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r reinforced ceramics were recently studied in [6]. Here, we turn first
to some current theoretical research on the fracture of cermess --

h!veral current studies in the micromechanics of solid bodies ceramics reinforced by strong metallic particles.
are reviewed. As in many such investigations, methods of

* continuum and structural mechanics are used in the analysis of Particulate Touthenina
models at microscopic levels with the aim of increasing The essential physical process that seems to be involved in

understanding of material behavior in the large. The works particulate toughening (e.g. [7,8]) is that of crack-bridging. If a

described herein are concerned with the fracture resistance of crack in the ceramic matrix tries to extend by going through the

toughened ceramics, the interfacial stress analysis of hard particles metallic inclusions, instead of bypassing them; and if the bonds
in ductile metals, and the elastic behavior of lungs. between the particles and the ceramic are strong; and if the particle

I itself is strong (three big ifs!); then cracks in the ceramic that have

INTRODUCTION grown to some extent will be bridged by intact particles (Fig. 1),
and continued crack growth will thereby be inhibited. A detailed

Micromechanics is the currently fashionable designation of discussion of the conditions under which bridging may be
what is really an old subject, but one that is receiving increasing encouraged will not be given here; suffice it to say that cracks tend

attention from theoreticians in applied mechanics. Armed with their to be attracted to particles when the particle stiffness is lower than

repertoire of analytical tools, they ty to relate the overall that of the matrix material, but [8] initial thermal stress may also play

deformation and strength properties of materials to the behaviors and an important role. Attention will be directed here to the theoretical

interactions of their microscopic constituents. Typically, such estimation of the magnitude of the toughness enhancement to be
constituents are grains, particles, fibers, with sizes of the order of expected if bridging does indeed occur.
microns to millimeters. An earlier survey by the writer, in the spirit
of the present one, was given in [1]; a new set of topics is discussed
here.

CERAMICS

Because they stay solid and hard at elevated temperatures, x
ceramics appear to hold considerable potential for use in engines, L
where the payoff in thermodynamic efficiency increases with -

operating temperature. The trouble with ceramics, however, is that 7
at moderate temperatures they are fragile, and fracture easily. Fig. 1 Partially bridged crack
Considerable effort is therefore currently devoted to a search for
ways to toughen ceramics by various techniques, usually involving W contempla the following small-scale bridging situation
reinforcement by the addition of strengthening constituents. (Fg 1: An "applied" stress-intensity factor K produces the

Transformation toughening -- in which unstable particles undergo standard crack tip stresess-

phase-transformation expansions in the vicinity of growing cracks, s---=r (--

and hence act as self-sealing agents [1, 2, 3] -- has been receiving f0 ()r
continued attention (e.g. [4], [5]). Aspects of the fracture of fiber- 2 i .. i a I or
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but thes we reduced by the effects of the bridges that keep the crack attains the critical value K,.
faces closed, at discrete intervals, up to a length L. The phrase
"small-scale" means that the bridge-length L is small relative to the
crack levith, the specimen size, and distances from the crack to the ry (L -CS
specimen boundaries. Under these conditions, the stresses (1) KM

constitute afar-field distribution relative to the crack tip.
Now we want the picture in Fig. I to represent steady-state

crack growth to the right, with both L and K remaining unchanged.
Two strength conditions will accordingly be imposed: matrix L

stresses very near the crack tip (appropriately averaged with respect
to thickness normal to the plane of Fig. I) should be given by Eq.
(1), with K replaced by K,, the toughness of the ceramic; and the (M(

stress on the "last" intact particle, at x - ., will be set equal to S, the
particle breaking strength. We want to calculate K, which is now Fig. 2 (a) Spring model, (b) J-integral path
the toughness of the reinforced material, in terms of K M, S, the
volume concentration c of particles, and the particle radius a. Equations (5-6) can now be regarded as parametric equations

Dimensional analysis suggests a relation of the form relating K, K m, and S, via assumed values of L, and the solution of
(3) for cp(x). (Of course, the formulation can be conveniently non-

K/Km F[.-a ,c) (2) dimensionalized.) But, remarkably, the desired final result, namely
Km the function F in Eq. (2), can be found without solving the integral

and this immediately indicates a perhaps unexpected conclusion: for equation, because Rice's ubiquitous J-integral can be exploited. To
S and c fixed, toughness should increase with particle size. A recent do so, it is useful to think of (3) as an equation governing the
thesis by Sigl [9] indicates that such effects have indeed been distributed stress
observed. (But note that S might well be a decreasing function of Gy (x) = cop(x) (7)
particle size.) in a line of springs (Fig. 2a) joining the crack faces. The non-

In a current study [10), the following integral equation has dimensional compliance ga in the stretch-stress relation
been written for the particle stress distribution OF(x) (interpreted as
the stress averaged over all particles at x): 2v m 8 ct [oy a(-v 2 )/E] (8)

P[X 1 (I-v 2 )/(2E)] Op(x) = 4(I-v 2 )K'N&x/(EJ ) would then be given by
L z pit %r2/c (9)

-4(l-v 2)/(r E) f log[(cx+-rt)/(Ix-t J 'cq(t)dt (3) Writing the I-integral for the path in Fig. 2b gives

2 2)/ 2 2/
Here the frst term on the right is what the crack-face displacement K (-v )/E -Km(l-c)(l-v 2)/E + t o2 (L)a(l-v 2)/E (10)
v(x) would be in the absence of bridging; the term containing the where the (1-c) term, as in (6), reflects the fact that only the matrix
integral represents the closing effect of the bridging-particle strsses; is cracked along the crack edge. Using (4), (5), (7), (9) in (10)
and the left-hand side is an independent estimate of the net crack- gives
face displacement in the bridged zone, again averaged through the
thickness. Without the factor P, this term is the average surface (K/K2)/(I-c ())S21
displacement of a half-space subjected to stress ap(x) on a disk of ac t d 1 + (it [ac( lte in fig3
radius I - N5'5a, the root-mean-square radius of disks i as the desired equation for particulate toughening, plotted in Fig. 3.
by a plane through a random field of spherical particles of radius a.
The factor 0 corrects this displacement for the simultaneous 10
presence of many particles tying down the surface, and has been
approximated in [10] by 8-

(The Young's modulus E and Poisson's ratio v in (3) should refer to 6

those of the composite material, but we will assume that they are the 4
same as those of the ceramic; anyhow, they factor out here.)

In terms of the solution of the integral equation (3) for ap(x), 2
the aforementiond steady-state cracking conditions will be written as

OP() -S (5) 0 2 4 6 8
and K- cf~crp (x)dx .Kn(I-c) 1 2  (6)

K- /2L ___ Kmm(- 6
V-XJ 0 -r2Fig. 3 Particulate toughening

Equation (5) stipulates the breaking of the "last" particle, and Eq. (6)
asserts that the r.m.s. value of the stress-intensity factor in the Tere is at present a serious obstacle to applying (11) to real
ceramic along its presumed straight, but interrupted crack front,

I
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systems, namely ignorance concerning the particle strength S. (L-x)/a = /4 (12)
Because of the way it is constrained by the elastic ceramic, stresses and
in a bridging particle will tend to be nearly hydrostatic, with plastic
flow greatly inhibited. On the other hand, each bridging particle is (1y a/K = 2g(t)/4a- (13)
subjected locally to intense stresses where it is hit by the crack in the w
ceramic. Some recent estimates [121, based on ideal plasticity we find from (3), for L ---
suggest that S > 6 0y, where cy is the uniaxial yield stress, might be g(T)dTI
anticipated. Working backwards from Eq. (11) with a few g()- 0  0 (14)
experimental toughness measurements on several reinforced
ceramics points to inferred values of S about ten times the uniaxial and the far-field conditions require g ~ l/4 x for - .. This is a
strength of the particle material. The problem of calculating the setup for a Wiener-Hopf solution, which gives
strength of a ductile bridging particle is open.

It should be noted that the magnitude of the effective g( )~ I/ /2- [I- y'-log ]/(1,,h) (15)
compliance a in Eq. (8) may really be higher than we have
assumed, with the consequence that values of S inferred from Eq. (Y = .5722...)
(11) for a given toughening would not be quite so big. Perhaps for 4 - @, and
some interface sliding occurs near the equator of each bridging
particle before it fails, increasing the average crack opening g(2) 1 2" -t(3) -1-log]/(2xt) 3 2  

... (16)
displacement. Such sliding would, in addition, reduce the constraint
on the particle, letting it deform plastically more. In fact, the (Vwz) a r (z)/r(z))
effective stretch-stress relation in our spring model would then no for 4 - . Note that since the "last" spring is now at , = 0, and
longer be linear. More of this when we look at bridgingfibers later. since L --*0 implies K. -+ 0, the analytical result g(O) = /,2 is

A partial check of the theory that does not involve S can be consistent with the J-integral relation (10).
made by solving (3) for a given bridge length L, and then using (6)
to see how K, K., and L are related. (Alternatively, we could Synergism- Combined Bridging and Transformation Toughening
substitute the calculated value of op(L) for S in Eq. (11), thereby The analysis in [21 of small-scale transformation toughening
finding K/Km for the assumed value of L) An approximate solution provided the energy-based result
of (3) provided the non-dimensional results shown in Fig. 4, which 2

also shows two available experimental points. The agreement is K (I-v 2 )/E = Kl(lv2)/E + 4T (17)
encouraging. for the enhanced stiffness K, where 4T is a residual wake energy-

per-unit-length produced by phase-transforming particles. A fair
0 WC/Co (II] approximation to -r (for so-called "super-critica transformations)
0 Al/gloss [7] was given by

8 T = [" 3(1+v)2" ( 2/' c
4- -.)C To T  (18)

where OpT is the volumetric strain of a freely transforming particle,
cT is the volume concentration of transforming particles, and oac is

4- the critical mean stress for the occurrence of phase transformation.
The result for transformation toughening is then (approximately)

01KIKm 0{l4t i-v)] EcT 11'I (19)11 O1 20 30 40 510 G- / - -- 9

It now appears 151 that the theory of 121 has to be developed further
( I- . .1 L to include additional effects, notably the influence of shear stresses

on triggering the phase transformations. Nevertheless, it is
instructive to exploit Eq. (17) to see how the effects of phase

Fig. 4 Toughening vs. bridge length transforming and bridging particles might interact. Equation (10),
derived from a Ji-integral, can also be regarded as an energy-balance

Besides showing how toughening is related to bridge length, relation, and so if we write a combined energy equation, presuming
Fig. 4 can be interpreted as a resistance curve , relating applied K to that (18) still provides a reasonable approximation for 4T, we get
crack extension. An initially unbridged crack will grow into the K2 (l-v 2 )/E = K(I_c)(I_v 2)/E +/(xS

2c 2 a(l-v 2 )/E

matrix under increasing K until the bridge length L, equal to the 2

crack extension, is such that the relationships in Figs. 3 and 4 are
both met at the same K. Subsequently, K and L remain constant as + L3 ] KCTO/a, 1 (20)
steady-state cracking proceeds.

The numerical solution of (3) needs some care, especially for where we used oy(L) = cS. Then the result for the combined
large values of L/a, because then the distribution of a,(x) peaks toughening is described by the product of (11) and (19):
sharply at x = L. Fortunately, an exact solution is available for
L --*-, which can be used to guide the numerics for finite L With

. .-. - -
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[ + [112 K2(I-v 2 )/(AE) = K2 (l-c)(-v 2 )Em + V(cS) (25)

(K/KIn) " - f M (21) where A is a constant that takes into account the anisotropy of the

. . . .1 ) EcTO composite material; S is the fiber strength; and V(ay) is the strain-

( )12 j (I+V) (. ) j energy function of the stress 0 in distributed springs that

l-v appropriately model the bridging fibers. To find out what V should
The implication is that AK a K-K. is larger than the sum of the be, we can simply retrace the derivation of Fig. 5, using a similar
AK's that would be produced separately by each of the toughening spring model in the formulation of the matrix-cracking problem in

agents. the case of unbroken fibers. The outcome is
K2(l-c)(l-v-)] P(O

The work in [6] was concerned with steady-state matrix L E, )(

cracking in a ceramic reinforced by long aligned fibers that remain where
unbroken. If the fibers, of radius a, are held in the matrix by P(0y)= Coy/00)2 (27)
friction, long cracks normal to the fibers were found to propagate at
the critical stress ° given in Fig. S in terms of reference stresses C0 for (Oy /O )  (ot / 0)3/3
and o] defined by

_ = B(c) 114 r 2  2 "-) 2  
ff (ry/tl) 3 + (O/O,)(lI0)4/-3-(i/0o)6f27 (28)

E '[ E ~ KmVml-VmE ](V = Ba ( (22)for (iY/Co) k (/ 00)3/3

_ 6c2Ejs 1/3 r Kl(l-..-2l' 3  Then the result for toughening becomes
Yi (-c), E2, aJ (23) (K [I + P(cS)]"P2  (29)

Here t is the sliding shear resistance of the fiber-matrix inferface; Ef, [AE(I-€VE)]112

Em, and E = cE + (l-c)Em are the longitudinal moduli of the fiber, Note that for small S, P is quadratic, as in Eq. (12) for particle
bridging; but for S large, P . O(S3), and the toughness becomes
proportional to S3/2. Note that the effect of decreasing the sliding

no slip resistance r is to decrease aY, and hence to increase the toughness;
but eventually, for small enough r, the bridging length needed to

c r attain the enhanced toughness would become inordinately large,
Winvolving unacceptably long matrix cracks. The question of an

optimum choice for % has received some preininar y study in 113,
but needs further exploration.

METALS

l]?4 Some basic calculations have recently been made by Wilner
O . .... 141 concerning interface stresses at hard, second-phase particles in
0 .5 10 1.5 2.0 ductile metals. It is now commonplace that metals often fracture by

Wr, the process of void nucleation, growth, and coalescence, and it is to
T-" the first of these that 'vilner's work is relevant. Void nucleation at

Fig. 5 Matrix cracking stress inclusions tends to occur by interfacial separation when the particles
are sphere-like (whereas elongated particles often fracture first).

and composite, respectively; and B(c) is a utility constant The analysis of [141 contemplates an isolated, spherical, elastic
matrix,nd inclusion in an infinite elastic-plastic matrix subjected to a
defined by monotonically increasing axisymmetric stress-state at infinity (Fig.

r 2(1-c) 114( 6). The matrix was imagined to obey J2-deformation theory

--6log c - 3(1-)(3-c)J (24) plasticity, and to follow the Ramberg-Osgood stress-strain curve

E, - C [I + (30)
Fiber-matrix interface slip will not occur during matrix cracking if

a0/oo > 3113, in which case a, = c0. Otherwise, sliding will take in uniaxial tension. Several earlier finite-element studies of this kind

place, and a,= 1 becomes a good approximation, of problem have been made, notably in [15], but the presently
reviewed calculations, executed on the basis of a trial-function

But now let us consider, as in [12, 13], the toughness of a variational approach, are the most complete to date. Up to 35

ceramic when a crack cuts through fibers, and then a picture like that functions for the displacements in the matrix were used in the
in Fig. 1 applies, with intact fibers normal to the crack replacing solution, and these were matched to an exact representation of the

particles along the bridged portion. Once again, a -integral can be displacements in the elastic inclusion. Some sample results follow.

written (Fig. 2), this time as

..... :.........,..:.. ,.-..,,-..-,,,-



0 max eventually moves about 13" off the pole at high loads; for still
S higher n, the shift can be as much as 18.

~1.7-

T

0 1.6-

SCF

1.5

Fig. 6 Axisymmetric loading, isolated elastic inclusion

The stress of primary interest is the largest interface tension, 1.4-
a, which usually occurs at the pole in the direction of S > T (Fig.

6). For the case of uniaxial tension (T=O), Fig. 7 shows how the
stress-concentration factors

(C) Opole, pol(e)13 I I I
(SCF)pole = T ' (SCF)= Sx (31) 0 4 8 12 16 20

vary with the level of applied stress, for the case n = 9, and three
panicle-matrix modulus ratios Ep/Em = 1,2,4. (In each case,
Poisson's ratio v = 1/4 in both matrix and particle.) Depending oij Fig. 8 Asymptotic stress concentration factors, S/a, --
El/Em, plasticity can either raise or lower the SCF with respect to its

1 .6 - E p / E m - i A -4S 
z

,.5"5

1.4- a (SCF) . 2

SCF pole

1.1 - 1

I I I .5 1 1.5 2 2.5

0 .5 1 1.5 2 25 (S -T )/cr

S/a- 1

Fig. 9 Stress concentration factors. S > T a 0.
Fig. 7 Stress concentration factor, uniaxial loading, n = 9, Ep /E n - 2. vp = v, s 1/4

n=9, v1 =v m = 1/4 In Fig. 8, the asymptotic values of the SCF's are shown as a

elastic value. Note too, that for large applied loads, the SCFs for function of n. Note that even when the location of Oe, moves
all Ep/Em approach the same asymptotic value. This is because in away from the pole, its value remains close to that of the pole stress
the presence of much plastic deformation in the matrix an elastic Finally, a sample set of results for S > T > 0 is shown in Fig 9. for
inclusion becomes, effectively, rigid. For n = 9, the location of

~~d2I -J.. ? Jb %'P i~i~ ~ ~% . .
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the case ERlE, = 2, v -v,= 1/4, and n w 9. Here (SCF)po1, within each of the five triangles shown in Fig. lOb. Finally, we will
always drops initially as the effective stress (S-T) increases, but throw all of the load-carrying capacity of the alveolar walls into
then approaches, not always monotonically, asymptotic values that idealized members along the edges of the dodecahedron. The
decrease markedly with the amount of triaxiality present. This has constitutive relation connecting the tension T and length L of these
some interesting implications. It is well known that triaxiality members, and their rates-of-change, will be written, as in 116].
enhances void growth, once voids are nucleated. Accordingly, Fig. "IT = BIL (32)
9 indicates the possibilities of explosive void growth in the presence
of triaxiality, since the delay of nucleation could set the void up for where the non-dimensional modulus B could be a function of L.
very rapid growth after it is produced by interfacial separation. On Now apply a hydrostatic tension P to the faces of the
the other hand, it is interesting to note that in certain ranges of dodecahedron. The incremental bulk modulus K defined by
(S-T), where the curves of Fig. 9 have negative slopes, increasing
T for a given S could increase the SCF. K = I1('/V) (33)

was found in 116], as follows: By the principle of virtual work
LUNGS

PV= 30 TIL (34)
This survey turns, finally, to a problem in biological but also

micromechanics: how are the microscopic elastic constants of
animal lungs related to the properties of their constituents? More VN = 3 IjL (35)
precisely, we consider the spongy tissue in which the branching and consequently
network of air passages in a lung culminates, and in which it is PV = 10 TL (36)
embedded. This tissue -- or parenchyma -- consists of a multitude
of tiny polyhedral air sacs (alveoli), about 1/3 mm in diameter, with so that, with the use of (32), the result
thin interfaces (like a mass of soap bubbles). When the lung is K/P = (B-2)/3 (37)

inflated to some internal pressure, the surrounding pleural follows. At B = 2, the structure becomes unstable.
membrane transmits tension to the parenchyma, to which it is
attached. We will assume that the parenchyma is subjected to a state
of hydrostatic tension, and ask: What are the elastic constants in the A -
relation, presumed isotropic, between subsequent rates of stress and VT

This problem was recently studied by Kimmel et al. [16] on B
the assumption that the alveoli could be idealized as regular
dodecahedra, and, on the same basis, a still more recent analysis
1 171, based on a general variational principle of non-linear structural
mechanics [18] was executed. The approach and results of [17] will
be summarized here.

We contemplate an assemblage of polyhedra, each of which
has half the thickness of the alveolar walls, focus attention on one of
these hollow cells, and pretend that it is a regular dodecahedron
(Fig. 10a). We will then assume that the relation between volume-
averaged stress and strain in the isolated dodecahedron approximates

E C

Fig. 11 Tensile loading a

The determination of one more elastic constant is needed to
characterize the material. With P held constant, the Young's
modulus E = b/ (Fig. 11) was calculated in [17] by the following

(o) (b) approach. The principle of virtual work now says
30

Fig. 10 (a) Regular dodecahedron, (b) subdivision of 
T i SLi = P6V + 8t (38)

pentagonal faces . I

that for the parenchyma as a whole. However, to mimic the effect where n is the potential of applied a stresses. Because the structure

of mutual constraint among the alveoli, we will assume that when is prestressed, non-linear terms in 8L, and 6V must be retained in

the dodecahedron deforms, the central displacement of each face is the implementation of (38). The algebra is messy, but ultimately,

equal to the mean of its five corner displacements. Further, the differentiation of (38) leads to linear equations relating corner

displacements within each face will be assumed to vary linearly velocities (there are just four essentially different ones) to 6, and

%E . - -
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portion of PI that is equilibrated by the pleural membrane and does
L0 not get transmitted back to the attached parenchyma. A rough

estimate is P/P1 - 3/4, but the actual fraction is not independent of
P1. possibly dropping S as PI goes up [19].

CONCLUDING REMARKS
(L 3.0
U The three sample problems of micromechanics reviewed here

a 2.0 are quite different from each other, but there are many other flavors,
Nrepresented by such topics as micro-buckling of fibers and surfaceW (;/P layers, microcracking, interface tearing, micro-shear-banding, and

1.0 the micromechanics of constrained phase transformations. Two
points, in closing, lest the wrong impression be left by the present

L0 0.. . choice of topics: (a) a very important role has been played by
0 30 a0 W 40 sophisticated microscopic observations, and by microtesting

* techniques, that tell us what things really look like and what happens
at microscopic scales; and (b) super-computing may assume an

Fig. 12 Young's modulus E and shear modulus G, increasingly useful function in basic micromechanics research.
normalized by hydrostatic tension P Exploratory, massive, brute force calculations may provide results --

just like experiments do -- that inspire sensible mathematical
then, with a well-chosen definition for t in terms of the velociies, E modeling, and, at the other end of the game, numerical

implementation of complex mathematical models will obviously be
can be computed. The result for E/P as a function of B is shown in greatly facilitated.
Fig. 12, together with the curve for G/P (G - shear modulus) that
follows from the standard connections among elastic constants of ACKNOWLEDGEMENTS
isotropic materials. The corresponding values for Poisson's ratio v
given by these connections are shown in Fig. 13. This work was supported in part by the Office of Naval

Research under Contract N00014-84-K-0510, and by the Division
0.3 •of Applied Sciences, Harvard University.
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