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SECTION I

K INTRODUCTION

The work reported on in th,s document Is the result of a mathematical

approach to an engineering problem. The work is described in large part in

mathematical language. The purpose of this section is to describe the general

issues involved in the design of optical correlation filters. This will

motivate the approach to the engineering problem being attacked.

A large body of work has been dedicated to shape-recognizing or object

identification. One particular approach to this problem is optical

-correlation, based on the spatial frequency content of several views of the

object. This is usually attempted in a holographic optical filter system

which contains sufficient information about the object so that a suitably

transformed image of the object can be processed by the filter. If the object

ft. sought is in the image, a large correlation peak should appear in the filter

*output.

The class of correlation filters invented by Caulfield and Maloney,

ft' Reference 1, and extrapolated by Caulfield and Weinberg, Reference 2, Hester

, and Casasent, Reference 3, and Leger and Lee, Reference 4, termed synthetic

discriminant functions (SDF's), hold promise. Very roughly speaking, these

filters attempt to pack a great deal of information into one device by

extracting from several images of a target (the training set) that information

-which is unique about each of them and combine this information in a clever

way to manufacture one filter which recognizes each image in the training set.

However, these filters reportedly have been plagued with a low signal-to-noise



ratio (SNR - a precise mathematical definition is given in the next section):

i.e., these filters have no problem correlating very well with true targets,

but very often give high (even major) correlations with false targets. In

fa L'-, computer simulations run by the author on realistic data show that the

standard recipe for conbtructing SDF's can give filters with an SNR of less

than 1.0, even against a training set of images, in a zero background, which

are edge-enhanced and energy-normalized. These low SNR's have been

independently noted by Riggins and Butler, Reference 5. These facts make the

standard recipe for constructing SDF's less than optimal.

This document outlines a general method which is a major variant of the

-. standard recipe for manufacturing SDF's and seems to solve the SNR problem.

In fact, when applied to the above mentioned data set, this new recipe leads

to optical correlation filters which have an SNR over 7.37 against their

trrining sets. Correlation filters with such SNR's might be useful for

applications. The construction of these new filters is the result of the

formulation of an engineering problem as a very complex mathematical minimax

question. It is somewhat amusing that this mathematical minimax question can

be interpreted as a very involved problem in plane geometry. This

interpretation also makes intuitively clear why the new method might yield

good results. The mathematical minimax question was solved for a fairly

realistic test data set by elaborate computer programs which took a great deal

of disk space and hundreds of hours of CPU time to run on a VAX 11-780/VHS

4.2. The long running time needed for the solution of the minimax question

should not be a cause for alarm. The author has preliminary ideas which

should cut the CPU time for the solution of the minimax question down to no

i1% 1,
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"" more than one-third its present length, even using the present computer

configuatinn available to him. The time needed for the solution of the

" minimax question should be reduced by two orders of magnitude or more on a

*. better configured computer sysLem (even a VAX) with more physical memory and

*2 disk space available for the computation, using smaller (and more realistic)

imagery in the training sets and even more advanced numerical techniques. The

computation time should be further reduced by still another one or two orders

of magnitude on a really advanced machine.

The design of a low noise (or high SNR) correlation filter is not a

straightforward process. Extreme care should be taken to insure, to whatever

=extent possible, that the filter does not give strong positive signals to

false targets. This is a rather complicated task since one does not know a

-j priori all possible false targets - and even if one did know them and there

were a large number of them, j'lst how would one take all of the information

* into account in the design of the filter? The guiding philosophy behind the

work in this document is that, in the absence of any a priori knowledge of the

*nature of false targets, one should design the filter to have a correlation

N* output plane which looks as much as possible like a delta function centered

over the target when the target is centered in the filter input plane.

Furthermore, in the design process care should be taken to identify all

possible independent parameters involved and optimize the design by varying
,1

these parameters.
4

If one adopts the design philosophy espoused in the previous paragraph,

then one perhaps will design correlation filters which are somewhat sensitive

"" to perturbations in the training set - i.e., the filter perhaps will give

i.



..-

major correlations only to images which are quite close to those used in its

training set. This seems to be a necessary and worthwhile trade-off if one

wants to have filters with a high SNR. This will be an especially worthwhile

.trade-off if low noise SDF filters can be effectively implemented in a high

speed reusable spatial light modulator. Reference 6. Then one will have a

. device capable of displaying several hundred SDF correlation filters per

second. If each of these displayed SDF filters can be manufactured from 10 to

100 training images and still have a high SNR one will have a device which

will be able to search for 103 to 104 images per second with a low probability

of committing an error. This perhaps should be enough for practical

apllications, especially if the spatial light modulator can be designed to

permit minor on-the-spot programming to emphasize those SDF filters relevant

to current weather and/or battle conditions.

.o-
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SECTION II

THE MATHEMATICAL APPROACH TO THE PROBLEM

SDF's are usually manufaccured by the following process. One starts with

- two-dimensional images f1l....,f n ....fmI often called the training set. The

analysis of this section is entirely general and does not depend on any

particular properties of the f 's - they could be ink spots, for example. It

might be intuitively useful to view these fi's as either Infrared images which

are inputs to some filtering device or as square matrices, all of the same

size, whose entries represent intensity levels. It is useful to view images

as (in general real valued, but sometimes complex valued) functions on the

plane, or, if they are large matrices, to string out the rows of the matrix

and think of them as extremely large vectors in a very high dimensional

complex inner product space. Here one should think of fl .... f as images of

objects one is seeking and fn+ ...If as images of objects one is not seeking

and definitely does not want to confuse with fl ..... n" n may well be equal

to m. An SDF h is also an image, artificially constructed and In general

complex, in the author's formulation, implemented in a holographic optical

correlation filter, which has certain properties. At the very least, h must

satisfy the following condition: given positive numbers A1 ,....An a priori

(which are not necessarily distinct, and in fact may all be equal to the same

number, 1 say), one wants the intensities I<h,fi>12 to satisfy

I<h,fi> 2 = Ai2 1(1 i 5 n). (1)

Here, and in general, if f and g are two complex images, <f,g> denotes the

5



complex inner product between the two images, viewed as complex valued

functions on the plane or as large complex vectors, and the length or norm of

1/22f Is given by l lfll <f,f> 11f,12 = <ff> is the total energy in the

ilage f. The condition (1) merely demands that if the image fl Is centercd in

the input plane, then the center pixel of the output correlation plane must

have intensity 12

Before doing anything else, let us find all possible solutions to the

equations (1). If further constraints or requirements are later placed on h,

they will be on the general solution of the equations (1). One must have

<h,f > = Z I  (1 < i _ n) (2)

for" some choice of complex numbers z of modulus 1. This gives us n

simultaneous linear equations which h must satisfy. Look for a particular

solution h0 of these equations of the form

ho = a1f1 + ... + a f , (3)0 11 n n

for some choice of complex numbers a1 . ... a To determine the ai's. plug
n

equation (3) into the equations (2) and use <flf j> = <fJ, f >, since the f k's

are real vectors, to get

(<filfj>)(a ) = (z A1 ). (4)

If the n by n matrix (<flIfj>) is nonsingular (which is true If and only if

the vectors fl .... fn are linearly independent, as is almost surely the case

in practice), then the equations (4) uniquely determine the a 's and thus the

h0 which satisfies the equations (2) and equation (3). Let h be any other

. solution to the equations (2). A trivial computation shows that h' - h - h

must be orthogonal to each f1 (1 S I S n).

Thus, one may obtain every solution h of the equations (1) as follows.

6
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Choose complex numbers z1 , . ,z of modulus 1, determine hO , as in equation
0n

* (3), which solves the equations (2), by solving the simultaneous equations

(4), choose h' orthogonal to each f (1 I n), and let h - h0 + h'. Everv

SDF h must be of this general lorm independent of any additional constraint or

requirement which is put on it. This general setup of the SDF problem is the

author's own variant of the ideas of Caulfield and Maloney, Reference 1,

Caulfield and Weinberg, Reference 2, Hester andCasasent, Reference 3, and

Leger and Lee, Reference 4. In particular, the idea of choosing h' orthogonal

to the fi's and the zI s to be general complex numbers of modulus 1 rather

*than Just identically 1 (the usual recipe) Is the author's own idea and does

-not seem to have occurred to anyone else. The importance of this idea will

become clearer later on.

Some notation is needed to describe other requirements on h and the main

problem of this document. For any x in the plane and any image g, let gx(y) =

g(y - x) for any y in the plane. If one initially thinks of g as being

centered over the origin, then think of gx as being g translated so as to be

centered over x. Ideally, to guarantee a high SNR, one wants that the

- measured optical intensities I<hx fI> 2 all be maximal for x the origin (note

thath (0,0) = h) and that j<hxf 1 >j2 (1 < I m) be as small as possible for

all x's outside of some a priori chosen box (or any other region) Bi about the

origin. Here Bi is empty for n+1 I m. The term SNR is now defined

precisely, but somewhat arbitrarily, as follows. The SNR of h, a number

Intrisically associated with h, is defined to be

SNR(h) min SNR I ,  (5)

where SNR1 , the SNR of h against ft' is defined by

7
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SNR <hxfI >2/ max <hx f>2 (6a)
x e B x 4 B

for 1 S I n and

SNR- min Aj2/max J<h x fl>2 (6b)
1 5 J n x

for n + 1 < i S m. Thus, to obtain an h with a high SNR one wants to maximize

SNR(h). This can only be done by varying the zi's and h'. A procedure to

obtain a fairly good answer to this maximization question is to construct h

from those parameters zI and h' which solve the somewhat simpler minimax

problem

min max max I<h xfk> 2  (7)
zi , h' 1 k S m x d Bk

This is the author's own idea and own analysis of the problem. The

mathematical and computational difficulty involved in the efficient solution

of the digitized version of the minimax problem (7) cannot be overestimated.

--:.ere is certainly no standard piece of software available which will find

even local solutions of the minimax problem (7), let alone global solutions,

even for fixed h'.

Consider the minimax problem (7) in which one fixes h', say h' - 0. Just

why would one expect a good answer to the minimax problem (7) merely by

varying the n parameters z1 ,...,z n? This can be seen by reformulating the

question as one in planar geometry. Let (dij) be the n by n matrix which is

the inverse to the n by n matrix (<fi,f >). Then for 1 < 1 S n,

1a - d lZl 1 +A + + d inznAn (8)

and

<h I f al<(f+ . .. + an<(f ) xfk>  (9)
Vxk1x k nl<(f).fk

(dlzlA 1 + d 1 n ... n A n)<(fl) f k> +

8
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- -------- ------- - - - -- - -. - - ZPV

(dnz 1A1 + .... + dnnzn A )(fnx f

Z1AI(d 11 <(f1 )x fk> + ... + dn< (fn) x fk>) k +

+ Z A (d (f ) f > +... + d <(fn) f >)
n n In< 1 x'k nn nx'k

1 xkl ++ n wx,k,n'

where

Wxkj ' Aj(dlj<(fl)x fk> + + d nj<(fn)xf k>). (10)

The numbers w x,k j are complex numbers (in fact real numbers) and may be

viewed as vectors In the plane. The numbers z are complex numbers of modulus

1 and so multiplication by them may be viewed as a rotation. Hence, these

observations show that the solution of the minimax problem (7) may be

reformulated as a special case of the following geometrical problem: given q

n-tuples of vectors in the plane, (v11 ,...Vn).... (vq ,...,v ). find

rotations RI .... Rn so that the maximal length of any of the q vectors

+ ... + RnvIn , R 1v. + R nv is as small as possible. NoteRI11+ '"+ n~n 1. Rlq '' n qn

that without loss of generality R1 can be normalized to be the identity.

* Alternatively, one may view the minimax problem (7) as a problem about forces

in the plane. Think of each v j as a force acting on a point particle at the

origin. One then wants to choose the rotations R1*..., Rn so that the biggest

net force on the particle Is as small as possible. For a hint as to how

difficult this problem can be, merely concoct a few examples when n = 3 and q

= 3. In the numerical experiments described in the following section n = 36

and q = 9,432,828.

Engineers and/or physicists perhaps will feel somewhat uncomfortable with

reducing the design of a high SNR SDF down to the minimax problem (7). They

.perhaps will want to have a physical interpretation of the parameters involved

9
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in its solution and will want to know if the SDF is correlating on some

particular aspect of the training set ima,s. These questions may have

answers, but probably not. After all, it is an easy matter to give simple

- freshman calculus optimization questions for which the parameters involved in

the solution have no apparent physical interpretation. There is even less

reason to suppose that the solution to the enormously complicated minimax

-. problem (7) is subject to a physical interpretation. Furthermore, asking such

questions will be irrelevant if the filters given by the purely mathematical

solution of the minimax problem (7) perform as desired.

V..,-,.
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SECTION III

RESULTS OF NUMERICAL EXPERIMENTS

Numerical experiments on realistic data show that the solution of the

minimax problem (7) can yield dramatic improvement in the SNR properties of

SDF's. The images used In the following experiments were 36 256 by 256 real

tank images. Even though the recipe given in the previous section does not

. depend on any particular property of the training set f .. f*, It may be of

interest to describe in some detail the exact imagery used in these

experiments. The 36 Images originally were 512 by 512 images in a cluttered

background. They were furnished on a computer magnetic tape, each image

consisting of a string of 5122 262,144 integers between 0 and 255

representing intensity levels at each pixel of the image. The tank images

"- were then extracted from the background and placed into 256 by 256 arrays,

using DeAnza array processing equipment. The original images had been

edge-enhanced and then biased, so that all their entries were nonnegative, and

then each pixel was discretized into one of 256 equal parts - hence the bit.

streams which appeared on the data tape. A somewhat inexact but hopefully

* fairly reasonable way to recover the original edge-enhanced tank images alone

*was then employed on the 256 by 256 images - for each image the average of the

nonzero pixel values was computed and then subtracted from each of the nonzero

pixels, leaving those pixels with 0 values unaltered. These edge-enhanced 256

by 256 tank images were then energy-normalized (i.e., they were divided by

their length to make them into unit vectors.)

11



Use the notation of the previous section. In the following calculations,

n - m. each B was taken to be an 11 by 11 box centered at the origin, each A

was chosen to be 1, and h' was chosen to be Identically 0. The theory of the

previous section is not affected by the somewhat ad hoc nature of the choice

of h', Ai , and Bi, and the programs used to solve the minimax problem (7)

arrived at their answer only by varying the zitS.

The standard way of making an SDF is the process described in the

previous section in which one takes every zI to be 1 and h' to be identically

0. Such an SDF has terrible SNR properties against this training set. For

4..-. example, the performance of this h against f2 4 gives an SNR less tha.. 1.00,

gives 1.02 against f and against f f fs' f6- f f and f gives an
19' 3' 4'#5 6' 7' 8' '25 gvsa

SNR of less than 1.25. However, the author has used the recipe of the

previous section to construct an SDF with an SNR of at least 7.37 against each

f, The construction of this latter SDF was done by a sequence of rather

elaborate computer programs which took a great deal of disk space and

*approximately 300 hours of CPU time to run on a VAX 11-780/VNS 4.2. As

4. explained in the opening section, this long computation time is not really a

cause for concern.

Note that 16.00 is certainly a very plausible upper bound for the SNR of

any SDF filter h made from energy-normalized images and with each A1 equal to

1, for the inner product of h with each training image quarter Is a complex

number whose expected modulus is approximately 1/4 and so whose expected

modulus squared is approximately 1/16. Practically, an SDF with an SNR of

close to 8.00 might be attained.

The author recently has tested the performance of these new SDF's versus

12



the standard recipe in scenes with a cluttered background. One should view

these experiments as trying to find a real tank in a junkyard of tank Darts.

-... In what follows the tank imagery used is the same as the tank imagery

referenced above. Select one of the 36 256 by 256 tank images at random and

place it in the middle of a 512 by 512 scene. This 256 by 256 tank image is

surrounded by twelve 128 by 128 blocks. For each one of these blocks, select

one of the 36 tank images at random, select one of the 128 by 128 quadrants of

the latter image at random, and place it into the 128 by 128 block in the 512

by 512 image. Do this for all 12 128 by 128 blocks. One winds up with an

approximation of a true tank located in the middle of a Junkyard of randomly

chosen tank quarters. Examplet of such cluttered scenes are given as Random

Scene 1 in Figure 1 and as Random Scene 2 in Figure 10. In these scenes only

those pixels whose magnitude Is at least 0.20 of the biggest pixel are

illuminated. The author computed and displayed on a VHR19/6120 graphics

terminal, in a variety of manners and aspects, the correlation plane outputs

from an SDF filter made with the usual recipe, say SDF1, against a random

* ,- sequence of junkyard scenes and compared them to the correlation plane outputs

" - of an SDF filter made with the new recipe, say SDF2. Recall that these

correlation plane calculations done via an FFT are actually done on a doughnut

.. or the plane tiled with these 512 by 512 junkyard scenes, so there was a good

possibility that the SDF's could get confused. This happened quite often with
.-,.

SDF1, but not once so far with SDF2. Approximately 200 independent runs of

this experiment have been conducted and SDF1 gave its major correlation to

clutter In the background approximately 25 percent of the time. SDF2 has

never given a false major signal against any of these same junkyard scenes.
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In fact, in no instance tested so far has SDF2 performed worse than SDF1 and

in most instances has performed dramatically better. SDF2 so far has always

- picked the true tank from the junkyard and has given a very sharp recognition

signal, much better than any signal coming from the surrounding clutter. This

good fortune certainly cannot continue for all of the approximately 36 13x 4

random junkyard scenes, but it does strongly suggest that on a statistical

basis SDF2 performs much better than SDF1.

Figures 2, 3, 6, 7, 11, 12, 13, and 14 display some aspects of typical

filter output correlation planes. Each output plane is a 512 by 512 array of

nonnegative numbers representing the correlation intensities given by either

SDrl or SDF2 as they scan Random Scene 1 or Random Scene 2. Think of each
-p.

output plane as representing a mountain range. Each of these figures is a

graph which gives the outline one would see by viewing the mountain range in a

so'ith-o-north direction or a west-to-east direction. More precisely, each

figure is 512 pixels wide, and the height of the graph above each pixel is the

maximum intensity one would see along the column corresponding to the pixel if

the view is south-to-north or is the maximum intensity one would see along the

row corresponding to th. pixel if the view is west-to-east. In all of these

figures the signal coming from the tank in the cluttered scene is the central

spike and has height 1. The largest height in each picture is displayed as

750 pixels high. Figures 2 and 3 show that SDF1 gives a false major signal to

clutter in Random Scene 1, and Figures 6 and 7 show that SDF2 does not make

such a mistake. Figures 11 and 12 show that SDFI gives a very large false

Psignal to the clutter in Random Scene 2 whereas Figures 13 and 14 show that

SDF2 has no trouble distinguishing the true tank from clutter. Figures 2, 3,

14
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II, and 12 are typical of what goes wrong with SDFI in 25 percent of these

tests. Figures 6, 7, 13, and 14 are characteristic of SDF2 in every instance

so far tested.

Horner and Gianino, Refe'ence 7, have recently suggested using as

*correlation filters the phase-only versions of SDF filters. These filters are

manufactured by starting with an SDF filter h, taking its Fourier transform

F(h), saving only the phase of F(h), say P(F(h)), and then taking as one's

filter F1 (P(F(h))). They report considerable improvement in the output

correlation plane with these phase-only filters versus that produced by the

SDF filter alone. The author manufactured the phase-only versions of SDFI and

SDF2, say POSDF1 and POSDF2, and tested their performance against a sequence

"" of randomly generated Junkyard scenes. Unfortunately, both POSDF1 and POSDF2

performed very unsatisfactorily in most tests, giving, for instance, a sharp

major correlation to empty portions of the scenes in several instances. In no

,*- instance tested has POSDF1 or POSDF2 performed as well in target recognition

,' as SDF2. Figures 4, 5, 8, and 9 represent the output correlation planes of

POSDFi and POSDF2 against Random Scene I and are typical of their performance

in Just about every instance tested. In these figures the maximum intensity

is displayed as 750 pixels high, and the intensity given by the filters

*. against the true tank is not a set level, as opposed to the situation with

SDF1 and SDF2, where the intensity given by the filters against the true tank

Is 1. There may well be overwhelming advantages to phase-only filters over

the recipe described in this document. However, the author's conclusion from

these tests is that the recipe described in this paragraph certainly is not

the way to make them.

15,
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The author also tested the performance of SDF1 and SDF2 against a sharp

false signal by examining the correlation plane outputs of the two filters

against an input scene consisting of a spike of height 1 at the origin. In

buch instances the signal from the origin was practically buried in noise in

the background.

These experiments give considerable hope that correlation filters

manufactured with the recipe detailed in this document will give superior

performance in practice.
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Figure 1. Random Scene 1
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Figure 2. SDF1 vs Random Scene 1, S-N View
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Figure 7. SDF2 vs Random Scene 1, W-E View
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~Figure 8. POSDF2 vs Random Scene 1, S-N View
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SECTION IV

OTHER ISSUES, WORK, AND APPROACHES

Some sort of edge-enhancement is necessary on a training se* of images if

* one wants a high SNR correlation filter. The usual simple example given to

- justify this assertion is that a uniformly filled in square and a uniformly

filled in circle of roughly the same size will correlate quite well with one

another, even though they are quite different objects. This would not be true

if they were reduced only to their edges. This example shows that some sort

of edge-enhancement is necessary for the training image in matched filters,

let alone for the training images in the much more complicated SDF filters.

Given that some edge-enhancement is necessary, then shouldn't more

edge-enhancement be even better? If the tentative answer is yes, then one

- plausible way to obtain filters whose output correlation plane resembles a

delta function centered over the target when the target is centered in the

"" filter input plane is to make the filter from a training set of images which

are extremely edge-enhanced. This train of thought leads to difficulties.

:- Edge-enhancement operators should work roughly as follows. View an image as

the graph of a function f on the plane. Let Dx and Dy be the standard partial

derivative operators along the x and y axes. It is plausible that D (f) andx

D (f) should be small on the interior of uniform objects, but should be large
y

when crossing the boundary of a uniform object. Hence, if P(D ,D ) is any

constant coefficient differential operator without constant term on functions

of two variables, then there is a good chance that P(D ,D )(f) somewhat

x y
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resembles f with the interior of uniform objects eliminated but with edges

*E enhanced. There is a strong plausibility argument that every true

edge-enhancement operator must be of this form. Let E be any edge-enhancement

* operator. Then E should be a rule wl.ch assigns to an image f another image

E(f) with the properties: (i) E is linear (E(af + bg) = aE(f) + bE(g) for all

images f and g and constants a and b); (ii) E is continous (if f is close to

g, then EMf should be close to E(g)); (iii) E annihilates the constants (E(C)

0 for any constant image C); (iv) E is translation invariant; and most

importantly, (v) E is local (E(f)(x) only depends on the values of f

arbitrarily close to x). If one admits these plausible assumptions for an

edge-enhancement operator E, then it is an easy exercise in the Schwartz

theory of distributions (Hoermander, Reference 8) that E must be a constant

coefficient differential operator without constant term. Such an

edge-enhancement operation might be implemented optically, for it is

equivalent to multiplication by P(-ik - ik in Fourier transform space.

Notice that after any operation of this sort, the Fourier transform of the

* processed image vanishes at the origin. For example, if P is the Laplacian

2 2 12D + D 2 then P is equivalent to multiplication by -Ik in Fourierx y

transform space. Hence, there are limits to how much edge-enhancement one can

do without greatly distorting the original image, for all edge-enhancement

operators involve eliminating or suppressing low spatial frequencies, thus

emphasizing the high spatial frequencies and putting a great deal of weight on

the noise In the scene. This suggests that even a matched filter would not

perform very well if it were made from a training image which was extremely

edge-enhanced. Perhaps this difficulty can be removed by truncating
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P(-ik1 ,-Ik 2) at a certain level outside of some disk about the origin. An

extreme case of this is multiplication by 1 - 60.0) In Fourier transform

.,' space, which will be referred to as minimal edge-enhancement. The problem

with this truncation operation is that multiplication by such a t.uncated

polynomial in Fourier transform space would no longer be a local operation

when transferred to physical space - i.e., it's effect on a given pixel would

depend on other pixels quite far away and not just on arbitrarily close ones.

This seems to contradict one's intuition as to what properties anRo

.. edge-enhancement operator usually should have.

It Is quite possible that the recipe for SDF's given in this document

will make moot all questions as to what kind and how much edge-enhancement

should be done on a training set of images. Numerical experiments conducted

on filters made with the recipe outlined in this document give filters with a

quite high SNR on training sets with only minimal edge-enhancement - only a

small disk about the origin in Fourier transform space need be set to 0,

perhaps even just the origin itself, in order to obtain filters with a high

SNR. Numerical experiments on this important question are continuing. If

they are as successful as early experiments indicate, then the recipe given in

this document will automatically eliminate the questions as to what kind of

edge-enhancement and how much edge-enhancement is enough on a training set In

order to get a low noise correlation filter. The answer will be only an

'S absolutely minimal amount. After all, the major reason for doing any

edge-enhancement at all is to construct high SNR correlation filters.

There is another important technical advantage to using images in the

training set which are at least minimally edge-enhanced. If each image f In
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the training set Is edge-enhanced, then at the very least this Implies that

the Fourier transform F(fi) vanishes at the origin, or equivalently that the

average pixel value av(fi) is 0. Since h is a linear combination of the f, s,

*-.' - the average pixel value av(h) is als- 0. Now let g be any constant image -

1i.e., every pixel value of g is some fixed constant C. But then <h,g> -

Cav(h) = 0, so h will give zero correlation to any constant image. Note that

if av(h) were not 0, then Cav(h) could be quite large and h would give major

correlations with obviously false targets. It is for this reason that at

least a minimal amount of edge-enhancement be done to the images in the

'training set for h. On the other hand, if av(h) = 0, then for any image g

which is the same size as h, <h,g> = <h,(g - av(g))>. Note that the image
4'

g - av(g) is a minimally edge-enhanced version of the original image g since

av(g - av(g)) - 0. This Is important in practice, for suppose the SDF h is

made from a training set of images w)iich are 32 by 32 in size and minimally

edge-enhanced. If h is searching for targets in a 512 by 512 scene g', then

even if g' is extremely edge-enhanced, its resulting generic 32 by 32 subscene

certainly need not have even its average pixel value 0. But the previous

analysis shows that if h is made from a training set of weakly edge-enhanced

images, then no edge-enhancement at all need be done on g' for the filter h to

behave as if each 32 by 32 subscene was weakly edge-enhanced.

Many practitioners of this subject insist that the Images used in the

training set of an SDF be energy-normalized. Energy normalization is

equivalent to replacing each image fi by f /lfi1I. so that the total energy

in each training image is 1. (One should first edge-enhance and then

energy-normalize the image. The two operations should be done in this

-% 34
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particular order. for they do not commute.) The usual reason given for doing

this is to reduce the variation in the climatic effects in which the targets

are located. This is plausible since Stefan's Law implies that the total

amount of radiation emitted by a black body is proportional to T4. most of

*which is in fairly low (infrared) frequencies for normal temperatures. Thus

small changes in the temperature of a black body result in rather high changes

in the amount of infrared radiation it emits. Furthermore, since one a priori

* has no reason to know which aspect of a target one will encounter, it is

plausible that each image used in the training set should be normalized to be

*of the same energy to initially give each training image equal weighting in

the design of the filter.

The initial conditions (1) were Introduced so that the SDF filter would

work if employed in a threshold detector. In order for such a threshold

*. device to work well it probably must be necessary to optically

energy-normalize the input scenes to the filter. There are at least two

reasons why this practice should be done with a certain amount of caution.

Since the SDF will be made from energy-normalized images, say 32 by 32 pixels

in size, It will be looking for energy-normalized images, 32 by 32 pixels in

*size. But an energy-normalized 512 by 512 image certainly does not in general

have each 32 by 32 subscene proportionally energy-normalized. If the object

sought is the brightest object in the 512 by 512 scene, then

energy-normalizing the entire image will leave the target subscene more than

proportionally energy-normalized, and no harm will result if one is merely

searching for the largest correlation peak. But if there is a much brighter

object, say a fire, In the upper left hand corner of the image, and the target
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is In the lower right hand corner, then energy-normalizing the entire scene

perhaps will make the image of the object sought so faint as to be useless.

V The probability of this unfortunate effect will surely be reduced if one uses

correlation filters with the highest possible SNR, for the possible higher

correlation given by an intense false target will be partially or totally

offset by the higher SNR of the filter. Even extreme cases of this phenomena

can be eliminated if it is feasible to optically energy-normalize those

subregions of the imput plane which are the size of the training images used

to construct h.

It must be noted that there is a difficulty, though a low probability

one, with this SDF correlation method. The Schwarz inequality implies that

the SDF will have largest correlation with unit vectors that do not look like

the targets in the training set, but instead look like the SDF itself. The

difference might be quite pronounced since, to a crude first approximation,

the length of h is approximately a1/2 if there are m edge-enhanced and

energy-normalized images in the training set for h. For the SDF filter

process to really work with a low probability of error, one must make an act

of faith that there are very few real objects which look more like the SDF

, than the target images themselves.

There are many papers in the literature on the manufacture of SDF's whose

philosophy Is as follows. Given a training set of images, try and find

(usually by some sort of orthogonalization process) those images In the

collection which are the important ones and make an SDF from these. The

proponents of this method find this philosophy to be plausible by claiming

that the eigenvalue list of the matrix (<f,,f >) contains one or two of
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comparable size and that all others are incredibly small in comparison. It

must be emphasized that this Is true only if the f 's are not edge-enhanced.i"i

"- Here is a very crude engineering argument for this fact. Suppose that the

i f 's are energy-normalized. Since they are not edge-enhanced, th-n the images.I

f are solid blobs of unit energy. Since this is the case, <fi,fj> - i to a

• first approximation, and so (<f1~f >) s an n by n matrix of l's, to a first

* approximation. It is a simple matter to check that the elgenvalue list of the

latter matrix Is n, 0, 0,..., 0. Recall that it has been emphasized earlier

in this section that one must use a training set of images which are at least

-weakly edge-enhanced.

Now suppose that the images f are edge-enhanced and energy-rormalized
I

and let us again employ a crude engineering argument to determine a first

approximation to the elgenvalue list of (<f ). Since the f, s are

* edge-enhanced and energy-normalized, they resemble bizarrely twisted

coathangers suspended in space with unit energy. Hence, <f ,f > = 1 and

<fI f > - 0, to a first approximation, if i 0 J. Hence, to a first

approximation, in this case (<f1.f >) o the identity matrix, and the

elgenvalue list for the latter matrix Is 1, 1... 1. In any event this

argument suggests that all of the eigenvalues for (<f1lf >) have approximately

- the same order of magnitude, and that most if not all of the images f are of

. equal Importance. This Is confirmed In actual practice by at least one

example - for the 36 edge-enhanced and energy-normalized tank images used in

the numerical experiments of the previous section, the elgenvalues of the 36

by 36 matrix (<flVf >) range between 0.6 and 2.2. Thus, attempts to make a

good SDF by choosing the 6 most important out the 36 edge-enhanced and
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energy-normalized tank images are definitely doomed to failure. After all,

there is something suspicious about a philosophy which asserts that one can do

a better job at recognizing images by throwing away information about them.

These qualitative statements were v.-2fied in an objective manner through very

extensive numerical experiments carried out by the author during the summer of

1984.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

Extensive numerical experiments strongly suggest that apply .ng the recipe

given in this document to a training set of weakly edge-enhanced and then

energy-normalized images yields an SDF filter which gives very sharp

recognition signals to the training set images and has a very low probability

of committing an error. Such filters might well prove to be useful if they

can be implemented in a high speed reusable spatial light modulator, thereby

storing Information about 10 3to 10 4training set images, particularly If

input imagery to the filter can always be globally and sometimes locally

* energy-normalized.

The numerical experiments detailed in this report were only carried out

on one set of tank imagery. These experiments should be repeated for many

other sets of imagery to see if high SNR SDF filters can be made from them by

, the recipe given here. Furthermore, the successful implementation of these

filters In a real optical system can only be done via computer-generated

holograms. Whether or not this can indeed be done should be intensively

studied.
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