the linearized dynamics matrix.

The linearized dynamics matrix used in the filter equa-

tions in Chapter 3 and in equation B-1 to calculate the state

transition matrix includes the two-body acceleration, varia-

tions due to atmospheric drag, and secular variations due

to the zonal terms in the geopotential. The terms in the

F matrix due to two-body acceleration, the tangential com-

ponent of atmospheric drag, and secular variations due to

J2 are presented in the following equations. All elements

of the F matrix not shown below are zero using this dynamics

model.

F(l,l) = -nQBap exp(-z) [z( 1 -1 0 )+1 0 /2] B-2

F(1,2) = nQBza2 p exp(-z)[I0-Ii]/e B-3

LU
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F(1,7) = -nQa2 p pexp(-z)I 0B-4

F(2,1) - -nQBp pexp(-z) [z(I 0-11)1.11 B-5

F(2,2) = nQBap pexp(-z) (z( 1-1 0I)+1 1]/e B-6

F(2,7) = -nQap pexp(-z)I 1  B-7.

F(4,1) = (21/4)J2 (n/a(R/p) 2 cos(i) B-8

F(4,2) =-6nj2(R/p)2 ecos(i)/(i-e ) B-9

F(4,3) = 1.5nJ2 (R/p)2 sin(i) B-10

F(5,1) = (21/4)J2 (n/a)(R/p) 2 (2.5sin2 (i)-2) B-11

F(5,2) = -6nj2 (R/P) 2 (2.5sin2 (i)-2)/(1-e 2) B-12

F(5,3) = -7.5nzJ2 (R/p)2 sin(i)cos(j) B-13

F(6,1) = -l.5n/a+(21/4)j2(i/a) (R/p) 
2

(l.5sin2(i) -1) (-e 2) 1/2  B-14

F(6,2) = 4.5nj2 (R/p)2 (1.Ssin 2 ()-l) (e/(1-e 2)1 /2  B-15

F(6,3) = -4.5nJ 2 (R/P) 2sin(i)cos(i) (1-e2) 1/2 B-16
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APPENDIX C

SECOND ORDER TERMS FOR FILTER EQUATIONS

The second order filters described in Section 3-4

include terms which require the calculation of the second

partial derivatives of the dynamics equations with respect

to the state vector at epoch and the second partial deriva-

S ftives of the observations with respect to the state vector

at epoch. This appendix describes the approach used to

evaluate these derivatives.

The second partial derivatives of the dynamics

equations, f(x,t), with respect to the state vector at

epoch, x(t0 ), used to evaluate the dynamic bias term,

will be described first. The final result is a set of

seven, 7x7 matrices. These seven matrices are evaluated

one at a time using the rows from the linearized dynamics

matrix, F, described in Appendix B. The only accelera-

tions needed to calculate the second partial derivatives

are the two-body acceleration, the tangential component

of the drag acceleration, and the secular component of

the acceleration due to oblateness, (J2 ) . The first of

the seven matrices, the second partial derivative of the

variation in the semi-major axis with respect to the

state vector at epoch, is evaluated using row one of the

F-matrix. Similarly, the second partial derivative of the
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variation in eccentricity with respect to the epoch state

vector is evaluated using the second row of the F-matrix.

It can be immediately observed that the matrices

corresponding to the variations in inclination and ballis-

tic coefficient are the null matrices; therefore, the third

and seventh elements of the dynamic bias vector will be

zero.

The non-zero elements of the seven matrices which

represent the second partial derivatives of the dynamics

with respect to the state vector at each epoch time are

listed below.

Matrix due to variation in semi-major axis:

Fl(1,1) = nQBp exp(-z)[2.0z 2(i -I )+I (z+1/4)], C-Ipl(110 0C-

Fl(1,2) = -nQBa/ep exp(-z) [z(I 1 -1 0 )+1 0 e/2], C-2

Fl(1,7) = -nQap exp(-z) [z(II-Io)+I /2], C-3
p 0 0

Fl(2,1) = Fl(I,2), C-4

Fl(2,2) = nQBz(a/e)2 2pexp(-z)Ii, C-5

FI(2,7) = nQza2 p exp(-z)(Io-1i)/e, C-6

Fl(7,1) = Fl(1,7), C-7

Fl(7,2) = Fl(2,7). C-8
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Matrix due to variation in eccentricity:

F2(l,1) = (n/a)QBp pexp(-z) Ez(2z+3) (I0- 1 )-151,/4, C-9

F2(1,2) =nQB p exp (-z) z(z-1) (I o-I 1V)e, C-10

F2(1,7) =nQp pexp(-z) fz(I1 1 0I)+l.51 ill C-11

F2(2,1) =F2(1,2)01 C-12

F2(2,2) = nQBap pexp(-z) (2z 2 (10- 1

+( 21)I/ 2 C-13
00

F2(2,7) - nQ(a/e)p pexp(-z)(z(I0 - 1 )+I1 ]il C-14

F2(7,1) - F2(1,7),l C-15

F2(7,2) -F2(2,7). C-16

Matrix due to variation in inclination:

F3(I,J) = 0.0. C-17

Matrix due to variation in ascending node:

F4(l,l) = -(189/9)J 2 (n/a 2)(R/p) 2cos(i), C-18

F4(1,2) - 21J 2 (n/a) (R/p) 2ecos(i)/(i-e )2 C-19

F413) -(21/4)J 2 (n/a) (R/p) 2sin(i), C2

F2 (2, 1) = F4 (1,2) , C-21
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2 2 2 2
F4(2,2) = -6J2n(R/p) cos(i) (1+5e )/(1-e 2 ) , C-22

F4(2,3) = 6nJ2 (R/p) 2esin(i)/(l-e2), C-23

F4(3,1) = F4(1,3), C-24

F4(3,2) = F4(2,3), C-25

F4(3,3) = 1.5nJ 2 (R/p)2cos(i). C-26
S

Matrix due to variation in argument of perigee:

F5(1,1) = -(189/8)J 2 (n/a2) (R/p) 2(2.5sin
2 (i)-2], C-27

F5(1,2) = 21(n/a)J2 (R/p)2e[2.5sin2(i)-21/(l-e
2), C-28

F5(1,3) = (105/4)J 2 (n/a).(R/p) 2sin(i)cos(i), C-29

F5(2,1) = F5(1,2), C-30

F5(2,2) = -6nJ 2 (R/p) 2[2.5sin 
2 (i)-2] (1+5e 2)/(l-e 2 ) 2, C-31

F5(2,3) = -30nJ 2 (R/p) 2esin(i)cos(i)/(l-e
2), C-32

F5(3,1) = F5(1,3), C-33

F5(3,2) = F5(2,3), C-34

-7.5nJ2 (R/p) [cos (i)-sin2 (i)]. C-35

Matrix due to variation in mean anomaly:

F6(1,1) = (15/4)n/a-(189/8)J 2 (n/a
2 2(R/p)

[I. 5sin 2 (i) -i]x (j-e 2 ) 1/2, C-36
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F6(1,2) = -(63/4) (n/a)j2(R/p)2 (l.5sin2 (i)1e/

(1-e ) 1/,C-37

F6(1,3) = (63/4)(n/a)J2 (R/p)2 sin(i)cos(i)

(1-e2 ) 1/2 C-38

F6(2,1) = F6(1,2), C-39

F6(2,2) = -4.5nJ2 (R/p)2 (l.5sin2 (i)-1) (1+4e 2)/

(1 -e 2 )3/2, C-40

F6(2,3) = -13.5nj2(R/p )2 sn(i)cos(i)e/(l-e 2)1/2, C-41

F6(3,1) = F6(1,3), C-4 2

F6(3,2) = F6(2,3), C-43

F6(,3 =4.5nJ 2(R/p) 2(1-e2)1/ (sin 2(i)-cos 2(i)I. C-44

Matrix due to variation in ballistic coefficient:

F7(I,J) = 0.0. C-45

The other second order terms in the Gauss filter

described in Section 3.4 require the calculation of the

second partial derivatives of the observations with respect

to the epoch state vector. This results in three 7x7

matrices, corresponding to slant range, azimuth, and

elevation. These three matrices are used to calculate

the bias terms in the observations and the filter gain.
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The starting point for calculating the three matrices is

the linearized observation matrix, H. The dynamics model

described above is used once again. The evaluation of

the second partial derivatives would be relatively straight

forward; however, the elements of the H-matrix are not

available. Instead, the H-matrix is expressed as a pro-

duct of five matrices:

H = Ml M2 M3 M4 M5. C-46

The approach used is to first evaluate the partial

0 derivatives of H with respect to each of the epoch states.

This results in seven 3x7 matrices. The partial derivatives

are evaluated using the product rule of differentiation

and the chain rule. The first two matrices in equation

C-46 are not functions of the epoch state vector; however,

the last three matrices are functions of the epoch state

vector. The derivatives of the last three matrices in

equation C-46 with respect to the elements of the state

vector are presented below. The notation used in the fol-

lowing equations is: M3A is the partial derivative of

matrix M3 with respect to the semi-major axis, etc.

M3A(I,J) = 0.0, I=1 ,...3; J=1,...,7 C-47

M3E(I,J) = 0.0, I=1 ,...3; J=1,...,7 C-48
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'sin~sinusini -cos 2sinusini sinucosi

M31 = sin2cosusini -cosS~cosusini cosucosi C-49

M3 :sin~osu-co~2 !inucosi cosscosu-sirn sinucosi 0

sirf= siriiu-coalcosucosi -cos sinu-sirtisinucosi 0 -50

-cos~2sirm-sir42cosucosi -sirjQsinu~voE2cosucosi cosusinfj

M3 (i -cossnu+sir!CSiflucosi -sirtCOsuco~2s1inucosi -sinsini] C-S1

0 0 01

M3M =(a/r) 2 (1-e2)1/2 M3w C-52

M4A(1,2) = (r/a-l)/e, C-53

M4A(1,6) = esin(f)/(l-e 2 ) 1 /2 _-1 C-54

M4A(2,4) = (r/a)cos(i), C5

M4A(2,5) = r/a C-56

M4A(2,6) = (a/r) (1-e2)1/2, C-57

M4A(3,3) = (r/a)sin(u), C-58

M4A(3,4) = -(r/a)sin(i)cos(u). C-59

M4E(1,l) = k/a, C-60

M4E(1,2) = k/e-(r-a)/e 2 C-61
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M4E(1,6) = asin(f)/(l-e)" 2  C-62

M4E(2,4) = kcos(i), C-63

M4E(2,5) = k, C-64

M4E(2,6) = a(cos(f)+ae/r)/(l-e2) 1/ 2 , C-65

M4E(3,3) = ksin(u), C-66

M4E(3,4) = -ksin(i)cos(u), C-67

where:

3r3e -a2eecos(f)+cos(f))/(l+ecos(f)) .C-6

M41(2,4) =-rsin(i), C-69

M41(3,4) =-rcos(i)cos(u). C-70

M4Q(I,J) =0.0. C-71

M4w(3,3) = rcos(u), C-72

M4cw(3,4) = rsin(i)sin(u). C-73

M44M(l,1) = k/a, C-74

M4M(1,2) = k/e, C-75

M4M(1,6) = (a/r) 2aecos(f), C-76

M4M(2,4) = kcos(i), C-77
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M4M(2,5) = kC-78

M4M(2, 6) = -aesin (f) , C-79

M4M(3,3) = ksin(u)-r(a/r) 2 (-21/2 csuC8

M4M(3,4) = -ksin(i)cos(u)+r(a/r) 2

(1-e 2) 12sin(i)sin(u), C-81

Where:

k = 'Or/DM =resin(f)/(l+ecos(f)). C-82

M5A(I,J) =F1(I,J) (t-t 0). C-83

MSE(I,J) =F2(I,J) (t-t 0 C-84

M51 (I, J) =F3 (I, J) (t-t 0 0. C-85

M50(I,J) =F4(I,J) (t-t 0). C-8 6

M5w(I,J) =F5(I,J)(t-t 0). C-87

0

M16M(I,J) =F6(I,J) (t-t ) C-89
0

The above equations are combined to form the seven 3x7

matrices representing the second partial derivatives of the

U observations with respect to each state.

a h/aa2 = Ml M2[M3A M4 M5+M3 M4A M5+M3 M4 M5A], C-90

HI20"1111XM IYA -AII1,111
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a 2 h/ e2 = Ml M2(M3E M4 M5+M3 M4E M5+M3 M4 M5E], C-91

S2h/ai2 = Ml M2(M3I M4 M5+M3 M41 M5+M3 M4 M51], C-92

a2h/322 = Ml M2[M3P M4 M5+M3 M42 M5+M3 M4 M501, C-93

' 2h/ 2
a 2 = Ml M2[M3w M4 M5+M3 M4. M5+M3 M4 M5w], C-94

a 2 h/3M2 = Ml M2[M3M M4 M5+M3 M4M M5+M3 M4 M5M], C-95
S

a 2h/aB2 = Ml M2[M3B M4 M5+M3 M4B M5+M3 M4 M5B]. C-96

Once the seven 3x7 matrices described above have been

calculated, the matrices required for the calculation of

the biases in the gain and observations can be determined.

The matrix corresponding to the slant range is determined

by combining the first rows of the seven 3x7 matrices into

a 7x7 matrix. The first row is the first row of equation

C-90, the second row is the first row of equation C-91,

etc. The matrix corresponding to the azimuth is formulated

by using the second rows of the seven matrices described

above. Finally, the matrix corresponding to elevation is

formulated by combining the last rows of the seven matrices

described above.

I
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APPENDIX D

RADAR SITE LOCATIONS

The locations of the radar sites are provided by

SPACECOM/DOA. The components of the site position vectors

are defined in terms of a coordinate frame fixed to the

Earth with the origin at the center of the Earth. The

principal direction, X, is the Greenwich meridian, t

is aligned with the North Pole, and 9 lies in the equator-

ial plane forming a right handed coordinate frame. The

radar site locations used in this research are shown in

Table D-1.

Table D-1

Radar Site Locations

Site Number X(km) Y(km) Z(km)

354 6119.393 -1517.496 -871.566

359 -2382.980,, -1420.937 5724.060

363 2881.604 -5372.517 1868.026

393 -3849.481 398.421 5052.965

396 -579.421 -4175.712 4770.682

399 362.839 -5484.293 3225.187



99

VITA

Daryl G. Boden was born on May 20, 1949 in Boulder,

Colorado. He graduated from Fairview High School in

Boulder, Colorado in May 1967. He earned a Bachelor of

Science degree in Aerospace Engineering from the University

of Colorado in 1972 and a Masters of Science degree in

Astronautical Engineering from the Air Force Institute

of Technology in 1979. His Air Force assignments include

space surveillance officer, astronautical engineer, and

ballistic missile systems engineer. He has also served

on the faculty of the United States Air Force Academy as

an instructor and assistant professor of astronautical

engineering.

p

0

0m

i U 
'


