

دى. ھەقىرە بولار¹ ھەلى مەدەرەرە ئۆلۈكۈر ھەت بولار بەر تەرىكەر بەر

いいちちょううろい

. .

4.4

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ፚጜፚኯፚኯፚኯፚኯፚኯፚኯፚ

NAMES

ł

Technical Report N00014-82-k-0025 P00002 TR07

SHEAR BAND CHARACTERIZATION OF MIXED MODE I AND II FULLY PLASTIC CRACK GROWTH

Frank A. McClintock Room 1-304. (617) 253-2219 Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139

George A. Kardomateas General Motors Research Laboratories Engineering Mechanics Department Warren, MI 48090-9055

Unlimited Distribution

OFFICE OF NAVAL RESEARCH

Solids Mechanics Program. Mechanics Division

Scientific Officer: Dr. rapa Rajapakse

Code 4325 (202) 696-4306

800 N. Quincy Street Arlington, VA 22217

31 July, 1985

Technical Report

Approved for public release; Distribution Unlimited

Prepared tor

СОРУ IL

AD-A170 646

86 8 8 119

DISTRIBUTION STATEMENT A

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
N00014-82-K-0025 P00002 TR04	
A. TITLE (and Subility) SHEAP BAND (HARACTERIZATION OF MIXED MODE I	5. TYPE OF REPORT & PERIOD COVER Technical Report
SHEAR DEAD CHARACTERIZATION OF MIXED MODE I	
AND II FULLY PLASTIC CRACK GROWTH	6. PERFORMING ORG. REPORT NUMBE
7. AUTHOR(s)	S. CONTRACT OR GRANT NUMBER(S)
Frank A. McClintock George A. Kardomateas (now at Eng. Mech. Dept. Gen. Motors Res. Labs., Warren MI 48090-9055	N00014-82-K-0025 P00002
Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139	10. PROGRAM ELEMENT, PROJECT, TA AREA & WORK UNIT HUMBERS
1 CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	31 July 1986
Solid Mechanics Program, Mech. Div. Code 4325	13. NUMBER OF PAGES
800 N. OUINCY St., AFIINGUON, VA 22217 14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	IS. SECURITY CLASS. (of this report)
	ISE. DECLASSIFICATION DOWNGRADIN SCHEDULE
6 DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different fi	reen Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different fi 18. SUPPLEMENTARY NOTES	ren Report)
17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different is 19. SUPPLEMENTARY NOTES 19. KEY KORDS (Continue on reverse side if necessary and identify by black number Ductile fracture, shear band, theory, experiment fracture stable design	", ts, crack opening angle,
 DISTRIBUTION STATEMENT (of the observation in Block 20, if different h SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design Fully plastic crack growth in singly groov characterized locally by the directions and amo on various planes. The model relates macroscop the crack growth ductility, defined as the axia ligament reduction, which is of practical impor stiffness of the surrounding structure that is fracture. (cont.) Comma 1473 EDITION OF I NOV SE IS OBSOLETE S N 0102- LF-C14-0001 SECURITY CL 	" ts, crack opening angle, " ed tensilé specimens is unts of fracture and slip ic quantities, including l displacement per unit tance in determining the needed to prevent unstable
 DISTRIBUTION STATEMENT (of the ebserged encoded in Block 20, 11 different in SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES SUPPLEMENTARY NOTES ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design ASSTRACT (Continue on reverse ende if necessary and identify by block number fracture stable design Fully plastic crack growth in singly groov characterized locally by the directions and amo on various planes. The model relates macroscop the crack growth ductility, defined as the axia ligament reduction, which is of practical impor stiffness of the surrounding structure that is fracture. (cont.) D form 1473 torrion of 1 Nov 68 is obsolette security classes 	" ts, crack opening angle, " ed tensilé specimens is unts of fracture and slip ic quantities, including l displacement per unit tance in determining the needed to prevent unstable

Applied to six different structural alloys with strain-hardening exponents from 0.1 to 0.2, the model gave crackgrowth ductilities within 10% for the symmetrical configurations, where the value ranged from 0.25 to 0.4, and were unrelated to the strain-hardening exponent.

For the asymmetrical configurations that occur near welds or shoulders, the crack growth ductility for the low hardening materials drops to 0.07 to 0.11. The predicted values were uniformly high by a factor of two, providing a good relative ranking of the alloys.

Other macroscopic correlations were generally within 10%. Thus this slip plane model of fully plastic crack growth provides a useful correlation between macroscopic measurements made on the specimens after fracture, and the important loss of crack growth ductility that occurs in asymmetric configurations with materials with low strain-hardening.

5 N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

Shear Band Characterization of Mixed Mode I and II

Fully Plastic Crack Growth

by F.A. McClintock and G.A. Kardomateas

Abstract

Fully plastic crack growth in singly-grooved tensile specimens is characterized locally by the directions and amounts of fracture and slip on various planes. The model relates macroscopic quantities, including the crack growth ductility, defined as the axial displacement per unit ligament reduction, which is of practical importance in determining the stiffness of the surrounding structure that is needed to prevent unstable fracture.

Applied to six different structural alloys with strain-hardening exponents from 0.1 to 0.2, the model gave crack growth ductilities within 10% for the symmetrical configurations, where the values ranged from 0.25 to 0.4 and were unrelated to the strain-hardening exponent.

For the asymmetrical configurations that occur near welds or shoulders, the crack growth ductility for the low hardening materials drops to 0.07 to 0.11. The predicted values were uniformly high by a factor of two, providing a good relative ranking of the alloys.

Other macroscopic correlations were generally within 10%. Thus this slip plane model of fully plastic crack growth provides a useful correlation between macroscopic measurements made on the specimens after fracture, and the important loss of crack growth ductility that occurs in asymmetric configurations with materials with low strain-hardening.

Introduction

If a structure cracks, it is desirable that any crack growth be fully plastic to provide large deflections, both for stability by load-shedding to other parts of the structure, and for facilitating crack detection before failure of the entire structure. This desired crack growth

y Codes

Avair and/or Special

151: ShChrF67

Shear Band Char., Pl. Crack Growth 2 by F.A.M. and G.A.K. r21Ju186

ductility is reduced by asymmetry, which tends to focus the deformation into a single band, along which the crack advances into pre-damaged material. With symmetry, on the other hand, the crack tends to advance between two slip bands into undamaged material. Kardomateas and McClintock [1] have found that for plane strain tension applied to singly-grooved specimens of low strain-hardening alloys (strain-hardening exponent n \approx 0.1), asymmetric, (mixed Mode I and II) specimens showed only 1/3 the crack growth ductility of symmetric (Mode I) ones. (This reduction is much less pronounced for crack initiation and for n \approx 0.2.) The object here is to characterize the local sliding-off and fracture processes in terms of macroscopic observations of deformation.

Strain-hardening materials require a finite element analysis, perhaps coupled with a rigid-plastic singularity [2], and in turn at the very tip, if not dominated by the fracture process zone itself, an elastic-plastic singularity (Ponte-Castañeda [3]). Even when these analyses can be successfully combined, there will be a need for an approximate characterization in simple terms. Here we consider such an analysis based on at most one band above, and one below, a growing crack. In singlygrooved specimens of non-strainhardening material, such bands would be at \pm 45°. In doubly-grooved specimens under tension, or for linearly strainhardening materials, the deformation may occur in a fan, which would be approximated by a slip band at more than 45° from the axis.

For slightly asymmetric specimens, with bands above and below the normal to the tensile axis, kardomateas [4] found the relative amounts and the angles of sliding on the two slip planes, and of fracture on an intermediate plane, in terms of the angles and projected lengths of the fracture surfaces and one of the angles of deformation of the back surface. While this analysis also gives the symmetric case, it requires that slip on the two planes be of opposite sign, and thus does not apply to the strongly asymmetric configurations of interest here.

Analysis for Asymmetric Configurations

With sufficient asymmetry, both slip lines lie above the axis

and the state of the

151:ShChrP67

ANNA ANALYS WANNA CONTRACT

Shear Band Char., Pl. Crack Growth 3 by F.A.M. and G.A.K. r21JulB6

transverse to tension. Then the shear on both will be of the same sign. As shown in Figs. 1a,b, the crack growth direction may lie below both lines or below just one. (If it were to lie above both, crack closure would prevent any deformation; the limit of a crack growth direction parallel to the upper band would be pure Mode II.) In the field of Fig. 1a, the deformation on the back surface is entirely above the point at which the crack breaks through to the back surface; the field of Fig. 1b has deformation both above and below. (Remember the goal here is an approximate characterization: the fields are both unrealistic for nonhardening plasticity in that the slip directions would both have to be 45°, and in Fig. 1b the lower slip line would split into a fan rather than break through to a convex point on the back surface.)

Next turn to the local process, shown in Fig. 2. The amounts of sliding on the two slip lines and of fracture are denoted by s_n , s_p , and f , and the respective directions by $\boldsymbol{\Theta}_{u}, \, \boldsymbol{\Theta}_{p},$ and $\boldsymbol{\Theta}_{f}$. The ratios of $s_{n+} s_{0}$, and for are assumed constant during crack growth, so in what follows s_n, s_o, and f can also represent the total contribution of each to crack growth across the entire ligament ${\boldsymbol{\mathscr{A}}}_{\hat\Omega}$. Consider a cycle of first sliding on the upper plane, then on the lower, and finally fracture. In Fig. 2, both slip lines lie above the fracture direction, and the new surface generated by sliding off lies entirely on the lower surfaces. The upper flank of the crack consists solely of fracture surface. Furthermore, the length and angle of lower flank depend only on the resultant of slip on the two slip lines, not on their partitioning. The only way of distinguishing between the two components of slip would be through the shape of the deformed back surface, as shown in Fig. 1. This shape is so dependent on strain-nardening that the analysis will not be carried out here. Instead, the two slip lines will be combined into one. with slip s in the direction $\boldsymbol{\Theta}_{\mathbf{r}}$.

First consider the equations for the flanks. From Fig. 2 the upper surface is produced entirely by the fracture:

 $\theta_{\rm u} = \theta_{\rm f}$.

(1)

151:ShChrP67

Shear Band Char., Pl. Crack Growth 4 by F.A.M. and G.A.K. r21Jul86

For the lower flank angle, (Fig. 2)

$$\tan\theta_{f} = \frac{f \sin\theta_{f} + s_{f} \sin\theta_{5}}{f \cos\theta_{f} + s_{f} \cos\theta_{5}}$$
 (2)

Because the fracture angle is below both of the slip angles, there is no deformation below the lower flank angle, and the projection of the lower flank length is just the original value:

$$\mathbf{x}_{0} = \mathbf{x}_{0} = \mathbf{f} \cos \theta_{f} + \mathbf{s} \cos \theta_{g} . \tag{3}$$

Because the upper flank consists solely of fracture surface, the projected upper ligament length is:

$$\mathbf{R}_{u} = \mathbf{f} \cos \theta_{\mathbf{f}} \quad . \tag{4}$$

In principle, Eqs. 2-4 allow determining the microscopic quantities $f_{,s}$, and Θ_{s} from the macroscopic variables $\Theta_{g} \cdot A_{g}$, and A_{u} . In practice, the crack opening angle $\Theta_{g} - \Theta_{u}$ is too small for good accuracy. It turns out to be more accurate to base the microscopic variables on the back angle of Fig. 3 (see also Fig. 1), which is the deformed region resulting from the slip line sweeping past points on the back surface:

$$\tan \beta = \frac{s \cos \theta_s}{s \sin \theta_s + f(\sin (\theta_s - \theta_f))/\cos \theta_s}$$
 (5)

The microscopic parameters can now be found from Eqs. 2-4 as follows. With Θ_f equal to the upper flank angle according to Eq. 1, the fracture extent f can be found from Eq. 4. Solving Eq. 3 for s , introducing it into Eq. 4 and expanding the denominator gives

$$\tan\beta = \frac{\beta_0 - f \cos\theta_f}{(\beta_0 - f \cos\theta_f) \tan\theta_s + f \tan\theta_s \cos\theta_f - f \sin\theta_f} , \quad (6)$$

-151:ShChrP67

Shear Band Char., Pl. Crack Growth 5 by F.A.M. and G.A.K. r21Ju186

which can be solved explicitly for $\tan \Theta_{\mathbf{x}}$ in terms of known quantities:

$$\tan\theta_{s} = f \sin\theta_{f} + \frac{\theta_{0} - f \cos\theta_{f}}{\tan\beta} .$$
 (7)

With Θ_s known, the slip ratio s can now be found from Eq. 3 with Θ_x from Eq. 1 and f from Eq. 4.

From these microscopic parameters, a number of other variables can be found for comparison with data:

The lower flank angle Θ_{ρ} is found from Eq. 2.

The projected lower flank ratio \mathcal{R}_{g} should be \mathcal{R}_{0} , since from Fig. 2 there is no deformation below the lower flank.

The crack growth ductility, defined as the total axial displacement per unit ligament reduction, is

$$D_{g} = \frac{u_{Y}}{R_{O}} = \frac{s}{R_{O}} \sin\theta_{s} .$$
 (8)

An apparent crack ductility for the lower flank can be defined as the projection of the shear-exposed surface onto the total flank surface. It has been roughly estimated fractographically as the ratio of hole growth to sliding-off area (Kardomateas, 1986). Since the ratio of shear displacement to original ligament width is s, and the material below the lower flank is undeforming.

$$D_{ACI} = \frac{5 \cos(\theta_{s} - \theta_{s})}{R_{0} \cos \theta_{s}}$$
(9)

Since the upper flank in this model is generated entirely by fracture.

$$D_{ACu} = 0 (10)$$

Some measure of how sorely tried the non-hardening assumption is can be found from the thickness of the slip band, again in units of original ligament thickness, and the strain in the band, both found from Fig. 3:

$$t_{eh} = f \sin(\theta_{e} - \theta_{f}) , \qquad (11)$$

151: ShChrP67

14

$$\gamma = s/t_{eb} \qquad (12)$$

Now suppose the lower slip line lay <u>below</u> the fracture direction, but above the transverse direction. In contrast to the case of Fig. 2 analyzed above, slip on the lower line would turn out to increase lower projected ligament length above its original value. Since this was not observed, it will not be analyzed here.

Analysis for Symmetrical Configurations.

The model for symmetrical crack growth is shown in Fig. 4. The macroscopically observable variables are the crack flank angle (or the opening half-angle) $\Theta_{_{\rm C}} \equiv {\rm COA}/2$, and the projected crack flank length at separation ${\cal A}$, which turns out to be shorter than the original ligament length ${\cal A}_{_{\dot{\rm U}}}$. The corresponding microscopic variables are the amounts of fracture f and sliding s, and the angle of the slip line relative to the transverse direction, $\Theta_{_{\dot{\rm S}}}$. The three microscopic variables are found from

first the projected crack flank length,

$$\theta = s \cos \theta_{\perp} + f ; \qquad (13)$$

the crack flank angle.

$$\tan \theta_{c} = \frac{\sin \theta_{s}}{f + \sin \theta_{s}}; \qquad (14)$$

and the original ligament dimension, which is **R** plus the sliding-off that deforms the back side:

 $\mathbf{I}_0 = \mathbf{f} + 2\mathbf{s} \, \cos\theta_{\mathbf{g}} \quad . \tag{15}$

Equations 13-15 can be solved by eliminating f from Eqs. 14 and 15

151:ShChrP67

with Eq. 13, and solving each for s:

$$s = \frac{i \tan \theta_c}{\sin \theta_s} = \frac{i \theta_0 - i}{\cos \theta_s} ; \qquad (16)$$

$$\tan\theta_{\rm S} = \tan\theta_{\rm C} \frac{R}{R_{\rm O} - R} \qquad (17)$$

With Θ_s known, s is found from either of Eqs. 16 and f from Eq. 13. The back angle is found from the construction of Fig. 4:

$$\tan \beta = \frac{s \cos \theta_s}{f \tan \theta_s + s \sin \theta_s}$$
 (18)

The crack growth ductility D_{g} can be conviently expressed in terms of either the microscopic or macroscopic variables.

$$D_{g} = \frac{u_{y}}{R_{0}} = \frac{2s \sin\theta_{c}}{R_{0}} = \frac{2R \tan\theta_{c}}{R_{0}} \qquad (17)$$

The apparent crack ductility (the projection of the shear-exposed surface onto the total flank surface) is

$$D_{AC} = \frac{s \cos(\theta_s - \theta_c)}{s \cos(\theta_s - \theta_c) + f \cos\theta_c}$$
 (20)

The thickness of the slip band and the strain in it are found from Eqs. 11 and 12, with $\Theta_{\rm c}$ = 0 .

Comparison with Experimental Results

Tensile tests on symmetrical and asymmetrical singly-grooved, fully plastic specimens were carried out on the six structural alloys summarized in Table 1 [13. The 1018 cold-finished and the HY-80 and HY-100 steels showed low strain hardening (n \approx 0.1), the normalized 1018 and the hotrolled 1018 steel showed higher hardening (n \approx 0.2), and the 5086-H111 aluminum was intermediate.

For symmetrical specimens, the results of the shear-band

151:ShChrP67

Shear Band Char., Pl. Crack Growth B by F.A.M. and G.A.K. r21Jul86

characterization are shown in Table 2. The different levels of strainhardening had little effect.

a) There was some tendency for the higher hardening alloys to have <u>slip angles</u> Θ_{s} farther below the non-hardening value of 45°, as observed previously (e.g. for annealed commercially pure aluminum [5]).

b) The <u>crack growth ductilities</u> deduced from Eq. 18 all fell in the range of 0.24 to 0.39 and were within 0.03 of the observed values.

c) While most of the deduced <u>back angles</u> β were within 2° of the observed values, for two of the higher-hardening alloys the deduced back angle was high by a factor of up to 1.5, perhaps due to spreading out of the slip band with more hardening.

d) The deduced <u>apparent crack ductilities</u> $\bar{\nu}_{AC}$ were all between 0.24 and 0.38, a factor of two below the observed values [6]. This indicates that the local process was by no means as well characterized as the macroscopic one.

For <u>asymmetrical specimens</u>, the results of the shear-band characterization are shown in Table 3. Here the various parameters are predicted from the relative projected ligament length $R_{\rm u}/R_{\rm o}$ and angle $\Theta_{\rm u}$ of the upper flank, and the back angle β . The different levels of strain-hardening had a substantial effect.

a) The deduced <u>slip angle</u> Θ_s increases with strain hardening, although not quite as rapidly as observed from relative end-to-end motion. It is larger than 45°, indicating a Mode I component of displacement which is not adequately modelled by the single shear band, especially for higher hardening. The slip angle is greater than the cracking angle $\Theta_f = \Theta_u$, as assumed for these equations.

b) The lower flank angle Θ_{g} is no more than 2° above that observed, but this difference is a relatively large fraction of the crack opening angle, $\Theta_{g} = \Theta_{i} = 1$ to $e^{\Theta_{i}}$.

c) The <u>projected lower flank ratio</u> $R_{g}/R_{\dot{U}}$ should be unity if the slip were concentrated on a single plane above the cracking direction. The observed values of 0.90 to 0.87 are generally lower for higher hardening, and are an indication that the single slip-band model is less exact for higher hardening and near-tip phenomena.

151:ShChrP67

Shear Band Char., Pl. Crack Growth 9 by F.A.M. and G.A.K. r21Ju186

d) The deduced crack growth ductility D_g is about double that observed, and both decrease by a factor of 2-3 for lower strain-hardening.

e) The deduced <u>apparent crack ductility</u>, as with symmetrical specimens, is much less than observed. The correct trends are present, however, with more apparent crack ductility on the lower surface than the upper, and more with higher hardening than with lower hardening.

f) The single slip model discussed above fails to include the opening mode, which could be introduced by considering slip on a plane below the transverse axis. This would have the further advantage that some slip, or apparent crack ductility, would appear on the upper flank. Such an analysis [4], when applied to the data, gave both slip angles above the transverse axis, in contradiction with the assumption. Thus the singleslip model discussed here seems to be the best that can be done with one or two slip-planes, at whatever angles.

Conclusions

Fully plastic crack growth in singly-grooved tensile specimens was modelled by a combination of fracture on one plane and slip on another pair, for symmetric configurations, or slip on another single plane, for asymmetric configurations. Macroscopic measurements allow characterizing the crack growth locally by the directions and amounts of fracture and slip. The macroscopic measurements also give other macroscopic quantities, such as the angle of the beformed surface on the back side of the specimen and the crack growth ductility, defined as the axial displacement per unit ligament reduction (as observed by the fractional drop in the load during crack growth). The crack growth ductility is of practical importance in determining the stiffness of the surrounding structure that is needed to prevent unstable fracture.

Applied to six different structural alloys with strain-hardening exponents from 0.1 to 0.2, the model gave crack growth ductilities within 10% for the symmetrical configurations, where the values ranged from 0.25 to 0.4 and were unrelated to the strain-hardening exponent. Correlations with back angle were within 25%, with one exception.

151:ShChrP67

Shear Band Char., Pl. Crack Growth 10 by F.A.M. and G.A.K. r21JulBó

For the asymmetrical configurations that occur near welds or shoulders, the crack growth ductility for the low hardening materials drops to 0.07 to 0.11 for the low-hardening alloys. The predicted values were uniformly high by a factor of two. The slip-band model thus provided a good relative ranking of materials in regard to this important loss of ductility. Correlations with the end-to-end displacement direction and with the lower projected ligament length and flank angle were all within 10%.

This slip plane model of fully plastic crack growth therefore provides a useful correlation between macroscopic measurements made on the specimens after fracture, and the important loss of crack growth ductility that occurs in asymmetric configurations with materials with low strainhardening.

Acknowledgements

The analysis for the asymmetric case was carried out in part by Mary E. David. The financial support of the Office of Naval Research. Arlington, Virginia, Contract N00014-82K-0025, and the interest of the Project Monitor, Dr. Y. Rajapakse, are gratefully acknowledged. M.T. Manning cheerfully provided valuable editorial assistance.

Feierences

 Mardomateas, G.A. and McClintock, F.A., "Tests and Interpretation of Mixed Mode I and II Fully Plastic Fracture from Simulated Weld Defects", ONR Technical Report N00014-82-K-0025 TR06 (1986).
 kardomateas, G.A., "On the Fully Plastic Flow past a Growing Asymmetric Grack and its Relation to Machining Mechanics", Chap. 6 in 'Mixed Mode I and II Fully Plastic Crack Growth from Simulated Weld Defects', PhD Thesis, M.I.T. Department of Mechanical Engineering (1985).
 Ponte-Castañeda, F. "Asymptotic Fields in Steady Crack Growth with Linear Strain-Hardening", submitted to J. Mech. Phys. Solids, (1985).
 Kardomateas, G.A. "Shear-Band Characterization of Mixed Mode I and II

151:ShChrP67

Shear Band Char., Pl. Crack Growth 11 by F.A.M. and G.A.K. r21Ju186

Fully Plastic Crack Growth", Chap. 4 in Thesis of [2], (1985).
5. McClintock, F.A., and Argon, A.S., eds. 'Mechanical Behavior of Materials' Addison Wesley, Reading MA, p. 378 (1966).
6. Kardomateas, G.A., "Fractographic Observations in Asymmetric and Symmetric Fully Plastic Crack Growth", Scripta Met. 20, 609-614 (1986).

154:ShChrP67

r22Ju186

Table 1. Room temperature tensile and hardness data for the six alloys tested.

Parameters: $\sigma = \sigma_1 (\epsilon + \epsilon_0)^n$ Yield Tensile Fracture strength. strength. Hardstrength preexpo-RA true strain strg, strn strain nent unif.strn ness ¥5, €, "HDP" €_f TS, €, n σι σ €₀ kof/mm² % MFa, -MPa. -MPa 1018 steel, (0.15-0.20% C, 0.60-0.90% Mn) cold finished 75 760 0.70 800 580 0.002 614 0.02 163 0.072 0.12 (The above are typical values; tests being re-run) HY-BO steel, (0.18% C, 2-3.25% Ni, 0.10-0.40% Mn, 0.15-0.35% Si) 648 0.002 745 0.13 209 71 1200 1.25 1030-0.007-0.10-1150 0.043 0.17 HY-100 steel, (0.20% C, 2.25-3.50% Ni, 0.10-0.40% Mn, 0.15-0.35% Si) 772 0.002 869 0.072 248 1100-71 1350 1.24 0.001 -0.06-1280 0.111 0.18 5086-H111 aluminum, (4% Mg, 0.4% Mn, 0.15% Cr) 225 0.002 333 0.15 82 44 480 0.58 510-0.002-0.15-**54**0 0.010 0.18 1018 steel, normalized 1700^DF in aroom 351 UYP 305 0.028 457 0.17 103 70 830 1.19 690--0.025-0.14-77ŭ 0.100 0.27 A36 steel. (0.29% max C, 0.60-0.90% Mn) hot rolled 411 UYP 327 0.032 469 0.24 9ú 68 880 1.14 800--0.020-0.20-840 0.022 Ú.26

154: ShChT167

	Table 2	Characterizat	ion of Sing)	ly-grooved Sy	mmetrical	Fracture
Alloy	1018	CF HY-80	HY-100	5086-H111	1018 No	orm A36 HR
Observ	ations					
Projec	ted flank	ratio, A /A ₀				
	0.74	0.80	0.78	0.75	0.74	0.78
Crack	flank angl	e, 0				
	9 ⁰	130	140	9 ^D	12 ⁰	10 ⁰
Corres	<u>ponding Lo</u>	cal Parameter:	<u>i</u>			
Slip an	ngle, O		-			
	360]	43 ⁰	41 ⁰	25 [°]	31 ⁰	32 ⁰
Slip ra	atio, s/#	ù				
	ú.22	0.27	Ů.29	Ú.28	0.30	0.26
Fractur	re ratio,	f/ R 0				
	0.64	Ŭ.6Ŭ	Ú.56	0.50	0.4B	v.5 6
Depende	ent Variabl	les				
Crack g	prowth duci	tility, $D_0 =$	uູ∕ £			
aeduce	d 0.26	0.37	0.39	0.24	0.31	0.28
observ	ved 0.26	0.36	ú .4 ú	0.23	ú.32	0.25
Back an	ole, β _υ					
deduce	d 12 ⁰	1 Ú ⁰	120	23 ⁰	190	16 ⁰
observ	ed 12 ⁰	12 ⁶	13 ⁰	160	15 ⁰	15 ⁰
Apparen	it crack du	ictility, D _{AC}				
Øeduce	d <u></u>	ů.29	ů.32	0.35	0.38	0.30
observ	ed 0.67					0.68
Shear b	and thickn	ess, t _s / <u>r</u> ú				
	0.59	0.68	Ú.66	0.43	0.52	0.5 3
Shear b	and strain	• 7				
	0.38	0.40	Ú.44	0.64	v.5 9	0.49

Bartine

A CALENDARD AND A CALENDARD AND AN AND A CALENDARD AND A CALENDARD AND A CALENDARD AND A CALENDARD AND A CALEND

•

Table 3 Characterization of Singly-grooved Asymmetrical Fracture Based on back angle β instead of lower flank angle Θ_{β}

Alloy	1018 CF	HY-80	HY-100	5086-H111	1018 Norm	A36 HR
Observation	ns					
Projected (upper flank	ratio, A./	.			
	0.89	Ú.85	0.82	0.81	0.75	0.77
Upper flan	k angle, O	= 0,				
	40 ⁰	39 ⁰	39 ⁰	39 ⁰	36 ⁰	36 ⁰
Back angle	, β _u					
	13 ⁰	12 ⁰	14 ⁰	15 ⁰	13 ⁰	130
Correspond	ing Slip an	d Fracture	<u>Farameters</u>			
Slip angle	, Ө ₅					
deduced	51 ⁰	54 ⁰	54 ⁰	54 ⁰	58 ⁰	57 ⁰
observed	510	55 ⁰	55 ⁰	56 ⁰	62 ⁰	61 ⁰
Slip displ	acement rat	10, s/ A û				
	û .1 7	0.26	0.31	0.32	0.48	0.42
Fracture 1	ength ratio	, f/ g				
	1.16	1.09	1.06	1.04	0.93	0.95
Dependent	Variables					
Lower flam	k angle. O	•				_
deduced	41 ⁰	42 ⁰	42 ⁰	42 ⁰	4 4 ⁰	43 ⁰
measured	41 ⁰	41 ⁰	410	41 ⁰	42 ⁰	41 ⁰
Projected	lower flank	ratio, R.g/	.			
deduced	1.0	1.0	1.0	1.0	1.0	1.0
observed	0.96	0.93	ú .9 0	0.8 9	0.87	0.89
Crack grow	th ductilit	$y \cdot D_{g} = u_{y}/$	R ₀			
deduced	0.14	0.21	Ú.25	0.26	0.41	0.36
load-ext	0.07	0.10	0.10	0.11	0.22	0.18
Apparent ci	rack ductil	ity on uppe	r flank, D _A	Cu		
deduced	Ŭ	Ú	0	0	0	0
SEM meas	ů.37					0.57
Apparent c	rack ductil	ity on lowe	r flank, D _A	C.#		
deduced	0.13	Ú.19	0.22	0.23	0.33	0.30
	0.15					
SEM meas	0.52					0.69
SEM meas Shear band	0.52 thickness	ratio, t _s /g	0			0.68
SEM meas Shear band	0.13 0.52 thickness 0.22	v.29	Û Û.28	0.27	0.35	0.68 0.34
SEM meas Shear band Shear band	0.52 thickness 0.22 strain, γ	v.29	0 0.28	0.27	0.35	0.68 0.34

Land Charles Land Street

.

STANDAR ANALY STANDAR STANDAR

いいいとうである

200

Fig. 1a Streamlines for crack advancing below two slip lines with same sign of shear.

Fig. 1b Streamlines for crack advancing between two slip lines with same sign of shear

 $\theta_f = \theta_u$ f_soci θţ 64 Θς (Ogu Θ_{f}

Fig. 2 Details of crack growiby alternating slip and fracture, with fracture below both slip planes. Note equivalence of twoband and single-band models.

Fig. 3 Construction for finding back-angle, and shear-band strain.

Fig. 4 Construction for symmetrical crack.

