
AD-A176 614 *Nf-RONEVI FONT GEMNTION VIA INTERACTIVE COMPUITER 1/2
GRAPHICS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR
J C ARTERO ET AL. JUL 86 NPS52-86-019

UNCLSSIFIED F/O 9/2 ML

mohEEEmhhhmhEE
mEEEI-E-EhEImiiiiiiiiiiiiii
EohhhEEohmhhEE
EEEEohEEEEEEEE

'"1111Lo

IIjIL 125 jj 1 .6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

MilN O

-7n 6 'T !" %7

NPS52-86-018

a NAVAL POSTGRADUATE SCHOOL
Monterey, California

IL

_ECTE
AUG 4 1986J

B

Non-Roman Font Generation via Interactive
Computer Graphics

James C. Artero

and

Michael J. Zyda

July 1986
Approved for public release; distribution unlimited

C.

9 Prepared for:

Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief of
Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Assistant Professor
Computer Science

Reviewed by: Released by:

VINCENT Y. LETMR
Dean of Informatin-

Department of Computer Science Policy Science

%I

UNCLASSIFIED
S&GURITV CLASSIFICATION OF THIS PAGE fwhm Do@ EkM6 _

REPORT DOCUMENTATION PAGE AW MLTIUC OWS
1. REPORT NUNGER p. .OVT ACC6851" NO, .ECIP1E1TS CATALOG 0UMER

NPS52-86-018 14JTq I" £i'AM
4. TITLE (and Subtitle) . TYPE OF REPORT a PERIOD COVERED

Non-Roman Font Generation via Interactive 6. PERFONMINO 000. REPORT NUMBER
Computer Graphics_

1. AUTHON(s) 8. CONTRACT OR GRANT MUMER(J)

James C. Artero
Michael J. Zyda

W 9. PEN•ONMING ORGANIZATION NAME AND ADDRESS ta. PROGRAM ELEMENT. PROJECT, TASK
UAREA 6 BOAK UNIT NUMUERS

Z Naval Postgraduate School 6115m; 1O0-01
L Monterey, CA 93943-5100 N0001486M4E01

S,11. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE

Z July 1986
Chief of Naval Research 13. MUMBER OF PAGES

Arlington, VA 22217

14 MONITORING AGENCY NAME & ADDRESS(/ difflet iMA Cnftlfn4 ileOf.fC) IS. SECURITY CLASS. (of thle report)

>

0
aI. DECL ASSIFICATION/ DOWNGRADING

SCM E DULE

* 1S. DISTRIBUTION STATEMENT (of tills Report)
.0

U Approved for public release; distribution unlimited

0
0
It

17. DISTRIBUTION STATEMENT (of the abstract otmred In &Seek 20. Itill.ffee 1r~a Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side it n.oseap adE l "Ietl by week "We~o)

General Terms: techniques;

Additional Key Words and Phrases: Chinese characters, font editing,
font memory size, Japanese kana;

20. ABSTRACT (ConilmrO an mvor r Old It noeosay miid elwMffp0 6V Wsabk muame)

We present in this study an examination of the characteristics of computer

symbol manipulation systems, including the conventions governing conversion of
input symbols to internal code and back to output symbols. Methods to achieve
flexibility in the manipulation of large, non-standard, and non-Roman-character
symbol sets are discussed, primarily by examination of word processing systems
designed to operate on non-Roman fonts. The intent of this discussion is to
highlight the desirability of moving toward a computer design approach that
incorporates generalized symbol management capabilities. Leading-edge computer

O IJAN 1473 EDITION OP INOWS I LTe UNCLASSIFIED
S N 0102. L- 01d. t601 MCe veV gs,.61161tCATV i M P& M e M m m 6 0

UNCLASSIFIED

SKCUFATV CLASSPICAION OF THIS PAOSt'hmm WO. .O
graphics workstations are then evaluated for their potential to host advancedfont management systems resulting from this design approach. Finally, theBUILDFONT Font Creation and Editing System, a software utility implemented onthe IRIS-2400 series Graphics Workstation, is presented as a tool to assistresearchers to develop generalized symbol management applications.

A'.in For D T IC r+ '+ . : ++ + tE L E C T E I l

t S
........... _ .. B ~ o"

0 I I • II IIII I I I Iqs

D iD.

S010,LF-01461UNCLASSIFIED

SaCY44TV CLASSSPCaTIOU or T1416 VPaG(Do"e awe"*

I

° "4

Non-Roman Font Generation via Interactive
Computer Graphics 1

James C. Artero and Michael J. Zgda *

Naval Postgraduate School,
Code 52, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

NVtF present in this study an examination of the characteristics
of computer symbol manipulation systems, including the conven-
tions governing conversion of input symbols to internal code and
back to output symbols. Methods to achieve flexibility in the mani-
pulation of large, non-standard. and non-Roman-character symbol
sets are discussed, primarily by examination of word processing sys-
tems designed to operate on non-Roman fonts. The intent of this
discussion is to highlight the desirability of moving toward a com-
puter design approach that incorporates generalized symbol manage-
ment capabilities. Leading-edge computer graphics workstations are
then evaluated for their potential to host advanced font manage-
ment systems resulting from this design approach. Finally. the
BUILDFONT Font Creation and Editing System, a software utility
implemented on the IRIS-2400 series Graphics Workstation, is
presented as a tool to assist researchers to develop generalized sym-
bol management applications. (-

Categories and Subject Descriptors: 1.3.1 [Hardware Architec-
turej: font memory, raster display devices; 1.3.4 (Graphics Utili-
ties): Chinese characters, font editing, Japanese kana; 1.3.6
[Methodology and Techniques): font editing;

General Terms: techniques;

Additional Key Words and Phrases: Chinese characters, font edit-
ing. font memory size, Japanese kana;

I This work ba been supported by the Naval Postgraduate School Foundation Research Program and a grast
from the Naval Ocean Systems Center, San Diego (Ref. 0 N0OOI4S6WR4B12SAC).

Contact author.

a .- *4-•-

in 1,0n. . .w2~f 11wir~ c W - r w .. y rsrsrrr r r r -2 rxu-.- r -

TABLE- OFCONTENTS

I. INTRODUCTION.. 8

11. BEYOND STANDARD CHARACTER SETS 12

A. APPLICATION AREAS FOR NON-STANDARD SYMBOL

SETS .. 12

B. BACKGROUND REVIEW OF THE WORD PROCESSING

APPLICATION.. 13

1. English... 14

2. Chinese... 16

-I3. Japanese ... 19

C. SUMMARY OF WORD PROCESSING TECHNIQUES FOR

CHINESE AND JAPANESE... 20

1. Input Techniques Based on Whole Characters 22

a. Touch-sensitive Kanji Typing Tablet............................... 22

42. Input Methods Involving Non-phonetic Coding....................... 23

a. The Yamnada Two-stroke Input Method............................ 23

b. The Three-Corner Coding Method (TCCM)....................... 25

3. Phonetic Transcription Input Techniques 25

a. The Morita System for Japanese Word Processing................ 26

b. Chinese Phonetic Input Keyboards................................. 28

4

.4

vi-dwum v -

4. Oriental Language Word Processing Software Support.............. 30

a. Xerox Star and Fuji Xerox i-Star 31

b. BETA: An Automatic Kana-Kanji Translation System

(Toshiba JW-lO)... 32

c. Chinese Hybrid Systems .. 34

111. SIZE ESTIMATE FOR A GENERALIZED FONT MEMORY 36

*A. THE SIZE DIMENSION.. 41

B. THE COMPLEXITY DIMENSION 43

C. MID-RANGE FONT TABLES .. 44

D. A PRACTICAL SYSTEM... 45

IV. GRAPHICS SUPPORT FOR SYMBOL MANAGEMENT

SYSTEMS .. 46

A. THE IDEAL WORD PROCESSOR IS A VIRTUAL

COMPUTER... 46

B. COMPUTER GRAPHICS DEVELOPMENT VIEWED FROM

THE FONT MANAGEMENT ASPECT................................... 47

1. The First Cycle.. 48

2. The Second Cycle... 48

3. The Third Cycle .. 49

4. The Leading-Edge Graphics Workstation 51

5

5. Handling of Text By the IRIS System................................. 51

6. The Fourth Cycle... 57

V. THE BUILDFONT SYSTEM ... 60

A. HOW THE BUILDFONT SYSTEM WORKS 61

B. CHANGING THE FONT MANAGEMENT DATA

STRUCTURES .. 62

1. Changes to the Raster Array .. 63

2. Changes to the Font Table... 63

3. Precise Description of the Font Management Data Structures 63

C. ORGANIZATION AND FEATURES OF THE BUILDFONT

SYSTEM.. 66

1.- Creating a New Font ... 67

2. Operation of the Bitmap Editor (FONT EDIT)...................... 70

3. Editing a Font... 70

4. Displaying a Font... 71

5. The HELP Module ... 71

D. EVALUATION OF THE BUILDFONT SYSTEM...................... 72

1. Font Editor Features and Operations.................................. 72

2. Run-time Considerations... 76

E. IMPLEMENTATION DETAILS... 77

6

VI. CONCLUSIONS AND RECOMMENDATIONS 78

APPENDIX A - GLOSSARY OF TERMS 81

APPENDIX B - IRIS2400 SYSTEM CHARACTERISTICS 90

A. SYSTEM DESCRIPTION .. 90

B. IRIS SYSTEM SPECIFICATIONS AND FEATURES................. 91

1. IRISi .. 91

2. IRIS-2 .. 92

LIST OF REFERENCES................... v 93

BIBLIOGRAPHY ... 95

INITIAL DISTRIBUTION LIST .. 96

7

L. INTRODUCTION

It is a common human endeavor to invent symbols which can be used to

represent signals. For example, a repeated, low-pitch horn may stand for a

warning that there is heavy fog in the harbor. According to Y. R. Chao, a symbol

is "anything. linguistic or non-linguistic, which stands for or 'symbolizes,'

something else" IRef. 1: p. 194). But to be useful, a symbol must be something

which can be conveniently produced, presented, and perceived without necessarily

perceiving the object that it stands for. Magnetizations on a recording tape stand

for variations in sound, yet they cannot be produced and perceived conveniently

without electronic equipment. For human-to-human communication concerning

variations in sound. a written music score is a better (i.e.. useful) collection of

symbols when it is not necessarily desired to produce the sounds themselves.

In popular usage the words "symbol," "sign," and "signal" are used almost

interchangeably. Although mathematicians, logicians and psychologists do not

agree on the precise meanings of these words, there is differentiation in their

meanings when the words are used on a technical level. A puff of smoke coming

from a piece of equipment is a sign that a malfunction may be imminent. It may

also be a signal to take immediate corrective action. It is not necessarily a symbol

for the malfunction. On the other hand. a red light on an instrument panel may

be the specific symbol for an imminent malfunction. In this case and in the case

of the fog horn mentioned above, the symbol is also a signal. By some. usually

arbitrary, convention which established the relationship beforehand, a symbol is

used to represent some object or concept. An instance of actually using the

symbol may then become a signal. By a convention of the English written

language, the word "halt!" is a symbol for the concept of demanding an abrupt

stop. When "halt!" is spoken in a specific situation, it becomes a signal to make

the abrupt stop. [Ref. 1: pp. 194-1951

Inventing and employing symbols that can be used to represent signals is a

practice which preceded the development of computer science by several thousand

years. Nevertheless, computer science relies upon this practice extensively. Data

is presented to a computer in the form of input symbols. The computer user

passes a string of symbols into the computer, and at some point these symbols are

converted into signals which the processor can interpret. The logical point where

conversion from symbol to signal takes place is the interface between the user and

* the processor. and it must include the convention which defines how the symbols

will be coded into signals. Another, similar convention must have been established

for the output side, so that when the processing is complete, the processed

information can be reformulated into symbols meaningful in the external (user's)

environment. All computer installations have this symbol-to-signal conversion

capability associated with their input and output devices.

Once the input stream is properly coded into signals for the internal use of

the processing elements, we want to be able to assign interpretations to these

signal. Depending on how the signals are combined and recombined. many

interpretations are possible. The computer can be made to perform many

different tasks according to these signal interpretations. It is an objective of

computer science to maximize the number of possible interpretations--to maximize

the variety of tasks which can be performed by a computer, and to make the

computer become a truly general-purpose machine.

The purpose of this study is to investigate and support methods to generalize

conventions controlling conversion between symbol and internal code. One

approach is to set the number of discrete codes to some arbitrary size and then

work on abstracting the principles governing the way combinations of these codes

can be interpreted. Following this approach, computer scientists from the United

States and Europe have developed two standard sets of symbols to facilitate the

encoding of user input. The ASCII (American Standard Code for Information

Interchange) set includes 128 alphanumeric characters, special characters, and

non-printable control codes. The EBCDIC (Extended Binary Coded Decimal

Interchange Code) set can code up to 256 characters and control signals although

not all possible codes are actually used. It can be seen that members of either the

ASCII or EBCDIC symbol sets are easily coded in a single eight-bit byte.

A second approach is to remove the size limitation from the set of input

symbols, allowing the user to choose any number and form of symbols from which

to compose his input. With this latter approach, the objective of improving and

generalizing computing capability is realized by utilizing mauy more code, not

I0

(as with the previous approach) assigning interpretations to many combinations

of a limited number of codes. However. having more symbols to choose from also

leads to many possible interpretations, and so the two approaches are in fact

different means to the same end.

The first approach, that of using a "standard set" of symbols, is well

established. Agreement on standard character coding conventions has made it

possible for different manufacturers' equipment to interface and operate together

compatibly. Clearly. if there were no established standards, every computer

facility would use a different symbol coding convention, forcing users to "re-invent

the wheel" whenever they moved into a different computing environment. Thus,

if not pursued carefully. the greater generality promised by the second approach

may be achieved only at the expense of eliminating existing system compatibility.

This may be too great a price to pay.

This study opens with a discussion of computer application areas where

general symbol manipulation research can produce beneficial results without

necessarily destroying establis1ed symbol coding standards. The study goes on to

introduce and describe the "BUILDFONT" Font Creation and Editing System, a

software utility developed for the IRIS-2400 Graphics Workstation. The

BCILDFONT System is a tool intended to assist researchers who will address the

task of improving symbol handling generality.

11

II. BEYOND STANDARD CHARACTER SETS

A. APPLICATION AREAS FOR NON-STANDARD SYMBOL SETS

Although the ASCII and EBCDIC sets are perhaps the most familiar (at least

in Western culture), there are other symbol sets which are also recognized as

standards. For example. the "Code of the Japanese Graphic Character Set for

Information Interchange" (JIS C 6226 1978) is the Japanese standard for input

and output of Japanese (kana and kari) characters. The Chinese have three

standards: "Information Exchange for Chinese Character Codes (Basic Volume)"

(GB 2312-80) (used in the PRC). the Chinese Cable Department's "Standard

Cable Code" (used in the PRC), and "Chinese Character Code for Information

Interchange" (used in the ROC). Obviously, progress in the computer hardware

and software manufacturing industries would have been much (painfully) slower

without acceptance of these standards. However, agreement on standards does

not solve many problems relating to generalization of computing systems.

General computing hardware can be more flexible and can find wider application

ifwe can abstract symbol set manipulation techniques to address the following

objectives:

g Customizing character fonts for a given symbol set to provide a variety of
user-specified forms, or type sets, for any particular symbol in the set.

r r Accommodating rapid definition and design of symbol sets containing an
arbi trary-- perhaps very large--number of symbols.

12

A user-friendly font editor. such as the BT',ILDFONT System described in this

study. satisfies the first objective above. Success in achieving a general

methodology for the second objective promises to facilitate some interesting

possibilities for new computer applications, among them:

xr Providing a way to adapt existing computer installations to handle
customized symbol sets used in a newly developed programming language
(rather than having to adapt the language to the existing symbol set).
For example, functional programming languages may well become
regarded as the next generation of computer languages since they offer
hope for developing methodologies for programming highly parallel (5th
generation) computer architectures. Thus. developing a better capability
to process these languages may be necessary for the productive
exploitation of VLSI technology.

pw Bridging the symbology barrier between American word processing
technology and the word processing needs of countries which do not use
Roman alphanumeric symbols to write their languages (e.g., Chinese,
Japanese, Korean, Arabic, Cyrillic, Greek, etc.).

px. With computer supported models, a system of graphics objects are often
employed to provide the user with a visual analogy of the modeled world.
If these objects can be represented consistently by elements of a symbol
set. then the set may be stored and retrieved as a customized character
font, simplifying the programming task. The Navy Tactical Data System
(NTDS) is an example of this application area.

xv In the field of cryptology, the ability to rapidly define and redesignate
symbol sets of arbitrary size and complexity has many applications.

B. BACKGROUND REVIEW OF THE WORD PROCESSING APPLICATION

Of the possible application areas described above, word processing with non-

standard symbol sets is our main focus. The reason for this choice is that the

word processing application best represents the dimensions of the problems we are

* 13

trying to solve by developing generalized techniques for symbol manipulation.

Specifically. %~ord processing with non-standard symbol sets demands the

capability to customize character fonts. Additionally, the various symbol sets

which have evolved to facilitate written language are arbitrary in size--indeed,

some are very large (see Chapter 3).

English and the oriental languages, Chinese, Japanese and Korean, express

their respective written languages by means of symbol sets which differ greatly in

the number and form of the symbols they contain. How can computing systems

designed for the support of one character set, be generalized to the extent needed

to support any other set? To answer this question, we need to consider the way

that each of the languages mentioned uses symbols to capture its meaning in

written form.

Let us compare and contrast some linguistic properties of English, Chinese

and Japanese, which affect machine processing of these languages. Here we need

to discuss a hypothetical "standard" dialect of each language. For this, we select

the dialect taught in schools, prescribed by the national or regional government,

etc. We avoid totally issues of whether anyone actually speaks the standard

dialect.

1. English

Of the natural languages we discuss, English is the richest from a

phonetic standpoint. The Merriam-Webster unabridged dictionary lists 22

distinct symbok' needed to transcribe vowels and another 28 for consonants. This

14

results in a staggering number of combinatorial possibilities for different sounding

syllables. Actually, most linguistics experts agree that there are at least ten

vowels (including diphthong vowels) in standard English IRef. 1: pp. 27-31], and

over 10,000 distinct phonetic combinations (syllables).' Since written English is

based on phonetic transcription, the 26 alphabetic characters must be able to

express all of these syllables. Phonetic transcription of English by means of the

standard alphabetic characters is very imprecise and inconsistent. For example,

the ten-plus vowels must be transcribed by using only six symbols: a, e, i, o, u, y.

Fortunately, the education system is able to drum the exception handling rules

into students. and thus native speakers of English get along fine with the 26

alphabetic symbols (although some of them turn out to be notoriously bad

spellers). The compactness of the character set and the ability of native English

speakers to deal with inconsistencies in its use. i.e.. the establishment of phonetic

transcription conventions in English, has fostered a long and successful

development of English language word processing. The emergence of the

"Qwerty" typewriter keyboard in the early 1900's established a format for the

standard word processing input device. With the addition of special purpose

keys. the Qwerty arrangement has been adopted as an input device for computing

equipment. and thus the transition to electronic word processing has been easily

achieved for a generation of English-speaking touch typists.

I Although English is a "word-unit" language, the analysis here discusses numbers of syllables
used in order to facilitate comparison with Chinese and Japanese.

15

In summI~ary. the essential characteristic of English language word

processing is the capability to handle a complex natural language phonetic system

with a relatively small symbol set. The computer, of course, knows nothing about

the complexity of the language it is processing; it knows only that the symbol set

is (or is not) within its storage and manipulation capacity.

5 2. Chinese

The situation with Chinese word processing differs greatly from that of

English. Curiously, there is some similarity in the linguistics of the two spoken

languages. On a structural or syntactic level, Chinese and English are so-called

flanalytic" languages. relying more upon position of a word (in the sentence) than

upon specialized prefixes or suffixes to determine grammatical category [Ref. 1: p.

69]. On the phonetic level, both languages use about the same number of vowels.

However, the phonetic rules of Chinese are much more structured and regular.

.1 and there are fewer consonants available. There is a greater discipline imposed on

the formation of syllables in Chinese phonetics: They are formed of "initials" (a

set of optional consonants), "inedials" (a very restricted set of optional vowels),

and "finals" (a required combination of vowels or vowels and ending consonants).

* In addition, each syllable has a "tone" associated with it. The tone, a prescribed

variation in pitch used when the syllable is pronounced, is a phonetic element

that further differentiates the possible meaning of the syllable. There are four

* possible tones plus "neutral" (no inflection) in Mandarin Chinese.

Due to the restrictions and regularity of Chinese phonetics. there are only

about 1300 discrete syllables in the language [Ref. 1: p. 210 and Ref. 2: p. 20]

compared to the 10,000-plus of English. It would appear that Chinese would lend

itself to phonetic transcription much more easily than English. Indeed, this is the

case. Standard Mandarin Chinese has an excellent set of phonetic transcription

symbols, the National Phonetic System (in Chinese, Zhuyin-fuhao, Zhuyin-zimu,

or (slang) Bopomofo). In this system, each initial, medial and final has a unique

symbol. A set of thirty-seven characters is sufficient to represent, with three or

fewer phonetic symbols, any syllable occurring in the spoken language. This can

be accomplished without the ambiguity or inconsistency of written English. [cf.

Ref. 2: p.18. Ref. 3: pp.3 2-3 3. and Ref. 4: pp. 141-145]

The symbols of the Chinese National Phonetic System can be represented

by the Roman alphabet as well. There are a number of systems for doing this,

however, the government of the Peoples' Republic of China (PRC) has sanctioned

only one: the Han yu-pinyin 2 System IRef. 3: p. 32]. Thus, Chinese can be

phonetically transcribed quite easily and accurately utilizing the same well-

established word processing devices developed for English.3

Unfortunately, whereas (somewhat imperfect) phonetic transcription

methods solve the entire word processing problem for English, these same

2 The glossary (Appendix A) contains names of some of the other popular or historically

important systems.
3 Actually, although a Qwerty keyboard may be adapted for this purpose, the character use

frequency of Romanised Chinese is quite different from English and European languages, and this
fact justifies keyboard redesign, as we discuss in the following section.

17

methods only scratch the surface of the input problem with Chinese word

processing. Written Chinese is not a phonetic record of the spoken Chinese

language, and there is very little relationship between phonetics and the

construction of Chinese textual material. There are about 50,000 (largely non-

phonetic) symbols (called hanzi 4) used to express the syllables of written Chinese

(although perhaps only about 3000 occur with frequency). Processed written

Chinese must be expressed in combinations of these symbols rather than the more

workable phonetic character sets. Also. with only 1300 possible syllable

pronunciations, it is clear that many characters must have the same

pronunciation. Deciding which written character corresponds to a particular

instance of a pronunciation is known as the "homophone resolution problem."

Although Chinese civilization is acknowledged as the first to develop

mechanical printing techniques. after more than one thousand years of experience

with mechanical symbol manipulation, the Chinese have yet to develop a

reasnable keyboard-like device equivalent in utility to the Qwerty typewriter.

Furthermore, the Chinese are not taught to think in terms of phonetic symbols

when they compose written Chinese. and they cannot easily read meaning into

streams of phonetic characters which have been printed out by another person or

a device. For these reasons. Chinese word processing represents an extreme

challenge to the generalization of word processing techniques.

4hanzi is the Chinese word meaning "Chinese character." It is the same word which is
,ronurCed kan.i in sin -Japanese In this study, the form used depends on which form appeared

in the source material being discussed.

18

9

3. Japanese

Contrasted with analytic natural languages, including English and

Chinese, Japanese is a so-called "agglutinative" language [Ref. 1: pp. 87-89 and

Ref. 5: p. 381. Suffixes and verb declinations, rather than word order in a

sentence, are very useful in Japanese for determining the grammnatical category of

a word (there are also a few relatively unimportant prefixes). Thus, despite the

fact that the Japanese phonetic system is much more restricted and regular than

even Chinese (i.e.. the homophone resolution problem exists in Japanese as well),

the language can be easily transcribed into streams of phonetic characters which

are consistent, unambiguo., and which do not require further embellishment for

understanding. The Japanese have excellent karza phonetic syllabaries designed to

do this. Unfortunately, the Japanese choose to embellish their written language

anyway, and this complicates the problem of transcription. The Japanese have

continued to use Chinese characters (icanji) interspersed with kana as a matter of

historical development. This practice is analogous to the English use of spellings

like "through," which suggest that what is actually being transcribed is an archaic

pronunciation. In fact, the written transcription of all languages evolves less

rapidly than the corresponding spoken form, and written language often sounds

formal and outdated when converted to spoken form (as when a document is read

aloud) [Ref. 1: pp. 110-111).

The Japanese spoken language employs five vowels and about 20

consonants to form only about 100 possible syllables. A syllabary of 53 distinct

symbols (kana) serves to transcribe the language into written form. Actually.

there are two different sets of kana representing the same set of sounds: hiragana,

a cursive script for transcribing native Japanese words (including those borrowed
low

from China); and lcatakana, an angular script for transcribing emphasized words

and words borrowed from foreign countries (not including China). The combined

106 symbols of the two kana sets form a reasonable alphabet for word processing,

but unfortunately written Japanese does not stop there. As we have noted above,

Japan has borrowed extensively from the culture of China, and Chinese characters

appear normally in the common written language of Japan. As a matter of

practice, all words with semantic content (nouns, verb roots, adjectives and

adverbs) are expressed in Chinese characters. Therefore, with the exception of

input (which can be done using kana alone), Japanese word processing must

perform character manipulations as challenging in scope as those required by

Chinese. The only consolation is that the education ministry of the Japanese

government has taken a lead in reducing the number of kanji normally appearing

in print to a set of 1850 "essential" an,, "general use" characters [cf. Ref. 6].

C;. SUMMARY OF WORD PROCESSING TECHNIQUES FOR CHINESE
AND JAPANESE

This section focuses on present word processing technology for written

Chinese and Japanese. The discussion applies to the Korean written language as

well, but approaches to dealing specifically with Korean were explored by Kim

20

wrIPVWjWWXT L. M % - V --- -- .-

and Ko [Ref. 7] and Lee [Ref. 8]. The reader who is interested in characteristics of

the Korean language as they relate to word processing is referred to those works.

Of techniques which are in use today, most are concerned with the input

problem, i.e., how the word processing operator can get the written language

properly codified into an unambiguous internal representation within the

computer. For example, wheie input by means of purely phonetic characters is

used to designate a stream of actual text (which may or may not be composed of

purely phonetic characters), massive software support is needed to replace the

input symbols with the final textual symbols that they represent. This is

necessary because the phonetic input technique depends on a limited set of input

characters (no more than about 50) used in combination to represent any of

perhaps 10,000 output characters. Since techniques for output are not specifically

incorporated into these systems, they should be called, more properly, "strictly

input systems." The systems can be grouped into the following categories:

prr Those based on whole characters (two-dimensional array)

gp. Those based on some kind of non-phonetic coding for character input,
e.g.. TCCM. Yamada two-stroke. "radical"

Mz Those based on phonetic transcription

Mw Non-mechanical input techniques, e.g.. OCR, speech recognition, on-line
handwritten character recognition. etc. (Note--these techniques will not
be discussed)

A description of the characteristics of some of the more important input

systems follows.

21

1. Input Techniques Based on Whole Characters

a. Touch-sensitive Kanji Typing Tablet

This technique involves a special keyboard, or tablet, which is a

descendant of the Chinese Character typewriter (the "Wabun" typewriter

invented in Japan in 1913 [Ref. 3: p. 29 and Ref. 9: pp. 37-38]). The tablet is

similar to the typesetting rack used for a mechanical printing press. However,

instead of selecting a character element from the rack for use by a printing

machine, the user merely points to the selected character on the input tablet. A

light pen. inouse. or physical touch are ways of doing this. A typical input tablet

contains 2000 to 3000 characters, and characters not contained on the tablet must

be input by means of a supplementary coding method (one of the other methods

described in this section). Since each character desired must be sighted by the

operator. this technique is definitely not one which lends itself to touch typing,

and input speeds are lower than for other techniques. Character hunting time is

proportional to the square root of the number of characters covered. Thus,

hunting time is decreased by having fewer characters on the tablet. But input

time is increa-sed when a character cannot be found on the tablet at all (and must

then be coded !or input by other means). Matsuda has determined that 2300 is

the optimal nu'inber of charac -,s to arrange on the tablet in order to achieve a

balance of the fdictors affecting input speed. (Ref. 5: p. 40

The principal advantage to this technique is that no extensive

operator training is required, other than familiarization with the indexing system

22

for the character set arranged on the tablet. The cleverness of the arrangement is

the only enhancement to input speed available. Any operator can input symbols

with this technique, and so it provides a means to do document preparation for

the average (untrained) person. Also, no sophisticated or expensive software

program is needed to translate input symbols into an internal representation,

since there is a one-to-one correspondence between the input symbol and the

internal code. The disadvantage of this technique is that it is extremely slow, and

the device is highly specific--hardly a generalized input device adapted to a

specific purpose.

The touch-sensitive, two-dimensional character array is used in

various forms with Chinese, Japanese and Korean. In fact, it is possible to use

this input method with any symbol set.

2. Input Methods Involving Non-phonetic Coding

Input via non-phonetic coding seems to be most popular in Chinese word

processing. Some experts feel that an arbitrary numerical coding method is best

due to the major dialectal differences which exist in China, giving rise to

disagreement about which is the best phonetic transcription system. The lack of

a clear-cut relationship between the written language and the spoken language

has been previously discussed. Ironically. of all the arbitrary coding systems, the

one recognized to be most effective, Yamada's "two-stroke method" [cf. Ref. 9],

was developed in Japan.

' 23

il .T, N amada Two-stroke Input Method

Thi- systeni uses a limited number of keystrokes to uniquely identify

ith 1agv number of input symbols. The code for each input symbol is passed into

the equipment ,)y making two keystrokes on a special keyboard. Let us say that

the inpu: keyboard is equipped with 48 keys (approximately equal to the number

of keys. alphanumeric and special, of a standard Qwerty typewriter). Then a two-

keystroke input can refer unambiguously to any position of a 48x48 matrix, a

total of 2304 possible characters (which is sufficient for about 99 percent of

Japanese word processing requirements). Selecting the correct two-keystroke

sequence is a basic problem to be overcome in using this technique. The

characters are grouped onto each key, so that one keystroke selects the group and

another keystroke selects the character within the group. It seems that the

anioun of memorization required of operators would be an insurmountable

obstacle to developing a national pool of competent typists. However, Yamada's

research indicates that this is not the case at all. In fact, the method does require

intensive training and practice, but the methodology has achieved results4"

comparable to those of English language touch typing. This is because the skill

developed is true "finger learning," rather than a conscious level of strenuous

mental iV "olvement b the operator. In this respect, the two-stroke method differs

from the other arbitrary numerical coding methods (i.e., touch typing is possible).

The two-stroke method, which can theoretically be adapted to any of

wh oriental languages, represents a training-intensive solution to the word

24

processing problem for full-time, semi-professional clerical office workers. This

solution, unfortunately, is not satisfactory for the occasional word-processing

operator who lacks special training and therefore must use one of the other

methods.

b. The Three-Corner Coding Method (TCCM)

This technique, developed by a group of computer science professors

in Taiwan [cf. Ref. 2], involves assigning three sets of two digits each to every

possible hanzi of the input set. In other words, each input symbol is represented

by a six-digit code. One advantage of the system is that it can be used on a

standard ASCII keyboard or even a simple numeric keypad. The method reserves

an ample number of code entries for non-Chinese characters, so that the keypad is

sufficient for all input. Coding of whole Chinese characters is based on individual

two-digit codes for 300 "fundamental symbols" which the system identifies as a

component set from which any (complete) hanzi can be built. Since the

characters are determined uniquely upon input, software support required for

internal processing is minimal. Simple table look-up operations suffice. The main

disadvantage of the system is that a new. fairly complex, and artificial system

must be learned by the operator in order to transcribe the written language.

Thus. training time is fairly extensive, and TCCM is not really useful to the non-

professional word processor operator.

25

, I1*

3. Phonetic Transcription Input Techniques

a. The Morita System for Japanese Word Processing

This system was developed by Masasuke Morita at the NEC

Corporation of Japan [cf. Ref. 10]. Although the dominant idea of the system is

phonetic transcription of the spoken language combined with software processing

and translation into the desired internal representation, the system is somewhat

eclectic in that Morita incorporates desirable elements from systems based on

other concepts. This is accomplished because of Morita's consideration of the

linguistic principles of Japanese and concern for human engineering aspects of the

phys -al input device in addition to focusing attention on the computer science

issues relating to word processing.

For the input symbol set. the Morita system uses neither the

traditional kana syllabaries nor the Roman alphabet as it is laid out (one letter

per key) on the standard Qwerty typewriter. Instead, Morita has performed a

simple linguistic division based on Japanese phonology so that all pure kana input

can be accomplished by a two-keystroke sequence of consonants and vowels-one

each. to yield the equivalent of a kana sound. All kanji input can be

accomplished by a two-keystroke sequence of initials and finals (initials to include

th(limited set of medials permitted in Japanese pronunciation of sounds

descended from borrowed Chinese syllables). These four types of input elements

are arranged as follows: consonants and initials arranged in three rows of five

keys each (under the operator's right hand): vowels and finals arranged in three

26

rows of five keys each (under the operator's left hand). A shift key is provided

under each thumb, and all the possible syllables allowed by Japanese phonology

can be assembled with no more than two keystrokes (possibility of one opposite

thumb shift with each keystroke). Major advantages of this system are that the

keyboard is about equivalent in number of keys and arrangement to a standard

western typewriter. With three rows of five keys under each hand a "home row"

concept is employed which facilitates touch typing. In fact, input speeds can be

expected to equal or exceed those obtained by experienced operators of English

language word processing equipment. Also, selection of a "finals" key by the left

hand not only facilitates a direct phonetic transcription of the spoken Japanese

word, but also indicates that the word being assembled is a kanji in the written

representation. This feature completely eliminates the need for software

segmentation s and grammatical analysis of the input stream, so that the software

support can be concentrated exclusively in the area of homophone resolution. As

a result, with a reasonably fast kanji look-up and homophone resolution method,

input text can appear in its correct, internally represented form instantaneously

on the screen. without the necessity of being run through an intermediate

translation program.

The two-keystroke-per-syllable input method of the Morita system

seems similar to pure arbitrary coding schemes such as the Yamada two-stroke

method for Japanese and TCCM for Chinese. Morita's advance over these

5See the section on software support below.

27

svstci- i tha' thc "arbtrary" coding scheme is not numeric; the phonetic system

of the Japanese language is the scheme. The phonetic elements pictured on the

keys are expressed as combinations of Roman letters (or romaji as the Japanese

call them). This is a perfectly correct and logical choice because romaji is a

system which can faithfully transcribe all Japanese sounds, and it is taught to all

.Japanesc as a standard part of the education system, so users are not required to

learn a new coding convention.

in summary. the Morita system allows rapid input of the Japanese

language by conventions which are familiar to native speakers, while it requires a

mintinum of ,oftware support to perfect the accuracy of internal representation of

the text. Because of these features, minimal operator training is required to

devIoh)p acceptablh proficiency.

(On a conceptual level, the Morita method completely solves the input

probliem for Japanese text. The question which remains is., can general computing

('"qiplnim support the inethod efficiently enough to make it workable?

) (,hinese Phonetic Input Keyboards

Two purely phonetic input systems for Chinese word processing are

(iesrihet y sherng !rf. Ref. 11]. Both systems depend on a set of symbols

c1on-Tr4nc*d ;icor(iig to the Hanyu-pinyin phonetic system for transcribing

siandaird Chirv.e The pinyin system was introduced by the PRC about 25 years

ago. ;,i dt -is a learning requirement for students educated under the Chinese

edunat,,nal -V" ten. In pinyin, initials and finals are expressed in Roman letters.

28

' %

As Morita has done with his ronaji keyboard. Sheng's systems place onto each

key all of the Roman letters needed to express a single initial or final. Thus, these

systems work just as well for any consistent phonetic transcription system (of

standard Chinese), including the National Phonetic System which was described

in a previous section and which is still the phonetic transcription system used in

Taiwan (ROC).

The systems described by Sheng differ only in the layout of input

symbols on a standard keyboard configuration (actually Sheng recommends

including a "software switch" with the systems. facilitating instant conversion to

a western language word processor, if desired). One of these keyboards uses four

rows of keys (total of 44 character keys), with shifts required for 31 keys. A total

of 58 (complex) phonetic characters and 37 special characters (punctuation,

numeric, control. etc.) can be accessed. This keyboard is used with the HZ-80

Word Processing System, introduced at an international computer conference in

Hong Kong in 1980.

The other keyboard also uses a standard keyboard configuration, but

distributes the complex phonetic characters onto three rows (using a total of 32

keys for these three rows). The fourth row of 12 keys is used for ASCII-type

numerals and special characters. In this configuration, the same 58 phonetic

characters and 37 other characters can be accessed, but up to 39 shifts must be

made. By arranging the phonetic characters into only three rows and placing

most special and numeric characters on the fourth (highest) row, phonetic input

29

'N

of written Chinese is reduced to the proportions of the English language input

problem (i.e.. "home row" concept and touch typing are facilitated). In addition,

this alternative seeks to minimize the effects of local dialectic variations by

clustering certain initial and final syllable component characters onto the same

key. In this way, when a particular speaker fails to distinguish a phonetic

difference present in the "standard" language, the mistake usually can be

corrected by shifting and re-striking the same key.

Since the primary input method of these systems is phonetic, the

problem of homophone resolution must be dealt with. Some techniques used to

accomplish this are discussed in zhe next section.

4. Oriental Language Word Processing Software Support

Matsuda summarizes the problems associated with word processing

support programs:

In implementing a translation dictionary, the primary issue is how small and cheap to
make it In general. a kana-to-Kanji conversion system using Kanji-designated
segmentation requires a dictionary of about 50,000 words (that is, a SM-bit memory is
needed to store it). Ref. 5: p. 41

Since we want to develop general methods to facilitate word processing with

arbitrarily constructed symbol sets. and we want to be able to apply these

methods to any reasonable hardware configuration, including the present

generation of desk-top microcomputers. a requirement for 5M-bit memory may be

unacceptable. In Chapter 3 we investigate physical memory requirements to

30

1a V

support a generalized system. and to soine extent these requirements tend to pull

our attempts at abstraction back toward unpleasant realities.

a. Xerox Star and Fuji Xerox i-Star

These systems perform purely phonetic transcription at the "word-

unit" level. This concept has been adapted for use with Chinese, Japanese,

Korean. and other languages. These systems are described in this section because

the role of input translation is the significant characteristic of the systems. A

standard-size keyboard can be used for input, and the input alphabet can be

either Roman letters or the phonetic symbol sets of the languages being processed,

e.g., kana for Japanese or zhu yin-f uh4o for Chinese. Homnophones are resolved by

pressing a "look-up" key at the end of each word-unit entry. At that point a

support program performs a dictionary look-up and presents the operator with a

list of homophone options from which the correct character(s) can be selected.

The disadvantages of this system are that the supporting software is

complex and it tends to be slow. When applied to Chinese, there are two other

sources of difficulty. First, most Chinese do not compose written material in

terms of phonetic characters, and therefore somewhere along the line they must

learn to "think phonetically." Secondly, the same phonetic system may not work

for all Chinese due to the significant phonetic divergence of the many dialects of

spoken Chinese. Nevertheless, as Becker puts it:

31

The unavoidable fact is that persons who wish to t% pe Chinese must first take the time to

learn something, and in Chinese society their time is far better inested learning standard

Mandarin pronunciation than in memorizing some computer company's ad-hoc set of
coding-scheme rules. Ref. 3: p. 32

b. BETA: An Automatic Kana-Kanji Translation System (Toshiba
JW-10)

This system [cf. Ref. 121 attempts to provide software support to

resolve the two basic problems in the "processing of Japanese sentences:

r~ Segmentation of input into syntactic units (bunaetstu in Japanese) for
processing, and

,r Resolution of homophones (recall that Japanese has the severest
homophone resolution problem among the oriental languages because it
has the fewest number of unique syllable pronunciations).

The segmentation problem arises from the fact that Japanese

speakers do not naturally build up their sentences from discrete word units. It

-was noted earlier that Japanese is an agglutinative language. The use of highly

synthetic suffixing practices causes a large variation in the forms containing basic

semantic information. In short, where one word ends and the next word begins is

difficult for the Japanese to pin down. Thus, the Japanese input operator is not

accustomed to segmenting each sentence into words and cannot be depended

upon to put a "word-end" character6 in the correct position. He might not place

it in the same position as the next operator. The only reasonable solution is for

the word processing equipment to accept an unsegmented stream of input

6 Thp choice of this character would be wholly arbitrary and system-dependent since Japanese
has no segmental symbol to separate words, such as the blank space used in English.

32

-sF -I _7_. . . - ._- Z- - -r _ - - - I

characters and then have the software provide a consistent segmentation

internally.

The Beta-system attempts to parse a stream of input symbols into

bunsetsu (loosely, "phrases"). Bunselu can be viewed as being composed of an

independent part and a dependent part, and each of these two components can be

built up according to a regular grammar. Once bunsetau are identified, then, a

finite state automaton can support their further analysis. The weak link in the

present system is getting the sequence of bunselau right. The system utilizes an

algorithm called "The longest string matching method of two bunsetsu." In

experiments using the system. it was able to segment bunsetau correctly about 94

percent of the time, and it was able to substitute the correct kanji for kana

symbols about 89 percent of the time. The lower percentage for correct kanji

substitution is a result of a relatively unsophisticated homophone resolution

method in the present system. In cases where the bunaeteu and kanji-homophone

analyses are incorrect, the operator must supply manual correction techniques

(editing). Editing of this kind differs from word processing as we know it with

English. The English language word processing systems are able to construct a

consistent internal representation of the input stream which is 100 percent true to

the written language which the operator enters into the computer. Thus, the

word processing operator edits only when he is dissatisfied with the meaning of

the language itself. With automatic symbol conversion programs, such as kana-

to-kanji, the operator must do two kinds of editing: first he must correct errors in

33

, .. ,... €: -¢ ,:t.. ..,,',.?..,:-;, .;,. -,,:,.,.-. ,,,;,,,.; , .-. :, - Z £ ' : -; ' .. V ¢:. ,,e -':.': .'.

i

the internal representation in the input stream caused by inadequacies in the

software translation program. and only then can he proceed with the semantic

editing of the sort done in English language word processing.

c. Chinese Hybrid Systems

The Chinese homophone problem differs from that of Japanese and

Korean. The basic symbol set of Chinese characters used in word processing is

larger: 7000-8000 characters compared to about 2000 used with Japanese or

Korean. Thus. there is a potential for more homophones. But the phonology of

Chinese provides more possible pronunciations, naturally resolving some

homophone conf'cts which occur in the other languages. An enduring problem

with written Chinese is that the smooth. processed text cannot permit the

presence of unresolved phonetic characters. This option is always available with

Japanese and Korean. So we might expect homophone resolution software which

attempts to be extraordinarily precise in Chinese word procesing Various

techniques have been developed to cut down on the size (and cost) of these

programs. One such technique. included in the systen. descnbed I,. sheng. has

the operator indicate the tonal category of the syllable along with it, phonetic

transcription. This simple procedure. costing an extra keystroke per -yllable. ha

the potential to eliminate an average of over 75 percent of incorrect homophones

Another technique is to include some semantic (non-phonetic) information

with the input transcription. With the pirtzrce word processor, described by

34

C,
• o .

H. C. Tien [Ref. 11: p. 66]. the transcription of a Chinese character is constructed

as follows:

hanzi = pinxxiee = pinyin + tone +i radical (semantic component)

With the additional keystroke for the radical, incorrect homophones can be

virtually 100 percent eliminated. However. the cost is high: there are 214

traditional radicals which must be distributed over a limited number of keys

(presumably we do not desire to add 200 new keys to the keyboard). Also, the

connection between the semantic clue (radical) and the meaning of the syllable

may not be obvious: it may be forgotten or mistaken by the operator. Chinese

word processing experience has not yet provided the means to determine if a

hybrid coding system like pinzziee is superior to straight phonetic input backed

up by complex software.

35

III. SIZE ESTIMATE FOR A GENERALIZED FONT MEMORY

In the previous chapter it was suggested that computing equipment could be

used with greater flexibility and imagination if we improve the capacity for

symbol set manipulation. Achieving complete generality is our long-term goal,

and we identified two subordinate areas which we want to improve through the

present study:

,. Customizing character fonts for a given symbol set to provide a variety of
user-specified forms, or type sets. for any particular symbol in the set.

r*- Accommodating rapid definition and design of symbol sets containing an
arbitrary--perhaps very large--number of symbols.

Figure 3.1 presents a conceptual view of how the overall research effort is

organized. The empty boxes in Figure 3.1 represent future contributions to this

field. For the present. we offer the BUILDFONT Font Editing System in response

to the need for improved tools to support this research and for new applications.

The BUILDFONT System is discussed in detail in Chapter 5. In the present

chapter. we complete our analysis of the word processing application which was

,zarted iM; ('hapter 2. From experience with the systems developed to support the

(' ine,. .Japanese and Korean written languages. we obtain an estimate of the

size of "ideal" arbitrarily hounded symbol sets.

36

u 0 U

U. -m c " , 0L

0. c U)

C 4- V 4 La

4-
0

U)L
4

L
0E

u
r 4L

11 ~ ~ 0

Q 0.
E L E.

V37

ui

\N',, began describing the scope of the general word processing problem by

examining the linguistics of Chinese and Japanese. to see how these languages use

extremely large character sets to express their respective written languages. We

then went on to present a summary of the word processing systems that attempt

to cope with these written languages.

Figures 3.2 and 3.3 illustrate word processing systems for the languages we

have discussed. Figure 3.2 represents the hardware and software components for

a typical English language word processor.

I nterface Interface

symbol to code code to symbol
convent on convention

(ASCII, EBCDIC)

Irpu. DeiceOutput Device
(Qwerty Keyboard) (Line Printer,

Laser Printer,

*ord Processingli Text Formattng

Software WORDSTAR, J Software TROFF,
VI, etc et c (optilonalI)

Figure 3.2
Typical English Language Word Processor

38

..;.;,; .: .<, ... :...c.. .= ,-<,.:q.?..-- :;. < . ,?., : '<." ...X<•g,% % \y

Figure 3.3 depicts a general word processor which must handle the large

character sets required by Chinese. Japanese and Korean.

VManual 'Homophone

Correct, s IR e s o l u t io n

I
S °ftware

Smooth Text
Tran Iati ng

Specialized Softweare
|Input Device I Processor
I(2-D Tablet,
|Yamada Key-

• . Iboard, etc.)

Conro Spec 0•ialzed

Output Device
Sig/ als(Able to print

oil codes)

Word Processing

Software

Figure 3.3
Present Oriental Language Word Processing Systems

39

Figure 3.4 illustrates the "Ideal" Word Processor. a system which can

accommodate any symbol set the user may desire. Note that the system

represented in Figure 3.4 is very similar to that of Figure 3.2. This suggests that

a computing system capable of accommodating arbitrarily large symbol sets can

reduce the entire word processing problem for written languages such as Chinese

to the proportions of English language word processing.

symbol to code Jcode t~o symbol

conventi oon ,conv ent ion

GnrlProeProcessor General Purpose
Input Device JOutput Device

(Adapted to "Ideal" J(Adapted to ar-

bitrarily large
symbol sets)

Word Processing - Text Formatting
Software Software

Figure 3.4

The "Ideal" Word Processing System

40

%' %

In haper westated that the word processing aplctio best reresents

the dimensions of the problems we are trying so solve as we improve overall

symbol manipulation generality. These dimensions are measured in terms of

symbol set size and symbol complexity.

A. THE SIZE DIMENSION

It has been noted that the ASCII and EBCDIC character sets provide codes

for up to 128 (ASCII) or 256 (EBCDIC)7 characters and control signals, and that

members of either of these sets can be coded in a single eight-bit byte. Since

ASCII or EBCDIC coding conventions pervade the present level of western

language word processing technology, it is reasonable to use 128 as the lower

bound for the size of a word processing character set.

What about an upper bound for these character sets? In theory we would

like to be able to process character sets of limitless size, but for designing practical

systems we need an upper limit. Suppose we were going to design a word

processing system and we wanted the capability to process English and Chinese

text, including every possible written character. Table 3.1 provides and estimate

for our maximum size character set.

7Sigce EBCDIC codes are eight bits long, "256"1 is actually the capacity to store discrete
* codes (2 = 256). EBCDIC employs a "binary-coded decimal" scheme, so only a fraction ('- 194)
* of the codes available are used.

* 41

TABLE 3.1--MAXIMUM SIZE FONT

Type of Symbol Number required

English alphanumeric characters, 128
special characters (punctuation,
etc.), and control characters

Traditional Chinese characters - 50,000

Simplified versions of the tradi- - 5,000
tional forms (used mainly in the
People's Republic of China)

Chinese phonetic characters 37

Traditional "radicals" (char- 214
acter components used for
dictionary classification)

Simplified "radicals" (used in - 400
the PRC, and for non-phonetic
coding used in some word pro-
cessing systems: TCCM and
others)

Subtotal - 55,779

Capability for Japanese add -r 1,100
language processing

Capability for Korean add - 400
language processing

Total - 57,279

42

. f - o.- - .o° .Oo . , , . .. , . .. I .. °% . .-.-. P - - ' o . .- - %- '.o , ' . , - % '

If we consider 58.000 to be our maximum size character font for a general

Oriental language/ English language word processing application, then we see that

we must be able to store 16-bit codes in order to reference individual symbols in

the font tab~e (log2 58,000 = at least 16). Three items of note are the following:

p,. The sheer size of the character set forces abandonment of 8-bit ASCII and
EBCDIC coding in favor of 16-bit codes.

w Inclusion of the English language character set really costs very little,
once we accept 16-bit codes to facilitate indexing of the 55,000+ symbols
needed just for Chinese. We automatically obtain a font table which can
include up to 64K discrete symbols. Thus. we are free to "throw i" a
few hundred extra symbols if we want to. so long as the total does not
exceed 64K. For languages such as English, where the total number of
symbols needed is some two orders of magnitude less than that for
Chinese, we see that it is almost insignificant to the hardware if we
include the additional symbols. However, it is of great practical
importance to potential users to be able to process many languages on the
same equipment.

@Lv 58.000 symbols is a truly large set. It is hard to imagine an application
requiring a larger number of symbols. This is why we have chosen the
word processing application to represent the greatest dimensions of the
symbol manipulation problem.

B. THE COMPLEXITY DIMENSION

Now that we have determined the maximum number of entries in a font

table. we need to estimate the memory required to store it. Let us assume that

each symbol is stored as a bitmap. Matsuda has collected data on dot matrix

printing of Japanese characters which indicates a 24x24 matrix is required for

acceptable quality IRef. 5: p. 431. With the use of a compound dot matrix

8The role of "font tables" in symbol set management is discussed in Chapter 4.

43

method. good quality can be achieved with a 16x18 dot matrix size. For high

quality characters Yajima. et.al.. state that resolutions of 64x64 or better are

required IRef. 14: p. 222]. However, we use 24x24 for our upper limit estimate. 9

If the entire bitmap is stored, each entry in the font table would require 72

8-bit bytes. We assume that we only need to store a portion of each bitmap, a

rectangle containing all actual points used to form the symbol, and we estimate

that the "average" Chinese character requires storage of eighty percent of the

bitmap. or about 60 bytes. Thus, the maximum storage requirement is (64K X 60

bytes per character) = 3.84 megabytes of font memory for one character font of

the kind we described in this section.1 0

C. MID-RANGE FONT TABLES

Fortunately. no one really needs all 50,000 Chinese characters to do

adequate word processing. About 2000 characters account for 97 percent of the

symbol usage. Adding 1000 more covers 99+ percent of usage. With 4000-8000

characters, virtually 100 percent of all ordinary word processing needs are

satisfied. Japanese and Korean systems can get along quite comfortably with

iThis is considerably higher resolution than the standard 9x9 bitmaps for font elements in the
Sibeon Graphirs. Inc. Iris-2400 The greater complexity of Chinese characters (including those
adopted by the Japanese and Korean languages) necessitates this increase to a minimum of at least
24x24 bitmaps The "acceptable quality" of these characters should be sufficient for the word
processing interactive display. Better resolution for fine quality printing could be made available
in the fon; capacity of the printing device, but this need not affect our estimate for the interactive
displa.

10 This figure assumes a font storage that is (8-bit) byte allocatable, which may not be the
case for all equipment configurations. For example, on the Silicon Graphics, Inc.. Iris-2400, which
v, the host system for the BUILDFONT Font Editor, font memory is allocated in 16-bit chunks
(miniroum)

44

*1

2000-2500 characters."1 In Table 3.2. we show revised size estimates for storing a

practical font table (revised to mid-range values consistent with the symbol set

requirements described above).

TABLE 3.2--MID-RANGE FONT MEMORY SIZES

FONT SIZE FONT MEMORY REQUIRED
8000 char (8K X 60 bytes per char) = 480 Kbytes

6500 char (6.5K X 60) = 390 Kbytes

3000 char (3K X 60) = 180 Kbytes

2500 char (2.5K X 60) = 150 Kbytes

2000 char (2K X 60) = 120 Kbytes

D. A PRACTICAL SYSTEM

It can be seen that about 500 Kbytes of font memory is sufficient to

provide a fairly comprehensive character set for Oriental language word

processing, including several styles of Roman character fonts, Japanese kana and

Korean hangul. 12 By limiting the number of Chinese characters to 3000 or 2500,

more than one style of Chinese character may be included as well. If a designer

desires to remain within a limit of 500 Kbytes of font memory, a word processing

system supported by this resource should include a font editor utility, such as the

BUILDFONT System, to generate a new symbol on-the-spot whenever the user

needs an obscure or archaic character intentionally omitted from standard fonts.

1 1Glossary entries provide numbers of symbols contained in some of the standard character

sets mentioned in the first section of Chapter 2. The largest standard set is China's "Standard
Cable Code" with 8085 symbols.

12 Once again, hardware specific considerations noted in footnote 10 must be kept in mind.

45

1r --i .

IN'. GRAPHICS SUPPORT FOR SYMBOL MANAGEMENT SYSTEMS

A. THE IDEAL WORD PROCESSOR IS A VIRTUAL COMPUTER

In Figure 3.1 we set achievement of "complete generality of symbol

manipulation techniques" as the goal for our long-term research efforts. In

subjective terms, we will have reached our destination when we have created a

virtual cornputer 13 which will accept any stream of symbols we choose to feed into

it. This virtual computer must then be able to interpret the input symbols by

either displaying the correct graphic representations (as in "echoing" the input),

or b peforingsome other intended computation in response to signals derived

from the symbols.

In Chapter 3 we became more objective in our analysis by applying the

experience of the word processing application with non-Roman symbol sets to

estimiate how much font memory we need for this "Ideal" Word Processor. Since

* the Ideal Word Processor was singled out as an application spanning the largest

- dimensions of the symbol manipulation problem. then it follows that we will have

created the virtual machine we seek if we can design a computing system to host

* the Ideal W\ord Processor. Any less ambitious application will automatically be

mianageable within +this capability.

13 We use the term "virtual computer" to represent the idea that once we have designed an
it actual hardware system that can support our most ambitious symbol manipulation applications,

the fact that this -system has physical limitations is concealed from the user, and the system
appears to have virtually unlimited capacity.

46

At this point, it is evident that the perfection of generality of symbol

manipulation techniques does not depend on a revolution in the design of

computer architectures. In Chapter 3 we arrived at a total of either 3.84 Mbytes

or 500 Kbytes for the amount of font memory needed for a workable Ideal Word

Processor. By present day standards this is very large, but it is not prohibitively

large. We have not yet analyzed the degree to which font memory access speed

must be improved, if at all. Let us make the assumption that, as we have found

with font memory size. the required improvement in access speed will occur as a

by-product of advances in more technologically challenging areas of computer

architecture and circuit design. We justify this assumption in the following

B. COMPUTER GRAPHICS DEVELOPMENT VIEWED FROM THE
FONT MANAGEMENT ASPECT

Evolutionary improvement of computer symbol management capability

has, in fact, occurred as an ingredient within the development of better and better

* interactive display systems. This makes the design of abstract symbol

management systems and the provision for hardware font memory a research area

within the wider realm of computer graphics. Zyda [Ref. 15] touches upon

historical aspects of computer graphics in his summary of the phases, or cycles, in

the development of the modern graphics workstation. In this view, the present

generation of "lead ing-edge" graphics workstations is the product of a design

philosophy which is in the third of a series of developmental cycles.

47

1. The First Cycle

This phase began 15-25 years ago with efforts to develop a

capability to perform real-time, interactive applications (simple ones, at least).

At that time the objective was to move from a batch-processing, card-reading

environment toward single-user systems which could display symbols and pictures.

When a primitive capability to do this was realized (by the adaptation of direct

keyboard input devices and CRT displays as output devices), the performance of

these systems was then evaluated. New hardware components were designed and

developed for the purpose of speeding up the delivery of graphics objects to the

display. i.e.. perfecting the "real-time" response demanded by system users.

2. The Second Cycle

This phase corresponds roughly to the evolution of super

minicomputers during the mid-to-late-seventies. Researchers within the computer

graphics area continued to respond to the upward spiral of user performance

demands bv developing hardware solutions for applications that had been

impossible previously. For example. matrix multiplier circuits facilitated the

real-time performance of linear algebra for scaling, rotating and translating

(graphics objects. However. concurrent with the enhancement of pure graphics

* i.pport capabilities, the technology of general-purpose hardware for the single-

user computers hosting the graphics systems was also improving. Early

minicomputers (such as the DEC PDP-11 series) gave way to super

niiricoriputers like the DEC VAX-1I series). These more-powerful machines

48

U

* *Ittpp4~

provided enhanced, general purpose features such as virtual memory. time-sharing

and multi-tasking, which reduced their capacity for dedicated support of graphics

applications.

3. The Third Cycle

The culmination of the current phase of computer graphics

improvements is the contemporary graphics workstation, which represents efforts

of the eighties to move back toward dedicated support for single-user graphics

applications. The system design features which have led to the workstation

concept focus upon inclusion of a separate, dedicated processor (Display

Processing Unit--"DPU") responsible for control of the graphics-specific

operations within the host computing system. A very general view of the

configuration of such a system is presented in Figure 4.1 IRef. 15: fig. 11.

Bus

CP 40[
Terms L Interactive

DisksDevices:
Mouse Devices
Joysticks

Output Dials
" ev I i cesButtons

Switches
Ether- Data Tablets

Light Pens
WEI eKeyboard

Figure 4.1
Block Diagram of Interactive Graphics Workstation

49

51;'A'

Figure 4.2 IRef. 16: p). 63] presents variation., of how the graphics subsystem may

be organized within the overall workstation format of figure 4.1.

Vide

Mon I to~r

Hot Gaphics Diapln

CPUCPMeoyCnrlr

Common

Bus

(a) Common Bus Architecture

Graphics System

Bus

Host Main High-speed

CPU Memory interface

LHost System

Bus

(b) Frame Buffer Architecture

* Figure 4.2
Graphics Workstation Architecture Variants

50

4. The Leading-Edge Graphics Workstation.

The maturation of third cycle research efforts is exemplified by

today's "lead ing-edge " graphics systems, including the Silicon Graphics, Inc.,

IRIS-2400, selected as the host system for the BUILDFONT Font Editing System.

* A block diagram of the IRIS System architecture is presented in Figure 4.3 [see

also Ref. 15: pp. 8-10 and Ref. 171. and a specification summary is included in

Appendix B. The IRIS System utilizes the raster refresh display technique [cf.

Ref. 16: pp. 8-19]. whereby all text and picture objects to be displayed are

processed through a pipeline of specialized circuitry until they are finally

deposited in the "frame buffer" in the form of (a two dimensional array of)

"Pixels." The refresh subsystem functions to project, or map onto the screen by

electronic means. the pixel arrangement stored in the frame buffer.

5. Handling of Text By the IRIS System

Up to now we have used the term "font memory" without

elaboration to loosely refer to some location within the computing system where

we store the data needed to produce textual characters and symbols on the

display. Let us now define "font memory" more precisely by saying that it is a

dedicated hardware computer memory set aside to contain character data which

can be mapped directly into a desired position in the frame buffer. In a raster

refresh graphics system such as the IRIS System, establishing the font memory

and its data path to the frame buffer solves the problem of getting text onto the

display. But the proper data must be placed in font memory to begin with,

q5

E-

00

L 43* 0

U. 0

- 0
0 E

u
t o 0)

0

L L

ii 0 0 O

/,....L-

\ 4, 0'T °

0 - 00I
U 02

4. .02{
00

.)

E 0 t

4) L
91 0 0 o4

o, ,\U/L °o-c.

4E) I_

CL L 0

C, u LU

40 0 u

oU oU

0 L>

L --------- --- --__ _

52L

before graphics text can be synthesized and moved t~o the frame buffer. The IRIS

System provides a "default" font of 9x9 pixel characters which are stored in

permanent font memory (ROM). The system also provides 16 Kbytes of RAM

font memory where the user can load other fonts of his choice.

Figure 4.4 illustrates how IRIS font memory is accessed and how the

system performs data conversions needed to support font management.

Customized character sets which can be placed in font memory by the user are

normally kept as formatted font files (example with explanation shown in Figure

4.5) in external disk storage. High level software routines (programs) are needed

to bring a font file into main (RAM) memory where the data are stored in data

* structures, the font table and the raster array (explained in detail in Chapter 5).

The IRIS System utilizes the ASCII coding convention, and thus a font file may

contain data for up to 128 characters. As prescribed by the file format, each

character in the file has a line of parameter data followed by bitmap data from

which the system will eventually determine the size and form of the character.

When the file is read into RAM memory. each character~s parameter line is stored

as a font table entry. and the bitmap is read into the raster array (where the two-

* dimensional bitmaps are strung out linearly, one data word after another). The

raster array can then be loaded into font memory by means of the system

function defrasterfont [Ref. 18: pp. 5-6 and 5-1 The linearly arranged bitmap

data placed in font memory together with parameter values retained in the font

table enable the system to accurately reconstruct the correct pixel bitmaps in the

53

Font tinFrame

Buffer To Display

Memory

text writing

"%"11111l -User application

IRIS program calls

DPU for text
"defrasterfot

\ consult

\font table

...-..

/,/"" read-in'

program

cont, o I
, RAM Memory//

.-" I ,sk
ck Storage

: 1 back Font Table Storage

i Font Files
I"Raster"

Array

Font Editor

"print-to-file
.oBUILDFOT _r ev on program

.............

Figure 4.4
IRIS System Font Management Data Conversions

54

~ V~). ~ .'.X'. * .~ K/%f. .. :..- .. .~.~.

~ Font Maximum Height

48 ("Maxheight" - in pixels)

1 1 0 1 30
00 ..-- first character (ASCII "nulm)

! 6 34 12 1 30 '""'""
7800f cO0
f cOO

parameter

fcO linefc00
fc00
fcOO
fc00
fc00
fc00f coo
fc00 bi tmap

fcoo data

7800
7800
7800
7800 -- second character
7800 (ASCII 0 ,0)

7800
7800
7800
7800
7800
7800
7800
0000
0000
0000
0000
7800
f coo__ _ _ _ _ _ _

f coo
Parameter Line

f coonf0 Explanation

7800 ASCII corres-... "- CI or-

19 7 15 30 pondence char
16 - bitmap width
19 - bitmap height

fc3f 7 - x offset
fc3f 15 - y offset

N : 6 30 - skipwidth

Figure 4.5
Example of a IRIS Formatted Font File

55

frame buffer. Io create a line of text when programming the system to produce a

graphics object. the user must first designate the desired font with the font

function (or, if he chooses not to do this. he gets the default font). Next, the user

must specify the position on the display projection where he wants the text to

start by calling the emov function. Finally, the user must designate the string of

symbols he d iires with the eharstr function [Ref. 18: p. 5-7). For other

programming purposes the system offers users the following "built-in" functions

supporting character manipulation 14:

93r defrasterfont-- loads character data from main memory into font
memory.

font -- selects the desired font (in the font memory).

pK. getfont -- returns the number designating the font currently in use.

v w getheight returns the maximum height value of the font currently in
use (the value is a number of pixels).

rr strwidth returns the width (in pixels) of a text string.

System primitives to allocate and deallocate font memory. etc., are invisible to

users.

14The names of functions listed are those of the "C" programming language. The IRIS
System also supports FORTRAN and Pascal, and the same functions are available with slightly
variant names.

56

i
.1

6. The Fourth Cycle

It has been stated that the object ive of the third cycle of

improvements to computer graphics has been to remove graphics support

functions from the general purpose computing environment and concentrate them

into "workstation organization" dedicated to support of single-user applications.

This line of development has thus spawned the appearance of today's "leading

edge" graphics workstations, including the IRIS System described in the previous

sections. Progress within this third cycle philosophy will continue, resulting in

even more powerful workstations for the near future. For example, Silicon

Graphics. Inc.. has already designed a successor to the IRIS-2400 which promises

greatly enhanced capability. This system is scheduled for release about 1988.15

Third cycle systems, however, address the traditional problem areas

of computer graphics design--enhancing general graphics (hardware) functionality

in response to user demand for more efficient processing of applications. Zyda

[Ref. 15: pp. 1 1-121 sees limits to the extent to which these enhancements can

continue, within the third cycle approach. However, the eventual reaching of

these limits is not expected to diminish the user's appetite for better performance.

* A new development phase. the fourth cycle of computer graphics improvements is

logically inevitable. This phase may be characterized by efforts to design the

applications themselves (i.e., the algorithms) into hardware circuitry.

15 lnformation on this system was presented by J. H. Clark during a briefing at the Naval
Postgraduate School, Monterey, California, on 14 May 1986.

57

- - - -7-~-~

When we discuss the idea of rendering algorithms into hardware

circuitry. we clearly arrive at a point where the present technology can support

generalized symbol manipulation techniques described in the first three chapters

of this study. With these particular applications (symbol manipulation systems),

we cannot differentiate between designs having efficient symbol manipulation

capability of a completely general nature (third cycle workstations) and designs

created with specific applications in mind (fourth cycle application-specific

architectures). This is because development of symbol manipulation capability,

even within the field of computer graphics, has lagged behind the more

challenging design aspects (vector processors. matrix multipliers, etc.) which have

received emphasis. We see in Figure 4.3, great sophistication in the circuitry

devoted to the general "graphics pipeline." The conspicuous exception is font

management support. As a result, we were able to summarize font management-

specific functions of the IRIS System as the relatively meager collection (5 total)

listed In the previous section. Thus, the third cycle has hardly run its course with

respect to symbol manipulation improvement. This fact will not delay the

approach of the fourth cycle, however.

It has been noted that research in computer graphics design has

al-ways reponded to ever- unsatisfied user demands for better systems. The

capability to project text onto a video screen was one of the original user

deniands, and ironically, not much more has been demanded since that capability

was attained. This study attempts to rekindle the demand, and in so doing, take

58

a step toward designing a better balance of capabilities into the next generation of

graphics workstations.

59

V. THE BUILDFONT SYSTEM

In the first three chapters of this study we identified the need and

discussed the motivation for improving computer-based symbol management

systems. We listed applications that become possible with the perfection of

completely general symbol manipulation techniques. We went into detail with

one application area: Word Processing of written languages which employ non-

standard character sets. We reviewed some of the problems caused by limited

symbol manipulation generality in the present word processing systems developed

for these languages, and we proposed an "Ideal Word Processor" to eliminate

these problems. In Chapter 3 we estimated the maximum size font memory

needed to support a general-purpose symbol manipulation feature (in this case,

the Ideal Word Processor).

In Chapter 4 we placed the task of improving symbol management systems

within the overall scope of computer graphics research, since the most innovative

symbol manipulating systems have traditionally appeared as specialized graphics

support features prior to becoming standardized features of general purpose

computing installations. It was noted that user demand for better performance of

application programs has traditionally provided the impetus for the cycler, of

hardware development within the computer graphics field. Taking the IRIS-2400

60

Graphics Workstation as being representative of "leading edge" graphics

capability, we have developed the BUILDFONT Font Creation and Editing

System. a software development tool to facilitate the creation and maintenance of

customized symbol fonts used in IRIS System applications. BUILDFONT, then,

is a tool which, by facilitating and expediting the creation of customized fonts,

serves to support development of the IRIS System applications critical to symbol

management research.

A. HOW THE BUILDFONT SYSTEM WORKS

In the last chapter, we described the features of IRIS System font

management. and we observed that certain data conversions must take place to

use a special font (i.e., other than the default font). Special fonts are stored as

font files in secondary (disk) storage until they are needed by an application. A

font file contains two kinds of information for each symbol in the font: 1) bitmap

data which define the actual size and shape of the symbol, and 2; the symbol

"parameter line," which stores information about the symbol. When an

application needs to use a special font, the font file is read into RAM memory,

where the data for each symbol are divided and stored into two data structures:

the raster array (for bitmap data) and the font table (for the parameter line) (refer

to Figures 4.4 and 4.5).

The BUILDFONT System is itself an application program which uses

special fonts: It allows the user to create new ones or to change existing ones.

81

wW WV VJ' UJ L

BVILDFONT creates a special font by establishing the font table and the raster

array and then by depositing new data into them. The user controls the flow of

this data interactively. BUILDFONT edits a font by reading the appropriate font

file into the raster array and the font table, and then interactively replacing

original data with the desired updates. The BUILDFONT System can be

evaluated for its functionality and user-friendliness by the number, convenience

and efficiency of the operations it provides in accessing the font management data

structures. As these data structures are modified, the BUILDFONT System

provides feedback by loading the raster array into font memory (via the

defrasterfont function) and displaying the updated font symbols to the user in the

ianiner of any other IRIS System application.

B. CHANGING THE FONT MANAGEMENT DATA STRUCTURES

Conceptually. each font symbol used by the IRIS System is defined by its

bitmap, a two-dimensional array of pixels. The rectangular perimeter

surrounding the bitmap is known as the symbol's bounding boz. In the IRIS

System. symbols are displayed by specifying a reference location (in 2-space)

called the current character position. The bounding box containing the symbol is

then placed in the frame buffer at a location relative to the current character

position. The status of pixels contained in the bounding box is determined by the

data stored in the raster array. The relative position of the bounding box (with

respe'ct to the current character position) is determined by the font table

62

s%
-

parameters. Figure 5.1 shows how the information stored in the font management

data structures is interpreted.

1. Changes to the Raster Array

A modification, addition or deletion to the data in the raster array

results in a change to the size and shape of a symbol in the font. However, this

action does not affect the symbol's location relative to the current character

position.

2. Changes to the Font Table

Modifications to the parameters stored in the font table result in a

change of the location where the symbol is displayed relative to the IRIS System's

current character position. However, this action has no effect on the size and

shape of the character.

3. Precise Description of the Font Management Data Structures

The data structures we have been discussing are simply convenient,

(IRIS) system-defined abstractions for the blocks of RAM memory where the

BUILDFONT System stores data words defining the font symbols. With the

bitmap data. BUILDFONT needs many consecutive memory locations to store the

data linearly. The bitmaps are broken into 16-bit words (stored conveniently in

the disk font file as unsigned hexadecimal integers). So a one-dimensional array is

the appropriate data structure. It must be large enough to hold all words from all

bitmaps in a font, but it need not be larger than the 16-Kbyte hardware

limitation placed on addressable font memory (an IRIS System design constraint).

63

bounding box

b*itmap
height

cur-ent /y-offset
char-acter

Font Table contents-

offset -724

h - 9

Fram Buferxoff - 0
yoff -- 2
width 9

Raster Array contents

al D~piayStarting at position 724:
7e00, c3,00, 0300,

IRIS 0 300, c300, c3,00,

Figure 5. 1
Interpretation of Data in Font Management Data Structures

64

The font table. on the other hand, requires storage of tabular data

(the parameter line) for each character in the font. Thus, an array of "record-

like" structures is reasonable. 6 The BUILDFONT System is implemented in the

C Programming Language, and therefore we declare the raster array to be an

array of 16K short integers. The font table is an IRIS System array of C

structures [cf. Ref. 19], each containing the following fields (which correspond to a

symbol's parameter line) (see Figure 6.1):

pwa offset -- the first location (index) in the raster array where the stored
bitmap data for this symbol begins. This value is calculated
when a font file is read into RAM memory, and so it does not
appear in the symbol's parameter line in the font file.

Op. w -- the width of the bounding box (bitmap) in pixels.

rr h -- the height of the bounding box in pixels.

vpr xoff the number of pixels that the bounding box is "offset" from the
current character position in the horizontal direction. With
zero x-offset, the left edge of the bounding box is even with the
current character position. Negative x-offset moves the box to
the left; positive x-offset moves the box to the right.

.r yoff -- the number of pixels that the bounding box is "offset" in the
vertical direction. With zero y-offset. the bottom of the
bounding box is even with the current character position, and
the symbol is said to be positioned on the baseline. Negative

16With the current impler.entation of ASCII fonts in the IRIS System, all fonts contain 128
characters (smaller fonts are possible by leaving some symbols undefined, i.e., providing no data
defining them in the font file). In future implementations which may allow fonts to contain an
arbitrarily large number of characters, the font table data structure may require revision (to a
linked list or tree organization for the record items, rather than an array.) This will undoubtedly
depend upon whether search time efficiency or memory space efficiency becomes the dominant
design consideration for future symbol management systems.

65

v-offset moves the bottom of the box a corresponding number
of pixels below the baseline; positive y-offset raises the box
above the baseline.

-ir width -- this value is the skipuidth or x-inerement, the number of pixels
the current character position is moved to the right after a
symbol is placed in the frame buffer. This value determines the
gap that is left between successively printed symbol bitmaps.

With the parameters w and h, the number or data words defining the bitmap can

be calculated. The formula 17 is

number of data words required = (w div 16) + 11 * h

From Figure 5.1, we see that nine consecutive data words (starting at position

"724" in the raster array) store the data defining the symbol "g".

C. ORGANIZATION AND FEATURES OF THE BUILDFONT SYSTEM

The BIILDFONT System is an interactive, menu-driven program

implemented iii the C Programming Language and accessible from the UNIX18

operating system environment of the IRIS-2400 Graphics Workstation. The

B;ILDFONT utility provides three main capabilities relating to font

management:

rr Creating a new font and adding symbols to it.

Fir Editing the symbols of an existing font, including additions and deletions
of whole characters.

17"div" means "integer divide operation" (discard the remainder).

UNIX is a trademark of Bell Laboratories.

a

rw Simply displaying the contents of a font to see what items it contains
(this feature is useful in selecting a font from possible font files to support
a particular application).

Figure 5.2 is a user's view of functional relationships among the

components of the BUILDFONT System. The blocks in the figure are similar in

appearance to the actual screen layouts used in the BUILDFONT System. An

overview of system operation is presented in the next sections.

An attempt has been made to modularize the functions of the

BUILDFONT System and organize the programming modules hierarchically.

Thus, the capabilities listed above are accessed through the "Main Menu Level."

Once the user reaches this level, he is presented with choices which lead him into

the desired area of the system.

1. Creating a New Font

To proceed from the Main Menu Level into one of the functional

areas (i.e.. "CREATE." "EDIT," or "DISPLAY." but not "HELP" or "EXIT"),

the user is prompted to supply a name for the font file on which he intends to

work. For editing or displaying an existing font, BUILDFONT uses the name

supplied to search for a font file in the user's directory. For creating a new font,

BUILDFONT expects a new file name. Once this is received, the font

management data structures are initialized to receive the new font-defining data.

67

a 4- 4 0

L 0 0.-
L 0

SE

' a
L C

.9.

4

.,,U

E 0 0
CL L. P6

LL A 0

r~u

0

E 434

68

Initialization consists of clearing the raster array and the font table, and

establishing some parameter settings through communication with the user:

w font maximum height -- the user is asked to select a value for the
greatest height of any bitmap in the font.
This is the first entry placed in a font file

(see Figure 4.5).19 The maximum height is
set only at initialization of the font
creation process.

w bitmap height and width once the maximum height is recorded, the
user is asked to provide an average bitmap
height, with which each of the bitmaps in
the font will be initialized. The same
values are used for the average bitmap
width, so that the user is given a square
grid (representing an empty bitmap) to
work with in forming the new symbol.
The height and width of the grid can be
any value desired as long as they do not
exceed the maximum height of the font.

wr default values -- the user may elect to use the system
default values for maximum height and
average height. 20

Once the initial parameters have been set, the program moves into

the "FONT EDIT" module, where interactive editing of the bitmap is performed.

In creating a new font, the program allows the user to move into and out of the

19With an operational font, the physical interpretation of the maximum height value is the
vertical distance skipped between lines of text. For example, in graphics programming on the IRIS
System, the maximum height value would be used in calls to the emov function to decrement the
vertical coordinate of the current character position down the screen (page) in applications such as
a word processor (e.g., "cmov2i(x, y - maxheight)").

20Default values for the current version of the BUILDFONT System are listed in system
documentation, available at the Naval Postgraduate School's Graphics and Video Laboratory.

69

-4,-

-a _%l WW W b U I U

bitmap editing environment until a maximum of 128 symbols have been created

(capacity of an ASCII font).

2. Operation of the Bitmap Editor (FONT EDIT)

The FONT EDIT module allows interactive setting and unsetting of

bitmap pixels by means of signals from a "mouse" input device. In the screen

view presented to the user, an editing area is set up, and an enlarged

representation of the bitmap being edited is displayed within the editing area.

Large squares represent each pixel in the bitmap. As these squares are set "on" or

"off" during an editing session, an actual-size view of the symbol (displayed at the

upper right side of the editing area) is updated instantaneously to reflect each

change made.

When an editing session for one symbol is complete, the user has the

option to save his work by commanding BUILDFONT to put the new form of the

symbol into the font management data structures, or he may discard the results of

the editing session (in which case the previous form of the symbol remains stored

in the data structures). The FONT EDIT module is called upon both when a

new font is being created and when an existing font is being revised (edited).

3. Editing a Font

BUILDFONT provides the means to change the data contained in

an existing font file. This is the "EDIT" option of the Main Menu Level. Once

BIUILDFONT receives the name of the font file, the font is read into font memory

70

ou "

, 7. , 4 w

and all of its symbols are displayed as part of the "CHAR SELECT" module. At

the same time, menu options are offered to perform the following editing tasks:

r1, EDIT the FONT EDIT module (described above) is called to edit
the bitmaps of the selected symbol. If the selected symbol is
undefined, the choice of this option is equivalent to adding a
new character to the font.

p DELETE the selected character is simply removed from the font (i.e.,
its raster array and font table entries are erased), and its
status in the CHAR SELECT display is changed to
"undefined."

o PARMS -- with selection of this option, BITILDFONT calls upon a
parameter editing sub-module which allows the user to
adjust the "x-offset," "y-offset," and "skipwidth" of the
selected symbol.

4. Displaying a Font

The "FONT DISPLAY" module is selected by the Main Menu Level

option "DISPLAY." Within this environment, the user gets a view of all symbols

in the font. The format of the display is similar to that of the CHAR SELECT

module. however, no editing options are offered within the FONT DISPLAY

module. FONT DISPLAY simply provides a way to get into and out of font files

quickly. A user with a large number of font files stored on disk may find this

feature useful in searching for one particular font or symbol.

5. The HELP Module

The BUILDFONT "HELP" feature can be accessed directly from

most locations in other BUILDFONT modules. When HELP is needed, the user

is presented with a "Help Menu" listing a number of HELP topics. On-line

71

w.FC1% NR'Ut"
I - , -- I

explanations are printed out on the screen each time a topic is selected. The user

has access to all of the HELP topics and explanations regardless of his current

location within the BUILDFONT System.

D. EVALUATION OF THE BUILDFONT SYSTEM

Above. we stated that the BUILDFONT System can be evaluated for its

functionality and user-friendliness by the number, convenience and efficiency of

the operations it provides in accessing the font management data structures. To

some extent this "functionality evaluation" is subjective: the determination of
what constitutes "convenience" and "user-friendliness," on a conceptual level, is

somewhat subject to individual preference. On the other hand, the number of

operations incorporated into BUILDFONT and the system's run-time efficiency

can be evaluated objectively, although we do so only descriptively in this study

(using adjectives like "many," "few," "fast," "slow." etc.). In time, operating

experience with the BUILDFONT System will produce both performance data,

and hopefully, system improvements.

1. Font Editor Features and Operations

To put the BUILDFONT System's functionality into perspective,
the user must imagine all the possible capabilities that can properly fall within

the purview of a font editing utility and then judge the extent to which this

particular font editor incorporates them. Based upon discussion presented earlier

72

in this study. from which we determined need for a font editor as a software

development tool, the following listing of capabilities has been compiled:

MAJOR FUNCTIONS

o Create a font from scratch -- CREATE

ev See what an existing font looks like -- DISPLAY

* Add new items to a font or delete existing items from a font -- ADD,
DELETE

o, Do "fine" editing on existing items in the font -- EDIT

r Change the order of items in a font, i.e.. "scramble" the font items with
respect to their correspondence characters -- SCRAMBLE

w, Adjust parameters associated with a font table: maximum height. specific
height, specific width, x-offset, y-offset, skipwidth -- PARM EDIT

ww Merge two fonts, or pick items from one font and put them into another
font -- MERGE. PICK

SUPPORT FUNCTIONS

r Manage support files: 1. Locate or set up new font files -- SEARCH

2. Protect work in progress -- STORE

m Provide editing modes: 1. Pixel by pixel -- POINT

2. Continuous -- CONSTANT

3. Line rasterization -- LINE

4. Whole components -- BLOCK

w Provide explanations and "Help" -- HELP

73

Z %

The reader is invited to augment this list with capabilities inadvertently omitted

by the author.

Tables 5.1 and 5.2 present a comparison of the current

BUILDFONT implementation features with the capabilities listed above. Of the

TABLE 5.1--SUMMARY
FONT EDITOR MAJOR FUNCTIONS

Capability BUILDFONT Feature?

CREATE Yes
DISPLAY Yes
ADD Yes
DELETE Yes
EDIT Yes
SCRAMBLE No
PARM EDIT Some
MERGE No
PICK No

nine major functions listed in Table 5.1, BUILDFONT incorporates the first five

fairly comprehensively. Three of the major functions (SCRAMBLE, MERGE and

PICK) have been omitted from the BUILDFONT System entirely. These were

found by the author to be very challenging programming tasks which would have

added unacceptable complexity to the BUILDFONT program. and their

usefulness (if they had been incorporated) is in doubt. Nevertheless. future user

experience may justify an effort to implement these functions into an improved

version of the BUILDFONT System, and therefore they are listed here for

completeness. The remaining capability, "PARM EDIT," is not fully

incorporated into the current version of BUILDFONT. Initial setting of

74

IfV

maximum height. average height. ateragt width. and interactive revision of z-

offset, y-offset, and skipwidth are presently supported (as described earlier in this

chapter). What BUILDFONT lacks in this area, however, is a capability to

change the initial setting of maximum height. In addition, the bitmap height and

width of an individual symbol may be increased up to only four pixels per call to

the bitmap editor (FONT EDIT). For example, to thicken the top of the symbol

"" in figure 5.1 by nine pixels. the user would have to select "g" and go into the

FONT EDIT environment three times (adding 4, 4, and 1 pixels, respectively).

This is a bit clumsy, and so this area should receive the initial attention when

program revisions are considered.

TABLE 5.2--SUMMARY
FONT EDITOR SUPPORT FUNCTIONS

Capability BUILDFONT Feature?

SEARCH Yes
STORE Yes
POINT Yes
CONSTANT Yes
LINE No
BLOCK No
HELP Yes

Of the support functions listed in Table 5.2, SEARCH, STORE, and

HELP are considered adequate, as are the POINT and CONSTANT bitmap

editing modes. The LINE and BLOCK modes, presently not implemented, would

add considerable convenience to the FONT EDIT module. The idea behind the

BLOCK editing mode is to have a file of pre-existing symbol components from

75

which items can be selected and "dropped" into a bitmap in the BUILDFONT

editing area to form a new, more complex symbol (built up from components).

This editing mode is particularly suited for rapidly creating a large symbol set

containing complex characters, such as the character set for written Chinese.

Thus, attention to improving the BITILDFONT System's editing modes is another

priority item to be included in plans to upgrade the system.

2. Run-time Considerations

The BUILDFONT System's run-time performance has generally

been adequate. However. in the present implementation, the program requests

large amounts of RAM memory. and editing large bitmaps (30x30 pixels and

larger) tends to affect editing speeds quite adversely. For example, editing a

40x40 bitmap causes the creation of 1600 graphics objects and a like number of

editing "tags" tcf. Ref. 18: chap. 8). All 1600 objects must be displayed

instantaneously after each change made in the editing area. The complexity of

this procedure with respect to time and space is of the order of 0(n 2), and the

dropoff in performance with large bitmaps is noticeable to the user.

The main purpose of the present implementation of the

BUILDFONT System is to demonstrate the capabilities that have been

incorporated into the program, and various excessive run-time overhead costs

have yet to be eliminated. One of the major overhead costs is the present menu

system, developed in the Naval Postgraduate School's Graphics and Video

76

Laboratory. 2 1 Since memory costs for BUILDFONT are already high, the system

can benefit from the design and implementation of a less general, tailor-made

menu system.

Overall, the BUILDFONT System addresses a need which has gone

unsatisfied heretofore on the IRIS-2400 Graphics Workstation, and positive user

experience is expected, at least in the near term.

E. IMPLEMENTATION DETAILS

The BUILDFONT System implementation is comprised of 29 program

files. 6 support files, and a total of over 10,000 lines of "C" code. Liberal

commentary is interspersed throughout the source code, and format and naming

conventions of the code generally adhere to the style used in example programs

from graphics courses taught at the Naval Postgraduate School. These

characteristics were intentionally incorporated into the program to enhance

familiarity and readability, and to encourage borrowing from and follow-on

improvements to the BUILDFONT System. References 19 and 20 were regularly

consulted during preparation of the program code. The source code and

documentation for the current version of the BUILDFONT System is retained in

the Naval Postgraduate School Graphics and Video Laboratory (with public

domain access).

21The general menu file is called men,.flle.c, written by M. Gaddis in 1984.

77

I

VI. CONCLUSIONS AND RECOMMENDATIONS

This study has presented a discussion of the characteristics of symbol

manipulation systems. These systems, whether sophisticated or rudimentary, are

a fundamental component of every computing installation. We have touched

upon application areas where the present generation of symbol manipulation

systems suffers from inherent limitations, and we have suggested a need to remove

these limitations by increasing the generality of present systems. We have

determined that symbol manipulation systems seem to be limited more by their

design approach than by any underlying technological or hardware constraints.

In this observation there is hope that more general symbol manipulation systems

can be brought about by demonstrating more creativity and sophistication in the

development of symbol manipulation-oriented applications, rather than by

waiting for technological breakthroughs alone.

Concurrent with background research into symbol manipulation systems,

the BVILDFONT Font Creation and Editing System has been developed as a tool

to assist future efforts in this area. The purpose of the BUILDFONT System is to

support IRIS System applications requiring customized symbol fonts by easing the

task of creating and editing these fonts.

78

S*~ *'.* ***~h*

This study has brought together source materials from s veral important

areas: linguistics, word processing. and computer graphics. and the present report

has attempted to emphasize a descriptive approach to the subject matter, without

detailed investigation in any one area. It is felt that such an approach will be of

greater benefit to future researchers in this area than an isolated study concerned

with narrower subject matter. Obviously, much work in the area of improving

symbol management systems remains to be done. Some immediate follow-on

topics come to nmind:

* In computer graphics, the following architectural/design issues need to be

addressed:

r.' Augmenting font operations in "leading-edge" graphics systems, to bring
font manipulation techniques up to the level of overall system
sophistication.

rr Increasing font memory capacity to accommodate more symbols.

In the area of software development, the following tasks remain to be addressed:

r~Implementing the Ideal Word Processor concept discussed in Chapters 3
and 4.

Kv Creating additional software support tools like the BUILDFONT System
to facilitate font management research.

79

Improved versions of the BUILDFONT System will result from the following:

VV Development of more convenient operations to revise the font table
parameters (bitmap height and width, and font maximum height.)

p3a Implementation of the LINE and BLOCK editing modes described in
Chapter 5.

par Improving run-time performance by eliminating inefficiencies present in
the current (prototype) version.

a,

a.so

'47

a -. ¢.2z...... d. .. . g ¢¢ ;. ; .,.- ,:, * e,% -€€ % " €.''

APPENDIX A - G;LOSSARY OF TERMS

The topics presented in this study are drawn from several fields: computer

graphics, word processing, linguistics, and Asian area studies. This glossary of

terms and abbreviations has been compiled to assist the reader who may be

unfamiliar with the technical vocabulary of some of these subject areas. In cases

where an explanation or definition is quoted directly from reference materials, the

source is cited. Where foreign words are defined, the English translation appears

in the explanation first (in quotation marks), followed by the language from

which the term is taken (in parentheses), followed by the definition. Italicized

words appearing in any of the definitions and explanations have their own entries

in this glossary.

81

THE GLOSSARY

agglutinative languages

Languages which synthesize or bind together strings of morpheme's to form
grammatical structures. These structures are the "units" of the language,
although in terms of complexity, they are larger than word-u nits (but they are
less than the size of a full sentence). Japanese is an agglutinative language.
The difference between an agglutinative language and an "inflectional
language" (e.g., Latin) is that the morphemes retain their integrity of meaning
in an agglutinative language, and they do not fuse into variant forms even
though they are bound together. (see also typological cla8sification)

analytic languages

Languages of the "isolating" type (see typological classification), which have
the characteristic that all words tend to be simple roots. and the grammatical
category of a word is determined primarily by its position in a phrase or
sentence structure. Classical Chinese is a nearly perfect example of this type,
while modern Chinese dialects and English fall within this category even
though they permit many forms synthesized from more than one root
morpheme.

ASCII

"American Standard Code for Information Interchange." One of two standard
symbol coding conventions commonly used in computing and communication
systems of the United States and Western Europe (the other is EBCDIC). It
provides codes for up to 128 symbols and control signals. Reference 20
(Appendix 11) includes a table of correspondences between the
symbols/control signals and the numerical codes.

bitmap

A two-dimensional array of computer data words which can be mapped
electronically onto the display.

82

Bopomofo

A popular abbreviation for "Chinese National Phonetic System" (bo, po, mo,
and fo are sounds corresponding to the first four symbols iii the set of phonetic
symbols).

bunsetsu

(An untranslatable term from Japanese linguistics.) Bun.etsu are the
independent units from which sentences are formed in Japanese--roughly
analogous to "phrases" in English. (see also agglutinative languages)

CCCII

"Chinese Character Code for Information Interchange." One of three standard
symbol coding conventions used in Chinese (ROC) word processing and
communication applications. (see also Chinese Standard Cable Code, GB
2312-80)

Chinese National Phonetic System

A set of 37 phonetic symbols u-vd to transcribe spoken Chinese (Standard
Mandarin dialect) into written form. Each symbol corresponds to a
combination of one or more phonemes (most of the symbols represent a unit of
sound which is shorter than a syllable; i.e., syllables are expressed with one to
three symbols). Chinese call the National Phonetic System zhuyin-fuhao,
zhuyin-zimu, or bopomofo.

Chinese Standard Cable Code

One of three standard symbol coding conventions used in Chinese (PRC) word
processing and communication applications, particularly telegraphy. The
character set supported by this convention contains 8085 symbols. (See also
CCCII, GB 2312-80)

EBCDIC

"Extended Binary-Coded Decimal Interchange Code." One of two standard
symbol coding conventions used in computing and communication systems of
the United States and Western Europe (see ASCII). It provides codes for up

83

Aft

to 256 symbols and control signals (although only about 194 codes are actually
used). EBCDIC is commonly used with equipment manufactured by IBM.
Reference 21 (Appendix B) provides a table of correspondences between the
symbols/control signals and the numerical codes.

firmware

Non-hardware features of a computer installation which are permanently
stored and protected (in ROM memory). The IRIS System default font is an
example of firmware.

font

A set of characters in a particular style. [Ref. 18: Glossary, p. 4]

font memory

A reserved and protected hardware computer memory set aside to contain
character data which can be mapped directly into the frame buffer of a raster
refresh graphics system.

font table

A program data structure (often system-defined) used to store parameters
describing the symbols of a font.

frame buffer

A specialized memory containing all pixels and pixel attributes in a raster
refresh graphics system. This array of pixels is mapped directly to
corresponding points on the display surface.

GB 2312-80

Designation for "Information Exchange for Chinese Character Codes (Basic
Volume)." One of three standard symbol coding conventions used in Chinese
(PRC) word processing and communication applications. The character set
supported by this convention contains 6763 symbols. (See also CCCII,
Chinese Standard Cable Code)

84

, -*...-. - ' ' " " - , , , ., ...'" - " "- " --- ' - " le"

WNW] -ul - ~ -~ ~ 7 ~ N- r r " -07 77r- * Vr. .~, ~ - 7 -W-AJ

hangul

The phonetic transcription system by which the Korean language is written.

Hanyu-pinyin

"Chinese spelling" (Chinese). A system of romanization for Standard
(Mandarin) Chinese. This is the official system of the Chinese government
(PRC). All Chinese words appearing in this study have been transcribed
according to this system.

hanzi

"Chinese characters" (Chinese). (see also kanji)

hiragana

A syllabary containing 53 symbols used for transcribing spoken Japanese into
dwritten language. Hiragana have a cursive (handwritten) appearance.

homophone

A syllable or word which is pronounced identically to another syllable or word
in the same language (even though the meanings are different). For example,
in English. "ball" (the round thing) and "ball" (where Cinderella lost her
slipper) are homophones.

homophone resolution problem

The problem of deciding which word or syllable is meant when a speaker or
writer uses a homophone.

input problem

The problem of converting input symbols into a consistent internal
representation in a computer system.

85

-Z

JIS C 6226

Designation for "Code of the Japanese Graphic Character Set for Information
Interchange." The standard symbol coding convention used in Japanese
communication and word processing applications.

kana

Sets of phonetic symbols used to transcribe spoken Japanese language into
written form. These symbol sets are syllabaries. (see also hiragana, katakana)

kanji

"Chinese characters" (Japanese). (see also hanzi)

katakana

A syllabary containing 53 symbols used for transcribing spoken Japanese,
particularly emphasized words or foreign loan words and names (except those
borrowed from Chinese). Katakana have an angular (printed) appearance.

morpheme

The smallest subdivision of language which carries meaning. A morpheme is
not necessarily an independent unit (except in "isolating" languages). For
example. in the word flyer, the morpheme fly is independent (i.e., a "word"),
but the morpheme -er is not (it is a "bound form"). lRef. 1: p.51]

output problem

The problem of converting the internal representation of information within a
computer into symbols that are meaningful in the external (user's)
environment.

PR(

"Peoples Republic of China." Formal name for the political entity controlling
Chinese territory on the Asian mainland.

86

phoneme

An element from the set of sounds ("phonemic system") utilized by a spoken
language. More formally, a phoneme is "one of an exhaustive list of
systematized classes of phonetically related sounds in a language, such that
every form in the language can be given as a (usually serially ordered) set of
one or more of these classes." [Ref. 1: p. 37]

pixel

"Picture element," or individual data item from which a graphics object is
formed in a raster refresh graphics system. Pixels are in one-to-one
correspondence with points on the display screen.

Qwerty keyboard

The arrangement of keys found on a standard Roman-character typewriter.
This arrangement was developed in the early 1900's and takes its name from
the first six keys on the left side of the uppermost row of alphabetic keys.

ROC

"Republic of China." Formal name for the political entity controlling the
island of Taiwan.

romaji

"Roman characters" (Japanese). The Japanese term for romanization. All
Japanese words appearing in this study have been transcribed by the Hepburn
System of romaji. (see also romanization)

romanization

A method of phonetic transcription of oriental languages whereby the sounds
of the spoken language are represented by combinations of letters from the
Roman alphabet. Some important and/or historically significant systems of
romanization are: Hanyu-pinyin, the Wade-Giles System, the Yale System,
and the National Romanization System (also called the Chao System) -- for
Chinese; the Hepburn System -- for Japanese.

87

* - '*...4 4 b W ,. -~. . S ~ S '. 5 .Ct i

Sino-Japanese language

The set of Chinese words which have been borrowed and assimilated into
Japanese. The Japanese pronunciation of these words (called the "On"-
reading) requires a special phonemic system which augments the natural
phonemics of Japanese.

syllabary

A set of phonetic transcription symbols with each element of the set
representing the sound of a complete c-'llable in the language being
transcribed.

synthetic languages

Languages of the "inflectional," agglutinative, or "polysynthetic" type (see
typological languages). These languages "synthesize" the grammatical forms
and independent units of the language by combining root morphemes.

TCCM

The "Three-Corner Coding Method." A non-phonetic numerical coding
method used to convert Chinese characters into internal codes in a word
processing system. The codes are based on selecting three "corners"
(significant components) contained in an individual Chinese character from a
set of 300 fundamental symbols. Each of the fundamental symbols has a two-
digit code, so a complete code for one Chinese character is six digits long.

typological classification

A method of comparing and classifying languages according to their types of
structure (regardless of whether or not they are genetically related). The best
known system utilizing this method classifies languages into the following
types: (a) isolating (or analytic), (b) inflectional, (c) agglutinative, and (d)
polysynthetic. [Ref. 1. pp. 87-89]

Wabun keyboard

A tablet comprised of several thousand keys used with Chinese and Japanese
language typewriters. The Wabun keyboard was invented in Japan in 1913.

88

Word processing problem

The input problem, the output problem, and the problem of how to make a
computer system manipulate signal codes internally to perform word
processing.

word-unit languages

Languages in which the smallest form that can be used independently (i.e., not
necessarily in combination with other forms) is the "word." For example,
Classical Chinese is a morpheme-unit language; English is a word-unit
language; Japanese is a bunrstou-unit language.

zhuyin-fuhao

"Phonetic symbols" (Chinese). (see Chinese National Phonetic System)

zhuyin-zimu

"Phonetic symbols" (Chinese). (see Chinese National Phonetic System)

89

* - b~ * ~ . P * ** ~ * % J -'.*'*~ ' .~t*% SID

* L*.

APPENDIXB - IRIS2400 SYSTEM CHARACTERISTICS

A. SYSTEM DESCRIPTION

The Graphics and Video Laboratory of the Naval Postgraduate School

Computer Science Department is equipped with two IRIS-2400 series Graphics

Workstations. manufactured by Silicon Graphics, Inc. One of these workstations

is an upgraded IRIS Turbo 2400. The BUILDFONT Font Creation and Editing

System software is hosted on both of these IRIS-2400 configurations.

The IRIS System incorporates custom-built VLSI circuits into its design,

providing special-purpose hardware processing elements to perform many

computer graphics functions which are done by less efficient software in

conventional workstations. As a result of its innovative architecture, the IRIS

System offers high processing speeds and increased performance reliability in the

execution of computer graphics applications programs. The IRIS System

combines real-time color graphics with UNIX operating system utilities and

ethernet network communication. In addition, the System has a high resolution

color monitor which provides extremely sharp. well-defined displays capable of

supporting the requirements of very demanding graphics applications.

The IRIS System includes a Graphics Library of utility programs and

subroatines. creating a user-friendly interface between the programmer and the

sophisticated hardware features, such that graphics objects can be handled as

go

geometrical abstractions (points. lines. polygons. etc.). rather than formless

collections of pixels. The System also manages multiple coordinate systems,

allowing users to define objects within the "world space" of their applications.

IRIS Graphics Library subroutines used in the BUILDFONT System can be

grouped into the following categories (a complete explanation of command usage

is contained in Reference 18):

Vv Global state commands initialize the hardware and control global state
variables.

Cv Primitive drawing commands draw points, lines, polygons, circles, arcs,
and text strings into graphics objects that can be drawn on the screen.

lar Coordinate transformation commands perform manipulations on
coordinate systems, including mapping user-defined coordinate systems to
screen coordinate systems.

p3 Input/output commands initialize and read input/output devices.

6aF Object creation and editing commands provide the means to create
hierarchical structures of graphics commands.

r, "Picking and selecting" commands identify the commands that draw to a
specified area of the screen.

B. IRIS SYSTEM SPECIFICATIONS AND FEATURES

The IRIS-2400 series Graphics Workstations in the Naval Postgraduate

School Computer Science Department Graphics and Video Laboratory are

configured as follows:

91

i

1. IRIS-1

* IRIS-2400 Graphics Workstation

* 32-bit Motorola 68010 Processor

* 4MB CPU Memory

* 1024 x 768 x 8 bit display memory

* Floating Point Accelerator
144MB Disk Storage
Cartridge Tape Unit

* Geometry Pipeline with Geometry Engines and Geometry Accelerators

* 30-Hz Interlaced Display

* Hardware Smooth Shading

* UNIX System V

e IRIS Graphics Library

0 Ethernet to VAX installations

2. IRIS-2

0 IRIS Turbo 2400 Graphics Workstation

. 32-bit Motorola 68020 Processor

* 2MB CPU Memory

* 1024 x 768 x 32 bit display memory

* Floating Point Accelerator

* 144MB Disk Storage

* Cartridge Tape Unit

* Geometry Pipeline with Geometry Engines and Geometry Accelerators

" 60-Hz Non-Interlaced Display

* Hardware Smooth Shading

* UNIX System V

• IRIS Graphics Library

* Ethernet to VAX installations

* 16-bit Z-buffer for Hidden Surface Elimination

* Digitizer Tablet

92

LW "v ' *- **

LIST OF REFERENCES

1. Chao, Y. R., Language and Symbollie Systems, Cambridge University Press,
1968.

2. Huang, J. K., "The Input and Output of Chinese and Japanese Characters,"
Computer, v. 18, January 1985.

3. Becker, J. D., "Typing Chinese, Japanese, and Korean," Computer, v. 18,
January 1985.

4. Kennedy, G. A., ZH Guide -- An Introduction to Sinology, Far Eastern
Publications, Yale University, 1953.

5. Matsuda. R., "Processing Information in Japanese," Computer, v. 18,
January 1985.

6. A Guide to Reading and Writing Japanese, 2nd ed., edited by F. Sakade,
and others, Charles E. Tuttle Company, 1961.

7. Kim. C. H. and Ko, S. W., Implementation of Korean and Chinese
Character s through Computer, M. S. Thesis, Naval Postgraduate School,
Monterey, California, September 1984.

8. Lee, J. H.. A System for Korean Character Usage on a Graphics Laser
Printer, M. S. Thesis, Naval Postgraduate School. Monterey, California,
June 1986.

9. Bond. N. A.. Jr., "Yamada's Remarkable Keyboard." ONRFE Scientific
Bulletin, v. 10(1), January - March 1985.

10. Morita, M., "Japanese Text Input System." Computer. v. 18, May 1985.

11. Sheng, J., "A Pinyin Keyboard for Inputting Chinese Characters,"
Computer. v. 18, January 1985.

93

p * - -.. ~!

12. Makino. H.. "Beta: An Automatic Kana-Kanji Translation System."
Computer. v. 18, January 1985.

13. Tien. H. C., "The Pinxxiee Chinese Word Processor," Computer, v. 18.
January 1985.

14. Yajima, S., Goodsell, J. L., Ichida, T. and Hiraishi, H., "Data Compression
of Kanji Character Patterns Digitized on the Hexagonal Mesh," IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. PAMI-3(2),
March 1981, pp. 222-229.

15. Naval Postgraduate School Report NPS52-85-012, Workstation Graphics
Capabilities for the 1990's and Beyond, by M. J. Zyda, September 1985.

16. Rogers. D. F.. Procedural Elements for Computer Graphics, McGraw-Hill
Book Company. 1985.

17. Clark. J. H. and Davis, T., "Workstation Unites Real-time Graphics with
Unix, Ethernet." Electronics, October 20, 1983.

18. Iris User's Guide, version 2.1, Silicon Graphics, Inc., 1985.

19. Kernighan. B. W. and Ritchie. D. M., The C Programming Language,
Prentice-Hall, Inc., 1978.

20. Bourne, S. R.. The UNIX System, Addison-Wesley Publishing Company.
1983.

21. Flores. I., Word Processing Handbook, Van Nostrand Reinhold Company,
1983.

94

AD-017O 614 NON-ROIUII FONT GENERATION VIA INTERACTIVE CONPUTER V2
ORAPHICS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
J C ARTERO ET AL. JUL 66 MPS2-96-019

UNCLASSIFIED F/O 9/2 ML

Jfhi ll *

Ei1. .

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.~ *f%'~&

BIBLIOGRAPHY

Bond, N. A., Jr., "Automatic Recognition of Handprinted Chinese-Japanese
Kanji: The Last Frontier of Chinese Character Recognition?," ONRFE Scientific
Bulletin, v. 9(3), July -September 1984.

Cui, W., "Evaluation of Chinese Character Keyboards," Computer, v. 18, January
1985.

Foley, J. D. and Van Dam, A., Fundamental* of Interactive Computer Graphics,
Addison-Wesley Publishing Company. 1982.

Friedman, N. K., "Japanese Word Processing: Interfacing with the Inscrutable,"
Abacus, v. 3(2). Winter 1986.

Mathew's Chinese-English Dictionary, Revised American Ed., Harvard University
Press, 1971.

Nelson, A. N., Japanese-English Character Dictionary, 2nd ed., Charles E. Tuttle
Company, 1966.

9,

Distribution List

Defense Technical Information Center,
Cameron Station,
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School,
Monterey, CA 93943 2 copies

Center for Naval Analyses,
2000 N. Beauregard Street,
Alexandria, VA 22311

Director of Research Administration,
Code 012,
Naval Postgraduate School,
Monterey. CA 93943

Dr. Henry Fuchs.
208 New West Hall (035A),
University of North Carolina,
Chapel Hill, NC 27514

Dr. Kent R. Wilson.
University of California. San Diego
B-014.
Dept. of Chemistry.
La Jolla. CA 92093

Dr. Guy L. Tribble, III
Next. Inc.
3475 Deer Creek Road,
Palo Alto, California 94304

Bill Atkinson.
Apple Computer,
20525 Mariani Ave,
Cupertino, CA 95014

Dr. Victor Lesser,
University of Massachusetts. Amherst
Dept. of Computer and Information Science,
Amherst, MA 01003

Dr. Gunther Schrack,
Dept. of Electrical Engineering,
University of British Columbia,
Vancouver, B.C., Canada V6T IW5

t9

-2.

Dr. R. Daniel Bergeron.
Dept. of Computer Science.
University of New Hampshire,
Durham, NH 03824

Dr. Ed Wegman,
Division Head,
Mathematical Sciences Division,
Office of Naval Research,
800 N. Quincy Street,
Arlington, VA 22217-5000

Dr. Gregory B. Smith,
ATT Information Systems,
190 River Road,
Summit. NJ 07901

Dr. Lynn Conway,
University of Michigan,
263 Chrysler Center,
Ann Arbor. MI 48109

Dr. John Lowrance,
SRI International,
333 Ravenswood Ave,
Menlo Park. CA 94025

Dr. David Mizell,
Office of Naval Research,
1030 E. Green St.
Pasadena, CA 91106

Dr. Richard Lau.
Office of Naval Research,
Code 411.
800 N. Quincy St.
Arlington. VA 22217-5000

Dr. Y.S. Wu.
Naval Research Laboratory.
Code 7007.
Washington. D.C. 20375

Dr. Joel Trimble.
Office of Naval Research,
Code 251,
Arlington. VA 22217-5000

Robert A. Ellis.
Calma Company,
R & D Engineering,
525 Sycamore Dr., M/S CS1O
Milpitas. CA 95035-7489

S
,-," =- , 7- 'b .. a -

.3.

Dr. James H. Clark,
Silicon Graphics, Inc.
2011 Stierlin Road,
Mountain View. CA 94043

Edward R. McCracken,
Silicon Graphics, Inc.
2011 Stierlin Road,
Mountain View, CA 94043

Shinji Tomita,
Dept. of Information Science,
Kyoto University,
Sakyo-ku, Kyoto, 606, Japan

Hiroshi Hagiwara,Dept. of Information Science,

Kyoto University.

Sakyo-ku, Kyoto, 606, Japan

Dr. Alain Fournier,
Dept. of Computer Science,
University of Toronto.
Toronto. Ontario. Canada
M5S IA4

Dr. Andries Van Dam,
Dept. of Computer Science,
Brown University.
Providence, RI 02912

Dr. Brian A. Barsky,
Berkeley Computer Graphics Laboratory,
Computer Sciences Division,
Dept. of Electrical Engineering and Computer Sciences,
University of California,
Berkeley. CA 94720

Dr. Ivan E. Sutherland.
Carnegie Mellon University,
Pittsburg. PA 15213

Dr. Turner Whitted.
New West Hall (035A).
University of North Carolina,
Chapel Hill. NC 27514

Dr. Robert B. Grafton,
Office of Naval Research,
Code 433,
Arlington, Virginia 22217-5000

Aa -410#

.4

Professor Eihachiro Nakamae.
Electric Machinery Laboratory,
Hiroshima University.
Higashihiroshima 724. Japan

Carl Machover,
Machover Associates,
199 Main Street,
White Plains. New York 10601

Dr. Buddy Dean,
Naval Postgraduate School,
Code 52, Dept. of Computer Science,
Monterey. California 93943

Earl Billingsley,
43 Fort Hill Terrace,
Northhampton. MA 01060

Dr. Jan Cunv.
University of Massachusetts. Amherst
Dept. of Computer and Information Science,
Amherst. MA 01003

Robert Lur.
Silicon Graphics. Inc.
2011 Stierlin Road,
Mountain View. CA 94043

Jeff Hausch.
Silicon Graphics. Inc.
2011 Stierlin Road,
Mountain View. CA 94043

Robert A. Walker,
7657 Northern Oaks Court,
Springfield. VA 22153

Dr Barry L. Kalman,
Washington University.
Department of Computer Science,
Box 1045.
St Louis. Missouri 63130

Dr. "Wi. Randolph Franklin.
Electrical. Computer. and Systems Engineering Department,
Rensselaer Polytechnic Institute,
Troy. New York 12180-3590

Dr. Gershon Kedem,
Microelectronics Center of North Carolina,
PO Box 12889,
3021 Cornwallis Road,
Research Triangle Park,
North Carolina 27709

Dr. Branko J. Gerovac,
Digital Equipment Corporation,
150 Locke Drive LM04/H4, Box 1015
Marlboro, Massachusetts 01752-9115

* Robert A. Schumnacker,
Evans and Sutherland,
P0 Box 8700,
580 Arapeen Drive,

* Salt Lake City, Utah 84108

R. A. Daznmkoehler,
Washington University,
Department of Computer Science,
Box 1045,
St. Louis, Missouri 63130

Dr. Lynn Ten Eyck,
Interface Software,
79521 Highway 99N,
Cottage Grove, Oregon 97424

Kazy K. Yokota,
Japan Tech Services Corporation,
3F Ohkura Building,
1-4-10 Shiba-Daiuion,
Minato-Ku. Tokyo 105, Japan

Toshiaki Yoshinaga,
Hitachi Works, Hitachi Ltd.
1-1, Saiwaicho 3 Chome,
Hitachi-shi, Ibaraki-ken,
317 Japan

Takatoshi Kodaira,
Omika Works, Hitachi Ltd.
2-1. Omika-cho 6-chome,
Hitachi-shi, Ibaraki-ken,
319-12 Japan

Atsushi Suzuki,
Hitachi Engineering, Co. Ltd.

* Model Group,
2-1, Saiwai-cho 3-Chome,
Hitachi-shi, Ibaraki-ken,
317 Japan

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~I * i~~*~* .'%. % %.~ %

-

Toshiro Nishimura.
Hitachi Engineering, Co. Ltd.
Model Group,
2-1. Saiwai-cho 3-Chome.
Hitachi-shi, Ibaraki-ken,
317 Japan

Dr. John Staudhammer,
Dept. of Electrical Engineering,
University of Florida,
Gainesville, Florida 32611

Dr. Lewis E. Hitchner,
Computer and Information Science Dept.
237 Applied Science Building.
University of California at Santa Cruz,
Santa Cruz. California 95064

Dr. Jane Wilhelms.
Computer and Information Science Dept.
237 Applied Science Building,
Vi.iversity of California at Santa Cruz,
Santa Cruz. California 95064

Dr. Pat Mantey,
Computer Engineering Department,
University of California at Santa Cruz,
Santa Cruz. California 95064

Dr. Walter A. Burkhardt,
University of California, San Diego
Dept. of Computer Science,
La Jolla. California 92093

P. K. Rustagi,
Silicon Graphics, Inc.
2011 Stierlin Road,
Mountain View, CA 94043

Peter Broadwell,
Silicon Graphics, Inc.
2011 Stiprlin Road,
Mountain View. CA 94043

Norixi Miller.
Silicon Graphics. Inc.
2011 Stierlin Road,
Mountain View, CA 94043

7 .-

Dr. Tosiyasu L. Kunii.
Department of Information Science.
Faculty of Science.
The University of Tokyo.
7-3-1 Hongo, Bunkyo-ku, Tokyo 113,
Japan

Dr. Kazuhiro Fuchi,
Institute for New Generation Computer Technology,
Mita-Kokusai Building 21FL,
1-4-28 Miti. Minato-ku, Tokyo 108, Japan

Tony Loeb,
Silicon Graphics. Inc.
1901 Avenue of the Stars,
Suite 1774,
Los Angeles, CA 90067

Kevin Hannons.
NASA AMES-Dryden Flight Research Facility,
PO Box 273,
Mail Stop OFI.
Edwards, California 93523

Sherman Gee,
Code 221.
Office of Naval Technology.
800 N. Quincy St.
Arlington, VA 22217

Dr. J.A. Adams,
Department of Mechanical Engineering,
US Naval Academy.
Annapolis, MD 21402

Dr. David F. Rogers.
Dept. of Aerospace Engineering,
US Naval Academy.
Annapolis. MD 21402

Dr. Robert F. Franklin.
Environmental Research Institute of Michigan,
PO Box 8618.
Ann Arbor. MI 48107

LT Mark W. Hartong.
900 Cambridge Dr 17.
Benicia. CA 94510

Capt. Mike Gaddis,
DCA/JDSSC/C720,
1860 Wiehle Ave
Reston, VA 22090

Lt. Cd.-. Patrick G. Hogan. USN
102 Borden Avenue.
Wilmington. North Carolina 28403

Dr. Edwin Catmull,
LucasFilm,
P0 Box 2009,
San Rafael. CA 94912

Dr. John Beatty,
Computer Science Department,
University of Waterloo,
Waterloo. Ontario.
Canada N2L 3G;1

Dr. .laines F,)iev.
George Washington University.
Dept. of Electrical Engineering and Computer Science,
Washington. D.C. 20052

* Dr. Donald Greenberg.
C orne~ll VniversitV.
Program of Computer Graphics,
Ithaca. .NY 14853

Dr. David Gries.
Cornell University.
Computer Science Department,
405 Vpson Hall.
Ithaca. NY 14853

Dr. Leo J. (;uibas.
* Sy-,teixis Research Center,

Digital Equipment Corporation.
130 Lytton Avenue,
Palo Alto. CA 94301

Dr. :S. (;anapathy,
* Ultrasonic Imaging Laboratory,

Dept. of Electrical and Computer Engineering,
Uivers~ty of Michigan.
Arin Arbor. MI 48109

* Dr. Hank Christiansen,
Brighamr Young University,
Dept. of C;ivil Engineering,
368 Clyde Bldg.
Provo. U7tah 84602

Dr. Thomas A. DeFanti,
Dept. of Electrical Engineering & Computer Science,
Uniivcrsity of Illinois at Chicago,
Box 4348,'
Chicago. IL 60680

Dr. Lansing Hatfield.
Lawrence Livermore National Laboratory,
7000 East Avenue.
PO Box 5504, L-156.
Livermore, CA 94550

El Wells,
Naval Ocean Systems Center,
Code 443,
San Diego, California 92152

Dr. Al Zied,
Naval Ocean Systems Center,
Code 443.
San Diego, California 92152

Dr. Glen R. Allgaier.
Naval Ocean Systems Center,
Code 9302,
San Diego, California 92152

Richard L. desJardins,
Defense Advanced Research Projects Agency/IPTO,
1400 Wilson Boulevard.
Arlington, VA 22209

Zsuzsa Molnar,
Silicon Graphics, Inc.
2011 Stierlin Road,
Mountain View, CA 94043

Robert Comperini,
NASA ADFRF.
PO Box 273,
Datamax.
Edwards. California 93523

Shokli Tomita.
Hitachi Software Engineering Co., Ltd.
6-81. Onoe-Machi.
Naka-Ku. Yokohama 231, Japan

Tomo Yamada,
Digital Computer Limited,
No. 25 Kowa Building 8-7.
Sanbancho. Chiyoda-Ku.
Tokyo 102. Japan

Tohru Gotoh.
Digital Computer Limited.
No. 25 Kowa Building 8-7.
Sanbancho, Chiyoda-Ku,
Tokyo 102, Japan

........... ~
,...,.i*f *q

Eiji Kurihara.
Digital Computer Limited.
No. 25 Kowa Building 8-7.
Sanhancho, Chiyoda-Ku.
Tokyo 102. Japan

Kouichi Morimura,
Mitsubishi Heavy Industries, Ltd.
CAD/CAM Engineering Section,
Systems Engineering Department,
1-1. 1-chome, Wadasaki-cho,
Hyogo-Ku, Kobe 652, Japan

Takayasu Obata,
Mitsubishi Heavy Industries, Ltd.
CAD/CAM Engineering Section,
Systems Engineering Department,
1-1. 1-chome, Wadasaki-cho,
Hyogo-Ku, Kobe 652, Japan

Dr. Arthur I. Karshmer,
Box 3CRL,
Computing Research Laboratory,
New Mexico State University,
Las Cruces. New Mexico 88003

Kazuhiko Ohmachi,
Systems Development Laboratory,
Hitachi Ltd.,
1099 Ohzenji Asao-ku.
Kawasaki-shi, 215 Japan

John W. Denson,
Computer Aided Engineering Program,
Naval Weapons Center.
Code 3603.
China Lake. California 93555

Paul Mlyniec,
Silicon Graphics. Inc.
2011 Stierlin Road,
Mountain View. CA 94043

Surasak Mungsing.
13/2 Tanintorn Village,
Wipawadeerangsit Rd.
Bangkok 10210 Thailand

Don Rector,
Digital Equipment Corporation,
2525 Augustine Drive
Santa Clara, California 95054

"_,11

M. Creon Levit.
NASA. Ames Research Centc-
Mail Stop: 233-1
Moffett Field, California 94035

Dr. Velvin R. Watson,
NASA, Ames Research Center
Mail Stop: 202A-14
Moffett Field, California 94035

Phyllis F. Flynn.
Trancept Systems, Inc.
521F Uwharrie Ct.
Raleigh, North Carolina 27606-1456

Mr. Zesheng Tang,
Palo Alto Research Center,
XEROX Corporation,
3333 Coyote Hill Road,
Palo Alto, California 94304

Larry Ledden,
Hughes Aircraft,
MS-604D216,
PO Box 3310.
Fullerton, California 92634

Dr. Robert Leighty,
Research Institute (CUDE Bldg),
U.S. Army Engineer Topographic Laboratory,
Fort Belvoir, VA 22060-5546

Dr. Olin Mintzer.
Research Institute (CUDE Bldg),
U.S. Army Engineer Topographic Laboratory,
Fort Belvoir. VA 22060-5546

Mr. Russell Davis,
HQ. USACDEC.
Attention: ATEC-LM,
Fort Ord. California 93941

Capt. Roger K. Diehl,
1105 Richmond Drive,
Stafford. VA 22554

LT Joann M. Ammann,
Naval Security Group Activity,
Skaggs Island.Sonoma, California 95476-5000

, N.'. . 'J , ' '' - .-.-. " - ,%'l ,' . *'";"' * .,%%; ' '' ' '- ',** ' ;'.. ~ " ,"'''"" """;'' """"

12-

Dr. Edward Riseman.
University of Massachusetts, Amherst
Dept. of Computer and Information Science,
Amherst, MA 01003

Professor L.M. Patnaik,
Dept. of Computer Science + Automation,
Indian Institute of Science,
Bangalore 560 012, INDIA

Dr. Joseph D. Becker,
Xerox Office Systems Division,
3450 Hillview Ave..
Palo Alto, California 94304

Dr. Ryouichi Matsuda,
Yokosuka Electrical Communication Laboratory.
PO Box 8.
Yokosuka Post Office.
Kanagawa-Ken, 238 JAPAN

Dr. Hiroshi Makino.
Faculty of Engineering Science.
Osaka University,
1-1 Machinkaneyama-cho.
Toyonaka, Osaka 560. JAPAN

Dr. Hisao Yamada.
Department of Information Science.
Faculty of Science.
The University of Tokyo,
7-3-1 Hongo. Bunkyo-ku, Tokyo 113,
JAPAN

Dr. Nicholas A. Bond, Jr.
Office of Naval Research/
Air Force Office of Scientific Research,
Liaison Office. Far East
APO San Francisco. California 96503

LT James C. Artero. USN
Naval Ship Weapon Systems Engineering Station,
Port Hueneme. California 93043-5007

ft ' 'w

I
Ii

'9

f,&.

