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Significant progress was made in a number of aspects of stochastic

systems. The problem of adaptive control of priority assignment in queueing

systems was solved. A distance-measures approach to the problem of

approximation and identification of queueing systems was studied. A problem

of adaptively controlling a discounted-reward finite-state Markov decision

process was solved. Major new results were obtained for the problem of

adaptive control with incomplete observations. In particular, we have

studied in depth a problem of adaptive control with incomplete observations,

in which the state is a finite state Markov process.
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I SUMMARY OF RESEARCH PROGRESS AND RESULTS

During the first year of research supported by this grant, we have

begun to make significant progress in a number of the areas which we

proposed to investigate. In this section, we summarize the progress in

those areas which have resulted in publications during the past year.

A. Adaptive Stochastic Control with Complete Observations

The assignment of priorities among customers (or demands or tasks)

that arrive to a service station (or processor) is an important problem

encountered in many situations, from computer networks to resource planning;

the adaptive version of this problem is considered in [i]. In the priority

assignment (or dynamic scheduling) problem, a single-server queueing system

is considered whose customers are of K different classes. Customers of the

several classes arrive according to independent Poisson processes with

(known) mean arrival rates Ai, i=l,...,K, and the service times, Si, for

class i customers are independent and identically distributed with unknown

service rates /i = n/mi, where mi  E(Si). The state process is X(t) =

(X (t),.... XK(t)), where Xi(t) is the number of class i customers in the

system at time t, and the action space is A = {O,1,...,K}. The decision

points Tn (T0 0) are the epochs at which either a service is completed or

a customer arrives to find the server idle; if the action a =ieA is chosen,

then the next customer to be served is of class i, if 1 <i <K, and a =0

when the server chooses to be idle. A holding cost ci >0 is incurred for

each unit of time that a class i customer stays in the system, so that a

cost rate kl(x,a) = c 1xl +.. +cKx K is incurred until the next transition

occurs. Thus the expected cost is c(x,a) = kl(x,a)T(x,a).
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moment and that the total traffic intensity p = elm I +I .• + KmK satisfies

the stability requirement that p <1, it can be obtained that in the class

of nonpreemptive work-conserving policies, an optimal stationary policy is

the well-known "ce-rule" that ranks the classes so that c1eI > ... >C KeK*

Note that the co-rule does not depend on the arrival rates.

It should be noted that, strictly speaking, the priority assignment

problem is not included in the class of decision processes discussed above,

because (under a stationary policy, like the ce-rule above) the process X(t)

is not semi-Markov; the process can have jumps (due to new arrivals) between

two con.pcutive decision points. However, if we view a "transition" as

taking place only at the decision points Tn defined above, namely, if instead

of X(t) we consider the process X'(t) = X(Tn ), Tn < Tn+ l

semi-Markov. The important observation for our purposes, though, is that

X(t) itself is a semi-regenerative process with embedded Markov chain X =

X(Tn), n=0,l,..., and that, under the stability assumption p <1, the

processes X(t), X'(t) and X have all the same limiting behavior, that is,

the same limiting distribution. In summary, the moral is that our adaptive

control scheme can be applied to more general problems provided that they

can be reduced to equivalent semi-Markov decision problems.

With respect to the parameter estimation, we note that, since the

unknown parameters ei = 1/mi (1 <i <K) are given in terms of the mean values

the natural strongly consistent estimates to choose in Step II are '3i1,n
1/i,n' n=l,2,..., where mi  are the sample mean (or first moment)

" ,nn

estimates of the mi. Their strong consistency follows from the law of large

numbers, and from it we can immediately deduce Step III: as n-, f(X,6n) -

n

f(x,e O) a.s., for any state x, where f denotes the co-rule, and 0ne0 are

the vectors of parameter estimates and true service rates, respectively.

S3
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Notice that, because of the particular form of this problem and the

relationship between the observations and the unknown parameter, strongly

consistent estimates are obtained from the easily computable sample mean;

thus the modification of maximum likelihood proposed by Kumar and the

strong hypotheses of other papers are unnecessary. Finally, Step IV, that

is, the optimality of the adaptive cO-rule is verified in [i].

In [ii], we have considered general discounted-reward finite state

Markov decision processes which depend on unknown parameters. An adaptive

policy inspired by the nonstationary value iteration (NVI) scheme of

Federgruen and Schweitzer is proposed; this is a variant of the usual method

of successive approximations. It is shown that this adaptive policy is

asymptotically discount optimal in the sense of Schl. This NVI policy is

compared with the certainty equivalent or naive feedback control (NFC)

policy. The NFC requires computation and storage of the optimal policy

for all values of the parameter 0; this represents considerable off-line

computation and considerable storage, particularly if the parameter set is

not finite. On the other hand, the NVI policy requires more on-line

computation.

In related work, we have considered the identification and approximation

of queueing systems in [iii]. In this paper, a distance-measures approach

to such problems is taken. This approach combines ideas from statistical

robustness, information-type measures, and parameter-continuity of stochastic

processes. If one uses the appropriate distance measure, it is possible to

obtain results on contiguity and asymptotic equivalence of the probability

measures associated with the queueing systems, efficient estimates, most

powerful tests, "quick" consistency, and other qualitative information that

it would be difficult to obtain otherwise.

4
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B. Adaptive Stochastic Control with Incomplete Observations

As we proposed, we have begun a major new direction of research involving

adaptive estimation and control problems for stochastic systems with

incomplete (or noisy) observations of the state. We have already been

successful in obtaining some interesting new results; the first of these are

reported in [iv]. In [iv], we consider discounted-reward, denumerable state

space, Markov decision processes (MDP's) with incomplete state information

"nd depending on unknown parameters. We are specifically interested in

three problems: (a) How do we obtain a strongly consistent parameter

estimation scheme based on partial state information? (b) How do we find

"good" approximations of the optimal reward function? (c) How do we find

(asymptotically) optimal policies, called below I-policies?

We approach these problems by following the usual procedure in which

*first the Markov decision process with incomplete state information (MDP-II)

is transformed into a Markov decision process with complete state information

(MDP-I) whose state space 4: =P(S) is the space of all probability measures

on the state space S of the original MDP-II. Thus, since these two processes

are equivalent -- in the sense that their optimal reward functions are equal

-- problems (a), (b) and (c) are then transformed into the standard situation

of a completely observed MDP-I with Polish (i.e., complete separable metric)

state space D. Having done this, we can conclude the following: (i) There

exists a sequence of estimators of the unknown parameters, which is strongly

consistent for any I-policy. (ii) A nonstationary value-iteration (NVI)

scheme can be used to solve both problems (b) and (c).

Part (i) is obtained by giving conditions on the MDP-II which imply

the strong consistency of the conditional least squares estimators of Klimko

and Nelson. To obtain (ii) we use the NVI scheme of Federgruen and Schweitzer

5



and the NVI adaptive policy [iv] to Markov decision processes with Polish

state and action spaces. Thus, in short, we show that results for parameter-

adaptive discounted MDP's with complete state observations [ii] under the

usual (continuity and compactness) assumptions can be extended to partially

* observed MDP's with unknown parameters.

In [v], we have begun the investigation of the adaptive estimation

and control of finite state Markov processes, as we proposed. The state is

a finite state Markov chain xte-{y, .... nl with primitive transition matrix

Q. The observation process yte{Ol}. If Q is known, there is a finite

l n Tdimensional recursive filter for Pt+lit = [Pt+llt,...Pt+llt , where pt+lIt

P[X t+l='1i IY0 ..... Yt ] :

Pt+llt QTptlt-l+(STpt t- -Q TEtY )[YTpt 2t- 1-(1 Tpt l Yt  t-

whereZ =Ptltl If x and Yt are conditionally independent given

xt , then S =7Q, where T =diag(yl,... n ), and (1) can be rewritten in the

following useful ways:

T QT[p-(yTpt It-l )1 ]
Pt t+lt-+ T ( P 't (2)Pt~ 1t lT ptjl tjt-l +Tptlt( 1 -yTpt t-l ) ]t- ly t

T TQT(I-F) pQ r (3

Ptit-l(l-Yt) + T Pt(t-lYt (3).- YTptjIt-I -Y Pt~t-I

In general, the adaptive estimation problem involves the computation

of estimates (e.g., state estimates) in the presence of unknown parameters;

in addition, estimates of the parameters are often computed simultaneously.

In the present context, the adaptive estimation problem is that of computing

recursive estimates of the conditional probability vector when the transition

matrix Q is not completely known (i.e., it depends on a vector of unknown

parameters 0 -- henceforth, we express this dependence via Q(o)). The

6
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approach to this problem which we investigate in [v] has been widely used

in linear filtering: we use the previously derived recursive filter for the

conditional probabilities, and we simultaneously recursively estimate the

parameters, plugging the parameter estimates into the filter. For example,

for the filter (3), the adaptive filter would have the form:

T-et : Yt - 1 Ptit-I 4

t =t-I +a tRt t et (5)

Q(Gt)T(I-T) Q20t)T
SPt+lt tlt-l(l-Yt) + T Ptt-lYt (6)

-. l-y Ptit- l  -Y Ptlt-l

where {ott } is a sequence of positive scalars, Rt is a positive definite

matrix which modifies the search direction, and -t is an approximation of

. the gradient of et with respect to e (evaluated at t-1 ). We take Rt to be

given by the Gauss-Newton direction:

Rt = Rt 1 +C*T _[ t -Rl (7)

Also, t is obtained by deriving an equation for et(e)/ e (for a fixed e),

and then evaluating at 0 =et; thus
T

-+t = at/ e= -- Ptjt-l/ 0

_ YT ;(t). (8)

Equations for r(t) (and for (t), obtained by substituting t for o in the

t
C(t) equations) are derived.

These computations give rise to a recursive stochastic algorithm of

the general form

ne+ 1  e + aeG(qk, e) (9)

where TI =(kRk), y P(k)). We follow the approach of

7
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Kushner to the Ordinary Differential Equation (ODE) Method of analyzing (9).
n-i

That is, we define t I a6 and suppose that tF-* c as n-* . Define the
i=O n

piecewise-constant interpolated process q(-() by TE(t) =nE on [te,tkE1 ).

The idea is to show weak convergence of the sequence {n(-)} to the solution

of an ODE, which can then be used to conclude properties (such as convergence

as t -- ) of the parameter estimates t. The essential assumption is that

{k
) depends on {6} in such a way that if nk =n, a constant, then {' has a

unique invariant (or stationary) measure. In [v], we show that it does

indeed have a unique invariant measure.

8
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