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Murrow, Richard C. (Ph.D., Aerospace Engineering Sciences)

Frozen Orbits-Near Constant or Beneficially Varying Orbital Parameters

Thesis directed by Professor Robert D. Culp

If a satellite were experiencing pure Keplerian motion its orbital elements

would remain constant. In actuality, each orbiting body is acted upon by various

perturbing forces. Consequently, the orbital elements are continuously subject to

change. The forces generating deviation from basic two-body motion consist of, but

are not limited to: (1) the Earth's oblateness, (2) atmospheric drag, (3) lunar-solar

gravitation, and (4) solar radiation pressure.

Whereas the magnitudes of such perturbing forces are small and varying

compared to the gravity effects of the Earth, they are persistent and cause the resulting

orbit to depart from its Keplerian counterpart. The variation of the five orbital elements

which delineate the size, shape, and orientation of an elliptic orbit, can be determined

with reasonable accuracy from existing theory. An understanding of disturbed orbital

behavior permits possible control of the elements and exploitation of the inevitable

physical effects of perturbations. -

The magnitude of the effects of perturbations depends significantly upon

the initial values of certain orbital parameters such as semnimajor axis, eccentricity,

inclination, argument of perigee, and longitude. Achievement of target parameters

(passive control) can minimize deviations from the desired orbit. If needed, the

employment of onboard propulsion resources (active control) may be implemented.

The consequence will be near constant or beneficially varying orbital parameters-a

frozen orbit.
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* This thesis provides physical understanding, theories, and mathematical

formulations for different types of frozen orbits. Included in the frozen orbit concept

* are minimum altitude variation arcs, various categories of low-Earth orbits such as

* Sun synchronous, and geosynchronous orbits. This study serves as a readily

accessible and useful source of information on Earth-orbiting satellites which have

* near constant or beneficially varying orbital parameters.
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CHAPTrER I

P-NTRODUCTION

Since October 4, 1957, when the Soviet Union launched the world's first

artificial satellite, Sputnik 1, man-made objects have been rotating around the Earth in

ever-increasing numbers. Long before this first launch, it was known that the actual

path that the satellite would follow would be other than pure Keplerian motion.

Theories endeavoring to describe perturbed motion have been applied since

the time of Newton. By his analysis, most of the variations in the Moon's orbit were

explained in the "Principia" published in 1687. Newton showed that the observed

inequalities in the motion of the Moon were due to perturbations by the Sun. In 1749,

Clairaut explained the movement of the perigee of the Moon by using second-order

approximations [ 1,9]. A partial exposition of the method of variations of elements was

published by Euler four years later. In 1772, his perturbation theory applied equations

* of motion referenced to axes rotating with the mean motion of the Moon [1,6,91.

After publishing his technique of initial orbit determination in 1780,

Laplace turned his efforts towards the study of perturbed motion. His theory

* transformed the equations of motion so that the true longitude was the independent

variable. His reference orbit was a Keplerian ellipse modified to avoid terms

proportional to the time.

In 1783, Lagrange determined that Newton's second-order system of

equations could be written in terms of an equivalent first-order system. Generalized
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coordinates and Lagrange's equations provide a systematic procedure for solving

systems. The resulting equations are equivalent to the equations of motion which

* would have been obtained by a direct application of Newton's laws. However, the

Lagrangian function contains only velocities and displacements, and no accelerations

are required. The equations produce a more convenient and manipulable form than a

* Newtonian formulation. When the total perturbing acceleration can be represented as

the gradient of a scalar potential (velocity-independent), the resulting form of the

perturbation equations is known as Lagrange's planetary equations [3,4,8,9]. The

existence of the perturbing force represented by the scalar potential causes the motion

to depart from the unperturbed motion and the orbital elements to change.

Gauss, in 1814, constructed an appropriate generalization for an arbitrary

perturbing force. It is not always true that the perturbing forces can be written as the

gradient of a vel oci ty-in dependent scalar. Atmospheric drag is an example of a

non-conservative force. The method resolves the perturbing force into three mutually

perpendicular components: a component in the direction of the radius vector, a

component perpendicular to the radius vector in the orbital plane, and a component

* perpendicular to the orbital plane [ 1,3,81.

After twenty years of laboring, Delaunay, in 1860, completed the most

exhaustive application of the canonic method in celestial mechanics. The theory

involved the analytical removal of the terms of the disturbing function, one by one.

Most working procedures based on Hamiltonian dynamics endeavor to eliminate entire

classes of variables from the original system of differential equations.While generating

suitable transformations, the form of Hamilton's equations must be preserved at all

* times. This imposes constraints on the selection of variables. These transformations

are called canonical. The appearance of the mean anomaly in every one of the classical

sets of canonic variables forces series expansions, not only to accommodate powers of
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the perturbation parameter, but also to allow for the transcendental nature of the

coordinate-time relation. The ability to divide the Hamiltonian and treat each term

separately, by a succession of canonic transformations, allowed Delaunay to complete

his undertaking. The solution extended to include all terms of the seventh order and

* some of the eighth [2,4,5,8].

* ~ Special perturbations refers to the full numerical solution of the appropriate

differential equations. One such method was developed in 1857 by Encke. In this

approach, the difference between the primary acceleration and all perturbing

accelerations is integrated. A reference (or osculating) orbit is established at an epoch.

The osculating orbit is the orbit that would result if all perturbing forces were instantly

removed. The body at this instant has the same coordinates and the same velocity

components as in the unperturbed orbit. At increments of time later the osculating orbit

is compared to the actual orbit. When the difference between the coordinates of the two

orbits becomes excessive, a new osculating orbit is created by a process known as

rectification. A new epoch and starting point which coincides with the true orbital path

is selected. A new osculating orbit is then calculated from the true position and velocity

vector, and the process of comparison is repeated. The advantage of Encke's method

is that the difference between the position vector for the disturbed motion and the

undisturbed motion and its derivatives is normally small. Consequently, a large

integration interval is possible [ 1,6,7, 101.

In the early 1900's, P. H. Cowell developed a perturbation method he

used to determine the orbit of Jupiter's eighth satellite. The differential equations of

motion contain all the forces acting on the satellite. The acceleration components are

* integrated step by step to produce velocity and position components. These values are

then used with the equations of motion to calculate the acceleration components. The

main advantage of Cowell's method is the simplicity of formulation and
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implementation. Any number of perturbations can be handled at the same time. The

main disadvantage of this method is that as the velocity increases near perigee, smaller

* integration steps must be taken. This increases the number of calculations and

accumulative error due to roundoff [3,6,7].

The mentioned forerunners provided the necessary foundation for modern

* orbital mechanics. By 1957, the necessary theories were available to amplify and to

study and predict the effects of perturbations.

The dominant force acting on an Earth-orbiting satellite is central gravity

attraction. Depending upon the altitude, other forces influence the motion in varying

degrees. The principal perturbations result from the Earth's oblateness, the

* longitudinal variations in the gravity field, atmospheric drag, lunar-solar gravitational

attractions, and solar radiation. Minor perturbations are also caused by electromagnetic

interaction of a charged satellite with the Earth's magnetic field and radiation belts,

tidal influences, re-radiation of sunlight from the Earth, and relativistic effects.

Although the perturbations depend on the direction and time intervals during which

they act, the predominant disturbing force is due to the Earth's oblateness. As the

* geocentric distance increases, the oblateness effect diminishes, the lunar-solar

attraction increases, the drag decreases, and the solar radiation pressure remains

relatively constant [11, 12,13].

.1 Related Literatures

Applying the divergence theorem to Gauss' Law and using the fact that the

Newtonian gravity field is conservative Poisson's equation is derived. At external

points to the main body, where the density function is zero, Laplace's equation is

obtained. The gravitational potential satisfying Laplace's equation can be expressed in

terms of Legendre's associated polynomials. The external gravity field can be obtained
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from the solution by differentiation [4,9,10,12,14].

The gravitational field of the Earth can be expressed as the sum of a series

of spherical harmonics. These are of three types: (1)the zonal harmonics which

depend on latitude only, (2)the sectorial harmonics, which depend on longitude only,

and (3) the tesseral harmonics which depend upon both longitude and latitude. Since

the Earth is rotating the tesseral and sectorial harmonics imply a gravitational field

which is time dependent. This is manifested as a change in the mean motion.

The artificial satellites that followed Sputnik 1 provided the means to

investigate the Earth's gravitational field. With the data that is obtained on the orbital

elements of satellites, the harmonics are obtained.

O'Keefe, et al. used data obtained from Vanguard I (1958) to investigate

the lower harmonics. Making the assumption that perigee distance is unaffected by

drag and calculating the effects ot time-integrals of the drag corrections to the

semimajor axis and the eccentricity, the effects of drag were removed from the results.

It was shown for this high satellite (perigee height = 658 km and apogee height = 3960

km) that the orbital elements at 37 different times over a 297 day period were

accurately derived from the zonal harmonics of degrees 0, 2, 3, and 4 together with the

six initial elements [15].

Using equations conceived by Tisserand relating the ratio of semimajor

axis and radius to an integral of mean anomaly, Kozai (1957) derived the periodic

perturbations of the first order and secular perturbations up to the second order using

an averaging technique and mean elements. He assumed no air-resistance, a

symmetrical density-distribution with respect to the axis of rotation, that the coefficient

of the second harmonic of the potential is a small quantity of the first order, and those

of the third and fourth harmonics are of the second order [16,17]. Study of the motion

of the Explorer 7 and third Vanguard satellites produced coefficients of the second,

9.
"

9'
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third, and fourth harmonics. Differences between the observed and the computed value

of the orbital elements implied the importance of the higher harmonics [ 18].

Care must be taken in defining the constants of integration when handling

the Lagrange equations. During the period 1957-1962, a large number of theoretical

papers were conceived to solve the problem analytically. The obvious choices are the

values of the Keplerian elements at a particular instant of time. It was convenient to

define the constants as elements of a fictitious reference or intermediate orbit. In some

theories this reference orbit is defined geometrically, while other theories defined the

constants dynamically as corresponding to a constant part of the potential function.

The more familiar theories include: Musen (1959) adapted the Hansen lunar theory to

a form suitable for solution by iteration, Brouwer (1959) applied Von Zeipel's method

of canonical transformation with a purely Keplerian intermediary, Vinti (1959,1961)

separated the equations of motion by using ellipsoidal coordinates, King-Hele (1958)

employed a Keplerian ellipse of fixed inclination and perigee argument as intermediary

and solved in successive approximations according to powers of the second harmonic

and eccentricity, and Merson (1961) developed a method in a similar manner to

King-Hele but started from osculating elements when the satellite is at the node [23].

Merson then integrated the equations for the variation of the osculating elements to

yield the complete perturbations of the first order due to the second harmonic. Also, he

obtained the secular perturbations of the second order due to the second harmonic and

of the first order due to the third to sixth harmonics. A set of smoothed elements was

derived in which the perturbations of the even harmonics have no singularities, the

semimajor axis and eccentricity have no variation due to the second harmonic, and the

other elements have the smallest possible amplitudes of oscillation [501.

Analytical investigations of the oblateness effects showed the argument of

perigee, the ascending node, and the mean anomaly experience secular variations or

Iron. -.
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continously increasing/decreasing changes from the adopted epoch value, as well as

periodic variations. Semimajor axis, eccentricity, and inclination experience only

periodic variations. Periodic includes both short and long periodic variations [19,24].

King-Hele showed the odd harmonics determine the periodic changes,

while the even harmonics give rise to the secular changes. Data from Sputnik 2,

Vanguard 1, and Explorer 7 was used to determine values for the second, fourth, and

sixth harmonics [19]. In 1963, King-Hele, et al. determined the first seven even zonal

harmonics in the Earth's gravitational potential using orbital information from seven

satellites covering a wide range of latitude [20]. Transit 2A and Samos 2, two

high-inclination satellites, permitted a study of inclinations uniformly distributed

between 23* and 96*. King-Hele published the updated values for the even zonal

harmonics in 1964 to be: J2 = (1082.64 ± .02) x 10-6; J4 = (-1.52 ± .03) x 10-6;

J6 = (.57 ± .07) x 10-6; and J8 = (.44 ± .11) x 10-6 [21]. Coefficients of the odd

zonal harmonics were evaluated by analyzing the oscillations in orbital eccentricity of

fourteen satellites covering the widest and most uniform distribution in inclination and

semimajor axis possible [22].

Coefficients of some low order tesseral harmonics in the Earth's

gravitational field were successfully evaluated in the 1960s. The first satisfactory

comprehensive model was the Smithsonian Standard Earth II published in 1970 by the

Smithsonian Astrophysical Observatory, Cambridge, Massachusetts. This model

relied largely on 100,000 optical observations of satellites from Baker-Nunn cameras.

The expansion of the geopotential was truncated at degree and order 16 which

produced about 250 geopotential coefficients to evaluate. The geopotential coordinates

and station coordinates were then adjusted so that the observations of 21 satellites from

about 30 ground stations achieved the best possible fit to these perturbed orbits while

satisfying geometrical constraints for simultaneous observations. Approximately

< ..." --- " , • . ,..". - ', ', ',.- ', - .-, ', '- ': "'-.'" " ,'.' ,'..' .' .""- "" " " ."". "" .. ,' - ",". ° " " '* '-" ,". -
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200,000 equations were solved by least squares [251.

In recent years the Earth's gravitational field has been determined with

continually improving accuracy, using hundreds of thousands of observations of Earth

satellites, chiefly optical, laser and Doppler, together with surface gravimetry. More

recently, altimeter measurements from satellites such as Geo3 have been included [25].

The launching of the first artificial satellite demonstrated the need to be able

to estimate lifetime of a satellite and determine air density. Consequently, the studies of

atmospheric drag emerged.

Equations expressing the variation of orbital period, perigee distance, and

eccentricity were first developed by T. Nonweiler (1958) and by King-Hele (1958).

Later King-Hele extended his efforts to include the effects of atmospheric rotation

with oblateness and a realistic variation of air density with height [29]. The problem

was treated by Brouwer and Hori (1961) on the basis of a non-rotating spherical

exponential model atmosphere. The exponential atmosphere function was expanded

into a series to the fifth power which limited the eccentricity to a very small quantity.

For large eccentricity, a constant coefficient for each term of the series was introduced

so that the modified series fit the exponential function. The Brouwer-Hori theory,

which combined gravitational and drag effects, was limited to circular orbits 126].

Instead of using an exponential function for the atmospheric density

model, Lane (1965) assumed a non-rotating power function atmosphere model.

Although Lane found it necessary to expand the velocity in a series in order to perform

the necessary integrations, the expansion of the density function was not required.

Lane then used the method of successive approximations to complete the integration.

His solution excluded orbits of small eccentricity and low inclination [271. Later, Lane

and Cranford (1969) used numerical observations to eliminate the singularity of zero

eccentricity and zero inclination. The latter three works used the Von Zeipel method to
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* obtain the solutions by dealing with Delaunay canonical variables.

Using an asymptotic method, a first-order approximation to the problem

was derived by Zee (1971) by dealing directly with the equations of motion in

spherical coordinates rather than with the Delaunay canonical variables used in

previous investigations [30].

Two classifications of mathematical solution techniques which can be used

in the study of drag are numerical and analytical. A numerical method applies

numerical integration to the osculating differential equations to obtain the state at a later

time. An analytical method generally uses analytical equations to transform from the

osculating to a mean set of differential equations. The equations are integrated

analytically to predict a future mean state.

Recently, Hoots (1981) used canonical transformations and the method of

averaging to obtain transformations of variables. This significantly simplified the

transformed differential equations. Analytical integration yields the six osculating

orbital elements. The analytical solution is for the motion of an artificial Earth satellite

* under the influence of the gravitational zonal harmonics through J4 and any dynamic

atmosphere [3 11

The importance of determining the lunar and solar perturbations in the

motion of an artificial satellite was demonstrated by Kozai's discovery that certain

long-period terms in the development of the disturbing function cause large

perturbations in the orbital elements. These perturbations may strongly affect the

perigee height and the lifetime of a satellite. Modifying A. Cayley's development of the

solar perturbative function, Musen et al. generated relations between perigee height

variations and launch conditions. Using data from Vanguard I and Explorer VI values

of perturbations in the perigee height were computed using a trigonometric expansion

of the disturbing function with the angular equatorial elements of the Sun and Moon as
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arguments. The disturbing function is then integrated by approximating the equatorial

elements as linear functions of time. Kaula adapted the mathematical development of

Musen to a form convenient for use in connection with the analysis of satellite orbits

affected by a terrestrial gravitational field. Kaula further expressed the disturbing

function in terms of osculating Keplerian elements. The formulae use equatorial

elements for the Moon. The disturbing function yields all significant first-order

lunar-solar effects when used with the equations of motion [12,331. Neither

inclination nor node of the Moon's orbit with respect to the equator of the Earth are

simple functions of time. The same elements with respect to the ecliptic are nicely

approximated by a constant and a linear function of time respectively. Giacaglia (1973)

presented a paper in which he obtained the disturbing function for the lunar

perturbations using ecliptic elements for the Moon and equatorial elements for the

satellite. The secular, long-period, and! short-period perturbations are then computed

in closed form in both inclination and eccentricity of the satellite 1341.

The motion of a satellite under the influence of the longitude dependent

terms of the geopotential and in-plane station-keeping requirements of

geosynchronous satellites with nearly zero eccentricity and inclination were

investigated by Blitzer et al. (1962,196-, lzsak (1961), Frick (1962), Allan (1963),

Wagner (1964,1965), Blitzer (1965), and others [39-46]. Their findings regarding

equilibrium positions and librational periods are in harmony.

The study of a satellite with a mean motion commensurable with the

Earth's rotation was generalized to include the effects of tesseral harmonics on

near-circular orbits of arbitrary inclinations in the works of Blitzer (1966), Cook

(1966), and Wagner (1966) [47-491.

Ordinarily, the solar radiation pressure has a very small effect on the orbit.

This perturbation becomes more important for geosynchronous satellites with large



* solar arrays. The major effects are the oscillation of the eccentricity vector and the

variation in perigee height.

Kozai (1961) developed closed form analytical expressions to include

short-term periodics for first order perturbations. The three components of the

disturbing equations were based on three assumptions: (1) the parallax of the Sun is

negligible, (2) the solar flux is constant along the orbit of the satellite if there is no

shadow, and (3) there is no re-radiation from the surface of the Earth. The resulting

expressions -ire then evaluated over two limits of the independent variable, eccentric

anomaly, which must be derived by numerical methods [351.

The short-term secular variations in period resulting from solar radiation

pressure were studied by Wyatt (196 1). It was shown that the effect of solar radiation

is negligible when the satellite is in continuous sunshine. During the time the satellite is

in the Earth's shadow, the secular acceleration may attain substantial values, positive

or negative depending on the orientation of the orbit relative to the Sun. Wyatt

presented a general formula for computing secular accelerations as far as terms in the

square of the eccentricity [361.

Based on the assumption that the disturbing acceleration is constant while

the satellite is in the sunlight and is zero in the Earth's shadow, Cook (1962) generated

equations for the variations in orbital elements. The perturbation expressions are

formulated in terms of the radial, transverse, and normal components of the disturbing

force evaluated at perigee [38].

An expression which favorably compares to observations was presented

by Soop for the mean drift rate of the eccentricity vector as a function of radiation

S pressure, velocity, mass, cross-sectional area, and sidereal angle of the Sun 1371.
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1.2 Thesis Outline

Over the last 20-25 years, theories to treat the major perturbations have

been developed and used with much success. This study has endeavored to generalize

the frozen orbit concept to include types of orbits that have near constant or

beneficially varying orbital parameters. To achieve these frozen orbits the effects of

perturbations are exploited to maintain the type of orbit desired.

Chapter II presents the equations of motion for a perturbed orbit, the

Lagrange Planetary Perturbation Equations explicitly expressed in terms of the

disturbing forces, and analytical expressions for the perturbations due to an axially

symmetric gravitational field. Secular, long-term periodic, and short-term periodic

variations are distinguished. Secular variations of the second order are expanded and a

root finder is used on the resulting high order polynomials to find the eccentricity and

inclination that freezes the argument of perigee and the ascending node separately. The

orbital elements which freeze the perigee along the meridian are studied. Using Bessel

expansions the change in radius is investigated at any point on the orbit including the

perigee. The chapter concludes with a discussion of a frozen orbit where the change in

eccentricity due to the third harmonic is zero as is the change in argument of perigee

due to the second and third harmonics.

Atmospheric drag effects are investigated in Chapter 111. The force which

drains energy from the satellite and causes the orbit to shrink is analyzed for orbits of

normal eccentricity (0 < e < 0.2). Changes in orbital elements are handled both

analytically and numerically usi. -a fourth-order Runge-Kutta scheme. Scale height is

determined using density values from U.S. Standard Atmosphere tables. Between

cardinal altitudes an exponential atmosphere is assumed.

Minimum altitude variation arcs are dealt with in Chapter IV. A least

squares method is derived for determining orbital elements for an orbit that closely

:d.
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follows the contour of the oblate Earth over fixed latitude ranges. Results are included

* for both drag and no-drag effects. Impulse requirements to maintain the orbit are

* treated.

Sun synchronism is essential to maintain the same lighting conditions over

a particular area of the Earth. Orbital parameters that are necessary to achieve this type

* of frozen orbit are specified in Chapter V. The chapter considers the ground trace of an

artificial satellite. An analytical expression which includes oblateness effects is

developed determining the semnimajor axis that is needed to give a repeated ground

trace in the desired number of days.

The last type of frozen orbit analyzed is the geosynchronous orbit. Chapter

VI includes the main perturbing effects on this type of orbit and longitude station

keeping requirements. The chapter concludes with a brief discussion of the effects of

solar radiation.

1.3 Contribution

This thesis provides physical understanding, theories and mathematical

formulations for different types of frozen orbits. It serves as a convenient and useful

source of information on Earth orbiting satellites which have near constant or

beneficially varying orbital parameters.



CHAPTER II

GRAVITATIONAL PERTURBATIONS ON ORBITAL PARAMETERS

2.1 Equations of Motion

The equations of motion for the classical two-body problem are governed

by the inverse square law. The orbit may be determined from the equations of motion

and initial values of position and velocity. In the two-body problem, all forces are

neglected except the mutual gravitational attraction of two spherically symmetrical

bodies. The resulting basic differential equation is

• r (2.1)

r 3

This is equivalent to three second-order differential equations requiring six

constants of integration for the complete solution. The solution may be obtained by a

variety of methods. The result is the general polar equation for a conic section with the

origin at a focus [1,511:
h2

r- (2.2)
1 + e cos v

Equation (2.2) when combined with the constant angular momentum can provide the

last integration, the time relation.

-. .. .. '. . . ... . . . _ . . ,- . ... . . . ..... . .. " .... . . . . . . ...- ._',-... . . . ,::...," -:. .
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* In actuality, forces, in addition to the central gravitational force, act on the

system. Other forces include Earth oblateness, atmospheric resistance, lunar-solar

attractions, solar radiation, etc. The equation of motion becomes

p (2.3)
r

In some cases, it will be convenient to work with the total perturbing

force. However, if the force is conservative, it can be represented as the gradient of a

scalar function. Equation (2.3) becomes

r+ p =rVR (2.4)

where R is the disturbing function. The form of R will depend on the

particular type of perturbing source. For multiple perturbing sources, the respective

disturbing functions can be added linearly to yield the total R [2,4,8,10].

2.2 Lagrange's PlanetaU Equations

If a set of orbital elements (a, e, i, Q2, wo, M) is obtained at a fixed instant,

an osculating orbit is defined. The osculating ellipse is the path that would be followed

by the satellite if the perturbing forces were all suddenly removed. The satellite at this

time has the same coordinates and the same velocity components in the perturbed as in

the unperturbed orbit. Stated differently, the satellite has the same position and velocity

as it would in purely two-body motion. If an osculating ellipse corresponding to a

later time is considered, the differences in the orbital elements from those of a previous

time are caused by the perturbations. One advantage in expressing actual orbital motion



P ..- -. N- 1W 7-1 * *0"* - - -

16

in terms of osculating elements is that although the position and velocity vectors

change rapidly with respect to time, the Keplerian elements vary slowly even in

perturbed motion.

The Lagrange planetary equations provide the means for finding the rates

of change of the osculating elements. Since any six linearly independent combination

of orbital elements provides a valid set, the equations may be written in a variety of

forms. For this undertaking the perturbing force f will be expressed in terms of the

following three components: (1) fl is along r, (2) f2 is perpendicular to r in the

osculating plane and in the direction of increasing anomaly, and (3) f3 is perpendicular

to the osculating plane in the direction of the angular momentum vector. Substituting

angular momentum in the equivalent terms, a modified form of Lagrange's planetary

equations is [8,50]:

da=2(2_) (f esin v+ f2 p )r

dt 2 f (2.5)

-de (-L)[If si p +2r
dt ) 1 inv+f 2cOsv(1+'f)+f2"-] (2.6)

di r f3 cos u
dt h (2.7)

d r f3 sin u
dt (h sin i) (2.8)

dt ('e)1fcosv +f2sinv(l+"L)-f esinucoti("L ")]

d°* = Lf IP + 3  P (2.9)

.d (no)[f (cos v -e )-f2 sin v(1+-L)]
dt - (COSe p 2p (2.10)

led, ta*~ - a- d
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LIST OF SYMBOLS

a = semimajor axis Pn = Legendre polynomial of order n

e = eccentricity r = radius vector

E = eccentric anomaly r = magnitude of r

f = acceleration vector of R = mean equatorial radius of
perturbing force the Earth

fl, f2, f 3 = components of f U = gravitational potential

F = perturbing potential u= v + co

h = (p) 1/ = angular momentum g = gravitational constant = 398601.2 kn 3i
for an ellipse seC2

i = inclination angle r = right ascension of the node

J n = zonal harmonics v = true anomaly

k = sin 2i 0 = colatitude

M = mean anomaly = nt + cr (o = argument of peigee

n = mean motion = (9/a 3 )1/2 a = mean anomaly at the node

p = latus rectum = a (1 - e2 ) o = modified mean anomaly =

M -t ndt

i''F

7 *-. -

*** *****.........



18

f
z31

pqao y eies=stliepsto

2.3 TheGravitational Field

* I The force exerted by a conservative force field acting on a particle (satellite)

can be written as the gradient of gravitational potential U. In terms of equation (2.4),

* VU =VR.

If variations with longitude are ignored and the Earth is assumed to be

* axially symmetric, the gravitational potential U at an exterior point distance r from the

center of the Earth and with a colatitude 0 may be written as a series of spherical

harmonics in the form [4, 9, 11, 12, 19]

r I-2 &4)P P~ (Cos 0) (2.11)

*~ ~ ~~~ ~~~~ n =2** J . n r.. . . n- . * . * .. . . . . . . . . . . t ' b . .
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The principal perturbation on a near-Earth satellite is due to the

axially-symmetric (zonal) harmonics of the Earth's gravity field. The perturbing

potential F for this perturbation becomes:

F=U - r n=2 P-(cos8 ) (2.12)

The component of the perturbing acceleration f in any direction is the rate

of change of F in that direction. Using spherical trigonometry based on figure 2.1 it

follows that f1 = DF

f2 = _(cos u sin i /rsin 0 ) aF/o (2.13)

f3 = -(cos i / r sin 0 ) DF/ao

Substituting the explicit formulae for Pn up to n=6, performing the

differentiations, then setting cos 0 = sin i sin u, and using the abbreviations

S =sin u and k - sin2i, the result is:

f = (9/r2) [/2 J2 (R/r)2 (3kS2 - 1)+2 J3 (R/r)3sin i (5kS3 - 3S)

+ 518 J4 (R /r)4 (35k 2S4 - 30kS 2 + 3)

+ (3/4) J5 (R/r)5 sin i (63k2S5 - 70kS3+ 15S)

+ 7'166 (R/r)6 (231k 3 6 35k2 S4 + 105kS2 - 5)] (2.14)

f2= -(/r 2) sin i cos u [3 J (R)2 sin i sin u + (3/2) J3 (R/r) 3 (5kS2 -1)+

5/2 J4 (R/r)4 sin i (7kS 3 - 3S) +

15/8 J5 (R/r)5 (21k 2S4 - 14kS 2 + 1) +

21/8 J6 (R/r) 6Sin i (33k 2 55 - 30kS3 + 5S)] (2.15)

f3= - ([.t/r 2 ) cos i x [same as f2 ] (2.16)

"o
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To determine the secular and long-period terms equations (2.14), (2.15),

and (2.16) are substituted in equations (2.5)-(2.10). The resulting equations are then

multiplied by an appropriate equality with dt/du to obtain J2 to J6 and J2
2 terms. This

allows the argument of latitude to be used as the independent variable. Expressing the

derivative of the orbital elements with respect to the argument of latitude as the sum of

a number of terms of a general function, utilizing appropriate identities, and integrating

from one ascending node to the next (u=0 to u=2nt), the desired equations were

obtained (for details see ref. 50, p 23-31).

These analytical expressions reveal that the elements o, 92, and M

experience secular variations from the adopted epoch values as well as periodic

variations. The elements, a, i, and e possess only periodic variations and oscillate

about their mean values. The long-period variations are caused by the continuous

variance of (o. The strictly secular terms contain only even Jn terms while the odd

zonal harmonics contribute to periodic terms. Since the changes in orbital elements

over one period are to be studied here, the secular variations are of primary concern.

Consequently, the following equations are absent of any odd Jn terms since they all

have products of trigonometric functions of co or multiples of o.

SaScc = sAesc =Asec =0

A "se c  2 /7[Y J (R/p) n i"2n + J 2(R/p) 4 2221(.7A~se 21t~J ~(2.17)
nn 2

Q22 = -3/ 2 COSi

Q4 = 15/4 cos i I (1- 7/4 k) (1 + 31/e 2 ) ]

6 = -105/ 16 COS i(1 - 9/2 k + 3 3 /8 k2) (1+ 5e2 + 15/8 e4)]
2, - 3/2 cos i 14 - 5k - (1/4 + 5/16 k) e 2 ]

22 2 CO ./
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A~sec = 27E[-13 (R/p) n On+ J 2 (R/p)co22] (2.18)n n222

C2 = 3 (1 - 5/4 k)

04 = - 15/32 [(16 - 62 k + 49 k2) + (18 - 63 k + 189/4 k2) e2 ]

CO6 = 525/ 64 8/5 (1 - 8 k + 129/ 8 k
2 - 297/ 3 2 k

3 )

+ 6(1 -
43/6 k + 1°9/8 k2 - 1218 k3) e2

+ (2- 27/2 k + 99/4 k2 429/32 3) e4 ]

(0 22 = (9/4) [ (95/12 k - 455/48 k 2 ) + (7/12 - 3/8k- 15/32 k2 ) e2 ]

A Msec= n + 2 2t[XJ (R/p)" r.n+ J2(R/p) 4*2] (2.19)

(Y*2  3/21 - e2) 1/2 (1 -3/2 k)

S*4= 45/ 16 (1 - e2 )1/2 [(-1 + 5k - 35/ 8 k2) e2 ]

6 ="35/16 (1 - e2)22 [ (1 - 21/2 k + 189/8 k2 
- 231/6 k3 )

x (1 - /e 2 - 151, e 4 )

S 9/2 (1 - e2 )" 1/2 [ (2 5/ k - 131/ k2 )22 212 148

+ (5/ 49 k + 6 7/ k2 ) e2 ]12 12 48

2.4 Method of Averaging

A current procedure that is used to simplify a system of nonlinear

differential equations is the method of averaging. By proper selection of new variables

the original equations are transformed into a simpler form, free of certain variables.

The normal form for averaging includes a set of slow variables with time variations

proportional to a small parameter. The fast variables have dominant parts with time

variations proportional to time. The transformation of variables removes the

dependence on mean anomaly, the fast variable. Since the method of averaging

requires perturbations to be continuous and periodic in the fast variable, it is an ideal

-. .". '. , ', .." ',' +" ' 7." " ' ,, .3 • -7 ' '7 " ',L ' '. 5 ." ": + + ' . . + , : " , " , : " , . . , , + .



22

technique to use to analyze orbital motion. The solution for these transformed

equations permits the calculation of the six osculating orbital elements.

Expressing the disturbing function explicitly in terms of the orbital

elements, the slow variable perturbation equations have the form:

S= Eg2 (n, e, i, co, 0, M)

= sg2(n, e, i, co, f0, M)

dit = Eg3(n, e, i, (o, 0, M)

= £g4(n, e, i, co, Q, M)
=Egs(n, e, i, (o, Q , M)

E is a small parameter of order J2.

The fast variable equation is of the form:

M = n + £ul(n, e, i, co, Q, M)

g1 thru g5 and u, are continuous functions of the orbital elements as well

as periodic functions of mean anomaly with a period of 27c. The equations are in the

normal form for the method of averaging and the procedure outlined in references 52

and 54 can be employed.

Using

F= .) Pn (COS)
r n=2 r

and adhering to the prescribed approach, the periodics can be eliminated and the

following secular variations of the first-order harmonic J2 and the second-order

harmonics J3 and J4 result:

,',

" 1 . ._- -. - . .- . .% -. - .% . - •• -- - -. _-- . .
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xi=0 (Since i= 3n/2 a a, * 0.) (2.20)

6 0

di/dt = 0

- 3/4 n J2 (R/p) 2 (4 - 5k)

- 15132 n J4 (R/p) 4 [ 16 -62k + 49 k2 + 3/4 (24 -84 k + 63 k2) e2 ]

+ (3/ 16 )n J2
2(R/p) 4 [72 -169k + 395/4 k2 + (-5 + 57/2k - 225/8 k2)e2]

=- 3/2 n J 2 (R/p)2 cos i + 15/16 n J4 (R/p)4 cos i [(4 -7k) (1 + 3/2 e2)]

- 2 n J 2
2 (R/p)4 cos i [9/4 + 3/2 (1-e2 )1/2 - k (5/2 + 9/4(1 - e2) 2)

+ e2 /4 (I + 5/4 k) f

=n + 3/2 J 2 (R/p) 2 (1 -3 /2 k (1-e 2)1/2)]

- 45/128 n J4 (R/p)4 (8 - 40k + 35k 2) e 2 (I-e 2 )1/2

+ 2 n J 2
2 (R/p)4 (l-e 2 ) 1'2 [ 32 - 4 12 k + 139/48 k2

+ (-1/24 + 13/12 k + 10/96 k2) e2 ]

Although the J2
2 term is slightly different, these results corroborate those

formulated by Merson.

2.5 The Argument of Perigee

One of the most important perturbations is the rotation of the major axis of

an orbit in its own plane. From equation (2.18) it is seen that on the O(J2) the change

in argument of perigee over one period is:

Aco=(3n/ 2 )J 2R2 (4-5 sin 2i)/ (a 2 (l -e 2)2 ) (2.21)

The angle at which the argument of perigee freezes is normally referred to

as the critical inclination. For Acw = 0, 4 - 5 sin 2 i = 0. This occurs at an inclination

angle of 63.4* for prograde orbits and 116.6* for retrograde orbits. For i < 63.4* the

perigee moves in the same direction as the satellite's motion; for 63.4* < i < 116.6

the perigee moves in the opposite direction; and for i > 116.6* the perigee moves in

"gj



-.

24

the same direction.

If gravitational perturbations due to the geopotential alone are considered

and if tesseral and sectorial harmonic resonances are avoided, only the zonal

harmonics cause secular and long-period perigee fluctuations. Studies where the

averaged Hamiltonian was expanded about critical inclinations revealed very slow (on

the order of a century) simple pendulum-type oscillations in argument of perigee [53].

To improve the accuracy to 0(J 2
2) the entire equation (2.18) can be set

equal to zero. Since there is no secular change in a, e, and i caused by the Earth's

geopotential these values can be assumed constant. Using a binomial expansion the

following sixth-order polynomial equation in sin i results:

o 13 J2 a4 (e8 - 4e6 + 6e4 - 4e 2 + 1) (2.22)

-(15 J4 R 2 a2 / 32) (18 e6 -20e 4 -14e 2 + 16)

+ 524/64 J6R4 (32/ 2 0+6e2+2e 4)+9/38 4 122 a2 R2 (56e6-112e 4 +56e2) ]

+ 1312a4/4)(-5e 8+20e6- 30e4+ 20e2 - 5)-15/32 J4R2a2(-63e6 + 64e4 + 61e 2 - 62)

+ 524/ J R (_432/ e4 
- 43e 2 - 256/)

I64J6 R 32e 3 20)

+ 9/384 j22 a2 R2 (-36e6 + 832e4 - 1,556e 2 + 760) ] sin2i

+I(-15 J4 R2 a2 / 32) (189/4e6 -91/2 e- 2 3/4e 2 + 49)

- + 524/64 J6 R4 (792/32 e4 + 327/4 e2 + 516/20)

69 4~a +o 1,735e 2 -890) sin4i+ 9/384 J22 a2 R 2 (-45e6 - 800e + - ) i

524/64 J6 R 4 ( 4 29/ 32e
4 + 363/ e2 + 297/20) sin 6i

Table 2-1 shows the values of inclination that will freeze the argument of

perigee given an eccentricity and semimajor axis. The data reveals that as semimajor

axis increases the inclination angle required decreases. The decrease is small when the

eccentricity is small. As the eccentricity increases the decrease in inclination is of

greater magnitude over the same range of semimajor increase. The other trend that is

obvious is that for a given semimajor axis, as the eccentricity increases the inclination

* --.. . ... ..- - " - - .- ... . .- •,.. . . . . .... . .. ". -- . - '
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required decreases.

A comparison of computed change in argument of perigee with actual 1984

data from NORAD confirms the contribution of zonal harmonics of 0(J2 ) to the

secular variation (see table 2-2). In all cases the secular equation produces reasonable

accuracy. Deviation that occurs is possibly due to periodic variations caused by the

gravitational field as well as changes due to other major perturbing forces. The most

error per time lapse occurs with the satellite experiencing the most drag effect. Another

source of error is the fact that the change is averaged over the entire time as opposed to

adding the change that occurs each orbit over the time lapse.

Table 2-3 shows the first and second-order changes in the argument of

perigee given a semnimajor axis, an eccentricity, and an inclination angle. The data

demonstrates that for a given eccentricity, as the semnimajor axis increases the rate of

change in argument of perigee decreases. Also, at a constant semnimajor axis, as the

eccentricity increases the rate of change in perigee is insignificantly altered.
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Table 2- 1. INCLINATION REQUIRED TO FREEZE PERIGEE
(63.0 +)

a

e (kmn) (kmn) (kmn) (kmn) (kmn)

.02 .4386 .4402 .4440
*.04 .4336 .4336 .4374 .4393 .4421

.06 .4335 .4332 .4356 .4369 .4389

.08 .4332 .4327 .4329 .4334

.10 .4329 .4320 .4293 .4288
.12 .4325 .4310 .4248 .4231
.14 .4321 .4299 .4194

.16 .4315 .4285

.18 .4308 .426 9
.0 .4300 .4250

.22 .4290 .4228

.24 .4279 .4201

.26 .4266 .4170
*I.28 .4251 .4134

.30 .4233 .4092

.34 .4187 .3984

.38 .4124 .3835

.42 .4036 .3625

.46 .3909 .33231

.50 .3723

.54 .3448



27

Table 2-2. ACTUAL VS. COMPUTED CHANGE IN PERIGEE
Satellite # a e i At Aoacta Ac computed

(km) (deg) (days) (deg) (deg)

62 B-P 6864.903 .00105 90.613 1.90128 -5.3478 -7.3246
62 B-M 7506.838 .00702 50.150 4.79179 14.2662 14.1413
77-79 F 7844.892 .0005 74.026 30.42327 -39.8920 -45.5713
79-47A 6934.313 .0024 55.016 46.06976 120.2862 110.2657
11416U 7187.775 .0012 98.570 10.11341 -28.8684 -29.4842
12553 7227.384 .00133 99.026 4.39037 -12.9535 -12.3858

Table 2-3 CHANGE IN ARGUMENT OF PERIGEE

e=.02 a=7,000km

i (deg) O(J 2 ) O(J 2 ) diff
___ (deg/day) (deg/day) (deg/day)

30 9.9013 9.9318 -.0304
35 8.4793 8.4939 -.0146
40 6.9637 6.9669 -.0031
45 5.4007 5.3969 .0038
50 3.8736 3.8307 .0069
55 2.3221 2.3149 .0071
60 .9001 .8942 .0058
65 -.3851 -.3891 .0039
70 -1.4946 -1.4969 .0023
75 -2.3945 -2.3957 .0012
80 -3.0576 -3.0583 .0006
85 -3.4637 -3.4642 .0004
90 -3.5983 -3.5984 .0001

e = .02 a =7,500 km

30 7.7772 7.8088 -.0316
35 6.6602 6.6734 -.0132
40 5.4698 5.4688 .0009
45 4.2421 4.2317 .0103
50 3.0143 2.9993 .0150
55 1.8239 1.8084 .0155
60 .7070 .6940 .0130
65 -.3025 -.3111 .0086
70 -1.1739 -1.1774 .0034
75 -1.8808 -1.8793 -.0014
80 -2.4016 -2.3962 -.0054
85 -2.7206 -2.7126 -.0080
90 -2.8237 -2.8148 -.0089

. ". °- . • •. "+ "4.".
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e=.08 a=7,500km

30 7.8714 7.9208 -.0313
35 6.7409 6.7540 -.0131
40 5.5361 5.5351 .0009
45 4.2935 4.2832 .0102
50 3.0509 3.0359 .0149
55 1.8460 1.8303 .0157
60 .7155 .7019 .0136
65 -.3061 -.3160 .0098
70 -1.1881 -1.1935 .0053
75 -1.9036 -1.9047 .0011
80 -2.4307 -2.4285 -.0022
85 -2.7536 -2.7492 -.0044
90 -2.8579 -2.8528 -.0051

2.6 The Ascending Node

Another strong secular perturbation of major significance is the steady

rotation of the orbital plane about the Earth's axis commonly referred to as regression

of the rodes. Equation (2.17) shows that all secular terms contain a product of cos i.

Because of the major influence of the J2 term, for i < 90, the orbital plane rotates

about the Earth's axis in the direction opposite to the satellite motion. A 90 inclination

(polar) orbit would freeze the ascending node and there would be no secular motion.

Table 2-4 shows the rate of change of the ascending node as a function of

eccentricity, semimajor axis, and inclination angle. As the eccentricity increases for a

given semimajor axis and inclination, the rate of node change increases. For a given

eccentricity and inclination, an increase in seniimajor axis causes a decrease in the rate

of node change. Finally, the difference between first and second-order solutions

becomes smaller when any of the following occurs: eccentricity decreases, semimajor

axis increases, or inclination increases.

A comparison is made between actual and computed change in the

ascending node in Table 2-5. The 1984 NORAD data is on the same satellites listed in

Table 2-2.

*
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An interesting combination of the change in argument of perigee and

ascending node is

+ c Cos i =0 (2.23)

When this relationship is satisfied, the perigee is frozen along the meridian.

For all possible eccentricities and all semimajor axes as large as 15,000 km the

inclination (other than 90*) for which equation (2.23) is true varies between 38* and

39.2*. Figure 2.2 shows the change in ascending node, change in perigee, and

+ (o cos i graphically.

Table 2-4 CHANGE IN THE ASCENDING NODE

e=.02 a=7,000km
2

i (deg) O(J 2 ) O(J 2 ) diff
(deg/day) (deg/day) (deg/day)

30 -6.2362 -6.2515 .0153
40 -5.5162 -5.5258 .0095
50 -4.6287 -4.6354 .0066
60 -3.6004 -3.6063 .0058
70 -2.4628 -2.4680 .0051
80 -1.2504 -1.2536 .0031
90 .0000 .0000 .0000

e=.05 a=7,000km

30 -6.2625 -6.2780 .0155
40 -5.5395 -5.5491 .0096
50 -4.6482 -4.6549 .0067
60 -3.6156 -3.6215 .0058
70 -2.4732 -2.4784 .0052
80 -1.2557 -1.2589 .0032
90 .0000 .0000 .0000

d



I, 30

e =.02 a = 7,500 km 
30

i (deg) 0(J2 ) O(J 2 ) diff
_ _ (deg/day) (deg/day) (deg/day)

30 -4.8983 -4.9086 .0103
40 -4.3328 -4.3395 .0066
50 -3.6357 -3.6404 .0047
60 -2.8280 -2.8321 .0040
70 -1.9345 -1.9379 .0034
80 -.9821 -.9842 .0020
90 .0000 .0000 .0000

e =. 11 a = 7,500 km

30 -5.0150 -5.0261 .0110
40 -4.4361 -4.4431 .0070
50 -3.7223 -3.7272 .0049
60 -2.8954 -2.8996 .0042
70 -1.9806 -1.9842 0035
80 -1.0055 -1.0077 .0021
90 .0000 .0000 .0000

e =.02 a = 8,000 km

30 -3.9079 -3.9195 .0071
40 -3.4568 -3.4615 .0047
50 -2.9006 -2.9040 .0034
60 -2.2562 -2.2591 .0028
70 -1.5433 -1.5457 .0023

e=.17 a=8,000km

30 -4.1407 -4.1491 .0084
40 -3.6626 -3.6681 .0054
50 -3.0733 -3.0771 .0037
60 -2.3906 -2.3937 .0031
70 -1.6352 -1.6379 .0026

e=.06 a= 12,000km

20 -1.0324 -1.0334 .0009
40 -.8416 -.8422 .0005
60 -.5493 -.5496 .0003
80 -.1907 -.1909 .0001

-". . . , ,, ,. . . .. . .. .. . .. . , , ,,, . -. .. -. - .. . *-% -, * . .. , . .. . :. , . ., . , . .. , . .,
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* 31

e = .42 a = 12,000 km

i (deg) O(J 2 ) O(J 2 2) diff
(deg/day) (deg/day) (deg/day)

20 -1.5111 -1.5140 .0028
40 -1.2318 -1.2332 .0013
60 -.8040 -.8046 .0006
80 -.2792 -.2795 .0002

e=.06 a=15,000km

20 -.4728 -.4730 .0002
40 -.3854 -.3856 .0001
60 -.2515 -.2516 .00009

e=.54 a=15,000km_

20 1 -.9354 -9371 1 .0017
40 -.7625 -.7633 .0007
60 -.4977 -.4980 .0003

Table 2-5
ACTUAL VS. COMPUTED CHANGE IN ASCENDING NODE

At A Q AK
Satellite # days (deg) actual (deg) computed

62 B-P 1.40128 .1593 .1639
62 B-M 4.79178 -17.3097 -17.322177-79F 30.42327 -58.4060 -40.5017

79-47A 46.06976 -245.7439 -196.6044
11416U 10.11341 9.8689 9.8849
12553 4.39037 4.4278 4.4316

(a, e, i are the same as those in Table 2-2.)
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Figure 2.2 SECULAR CHANGES
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2.7 Secular Radial Variation

The radial distance to the satellite expressed in terms of orbital elements is

r = a (1-e cos E) (2.24)

Expressing cos E in terms of a series expansion of derivatives of Bessel coefficients

cosE=-e/2+2E 1 d J,(ne) cosnM (2.25)
n=1 n d(ne)

Substituting equation (2.25) in (2.24)
2 1 d j

r=a+ -2ae I( (2.26)
n=1 l d(ne)

(see Appendix A for derivatives of Bessel coefficients). The differentials of the

independent variables a, e, and M are defined by

da = Aa, de = Ae, dM = AM

The differential of the dependent variable r is defined by

Ar = dr = /a da +l'/e de + ar/dM dM(2.27)

If the secular change in radial distance is required and only the

perturbation due to the gravitational field is considered then

AaSec =Aesec = 0

and Ar. cC = 3r/dM AMsec

Using (2.26)

r/M = 2aeY' d~-
lml d Je) (ne) sin nM (2.28)

From either (2.26) or (2.28) it is seen that for a given a and e, there is no secular

change in r for a given M + 2mn (m is an integer). Therefore,
3r '/a) = 0

M + 2mr

and

Ar ) =0
s M +2tor

'U.

.p,
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From orbit to orbit, for a given M, there is no secular change in radial

distance if the only force acting on a satellite is due to a gravitational field with axial

symmetry.

2.8 Freezing Perigee and Eccentricity

Low altitude near circular orbits are influenced greatly by perturbations

caused by the Earth's oblateness. The magnitude of the effects of the perturbations

depends on the initial values of certain orbital elements. The appropriate selection of

semimajor axis, eccentricity, inclination, and argument of perigee can minimize the

variations. A pertinent example consists of stopping the line of apsides and freezing

the perigee point [55-571. If the periodic change in eccentricity is considered and

equation (2.18) is modified to include the periodic term of J3 the resulting equations

are:

de/d =_2 nj 3 (R/p)3 (l-e 2) sin i cos co (1 - 5/4 k) (2.30)

dco/d t 3nJ 2 (R/p)2 (I - 5/4 k) + 3 n/ 2 e J 3 (R/p)3 sin co sin i

[(1 - 5/4 k) + (35/4 cos2 i- cosec2 i) e2 ] (2.31)

The idea of this type of frozen orbit is to initially set o = 90 causing de/dt

due to J3 to be equal to zero. Finding the root to equation (2.31) yields the value of

eccentricity for which d(O/dt due to J2 and J3 equals zero. These values of e and co will

produce a perigee location which remains comparatively constant. The changes in the

average argument of perigee and the average eccentricity become zero when co = 900

and e approaches some determinable small value. Cutting (1978) asserted that

subsequent analysis for the SEASAT-A satellite which included zonals up to degree 21
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lowered the appropriate eccentricity only about 20% [561.

The frozen eccentricity for Landsat-5, a Sun synchronous orbit, launched

on March 1, 1984, is approximately 0.0012. The averaged argument of perigee and

eccentricity will then oscillate within a small range about the frozen condition. Fig. 2.3

shows the evolutions of these parameters over a 116 day period [55].

Some other satellite orbits which would satisfy this type of freezing have

the following elements

a (kin) i (deg) e

7000 97.87 0.00103
7188 98.57 0.00100
7500 100.04 0.00094

The oscillations of co and e can be observed by plotting the components of

the eccentricity vector; the result is a circle centered on the frozen condition (see figure

2.4). The period (T) of the oscillation is related to the secular rate of the change in CO

according to

T-
A 2s1c

where Acos c is obtained from equation (2.18).
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CHAPTER III

VARIATIONS DUE TO ATMOSPHERIC DRAG

3.1 Aerodynamic Forces

*. For near-Earth satellites, excluding the Earth's oblateness, the

perturbation having the greatest consequences is the resisting force of the atmosphere.

This resisting force, called drag, is especially predominant from 150 to 600 km. When

a satellite with substantial eccentricity is near perigee the drag tends to retard its

motion. A decrease in energy causes a reduction in the apogee height; this is called

orbital decay. The more circular the orbit, the more interminable the energy-draining

effect of drag.

The main effects of the force are secular decreases in the orbital elements

a and e which in turn cause the orbit to contract. Since the apogee height decreases

while the perigee height remains nearly constant, the orbit tends to become more

circular. In addition, the rotation of the atmosphere subjects the satellite to small lateral

forces which alter slightly the orientation of the orbital plane. The result is a small but

steadily increasing change in inclination and limited periodic changes in the line of

apsides. Small changes in argument of perigee are caused by the oblateness of the
atmosphere [4, 9, 58].

The most common expression for the drag force is

D= 1/2 CDA/mf p IvIv (3.1)

where D is the force per unit of mass, m is the mass of the satellite, CD is a

4I
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dimensionless drag coefficient which is empirially determined, and A iV the effectIvc

cross sectional area of the satellite. V = va - v, where v is the satellite's inertial velocit)

and va is the inertial velocity of the atmosphere. f represents the effect of atmospheric

rotation on drag and is a function of the inclination of the orbit. Since f will usually be

between .9 and 1.1, this study will use an average value of 1.0. For details on the

development off, see reference 58.

The ballistic coefficient, defined by
13 m

is a measure of the ability of the spacecraft to overcome air resistance. For typical

spacecraft 1/ values range from .01 x 10-6 to .04 x 10-6 km2/kg.

Therefore,
pIvI v

D= 2P1 (3.2)

While drag is acting in the direction opposite to the satellite's motion,

there are forces perpendicular to the direction of motion. These forces have

components passing through the center of mass which cause lift, and components

which produce a turning moment about the center of mass.

The turning moment is normally a destabilizing one for uncontrolled

satellites. Consequently, the resultant value of the variant lift force will be zero. For a

spinning body, there are moments which affect the orientation, thereby influencing the

lift and drag forces. The precise prediction of the orbital motion of elongated bodies of

revolution becomes infeasible in the absence of complete information about orientation

and spin everywhere on the orbit. For these reasons, for near-spherical and cylindrical

satellites with a length/diameter ratio greater than about one, the forces perpendicular to

the direction of motion can be ignored 1591.
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3.2 Density Models

The feature of the atmosphere which has a profound effect upon the

satellite is the density (p). The density has been investigated over the years by the

study of the rate of contraction of satellite orbits as well as with the aid of instruments

* contained in the satellites.

Research has revealed that the change in density in the upper atmosphere

above 250 km can be large and is very time-dependent. Variation in density occurs as

the atmosphere responds to solar activity. Fluctuations in density include: (1) irregular

* diurnal variations resulting from ephemeral solar disturbances, (2) a 27-day variation

correlated with the period of axial rotation of the Sun with respect to the Earth, (3) an

* eleven year variation corresponding to the sunspot cycle, (4) seasonal variations

caused by change in the distance from the Sun and the inclination of the Earth's orbit

* to the Sun's equator, and (5) irregular and impermanent variations affiliated with

transient geomagnetic disturbances.

Eliminating the time-dependent variations dictates an approximate model

* of the atmosphere. Important assumptions provide analytical representations which

allow simplification while maintaining reasonable accuracy. A significant simpli-

fication is accomplished by assuming that the atmosphere is spherically symmetrical.

Consequently, the atmospheric density is a function of the distance from the center of

* the Earth. The slight inaccuracy introduced by this assumption facilitates the

mathematical formulation necessary for determining variations in orbital elements.

The simplest density model assumes that the atmospheric density

decreases exponentially with the distance from the center of the Earth. Assuming that

the scale height (H) is constant over a small altitude interval, the density function can

be written as [58,611:

P2 pexp [(r, -ri) HI (3.3)

2.
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Consequently,

H- r,-r2
In (pi/P 2) (34)

If the oblateness of the atmosphere is to be considered, the same density

variation (3.3) can be used as a function of the altitude above the Earth's ellipsoidal

surface. The altitude is determined by subtracting the radial distance to the surface of

the Earth from the radial distance of the satellite.The radial distance to the surface is

found using [121

rE = R [ 1- (f + 3/2 f2 +...) sin2 p + 3/2 f2 sin 4 (p...] (3.5)

here

f = flattening ratio of the Earth = 1/298.24

(p = latitude

R equatorial radius = 6378.163 km

Using reference or cardinal altitudes (10 km increments) on both sides of

the computed altitude (h = rE - r), a standard atmospheric table such as the U.S.

Standard Atmosphere, 1976 (see Appendix B) can be used to compute the density at

the two radial distances. Exercising equation (3.4) a scale height can be computed for

that particular 10 km interval. If one end point of the interval is now used as position

one with the satellite designated as position two, equation (3.3) can be employed to

determine the density at that exact altitude. This method for determining density is best

utilized when a numerical integration scheme is used to continuously update the values

of the osculating orbital elements. The use of tabular values provides the accuracy of a

dynamic atmosphere.

A generalization of the exponential density function is the spherical

power density function model which assumes the scale height is linear [621

P= P( rST (3.6)

-r 2 -S
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where T, which is restricted to positive integer values, and s are disposable parameters.

For coverage of all reasonable regions averaged over an 11 year cycle, the following

values result: (1) T = 4, (2) r1 = 6498 km, and (3) s = 6456 km.

3.3 Numerical Computation of Element Change

To examine the change in a and e caused by drag the radial, transverse,

and normal force components (same direction as fI, f2, and f3 respectively in figure

2.1) are expressed in terms of a component along the tangent (fT) and a component

normal to the orbit (fN)" If the angle which the tangent to the orbit makes with the

transverse component is Nf, then

f, = fT sin NJ - fN cosN

f2 = fT cos - fN sin xN

These values for fl and f2 can be substituted into the Lagrange planetary

equations (2.5) and (2.6). Since the force normal to the orbital plane is extremely small
in comparison to the tangential component, it can be ignored for this approach. This

yields a modified set of Lagrange equations. The independent variable can be changed

from time to true anomaly using two-body relationships and subsequently to eccentric

anomaly. The result is

da pa 2 (l e cos E)3'2
dE 03(- e cos E) 1/2 (.7

de -pa(l+ e cos E)/2 (1- e2) cos E

dE e3 (1-ecos E)/2

For the change in a and e over one revolution

a p(l3ecosE) /2Aa =a2 fZEp2 1 csE dE

0 (1- e cos E) 1/2

Ae f 2n p (1+ e cos E)1/2 (I- e2) cos E dE
0 (1- e cos E) 1/2  (3.10)

', :- :- - ", . ..."" .".:-- ."" . . -"- . . . . -. -" , . " - ' -" . - . .- "- .- - . . . .. : . . : 4



43

The change in perigee over one revolution is found in the following

manner: rp = a (1-e)

drp = (1- e) da - a de

Ar = (1- e) Aa- aAe (3.11)

Substituting equations (3.9) and (3.10) into (3.11)
2(1- eo p(I + e cos E) 1/2

Ar 1 e~j p (1- e cos E)i/2 (1- cos E) dE (3.12)
0 I 1e cos E) /2

In like manner the change in apogee is

rA = a (1+ e)

ArA =(1+e)Aa+aAe

ArA =a2(l+e)f27p (1+ecosE) 1/2 (1+cosE)dE (

0 9 (1- e cos E) 1/2

Comparison of equations (3.12) and (3.13) reveals that unless the

eccentricity is very small, the apogee change that would be experienced over one

revolution is larger than the perigee change.

3.4 Analytical Computation of Element Change

An expression to find the density in an oblate atmosphere is developed

by King-Hele [581. Using equation (3.5) to determine the radial distance from the

Earth's center to the surface of an oblate spheroid

r=-- R (1- fsin2 p + 0(f 2)) (3.14)

The radial distance at the initial perigee is therefore

rp= R (-fsin2 Pp) (3.15)

P 0



44

Solving for R from equation (3.15) and substituting back into (3.14)

r = rp (1- fsin 2 (P) (3.16)

- (1- f sin2 (Pp)

The spheroid is now defined in terms of latitude of the initial perigee and

latitude of the satellite at any position. The density at any point can be defined in terms

of the density at the perigee. From equation (3.3)

P2 =pP exp[( r - r2 H(3.17)

Using trigonometric identities, the latitude of the satellite can be

* expressed as a function of the position

sin (p = sin i sin (a) + v) (3.18)

Substituting (3.16) and (3.18) into (3.17), the density as a function of

- radial distance and true anomaly is

P2 
= pp exp [(rp - r2)/H + c cos 2 ((o + v) - c cos 2 co0 + O(f2 )

where c - 1//2 frp sin 2 i/H (3.19)

Expanding exp(c cos 2 (co + v)) as an exponential series expansion and transforming

terms of true anomaly into terms containing eccentric anomaly equation (3.19) can be

written as [581

P2 = q exp{(a e cos E - a)1[l+ c cos 2 (Co + E) - 2ce sin 2 (wo + E)

x sin E + c2/4(1+ cos4(co + E)) - ce 2/2(cos2o + 2cos2(o + E)

-3 cos 2(co + E) cos 2 E) -c2e sin 4 (co + E) sin E

+ 0 (ce 3, c2e2)] (3.20)

where q = pp exp(rP/H -c cos 2co0)

Co = initial argument of perigee

By performing the following: (1) substituting (3.20) into a series

expansion of the integrands (3.9) and (3.10), (2) utilizing the integral representation of

4\. . . . . .. .. . . . . . . . . . . . . . . .
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the Bessel function (i.e. In (z) = n fo2't exp (z cos A) cos n A dA, where A is an

angle), and (3) eliminating periodic terms the following represent changes over one

revolution

Aasec = -27ca 2/p q exp(-a/H)[IO+ 2e 11+ 3/4 e2 (I+ 12) + e3/4 (3 I1+ 13)
+ O(e4, ce3)] (3.21)

Aesec = -2ita2/p q exp (a/H)[II+ e/2 (Io+ 12) + e2/8 (-5 1 + 13)

-e3/ 16 (5 1 + 412 -14) + O(e4 )] (3.22)

Substituting equations (3.21) and (3.22) into (3.11)

Arpsec =-2ta2/0 q exp(-a/H) [I/- 2 e/2 (3 I-411 +12)

+e 2/ 8 (6 10- 11 11+ 6 12 -13)+ e3/1 6 (-7 10+12 11- 8 12+ 4 13-I 4)
+ O(e4 )] (3.23)

The argument of the Bessel functions is z - ae/H. 10 and I, can be estimated using an

asymptotic expansion or polynomial approximation while 12, 13, and 14 can be found

using the recurrence relation

I n, 1 (Z) -I -) 2n /Z I W z

For the complete development of the change in the other orbital elements

over one revolution see reference 58.

A i i-ta2 w a 1/2 exp -a/)sin i I 0 + c)I 2 cos 2o)

-4e1I cos 2 o) + -c (Io + 14 cos 4co) + O(c, e2 )] (3.24)

where w = angular velocity of the atmosphere

and f = (1 wC
VP

Substituting the half-angle formula for cos(o) and eliminating the periodic terms

_-se a w .. 7 f)/2 exp (a/H) sin i 10 -2e l ] (3.25)
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If (3.25) is written as
Aisec =-S [I - 2el I  I

it is evident that for all values of a, e, and i, S > 0. Therefore, the inclination angle

decreases as long as 10 > 2eI1. Using a polynomial approximation [631

Io(z) = 1 + .24999985 z2 + .01562519 z4 + ...

I(z) = Z[1/2 + .062499978 +.00260419Z+...

it is clear that for all feasible values of eccentricity for near Earth satellites 10 > 2eI P

Examining a worst possible situation demonstrates that the relationship is

satisfied

a = 7000 km 10 = 26.868438

H= 72.6 2el n = 3.8241799

e = .06

The other two orbital elements, Q and Co, experience no secular change

due to drag.

i.
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CHAPTER IV

MINIMUM ALTITUDE VARIATION ARCS

4.1 Requirement

A satellite which experiences minimum altitude variation over a

circumscribed latitude range can be very useful for scientific research and application

experiments. Motivation for achieving and maintaining this category of frozen orbit

includes: (1) study of the flattening and other dynamic properties of the atmosphere,

(2) photo resolution optimization of preset optical systems, and (3) minimization of

necessary geometric corrections to satellite-produced images.

A good example of the necessity of this type of arc is the SEASAT-A

satellite, launched on June 26, 1978, to provide a global ocean dynamics monitoring

system. The instrument used to obtain radar imagery of ocean waves, ice and snow

cover, and land surfaces is a Synthetic Aperture Radar (SAR) which has a resolution

of 25 meters. Constraints dictate minimum altitude variation over SAR stations which

are all located in the Northern Hemisphere [56].

To date, very little literature exists on the subject of minimum altitude

variation arcs. Some work was accomplished by Kalil [64] as he studied the

first-order effects of oblateness while neglecting entirely atmospheric drag. Since it is

near-Earth satellites for which the requirement for minimum altitude deviation may

exist, it is essential to include the effects of atmospheric drag to realize a

comprehensive study.
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Altitude deviations are best minimized by essentially modeling the shape

of the Earth over the latitude range of interest. The proper combination of semnimajor

axis, eccentricity, inclination, and argument of perigee produces the desired arc.

4.2 Latitude, Coverage and Eccentricity Required

To determine the minimum altitude variation several approaches can be

* I exercised. One such approach involves the continuous computation of the altitude

along the orbit at intervals defined by a predetermined step size. The difference

* between the continuously updated altitude and the initial altitude is computed until the

maximum allowable limit is reached. This procedure becomes a tradeoff between

-. eccentricity and the latitude coverage attainable.

Referring to figure 4.1: rs is the radial distance from the center of the

* Earth to the satellite, rE is the distance from the center to the surface of the Earth, and h

- is the altitude above the surface of the Earth. The starting position is designated as I

while 2 represents the position at an interval or multiple of intervals of time later. Each

time an interval is covered the new state becomes position 2.

Figure 4.1 RADIAL DISTANCES AND ALTITUDES
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The altitudes corresponding to the respective positions are

hi = rsI - rEi (4.1)

h2 = rs2 - rE2  (4.2)

Subtracting the above equations

hi - h2 = (rs - rs2) -(rE - rE) (4.3)

Substituting equation (2.26) for r. and equation (3.5) for rE, assuming a

secularly constant a and e (no drag), and using (4.3) to include O(e3) fore < .1

hi - h2 = a [(cos M 2 - cos M1)e + (cos 2M 2 - cos 2M 1 )e2

+ 3/8 (3 cos 3M 2 - 3 cos 3M 1 - cos M2 + cos M1)e3]

- R [(f + 3/2 f2 )(sin2 92 - sin2WPl) + 3/2 f2 (sin 4(p1 - sin 4 P2]

(4.4)

There are two ways in which equation (4.4) can be employed. The first

approach is to compute the latitude range that can be achieved prior to exceeding the

maximum allowable deviation from the initial altitude given an a and e. The second

way is to start with the semimajor axis and latitude range desired and then determine a

compatible e which permits I hI - h2 1 to be a minimum. This method requires an

iterative scheme where I hi - h2 = hl. 2 is defined as the performance index [65]. For a

minimum to exist over the range of possible values of eccentricity,

Ahl-2 (e) = hi_2 (e + Ae) - hi_2 (e) > 0

where Ae is a small incremental change.

The latitude can be computed at the end of each interval in the following

manner:

(1) An initial satellite radial distance and mean anomaly is established.

(2) Recall Aasec = Aesec = 0 in the absence of drag. Using equation (2.28)

and the secular equation (2.19) for the rate of change of mean anomaly

per second, the radial distance can be computed at each new position.

S. . . ..
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dr =Arr/M 
dMso

rs2 = rs 1 + Ar

(3) The updated mean anomaly is

M2 =M +AM

(4) From Kepler's equation, M = E - e sin E, a method of successive

approximations can be employed to determine eccentric anomaly.

(5) True anomaly for the elliptic orbit can be calculated from the relation

tnV _ )'~/2 tnE

(6) Given an argument of perigee co, the argument of latitude is

u = v + c) (4.5)

(7) From spherical trigonometry

sin (p = sin i sin u (4.6)

(8) All variables are now known for substitution into equation (4.4) to

compute the deviation in altitude from the initial position to the next

position of the satellite.

(9) If e is the predetermined maximum allowable altitude deviation, the
process is repeated until Ih1 - h2 >

4.3 Rate of Change of Altitude

The radial distance measured from the center of the Earth to the satellite

in terms of true anomaly is

a (1- e2) (4.7)
r= +e cosv

Equation (3.5) to 0(f) is

rE=R[1-fsin p] (4.8)

- -, , - . , . .- , , . -- , -. ',---- .- ;'. . - '.'-'=".'.3"° - 3 "-. .- '.". .". . ---a. -'.-.. -". -;, .
" " - ", : "
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substituting (4.5) and (4.6) in (4.8)

rE = R [1-f sin2 i sin2 (V + (0)] (4.9)

The altitude above the surface of the Earth is

h = r - rE (4.10)

Substituting (4.7) and (4.9) in (4.10), assuming no drag (i.e. a and e

are secularly constant), taking the derivative of altitude with respect to true anomaly,

and simplifying with trigonometric identities the result is

dh =ae (1- e2 ) sinv+ Rf sin2 i sin 2( v + o ) (4.11)
dv (I+ ecosv) 2

From (4.11) it is obvious that the change in altitude is a function of the

shape of the Earth, the size and shape of the orbit, and the orientation of the orbital

plane. For a given a and e the rate of change is highly dependent upon the argument of

perigee and inclination angle. For a given o the change in altitude with respect to the

change in true anomaly is a periodic function with period 2nt.

The next series of graphs demonstrate the effect of argument of perigee,

eccentricity, semimajor axis, and inclination on the rate of change of altitude as

determined by equation (4.11). A comparison of figures 4.2 and 4.3 shows that a

change of 500 km in semimajor axis has little effect on the rate of change of altitude for

a given eccentricity, inclination, and argument of perigee. The maximum change in rate

is ± 5 km/rad.

A change in eccentricity from .01 to .0024 causes a large change for a

given semimajor axis, inclination, and argument of perigee. From figures 4.3 and 4.4

the change in the rate is seen to be as high as 50 km/rad. Figures 4.4, 4.5, and 4.6

show that for a constant a, e, and co, as the inclination angle increases to 90' the rate of

change of altitude increases. From i 450 to i 90' the change in the rate is about

JI

,'. '..' .' .' .' .. '. ..''. . .. ' . "-. . ."." " .- .. .- *.- * .. -....-.. .. -I. . ". .- . .- . -. .".. ' . ' " . .- . ' .- .'v -,..
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lOkm/rad. Study of the graphs reveals that the minimum rate of altitude change

(dhldv = 0) occurs at or around perigee/apogee. Regardless of the argument of perigee

as the eccentricity increases the minimum rate progresses closer to the perigee/apogee.

Therefore, the minimum altitude variation occurs more closely to perigee/apogee.

Zero rate of change always occurs at the perigee when it is located on the

equator (i.e. (o = 0'). As the eccentricity decreases the argument of perigee causes the

value of true anomaly for which dh/dv = 0 to shift away from perigee/apogee. Figure

4.5 shows that this displacement is as much as 700.

* . The latitude range over which the minimum altitude deviation occurs can

be determined easily from the figures. All three values of i, v, and o corresponding to

the minimum rate can be obtained from the graph and equation (4.6) used to determine

* the respective latitude.

Data contained in figures 4.7, 4.8, and 4.9 include oblateness effects.

Figure 4.7 demonstrates that the minimum altitude a satellite obtains in an orbit does

not necessarily occur at the same latitude at which perigee occurs. The latitude of the

perigee (pp on this plot is 50.77'N. Depending on the eccentricity the minimum altitude

deviates from perigee. As the eccentricity increases the secular change in the altitude

over the latitude range of interest increases.

Figures 4.8 and 4.9 show a magnified view of the effect of argument of

perigee over a latitude range 300 to 60'N. The latitude range of interest can vary

depending upon the objective of the satellite mission. Deviation is measured against the

altitude at the start of the arc. In this case, study of the entire latitude arc of 30' shows

that if the orbit has an eccentricity of .005 and initial argument of perigee of 660 the

change in altitude is + 6km. If instead w = 80' the deviation over 300 of latitude is less

than I km. By proper adjustment of argument of perigee the altitude deviation over any

latitude range can be m'inimized for a given semnimajor axis and eccentricity.
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4.4 Rate of Change of Perigee Latitude

Starting with the combination of (4.5) and (4.6)

sin p( = sin i sin (v + co)

Using the trigonometric identity for the sum of angles

sin (p = sin i [sin v cos o) + cos v sin (0]

Since v = 0 at the perigee latitude (p

sin (p = sin i sin co (4.12)

The derivative of (4.12) with respect to time is

cos (P (P = sin i cos co 6 + sin co cos i di/dt

Recalling di/dt)s = 0

The secular change in the perigee latitude is

P = sin i cos (o (4.13)
Cos (Pp

From (4.13) it is obvious that there are two ways to freeze the perigee

latitude. The first is by achieving an argument of perigee of 901. As discussed in

section 2.8 when co = 90 ' the de/dt due to the J3 term is zero. The eccentricity can then

be computed so that dCo/dt due to the J2 and J3 terms is zero. The second way is to

establish an orbit having an inclination angle that causes the change in W to be zero for

a given eccentricity and semimajor axis. As discussed in section 2.5 to 0(J2 ) this

occurs when i - 63.44'.

.1
*-i. " " * " - " .* :-. . .. .. **** " " "
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4.5 Freezing the Altitude of An Arc

* h2 rE (414

Ifo the naiext cisdvie intervallsemns iedb

h,= rE 3 rE (4.r4)

For genel tersl

AhN-1,N = rEN - rEN-1 - ArN-1,N

Using (2.27) for ArNIN the altitude difference over each interval on the

arc is given by
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-Ah1 2  r r Aa + rA + AM1 ,2

* Ah- rE rE1  M+
(h r aa 2 ,3  + A-e 2 3  + MAM 2,3

AhNN rE - rEN.1  A ea -A

(4.16)

The value of the orbital elements can be computed using an Euler type

scheme. From the initial values of a, e, M, and E at the beginning latitude the change

*' in mean anomaly over the first interval can be determined from (2.19). The mean

anomaly at the start of the next interval is

M2 = M1 + AM 1,2

E2 can be calculated from M2 using an iterative process. Employing (3.9) and (3.10)

the change in semimajor axis (Aal, 2) and eccentricity (Ael, 2 ) due to drag can be

computed using E1 and E2 as the limits of integration. There is no secular change in

these two elements due to the gravitational field. However, secular changes due to

gravity occur over the interval to 92 and Co and can be calculated if desired. Therefore,
a2 = a1 + Aal

e2 = el1 + Ae 1,2

92 = 121 + 1,2
(02 = (o1 + (d°O/dt) AtI,2

With the new values of a and e an updated value of mean anomaly

change AM 2,3 can be determined. Then

M 3 = M 2 + AM 2,3

The process is repeated until N intervals have been completed and the

exit latitude is reached.
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Using steps 5 and 6 on page 50 and equation (4.9) rE can be calculated at

the end of each interval. All information is now available for substitution into (4.16).

The equation can be , to compute the altitude deviation over each interval as well as

the maximum positive and negative deviation over the entire arc. Additionally, the

minimum amount of total altitude deviation over the arc occurs when
N 2

I (AhNI,N)2

n=2

is minimized. In all cases it becomes a matter of selecting the appropriate a, e, and co to

minimize the deviation.

c baoFor this study, a fourth-order Runga-Kutta method was used in

combination with a tabular density model (see Appendix B) for the integration of (3.9)

and (3.10). Three different step sizes of 3, 5, and 10 seconds were exercised; the

results varied very little. A fraction of the findings are presented in Tables 4-1 through

4-6.

Max + is the maximum positive altitude deviation for the latitude range

studied while Max-is the maximum negative altitude deviation. Both deviations are

measured against the altitude at the initial latitude. hi -hN is the altitude difference

between the initial altitude and the altitude N intervals later at the exit latitude. In Tables

4-5 and 4-6 Aa is the change in semimajor axis over the latitude range while Ae is the

change in eccentricity.

Table 4-2 shows a comparison of minimum altitude deviation for a very

small eccentricity (.0022) versus a larger eccentricity (.01). Minimum deviation for the

higher eccentricity is approximately 2.7 km versus .36 km for the lower e.

Tables 4-1, 4-2, and 4-3 demonstrate the effect of eccentricity and

argument of perigee on minimum altitude deviation for a given semimajor axis and

inclination. Tables 4-4 and 4-5 show the effect of semimajor axis on altitude deviation

." • o. - . .' o % - % - " . • o • -o . . - - . . ,% . • ° ". . . . . . • . -.". "-f,",- .,..- . . .. ,- , ,"< , ,-.. . .,.. .... . . .-.. . . . . . . . . . . . . . .... . . . . .-.. . . .... .-.. . .4 -V
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over a latitude range given an eccentricity, inclination, and argument of perigee. The

effect of drag is to decrease the maximum positive deviation while increasing the

maximum negative deviation. Table 4-6 shows a comparison of data determined from

the same orbital elements but different ballistic coefficients and different integration

step sizes. As P3 increases the maximum positive altitude deviation decreases while the

maximum negative deviation increases.

The data in Table 4-3 correlates favorably with figure 4.5. The minimum

altitude deviation for e = .0024, a = 7500 kin, and i = 63.44* occurs when (0 = 690.

Over the latitude range of 30 0-60'N the deviation is approximately .18 km. A review

* of figure 4.5 indicates that when co = 690 the minimum rate of altitude change is

experienced between 350 and 770 true anomaly which corresponds to latitudes 60'N

and 30ON respectively. Examination shows that over this range the dh/dv curve rides

the zero value for approximately 150.

The data contained in the tables that follow include secular effects only.

The variational equations of the averaged elements were presented without having

included the short-periodic variations. The effects contributed by the short-periodic

variations can be studied by exercising the corresponding equations developed in

reference 54. These equations can be used with (4.16) to predict the altitude deviation

due to periodic variations. The procedure outlined in section 4.5 would then be

accomplished to determine the combination of orbital elements that would produce

minimum altitude deviation over the desired latitude range.
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Table 4-1 ALTITUDE DEVIATION OVER LATITUDE RANGE 3Q0'- 60'N
*Least Maximum Deviation at the Corresponding Eccentricity

.002 !9e :.005

a6800 km

i 63.44 0

Max + Max - h-h

e o3(deg) (kmn) (kmn) (kcm)

.0020 35.0 .4070 1.0686 1.0686
*.0020 36.0 .3926 1.0554 1.0554

.0020 36.5 .3972 1.0557 1.0557

.0022 48.5 .4218 .3806 .3806
*.0022 49.0 .4187 .3889 .3889

.0022 49.5 .3930 .4207 .4207

.0024 60.0 .3015 .1911 .1864
*.0024 60.5 .2738 .2425 .2390

.0024 61.0 .2635 .2776 .2734

.0026 67.0 .2067 .1153 .0464
*.0026 67.5 .1924 .1627 .0933

.0026 68.0 .1660 .2239 .1620

.0028 ".0 .1524 .0638 .1111
*.0028 72.5 .1254 .1296 .0424

.0028 73.0 .1100 .1864 .0299

.0030 76.0 .2538 .0639 -. 2538
*.0030 76.5 .1672 .1247 -.1672

.0030 77.0 .0903 .1942 .0903

.0050 78.5 1.0040 .9216 -1.0040
*.0050 79.0 .8207 .9514 -.8207

.0050 79.5 .6282 1.0408 -.6282
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Table 4-2 ALTITUDE DEVIATION OVER LATITUDE RANGE 30 - 60'N

e =.0022 and .01

a 7000 km

i =63.44' Max + Max - hl-hN

e o(deg) (km) (cm) (1cm)

.0022 50.0 .4790 .1356 .1356

.0022 53.5 .3634 .3283 .3283
* .0022 54.0 .3555 .3527 .3527

.0022 54.5 .3283 .3941 .3941

.0100 62.0 4.4216 1.9143 -4.4216

.0100 64.0 2.7079 2.5605 -2.7079
* .0100 64.5 2.2976 2.6576 -2.2976

.0100 65.0 1.9001 2.8653 -1.9001

Table 4-3 ALTITUDE DEVIATION OVER LATITUDE RANGE 30 - 60'N

.002 < e !5.0032

a 7500 km

i =63.440  Max + Max - hl-hN

e (deg) (km) (km) (km)

* .0020 49.5 .4150 .3798 .3798

* .0023 65.5 .2197 .1736 .1322

* .0024 69.0 .1632 .1781 .0944

* .0025 71.5 .1395 .1298 -.0150

* .0026 74.0 .1055 .1323 -.0771

* .0027 76.0 .1796 .1096 -.1796

* .0028 78.5 .1476 .1956 -.1476

* .0032 85.0 .3059 .3332 -.3059
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Table 4-4 ALTITUDE DEVIATION OVER LATITUDE RANGE 25°-58°N

No Drag

i = 63.440  co = 60.00 e = .0024

a Max + Max - hl-hN

(km) (km) (km) (km)

7000 .1136 .1770 .0111
6950 .0987 .2391 .0752
6900 .0854 .3019 .1491
6850 .0819 .3570 .2269
6800 .0710 .4216 .3021
6750 .0614 .4869 .3884
6700 .0530 .5529 .4644
6650 .0391 .6262 .5474
6600 .0332 .6934 .6329
6550 .0281 .7615 .7097

Table 4-5 ALTITUDE DEVIATION OVER LATITUDE RANGE 25°-58°N

With Drag

i =63.440 co = 60.0' e = .0024 f3=.04 x 10-6 km2/kg
a Aa Max + Max - hl-hN

(km) (km) Ae (km) (km) (km)

7000 .0001 .0000000 .1136 .1772 .0108

6950 .0002 .0000000 .0986 .2395 .0757
6900 .0005 .0000000 .0853 .3028 .1502
6850 .0010 .0000000 .0816 .3591 .2295
6800 .0024 .0000001 .0703 .4264 .3080
6750 .0056 .0000003 .0598 .4987 .4028
6700 .0144 .0000007 .0493 .5845 .5021
6650 .0413 .0000020 .0303 .7223 .6599
6600 .1469 .0000071 .0090 1.0760 1.0589
6550 1.0295 .0000486 .0000 3.8963 3.8963
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Table 4-6 ALTITUDE DEVIATION OVER LATITUDE RANGE 30'-60'N
With Drag

i = 63.440 uo = 76.00 e =.003 3 =.0lX10-6 Interval Size = 5 sec.

a Aa Max + Max - hl-hN
(km) (km) Ae (kin) (kim) (km)

6800 .0007 .0000001 .2526 .0646 -.2526
6750 .0016 .0000001 .1632 .1179 -.1632

6700 .0041 .0000004 .0950 .1671 -.0950

6650 .0118 .0000011 .0647 .2324 .0089

6600 .0429 .0000041 .0501 .3342 .1470

6550 .2523 .0000245 .0156 .7736 .7189

=.04x10 -6  Interval Size = 5 sec.

6800 .0026 .0000002 .2491 .0667 -.2491

6750 .0063 .0000006 .1624 .1154 -.1624

6700 .0164 .0000016 .0745 .1817 -.0721
6650 .0476 .0000046 .0548 .2790 .0779

6600 .1759 .0000170 .0314 .5335 .4180

6550 1.2844 .0001244 .0000 2.8811 2.8811

13 .01x10 -6  Interval Size = 10 sec.

6800 .0007 .0000001 .2448 .0724 -.2448

6750 .0016 .0000001 .1462 .1179 -.1462

6700 .0041 .0000004 .0783 .1670 -.0783

6650 .0117 .0000011 .0579 .2392 .0158
6600 .0429 .0000041 .0501 .3341 .1469

6550 .2481 .0000241 .0119 .7765 .7298

....
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4.6 Impulse Requirements To Maintain Perigee/Apogee

To maintain the orbit and freeze the apogee and perigee height

maintenance maneuvers must be performed. One way of performing the maneuvers is

to allow the orbit to decay until one of the elements has changed an amount equal to or

greater than a prescribed tolerance for that element. Another way is to apply corrective

propulsion at perigee and apogee each orbit. In this study the second approach is used

* to provide the propulsion for counteracting drag effects. In both cases a two-impulse

* i maneuver is initiated which transfers the satellite back to the original orbit. The transfer

is virtually coplanar since the atmospheric velocity is small compared to the satellite

velocity and consequently the majority of the perturbing force is in the plane of

motion.

* To conserve propellant a minimum total AV is of particular interest. The

associated maneuver which corresponds to the least amount of energy consumed is the

Hohmann transfer. This type of transfer represents the minimum total AV maneuver

for cases where the ratio of large to small orbit radius is less than 11.8 [5 1,66].

The AV required to maintain the apogee height and then the perigee must

4 be computed separately and then added together to determine the total impulse

required. The amount of AV that is depleted as the satellite moves from the perigee to

apogee should be added at the perigee. The amount of AV that is dissipated going from

apogee back to the perigee should be inserted at the apogee.

Using the vis-viva integral the total AV required can be computed in the

following manner
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perigee

(1) no drag case

(2) (2) actual, if no corrective
propulsion (o < v < 180)

rArA

Ar Figure 4.11 APOGEE CHANGE
apogee DUE TO DRAG

4 "j The velocity at apogee if drag were not present

a,~V~ r~ a,

Since drag affects the radius and apogee height

V2A= rIA - ArA , -Aa A

Therefore

IV A-V2A I=@AVpengee

* - perigee
Arp

(3) = actual, if no corrective
(3) propulsion (180 < v < 3600)

Figure 4.12 PERIGEE CHANGE
apogee DUE TO DRAG
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The velocity at perigee if drag were not present

VP 2g g
* P r, a,

Vp

Since drag affects the radius and perigee height

V3p= ¥ri-Ar al+ Aap

Therefore

AV' IV, -Y3@apogee p p

And

Artl=AV +A
otal =A@perigee @apogee

Table 4-7 shows the AV required to maintain the orbit given an initial set

of orbital elements. Al, El, RIP, and RIA are the semimajor axis, eccentricity, radius

of perigee, and radius of apogee for an unperturbed orbit. A2, E2 and R2A represent

the orbital parameters that exist at apogee if drag is not compensated for at the perigee.

A3, E3, and R3P represent the orbital parameters that exist at perigee if drag is not

compensated for at the apogee. As would be expected the lower the semimajor axis the

more the AV required to maintain the orbit.

As is seen from Tables 4-4 and 4-5 the smaller the semimajor axis the

more the drag affects the altitude deviation over the latitude range. Corrective

propulsion becomes essential to maintaining the minimum altitude variation arc.
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CHAPTER V

* SUN SYNCHRONOUS ORBITS

5.1 Sun Synchronous Orbits

Since the early 1960s the Sun synchronous orbit has been used for most

every meteorological satellite as well as Earth Resources Technology satellites. Data

from satellites in this type of orbit will generate most of the Earth resources data in the

1985-1995 time period [67]. This familiar orbit uses the precession of the orbit line-of-

nodes caused by the Earth's oblateness to maintain a fixed angular orientation of the

* orbit plane relative to the Sun. The required precession, which depends upon the

inclination and semi-latus rectum, is approximately .9856 0/day. The Sun synchronous

orbit condition occurs when the orbit nodal motion is equal to the motion of the Earth

about the Sun. The orbital orientation is effectively frozen with respect to the

Earth-Sun line. By careful execution of final insertion into the desired orbit the angle

between the orbit node and the Sun's right ascension will remain nearly constant.

The Sun synchronous orbit is particularly suitable for Earth observation and

remote sensing applications for the following reasons: (1) the satellite traverses each

latitude at the same local time; the consequence is similar ground lighting conditions on

each pass, (2) the majority of the Earth's surface can be mapped with near north-south

contiguous swaths in a fixed period with repeatability, and (3) the average spacecraft

solar array angle of incidence to the Sun remains within defined limits ensuring

continuous electric power.
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5.2 Sun Synchronous Degradation

Any perturbation which alters the orbit altitude or the orbit inclination

promotes the loss of Sun synchronism. One primary source of synchronism

degradation is atmospheric drag. The principal effect of drag is to reduce altitude and

thereby cause period reduction. This orbit decay separates the corresponding tracks of

two successive repeat cycles. Consequently, the tracks are no longer exactly overlaid.

The study presented in reference 69 reports that for a satellite with an average ballistic

coefficient initially at 678 km the loss in altitude after three months is .19 km. The loss

in altitude induces a nodal sideslip. The sideslip results in a loss of in-orbit phasing of

approximately 2.6 minutes which corresponds to an eastward movement in nodal

crossing of 72.267 km. If corrections are made every three months, Sun synchronism

may be considered as varying ±1.3 minutes about a mean node; an insignificant

disturbance. The adjustment can be achieved by the two.-impulse Hohmann transfer

orbit. The AV required every three months would be about .09 14 rn/sec.

Another source of degradation is the gravitational force. A 1975 Goddard

Space Flight Center study indicated that even zonal harmonics through order 4 aric,

solar gravity dominated the nodal motion. For long periods it was shown that the orbit

inclination and nodal orienitation each exhibited an oscillatory behavior having the same

period. The findings revealed a resonance exists between the inclination and the nodal

motion [68].

5.3 The Nodal Motion

To study the long term nodal motion of Sun synchronous orbits it is

sufficient for this investigation to determine the results to 0(J2). The rate of change )f

* the node from (2.17) is

Z-SA-A
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-" -3n/2 Cos i J2 (Re/p)2 (5.1)

Let

Q= the clock angle, the angle between the longitude of the ascending node
and the mean Sun used computing the local time.

s= the desired precession rate of the longitude of the ascending node; the
same rate as the apparent eastward movement of the Sun.

Re = mean equatorial radius of the Earth

Start with the relationship

ic = -0s (5.2)

Differentiating (5.2) and remembering 0s = constant

bc = = 3n/2 sin i J2 (Re/p) 2 di/ d t  (5.3)

Since the change in inclination due to even zonal harmonics is zero, the next

area to investigate is the change due to solar gravitation. The mathematics of the

gravitational effects of the Sun and Moon on near-Earth satellites was first developed

o i by Musen, et al. in 1961 [70]. These results were later adapted to a more convenient

form which allowed the disturbing function to be expressed in terms of osculating

Keplerian elements for use in the equations of motion.

The complete gravitational disturbing function due to a body such as the Sun

or Moon orbiting the Earth as derived by Kaula [71] is

R = * Y n a n L m n -m)a - 'T+ k m,p,h,q,j ( 2 Fnmp (i)Fnmh(i*)Hnpq(e)Gnhj(e*)

x cos[(n-2p) w+ (n-2p+q)M - (n-2h) 03* - (n-2h+j)M*

+ m(f- ")] (5.4)

.. . . . . . . . . . . . .
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where F, H, and G are polynomials. For tables of Fnmp/h and Gnhj see Kaula [12]. A

table for Hnpq is contained in reference 72. The elements of the disturbing body are

designated by asterisks (see Figure 5.1). Also,

ko=1 and k = 2 ,m O

Examining the trigonometric expression, the terms likely to be significant are

., those of long period. When n - 2p + q = 0 the periodics in M are eliminated.

It is sufficient for this examination to restrict n to 2. Since both the G and H

functions are power series in e and since the lead terms in both are of order e q I,

reasonable accuracy can be achieved for the near circular orbit if q = 0. For a detailed

discussion see Born [72].

*,If q = 0 and n = 2 then from n - 2p + q = 0, p must equal I considering

only zero order terms in e. The controlling terms in the series expansion of the

function G are the ones in which j = 0 (see table in reference 12).

9
9
4Z

. . . . . . . . . . . - t**.. . .
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NORTH VIEW

Osun/Moohn

line of Ares

0 Sun/Moon

equatorial plane

f1 "* M*

Figure 5.1 ANGLE RELATIONSHIPS WITH DISTURBING BODY
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If cc the argument of the trigonometric expression in (5.4) with the above

values of the n, p, q, and j integers then

;- = [-(n - 2h)c)* -(n - 2h),*+ reQ] (5.5)

For Sun synchronism when the Sun is the disturbing force

(n - 2h) M* = rnl

Therefore from (5.5)

n - 2h= m

For long term

n - 2h + j *0

Since n=2 and j=O, h l

If h=O then m=2

Substituting the determined values of the integers n, p, q, j, h, and m into

(!.4)

U~*a 2

R -12a3 F221 (i) F220 (i*)H 2 10 (e) G200 (e*)

x cos [2 co*- 2M*+ 2( K2- )I (5.6)

From the tables of F, G, and H

F220 (i*) = 3 (1 + cos i*)2/4

F221 (i) - 3/2 sin2i (5.7)
G2 0 (e*) and H 2 10 (e) 1

Expressing the change in inclination in terms of the disturbing function

di 1 [cos i R (5.8)
dt -(a)l /2 (I- e2) 112 sin i '0
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Substituting (5.7) into (5.6) and taking the appropriate partials

R = 0 (5.9)

R ".3t*a2 sin 2 i (1+ cos i*)2 sin (-2(o*+M*+fi*-K))
d- 16a, 3

(5.10)

From figure 5.1 Qc =to* + M* + Q* - 0 (5.11)

Substituting (5.9), (5.10), and (5.11) into (5.8) the change in inclination due

to solar attraction is

di 3g* 2

dt 16na,-- sin i (1+ cos i*) sin (-2 0 c ) (5.12)

From IAU (1976) System of Astronomical Constants for the Sun

i*= solar obliquity = 23.45'
t* = 1.32715 x 1011 km 3/sec2

a* = 1.49467 x 108 km

Equation (5.12) compares exactly with the analytically averaged results

found in refeience 68 in which the model used consisted of even zonal harmonics

through order 4 and solar gravitation.

The libration period of the node can now be found. For regions where drag

is negligible and assuming that sin 2i is approximately constant substituting (5.12) into

(5.3) Ic = A sin 20 c  (5.13)

-9..* J (R)2+ COS sin2 i
where A- =32a*(T+ cJ2i(s)2

p = a(l- e2)

-'
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Equation (5.13) is in the form of the familiar pendulum equation and can be

solved analytically using elliptic functions. The period is found to be

T= 2r [1+ 1/4 sin2 fk0 + 9/ 64 sin4  o + 25/256 sin6 2o + 1./(2c)/2

(5.14)

where Oco the initial clock angle

32a*3 J2 (-)2 (1+ cos i*)2 sin2 i

The actual veracity of the findings in this section can be demonstrated by

comparison with actual 1985 NORAD data.

Comparison #1:#11416 U- NOAA6 Weather Satellite
t1 = 006.91066734 day t2 = 364.51214982 day
i = 98.57040 i2 = 98.5375"

e1 = .0012005 e2 = .0011415
a1 = 7187.775 km a2 = 7187.295 km

Qcl= 110.560 'C2_ 106.520
(1922.24 L ascending node) (1906.08 L)

From (5.12) d/dt= -.085139 x 10-3 deg/day di/dt= -.070557 x 10-3 deg/day

AiAvg -.077848 x 10-3 deg/day

At= 357.6014825 days
(Aicomp Avg = -.027840 vs. Aiactual= -.03290)

Comparison #2: #12553 - NOAA7 Weather Satellite
t, = 020.46132110 day t2 = 365.43820864 day

il = 99.02620 i2 = 99.0747-

e, = .001327 e2 = .0012216
al = 7227.384 km a2 = 7226.827 km

.. .-\ I*.. -' . . . . . - * ... .
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(1525 L ascending node) (1600.54 L)

From (5.12) didt= .127187 x 10-3 deg/day di/dt= .112291 x 10-' deg/day

AiAvg= .119739 x 10-3 deg/day

At= 344.9768875 days

(Aicomp Avg= .0413' vs. Aiactual

Table 5-1 CLOCK ANGLE LIBRATION PERIOD

(initial orbital elements for NOAA6 and NOAA7 used)

NOAA6 Period NOAA7 Period
(deg) (years) (years)

0 24.070 24.233

15 24.489 24.655
30 25.823 25.997

45 28.219 28.409

60 31.479 31.692
75 34.540 34.774

90 35.823 36.065

To study the long term effect of lunar gravitation on the change in inclination

the same steps are taken as were followed for the examination of solar gravitation.

Using identical reasoning n = 2, q = 0, p = 1, and j = 0. The argument of the

trigonometric expression in (5.4) is

= [(n-2p) o+ (n-2p+q) M- (n-2h) (o* - (n-2h+j) M* + m

(5.15)

ll~i • .o .. . . ........ .. .. .
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Using these values for n, q, p, and j equation (5.8) becomes

di m (2-m)!"di sin i( a-f )'1/ 2 1 -e2)l/2a*,3 w,h M F(r i)Fmh i*

x H2 10(e)G 2hO (e*)sinoc (5.16)

where ,, = [ (2h-2)(c0*+M*) +m (f - fQ*)] (5.17)

Equation (5.16) can be written in the following form

di_ S sin
dt

where S is the summation over the possible integer values of m and h. From the 1984

Astronomical Almanac the following is data for the Moon:

e* = .054900489

a* = 3.84402 x 105 km

L*= .0048994 x 106 km3/sec 2

i* varies over an 18 year period from 18.320 to 28.580;

average value will be used in this study.

Q* = period of 18.6 years

(o* = period of 8.9 years

Q = period of I year

M* = period of 27.21222 days

Table 5-2 lists the values of S for the respective long term integers. For a

complete listing of values of S containing all possible integer values m, p, h, and j see

Appendix C.

~ .1
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Table 5-2 LUNAR GRAVITATIONAL EFFECT ON

NEAR-CIRCULAR ORBITS

n=2, p= 1, j=0, q-0

m h S (deg/day)

0 0 0

0 0 0

1 0 .186543 x 10-4

1 2 -.803530 x 10-6

2 0 .282902 x 10-3

2 2 .524913 x 10-6

The only value that has an effect on (5.16) of the order of magnitude of that

of the Sun's gravitational effect is S = .282902 x 10-3 sin *. From (5.17)

sin cc = sin [-2 ((0*+ M*+ Q*- Q)J (5.18)

Since M* has a period of 27.21222 days this is the controlling orbital

element and over a long period of time the other elements have little effect on the value

of the trigonometric expression. Approximately once a month the value of the

trigonometric term will have cycled through one period and the effects will cancel.

Therefore, over the long term the effects of lunar gravitation can be ignored in

comparison to the effects of the Sun.

€,S
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5.4 Repeated Ground Track

For altimetry applications it is often desirable for the satellite to periodically

repeat its ground track. This was accomplished by SEASAT A during its last month of

operation and the Earth Observatory Satellite (EOS). Additionally, repeat ground

tracks are planned for many altimeter missions now under consideration. Ground track

repeatability is important for satellite science experiments which are correlated to

ground measurements or which require multiple samplings over a particular point on

the Earth. Repeating the track furnishes a predictable pattern of coverage and permits

direct comparison of similar data taken at regular intervals.

Sun synchronous orbits permit the repetition to occur under similar lighting
conditions. The interval of time during which Earth coverage is fully completed by a

satellite is referred to as the repeat cycle, N, which is measured in days. The number

of orbits during a repeat cycle is m, an integer. The value of N is constrained to be an

integer if the initial track of a repeat cycle is required to be superimposed on the initial

* track of a previous cycle at the same time of day. Each combination of N and m is

valid if it satisfies the requirement for periodicity and similar lighting conditions,

complies with altitude restrictions (imposed by launch vehicle, experiment

instrumentation, tracking, orbit adjustment, etc.), and achieves full Earth coverage.

Full Earth coverage will result if the sensor swath width is adequate for the selected

value of m.

If the requirements restrict the semimajor axis to a range of values the bounds

on the mean motion and period of the orbit are determined. For this study

7115 km < a <7500 km. Therefore,

nmax= "a = 5208 .05 20/day => T = 99.546 minutes
a3

nmin= 4 8 12 .2 2 3 °/day T= 107.734 minutes

z. Zi
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This in turn places limits on the number of revolutions per day.

13.367 < #of revs < 14.467

The desired range of semnimajor axis translates into bounds on the number of

revolutions per day.

If there is a requirement for a repeat cycle of N days it should be remembered

that an integer number of revolutions are necessary. A fraction with the numerator as

the number of revolutions in the repeat cycle time and the denominator as the whole

number of days for the repeat cycle should be formed. This fraction which represents

the number of revolutions per day must be within the determined limits. If the fraction

is reducible, the repeat cycle is actually less than the desired N [73].

5.5 Nodal Distance

The first order gravitational term (I2) is normally the most significant

perturbation to the nodal period for near-Earth satellites. For orbital motion above 400

km (see Tables 4-4 and 4-5) the effect of atmospheric drag is much smaller than that

introduced by J2. Therefore, for the determination of the distance between consecutive

ascending nodes in an Earth-fixed frame only the effects of J2 will be considered here.

The nodal period, PN is the time necessary for the argument of latitude to go

through 21r radians. The anomalistic period, PA is the time to go from perigee to

perigee. Assuming no secular change in a, e, and

let PA 2iT (a3
1 ,) 1 /2 (5.19)
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PN can be obtained from the proportion

S 2n ) PA (5.20)PN=(2n + 6PA

where

6) = change in argument of perigee

N= Ain the absence of perturbations

Also, from references 56 and 74

DN = N ((Oe- )(52)

where

DN = distance between consecutive ascending nodes;

nodal distance

= inertial nodal precession rate

w= Earth rotation rate

Substituting (5.19) and (5.20) in (5.21) and simplifying

27( )1/2 (1 e )

D N = (5.22)1 + 6( - 1/2

For this section, let

p - (1- e2)2

f- (1- 5/4 sin 2i )

R = radius of the Earth at the equator

C = J2 R2

m, N are defined in Section 5.4

., -Z.'."-","-"---"-'-- .' .--.-- - -"..?. ....". ....-.-.'--..-.-...-.-..--,..............-...-.....,. -'.,-7-"'-.
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Using equations (2.17) and (2.18) for co and Q to O(J2) and making the

appropriate substitutions, the nodal distance for a perturbed orbit is

(a7 )1122 a)12 pwe + 3 C cos i
DN= 2 [ ] (5.23)

2a 2 p+ 6Cf

Rearranging (5.23)

2 DN a2p - 41 (a7/i) 1/2 p We = 6n C cos i - 6DN Cf (5.24)

Substituting h2 
- a in (5.24)

14 27Pe h7 - 2DN ph4 + 6C(DNf- n cos i) =0 (5.25)
lt1/2

One way to achieve the desired repeat cycle while taking into account the

gravitational effects of J2 is to determine the desired nodal distance for an unperturbed

satellite. The semimajor axis that is necessary to achieve the same nodal distance under

the influence of the gravitational perturbation can then be computed.

The steps to be taken are:

1. Compute the nodal distance for unperturbed motion as follows

PA (mins) = (24 x 60)N/M

The semimajor axis for unperturbed motion is

a - (P_2 (60)2 t 2)1/3

DN PN we = PAO)e

..

in.
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2. Given an eccentricity and inclination angle and using the required DN in

(S.25) solve the seventh order polynomial to determine the required semimajor axis.

3. If a Sun synchronous orbit is desired an iterative process will be

necessary. For step #2 an approximate inclination angle can initially be used in (5.25)

to determine a semimajor axis. The inclination angle is then computed using

i= cos [-4.7733 x 10- 5 (1- e2)2 a7'2] (5.26)

(assumes Q = .9856 0/day)

This inclination angle is then used in (5.25) and the process is repeated until the

semimajor axis and inclination deviations are within desired tolerances.

4. The computed semimajor axis is used in (5.19) to determine the new

anomalistic period.

5.6 16-Day Repeat Cycle

For a 16-day repeat cycle the fraction discussed in section 5.4 would have a

denominator of 16. To satisfy the orbital semimajor axis criteria the number of

revolutions per day must be between 13.367 and 14.467.

213/16 < 13.367 revs/day < 214/16

231/16 < 14.467 revs/day < 232/16

Since 213 revolutions in the 16 day period is less than 13.367 revs/day it is

not acceptable. Additionally, 232 revolutions in 16 days would necessitate a lower

sernimajor axis than is allowable. Therefore,

214<m_231
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Table 5-3 shows each fraction with a numerator between 214 and 231 and a

denominator of 16. If the fraction is reducible the orbit does not qualify as a 16 day

repeat cycle. Steps 1, 2, and 4 in the previous section are used for Table 5-3. The

semimajor axes listed under the perturbed column are those required to yield the

desired nodal distance for e = .002 and i = 55.00.

Steps 1 through 4 are used to generate Table 5-4. The results show that for a

Sun synchronous orbit influenced by gravitational perturbation the semimajor axis

required to produce the desired nodal distance is approximately 10 km higher than the

unperturbed semimajor axis.

• . . .. . , . . , .. .
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Table 5-3 CHARACTERISTICS OF A 16-DAY REPEAT CYCLE

( ) = valid 16 day cycle < > = semimajor axis

e=.002 i=55.0 UNPERTURBED PERTURBED

# Revs Repeat cycle Orbital Period DN Orbital Period
/16 days Fraction (days) Ht.(km) (mins) (km) Ht.(km) (rains)

214 13 6/16 8

215 137/16 (16) 1095.331 107.163 2990.509 1051.501 106.222
<7473.494> <7429.664>

216 13 8/16=27/2 2

217 139/16 (16) 1049.325 106.175 2962.938 1004.779 105.221
<7427.488> <7382.942>

218 13 10,'16=109/8 8

219 13 11/16 (16) 1004.018 105.205 2935.869 958.750 104.239

<7382.181> <7336.913>

220 13 12/16= 55,4 4

221 13 13/16 (16) 959.417 104.253 2909.302 913.422 103.274
<7337.580> <7291.585>

222 1314/16=111/8 8

223 13 15/16 (16) 915.479 103.318 2883.210 868.753 102.327
<7293.642> <7246.916>

224 14 = 1411 1

225 14 1/16 (16) 872.210 102.400 2857.592 824.749 101.396
<7250.373> <7202.912>

226 14 2/16 -113/8  9

227 14 3,16 (16) 829.570 101.498 2832.410 781.369 100.482
<7207.733> <7159.532>

228 14 4,16=57/4 4

229 145/16 (16) 787.500 100.611 2807.668 738.567 99.582
<7165.663> <7116.730>

230 146"16=115 8 8

231 147,16 (16) 746.100 99.740 2783.361 696.398 98.698
<7124.263> <7074.561 >
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Table 5-4 CHARACTERISTICS OF A SUN SYNCHRONOUS
16-DAY REPEAT ORBIT

< > = semimajor axis

e=.002 UNPERTURBED PERTURBED

# Revs Orbital Period Inclination DN Orbital Period Inclination
'16 days Ht.(km (mins) (degs) (kin) Ht.(km) (mins) (degs)

215 1095.331 107.163 99.918 2990.509 1106.610 107.406 99.971
<7473.494> <7484.773>

217 1049.325 106.175 99.704 2962.938 1060.486 106.414 99.756
<7427.488> <7438.649>

219 1004.018 105.205 99.497 2935.869 1015.062 105.441 99.547
<7382.181> <7393.225>

21 959.417 104.253 99.296 2909.302 970.344 104.486 99.345
<7337.580> <7348.507>

223 915.479 103.318 99.100 2883.210 926.294 103.548 99.148
<7293.642> <7304.457>

225 872.210 102.400 98.912 2857.592 882.915 102.627 98.958
<7250.373> <7261.078>

227 829.570 101.498 98.728 2832.421 840.166 101.722 98.773
<7207.733> <7218.329>

229 787.500 100.611 98.550 2807.668 798.004 100.832 98.594
<7165.663> <7176.167>

231 746.100 99.740 98.377 2783.361 756.481 99.958 98.420
<7124.263> <7134.644>

°

o
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CHAPTER VI

GEOSYNCHRONOUS ORBITS

6.1 Geosynchronous Orbits

Geosynchronous satellites orbit approximately 36,000 km above the surface

of the Earth at a speed of 3.07 km/sec. The term geosynchronous refers to an orbit that

has a period equal to the period of rotation of the Earth relative to an inertial system.

Consequently, the satellite is at rest with respect to the rotating Earth. This type of

orbit is mainly used for communications missions, but has also been used by some

Earth-obserx ation missions and scientific missions.

A perfectly geosynchronous orbit would only be achievable if the Earth were

perfectly symmetrical and no other forces were acting on the satellite except the central

gravity attraction of the Earth. However, additional forces acting on the satellite do

change the shape of the orbit, the orientation of the orbital plane, and the longitude.

These changes can only be compensated for by active orbit control.

As of January 1, 1985, there were approximately 185 satellites that are

considered near-stationary. These satellites are near-circular (e < 0.1), near-equatorial

(i _< 10), and have an orbital period close to one mean sidereal day (0.9 rev/day < n S

1.1 rev/day) 131.

d 6.2 Fundamentals

With the origin of the coordinate system at the center of mass of the Earth the

4,,
4... . . . .."4 ~
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gravitational potential (2.11) can be expanded to include tesseral harmonics which are

due to longitudinal variations in the shape of the Earth.

n(- F'~ ) sn (,+ I~ )n R Pnm(sin ~
r n=2 n=2 m=1 r

x cosm(0- Onm)] (6.1)

The double summation includes the longitude-dependent terms: r is the

geocentric distance, 0 is the geographic longitude, 0 is the latitude, Re is the mean

equatorial radius of the Earth, 6nm is the longitude in the direction of the principal axis

of symmetry of the Earth's distribution accounted for by the nm harmonic, Pnm is the

associated Legendre polynomial, and Jnm is the numerical coefficient characterizing the

Earth's mass distribution [4].

Using a spherical coordinate system (figure 6.1) that is rotating at the same

rate as the angular velocity of the Earth (we) the force field F of the Earth on a point

mass is:
A AF=Frr+F e +F e (6.2)

A A A
where er, eo, and e 0 are unit vectors in their respective directions.

Fr= mn" (6.3a)

FO = M (6.3b)
r d U

F- m U (6.3c)
r cos 75
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Figure 6.2 shows the ellipticity of the Earth's equator. X is the geographic

longitude of the satellite while Xnm is the geographic longitude of the principal nm axis

of Earth symmetry. It's seen that

Onm = OO + (0et + o t nm (6.4)

and X)nm 0-0nm (6.5)

6-3 Equatorial Near-Circular Orbits

The short-period variations in r, 0, and 0 are small for a geosynchronous

orbit. On the equatorial plane there is a contribution to F. from the Jn terms with n odd

and the Jnm terms with (n-m) odd. The effect is to displace the orbital plane slightly

from the equatorial plane. The displacement due to J3 is approximately 50 cm

southwards from the equator. From this fact, F. can be ignored without introducing

any meaningful error [41].

In addition, FR can be ignored for this study. The effect of the zonal

harmonics can be observed using (6.3a) The semimajor axis corresponding to

synchronous motion is reduced by only .5 km if J, is ignored [41].

The tesseral harmonics primarily affect the tangential force F0. Although

these forces are small, their long-term effects can be large when the motion of the

satellite is commensurable with the Earth's rotation rate.

Employing an approach used by Allan (1963) the longitude acceleration can

be determined. The total unperturbed energy of the satellite in a spherical Earth gravit\

field is

E -/a

therefore dE - P/2a2 da (6.6)

/
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The energy change caused by the force acting on the satellite each day is

approximately constant

-2n_
dE = JF•ado=2naF (6.7)

For an orbit that is near-circular the averaged force F) per orbit is mainly the

tangential perturbation force F0.

Substituting F0 -= F in (6.7) and then equating the result with (6.6)

!/2a 2 da = 2ca F0  (6.8)

Solving (6.8) for da, recalling i = n 2a3, and using an orbital period of 1

sidereal day

da -
2/n F0  (6.9)

Starting with g. = n2a3 and using implicit differentiation

-2na/3n (6.10)

Differentiating 0 = n - no  (6.11)

where n is the true mean motion and no is the mean angular velocity of the Earth

0=n (6.12)

Substituting (6.12) in (6.10) and combining with (6.9)

- . , . . . -. - . . . . . .. - ' . . - . ... -. /:. - : . " - . - ' , . ' , - , ' . . . - . . . - . . . " " . ' - . - . ' - " . -.
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=- 3/a Fe (6.13)

It is seen from this equation that the apparent long-period acceleration 0 is

always opposite to the longitudinal force. Equation (6.9) shows that if the force is in

the direction of motion (i.e. +) then the semimajor axis is increasing as is the energy.

At the same time the mean motion and 0 are decreasing.

Since F0 gives the long-period change in the semimajor axis, it also changes

the period of the satellite. From Kepler's third law, the period of a 24-ho'ir orbit is

T = 2.t (a3/b)" 2  (6.14)

Therefore

dT= 37t (a/,) 11 2 da (6.15)

Substituting (6.9) for da in (6.15) the change in period each day of a

24--hour near-circular orbit is given by

dT = 12r 2 (a 7/p 3 ) 1 2 F0  (6.16)

If the present investigation is restricted to the dominant J,2 term m = n 2

in (6.1) and (6.3c) then substituting into (6.13) with 4 = 0, r = a, and n = 27t

0 = A22 sin 2 (0 - 022) rad/sid.day2 (6.17)

where A22 = -727'2 J2 (Rc/a)2

* The coefficient A22 is always positive if all the tesseral inn, terms in tile

gravity potential are arbitrarily assigned as negative numbers. Equation (6.17)

.......................................... ,
. . *
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represents the drift acceleration as a function of the longitude in a second-order gravity

field for an equatorial synchronous satellite where Fe is constant at every point in the

orbit. Satellite data has shown that for eccentricities as high as .0012 the equation is

extremely accurate. If 0 is taken as the mean longitude of the ascending and

descending nodes (6.17), with reasonable accuracy, represents the 24-hour drift

regime for eccentricities as high as 0.3 1491.

The results of this approach compare exactly with those of the method

completed by Kaula 1121 in which the following resonating disturbing function was

used

R Qnm cos m (J) M -- nm 0 (6.18)
(n m~~cnm

% here Q,, is a polymonial function of inclination, eccentricity, sernimajor

axis, and respective pherical harmonics (see page 50, reference 12). R can be

cxerciscd in the l range planetarN' equation

dadt 2 na G,

The change in semiajor axis will cause an acceleration in the satellite's

lngitude \ hich is defined by () - Q - Q , 0 (6.19)

Using Kepler's law

N1= ndt I . dn/dt

Therefore

- Q'Dnia daidt = 2/na arI/a 0R/a\ -3a (6.20)

,1
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Taking the partial of R (6.18) with respect to M, using (6.19) and

substituting in (6.20) the result is

- Y- m Qm sin m(X- Xn
a2 (n-m)even

when n=m=2

a=- Q 22 sin 2 (XXnm) (6.21)

3n 2 a2 j22 (R/a)2 @ i=

letting n2 = 472

Q, -12t 2 a2 2 (R c/a)2 (6.22)

Substituting (6.21) and (6.5) in (6.20)

" = -727[2 j2 (Re/a)2 sin 2 (0 - Om) (6.23)

which is equivalent to (6.17).

Vsi'mn (6. 10) and (6.11)

6 = -3 n/2a da (6.24)

5l ing (6.8) for da and substituting in (6.24) with n 27c
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-- 12ir2a2 F
= F8

Substituting for F. to second-order with * = 00

0 = -247r2 J 22 (Re/a)2 sin 2 (0- 022)

O = A22/3 sin 2 (0 - 022) rad/sid. day (6.25)

This represents the apparent net longitudinal drift rate of the 24-hour

equatorial near-circular orbit's ground track with respect to the surface of the Earth.

6.4 Stable and Unstable Equilibrium Points

The actual tangential force on the satellite from (6.13) and (6.17) is

a-

F =-a/3 =-a/ 3 A, sin 2 (0-022) (6.26)

It is seen from this equation that the force vanishes when 0 - 022 n /2 I where 1 = 0,

1, 2, and 3. These values correspond to the major and minor axes of the equatorial

cllipse. The force is directed towards the nearest end of the major axis with the

maximum value at the 450 points between the axes.
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" Minor Axis

no

Greenwich 00

Major Axis

0222 + T

Figure 6.3 THE EQUILIBRIUM POINTS

Blitzer, et al., provided a mathematical derivation demonstrating that the two

points on the minor axis are positions of stable equilibrium while those on the major

axis are unstable points (391. Later, Blitzer showed that when the entire spectrum of

tesseral harmonics is included the equilibrium points were no longer symmetrically

located on the extensions of the principal axes of the equatorial ellipse. The radial and

latitudinal displacements from the symmetrical positions are negligible while the

-Ul
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longitudinal deviations can vary by 3' or more. The dominance of the J22 term still

limits the number of equilibrium positions to four [44]. The stable longitudes are near

75:E and 105 0W whereas the unstable longitudes are approximately 165°E and 15'W

[41,751.

Since the stable equilibrium points exist along the minor axes, it is

convenient to change the origin (see figure 6.3). Thus,

1 = 0 -0 ± n/2

Equation (6.17) becomes

14 = -A22 sin 2  (6.27)

Multiplying (6.27) by *j leads to a first integral which can be written as [411

j2 - 2A2 cos2 N=C (6.28)

C is a constant of the motion which is determined by the initial conditions.

riom (6.28) it follows that C > -2A,2 cos2 cos2 If the initial conditions are such that C

is small, then V cannot go through a full cycle. If C is such that there is a maximum

departure of Wm which is captured between -7t/2 and n/2 then Nm = 0.

Therefore, from (6.28)

C = -2A,2 cos 2 Nm

and
cos Wm (C/-2A22)1/2 (6.29)

If the maximum value W/m achieves is 7r/2 then C must equal zero. If ym is

less than nt/2 then C < 0.

Referring back to (6.28) with C < 0

,' . -4 -. . .' - " . . . ' . .. - - . . . .. -' - . . . .? .: . . -.- .- . . i - -" -.. . .- . ". -- . . -- .- .
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Wo 2 - 2A 22 cos 2  0

Therefore,
Ther , I < 1(2A22) /2 CoS W (6.30)

If this condition is satisfied the satellite will oscillate in longitude about the
stable equilibrium point. If not satisfied, the satellite circulates continuously around the

Earth's longitudes. In addition, the maximum angle, ocl, to which the satellite is

confined in its oscillation is found from

@0 - 2A 22 cos 2 Wo -2A22 cOs 2 \Vm

Therefore,

-1t 2(co 2 1/2
4m1 COS (COS -1 " 2]2A 22

(6.31)

Using (6.28) with m = 0

W2 2A 22 (cos2 4 - COS2 Wm) (6.32)

To find the period of the oscillation proceed in the following manner:

substitute cos2 , - 1- sin2 W in (6.32) and solve for js

@= (2A22)1/
2 (sin 2Wm - sin 24) 1/2

let k2= 1/sin2m

therefore,

u - dW4/dt = (2A22)112 ('/k2 - sin2-)" 2

(6.33)

,4 ' ~ "• •" "*" ' " " " ' ' . ", . . '0'.bt ' " , l ' .% ' 1% " q , - ' -
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Following the procedure used by Kaula [12] shift dt and functions of N to

opposite sides of the equation

dt k 1/2 [1-k 2.2]-l/2 dy
(2A2 2 )

integrating

t k . dxV kFky
(2A 2 2 )/ 2  k 2 2(k12 A')1/2

(6.34)

where F is an elliptic integral of the first kind. The period of a complete

oscillation becomes

T=- 4k 2 F(kWm)  (6.35)

As Vm approaches the unstable point of equilibrium the period increases with

amplitude.

Since k 1 k >sin Wm

In order to evaluate the resulting integral the following transformation can be

used 1761

F(ky m) = k- 1 2 F(1/k, sin -1 (k 1/2 sin W.)) (6.36)

Substituting (6.36) in (6.35)

T ( 8 k/A 1 2 )1/2 F(l/k, sing (k" 2 sin m ))sid.davs (6.37)

- . . . . .. . . .
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Table 6-1 PERIOD OF OSCILLATION ABOUT
THE STABLE EQUILIBRIUM POINT

J22 = -1.7 x 10-6 0 (see 6.31)

a = 42,163 km y= sin -' (k1" 2 sin Wm)

- 00 A22 = 2.764 x 10-5 rad/sid.day

Vm (deg) y (deg) ( 8 k/A 2 2)1/ 2  F T (days)

10 24.627 1291.041 .4299 555.03

20 35.791 919.916 .6292 578.79

30 45.000 760.833 .8044 612.01
40 53.297 671.023 .9839 660.19

50 61.073 614.676 1.1890 730.85
60 68.529 578.108 1.4507 838.66
70 75.784 554.991 1.8256 1013.21
80 82.920 542.117 2.4965 1353.40

I!%
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6.5 Inclined Near-Circular Geosynchronous Orbits

This type of orbit has the following particular characteristics:
(1) The satellite crosses the equator twice a day

- at the ascending and descending nodes.

(2) Excluding perturbations, the ground track is repeated.

(3) The ground track is a closed curve.

For an inclined 24-hour satellite the energy changing force on the satellite is

no longer constant over a single orbit. A satellite in a near-circular orbit now describes

a closed figure eight path over the Earth's surface centered on the equator.

Greenwich
Longitude --

1' Instantaneous
Subsatellitemax=<- - Position

________East

-2 EQUATOR

Longitude ..............
of equatorial
major axis

. ......... . ......- 4

Figure 6.4 SATELLITE GROUND TRACK

.,. .
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At each point on the path the tangential force varies, as both the longitude and

latitude change during the daily excursion. The force along the track is now composed

of contributions from both latitude and longitude gravity perturbation forces. The zonal

gravity forces have no net daily energy effect. For the inclined orbit the drift equations

of motion will contain many small, short-period alterations introducing difficult

non-linearities. To arrive at a theory for long-term drift motion Wagner [49] used a

first approximation perturbation technique which smooths out the short-period effects

and averages over the 24-hour period.

Using the tangential perturbing force (FT) in place of Fe in (6.13)

=/a FT (6.38)

where FT = F cos , + F. sin,

= angle between a meridian plane and the orbital plane

and proceeding on the basis of the orbit-averaging theory established by Wagner in

reference 49 an inclination factor can be determined. This factor is applied to the zero

inclination regime to get the proper acceleration for the inclined satellite. The simple

factor which is independent of the longitude is used to modify the equatorial regime.

The orbit-averaging modification gives the complete drift through m = n =4

as

4Ran
-127c 2 C F(i) nm ( R sin m (X - Xnm) radcL day 2

n=2 m=l rmFin /ikdy

(6.39)

.......................... 0
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l i, -( I + C O S i ) 2

where C22 = 6 F(i) (1+
C2222 4

-3 (1+ cos i) 5 sin2i (1+3 cos i)
31= F(i)3 1  2 8

(1+i cosi)
C33 =45 F(i) 33  (I8

C 4 =-15 Fi)4 2 = (1+ cos i)2 7 sin 2 iCOSi(+COSi)C42 = (i)4 2 =  4 4

(1+ cos i)4

C44 =420 16

The contribution to the longitude acceleration of the inclined 24-hour

near-circular orbit due to the 32, 41, and 43 harmonics is zero.

As was demonstrated in section 6.4 (see Table 6-1) the amplitude of the

oscillation depends on the initial longitude. Figure 6.5 shows the amplitudes of the

oscillations for orbits with an initial longitude of 750 from the stable point on the minor

axis (75°E). The effect of inclination is to reduce the rate of change of the mean

longitude and as a result, increase the period of the oscillation.

180 In;tjl] LoTIgLudc = 0 dg.

162-

144- S i=60'

1 2 6 -

108 -Stable

90- Longitude

. 72

i=20.

. 36-
= 18

C 0-

0 1 2 Time (Years) 3 4 5

Figure 6.5 MEAN LONGITUDE VS. TIME [751

-. A,

- I%
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Because of the increasing number of applications of the geosynchronous

orbit, available space in the orbital arc is being depleted. The NASA Space

Transportation System is expected to launch approximately 160 geosynchronous

satellites between 1980 and 1990 [76]. These satellites need to have the proper

separation to avoid physical and/or radio frequency interference. The geosynchronous

arc of interest to the domestic U.S. is 55°W longitude and 135°W longitude.

Extensive future traffic and the large amounts of arc needed for certain projects, such

as space manufacturing, will promote the use of the inclined orbit. In addition, inclined

geosynchronous orbits are useful for applications where there must be extended

viewing time [75].

An enormous advantage of the inclined geosynchronous orbit is it allows

several satellites to have the same figure eight ground track. They will cross the

equator at the same longitude, called the gateway. The gateway may require only a few

degrees of the geosynchronous arc, while accommodating up to 10-12 satellites [75].

6.6 Velocity Requirements for Orbit Maintenance

To maintain a satellite in a synchronous position other than the two stable

positions it is necessary to do so \kith propulsion. To determine the AV requied to

offset the orbit perturbation consideration will be given only to in-plane corrections.

The following assumptions are made for this study: (1) the orbit is near-circular so

that AW in the radial direction is negligible as compared to the tangential component,

and (2) there i no coupling betwecn the in-plane and out-of-plane perturbations.

The orbit-averaged longitude drift of an inclined near-circular orbit to O(J,,)

is obtained from (6.39)

= D,2 sin 2 (X, - X,) rad/sid.day2 (6.40)
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where

D22= -727E2 (Re/r)2 J22 F(i) 22

Following the approach used in references 49 and 75 the above equation can

be linearized in terms of the variation A) defined by

X = Xs + AX (6.41)

where ks is the desired mean longitude of the ascending node. Substituting (6.41) into

(6.40) and assuming AX is small the result is

- [2D22 cos 2(X s - X22)] AX = D22 sin 2(X, - X22) (6.42)

The complete solution to (6.42) is

AX = A cos wt B sin wt - 1/2 tan 2(X s - ?22) (6.43)

where A and B are constants and w = [-2D 22 cos 2(Xs- X2)] 1/2.

To find the constants of integration it is assumed that there is no orbit

injection error (i.e. AX = 0 and AX = 0 at t = 0). The solution (6.43) becomes

AX = 1/2 tan 2(Xs - ),, 2 )[ COS wt- l (6.44)

Equation (6.44) can be simplified by expanding cos wt and inserting the

expression for w. The result is

:- .. -; - .. . . . ... .-.--.- -.. , -.--. .... .... ...... .... k..... . . . .... .......-...
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2A . D22t sin 2(X.s - X2 2 )

A=2 (6.45)

In reference 49 it is shown that the rate of change of the near-circular radial

distance satisfies the equation

S= B22 sin 2(X - X22) length units/sid.day (6.46)

where

B, 2 = 24tr (Re/r)2 J22 F(i) 22

Equation (6.46) can be linearized in terms of the variation Ar defined by

r = rs + Ar (6.47)

Substituting into (6.46) the expressions for Ar and AX and assuming AX. to be small

Ar = B 22 sin 2(X s - ?22) + 2B 2 2 cos 2(?.s - X-22) AX (6.48)

Substituting (6.45) into (6.48) and solving the differential equation

Ar = B, sin 2(Xs - x' 2) [+ 1/3 D 22  cos 2(Xs - X22)] (6.49)

(the constant of integration is zero since Ar = 0 at t = 0).

To determine the AV required for station keeping (6.45) is used to compute

the time of drift. At that time it will have a radial distance of rs ± Ar. For a

near-circular orbit the velocity relative to inertial space is given by

V1 =(rs * Ar) Coe -rs v (6.50)

" ' " "% '" " " "" '" " '" "'" "" "' ' "" '""" "" " '" '""' % " """ 2" -" "," "" " -""" "" " "". "" . " ".' ' " ," "" .' .. . " -~ 
"

. "" -
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where We = Earth rotation rate

, = rate of change in true anomaly

To return the satellite to the original value of Xs it will be necessary to

transfer a near-circular orbit radius rs - Ar with a velocity V2 relative to the inertial

space given by

V2 =(rs- Ar) Coe + rs V (6.51)

Minimum energy expenditure would be achieved by a Hohmann transfer

with r, + Ar being the apogee distance and rs - Ar the perigee distance. The transfer

can be accomplished by applying an impulse AV1 at time to.

AV1 =V [ r - Ar 2 ]

r

Since A I/ 1 * AVI "/2 V1 Arr (6.52)

At time t, plus one half of a sidereal day a second impulse AV, is applied to slow the

vehicle down to the desired velocity V,.

r + Ar P
AV, = V2 [1- r )1 ? ] 1/2 V, Ar/r (6.53)2 r s

s

The %ehicle will move back towards the initial position . as Ar increases to zero.

Substituting (6.50) into (6.52) and (6.51 ) into (6.53) and neglecting second

and higher order terms of the small variations the following results
J

AV 1  - 1/2 Aro e

AV, = - 1/2 Aro)

• ...-... . ... ..v .. ..:*. . .:...... ..... . . . . . .. . . . . . : .. . . -. ... .i . . .:}, .,--v .-- - .
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Therefore, the required AV for station keeping is

AV= I AV, + Iay2I- I Arco, (6.54)

The period for the complete cycle can be determined from (6.45)

T= 2 [ 2A. ]12 (6.55)
D2 sin 2(ks-k22)

Using (6.49), while neglecting the second term (due to order of magnitude),

(6.45), (6.54) and (6.55) the velocity change per unit of operating time is therefore

AV _ e B22 sin 2(X s - X22 ) (6.56)

T 2

Figure 6.6 shows the in-plane velocity corrections necessary to compensate

for longitude drift.
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20.

30

2.0- 40.
.] 50'

1.50'

1.0

- 0.5

0.0

0.5
<.1.0

-1.5

-2.0

-180 -135 -90 -45 0 45 90 135 180

Longitude Rclatic to Stable Point (Degrees) (p -

Figure 6.6 IN-PLANE VELOCITY CORRECTION
FOR LONGITUDE DRIFT



6.7 Solar Radiation Effects

This section is not intended to be a comprehensive study of the effects of

solar radiation but rather an introduction to the complexity of the topic. Although the

non-gravitational perturbation is usually small, for geosynchronous satellites with

large solar collectors it could be substantial. For the Solar Power Satellite (SPS), the

perturbation due to solar radiation was of the order of magnitude of gravitational terms

due to the Sun, the Moon, and J2. The major effect of this perturbation is oscillation of

the eccentricity [37, 69, 77].

The perturbation equation for eccentricity in the Gaussian form is
e 2 2

de (1- 1/2 2cosve(l+cos v)2
dt - 2 [sin v f + f 2 (6.57)
dt na 1+ ecos v

where f1 and f2 are the radial and transverse components of the disturbing

acceleration.

For near-circular orbits, na = V (the velocity of the satellite) and since e << I

(6.57) becomes

de/dt =I/V [ sin v f +  2 cos v + e- e co- v) f 2] (6.58)

To determine the value of f1 and f2 the following assumptions are made:

(1) the distance between the Sun and satellite is infinite; the parallax of the

Sun is therefore negligible.

(2) the solar flux is constant along the orbit when there is no shadow; it is

time independent.

(3) There is no re-radiation from the surface of the Earth.

The pressure, P, exerted by the electromagnetic radiation from the Sun is

approximately 4.5 x 10.6 newton/m 2 [371. The electromagnetic radiation pressure
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exerts a force on the satellite proportional to its cross-section/mass ratio. Accurate

modeling of the solar radiation acceleration is very difficult because the cross-section

exposure to sunlight varies along the orbit. In addition, the acceleration ceases each

time the satellite passes through the shadow of the Earth.

A convenient parameter to use is the effective cross-section/mass ratio

defined by

C = A/m (1+ r) typical values are of the magnitude 10-2m2/kg

where

A = cross-sectional area

m = mass

E = a factor determined from empirical data

Therefore,

f = -Pa cos s sin i

f2= Pa sin s sini

where s = the sidereal angle of the Sun

i= angle between the direction of the Sun

and the orbit normal

Equation (6.58) becomes

de/dt = Pa/V [-sin v cos s sin i' + (2 cos v + e- e cos 2v) sin s sin i']

(6.59)

the factor P/V is approximately 1.298 x 10- kg/m2

To use (6.59) the true anomaly at which the satellite enters and leaves the

Earth's shadow must be known. The change in eccentricity over a period of time can

then be obtained by numerical integration of the orbit. For the Solar Power Satellitc

with an area to weight ratio of 1.73 m2/kg the max change in eccentricity over a year

.1

J~. .. ......................... .* .e*f. .. ° . . . - .- % . ,. ,...% .- .% . . -. •.. . .
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varies between .025 and .042 depending upon inclination angle and the ascending

node (see reference 75 for detailed figures and results). The motion of eccentricity is

periodic with a period of one year.

To compensate for the change in eccentricity a variety of burn cycles can be

used. If judiciously selected the burns can be accomplished in conjunction with the

tangential bums (see section 6.6) performed for longitude station keeping.

Lit - :W---.*
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APPENDIX A

Table of First Ten Bessel Coefficient Derivatives:

2 4 6 8
3e 5e 7e e

2J (e)= 1 8-+ 192 9,216 1,920

2 4 6 8
2e e e eJ, (2e)-= e(1 - -3- - 0 + 1,28

2 2 4 6 8
27e ( 5 e  189e 243e 2,673e

J3 (3e) = 16-- -6 -  640 5, 120 543,440

* 34 6
0(e= 8e- 6 2 8e4  8e
4 3 5 15 63

2 315 4 35e 6  375 8J5(e = 7----e (1-- - fe)
768 2 -4 44+ 8

243 5 12e2  135 4J6 (6e)= - e (1--7- + l- e)
6 407 112

J 7(343)2 
6 ( 63e 2  3,773e4

92,160 e 32 2,304

8 (8e)- 4,09e7 (1 5 e 2 + 4

315 2 15

10 8 2
91e 99e\

J9 (9e)= 9 9,

9,765.625 9
10 (lOe) 362,880 e
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APPENDIX B

The Upper Atmosphere of the Earth 160]

ALTITUDE DENSITY SCALE AL1TI1E DENSITY SCALE
(kirn) lk/m) HEIGHT (kin) (kg/km') HEIGHT

150 2.076 16.321 480 7.208 61.543
160 1.233 19.194 490 6.127 62.047
170 7.815 -1 21.838 500 5.215 62.682
180 5.194 24.477 510 4.446 63.268
190 3.581 26.891 520 3.796 63.887
200 2.541 29.147 530 3.246 64.527
210 1.846 31.295 540 2.780 65.074
220 1.367 33.288 550 2.384 66.038
230 1.029 35.207 560 2.049 66.518
240 7.858 -2 37.086 570 1. '3 67.427
250 6.073 38.807 580 1.0 68.307
260 4.742 40.421 590 1.313 69.482
270 3.738 42.033 600 1.137 70.129
280 2.971 43.544 610 9.859 -5 71.428
.90 2.378 44.915 620 8.571 72.591

300 1.916 46.291 630 7.468 73.913
310 1.552 47.461 640 6.523 75.320
320 1.264 48.717 650 5.712 76.842
330 1.035 50.030 660 5.015 78.616
340 8.503 -3 51.945 670 4.416 80.477
350 7.014 52.857 680 3.900 82.342
360 5.805 53.779 690 3.454 84.849
370 4.820 54.574 700 3.070 86.820
380 4.013 55.377 710 2.736 89.907
390 3.350 56.094 720 2.448 92.439
400 2.803 56.729 730 2.197 95.692
410 2.350 57.955 740 1.979 98.528
420 1.975 58.781 750 1.788 102.629
430 1.662 59.171 760 1.622 106.017
440 1.402 59.915 770 1.476 110.236

*450 1.184 60.438 780 1.348 114.219
460 1.002 -3 60.719 790 1.235 119.677
470 8.492 -4 61.001 800 1.136 124.023
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APPENDIX C

Lunar Gravitational Effect on Near-Circular Orbits

*n m p h j S (deg/day) n m p h j S (deg/day)

* -2 0 0 0 -1 -.34637 x 10-12  2 0 2 2 -1 -.242457 x10-1 1

2 0 0 0 0 .12618 x 10-10  2 0 2 2 0 .126178 x 10-10

2 0 0 0 1 .242457 x 101  2 0 2 2 1 -. 346367 x 10-12

2 0 0 1 -1 .6670473 x10-11  2 1 0 0 -1 -. 795364 x10-11

2 0 0 1 0 .810008 x10-10  2 1 0 0 0 .289748 x10-9

2 0 0 1 1 .6670473 x10-1 1  2 1 0 0 1 .556755 x10-10

2 0 0 2 -1 .2424568 x10-1 1  2 1 0 1 -1 -.228331 x10-10

2 0 0 2 0 .1261799 x10-10  2 1 0 1 0 -. 277267 x10-9

2 0 0 2 1 -. 346367 x 10' 2 1 0 1 1 .761104 x10-11

2 0 1 0 -1 .0 2 1 0 2 -1 -. 239822 x10-11

2 20 10 0 .0 21 02 0 -. 124809 x10-10

20 10 1 .0 21 02 1 .342603 x10-12

2 201 1 -1 .0 21 10 -1 -.512061 x10-6

2 0 1 1 0 .0 2 1 1 0 0 .186543 x10-4

20 1 1 1 .0 21 10 1 .358442 x10-5

2 0 12-1 .0 21 11 -1 -.147001 x10-5

2 0 1 2 0 .0 2 1 1 1 0 -178506 x10-4

20 12 1 .0 2 1 11 1 -.147001 x10-5

2 0 2 0 -1 .34637 x10-12  2 1 1 2 -1 -.15440 x10-6

2 0 2 0 0 -. 12618 x 10-10  2 1 1 2 0 -. 803530 x10-6

I 2 0 2 0 1 -. 242457 x10-11  2 1 1 2 1 .220570 x10-7

2 0 2 1 -1 -. 667047 x10-11  2 1 2 0 -1 .570057 x10-11

2 0 2 1 0 -. 810008 x10-10  2 1 2 0 0 -. 207669 x10-9

-2 0 2 1 1 -. 667047 x10-11 2 1 2 0 1 -. 399039 x10-10
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n m p hi j S (deg/day) n mn p h j S (deg/day)

*2 1 2 1 -1 .163651 x10-10  2 2 2 0 -1 -.197649 x10-10

2 1 2 1 0 .198724 x10-9  2 2 2 0 0 .720029 x10-9

*2 1 2 1 1 .163651 x10-10  2 2 2 0 1 .138355 x10-9

2 1 2 2 -1 -. 170333 x10-11  2 2 2 1 -1 .510825 x10-11

*2 1 2 2 0 -. 886448 x10-11  2 22 1 0 .620305 x10-10

2 1 2 2 1 .243332 x10-12  2 2 2 1 1 .510825 x10-11

*2 2 0 0 -1 -. 144043 x10-10  2 2 2 2 -1 .256711 x 10-12

2200 0 .524742 x10-9  222 2 0 .133598 x10-11

2 2 0 0 1 .100830 x10-9  2 2 2 2 1 -. 366730 x10-13

2 2 0 1 -1 .372278 x10-11

2 2 0 1 0 .452065 x10-10

22 0 1 1 .372278 x10-11

2 2 0 2 -1 .187086 x10-12

2 2 0 2 0 .973635 x10-12

2 2 0 2 1 -. 267265 x10-13

* 2 2 1 0 -1 .776574 x10-5

2 2 1 0 0 .2829024 x10-3

2 2 1 0 1 .543602 xI0-4

* 2 2 1 1 -1 .200705 x10-5

2 2 1 1 0 .243720 x104

2 2 1 1 1 .200705 x10-5

2 2 1 2 -1 .100863 x10-6

2 2 1 2 0 .524913 x10-6

2 2 1 2 1 -. 144089 x10-7
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