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formulation suggest a possible, approach for a refinement based on a
multiple scales expansion. This seems reasonable because the forcing
function pulse in 4laboratory time, '( t, varies slowly compared to the
characteristic "bubble time," T, which characterizes the response time
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times gives us a small parameter, E, appearing in the forcing function,
with the result that this problem involves only a soft excitation.

Expanding the forced Rayleigh-Plesset equation and its initial conditions
to the second order in C, we find that the zeroth-order problem is the
well-known autonomous nonlinear equation with nonhomogeneous initial
conditions, giving free oscillations of a typical nucleus. This first-
order system is a nonautonomous linear system with homogeneous initial
conditions which governs the forced bubble growth. The second-order
system consists of a linear autonomous differential equation and
homogeneous initial conditions. It is needed to establish integrability
conditions for the first-order solution.

The first-order solution is left for future research and the zeroth-order
problem is analyzed in the phase plane. Then a novel approximate
integration, T = T(u), is given in terms of elliptic integrals and functions.
We were not able to invert this solution and so the inverse u = u(T) is
found numerically. These data are then used to find an analytical
approximation for use in future first-order calculations.
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Abstract: In order to provide some theoretical background and to

motivate the more refined theory introduced below, we
review some encouraging known theoretical results on
bubble-ring cavitation inception. This review is followed

by the development of the theory of bubble-ring cavitation
cutoff. Its outcome, when compared with experiment, shows
the need for a more refined inception theory.

The above comparison and the basic ideas behiind the cutoff
theory's formulation suggest a possible approach for a
refinement based on a multiple scale3 expansion. This
seems reasonable because the forcing function pulse in
"laboratory time," t, varies slowly compared to the
characteristic "bubble time," r, which characterizes the

response time of a typical microscopic cavitation nucleus.
The ratio of these two times gives us a small parameter, E,

appearing in the forcing function, with the result that this

problem involves only a soft excitation.

*Applied Research Laboratory and Aerospace Engineering,

The Pennsylvania State University. **Now at the
General Electric Company, Springfield, VA.
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Expanding the forced Rayleigh-Plesset equation and its initial conditions
to the second order in 6, we find that the zeroth-order problem is the
well-known autonomou : nonlinear equation with nonhomogeneous initial
conditions, giving free oscillations of a typical nucleus. This first-
order system is a nonautonomous linear system with homogeneous initial
conditions which governs the forced bubble growth. The second-order
system consists of a linear autonomous differential equation and

homogeneous initial conditions. It is needed to establish integrabilit.°

conditions for the first-order solution.

The first-order solution is left for future research and the zeroth-order
problem is analyzed in the phase plane. Then a novel approximate

integration, r - r(u), is given in terms of elliptic integrals and

functions. Ve were not able to invert this solution and so the inverse
u - u(r) is found numerically. These data are then used to find an

analytical approximation for use in future first-order calculations.
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Nomenclatura u normalized bubble radius = r/(0 C ()

CP pressure coefficient = (p - p0 )/(1/2)pVo 2. Vco free-stream cutoff speed.

Cp, pressure coefficient = (p, - p.)/(1/2)pV. 2  V0 free-stream velocity.

D hemispherical headform diameter. v kinematic viscosity of water.

I air content parameter - pa/(2a/Ro). We diametral Weber number = V.1ro/al T.

H maximum laminar separation bubble WR radial Weber number = Vo/ (3 PRO).
height.

Introduction

KC cavitation number 
= (po - p,)/(/2)pV2I

This paper reports some new beginnings

p static pressure at any point in the flow. in our efforts to apply the Rayleigh-Plesseti'
theory of cavitation bubble dynamics to the

°Pa saturation dissolved air pressure. prediction of cavitation inception on sub-
merged bodies in flowing water at ordinary
temperatures. For cavitation initiation under

Sp0  free-stream static pressure. these conditions, we suppose that events
leading to inception are sufficiently infrequent

p, static pressure in laminar separation so that one can model the dynamics of

bubble cavitation-bubble growth as though each bub-
ble were a small isolated isothermal spherical

p, vapor pressure of water. bubble containing a mixture of air and water
vapor.

Q Q from bubble radius normalizer, (1 Q), Thus in the interests of computational
where Q = (WR)K/8. simplicity, we neglect the presence of neigh-

boring walls and of adjacent bubbles. We also
R(t) bubble radius at any instant assume that cavitation is initiated from

invisible air microbubbles of radius Ro which
Re diametral Reynolds number = VoD/u. are distributed throughout the flcw. Past

measurements 2 have shown that the pop-

R0 free-stream nucleus radius. ulation of such cavitation nuclei is highest for
bubbles having a radius of only a few
microns and that their numbers rapidly
become smaller as their sizes increase. Of
course, we know from potential theory that

p density of water, the minimum pressure in a ..ow occurs on
the boundary and it is in just this region

s arc length along headform meridian, that inception is observed. Nevertheless we

shall account for the presence of the
o coefficient of surface tension. submerged body upon the bubble dynamics

chiefly by its pressure distribution and its
t "laboratory time." boundary layer, retaining the simpiification

that the bubble motions show no other
r "bubble time" influence due to the wall. Even then we shall

not be reticent about introducing further
Tn slow-time scales eat, n = 0, 1, 2.

nSuperscribed numbers indicate citations in the

Reference,.

-• -. ..** .
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advantageous approximations for these and useful to test the efficacy of various theo-

related flow or bubble properties. retical bubble-dynamical formulations
Moreover, we shall consider only cavitat-

ing flows which fairly recently have received
additional intensive experimental investiga-
tion 3, 4 ,5 . Thus, we are relieved of the consid- LAMINAR 8t.

erable effort required to calculate the noncav- i_7jRouLfNT R[nArAC.INT

itating flow properties and we will also have
a body of laboratory data which can be used _ _______

to test the findings of the bubble dynamical
calculations i

Past attempts to use "simple" bubble dy- -
namics for the prediction of cavitation:i
inceotion and the related scaling laws have
generaily met with disappointment. Therefore
it is useful to confine our attention to our
belief that the chief difficulty involves the Figure 1.- Laminar separation on a
proper use of bubble dynamics. By placing our
trust in reliable experimental data about hemispherical headform.

other things, we need not be distracted by
the need to predict every single aspect of the Theoretical Background
flow from first principles; although we look
forward to the day when this achievement In a previous analysis of bubble ring cavi-
will be realized with the help of computa- tation6 , the senior author has suggested a se-
tional fluid dynamics. quence of key events that could lead to the

From the literature, one finds that the inception of bubble-ring cavitation. The en-
most extensive and consistent set of measure- couraging agreement between observed and
ments has been made by a number of calculated inception cavitation numbers sug-
investigato. on axially symmetrical head- gests that those basic findings which result
forms. Of these recent measurements, those from a consideration of experimental obser-
data perlaining to cavitating and noncavi- vations, suggests that the following postulates
tating flows around hemispherical headforms could be true, at least in their major respects.
seem to be the most thoroughly reported.
Consequently, we have chosen that flow (a) Thus, it is supposed that a typical free-
configuration as the basis for the present stream nucleus enters the boundary layer at
analysis :n spite of the fact that in the some point ahead of the minimum pressure
laboratory this flow generally exhibits a short on the body and moves with a convective
laminar separation bubble downstream of the speed characteristic of that flow region.
minim,:m _ pressure point as illustrated sche-
maticilv :n F'g I This feature offers some (b) After arriving at th- point on the body
adva ntages and some computationai com- where the absolute value of the pressure
piexities in the present instance, and it suffers coefficient equals the cavitation number, the
from 'hc fact that the kind of cavitation nucleus undergoes vaporous growth, reaching
inception which is asscc:ated with laminar a maximum radius down stream of the
separation is not found at Rey,'noids numbers minimum pressure point
usually encountered on ship propellers and
other full-scale submerged bodics Evidently (c) Th ,apor bubble then becomes fixed at a
we are deajing with a form of cavitation point inside the iam,nar separation bubble
which is a laboratory artifact Even so, the ahead of the turbulent reattachment region.
experimental data pertaining to the so-called It can then exper;ence further growth by air
bubl'le-riig cavitation are of a quaity and diffusion from the water into the cavitation
consistency which permits them to be most buble because the st, _c pressure in the
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laminar separation bubble is generally greater would be greatest at thi3 instant.
than the vapor pressure and further vapor- Consequently, the process of initial va-
ous growth will not occur. porous growth is the only process of bubble-

ring cavitation needing detailed analysis. A
(d) This gaseous growth ends when the cavi- legitimate question to be asked at this point is
tation bubble radius becomes large enough to why not let a computer do the analysis for
interact with the free-shear layer at the edge us by means of a standard numerical method
of the laminar bubble. such as a Runge-Kutta routine? After all, this

problem involves only an ordinary pulsed

(e) This interaction causes the cavitation Rayleigh-Plesset differential equation.

bubble to be removed from the separation re- There are two important reasons for

gion and to move with the local flow into the embarking upon a program of analysis. First,

turbulent reattachment region at the end of cavitation inception is characterized by critical

the laminar bubble. Turbulent eddies in the values of the flow parameters such as the

reattachment region produce additional low free-stream velocity, Vo, the headform diam-

pressures in the water which can promote eter, D, the cavitation number, K = (po - p, )/

further vaporous growth. (i /2) pVo2 , the free stream static pressure, po,

(f) In any case, the intense shearing action the liquid vapor pressure, p,, density, p, vis-

within this turbulent flow may distort and cosity, i, and surface tension, o, as well as the
tear the cavitation bubbles and this leads to a dissolved air content and also perhaps by a
small white band or cloud of small bubbles typical nucleus radius, Ro, or a probability
which is easily seen and heard. distribution of nuclei sizes.

It is our aim to find critical values of
This visible state of inception or desinence these parameters, singly or combined as in

is called bubble-r;ng cavitation. It is not to be the cavitation number, Reynolds number
confused with a more developed cavitation and/or Weber number, etc., which define
state, in which the laminar separation region cavitation onset. And of course, the form of
is filled with little attached glassy cavities the forcing function in any particular instance
This latter form is actually a miniature free- will also play a role in all of this. When one
streamline or cavity flow and it is called considers the large number of these para-
bind cavitation. meters, it is apparent that successive numer-

Once the gaseous growth in the laminar ical integrations for the many cases of inter-
separation zone is established, the conditions est is not likely to be fruitful from the view-
for the onset of bubble-ring cavitation are point of basic understanding of any inception
present and all events experienced by a process even if the work were to be done.
typical nucleus in its later stages of develop- Second, the nonlinearity of the Rayleigh-
ment occur automatically. The separation Plesset differential operator makes the task of
Szone does insure a favorable environment for relating critical flow parameters to the calcu-
gaseous growth because the water is definite- lated growth curves, R(t), very demanding
ly supersaturated in this region. It is also because of the extreme accuracy required'.
found that the most favorable condition for For example, it has been known for some
g3aseous growth occurs when the vapor bubble time that this differential equation can have
just attains its maximum radius and simui- solutions of different classes or forms,
taneouslv arrives at the laminar separation depending upon the values chosen for the
zone. The accelerations in the liquid surround- basic pulse forc:ng-function parameters. Figure
ing the cavitation bubble increase the degree 2 illustrates the kind of things that can occur
of supersaturation at the bubble wall over Thi , figure, in two parts, shows transient re-
that which would exist if the accelerations sponses of an isothermal nucleus to paraboiic
were negligible. Therefore the probability that
the cavitation bubble can become stabilized at
a fixed point in the laminar separation zone

M6.* . .. .
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but having a fixed duration 0 = 0.4." It is seen On the other hand, some curves show
that illustrations (a) and (b) in Fig. 2 have dif- essentially no net growth. The bubbles in this
ferent scales on both axes and that the case experience a nonlinear oscillation having
curves in (b) start At values of time, r, where a total displacement of about four as can be
the curves of (a) stop. The different scales of seen in (b) for p = 0.16. If the value of p is
the two drawings prevent us from joining changed from 0 16 to 0 20, the vapor bubble
them into a single illustration. The reason for shows explosive growth. Near r = 1000 the
this scale difference can be appreciated from growth curve seems to approach an asymp-
the fact that the ordinate of each drawing is totic growth rate having a nearly linear r(r).
the natural logarithm of the dimensionless Evidently, these contrasting solutions give us
radius, r = R(r)/R o . As we look at some of a glimpse of the kinds of responses that can

these curves, it is clear that r(t) varies by as occur and we are left to wonder about the

much as a thousand fold. precise value of p, between 0.16 and 0.20,
which marks the transition between these

,.. , ... two radically different solutions.I 'ILA fVJ 1L) MPtITU

BAU_,fThis situation would not be particularly
bad if it were not for the fact, already noted,

"." that in some cases very small changes in the
-"various parameter values can have extraor-

-71 -- dinarily large and unexpected effects on the
S,. / "nature of the bubble growth6 . Since the esti-*- / motion of these critical parameters requires a

.. certain amount of a pribri knowledge, we
D.NI,4,,,NLS , RJJ88Lconclude that even a crude analysis, if it can

I R ,, ,o ....... be properly executed, can be better than none'5 ... -,,, ,,,A ,1 ,$,LSI AMUT at all. At this time, ail we can offer regarding

the appropriateness of one or another analyti-
cal approach is how well it compares with

<7 experiment.
Recently, one such analysis for bubble-

ring cavitation6  has shown rather good
S.agreement between analytical estimates and

observed trends of cavitation inception ( or
desinence, in the experiments ). These results

n are shown in Fig. 3 where the incipient
cavitation number is plotted for a range of

Figure 2- Isothermal cavitation bubble free-stream velocities. The figure shows the
growth curves in response to single calculated values to be sensitive to the ratio

poiroo'ic-puise forc:ng functions of maximum vapor bubble diameter, 2 R,max

and to laminar separation bubble height, H.
(a) Shcrter growth periods. Better agreement between calculated and ex-

perimental findings could be shown had we
Longer growth periods permitted the ratio, 9 = 2 RImax/(l, to exceed

unity But since the theory has been greatly

*This notation should not be confused with later simplified, it seems that agreement between
usage in which some of these symbols will have experimental and theoretical trends is the
different meanings. These unpublished results were main point to be exhibited. The basic infor-
obtained in about 1954 by the senior author from a mation on laminar bubble heights used here
series of Reeves anlogue computer runs at JPL. is a synthesis of available experimental data

- They were obtained under the direction of M.S
" Plesset The work was s5onsored by the late Phillip as shown in Fig 4.

Eisenburg, then head of the Mechanics Branch, The basic scaling equation seen in Fig. 3
ONR. was found to be
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0vLocIT. a Io, An interesting further aspect of bubble-

ring cavitation following from Eq ( 1 ) is that
I R cLAMNAN O JS IMENT.,4 the dissolved air content has practically no0.7 -"tL L.AMMNAI BUBL I Cl[ GT

i \  I .-. influence on the inception cavitation number
0.' - ' " when the temperature is held constant. This

. R HICAI V7

same conclusion had already been reached by
Carroll and Holl 4 as a result of their experi-

o 1 ments. The reason for this situation indicated
CAC ,JLArISON FOR
l mP(irR( 3or,, by Eq. ( I ) can be seen from the fact that in0. 3 AIR CONINTS. 1.,5 ANO 15 pp.

01 lthe square brackets the quantity R0
2 is

present. This quantity is very small compared
to unity and so it is found that the entire

11 I term, I(Mo/55.50D)'Re .8 , is much less than

"0 to .X unity over the Reynolds number range of
FREE STREAM VILOCIty. V.,0 interest here. Consequently, one makes very

Figure 3.- Cavitation inception on a little error by writing
hemispherical headform. K - -Cp- (Re° 7 1/13.875OWe2 ) (Ia)

in place of Eq. ( 1).
EMISOIRES We can not conclude however, that the

0O. VAIL 0theory would still be useful if we were to put
VAN, ,OCR, {oCoLE ' TEFLON 1=0. If the water contains no dissolved air,- L ARAKERI postulates (d) through (f) would have no

o.03 o

0.03 physical basis. Then there can be no gaseous

1.024 _.bubble growth and it is doubtful that bubble
D Re.j--9 -ring cavitation would exist. Thus, there must

0.0- ° " . .. Abe some air in the water if bubble-ring
oi ...... 4 cavitation is to be expected.
0.1 0.2 ' 0 J.6 . 1 Z J 4 6 8 to O

RoY0LOS NUMR 05 We have observed that a typical free
Figure 4.- Laminar separation bubble heights -stream nucleus, which participates in the

on a hemispherical headform. events leading to bubble-ring cavitation, has a
very small size. That this might be the case
was inferred by matching the findings of the

K = - Cp- (Re. 7 /13.8750We 2) theory with a phenomenon peculiar to bubble

xf I - J(Ro/55.50D)2 Re' -5 ], ( I ) -ring cavitation which we will call cav/atbn
cutoff.where the Reynolds number, Re=VoD/v, is C ol

0  iCavitation cutoff was observed first by

based on headform diameter, D, and the Carroll and Holl in their experiments and
kinematic viscosity is V=V/p. The Weber num- found independently by Kodama" at about the
ber, We = Vo/.a/(pD) is also baspd on head- same time. It was found by all of them that
form diameter. The dissolved air content pa- there is a lower limiting free-stream "cutoff"
rameter, j = p,/(2O/Ro), is seen to be the ratio velocity for bubble-ring cavitation on hemi-

spherical headforms. At lesser speeds bubble-
of the free-stream saturation value of the ring cavitation disappears altogether, although
partial pressure of dissolved air, Pa to the other forms such as band cavitation may be

free-stream nucleus surface-tension pressure, present. Our cutoff-speed matching calcula-
2o 0o. In most laboratories this partial pres- tions indicated that the radius of the tyr/caI

sure in the free stream is measured by a Van part/c,pating nucleus in the Holl-Carroll ex-

Slyke apparatus. The quantity CPS is the periments was about 5 - 7 microns. Aside

pressure coefficient on the headform at the

point of laminar separation. Private communication, 1979.

,?- . ........................................................... ...
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from a report to the sponsor, this theoretical we can write
development has not been given wide rm= 55,50D/RaRe° 79. ( 4
dissemination. Therefore, it seems appropriate The parameter e is at our disposal. Again, the
to present it here. idea here is that the greatest amount of

vaporous growth consistent with the key
Cavitation Cutoff postulates of bubble-ring cavitation theory is

limited by the height of the laminar bubble.
Basic Ideas

As a first step in calculations for cutoff, fprOHimate Forcing Function
we offer an interpretation of the experi- Recall next that the crucial simplification
mental findings which can be expressed in introduced into the crude theory under re-
terms of the present theory. One possibility view is that the actual forcing function for
may be that because the cutof f speed is a ve sta h culfrigfnto omay e tat ecase he ctof sped s a vaporous growth is replaced by one positive

relatively low speed, the cavitation number stpofun rti it a positive

at this speed should be less than that seen at step function starting with a positive jump of
(X = -(Cpm+n K)/CO, 5)

higher speeds. The idea here is that since the PmLn
dynamic pressure is less at a lower speed, the where Cpmiis the minimum pressure coef-
free stream static pressure must also be ficient on the headform and C, is the dimen-
reduced in order to promote vaporous bubble sionless coefficient,
growth. Now, the bubble-ring cutoff speed Ca=4G/Ro 2.  6
means that if the free stream velocity is 0 pV.
lowered still farther no matter what is done After a short dimensionless elapsed "bubble
with the free stream static pressure, time", to , measured in units given by
bubble-ring cavitation is not observed, al- =-[t 7
though other forms may still appear. But as r = [ o

the free-stream static pressure is lowered the the first jump is followed by a negative jump
of magnitude

maximum vapor bubble size initially stabi-
lized in the laminar separation region will in- P = (K + Cps)ICa ,  (8)

crease. Therefore we suggest that the vapor- at t - (t a+ to). This "piecewise autonomous" ap-
ous cavitation bubble is limited to a greatest proximation is illustrated in Fig 5 . Adopting
maximum size. According to postulate (d) of this approximation, we can write the dimen-
the "theoretical background" section this size sionless forcing function, Fa(), as,
must depend on the laminar free-shear layer
height, H. That is, there will be little or no 0, O1 r i ra,
gaseous growth phase at bubble-ring cutoff F( M= , ra K r K r + to, ( 9
speed. Instead the vapor bubble is swept al-
most immediately into the tubulent reattach- [3, ta o

ment zone. This line of reasoning suggests
that the limiting condition leading to bubble-
ring cavitation cutoff can bewritten as 2. ;-- ! TI, PICIsEuTo'.AUS

2Rlmax = H (2) '----- -

Figure 4 above illustrates that a satisfac- I)
tory representation of the van der Meulen , ,
and Arakeri data on laminar bubble height is T ', ' ,
given by ,, ,, \

H/D Ill/Re0 7 9 . ( 3 ) INONAUTOu\MOUS ,

Since the maximum cavitation bubble diam- - ' 

eter is to equal OH and if we introduce the
dimensionless cavitation bubble radius, Figure 5.- Forcing functions for the "piecewise-

rm- Rlmax/Ro, autonomous" approximation.

n.'
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Formulation of the Theory from acand p,. Consequently, we make negli-

gible error in most situations of interest if weNext we write the Rayleigh-Plesset equa- replace the actual a and p by acand PC This
v = dr/dr , implies that we give up the possibility of

(2r 2)-'d(r'v2 )/dr = Vr - l/r + F Ct), (10) matching the time available for a prescribed

with a growth, rm, with the time actually needed to
v() - dr(0)/dt- 0 and r() - I . obtain it. This simplification contains an ex-

The air content parameter 1 has been defined tremely small error and it offers a straight-

in the discussion of Eq. ( 1 ). Multiplying both f rm acand p
sides of Eq. (10) by 2r2 and integrating In the phase plane the saddle point is
formally from r = I to r = rm, we find t:at found from the conditions that Vc=O and

rm3Vm2= 2 1a(rm) + 21 In rm - rm2 - 1) (11) [dv/drm](r=r) = 0. From an application of

where these to Eq. (12), we findra r0  rm 3 (1(c *Pto-(1)cc -(1)r 3

Ia(rm) f r 2Fa(r)dr +' r 2Fa(r)dr +' r2Fa(Odr 0 = (2/3)(a. Pdr0
3  (2/3)aC - (2/3)prm3

r f + 21 In rm -(rm2  I) (13)1ra ro

and
= (1/3)[(a + P)(ro3- 1) - P(rm3- I)]. Pc = [(I/rm2) - l]/rm. (14)

Applying all of this to Eq. (10) , we get
rm3VrM2 = (2/3)(a - P)ro3 - (2/3)a - (2/3)PrM3  Equations (13) and (14) start us toward the

+ 21 in rm - Cr2 - 1). (12) determination of the cavitation cutoff speed.+ 21In r -( m 2 12) They do, however, contain the unknowns r o
Next one observes that solutions for Ted hwee on nowns

which the bubble just achieves its maximum and aC, because if for now we regard V0= Vc
radius, rm, after Fa(t) first equals - p requires as known, and rewrite Eq. ( 4 ) as

that phase-plane trajectories indicating un- rm= 55.50Do.21VO.79/(o VCo.'T), (4a)
limited vaporous growth are not admissible then Eq. (4a) determines rm provided R. is
solutions. Moreover one can argue that the also regarded as being known. But PC is deter-
demarcation between these unwanted trajec-
tories and those leading to bounded (periodic) mined by egq. (14). Adding Eqs. ( 5 ) and ( 8 ),
solutions is the separatrix through the saddle fnd rear
point on the phase-plane r axis at (reO) . We at

C +PC CPmi +0 CV (15)
shall call the saddle point location the critical Again we consider the factors, R. and Vo,
point, and we shall denote the values of 3 appearing in C. as the known nucleus radius

and a at this point by acand PC ,  and cutoff speed. Then, a is also determined

It is known that the bubble time, , re- and r can be found
* quired for the radius, r(t), to reach the saddle f

point along the separatrix is infinite. But it other parameters in Eqs. (13), (14), (4a) and
turns out that F(t) is such that the time (15) are known. These equations define a

available in units of "fast" time from r-0 to functional relationship between Vc 0and Ro .
t=tm is very long, even though the corre- It may seem that the foregoing analysis
sponding period in laboratory or "slow" time completes our study of bubble-ring cavitation

cutoff speed. This is not quite true however,
is very short because of the conversion factor

because we have imposed no condition whichbetwen he to sownin E. (7 T i nsures that the value of V ocorresponds to
means that the actual time available, as co
defined by F(r), will place all actual trajec- the lowest possible cavitation number. The
tories very close to the separatrix. Moreover following arguments are needed to do this

* the values of a and p borne by these trajecto- and thereby to satisfy all physical conditions
e windicated at the outset.• ' ries will in fact, be almost indistiguishable

o"% "" " ° " " - " • " "' " " '"" " ° " ' 2" - ° " " " " 
"

". • " ° " . •
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We start with the observations that properly chosen. The fact that ro depends
situations can arise in which the duration of parametrically on Vc, suggests that we should
the pulse, to, is so long in terms of bubble rewrite (17) as
time that the phase-plane saddle point, rc, is G(VC0 ) = ro+ 2(0- 3 In ro

even less than r o. This is almost as though -2 [(I/ro2 ) - l]/r o - 3 = 0, (1 7a)
we had let to and therefore ro -, thereby and solve for G = 0 by iteration on V 0because
reducing the problem to the familiar autono- y

mous single step-function problem . In such a Eqs. (13), (14), (4a), (15), and (17) now form a

case the limiting values of rmwill be associ- closed system.

ated with a new critical value of a- which Cutoff Calculations

will be less than the critical value of ac borne

by the separatrix found above and which we As indicated previously, this solution will
found to depend on Pc. Arguments only depend upon the value of R0 which is taken

as being known. Then one can use this valueslightly different from those given previously and the corresponding value of V to find C
can be used to show that co o

(cX = [(l/r 2) - l/rc, from Eq. (6). Once this has been done one can

with the analogue of (13) being find the cavitation number, Reynolds number

0 = (23)a (r 3 -1) b 21 in r - (r 2  and all other parameters pertaining to this
0 ) -) rparticular flow condition. A fairly extensive

Eliminating ac between this pair of equa- series of calculations has been carried out in
tions we get a single equation for the deter- order to test the preceding theory against the
mination of r : cutoff experiments of Carroll and Holl on a

c+ 21(- 3 In r ) -3-2 1(1/r 2 ) - 0. (16) 2-inch (0.0508 m) diameter headform. The
c c l]/rO detail available to us regarding Kodama's

Because ac> I P1c, the present value of rc will experiments was insufficient for us to use his

be less than the previous value. Therefore we results to test the theory further although his
call it the smaller of the two critical radii, findings seem to be consistent with the obser-

The closed trajectories to the left of r c will vations of Holl and Carroll5 . At an air con-tent of 7.8 ppm and 80°F (26.67°C), Holl and
certainly lead to motions having short periods Carroll observed bubble-ring cavitation at 40
and very small amplitudes. In order to insure ft/sec (12.192 m/sec) but no bubble-ring cavi-
that larger amounts of vaporous growth are tation at the next lower test speed of 30
produced, the phase-plane trajectories starting ft/sec (9.144 m/sec), indicating a cutoff speed
from the initial point will follow paths which somewhere between these two values.
are outside the new separatrix and they will Calculated cutoff data for V on a 2-inch

bear larger values of a than the ajust found. (0.0508 m) diameter headform at a temper-
And since -Cpi" is fixed, the K values borne ature of 80°F (26.67C) and C., - 0.630 are

by these trajectories will be less than that tabulated below to show the corresponding
found on the a c trajectory. Moreover, if we radius Ro of a "typical' participating nucleus
put ro - r. we will have reduced to to its at two air contents. and values of Vc, ex-

shortest possibile duration and this requires pressed in feet per second.
the lowest possible K value to achieve the Table I-Participating Nucleus Size
desired vaporous growth. Therefore we can "Ar Cotnt pps.

modify (16) to read Vca Air Content, ppm.

ro+ 21(1-31nr o )-2 [( I /r o
2 ) - l]/ro=3, (17) .5 150

30 5.65 4.28
again, because it is found that the true values 0 .71 .61

40 4.71 3.61
of a are practically indistinguishable from a c, o
For values of r o in the interval (I, rm), Eq. ____

(17) will have one root provided that Vc, is Vco= 9.144 & 12.192 m/s

7.
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In contrast to the findings of Eq. ( I ), Table I Because of its several successful predic-
shows at cavitation cutoff that the nucleus tions so far, the bubble dynamical approach
size is sensitive to the dissolved air content. to understanding this one type of inception,
For a given cutoff speed, the value of Ro  argues for its further refinement in order to
decreases with increasing air content. At fixed remedy the above and other shortcomings in
air content, the value of R decreases with the method. The most obvious topic for0 further study is the development of a more
increasing cutoff speed. Comparison of these
tabulated results with the Holl-Carroll data realistic treatment of the bubble dynamics
suggest that an appropriate diameter of the which might be capable of lessening the ob-

served deficiencies. The following discussion,
typical participating nucleus which will fit the
calculated results to the experiments should outlining some research in progress, summa-
be between 9 and II microns. This is at the rizes our first attempt to address this aspectbe btwen 9 nd 1 mcron- Tis i atthe of the problem.
small end of experimentally determined dis-
tribution data in water tunnels and suggests
that there can be many nuclei within the The Refinement
size range which may permit the occurrence
of bubble-ring cavitation. The calculations
from Eq. ( 1 ) leading to the results shown in A minor refinement to the bubble dy-
Fig. 3 were carried out for an R0 of 5.18 namical theory underlying the preceding cut-
microns. off calculations is that we can investigate

Hoil and Carroll also discovered a temper- possible benefits that a more accurate repre-
ature dependence of bubble-ring cutoff cavi- sentation for the initial conditions of vaporous
tation number with Reynolds number. Cal- growth might provide. Generally this refine-
culations which included the influence of tem- ment is honored by its neglect. Then one sim-
perature on Ro, seemed to exhibit the same ply starts with the undisturbed free-stream
qualitative trends as the observations but the nucleus and puts R(0) = P o and (dR/dt t=o- 0,
calculated results did not display the same because in many cases of interest the
degree of temperature sensitivity, Fig.6. In solutions for unlimited growth, as illustrated
these calculations the physical parameters in Fig. 2b, are sought The precision of the
which were taken to vary with temperature initial conditions is then of little consequence.
were the Henry's law constant, the surface This situation does not apply here because,
tension, the vapor pressure and the kinematic now the vaporous growth is limited by the
viscosity of the water. Evidently, other separation bubble height.
factors should be considered to complete the On the other hand the flow over a body
theory produces static pressures on the surface which

differ from the free-stream value In particu-
lar, the static pressure at the point on the

VA'T"4 ° r1 1Pf~ I body at the start of vaporous growth is given
. , * by Cp - K, corresponding to a free-stream

static pressure of p. For an isothermal flaccid
.g" - bubble, we have p P,(0)l =pPR 3 from Boyle's

: , 'o - :law. This relationship represents a shorthand

way of saying that a free-stream nucleus
enters the boundary layer and is conveyed,

.CA,-LArO -,,RIN, as an air bubble without any vaporousI 5 m c (NO TTS IR C U, ~ T IN !

PARTS PtR MILgrowth, to the point where CP' - K, and then
0 4 0 ' 0 . 11 . 1., '.5 vaporous growth starts

R(YIAOS NU.W, R, Next we can calculate the force balance
across the bubble surface when it is in theFigure 6 - Observed and calculated tempera- free-stream and the outside static pressure is

ture effect on cavitation cutoff.
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PO Then p =p Pa- 2u/P 0 If p(G) is the calculation of the initial bubble growth rate.

pressure outside the bubble at the lccation When appropriate vaiues of all physical and
where vaporous growth starts, the force geometric quantities are used in the growth-

balance is p(0) = pv - 2a/R(:) The gas rate equation, (dr/dr)!t\ is found to be ex-

pressures in these equations can be found tremely small compared to other quantities in
directly and these pressures substituted into the theory Therefore we make practically no
Boyle's law above. In doing this we employ error if we take the second initial condition to
the various dimensionless quantities used in be null:
Eqs. ( 1 ) and (la) and we introduce the new (dr/dt)l((0 )- 0. (20)
parameter, WP, the Weber number based on Nevertheless as we shall see later, It is of
- o and write WR o/l(p~) After further conceptual value to 'understand that actually
manipulation of Boyle's law we get this initial growth rate is a very, very small

[(Cp- K)WR/4]r 3 , r2 - I - (WR)K/4 = C. (18) positive number.

Eq (18) is the flaccid bubble equation which
holds on the surface of the body. When CP= -K Forcing Functions
and r = r(0), we can solve the resulting qua- As we have already indicated from the
dratic to get beginning, vaporous bubble growth starts

r(0) I - [(WR)K/41 z1 (WR)K/8 when C ( s ) = - K and the dimensionless bub-
I + o. (ia)

Eq. (18a) gives the initial value of r and we ble time or fast time, r, is zero. Let the di-
write 0 - (WR)K/8 mensionless arc length on the body be so at

Our next task is the development of an that point. Its value can be found from the
expression for dr/dr and its evaluation at value of K. But this value varies and we need
that point on the body where CP= - K . The to allow for that in defining the forcing func-tion because both its amplitude and duration
known quantity on the headform is C( s ), are influenced by that value. On the other

from which the local flow velocity.' just hand we can select a likely range for K de-
outside the boundary layer can be found. pending on the flow conditions or from the
Then, in keeping with the simplification that data of Holl and Carroll. Therefore we can use
the boundary layer is a vortex sheet we put their experimental pressure distributions in
the convective speed, V(s), equal to one half of order to define an average pressure distri-
the outer flow speed. In addition, if ds is an bution for the free-stream velocity range of
increment of dimensionless arc length and dS interest. We can pick some point, s, say, at
is the same increment measured in suitable which C ( s ) > - K and we can then adapt
iength units we can write ds = dS/(D/2). ThusPt uEq. (19) in order to define a relationship

V(s) dS/dt = (Dds/2)/dt between s and a quantity t" that is invariant
and with respect to K. Clearly, the required

d/idt (Vo/D),iT-- CP s I . (19) relationship is SI
, Now we can write

dr/di = (dr/dC p)(dC /ds)(ds/dt)(dt/dr) t*(s) = (D/Vo)(2o/p)jdx4[l -CP( x ) ]. (21)

The first factor in this product can be found
by implicit differentiation of Eq (13), the Equation (21) is used to carry out numer-
second from the equation for C P( s ), the third ical integrations based directly on individual

from Eq (19), and the fourth from Eq ( 7 ) poiits from the Carroll-Holl data. Therefore

After a certain amount of manipulation and one selects s, to be the first datum point in or

the use of Cp= - K in the appropriate places, near the range of interest, Cp(S1) - max,
we find an expression for (dr/dr(, . o)-This and integrates numerically point by point

expression contains certain terms requiring over the rest of the points, si > si, in the data

r(O) from Eq. (18a) in order to complete the set The result will be a table of si and Cp(S.)

{:11

t I I I I . . . . I . ... . . . . . . . . . ." ."I . . - .I•"I*I 1
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versus r' i, where the index i starts at 1 and

ranges over all points indicated above. Then
one can plot the points C ( r'*) in (rn C- p

coordinates. Next he can define displaced (r,F) -

coordinates in which the origin is positioned
at that value of r' for which Cp(r ) , - K - -.......

ad in which F -(Cp. K). If the minimum K 0.64

value of Cp is C mn then the greatest value

of F is Fmax = (- c - Kmin K). The displacement

of the (tV) system with respect to the (r', -

C ) coordinates can be found by means of :0, ' .. ..

parabolic interpolation in the (r i, - C ) plane. Figure 7.- Hoil-Carroll forcing-function data.

Indeed, if the interpolation formula covers an
adequate range of cavitation numbers, the 0

formula can be written down once and for all
and arranged to give tho displacements K - 0.
CP( t 1) and r'(K) - r1  for each value of K
used in any particular compitation. Thus we SPR1ONK -. 4

will get a new forcing fun tion every time K 0.0 POINT K=1.66

changes its value. KO, 70

In any case a table of points, r versus Fi, \
results from these calculations as shown in
Fig. 7. Our aim has been to preserve the -oll-
Carroll data points themselves as far into the
calculation as possible and we shall write any 0.00 0.05 0.10 1.15 0.11 0.ZS

member of the family of forcing functions DIMNSIONLESS TIME. CT

symbolically as F( ri ; K ). The faired curve Figure 8.- Forcing-function family members

through the points in Fig. 7 results from a for various cavitation numbers.
sequence of parabolic interpolations between
experimental points. The next step is to fit sults we may state the initial-value prob-
the points defining F( t, ; K ) with a suitable lem as

continuous function designated by F( r ; K ) r(d r/dt) + (3/2)dr/dr- -/r 3 - /r

This step will be deferred to a later point in + [(1/)PVOV/(2u/Ro)]F(r; K)

the argument, however. Having arrived at r(0) - 41 C {[(LWR)K/41 I + (WR)K/8 (22)
the initial conditions and the forcing function =I + 0.
for vaporous growth, we turn next to the dif- (dr/dt)1(,.o)= 0.
ferential equation governing the process and
to the statement of the mathematical prob- Recall that the air content parameter is de-
lem to be addressed. fined in remarks immediately following Eq.(1).

Aside from the initial condition and the fain-
The Initial-Volue Problem ily of forcing functions, Fig. 8, which are spe-

cific to this discussion, Eqs. (22) exhibit the
All ingredients for the statement of the customary dimensionless form of the initial

initial value-problem are given by Eqs. (10), value problem for the Rayleigh-Plesset
(18a), (20) and the continuous form of the equation.
forcing function, F( t ; K ) as just described. It is convenient to normalize the initial

Rewriting Eq. (10) as a single second order condition on the radius in Eqs. (22) so that it
equation and assembling the remaining re- reads u(O) 1. If we put r (1 Q Q)u, this

%-...,
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substitution will certainly normalize the r(O) Tn  eI, n=O, 1, 2.
initial condition and the initial value problem Therefore we write
will now read u(t,E) = u( o T,, T ... ) + eu(T O, T, T21 ... )

u(d2u/dt 2) + (3/2)(du/dt) 2  1

= i/[(I + Q)5u3] - 11(1 + Q)+ u + f(t; K)/(I + Q) ,  * 2u2(To, T1, T, ... ) * ... (24)
u(O) 1, (22a) Since we shall carry out the expansion to

(du/dt) = 0, order e", we require only the independent
wher variables, TO, T1 and T2 in subsequent work.
where

f )[i 2 /(2;/R)F(t; K). The chain rule is used to express the deriva-tives, du/dr and d 2u/dt 2, appearing in Eqs.These normalized equations are the basis of (22a) in order to insure that the resulting

the subsequent analysis. multiple scales exporson is ccnsistent in its

powers of e. For example, the initial condition,
Multiple Scales Representation u(O) = 1, takes the form u,(O) - I + eu 1(O) +

The possibility that a multiple scales e2u2(0) = 0 for all e. Therefore, uo(0) = 1 is the
analysis might be useful for the present only nonzero initial condition among the un.
problem follows from the fact that a fast Slightly more involved reasoning shows that
time, r, as defined by Eq. (7), giving the all initial conditions among the dun/dr are
transformation between bubble time and null.
laboratory or slow time, t, can be seen.
Moreover, the foregoing analysis shows Turning now to the forcing function as
clearly that the scale of the slow time is defined in connection with Eqs. (22a), we see
defined by the convective process which that f(t ; K) actually depends on the laborato-
converts the pressure distribution on the body ry time, t = et = T,, only. Consequently, one
into the bubble-dynamical forcing functions as expects that it should be represented as a
indicated by Eqs. (19) and (21). If we write T first-order quantity, f(t ; K) = eg(r ; K), where
to represent the laboratory time scale, in the function g is designed to provide a suit-
which t is measured, it is clear from Eq. (21) able analytic approximation to the Holl-Carroll
that T D/V. Similarly, we can denote the experimental pressure distribution as illus-

time scale of bubble time by [r] and write [t] trated in Fig. 8. A likely choice for the form
= R popR0/2a which, aside from a numerical of this "soft" forcing function is deferred until

factor 0(1), measures the period of free la It remains to apply the method of
oscillations of a cavitation nucleus. A smallratio, expansion discussed above and to present the
parameter e can be formed from the system of equations, representing the initial
[t]/T. Thus, ____ value problems of zeroth, first and second

e [(VoR 0 )/D] pP.-o. (23) orders in e. The derivation of these results is
A very rough estimate indicates that e will tedious and we will write them down with-
be about 1/1000. Evi&ntly the conversion of out further ado.
dimensionless bubble time, t, to laboratory
time, t, is el -t . Here the laboratory time is O(e0 ):
taken to be dimensionless as represented by Uo(d 2 uo/dt 2) + (3/2)(duo/dr) 2= I[(I + 0)5 U0

3]

the integral in Eq. (21) or by the ratio tUT, - 1/(1 Q)uO ,
for example. To recapitulate, we observe that
the two time scales characterizing cavitation 0(
inception in the flow on submerged bodies are (duo/dt)1o 0.
t = er and t.

Th- next step in the analysis is to repre- O(e1):
sent the dependent variable, u(:,e), as is cus- d2 ui/drt [(3/u o ) duo/dr] du/dr-
tomary, by an expansion in powers of e and + [(4/u d2 U /dt2 + [9/(2uo 2)](du /dr) 2

with independent variables 0 0
+ 2/((l + 0~u0P ] uI -- [t/(u0 (l + Q)2}) g(t K), (26)

,,,-. .... -. .; ."-'-.. .-. . ... ', . ...-.-.-... ... •.-.. ... .... ... .. ... ..-.... ,- . . . . . . . . ,
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1u1(c)-0, The second of these equations ""as the first
(dul.d t)1( -0) 0 integral

u3 v2  (2i In u)/(l Q)5 _ u2/(l Qj3
0(e2): [A - (I V 3],
dlu /dZ2 . [ (./uo) duo/dr du /dr - [(4/u) in which the quantity, [A - (I Q)-3], is the2  d 2 d constant of integration. We can rewrite this
di uo/d'- - [9/(2u 0 2)] (du 0 /dr) 2  2/[(1 Q)uo]P)u 2  to read

S(tui[(1Qlun ]2 g(t; K) - H(). u3v2  (21 In u)/(l . 0)53(u i/( ) u 0, (u 2  - 1)/(I . O))3 - A , (28)
u( O and the condition, u(0) = 1, is satisfied. Now,

'(u t = 0 (27) the left-hand side of this first ntegral is
wher proportional to the kinetic energy of the
H(c) = u1 l[( Q)3uo4] . [4u,/u ] d2u /dt 2  bubble motion. The right-hand side is propor-

* 6u/[(1 . Q)uo 2] d2u 0/dt 2. [3/2uo1(du1/d) 2  tional to the potential energy, - V, of the
0 9(u /bubble and the constant A permits one to

1 u 0/uo'](d0 /d)(du/dit) adjust the level of V. On the other hand if
+ [9ui 2/2uo 31(duo/dr)2  the condition, (du/d),( . o 0 0, is also satisfied

These three sets of equations give the mul- we must set A = 0. Moreover, had we re-
tipie scales initial value problem to the orders placed the forcing function, f(t; K)/(l + Q)2, in
indicated and they should permit the solution Eq. (22a) with a step function, F /(I Q)2 , we
to the order e to be found. We can oniy pre- would add the term, 2[F(u 3- l)]/[3(l O)2], to
sent the solution uo here, however.

the right-hand side of Eq. (28) above.
This zero-order problem contains the or, ly

nonlinear differential equation among the
three given above. Aside from the
normalization and the lack of a forcing Next we could plot V(u), including the
function, it strongly resembles the autono- aoded term, as shown in Fig. 9a. From its
mous equation dealt with in the cutoff cal- level lines and Eq. (28), including the F term,
culations above. As we shall see, the above C
rather small cha ,ges can make a significant we can find the corresponding phase-plane
difference in the nature of the solutions that trajectories as shown i Fig 9b This figure is
we shall obtain, a very familiar illustration of the global

nature of the well known autonomous
The Zero-Order Solution lution and it shows where the vortex and

saddle points are to be found in the phase
Analytical Background plane. These can be 'ocated precisely with the

help of Liapunov s method or directly from
For convenience we shall drop the sub- the potential energy curve The limiting

script zero temporarily, and write velocity, 1[2FC/( - Q)] , shown in Fig 9 is
u(d*ud (3/2,(du/dt)2 - /[(l * Q)&u3 ] due to the step-function forcing function and

- I/(I O)u, we see that it is naught in the present zero-
u(O) = 1, (27) order solution uecause F,= 0.

and While the foregoing discussion reviews
(du/d 1,(,.o= 0o knowledge regarding general features of the

It is weil known that if we put du/dt - v we zero-order solution, it remains for us to nar-
can replace the second order differential equa- row our view and to examine the problem at
tion in Eqs (27) with a coupled pair of first- hand. This we do by considering the basic so-
order equations These read lution, Eq. (28), with A = F= 0. Then both ini-

v = du/dr tial conditions are satisfied and this particular
nd and form of the differential equation (28) enables

d(U3 V2)/du [21(0 0)51/u - u/(l * Q)3 us to study the phase-plane trajectories and

- • . " o " .- . , • ', ', - " ," " " . • "*.• -
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the position of the singularities on the u axis ,NORMAsIEDs INITIAL C ONDIS. I, , O0I I
NOM LIZED INITIAL CODITIj4 AI0I =

as the parameter Q varies over the range of
interest Figure (10) shows the results of this

,, investigation for one value of the dissolved xji /
air-content parameter, I = 1.4 for saturated 0. PAS[ PLMi

water. Now the saddle point has been lost AND POo ,IIAL
and all trajectories originate at u = I by . 2 /6,ACY ,( .
design.

The dotted curve in the upper potential- -

Nfj, NW I2TD BUSI9 'AOIIJS u

h 0 0, 30

'hI

ii' LE )I VS

'3 1 "" O' TE ( IS LOCATo
' [AT THE NORM',ALIZED 0.0'5

1:. , 1 3 L I } 4 5 6 "O Z ")R OCR IT 7 a 18]3216

SIR MA L I ED UBIILE RADIUS = 00

,o ;; I , ; , _Figure 10- Phase plane and level lines for the

zero-order analysis.

(a) Potential curves and level lines for various
T .. values of Q and one dissolved air content.

'T \ 4T

(b) Phase-plane trajectories, originating at
u = 1, for various Q values.

Figure 9- Phase plane and level lines for a small scale flaccid air bubble oscillations
step-forced isothermal cavitation bubble. whereas those on the right are somewhat

larger amplitude oscillations involving vapor-(a) Potential curve and level lines. ous growth, although the gas in the bubble is

also important in the motion. The way in
(b) Phase-plane trajectories. which the phase-plane singularities move

along the real axis and the size of the trajec-energy plot corresponds to the case where the tories as the value of 0 changes from 0 0 to
trajectory and the vortex are contained at 0.3 is clearly illustrated in Fig. 10. Moreover,
the origin in the phase plane. The motion is the potential energy minimum is found at
then defined by the solution u(t) = I and v(t) u v (-h)/(l - O), which defines analytically the
0. This null-motion finding overlooks the fact vortex point locations. For any air content we
noted previously that the initial velocity is (fj)
actually an extremely small positive number. t
But since this model of the oscillations has no - I and this indicates the lowest value of dis-
zero-order energy source the resulting oscilla- solved air content for positive values of 0. Re-
tions are well represented by the trivial ferring to Eq. (18a) which defines Q, we see
solution just given, that this limit would correspond to V0 = 0 or

The important feature is that this to K - 0, because it is physically unrealistic"critical" case represents the condition of de- for the surface tension to be infinite
marcation between two physically distinct Of course, all of these free oscillations are
motions. Trajectories on the left represent of high frequency. It is of interest to find out

* * * ' S~. * * - - * .
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how many cycles of free oscillation might be As a rule this cubic can be factored with
found during the time of rise for one of the the help of Tartaglia's method. But first the
forcing functions of Fig. 8. This rise time is radicand should be rewritten as A [ x3. px 2

measured in units of laboratory time. Some qx - r I. Then if we put u,= ."j(0) we have
calculations have been made to answer this p = 2buv2/(2au. 2- I), q = (2 cur 2. I)/(2auv 2- 1)
question and these will be discussed later. For
now we may say that during a typical a r

bubble time interval between F(0; K) - 0 and Let the three real roots of this modified

F(r; K) = Flm x the number of vaporous oscil- cubic be x, x2, and x3, and suppose that they

lations is measured in multiples of ten. it are ordered with respect to the upper limit of

may be pure coincidence, but the amplitudes integration to read, x, < x2  u '< x3. The usual

of oscillation indicated here and those illus- laborious factorization can be shortened in
trated in Fig. 2 appear to be about the same this case by observing that the rewritten

and so the frequencies also should be com- cubic always has one root equal to unity.
parable. It should be said however, that the Thus when one divides the cubic, x3 . px 2  qx 4

results found here show a weak dependence r, by the factor, x - I, the remainder turns
on K and Vo and these results, being of order out to be 2uv 2(a - b c - d)/(2aUv 2- 1). Then

zero in e, are independent of the forcing when the numerical values of a,b,c and d are
function. Therefore, the apparent consistency summed as indicated, one finds this sum
between the present and the older results is equal to -0.000001 and he can consider this
very encouraging. Those older results also result to be zero for all values of u v, within

suggest how the influence of the forcing the accuracy of these four coefficients. Con-
function grows to produce a large vaporous sequently, we need only factor the quadratic,
growth which overwhelms the small scale X2, x(2au 2 - 1 2bu, 2)/(2au, 2- 1)

free oscillations considered here. Further 2u,2(a + b + c)/(2auv 2- I).
exploration of these additional aspects of the These factors are
process depend on the first-order solution
which remains a topic for future research. [(I 0568uV2 - 1)/2(1 * 0.l00608uv 2 )] { I - IZ 1,

where
Zero-Order Hnalytical Solution Z - I + [4.212144u, 2(l + 0.100608u, 2)/

(1.0568U,2- 1)2] .

Using the fact that v = du/dt and solving These roots were also found numerically for
for v in Eq (26), we can write Eq, (28) as the specific example of u,= 1.1832, correspond-

(du/dt)2 - [(21 in u)/(l 1
- (u2 - 1)/(I + 0)3]lu 3 , ing to 1 1.4 and Q = 0,0 . The three roots are

The bubble time, r, is then given as the quad- xI =- 0.9459, x2 
= 10 and x3 

= 1.3662

rature, Comparison of these with the range of inte-
gration in Eq. (29) justifies the above ordering

U of the roots with respect to the value u, in

t --[x2dx/!(2x Inx)/(l+ Q)5- (x3- x)/(l + ,. (29) this case at least. Moreover, except for x1, the

roots depend on u,,, that is xi - x(u,). Also u,

Generally, one evaluates this integral numeri- will be recognized as the parameter governing
cally. It is possible to obtain a reasonably ac- the location of the singularities in the phase
curate approximate solution by fitting the plane, The root at u = x2 2 1.0 is seen to be
function u In u with a cubic polynomial, au 3, the initial point in the phase plane. The de-
bu 2. cu - d, The coefficients are a -0.050304, pendence of the other roots on u, permits
b v0.578693, c =- 0,001871, & d - -0.52651 one to distinguish between the families of tra-
Then the radicand above also becomes a cubic, jectories to the right or to the left of the
Ax 3 - Bx2 -Cx - D, having coefficients: initial point in Fig 10 above. The junior
A [2tat(I Q)5] - [(1 + Q)3], B - 21b/( + Q)5, author has investigated this last matter fully
C 21c/( Q)5+ [1/(1 + )3], & D - [21d/(1 + W1,], in his thesis.
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Consequently Eq. (29) can be rewritten in Fig. 12. Note that the ordinate in Fig. 12
using roots x1, x2 , and x3, as u has a suppressed zero so that the illustration

-/(I Q'/(2au fr x2dx/G(x) emphasizes differences between this approxi-
mation, shown as dashed curves, and solid-

where (29a) line numerical results from Eq. (29a). Equa-
G(x)= - x1) (x - x2 ) (x3- x) tion (30) is an important first step toward

and the value of a is given above . With the achieving the desired precise result for the
help of Byrd and Friedman 7 , Eq. (29a) can be zero-order solution. It suggests that over the
expressed in terms of incomplete elliptic inte- parameter range of interest here, a more re-
grals of the first, second and third kinds and fined representation of uo(t, u,) can now be
a product of Jacobian elliptic functions. We found. This final result and other details not
are not aware of any method for inverting presented above are given in the junior
that complicated result so that it will have author's thesis.
the form u = f(t). Therefore we did repeated
numerical integrations and varied the quan-
tity uV= --I(1 + Q) over the range indicated 4- .1 3

in the phase plane analysis above and selected 1-/
an appropriate intermediate value of (I Q)32 .3

with the result illustrated in Fig. 11. 2APOMT R

The relation shown in Fig. 11 was fit with CORECT

an approximate analytical result, which is 3.2

accurate at the origin and at all maximum .06

radii, rrn It is a simple expression and in the t,.-.- /
worst case it offers about 5% or 13% accuracy -
between these limits depending on whether ".0
one uses u or (u - 1) in the calculation of 1.0
relative error. This simple aproximation has BUB . L E. i . o r .5 3.0 3.E

the form
u = A - B cos(y) + C cos(2,). (30) Figure 12.- Comparison of numerical results

The angle 4, = tp(uvl) and the coefficients, A,B from Fig. 11 with the fitting

and C, which also depend on uV contain all of function of Eq. (30).
the complexity. The degree of success achieved
with this formula is shown in the comparison Conclusions:

1,4 U, Perhaps the chief point needing emphasisUJi L 1183-"

3.133 with regard to our review of the so-called
asymptotic bubble-ring inception theory is
that its postulates do not allow for nuclei

-. recirculation within the laminar bubble after
they have been created by the visible bubble-

- ring cloudlets in the transition zone. That is
,.076 to say, we are not concerned with desinence.

/ Our interest is in inception only In this latter
, 3.3, 0situation there will be no ring of cloudlets and
I. we must assume that the only nuclei source

0. "0 is from the free stream. The apparent good
0 0., ,.o0R5 ,. 2. 3.0 ,5 agreement shown in Fig. 3 leaves us with theDIK/d[N$1ONtJE$ I9U TIMI, r hope that the basic assumptions of the theory

Figure II.- Numerical results for zero-order are close to the truth.
isothermal cavitation bubble growth on a The ability of the cavitation-cutoff

hemispherical headform. theory, as outlined above, at least to show
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correct trends reinforces the hope that our 5. Holl, J. W. and Carroll, J. A., "Observa-
basic postulates are correct. The question is: tions of the Various Types of Limited Cavita-
Will a more refined calculation as initiated tion on Axsymmetric Bodies," Proceedings of
here improve the ability of the theory to the International Symposium on Cavitation
predict cavitation cutoff speeds? At present Inception, The ASME, New York, December
we can not say. But more comprehensive 1979, p. 87.
experimental cutoff data would be of great
value for testing this aspect of the theory . 6. Parkin, B. R., "A Theory for Cavitation

Turning to the multiple scale calculations, Inception in a Flow Having Laminar Separa-
we can say that an approximate zeroth-order tion," Technical Memorandum file No. TM 79-
solution is now in hand. It remains to find 198, Applied Research Laboratory, The Pen-
the first-order solution and to put these two nsylvania State University, P.O. Box 30, State
parts of the solution into a form which is College, PA. 16804. See also Trans. ASVME,
ready for more refined scaling and cutoff Jour of Fluids Engineering , Vol. 103, No.4,
calculations. We hope that research aimed at Dec. 1981, p 543 and p. 577; also Vol. 104, No.
completing this work can be carried out soon. 1, March 1982, p. 115.
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