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Synthetic Aperture Radar (SAR) image reconstruction falls into the class of inverse

.*, (deconvolution) problems. A spotlight mode SAR system obtains projections of the ground

area at various look angles. The image of the ground area is then reconstructed from this

set of projections.

The Convolution Back-Projection (CBP) algorithm is a widely used technique in

Computer Aided Tomography (CAT). In this work CBP algorithm has been modified so

that it can be applied to image reconstruction from SAR data. A quantitative evaluation

using extensive computer simulation of the CBP algorithm for spotlight mode SAR is

presented. Its performance is then compared with the FFT method with respect to parame-

ters such as multiplicative noise ratio (MNR), central processing unit CPU time, and com-

• putational complexity. It has been shown that the CBP SAR algcrithm is a high quality

' reconstruction method that can be implemented in real-time. The parallelism inherent in

the algorithm can be exploited for parallel architectures that are suitable for VLSI imple-

mentation. Samples from each projection can be summed into the proper pixels in the final

image. as required by the back-projection operation, so that the final image is produced

shortly after the final projection has arrived.
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CHAPTER I

INTRODUCTION

There are many existing imag ng systems with their own characteristic advantages and

limitations. Synthetic Aperture Radar (SAR) is an active microwave imaging system with a

side-looking antenna. transmitting pulses and receiving the returned microwave echos

[6.7.19]. The microwave sensors used for SAR are unique in their ability to penetrate clou1

cover and rain. This makes the use of microwave system more advantageous than its opti-

cal and infrared counterparts. These radars not only work during bad weather but also

observe certain phenomena not observed by optical imaging systems. For example. they can

provide information about temperature, moisture. texture. and electrical properties of the

terrain [50]. For these reasons. SAR is used as a very effective microwave imaging tech-

nique for ground mapping, remote sensing and surveillance and for producing high resolu-

tion terrain images.

S.
SAR imaging systems yield two-dimensional images which are usually called the

range and the azimuth. Azimuth is the direction of the flight path of the plane. The direc-

" tion orthogonal to azimuth called the range is the direction of transmitting and receiving

the signal. Throughout the flight interval, the antenna is steered to illuminate a fixed area

of interest enabling one to synthesize a long linear array of antennas. Such an operating

mode is known as the spot-light mode. As a result, the along track resolution is made

much finer and is not limited by the actual antenna beam width [34.39].

Iligh resolution in range (cross track) direction is achieved by means of pulse

compression waveforms. One commonly used waveform is linear FM. often called chirp

[34.13]. The range resolution is obtained from accurately measured time-delay Information

ot the echoes. During the entire flight interval, the signal is transmitted at discrete points.

dei nated1 b% the pulse repetition frequency. The received data are then appropriatel::

• "-€2 .-..-... ....-" " " ' ',% " " " 
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recorded and Trocessed.

The returned echoes are mixed with a reference signal. lowpass filtered, sampled and

recorded digitally. Munson. Jenkins and O'Brien [45] have shown that the spot-light mode

SAR can be viewed as a parallel beam tomographic process with the image reconstruction

based on the projection slice theorem. Consequently. it has been shown that the pre-

processed SAR returns are really talar samples of the two-dimensional Fourier transform

of the illuminated region [5.54]. Suppose the complex ground reflectivity function is g(x.y).

and its 2-D continuous-space Fourier transform is G(o.0). The SAR system then produces

samples of G (w.0). namely. G (n Aw.m AO). n .m = 1,2.... N where N is the number of

samples in each direction. Here the range of co is proportional to the signal bandwidth, and

the range of 0 is proportional to the length and position of flight. Therefore. SAR is a pro-

cess that produces discrete frequency Fourier data from the continuous space ground

reflectivity function. From these polar samples in a small region of the Fourier domain, the

image of the ground reflectivity. j (x, ,y, ) has to be reconstructed. Hence. the reconstruc-

tion can be viewed as a process that obtains a discrete space reflectivity function from the

discrete frequency Fourier data In summary. the SAR system falls in the third category

while the reconstruction falls in the fourth among the following four categories' of prob-

lems relating space and frequency as considered in [27].

1. continuous space - continuous frequency

2. discrete space - continuous frequency

3. continuous space - discrete frequency

4. discrete space - dscrete frequency

Given the samples of the two-dimensional Fourier data. i.e.. the spatial frequency I

data. over a finite region, tne image of the ground reflectivity. g (x.v . needs to be
1.

1P 'g .'"cmrnun'a cen : I)r. 1. ituan and- Dr. W. K. lenk;nA "

I

* *1

..........................................................



!1 II - i. ". % %- ."- - "- "

3,%3

computed This involves inverting the Fourier data to obtain the spatial image. Therefore.

% SAR. like Computer Aided Tomography ((AT). sonar. X-ray crystallography and many

other problems, falls into the category of inverse problems

SAR image reconstruction is an inverse problem with incomplete observations. Since

the plane flies along a straight line. even a few degrees could translate into a long flight dis-

" tance. Therefore. the measurements are possible only for a rather small angular range

(usually less than 10 degrees). In this way the SAR system is similar to limited angle

.. tomography. Reconstructing the two-dimensional SAR image involves inverting the

- discrete set of angularly limited set of measured data. Despite many similarities between

bthe two processes. the major difference is the fact that SAR is a coherent process. Both mag-

* -. nitude and phase are measured in SAR as opposed to only intensity measurements in

tomography.

I .The first SAR system operating at X band was developed at the University of Illinois

I 'in 1953. In the late fifties, with battlefield surveillance in mind. a major project was

started at University of Michigan [3]. In 1957. the willow Run Laboratories of the Univer-

sity of Mi,;higan produced the first focused SAR image using an optical processor. Since

then SAP has been applied to many civilian areas. such as in radar astronomy, image plane-

tary surfaces [14]. oceanography (to gain information on surface waves, currents. and oil

.. slicks [2]). and in geological mapping [42]. The usefulness of SAR in various fields has

made it a major technological tool.

S.a R image reconstruction and the associated processing algorithms have evolved con-

sider;±.!H' oer last three decades. Starting from the analog optical methods. more sophisti-

cated Jigital processing algorthms hae been developed. .\ widelv used method inverse

IFourier t.-an ;orms the given data and is similar to optical methods.. This method requires

nterrolatin,,, the data from the polar arid onto a uniformly spaced rectangular grid in order
'.

III
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to apply the inverse 2-D FFT. One of the disadvantages of this system is that it requires

the use of an accurate and efficient 2-I) polar to rectangular interpolator [47].

The major bottlenecks in SAR processing are the inaccurate and expensive interpola-

tors (polar to rectangular) and the lack of a very fast, real-time algorithm. The present

research was stimulated by the urgent need to develop a new, highly efficient, real-time

algorithm along with an appropriate VLSI architecture to produce accurate SAR images at a

lower cost and a much faster rate. on a large scale basis.

The preliminary aim of this work was to develop new methods of SAR image recon-

struction. This has led to a Convolution Back-Projection (CBP) algorithm modified for

SAR. The basic CBP algorithm has been in existence for quite a while and has been used

mainly for tomographic image reconstruction [53.1.30]. The results in this dissertation

show that this algorithm can be very easily used for SAR image reconstruction with

appropriate modifications. This eliminates the overhead of polar-to-rectangular interpola-

tion and the associated approximation. Also, the inherent parallelism in the algorithm can

be exploited using parallel % LSI architectures.

With the intention of defining some aspects of SAR along with the associated

geometry. Chapter 2 starts with SAR basics along with the description of the conventional

method of SAR image reconstruction. Since this algorithm is based on the tomographic -

interpretation of SAR. a brief review of this concept is also presented. The notation and

Iormulas defined here will be used throughout the entire thesis.

Chapter 3 begins ', ith the description of the Convolution Back-Projection algorithm

* (CBP) and the details of the modifiLations necessary for the SAR data. The difference

bet,.een appling the CBP method to reconstructing SAR images as opposed to tomographic

images is explained. Furthermore. seerai Ulst'.Ji characteristics inherent in the CBP tech-

nique are disco,.ered. Some o these charalteri>ttcs :nude the projectional inierpretatiOn.

.7U
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N the point-by-point image reconstruction. anti the inherent p!'raileism n the Ji2 F r -

structure. The projectional interpretation results in the capabilit o! producing mu....

line as the projectional measurements are made available. This feature ol trna2c(!-e-',:.

ma\ be advantageous in militarv situations since one need not wait till the end )I the -t

- ."'" path before discovering, at least approximately, the location of important target>- I

point-by-point image reconstruction enables the user to recon.,truct any portin l tne

entire image as desired. If the approximate target location is known a prwiri then this

allows the user to zero-in on the region of the target only. thus resulting in substantial ,a. -

ings in computation time. This chapter also examines some of the signal processing asrec:s

such as windowing and interpolation used to improve the quality of the images produced

Finally, the computational complexity of the CBP algorithm is discussed and sho',. n to oe

of 0 (N 3 ) in the worst case. where N xN is the size of the image.

Application of the CBP algorithm to SAR brings out its latent characteristics like the

- parallelism and real-time processing capability. Chapter 4 discusses these implementa-

tional issues of the CBP algorithm and its architectural implications. An architecture

.. exploiting the inherent parallelism and pipelining features of the algorithm is suggested and

its feasibility for VLSI technology is established.

The modified CBP algorithm is implemented in the form of a computer program. The

characteristics of the algorithm are Illustrated by several examples and the results are

presented in Chapter 5. The performance of the CBP algorithm is compared ,kith :ts ,,n-

ventional counterpart, the 2-D FIFT haed method. The comparison is made bv consider ino

the qualitatr. e measure as the muatil cat '.e noise ratio ( \INIZ and the total :omrWt1itn

time The results presented in Chapter 5 indicate that that (C31) is in fact an accurate drid

highly desirable algorithm ior S.\R imag reconstructlion

J
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Chapter 6 concludes with discussions on the further needs of study for perfecting this

algorithm and its implementation. 
-
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CHAPTER 2

OVERVIEW OF THE SIGNAL PROCESSING CONCEPTS FOR SAR

Synthetic Aperture Radar is a complex process involving many important concepts. Much

of SAR literature is either classified or company proprietary. As a result unclassified pub-

lished literature is incomplete, and in some cases considerably out of date. In this chapter. the

basic SAR system and its processing technique is reviewed. A review of the conventional

method of SAR data processing. which will be referred to as the Direct Fourier Method (DF)

°* and important concepts like the tomographic interpretation of SAR. are also presented since

these concepts will often be referred to in the chapters to follow. Review. along with some

insight into the SAR problem, will be helpful to the readers not familiar with SAR.

2.1 The SAR System:

Terrain images are produced by properly processing returned microwave echoes received

via a side-looking conventional antenna carried on an airplane or satellite [341. The geometry

. for the data collection in spotlight mode SAR is shown in Figure 2.1. The region of the ground

illuminated bv the radar beam is known as the radar footprint. The shaded area of the foot-

print corresponds to the region covered by the 3dB beam-width of the far field antenna pattern.

Let the reflectivitv of the ground patch be a complex quantity g (x .y ). Returned data will

contain the sum of the complex reflectivity of the ground along the parallel lines. The final

aim of a SAR processing system is to compute the magnitude of the reflectivity from the

returned echoes.

The azimuth resolution for a conventional radar is limited bv the antenna beam width. If

the physical aperture of the antenna is D , and if the signal wavelength is X . then the azimuth

resolution will be of the order S., = R /D at the range R [31]. To achieve a fine resolution

would require the antenna aperture to be too large to be physically carried on an aircraft or

,A
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spacecraft. SAR circumvents this problem by linearly synthesizing the antenna, i.e., assuming

the position of an element in a linear array as the plane flies along its trajectory As a result.

the along-track resolution is no longer limited by the actual antenna beam width [21]. If the

antenna is steered so that a fixed area of interest is illuminated throughout the entire collection

interval, then the resolution is made even finer. This specialized from of operation is called the

', spotlight mode SAR.

High resolution in range (cross-track resolution) is achieved by pulse compression using

" waveforms like the linear FM waveform (chirp) [211. A distinguishing feature of a pulse

K- compression waveform is that its time bandwidth product is much larger than unity. It pro-

vides large bandwidth without large peak power. The analytic form of the expression for the

'- linear FM chirp is

• ~e " -T12<t <T12(21)
0 otherwise

where, wO is the carrier frequency and y/2. is the FM rate.

The returned signal from a point target (x, Y ) as in Figure 2.2. will be delayed in time by

the round-trip delay from the radar to a target. When this returned signal is mixed with a sig-

nal simulating the return from the chosen reference point, the phase of the resulting signal will

have a term proportional to the time delay. The time delay of the signal is converted into a

frequency component linearly related to the distance from the target to the reference point.

The fact that the frequency depends linearly on the delay difference, allows the location of the

target in time. or range direction with respect to the chosen reference point. Similarly. the

phase function of the return signal will also contain Doppler shifts. This Doppler term varies

from pulse to pulse but can be ignored as far as range is concerned. Each pulse gives a sample

of this difference Doppler shift. When the return is mixed with a reference, the resultant dif-

*

-.- . . . . . . - <
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ferential Doppler frequency will give the differences in the azimuth location.

The following reasonable assumptions will be used later in the chapter to make the

analysis of the system easier. These assumptions are typical of any SAR system

1) The target is in the far field of the radar.

2) The target can be accurately modelled by independent point scatterers.

3) The target region is uniformly illuminated

4) The phase centers of the targets remain constant over the entire angular range, i.e.. the

returns are independent of the angle of illumination, and

5) The reflectivity, g (x v ) remains constant over the bandwidth of the signal.

Each return is mixed with the reference signal and lowpass filtered. Following these

processes, samples of each return are recorded along a radial line. Successive returns are

S recorded on the radial line with varying polar angle 0. as illustrated in Figure 2.3. The angu-

lar increment corresponds to the angle between the signal receiving point along the flight path

and the reference point on the ground. In other words the angular increment is a function of

Sthe pulse repetition frequency of the radar.

The main idea behind the data gathering process can be described as a radar transmitting a

chirp. mixing, low-pass filtering, and recording each received return for further processing.

The difficulties with processing this data set are

1). The data are on a polar grid.

2) The data are only known within a small region of the transform domain.

With the conventional methods of processing. (I) requires polar to rectangular interpolation;

item (2) effects the limit on the achievable resolution and therefore the quality of the final

image.

%4
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For such a data set of a ground field. the achievable resolution with SAR is [55]

= k, ,/2 L (2.1.2)

and

,m=C 7rr o/yy , . (2.1 3)

where T, is the effective pulse duration in seconds, y is the FM sweep rate in rad/sec. and L is

*the synthetic aperture length. In equation (2.1.3) y,) is the distance from the radar ground

* tract to the reference point as shown in Figure 2.2 in meters. However, factors such as the

coherency of the microwave source, stability of the flight path and atmospheric turbulence will

cause phase errors resulting in defocussing and degradation of the resolution.

*- 2.2 The Tomographic Interpretation of SAR

The well-known interpretation of SAR is that it is a one-dimensional holographic process

l[29.37,40). The most recent interpretation is that of SAR as a parallel beam tomographic pro-

• .cess. SAR system measures the returns of the target field from different angular points along

its trajectory. The notion of different angular measurements leads one to question the similar-

-ity of the signal processing aspects of the tomographic and the SAR processes. This different

perspective on SAR gives an excellent insight into the SAR process [48]. It is the basis of the

proposed CBP algorithm. The details of this concept first published in a paper by Munson. Jen-

kins and O'Brien [47] are reviewed below.

If the linear FM pulse described in Equation 2.1.1 is transmitted, then the returned signal
from a point target located at (x o.Y o ) is.

r,,(t ) g (x .v ) S (t - 2 ,/c ). (2.2.1)

"" Where R is the distance from the plane to the point (x,.y,,). The equidistant points from the

plane to the target field will l:e on a curve as shown in Figure 2.4 by the dotted lines. These

curves can be approximated by a straight line, when R >> L . using the assumption I of the

• - ..,' ~.. ... C *
. . . .. . . . .. . . . . . --. . . - - . . .,* - - . . ..- "-.
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previous section.

Returns for a level curve will be the sum of the reflectivit, ol all the points scattered on

this line. Therefore, the return from a line u=u is given bW.

r (t ) o= P (u,)S (t - 2(R,,+uJ1)/c ) du (2.2.2)

where. Pluo ) is the projection of the ground patch evaluated at u=u o . The projection is
0 0

defined to be

P"(u ) = f g (ucos O-vsin O.usin O+vcos 0) dv. (2.2.3)

Therefore. returns from the entire ground patch can be written as

r,(t f P,(u ) s(t - 2(R,,+u )1c ) du (2.2.4)

2L 2L '
for -T/2 + r,, + t T"2 + r,, -

C

Here ro=2R,,c is the two way time delay from the center of the ground patch. Mixing the

returned signal. r (t), with the reference chirp

= S, ,-o , t (2.2.5)

and low-pass filtering results in

ru 

- 2

C.(t ) f Pu exp (j ) exp [-j2(o1 ,+2y(t -- jro)i j du. (2.2.6)
_ C

The effect of the quadratic phase can be neglected since the length of the data collection is small

compared to the distance R , thus yielding.

2
C".(t ) =f P..(u ) exp[-j-(w,+2-y(t -- ,,))u] du. (2.2.7)

The above [quation can be interpreted as the Fourier Transform ol the projection ot the ground

patch pu.(u).

I' [ - ,+2yt -r.]
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for-T'2 + r, + -- t 2 + 7,-
C C

In other words. C.(t )is a slice at the angle 0 of the 2-I) Fourier transform of g (x .v) Rewrit-

ing Equation (2.2.h),

(r ) = P,(o) for w, "

A here

2 4yL 2 4yLS= -- yT + - and c - c, + vT-
C C C C

N such equidistant projections give the data region shown in Figure 2.3. Note that the projec-

tions are known only from ca to (2. *

2.3 The Conventional Method

The more conventional Direct Fourier method, involves reconstructing the image by

means ot the 2-D inverse FFT. First the algorithm assumes that the information outside the

annular region is zero. The data in reality are not zero: they are unknown. Within this annu-

lar region, a square is inscribed. The resolution of the image is a function of the size of the

square.
U

Given the Fourier samples on a polar raster with coordinates (w. 0). it is first interpolated

onto a cartesian raster with coordinates (u .v ) as shown in Figure 2.5 and then a ?-D inverse

FFT is applied. The interpolation step is a critical part of the algorithm. The conventional

method is the Standard Polar Format (SPF) algorithm [471. Basically it is a separable win-

dowed sinc interpolation kernel. The sinc kernel is truncated by a window such as a lamming

window. First it is applied in the radial (range) direction, producing a key-stone grid. and then

applied in the azimuth direction to produce the final rectangular grid. Note that interpolation

t rom nonuniform sampiing is required and that the SPI alhorithm c.n perform this task accu-

ratelv and conenientlv. Con%ersion from polar to rectangular coordinates also results in the j
chano:ng the sampling rate. The -quare !s sh ltted to the ,r:in .,t the ,L. ilane ani ihe datia

are thtn ipro,essed 1r. an irri, pr,,essr to :n'ere 1r,i,!. rm the U,, ia u tnc' . 2 1) 1 *

I []
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final image is then displayed as the magnitude ot the resulting 2-1) arra.

This is a very straightforAard algorithm. The complexity of this algorithm is

P(N ) + 0 (N 21og2,N): where P(.V ) is the computational complexity% of the polar to rectangu-

lar interpolator and 0 (,V 21og2,V ) is the computational complexity of the 2-D FFT. If the

OP (NV is less t hanO0(.V"2log,2,V't hen t he co mpu ta tiona I co mplexlit, c) thtle en t ire a lgori t im

is of 0(N21092(N )).Therefore, the speed and the availability of the fast 2-D FFT processors

make this algorithm a very attractive one. However. a major difficulty with this algorithm is

that it requires the use of an accurate 2-D polar to rectangular interpolator. This polar-to-

cartesian interpolation must he accurate to prevent aliasing as well as spurious targets within

the patch. Two-dimensional windows are applied to the Fourier domain data prior to transfor-

mation to reduce sidelobes and control the shape of the ideal point target response of the sys-

tem.

UI

A-

U-
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CHAPTER 3

THE CONVOLUTION BACK-PROJECTION ALGORITHM AS APPLIED TO SAR

It has been shown that image reconstruction in Computer Aided Tomograph% (CAF) df""

spot-ioght mode synthetic aperture radar (SAR) are based on similar mathematical prtncipies

"47.4 A Subsequently. it was proposed that convolution back-projection (CBP) reconstruction

[20.30]. a very successful algorithm for CAT processing, could be also useful for SAR process-

ing. This interpretation leads to the application of the CBP algorithm to the SAR data for

S,,herent image reconstruction. In tomography, the projections are measured in spatial domain.

hle in SAR. the projectional data are recorded as slices in the Fourier domain. Therefore the

CBP aigorithm needs some modification before it can be applied to SAR. This chapter examines

the use of CBP reconstruction in SAR and describes modifications of CBP needed tot the

spotlight mode geometry. In the process, some of the latent characteristics of the CB1P algorithm

. such as the projectional interpretation and the point-by-point reconstruction are observed.

31 The Convolution Back-Projection Algorithm for SAR

The convolution back-projection (CBP) algorithm can be used in SAR for coherent .mage

reconstruction [17,18]. The reconstruction procedure using CBP is derived here from the 2-1)

I ourier transform pairs.

Consider the complex ground reflectivitY function g (x .v ) with its 2-D Fourier transf orm

(I (Za I- defined as follows:

U (, X A N ).e.v ) . .. . dA dv 3.1

. f f; .i .x') .... di d ' _

., her . 1 ' le Illpor , tie I unction (; (u v and I is the sup or! ,t the unction ' I \

p %
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Let (w.0) represent the polar coordinates in the (u .v ) plane. Therefore G(W.0) denotes the

value of G(uv) along a line at an angle 0 with the u-axis as in Figure 2.3. Therefore expressing

Equation 3.2 in polar coordinates with IwI being the Jacobian. the reconstructed image g (x .)

will be

,/2 W,/.2 JGc'-- o~YliI,,d~d 33

A projection of g(xy) at an angle 0. is

pH(t ) f g (t s) ds (3.4)

where (t.s) denotes the (x.v)-coordinate system rotated by angle 0. The one dimensional

Fourier Transform of the projection is

Pe(w) = f0p(t) e -  dt (3.5)

= G (o.O) N

This is the well-known projection slice theorem. i.e.. the Fourier transform of a projection of an

object at an angle 0 is a slice of the Fourier transform of the object at the same angle. Applying

this to equation 3.3. the SAR image reconstruction involves solving the following integral:

2 /2

g(r. )=f f P,(W) I&a .. (0- '-)d (da . (3.6)

where (r .6) represents the polar coordinates in the (x .y ) plane.

The above formula for reconstruction suggests that from each projection. Pe(wo). the inner

integral can be evaluated for each angle 0 yielding Q (t ), where t = r cos(O - 0). The image

g (r .0} can then 1,e obtained bv integrating the function Q over the look angle 0. For the lim-

ited data region ,;- Figure 2.3. the realization of the reconstruction algorithm may be accom-

plished via the fitowving equations

( . J .. o) Ie Id w

7,
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S( ) f Q(rcos (3.8)

Note that the parameter w has the dimension of spatial frequency. Also. t is the projectional

domain variable with: o -- t.

It must also be noted that in CAT reconstruction the input data provided are a collection

of projections {Po(t )). Hence. for each angle 0. Q (t). as defined in Equation 3.8, is obtained by

convolving P(t ) with the impulse response of a filter referred to as the convolution step and

Q (t) is often called a "filtered projection". In SAR reconstruction, however, the input data

given are a collection of the 1-D Fourier transform of the projection namely. Pe((o). for each

angle 0. In this case. therefore, Q (t ) is computed by performing an inverse Fourier transform

• -of the product Pe(to) I w 1. It is for this reason that SAR reconstruction can be treated as a dual

of CAT reconstruction. The second step of computation described is similar in both processes.

.* The combination of the two steps is referred to as the CBP algorithm. One of the key

• "differences in applying CBP for SAR reconstruction as opposed to CAT reconstruction has just

been explained above. A few other modifications necessary for applying this image reconstruc-

tion algorithm to SAR are presented in the following section.

3.2 The Implementation for SAR

In SAR the radar signal is modulated by a carrier frequency (a, and. therefore, the

recorded projections are shifted by this carrier frequency. Each projection. therefore, must be

shifted back by ,. . In a sense, this is equivalent to demodulating each projection by the carrier

frequency. This operation requires substituting wo by to-o( in Equation 3.7. Another

difference between CAT and SAR is that the given data set is discrete in SAR. i.e.. Ior each angle

O . the N, samples {P,,, (o )I of P,,(ca) are provided. Therefore. the convolution step of lqua-

toin 3.7 simply reduces to a multiplication followed by a 1-I) FFT computation. let

-. ,hk'.kbrJ.A

V

• '-.¢.€-'.* -' '" "-"-",':."-:-'.'';.5 ; -€,;% -,,. .. '-.,.,-'x:,' .-.,., .,.,. : ,.;- ,, ' ,5"; ,, +,
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iQ, (t, m= 1,2...... , be a set of samples of the function Q(t ) computed from the pro-

jections at angle Oe. Then the modified equations are

Convolution:

(t., I (3.9)

Back-projection: -

(r .c) = Q(r cos(0-0. ))e] c r Co(,-0k) (3.10)

The quantity Q(r cos(6-0, ) denotes the value of the function Q (t) obtained at

t= r cos(O- ) from the set of samples {Q, (t, )) via interpolation.

Thus. SAR image reconstruction is a two step process. Here each radial line in Figure 2.3

is considered to be a projection centered at w, . Each projection is multiplied by a rectangular -,

pulse of width Aoa. It is then weighted. shifted to the origin, and inverse transformed via the

1-D FFT. Since convolution in the spatial domain is a product of Fourier Transforms in the

frequency domain, the first operation is known as the convolution step. Convolution is

efficiently implemented in the Fourier domain by simply multiplying by P,(w - W ) and

,o - . As seen in Equation 3.7. the first step is simply the multiplication of each projection

by the Jacobian. followed by the 1-D inverse FFT. The second step involves one-dimensional

interpolation of Q for each point (x .y ) or (r .6) and then appropriate back-projection to the

corresponding angle of projection. The second step of back-projection. as characterized by

Equation 3.8. is approximated by a summation. Intuitively. implementation of this step

involves back smearing of each projectional values onto the image. Such an operation is exe-

cited for each projection. Thus, the operation of 2-D inverse transforming is done directly on

the polar-formated data in two steps.

ml

. . . . . .- . . . . . . . . . . . . . .• -
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q Given the samples {G (w, O ) of the 2-D Fourier transform of the ground reflectivity

function over the annular region, the spatial function g (r .0) is computed. The actual compu-

tation is performed for discrete image pixels denoted by (x, ,y ) or simply (i .j ). It must be

noted that in the SAR geometry shown in Figure 2.2 of Chapter 2, the points at which the sig-

nals are transmitted and received are equally spaced. This would then correspond to non-

uniform angular increments. However. the CBP algorithm does not require uniform angular

increments. Only the difference in the successive angles A9 is needed for computation. The

smaller the value of AO. the more accurate is the computation in the Back-projection step.

*. 3.2.1 CBP Algorithm as Projectional Reconstruction

Figure 3.1 graphically illustrates the two-step CBP process. Each projection lPk(W, ) is

S. individually multiplied by the Jacobian. JwJ. shifted by the carrier frequency w, . and then 1-D

inverse Fourier transformed via an FFT. A transformed projection is then rotated by the angle

of projection 04 and then the sample values are assigned to all the pixels of the image along the

equidistant parallel lines, perpendicular to the projections. For the pixels that do not fall along

these lines. 1-D interpolation of the projection is required. This two step operation is per-

*- fcrined for all projections. Computation due to one projection results in a crude image. Contri-

bution of the successive projections are added to produce the final high resolution image.

3.2.2 CBP Algorithm as a Point-by-Point Reconstruction

The actual implementation of SAR reconstruction is performed as a point-by-point recon-

s truction. It can be viewed as computing the values of the predefined image pixels. After shift-

,ng and I-D Fourier transforming each projection within the limited angle. the projections

would describe an hour glass in the projectional plane (t .0). Given a pixel. (xo.,o) or (r,).0),

* .~ there is an associated trajectory defined by t,,(0) = r,(cos (b,, - 0). Figure 3.2 shows these tra-

jectorial arcs for sixteen pixels. The integration operation as in equation 3.7 is performed along

these arcs. Since the projectional data are discrete. the sample values of each projection need to

II
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Figure 3.1: The CBP algorithm for SAR.
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he interpolated to obtain the values of the points not corresponding to the sample points, before

the integration can be performed. Any method of approximation can be used for integration.

Therefore. the final pixel value is the sum of these interpolated quantities along the arc associ-

ated with that pixel.

. 3.3 Signal Processing Aspects of the Algorithm

Windowing:

Windows are applied to the Fourier domain data prior to transformation to reduce

sidelobes and control the shape of the ideal point target response of the system. Windowing

can be done in two ways

a). By applying a 2-D separable window W (w.0) in the Fourier space prior to 1-D FFT opera-

tion. P

b). By applying a window W 1(w) in the radial direction in the fourier space prior to 1-D FFT.

so that the function to be interpolated becomes " P4 (u0) IJw W 1 (w): and then another win-

dowed W,(t ) in the projectional space defined by the variables (t .0). along the pixel tra-

jectory prior to summation in which case the function to be integrated is Q (t ) W,(t ).

These windows. Wl(c) and W,(c can be any one of the existing windows like Hanning or

lamming.

Interpolation:

Since the samples of each projection are available. 1-1) interpolation is required for each

pixel in the back-projection step of Equation 3.10. The :..-mpled values of Q (t ) are known

only at the points it,,, r = 1.2. N, , and therefore it is necessary to compute the values at

each cos(b -0. ). Any of the con\ entional interpolaors such as Nearest Neighbor.

linear. or rele, ant FIR filter functions can he used.

2O,-

... ... .. ... ... ... .. ... ... ... .. . .
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3.4 Complexity of the Algorithm

In order to determine the complexity of the algorithm, the flow of computation in the CBP

*, algorithm has to be considered. This flo%% model has been represented using the following

rather informal high-level description language.

*. Convolution Back-Projection

Input: A set of N, projections {P IX ..... P.%L ,

where each projection Pk is a sequence of N, samples.

"" Output: A N, XN, array g (i .j) of image intensities.

" for each k = 1.N, do
*begin

Q. = 1-D inverse FFT of Pk

for each i = 1.N, do
begin

for each j = I.N, do
begin

t =x, cosO + y sinOq
Q(t)* phase * wgt *AO

end
nend.'-" end

For each projection, the algorithm first computes the 1-D FrT on the sequence of length

• N, This clearly requires 0 (N, log 2 (N, )) computations. In additicn. there are 0 (N 2 ) opera-

tions within the two inner loops. Therefore. the total number of operations required is

0 [N x [N, log (N, ) + N, N,] which is simply 0 (N, N, NY). provided N, has the same

order of magnitude as N, and N. . Furthermore. if N, = = N, = N. then clearly the com-

.- plexity of the CBP algorithm reduces to O (N 3 ).

.,.

2,".
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CHAPTER 4 i

ARCHITECTURE FOR SAR IMAGE RECONSTRUCTION USING CBP

One major advantage i Convolution Back-Projection algorithm is the fact that it contains

inherent parallelism. This important characteris,'c can he exploited by using linear systolic

arra, architectures to reduce the computation time. To utilize the inherent parallelism of the

CBP algorithm to its fullest extent. it is essential to design an appropriate special purpose archi-.

tecture. The availability of low-cost VISI chips with large nimbers of gates has made the

implementation of special purpose architectures feasible. The cost of development of such

hard, are can he justified by an expected increase in throughput rate. In this chapter. architec-

tural implications of the CBP algorithm will be discussed and an architecture for a SAR proces-

sor is suggested.

The CBP algorithm offers certain features that appear to be well-suited for VLSI imple-

mentation, and can lead to real-time precessing. The convolution stage of the CBP algorithm

can be implemented immediately as the spectral slices (or projections) are sampled and stored.

Further processing can be done as well, before the next spectral slice is available. For example.

immediately after each proj ction is filtered. 1-D interpolation can be immediately started. and

the appropriate samples from this projection can be added into proper pixels in the final image,

as called for bv the back-projections. so that the final image can be produced shortly after the

final projection has arrived.

4.1 Nature of Computation

It ,xa* ho'xn in the last chapter that. SAR is a point-by-point reconstruction algorithm.

Ba;ed on thi, la.t. the nature of computation required %kill be considered here. I et the recon-

,truc:ed '.mae be '.i % ')e an arra,. o N ,.V pixels. Also. let the set of transformed projec-

tins he den,,tc- ',

i

.... .. .... - ,. . -- .-. " -. .. " -. -. -. -......-.,.".--...--."..--..--...........-.-..".---.".-.-..-".-.,-......
4 -. ...... ........--".,...-.-.-.-.._........................ . -4-
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Q ( ) k = I1....A"':.

%xhere , is the number of projections and AN, is samples per projection. For each projection. :

and for each pixel in the image, i.e.. each x and x . the intensity value must be computed.

Note that gi'-en a projection, the computation necessary for each pixel (x,.y, ) is independent of'

any other pixel of the image. This is valid for all projections. The value for a pixel is depen-

dent only on the input, the previous and present intensity values

The computation required for each pixel (x, .y, ) or (r .k) given a projection at an angle O

can be divided into the following steps:

* a) Computation of the position at which the projection value is desired. i.e.. computation of

t, for each pixel (r ,)

t,. =r cos(4-O )

b)

i) Access of the two projectional data values indexed by the two integers enclosing

- -

Q, (U) = t J and Q' (1+1)=Q' I<
ii) Access of the constant d e.

-..
c)

- ~) Computation of K (w, .t, ,)=e

ii) I-D interpolation between Qh () and Q4 (1 +1) to obtain Oa (t;

P .iii) Computation of the contribution ol this projection.

Q= t )*A'(w ,.t )*d 0

d Addition of the present contribution to the previous contributions and storage of the new

-.alue n the local memory.

:4
%."
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Consider the computation requred for one pixel. The data dependency among these four

steps for all N, projections has been graphically represented in Figure 4.1. Each node in the

figure represents a computational step, and the subscripts i (i = 1. 2.. N, )stand for the pro- ,

jection number..An arrow incident from Node a onto Node b indicates that Step b requires the

results of Step a for its evaluation; so. Step b cannot be started until Step a has been com-

pleted.

4.2 Architectural Considerations

W
4.2.1 One Processor Per Pixel

Consider one processor per pixel, each one performing the required a ) to d ) steps outlined

in the previous section. Many processors may be required to access the same location of the

projectional array at the same time. Since this in not possible with the requirements of main-

taining high speed and simplicity of logic, the projectional array must be read into a local

memory assigned to each processor. The angle 0 h and the projectional values Q (1) are

loaded once before the beginning of the computation in the local memory. The computation can

be performed in a pipelined fashion, with separate Stages A to D for each step a ) to d )
p.

respectively. Figure 4.2 shows the block diagram of the individual processor. Data flow from

one stage to the next. Finally, the result from the Stage D is stored in local memory. During .

.he computation for the next projection. this old value has to be brought in to Stage D and

added to the present value to update its value in the local memory. -;

This scheme of one processor per pixel has the tremendous advantage of achie,,'ing () (.*

time-complexit, lio\eer, the number ,f processors required (N \ X ) may be as la'ce a, 10s

tr a 1A ),IA inmage. w %hich is impractical. These processors will be under-utilized. since the U I

,,nmputan at each f-r(Ies, r -an 'r e Trerl,'rnid at a much faster ,peed than the :npul data rate

- -
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. .ach processcor requires a larie local memory .N Lopies M such a local memory is too expen-

-sI ' e

4.2.2 One Processor Per Column

o An eli icient and cost-effective approach is to use one processor on each column of the

image: thereby requiring only N processors, As the new set ot data arrives, each processor

copies its relevant portion of the data into its local memory. Let P' denote the processing

required for the pixel of the ith row and the jth column. The super-script k represents the

processing that is associated with the kth set of projections. Each of the processors sequen-

. tially computes the values of the N pixels in its column. This scheme of one processor per

column has the merit of reducing the number of processors to N.

To further increase the efficiency of the architecture, the computation described in Steps

a) to d) needs to be reorganized. First, this involves interchanging the order of the interpolation

Step ( c (ii) ) and the multiplication Step ( c (iii) ). Secondly, it will be shown that the number

* of data values accessed by a processor is a small fraction of the total number of data items.

thereby reducing memory requirements. Third. the costly step of calculating the t value of

each pixel for each projection can be simplified.

The multiplication by K (w,.t ) and d 0 can be performed on all Q' () values before these

values are accessed by the processors. We will refer to these premultiplied values as Q" (I).

Then g' is obtaired bv interpolating between Q 4 (1) and Q (1 + 1). In doing so. the number

of multiplication-by-constant steps is reduced from .V 2 to N,. Since N, is usually not more

than 3N. this results n substantial savings in the total computation required by a processor

The number ol .arnple points required bA each processor is a I unction of only. the proje -

lion angle 0 _o, en h% J f0) .\ sin(0) (1, en a maximum value of a = -. The maximum

number ,It pr ,iectim; alues. denoled b\ d requiredI per column is:

.. ......-..........- . ... .. . .*. * ..... ,-......* * . , :, , ;X,
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d =N sin- (41)

Note that this value remains constant for all N columns. As a result, only a small fraction ol

data need to be accessed by each rocessor. This will reduce the bandwidth of the data path to

N,
each processor by a factor of --. This results in substantial savings, since data paths account -.

for a large portion of the total cost of the multiprocessor system.

The calculation of t as described in Step a) is computationally intensive. The following is

a cost-effective procedure for computing t values for each pixel. See Figure 4.3.

Let d o(j .0) be the location of the data value accessed by the center pixel of column j. It can

can easily be shown that.

d 0(j.0) = N, /2 - (N/2 - j) cosJOI (4.2)

For a fixed j. do ranges from

N, /2 - (N /2 - j) cosl0, /21 to N,/2 + (N /2 - j )cos (0)

fcr -0, /2 to 0. This range will remain the same for 0 to 0,,/2. since 0 is symmetrical around

0. The total deviation for first and last columns will be
dg

I cos 10,/21 - cos(O)J * N /2
44

Usually. 0 is small for SAR applications, and tnerefore this deviation will be very small. In

4 essence, the value accessed by a center pixel of a column . do, will remain more or less constant

over all 0. Therefore. the do need not be computed for each projectional angle. Assuming that -

d,, remains constant, the value accessed by the other pixels in the column can be determined

from the deviation from the center pixel of the column. See Figure 4.4. For a pixel (i .J)

then t,.) will be

=d,(j .0) + (N /2 - i )sin0 (4.3)

and therefore, the contribution by the projection k . is given by

j C) . I Y + 0.51(

The above formula assumes nearest neighbor interpolation.

,,"-. , €',, - '_....................................................................,-.-....
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For linear interpolation, tile equation is

Z.S 9 ' i y = d / , it''( , l - l, l ) X ( 1,, -Ili, 1) (4.5 )::

% Intensity value for tile pixel (i .j ) is given by

,7 ji .J -- ' - j ) + j 4 (i j (4 .6 )-..

Thus the following procedure can be used to compute gk from Q

1) Start with the central pixel of the image. ( i = N /2.1 = N /2 ). since t values for all

angles will be zero. From the central pixel, find the t value for pixels (N/2.j).

2) Compute do for the central pixel of the column j.

K" 3) Once d,, is known, using Equation 4.4, compute t, . for all pixels of the column j.

4) Finally. using Equation 4.5. the total value of a pixel can be calculated and stored in the

local memory.

The above procedure is repeated for each projection.

The block diagram for a single processor is shown in Figure 4.5. where each stage per-

-'C forms the required processing as described below.

q I. Computing t,., for each pixel in the column using Eq. 4.3.

II. Computing the new intensity value. as in Eq. 4.4.

III. Updating the memory by adding this new value to obtain g.

Since computation in III is dependent on II and it in turn dependent on 1. the computation

can be done in a pipelined fashion for each pixel. The reservation table [16,33] of Figure 4.6
4€-.

describes the timing of the pipeline. Once again, P' ,i denotes the processing required for the

,2. pixel of ith row and fth column and the superscript k denotes the processing associated ,xith

the kth projection. Each column of the reservation table denotes the time step required. Each

row denotes the computation performed in the corresponding processor stage. l.et 7". he the

time between two cnnsecutive projections. Since each step has to be executed for each pixel in

,,-.
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a
Compute t,

b
Access

Qk lQk (1 +1)
Constant d 6

LOCAL_}_ MEMORY

Compute K
and (,"

IV
d J

Figure 4.5 The block diagram for the individual processor for each column.
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T_,
the column and since there are \ of them in a column, each step takes at most time

periods. Two more timesteps 'Aill he required to complete the image from one projection. how-

ever, the processing for the next projection can resume. Therefore. the final image will be pro-

duced two time periods after the last projection is received.

4.3 Feasibility of the Architecture

Figure 4.7 shows the block diagram of the architecture required. It is a Linear Systolic

Array ( LSA ) with N identical processors linearly connected with both input and output

clocked from left to right. Given 0 , the multipler multiplies each C) by K (w, t ) and d 0. The

output of the multipler is denoted by Q (t ) The N, values of Q (t) are clocked in at the left

T,
most cell every T = T seconds. It is necessary that the data flow from one cell to the nextN, .

at a rate of 7" seconds for such an LSA structure.

Assume that the data rate. i.e.. the projection rate is Tr and that there are 4K projections

and 2K samples per projections. Also assume that -l.5° < 0 -< 1.5 ° . With these data al, image

of the size 1K x 1K pixels has to be reconstructed. Let C be the number of operations required

for one pixel per projection: thus. the total amount of computation required for one pixel is of

the order 4K{ C ). One processor per column would require the processor to perform 1K { C x

4K I operations in T, seconds. With such requirements, an outline of a generic processor struc-

ture is presented here.

As shown in Figure 4.7. the digital projection .alues P,(Jw) are the input to the I -D FIT

processor The output. Q.A't ) is then passed through a multipler which multiplies each sample

hr. dO and A'(, . )o Then N, o these Q-t.,(t .alues are clocked in to the I.SA. As the data

flow through eaLh cell. C the% obtain d values centered at d_ For our example. n

U

-- ..-.* .. . . .... .. . . . . . . ...-...,.. ..._ ..- . . . . .. . .- ., . .. .. .



. . ..

- 41

I'.'

- I-

! --

U *1
a -. .o.



42

d = l(()xsin(-1.5 °) = 27 memory words. The amount of local memory required per proces-

sor is extremely small. After the data have been obtained, the cell C, computes the updated

intensity values for each pixel in the column. Thus, an image from one projection is created.

Since there is no need to display the image after every projection. the pixel intensity values can

be clocked out from left to right after every ten projections. From the right-most cell, the out-

put is sent to a display device.

The proposed architecture is realizable with present day VLSI technology. The input data

N ,. 1K x lKrate. N- 2M bytes per second, and the output data rate of' lOOM bytes per
7", I OT,

second is very realistic. As can be seen from Steps I. through III.. the number of operations

required per pixel is reasonable, and therefore, the throughput of each processor can meet the

required rate.

Since the back-projection stage is a point-by-point reconstruction process, each column

could he computed in a separate processor, each of which carries out the back-projection for all

pixels in the column. Each processor is simple, consisting mainly of a complex-number multi-

plier. adder, and accumulation register. This suggests a systolic array structure. i.e.. a struc- -

ture that consists of a large number of similar cells which require a minimum of intercell com-

munication. As an alternative to providing a processor in each column, the image can be seg-

mented into small subarravs. with one processor implementing the back-projection for all pix-

els in a particular subarrav.

Both of these architectural alternatives also provide some degree of fault tolerance. If a

processor fails, a column or a subarrav is lost. but the ,ther processors will continue to produce

the rest ot the image correctly. Single error detection capabilities can be added to the processors

t,, usino Quadratic Modular \um ber tQNIN) codes [35,25.20J ', ith ,,ne redaMLiw indtiii '1(, 

rer',orm the a:thnietiQ. I r multiple error detei.,on. idLit;,n.i] redUndi,ir't m71 ',Ui ,

re uired. \\Ih ' c aLd;t,in ,i redundani moduli, :t s po~. Jh c, tlc!'-t c-:-

oy
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,2 errors. This scheme xould involve some overhead in transforming to and from the QMN

representation. Quadratic modular number codes decompose a complex multiply into two

parallel real multiplies, thereby simplifying complex multiplication and providing error isola-

tion between the channels. After detecting the error, it is a relatively simple matter to identify

a faulty processor, and then assign one of the remaining good processors to take over its func-

- tion. Such a structure has the properties of soft failure in the sense that as processors fail, the

overall throughput rate is damaged (or the image size is reduced), but the system is able to

reassign its resources in order to continue functioning in a useful way.

a'

.2
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CHAPTER 5
h.'

SMLAION AND RESULTS

The results of Chapter 3 show that the convolution back projection algorithm is a theoret-

ically viable algorithm for spotlight mode Synthetic Aperture Radar. In this chapter, a quanti-

tative evaluation of the CBP algorithm for SAR is presented using computer simulation. The

CBP Algorithm is tested first on an ideal set of data points and then on a simulated model of

non-ideal returned data from a point target. The characteristics of CBP reconstruction dis-

cussed in Chapter 3 (such as the projectional reconstruction and point-by-point reconstruction)

are illustrated by experimental examples. To further establish its validity and accuracy, its

performance is compared with the conventional FFT based method with respect to multiplica- -

tive noise ratio (MNR) and central processing unit (CPU) time.

The comparison between the CBP and DF methods is not entirely valid due to the follow-

ing reasons. The SAR system generates the Fourier data on an annular region and the CBP algo- -

rithm uses this data directly. The FFT based method, however, inscribes a rectangular region

within the annular reg'ou. Hence, the two methods invert slightly different regions of the

Fourier domain. In order to obtain the samples on the rectangular region, the FFT based

method uses a 2-D interpolator on the annular data. Using such an interpolator, requires data

outside the original annular region so that the interpolated data at points close to the borders of .-

the rectangular region may be computed accurately. Furthermore, the higher the order of the

interpolator used. the wider is the annular region required. Hence. the SAR system has to gen- -

erate additional data over a wider annular region for the FFT based method than for the CBP

method lo obtain similar reconstructional quality.

4o .

. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .
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5.1 Computer Simulation for Ideal Data

In this section. the ideal point targets are considered to determine the algorithmic charac-

teristic of the CBP algorithm modified for SAR image reconstruction. A point target of unit

magnitude is assumed to be located at (x, .y, ) on a rectangular grid in the image plane. The

image reflectivity I unction ot such a target is then

g (x .) (x - x,. y ,) (5.1)

Its Fourier transform.

G (w.0) =e (5.2)

is evaluated on a polar grid shown in Figure 5.1, where the width of the annular region is Ao.

the range of angle is 0 . the angular increment is A0. the number of samples per projection is

N, and the number of projections is NP.

The region to be mapped is of the width W, and W, in the x and the y directions, respec-
Um

tivelv. For the simulation it is assumed that W, = W, = W meters. In order to reconstruct

the image digitally, the above region is divided into (64x64) pixels. Each of these pixels are

W
then ± = 8 meters apart. 8 is also referred to as a resolution cell width. The reference point

of the region is the origin.

The Fourier transform of the ideal point target is non-zero over the entire Fourier domain.

In SAR image reconstruction, however, only a piece of this Fourier transform is provided on

the polar grid of Figure 5. 1. Hence. the inverse Fourier transform of this piece would be a 2-D

sinc-tvpe function which would then be the reconstructed image. The mainlobe of such a point

target response will he a region of width--4. The location of the point target may vary from

example to example. however in most cases it is placed on the image plane at integer muitiples

ot the resolution cell width 5 ', hich is defined to he Motivation for such a choice is to

produce an image Aith all the grid points outside the mainiobe ,k fall on the nulls of the 2-1)

r"t . .. s
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sinc function [55]. Thus. the sidelobes w ,ill not appear in the reconstructed image, even though

the\ are present. Applying a [lamming type window on the Fourier data expands the mainlobe

to tw ice the original width while suppressing the sidelobes considerably Hence, the mainlobe

oi the windowed point target response will be 5x5 pixels wide. So all peaks other than the

* mainlobe of the point target response can be designated to be independent oi the data and only a

, function of the algorithm.

In an actual data collection situation. it is not possible to illuminate only the region to be

mapped. In practice, the region illuminated by the antenna beamwidth is larger than the region

t, be mapped. This results in two sampling rates. One is associated with the region to be

mapped and another with the illuminated region. Hence. the data sampling rate is greater than

the \yquist rate corresponding to the region to be mapped. In real situations, the data are

o'-er-sampled' to match the antenna beam-width and then filtered and resampled at a lower

rate The process of filtering and resampling is known as the pre-summing process. For the

simulation purposes, pre-summing is not necessary. It is avoided by placing all the targets

inside the region to be mapped.

The reconstructed image is displayed as a two-dimensional intensity function with a 6()

dB floor. The point target response is evaluated by the multiplicative noise ratio (MNR) defined

by

.(pixels outside main lobe) 2

Nl\R=1 log F(pixels inside main lobe)2

The "mainlobe" is et to be a 5X5 pixel square centered at the peak.

tlG

. ."4
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5.1.1 Illustration of Algorithmic Characteristics

Image Evolution

To illustrate the projectional interpretation of the modified convolution back-projection -

algorithm, the following experiment was performed. As a projection is computed. the two

steps of convolution and back-projection as explained in Section 4.2.1 are performed on a pro-

jection to obtain an image due to this one projection. As additional projections are c5mputed.

the intensity contributions of these are added to the previous intensity values to update the

image. Thus. one can perceive the evolution of the image. Figure 5.2 a) - h) shows the recon-

struction of an ideal impulse from a number of projections. for

N. = 2. 10. 20. 30, 40, 50. 60, and 64. From only two projections. the range of the target is

already determined. As the intensity contributions of more and more projections are added, the

target slowly improves in the azimuth also. Figure 5.3 shows a plot of MNR versus the N

number of projections used. From this plot, it can be seen that the quality of the image i.e., the

* MNR. improves rapidly at the beginning, but the rate of improvement reduces considerably as

number of projections becomes larger.

The practical implications of this image evolution process could be important in practice.

For a reconnaissance aircraft, this evolution process can help recognize targets simultaneousl-

with data collection. One need not wait for all the projectional measurements to be collected

before an 'image* can be produced. This gives the option of prolonging the flight to ensure the

target recognition or terminating it if the target has already been recognized. This dynamic

aspect of the algorithm can be uset ul in surveillance applications as it provides an efficient on-

line image reconstruction scheme which can generate a crude version of the enemy target very

rapidly and improve upon the quality, if necessary. along the flight path. A similar an image

evolution process is possible. if desired, with :he con\.entional 2-1) Fourier based method by

setting the unknown Fourier data to zero and then performing the 2-D inverse FFT. The

:ol
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Figure 5.2 a): Reconstruction with NP (number of projections) - 2.
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Figure 5.2 c): Reconstruction with N,, (number of projections) - 20.

Figure 5.2 d): Reconstruction with N~ (number of projections) -30.
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S"Figure 5.2 e) Reconstruction with N. (number of projections) - 40.
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*.' . Figure 5.2 f)" Reconstruction with N,, (number of projections) -- 50.
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Figure 5.2 g) Reconstruction with N. (number of projections) - 60.

Figure 5.2 h) .Reconstruction with N (number of projections) =64. U

~7

/ . - - * - * . . . . . . . . . . .

4'* - . .
* .'. % - %*.* *..."... . *', 

1 7~



A- .-.- .-..- '. - - -

53
'ftp

U

A

1.

i-ft

'0
b -

>ft

-4-.- -

I-

z
ft.

0

C

0

'I

-~ 0
'a

0
I.-

p 4ft~
.0
C

C
'ft /

0
aft L.

z

Ir~

/
'.- I-

I -'ft

-~ x'~Ift I IJ ft

0 0 ft

N N 'a
I T r

p
'ft.

.**~*~ ~ ~ ~ ~ ~ 4ft ftft~ ,ft~ ft ft~~*ftftftftftft -. -:-..

- ~ - ft.'.



JV..

54 .

computation of the image intensities in this case, however, is not cumulative as in the CBP case

Reconstruction of Subimages

To illustrate the point-by-point reconstructional aspect of the algorithm, a subimage of

(32x32) pixels in the target field is considered. Figure 5.4 (a) is an example of the entire image

of 64X64 pixels. Figure 5.4 (b) shows the subimage of 32x32 pixels centered at the origin. -.

Figure 5.5 (a) is another example of a full image: Figure 5.5 (b) is the corresponding subimage

of the lower right quadrant. In both these examples. all 64 projectional values were used to

compute the subimages. As a projection is obtained, it is first 1-D inverse Fourier transformed.

and then back-projected only for the points within the subregion of interest. Referring back to

Equation 3.10. in Chapter 3. the choice of the points in the image plane at which the intensity

values are desired are left entirely to the user. To illustrate this point, the region considered in

Figure 5.4 (b) was divided into 64x64 pixels instead of 32X32 pixels as described above. The

reconstructed image in this case is shown in Figure 5.6. This characteristic referred to as image

zooming enables the user to examine the relevant parts of the image plane more closely and on a

finer grid. In summary, on using the CBP algorithm, one can choose the points to be recon- U

structed. and then compute the intensity values for these points only.

The above characteristic of the CBP algorithm can be useful if the approximate target

location is known a priori and also for the purpose of auto-focusing. If an approximate loca- 7

tion of the target is sensed by some other means, such as infrared or laser sensors. then only the

particular region around it need be reconstructed. In this situation. the algorithm can result in

substantial savings in the computation time. Furthermore, this feature can also aid the auto-

focusing step required for all SAR images [J]. Usuallv. an entire image is reconstructed and

then certain subregions are correlated to determine the focusing parameters. lsing this nlor-

mation. the data are then modified and the tocused imae is reproduced again. L sin4 the ('B1P

method. only the subregions necessar\ for auto-ioctisingl purposes need he reconstructed. ThIl,

D" U
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Figure 5.4 a): Point target at (0.-0.).

Figure 5.4 b) Suhirnage of Figure 5.4 a) centered at origin.
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Figure 5.5 a): Point target at (0. .0.).
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'S.Figure 5.5 b) Suhimage of Figure 5.5 a) at lower right corner. 
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resulting in substantial savings of computational time. Subregions can be reconstructed by the

Fourier based methods by computing the DFT summations instead of using FFT. However, the

purpose of using the FFT to reduce the complexity is destroyed. An alternate technique would

be to filter and decimate the given Fourier data and then use a lower order FFT corresponding

to the size of the subimage desired.

5.1.2 Signal Processing Aspects

As discussed in Chapter 3, a 1-D interpolation must be performed prior to back-projection

step for each pixel point of the image. The order of the interpolator required can be reduced, if

the samplir rate of the transformed projection is increased by zeropadding each projection

prior to 1-D inverse transform. If a sequence of length N, is zeropadded by m N, zeros. and

the new sequence of length (m + I ) N, is I-D transformed, then the new transformed sequence

will have m sample points in between every two sample points of the nonpadded transformed

sequence [51.11]. A lower order of interpolator can be used on this denser transformed projec-

tion. Thus the linear interpolation for N 2 pixels is reduced to a Nearest Neighbor interpolation

at the expense of increasing the size of the FFT. I

Figure 5.7 a) - d) shows the results of zeropadding the original transformed projection

{ } of length 64 with various integer multiples of 64 and using the Nearest Neighbor interpo-

lation scheme. The MNR ratios of these are presented in Table 5.1 along with the MNR ratio

for linear interpolation and no zeropadding. The artifacts or the spurious targets present in

these figures are due to the the changes in the sampling rate and also due to the order of inter-

polator used. In each case, however. The mainlobe is distinctly resolved and the energy outside

the mainlobe decreases with increase in the number of zeros padded. In the worst case, the

sidelobes are below -33.5 dB.

The integration tor the back-projection step of Equation 3.S in Chapter 3 that integrates

tht- contribution )I all the projections lr each pixel poini can he performed using an,,

%1

~~~~~~. . . . . . . ................. .. .....--. ,,,..%.. -..-. ,,,,.

..-~~~~. .. . ........ .-...........-........-....... :......,..............-..... .. ,,,... -.....-.... .. -.. ....
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-34.8 dB

Figure 5.7 a): Reconstruction using Nearest Neighbor interpolation with no zeropadding.

4Z4

Figure 5. 7 b): Reconstruction using Nearest Neighbor interpolation with 64 zeros padded.
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~Figure 5.7 c) "Reconstruction using Nearest Neighbor interpolation with 192 zeros padded.

I.I

o

al..

4..

-.o

%= Figure 5.7 d) "Reconstruction using Nearest Neighbor interpolation with 256 zeros padded.
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p numerical integration technique. The simplest techniques are the rectangular approximation

and the trapezoidal approximation which can be illustrated as follows.

Table 5.1 Summary of MINR values with zeropadding.

Total Length with Zeros Padded Nearest Ngb. (dB) J Linear (dB)

0 -27.595 -40.38

64 -31.819 ".

192 -32.617
,6

4 4 8 -3 7 .8 5 9 ..

Consider a function f (0) which has to be integrated over the interval [0a Ob]. Let

k { " =0.1.2,...,N be a finite partition of the above interval with 00 = 0a and O. = 0.

Let AOk = Ok -k -1 denote the kIA increment. The rectangular approximation can then be

• "expressed as

',-t

f /(0) dG ]f(0, AO,

while the trapezoidal method can be expressed is

f (O) dO= (01 >* / I._-0 0.5 AO,

The results ol using both these approximation technioues indicate there is negligible difference

m
'" -2'ft

-. - '. .. . *. .. . . .. ,ft * * *' ,~7 . ft.**.
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in using either scheme since the partition of the interval of integration is chosen to be very fine.

as shown in Figure 5.8.

Windows are applied to the Fourier domain data prior to the convolution step as discussed

in Section 3.3 of Chapter 3. A 2-D separable Hamming window was first applied to the entire

data. A 1-D Hamming window was also applied to each projection prior to the 1-D FFT

transformation and another along the pixel trajectory during the back-projection step. The

results of applying both schemes on various target locations and the two different angles indi-

cate that there is only a slight improvement by using the second scheme. The improvement in

MNR was less than .01%. Both of these schemes seem to have an identical effect on point tar-

get reconstructions.

5.1.3 Comparisons with FFT Based Method

Assume that an ideal point target is located at (x, •y,) = ( -23, 24) in the image plane. To

obtain the data for simulation. its Fourier Transform G (o.0) defined in Equation 5.2 is sampled

on a uniform polar grid as in Figure 5.9. It is assumed that the look angle is 0, = 3* with 1024

equal angula: increments and 1024 equal radial intervals over the width AU = W2 -o1, i.e., the

data region consists of slightly larger than 1024X1024 samples on a polar grid. Each of these

projections is centered over the the center frequency o,.

In order to save computation time and resources, the CBP algorithm was applied on subar-

rays of 64x64 samples. This results in 16x16 subarrays. Each subarray will be referred by an

o ordered pair specifying its location on the polar grid. Only two specific subarrays, namely.

(2,8) and (16.1) as shown in Figure 5.9 will be considered in this section. Results will, how-

ever, vary from subarrav to subarray. It is onlv reasonable to extrapolate the results for

I KX 1K array from results ol many 04X6-4 subarray:

For the DFi case [47]. the polar samples were first interpolated to a Cartesian grid using a

.' ,, . .';'. .. .- , .. . ' .. . , . _. 7, ". .... ,. ' :, : ; r, , 7 ' , , ' " ' • ' "- . . . - ; U"
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Figure 5.8 a) Reconstruction using rectangular approximation for the back-projection
integral.

Figure 5.8 b) .Reconstruction usinig trapezoidal approximation for the back-projection
integral.
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5 Standard Polar Format (SPF) interpolator and then processed with a 2-D separable Hamming

window prior to applying the 2-D inverse FFT. In this case the Fourier data required in each
r.

subarrav is slightly larger than the 64X64 samples to account for additional data needed for

the 2-D polar to rectangular interpolator. The final Cartesian grid in the Fourier region is how-

ever 64x64.

Table 5.2 Comparisons of MNR values for CBP and DF method for subarray (2,8).

Interpolators CBP (dB) DF (dB)

Nearest Ngb. -27.595 -5.64

Linear -40.384 '.

SPF 4 Pt. ... -24.495

SPF 8 Pt. ... -36.467

SPF 10 Pt. ... -42.454

The response for subarray (2,8) is shown in Figures 5.10 and 5.11. Figure 5.10 shows the

results of using the Nearest Neighbor interpolation scheme for both methods. With the

modified convolution back-projection method, the location of the target can at least be approxi-

matelv detected. However, that is not true for the Direct Fourier method. Figure 5.11 is the

,Dr, reauit-,s ar due to B. a.MdTt-r, nd Dr. D. C. Munon. Jr.

m ". . . . . . . . . . . . . . . . . . .
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-34.8 dB

Figure 5.10 a): Reconstruction using CBP method with Nearest Neighbor interpolation for
subarray (2.8).

(lot

Figure 5.10 b). Reconstruction u-sing DF method with 'Nearest Neighbor interpolation for

subar-ray (2.8).
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Figure 5.11 a) Reconstruction using CBP method with linear interpolation for
subarray (2.8).

Lj

Figure 5.11 b) Reconstruction using DF method with SPF interpolator of order 9 for
subarray (2.S).
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comparison of the linear interpolation scheme with modified CRP method and the SPF of order

9 with the DF method. Results of various orders of interpolators for subarray (2.8) are sum-

mariz:ed in the Fable 5.2 Similarly. Figures 5.12 and 5.13 are the comparisons of the two "

methods for the subarray (16.1). Note in Figure 5.9 that for subarray (16.1). the interpolators

would have to be more accurate than for subarray (2.8). Since the sample spacing in the angu-

lar direction is changed when the data are interpolated from polar to Cartesian grid [47]. the

spurious targets are evident in Figure 5.12 (b) and Figure 5.13 (b). Results for subarray (16.1)

are summarized in Table 5.3.

ii

Table 5.3 Comparisons of MNR values for CBP and DF method for subarray (16.1).

Interpolators CBP (dB) DF (dB)

Nearest Ngb. -21.15 -1.97
A.4

Linear -32.799 ...

SPF 6 Pt. ... -10.62

SPF 10 Pt. ... -17.01

SPF 14 Pt. ... -24.48

In conclusion. (BP produce-, high quality images using a linear interpolation Equivalent

results for the )I a-e A~ould require interpolators A order between S and 10 for subarrav

'a . ..
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subarra (16.1)

Figure 5.12 a): Reconstruction using CBP method with Nearest Neighbor interpolation for
subarray (16.1).
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Figure 5.13 a): Reconstruction using CBP method with Linear interpolation for subarray

(16.1). (1.1)
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(2.8) and of order between 16 and 18 for subarray (16,1). Such high order interpolators would

involve a large amount of computation. However. the CBP algorithm will still be more compu-

tationallv intensive.

The computational complexity of CBP algorithm, as described in Chapter 3. is O(N 3).

while for the DF method it is P(N)+O (N 2 1og 2N), where P(N) denotes the complexity of the

2-D interpolator used. The contribution of P(N) will increase as the order of interpolator

increases. Both the CBP algorithm and the DF algorithm were implemented and executed on a

VAX-11/780 computer with the UNIX operating system. The CPU times taken by both algo-

rithms are presented in Table 5.4. This demonstrates that the CBP algorithm is around 3 to 5

times slower than the DF algorithm.

Table 5.4 CPU time comparisons for CBP and DF methods.

- Interpolators CBP (sec) DF (sec)

Linear 295 ...

SPF 9 Pt. 58

* SPF 17 Pt. ... 100

I

oI.

U
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5.1.4 Point Target Response

Consider an ideal point target located at various positions within the target field including

the reference point (0.0). The annular region in the Fourier domain with angular width

= 3' centered around the 0 = 00 axis in the (w.O)-plane was first considered. The width of

the annular region is 19.23 rads/meter. The entire annular region was divided into 64 projec-

tions and 64 samples per projections. A separable Hamming window was applied in both angu-

lar and radial direction. Note that this is a change of methodology from that of the previous

sections. In the earlier sections. tl'e entire arinular region was divided into 1024x1024 samples

and each sub region was composed of 64x64 samples. This resulted in 16X16 subregions. To

evaluate the performance of the CBP algorithm on the entire annular region in the Fourier
.°

domain one could use the algorithm directly on the 1024x1024 polar grid. This is however

* computationally expensive and hence the Fourier region is divided into 64x64 samples. This

amounts of taking every 16th projection and 16th sample per projection from the 1024X1024

polar grid. In effect the sampling rate in the Fourier domain is reduced and hence the size of the

image region is also reduced. Note that the resolution cell width however is unaffected.

The responses for targets at various locations on the horizontal, the vertical, and on a

diagonal are shown in Figures 5.14-5.16. These figures indicate that the widths of the main

lobes of the targets increase preferentially along the horizontal direction as opposed to the vert-

ical direction. Furthermore, the widths of the mainlobes were fairly constant with distance of

target location from the origin along the vertical direction. This preferential behavior is due to

the location ot the data in the Fourier domain [46.49]. The MNR values for each of these cases

is plotted ,erUs the targe' coordinates in Figure 5.17. The above experiment is repeated or the

Fourier data centered around the 450 axis in the (wo.O)-plane. The NINR values in this case are

plotted in Figure 5. IS. From these values one can draw the conclusion that the widths ol te he

main obes of the targets are symmetrical in both directions and increase only with the distance

%W* F
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from the origin.

5.2 Non-Ideal Data

In an attempt to make the simulation more realistic, an actual point target response was

computed from a mathematical model of the radar return. This mathematical model was

developed by Dr. Zeoli at the Hughes Aircraft Co. and the derivations of the model are

presented in a Lockheed report by Jenkins and Weis [55]. Only the final result of the model is -

presented here.

Once again, consider a point target with unit amplitude. As the plane moves along the

trajectory. the n"' transmitted pulse of linear FM type at an angle O, of Equation 2.2.1 will

be

woI+ 'Y( -r") 2  It -t' 1<T
e 2 2T

S, (t ) = otherwise

Then the return signal from the point target is mixed with the reference signal and low-pass

filtered to give a unit amplitude signal represented as e' ' . where the phase function D is

derived in [55,52] to be

V 't .0, (rn - r,. ) [Iwo + -Y (t -t' )r 2 -- 2( r ,, r2)7.1

c "

In the above equation the variable "t" denotes the passage of time. At any time t how-

ever, the phase function is recorded on a polar raster at a radius &J which is defined to be a

linear function of t . Making the change of variable from t to wu in the above equation and after

considerable mathematical manipulation the final form of the phase function, now treated as a

function of continuous parameters cw and 0. is derived to be

(w.,O) - cK____ Iv, sin0 + x, cos0 +
"' '21)

This differs from the ideal point target response of Equation 5.2 by the addition of the third

El
I7
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term which appears due to the approximations made in the mathematical model. Here p is the

radial distance of the point target from the reference point in the target field, )'Y, is the
' '] Y 0c

minimum distance from the radar ground track to the reference point, and K = -T"* The

details of the derivation of the above non-ideal phase function can be found in [55] and will not

be presented here. In the remainder of this section. this non-ideal point target response is com-

puted for comparisons of the CBP and the Fourier-based reconstruction methods.

* "The non-ideal simulation of the point target response was performed for three different

look angles. namely. ,,, = 3", 8.5* ,and 170 respectively. The corresponding resolution cell

widths were computed to be 8 = 2.83m , 1.Om , and 0.5m. The other parameters were chosen

to be f o = 1.0 GHz. R - 10km. with time bandwidth product of 15000 Hz. The results of the

* -simulations in all three cases, for both the CBP and the DF reconstruction techniques. are

shown on plots having a 60dB floor. In these simulations, the height of the radar was assumed

to be zero, since it only requires a scale change, and 64 projections were computed. each con-

taining 64 samples.

*Figure 5.19 (a) shows the simulation result for the 0, =3* case using the CBP algorithm

with 1-D linear interpolation. The corresponding result for the DF metnod using a 2-D separ-

able third order FIR interpolator is shown in Figure 5.19 (b). The response of the CBP algo-

rithm to targets placed at different locations has also been studied. In this case. the non-ideal

,"" data were assumed to be within an annular region of width 0,, = 3* centered around the 0"-

axis in the Fourier domain. A plot of the MNR values versus location of the point targets along

the horizontal, vertical, and 450 diagonal is shown in Figure 5.20. This plot demonstrates that

the MNR values for targets away from the origin are fairly constant with distance from the

origin in all three cases.

Figures 5.21 (a) and 5.21 (h) show the simulation results for both the CBP and the DF

algorithms with the look angle 0, = 8.5'. The corresponding results for the 0,,, = 17' case are

U42 A *
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MNR =-32.51dB
0,~ = 3.06

2.83m

Figure 5.19 a): GB? reconstruction with non-ideal data.

MNR -32.75dB

8 = 2.83m

Figure 5.19 b) :DE reconstruction with non-ideal data.
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MNR =-25.29dB

M= -.5.2d-

I.I.

Figure 5.21 ) DEP reconstruction with non-ideal data.
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shown in Figures 5.22 (a) and 5.22 (b), respectively. These results indicate that while the two

algorithms are quite similar in performance for small look angles, the quality of the image pro-

duced by the CBP algorithm improves with wider look angles. The DF algorithm, however.

difference between the annular region and the rectangular region inscribed within it becomes

larger as the look angles increase, and hence this increases the errors caused by 2-D interpola-
tion. The MNR values produced by both algorithms fall in magnitude as the look angle

increases. For small look angles the MNR produced by the DF method is higher in magnitude

than that of the CBP method. The opposite is true for large look angles.

%.

'
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=17.00

Figure 5.22 a) CBP reconstruction with non-ideal data.

M NR -2 1.45dB

Figure 5.22 b) DF reconstruction with non-ideal datw.
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*CHAPTER 6

CONCLUSIONS

Synthetic Aperture Radar image reconstruction is a problem of producing an image from

limited angle samples of the Fourier data region. The proposed CBP algorithm proved to be

very easily adaptable to spotlight mode SAR data. A detailed study of the algorithm revealed

some useful characteristics, like the ability to produce subimages, image zooming and the abil-

ity to reconstruct an image simultaneously with the data collection. These features have

significant military and civilian applications.

In addition, a comparison of MNR of CBP and direct Foarier methods on the subarrays of

the Fourier data revealed that CBP can produce high quality images without spurious targets.

The DF methods, however, use sufficiently high-order 2-D interpolators to produce data on a

m rectangular grid, and this results in images with spurious targets [29.50). Modified CBP with

1-D linear interpolation produced an MNR equivalent to the DF method with the order of

-. interpolator being 9 or 14. depending on the subarray chosen.

.* The CBP algorithm is a point-by-point reconstruction algorithm whose computational

complexity is shown to be 0 (N3 ). where NXN is the array size of the final image. In contrast.

* the FFT-based algorithms have a complexity of P (N) + 0 (N 2 logN) and the computation time

is usually dominated by the 2-D interpolation which has a computational complexity of P (N).

When N is large and the interpolator order is small, it is apparent that the CBP algorithm

requires more arithmetic operations than the FFT-based methods. However. the inherent paral-

lelism in the CBP algorithm w:is exploited by using special purpose architectures with N pro-

cessors to make computationa! complexity equivalent to 0 (N.2).

knother important issue in modern SAR is to find high quality reconstruction algorithms

that are also well-suited for VLSI circuit realization. Rather than searching for algorithms that

require a minimum number of multiplications and additions, it may be more important in VlSI

n
--



implementations to find highly parallel algorithms that can be partitioned properly. In general.

performance depends largely on the net throughput rate of the data. Therefore. the best SAR

algorithms of the future may not necessarily be those with minimal arithmetic operations, but

rather will be those which can be partitioned well for VLSI implementation and pipelined prop-

erly for high throughput rates [8.9,101.

In this dissertation, the CBP algorithm has been studied from several qualitative and -

implementational view points, as mentioned above. It has also been demonstrated that this

algorithm is well suited for SAR image reconstruction and has several desirable features. How-

ever, there are several issues that need to be investigated both to improve the performance of

the CBP algorithm in its present form and also to make it readily applicable in physical SAR

systems. Some of these issues are discussed below.

First. a detailed study of motion compensation and auto-focusing needs to be performed

so that the final image produced is focussed and properly resolved. Since an aircraft cannot fly

a perfect straight line trajectory, motion compensation is essential. In addition. a well-focused

image requires that the phase of each return be known with high precision. Usually, two

subarrays of Fourier data are used to produce two images centered on the same reference point.

Due to the phase errors in the measurements, these two images will be displaced with respect to

each other. Cross correlation of the two images can give some indication of the phase errors [4].

This problem of auto-focusing may be easily adaptable to the CBP algorithm. An image from,

say. ten projections can be cross correlated with the image from the next ten projections. for

example. to determine the phase error estimate. The details of this approach need to be studied

in the future.

Another topic to be investigated is the process of pre-summing. As discussed in Chapter 5

of this thesis. the Fourier data produced by the SAR system is over-sampled, and then by the

process of pre-summing the sampling rate is decreased so that the cost of data storage and the

.. . . . . . .. . . - .
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a, computation time of the processing is reduced at the expense of the computation involved in

pre-summing. In this thesis the CBP algorithm was applied only to the Fourier data obtained

after the pre-summing operation. The option of applying the algorithm directly on the raw

data without pre-summing needs to be examined. The disadvantage of using the raw data is

"- that the memory requirements for each processor in the architecture described in Chapter 4

will increase by a factor of the over-sampling, and that both the convolution and the back-

projection steps have to be performed for a larger number of projections. The effect of the

image quality produced by using the CBP algorithm on either the over-sampled raw data or the

S-pre-summed data needs further investigation. The effect of the presence of noise in the SAR

system itself and data transmission channels on the quality of the image reconstructed and the

- robustness of the CBP algorithm to several parametric variations are also some topics for future

research.U
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