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Asymptotic solutions for the nonlinear, nonhomogeneous, Korteweg-
deVries (KdV) partial differential equation~(pdef with slowly varying
coefficients are not in general uniformly valid. A uniform asymptotic
expansion is obtained by finding separate expansions for different
regions and matching. A KdV saolitary wave propagating in slowly varying
media is examined. Quasi-stationarity for the core reduces the problem
to solving ordinary differential equations for that region. However, in
the leading tail region, hyperbolic pde's must be solved to determine
the amplitude and phase. The method of characteristics predicts triple
valuedness after a caustic (penumbral or cusped) develops. Singular
perturbation methods show the solution near first focusing satisfies the
diffusion equation and involves either an incomplete Airy-type integral
or an exponential integral similar to the Pearcey integral. Laplace's
method shows that the critical points of the exponential phase satisfy
the fundamental folding equation. A linear multi-phase solution is
determined which does not become triple valued (break). Instead, a wave

nunber shock develops, which separates two different solitary wave
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X0 tails, and travels at the shock velocity predicted by conservation of
? waves. Thus, a unique uniform leading tail solution is obtained corre-
o sponding to a specified moving core (the problem is shown to be well-

A posed) .
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CHAPTER I

INTRODUCTION

1.1 History

The objective of this thesis is to add to our understanding of a
physical phenomenon which was first scientifically observed over 150
years ago by J. Scott Russell. The incident in 1834 is best described

by Russell himself:

"] was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat

suddenly stopped--not so the mass of water in the channel

which it had put in motion; it accumulated round the prow

of the vessel in a state of violent agitation, then !
suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined head of water, which
continued its course along the channel apparently without
change of form or diminution of speed. [ followed it on
horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a
half in height." [30]

Russell's life was dramatically changed by this single event, and so was

.l .

3: our understanding of wave motion to change as the investigation began.
f He found no mathematical theory available which predicted such a
q

phenomenon and proceeded to study it experimentally. At the time he
could hardly have imagined the controversy that would arise between him
and Airy over the existence of such a permanent waveform, much less have

T appreciated the bountiful applications in science that would arise and
- the number of great minds that would apply themselves to broadening our
‘

q




understanding of this phenomenon! [t was nearly fifty years before the

controversy was put to rest by such men as Boussinesq, Rayleigh, and
Korteweg and deVries. They demonstrated the existence of a permanent
solitary wave for nonlinear partial differential equations of shallow
water theory. There was little scientific activity for another half
century until other physical applications were shown to be governed by
similar mathematics. Then a variety of situations were shown to give
fise to nonlinear dispersive partial differential equations (collision-
free hydromagnetic waves by Gardner and Morikawa and a nonlinear meson
field theory by Perring and Skyrme). Fermi, Pasta and Ulam's study of
heat conductivity in solids then motivated Zabusky and Kruskal's
important numerical study of solitary waves, coined "solitons" by them
because they observed particle-like interactions. 1In order to under-
stand these interactions, a theoretical investigation was undertaken
resulting in one of the most significant developments in applied mathe-
matics and mathematical physics in recent years. Gardner, Greene,
Kruskal and Miura related inverse scattering for the Schrodinger eigen-
value problem to the nonlinear Korteweg-deVries (KdV) equation. In this
way they obtained solitons and multiply-interacting solitons. Shortly
thereafter Lax showed that other nonlinear partial differential
equations could be analyzed in this way. A series of interesting
physical problems was studied (self-induced transparency by McCall and
Hahn collaborated by Lamb, and the nonlinear Schrodinger equation by
Zakharov and Shabat, both important examples since they introduced a

different eigenvalue problem). Finally, Ablowitz, Kaup, Newell and

Segur showed how the inverse scattering transform (IST) could be used to




solve a wide class of nonlinear evolution equations. Thus Russell's

- ab g

discovery of the solitary wave has led to much research and no doubt

-

izi will lead to much much more.

§L\ 1.2 Motivation

g&; A search of the literature shows much activity and excitement in
ZE: the area of solitary waves and solitons once Gardner, Greene, Kruskal
%;. and Miura [4] demonstrated their method for obtaining exact solutions to
:Eé the nonlinear KdV equation. Their method of direct and inverse

ﬁz scattering, which views the eigenfunctions as the transmitted portion of
f:! a wave coming in from infinity and being scattered by the initial

.Sg conditions, was formalized by Ablowitz, Kaup, Newell and Segur in 1974
{;: [2]. This formalization demonstrated permanent solitary wave solutions

for a large class of problems. The technique, however, requires that
the problem be integrable, which is not the case for many problems which
4 involve slow variations. It is precisely these type problems which
o arose in many physical applications. Researchers thus began using

‘
numerical techniques to gain understanding, and singular perturbation

methods to analytically demonstrate asymptotic behavior. In the late

1970's several independent studies showed the formation of a "shelf"

o behind a slowly varying KdV solitary wave. Kaup and Newell [14] and
1: Knickerbocker and Newell [19] used perturbations on the inverse

{fj scattering solution, while Ko and Kuehl [16,17], Karpman and Maslov
ﬂ;; [13], and Grimshaw [5] used direct perturbation methods. For the case
‘i% of a KdV solitcn propagating to the right through a region of slowly
v changing depth, Kaup and Newell write:

-

o

@

é&

<A

v,
~

.%.‘.-
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.\_: "if a soliton propagates through a region of decreasing
s depth to a new constant level hq at x = xq, the
P solution in the region to the right of x = xq will

s consist of {1) the original soliton, whose height nZ has
":H adjusted in the transition region so as to be just the
o7 correct height for the new depth plus (2) a number of
o secondary solitons produced by the arrival at x = xq of

the elevated shelf (which may be treated approximately as
a rectangular well potential of width L ¥ (X - xg) and
average height H = -L/3n; the number of solitons will be

-

"
e
s

- proportional to YHL) and (3) some left-over radiation."
O [14]
It is this case of a solitary wave propagating on the surface of water

Vtﬁ; of variable depth which Grimshaw [5] considers using a multiple scale
- ':.:‘
:13 approach. He shows that the amplitude and phase of slowly varying

o

.~

i solitary waves are determined by hyperbolic partial differential

;’5 equations. In his paper he points out for the region in front of the
’::i: wave:

"A caustic develops...Beyond the caustic fp becomes
: multivalued, and it is tempting to conjecture that the
AN breakdown is associated with the formation of Ffurther

;%:{ solitary waves." [5]
o
- It is here that we pick up the study. The development of a shelf behind
J
A a slowly varying solitary wave has been extensively studied {see above),
ol
.;{- but the situation in which characteristics cross in front of the wave
e
o has not been analytically explained. The primary impetus for the study
‘ .
b is thus to explain analytically what the development of a caustic in
-
A front of the wave means in terms of the physical solution. Is
EN
E;f Grimshaw's conjecture correct?
®4
Ity
A
L9
'.\
5$: 1.3 Results
L5 i
4 2 First we show that the problem separates asymptotically into two
N2
by ,'—‘
v:j; parts. We call the two parts of the slowly varying solitary wave the




L b aalat it L A i ol T R T T T E T T R T T R e T T E T AT LT AT LML LV TUN T LT I RN T TR I NN T IR IRV TR TTRTETRTYT Y

s:}.

: ;:: 5
e

$:j "core", or the region where the mass is concentrated, and the "leading
) . tail", or exponentially decaying region in front of the core with

Ei. respect to its motion., Our first results came by making some

-;% simplifying assumptions. Looking first to the leading tail we linearize
-.; the problem and then consider the special case of constant coefficients,
'§§£ with slow variations introduced through initial conditions only. We
115 use the methods of characteristics, multiple scales, matched asymptotic
- expansions and asymptotics of exponential integrals. The results are
ESE quite interesting. Further solitary waves are not created in the

’-jg leading tail as conjectured by Grimshaw. Instead, we find that the
ﬁﬁ% triple valuedness predicted by the method of characteristics actually
E;g leads to a "wave number shock", or a relatively rapid transition from
Ei; one slowly varying wave tail to another, Details of these results are
N given in Haberman and Allgaier [8]. The idea of wave number shocks was
23; first discussed by Howard and Kopell [10] in their work on slowly
L;Eé varying reaction-diffusion equations. Also Haberman and Sun [9] used
:#t similar asymptotic calculations in their work on slowly varying

Jﬂﬁ oscillatory dispersive waves.

s

'f: The remaining chapters of this thesis show how the properties of
;ii the leading tail relate to the structure of the solitary wave core.

;EE Futhermore, the most general cases of arbitrary slowly varying co-

%EE efficients and arbitrary slowly varying initial conditions for both the
';:; core and the leading tail are solved.

P

EJE We show, in fact, Grimshaw's conjecture (see Section 1.2} is

’?g partially correct, that under the right conditions characteristics for
‘;; the leading tail will cross and lead to the formation of a new type of
EEE salitary wave tail. We show that the set of different conditions, which
o8

%
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lead to a wave number shock in the leading tail of a solitary wave,

contains the particular conditions which Smyth [2] demonstrates lead to

s
_:j the formation of further solitary waves in the region behind the core.
::f; Finally, we find some very interesting facts concerning the
N
\:, formation of caustics. The specific slowly varying coefficients and
;i: slowly varying initial conditions are what determine the type of caustic
ti‘ which arises. In general, a cusped caustic {so named because of its
S shape, see Figure 4.1) occurs when the crossing of characteristics is
K-
::} approximated by a complete cubic equation. This can occur both for
;xi characteristics generated by the moving core and for characteristics
L generated by initial conditions in the leading tail. On the other hand,
vfij a penumbral caustic (here penumbral means partial illumination resulting
- from the cut-off of some rays or characteristics as in an eclipse)
tgﬁ occurs when the crossing of characteristics is approximated by an
:}g incomplete (or cut-off) quadratic or cubic equation. This only occurs
,fi when the characteristic eminating from the initial moving core catches
(LJ
- up to the characteristic from the nearest initial leading tail (see
iii Figures 3.1 and 3.3). For much more detail on the classification of
-.‘:ﬂ
T caustics we refer the reader to the work by Kravtsov and Orlov [20].
4
\\‘,"
o
=
0% 1.4 Synopsis
B .':’-
'?? In Chapter III we derive two asymptotic eq ations, valid in
4' -
:;: different regions, which describe the behavior of Korteweg-deVries
N
L\
»:i. solitary waves in slowly varying media. In the core we use quasi-
E L)
;{t stationarity to obtain the asymptotic soclution. However, in the
;:Z leading tail quasi-stationarity is not appropriate, thus we use the more
o
*:
RS
e
O
\:_ )
T e o e S W o et L i S g T T sl N




standard multiple scale approach.

We next show, in Chapter III, that the problem of a KdV solitary
wave propagating through slowly varying media is similar in some
respects to the accelerating piston problem in gas dynamics. The method
of characteristics shows that, for certain physically interesting
problems, characteristics cross in the leading tail causing a caustic to
form which predicts a region of triple valuedness. 8y examining the
local behavior near the point of first crossing, we find it useful to
introduce a similarity variable. The breakdown of the asymptotic
expansion leads to rescaling. The new scales show that the leading
order solution near the first crossing of characteristics satisfies the
diffusion equation, even though the wave could be purely dispersive
without dissipation. Using Laplace's method for the asymptotics of
exponential integrals, we show that the solution does not become triple
valued (break), but instead rapid transitions occur from one exponen-
tially decaying tail to another, a wave number shock.

In Chapter III we show that a penumbral caustic is generated when
the first crossing of characteristics occurs along the characteristic
eminating from the initial core position. Then, in Chapter IV, we show
for the other two cases (first crossing along a characteristic eminating
from the moving core at a later position or eminating from the initial
leading tail) that a cusped caustic is generated. In all three of these
cases we show that the predicted triple valuedness actually corresponds

to the propagation of a wave number shock in the leading tail.
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;l. \
txq DERIVATION OF THE EQUATIONS
o
‘-\_-.
o 2.1 Introduction
5§; In this chapter we seek partial differential equations {(pde's),
i
“j& using perturbation techniques, which describe the behavior of slowly

varying solitary waves and solitons [1] moving in inhomogeneous media.

}jx Since the pioneering work of Gardner, Greene, Kruskal and Miura
vEEE (4] in 1967, it has become well known that the constant coefficient
332; Korteweg-deVries (KdV) equation has a family of exact N-soliton

;Ej solutions. These solutions can be obtained using the inverse scattering
g}; transform technique [1,29] which was derived for exactly integrable

i;} equations. The variable coefficient KdV equation, which in general is
ztﬁ: not exactly integrable, describes many interesting physical phenomena
EE;E (6, 11, 12, 17, 21, 25, 26] and has been discussed extensively in the
{;g literature. Grimshaw [5] and Johnson [6] consider the case of a

(;i solitary wave propagating on the surface of water of variable depth. We
;igf make a minor generalization to their work by allowing the variable

:;;; coefficients to depend on space as well as time.

:ffi Using a multiple scale approach, Grimshaw [5] showed that the
:;;E asymptotic expansion breaks down as one gets too far from the peak or
e center of the wave., We thus consider two cases, first the "core" or
fig thin region near the center, and then the "leading tail" or semi-

-3.:';
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infinite region on the forward side of the wave.

2.2 The Core

We consider the nonhomogeneous, variable coefficient KdV equation

U, + VUU_ + AU = -gYu , (2.1)
X X

t XX
with a solitary wave initial condition. In this equation 0 < ¢ << 1 is
a small positive parameter and , and are slowly varying functions
of X = ex and T = et. Using the standard multiple scale approach, we
take the fast phase variable to be

n = 3(x,T) /¢, (2.2)
and assume

ulx,t) = u(x,1,n. (2.3)

The usual chain rule yields

- \
U = E(Ut + UnnT by
- \
u = e(UX + Unnx, y
and
u = 3[U + U + 3U + 3U,, N
xxx = € Lo%xx T Y ™xx X n"XX XX n'X
+30_non o+ 30 ()% sy (n)’]
nn XX X Xnn' X nnn" X '
{j: We define a slowly varying wave number, k, and a slowly varying
:j: frequency, w, as follows:
.'-‘.}; nx = ex = k, (2-408)
w7,
:_;' nt = eT S -w, (2.4-b)
A
7
;:: which yields conservation of waves
kT + W= 0. (2.5)

Using (2.3) and (2.4), equation (2.1) becomes

« T B W4 T F T W T TE T T AT T R W NN TR T T e B
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N ' 3

::i -wUn + kaUn + Ak Unnn =
N e ' y

T; E\UT + VUUx + 3Akkarm + 3M<XUUXrm + yu)
L 2 3
3 - ( v ( \ / \
:‘: € \)\.kxxun + BA.kaxn + 3)\kaxn) [ \}\UXXX/ . \2-6/

! To solve this equation, we expand U, k and w in powers of ¢

'.‘

. 2

g -

::_: U-U0+5U1+eU2+... ,
& K =k, + ek, + €2k, + ...
._ O 1 2 .0 1)
[~ and

iy 2

-\ -

3 WS oWy o+ ew, e,

-:_\
if Thus, to leading order, equation (2.6) becomes

: 3 _ \
::_:_ -wglan + VUglgn * MgUgpnn = 0 - (2.7}
.:\

N The well known solitary wave solution for equation (2.7) is

Ug = A sechZBn, (2.8)

- 3w0

-. A - \T— ’

- 0

w

: 8 = (212, |
e 4k !
o |
‘N

which agrees with Grimshaw [5]. Continuing to higher orders shows that

the expansion for U breaks down when |n] > 0(1). We thus define the

o
Pl
s _t

ﬁ core by n = 0(1) (assuming g = 0(1)), since otherwise U0 is exponen-
;; tially small. The center of the core is n = 0. We take the position of
!i this center to be an unknown function of time
;? : Ko = XD = X (T v ex (T (2.9}
%. Thus, at any given time, we find from equation (2.4.a) that the fast
gs phase expanded around its center is given by
t
: :i}::}-:;}f‘l_‘};:‘_3-'\'.'-"}::}"3-'l-::}:‘_:-‘l-.‘:l"}'_fr"}"" '*".{;}‘3"}":-"}'l-"l-"}'_:‘ e e A S e e :'lf 'Lr‘}‘..-"}:;{;)::.-j:.,-




1"

n =k0(xc,r)[x-xcl/e, (2.10)

to leading order. Thus the core occurs where X=X, = 0(e) (where {2.10)

is valid), or to within order € of the path X = Xa (T). Now using "*"
t]
to denote evaluation at X = XC » we find that the leading order solution
0
{2.8) in the core, is given by

"

3% w X=X
Uy = AO sechz[(-,?-:)VZ —] . (2.11)
Gko aAkO €

This is a quasi-stationary solution [18]. We redefine the fast phase

to be

X-X,,
N = . (2.12)

€

From {2.4) this choice of phase yields

k=1, (2.13.a)

and

b3
[[H]

Xé(T) ’ (2.13.b}

automatically satisfying (2.5). We will shortly determine the unknown
w(T). In terms of it the center of the core is

X (D) = X (0} + flw(TydT (2.13.¢)

where XC(O) is the initial center. It is thus easier to directly solve

(2.1) in the core using a quasi-stationary approach with two scales,

rather than the standard slowly varying approach with three scales:
u(x,t) = Vin,T). (2.14)

We expand the coefficients around X = Xc to obtain

~ - 0
-an + VW 4+ AV =

_ A~ ( A ~
e:[VT + vy ln + Xc1)VVn + Ax(n + Xc1)vnnn + yV]

+ 0(e2) . (2.15)
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i:f: Thus the leading order equation is

\'_' -~ ~

w e - = )
; wDV0n + vVDVDn+WOnnn 0, (2.16;
- with the solution

~t

- T -

- 3w W X = Sow(T)dT

N - 0 20,0 \1/2 0 ;

S VU = : sech [(Zf—' - 1. (2.17)
\

Here we have taken the center of the core to be initially at X = 0. Note

;?
::% that the sign of wj equals the sign of % and hence equations (2.13.b)
o and (2.17) show that the core must move in the direction of the sign of
.-; A Continuing to the next order we obtain
iﬁ —wDV1n + \J(VOV1)n + xv1nnn z w1VOn
I
) - (vOT + vx(n + xc1)v0v0n+ Ax(n + Xcl)VOTmn + ,\vo) . (2.18)
< We now define the linear operator, L, and its adjoint, LA, as did
Kodama and Ablowitz [18]:
‘Fﬁ Ly = WY, * v(VUy)n + Aynnn,
B
.":. A _ ~ -~
:ﬂ: Ly =Yy = VYt Moy
k;) so that
< 2 v, - vt dn
-':j ~ PS 2 @
o - -
~ LA Ve = Van¥an * Vonn'1) + Wa¥q - %Vo¥ele -
;:- Thus V1 and its first two partial derivatives with respect to n will be
e
.. well behaved if the following capatibility condition is satisfied
© ~ 2 " \ 2. ~ \ - \
f_mgvovOT + vx(n+xc1)v0vOn + xx(n+xc1,v0/0nnn+ YWgidn = 0 . (2.19)

Using equation (2.17) to evaluate (2.19) we obtain

’ .'. l:. l, ~l‘5 -. .' '.I .‘- ..I

‘7

;1/2,,,3/2 ; . >\1/2w3/2
g ( 0. &8 X w., - 2v)( g ) (2.20)
dr o2 ’ 5 20 / 2! *
\Y

s

s
.
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o which can be solved for wO(T) from an initial condition w{3) (we assume
o

5\': w{0) independent of € so that wO(D) = w(0)). Thus, the leading order core
IE\: solution, (2.17), is completely determined using (2.13.b).

%:; Equation (2.20) appears to be a first order ordinary differential
-

"} equation {ode) with variable coefficients. However, in general the

N position of the core depends on the unknown Wq via equation {2.13.c].
N

o We see that w, = X' and w! = X" . Thus {2.20) is actually a

e 0 g 0 o

e second order ode with variable coefficients. To solve it we must know
}i: the initial conditions XC(O) and Xé(O). If v and A are functions of T
e
::ﬁ: only, then (2.20} has the solution

..
Pe AT} 173 4T

= WO(T) = w(0)[ ~Z——————i] expﬁ-gfov(f)dT] ,

- v {00 (T)

;:: as shown by Ablowitz and Segur [1].

4"\.

: We note here that if the perturbation analysis using equation

(2.3) is carried forward without assuming quasi-stationarity, we can

;13 obtain a hyperbolic system of pde's, in X and T, for the wave number and
1;)' amplitude, as did Grimshaw [5]. We must be careful to realize that

jf these pde's are only valid in the core; X is in a very thin region near
NN the center. From equation (2.10) we see that

Fon X = X (1) + 0().
1

- In this thin region, X is, to leading order, a function of T, thus

v.__:.'

';{ reducing the pde's to ode's., If we fail to show proper care, and use
Q'r-t

@ the method of characteristies to solve the hyperbolic system, after much
;ﬂ tedious algebra and some complicated matching, we find that the solution
i: fFails to focus in the core region. This is the same result we have

|i obtained using quasi-stationarity!

%

>
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2.3 The Leading Tail

The semi-infinite regions on either side of the core we refer to
as tails. The tail on the side of the core in the direction of its
motion we call the leading tail. We call the other one the trailing
tail. There is much discussion in the literature concerning the
trailing tail of slowly varying solitary waves and the development of a
"shelf-like" structure [13, 16, 17, 18, 19, 24, 25, 28]. There appears
to be very little discussion concerning the crossing of characteristics,
which leads to the formation of a caustic, for the leading tail [5]. It
is this problem we are concerned with here.

In the leading tail the quasi-stationarity assumption is not
valid, since the tail is not localized in space. However, due to the
decay as of the solution, (2.17), the nonlinear term in equation
(2.1) is exponentially small. Thus, as is justified by the method of
matched asymptotic expansions, we seek a slowly varying solution to

u, + Auxxx = -gvyu . (2.21)

t
We expect the leading tail of the solitary wave to be exponen-

tially decaying. A steady traveling decaying wave solution would be
AeKX-QT,

similar in mathematical form to an oscillatory dispersive wave. However,

(2.21) has slow variations including a slow decay or growth introduced

by the term with . Thus we use the multiple scale approach and intro-

duce terminology similar to that used fr oscillatory dispersive waves:

the fast phase, H, slowly varying wave number, K, and slowly varying

frequency, . They satisfy the conditions

I I SRR
L "-,- T




H = 8(X,T)/¢, (2.22;

X
He = 8y 2 K, (2.23.a)
and
H, = er = -0 , (2.23.b)

K, +2, =0, (2.2}
alsoc holds in the leading tail. Using the chain rule on
ulx,t) = U(X,T,H),

equation (2.21) becomes

3 _ 2 \
“QUy o+ KU = -e(UT + 3XKK U + 30K Upyy + YU
-QZ’AK U, + 3K Uy, + 3aKU,,,,) - 3’AU ) (2.25)
YATXXTH X XH XXH’ 7 & MATxxx A
The leading order equation
3 \
=R U., + AK U =0, (2.26)

0 0H 0 “0HHH

has the decaying solution {as H + =, assuming A>0 or a right going

wave)
Q0 1/2
Ug = A(X,Tlexp[-(=—=)"""H ] . (2.27)
AK
]
The next order equation is
@ U+ AU = R0 3K U - U
01H 0" 1HHH 1-0H 01 CHHH o1
2 \
_}kKUKOXUOHH - BXKOUDXHH - YU0 . (2.28]

The right hand side of this equation produces secular terms for U1
(terms which, for large H, cause the asymptotic expansion to break down;

unless

(2.29;

COGICAE IR
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%:g and

o2 2 2

N Ap + 3XKGAy = =(y + 3XK Ky = 3K, + Q0A, (2.30;

.

\ Using (2.29) and (2.30) in (2.28) we can solve to obtain

bl U, = B(X,Texp[-H] . (2.31)

\

\ From equations (2.27) and (2.29), and (2.31) we see that it is not

\ . necessary to expand H, the phase, since the order € and higher order
terms can be absorbed into the amplitudes. Thus equations {2.29) and

i:: (2.30) become

.- Q= K, (2.32)

o and

‘ A+ WKPA = (v + 3AKK A (2.33)

?é& Equation (2.32) is the "dispersion relation" for exponential tails for

i the linearized KdV equation. Using this relation, equation (2.24] for

:g the conservation of waves becomes

K + WK = ALK, . (2.34)

%R which must be solved along with equation (2.33). The leading tail

:Ei solution must then be matched to the core solution. Under physically

'g: reasonable conditions, we will show in Chapter III, using the method of

’;_ characteristics for equation (2.34), that characteristics will cross

,:E causing a caustic to form. Then we will consider this caustic formation

f:: and its interpretation.

&

a v

.
&
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CHAPTER III
ACCELERATING PISTON PROBLEM

3.1 Introduction

In their now classic monograph [3], Courant and Friedrichs
briefly discuss a gas dynamics problem in which a compression wave is
produced by a uniformly accelerated piston. Figure 3.1 shows the
envelope formed by the crossing of straight characteristics which de- i
scribe this problem. In this chapter we show that the moving core of a
slowly varying solitary wave acts like the piston of this gas dynamics |
problem. In Section 3.6 we show that the constant coefficient problem, }
equation (2.1) with constant coefficients, has straight characteristics, ‘
which for an accelerating wave form the same envelope as the uniformly
accelerated piston {Figure 3.1). If on the other hand the wave is
decelerating, then a rarefaction wave is produced as with a uniformly
decelerated piston {Figure 3.2). In Section 3.2 we show for the more
general case of variable coefficients that an envelope may or may not
form depending on the medium and on the motion of the wave. The usual

case of an accelerating wave with variable coefficients is illustrated

& o e

in Figure 3.3, where the characteristics are now curved due to the

LR

.
l'l‘.l‘l
LI |

variable coefficients.

N
L We also show in Section 3.2 how the characteristics arise and
f: can lead to a focusing solution. Then, in Section 3.3, we utilize a
-
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P: Figure 3.1 Envelope of straight characteristics
o for a compression wave produced by a

uniformly acceleratec piston [3].
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Figure 3.2 Straight characteristics of the rarefaction
wave produced by a uniformly decelerated piston [3].
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the leading tail of a slowly varying solitary wave
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similarity variable to determine equations for the envelope {boundary of
the region of multiple characteristics), and to obtain a "fundamental
folding equation". Examining the local behavior near first focusing
leads us to new scales. We show, in Section 3.4, how these new scales
relate the solution to a solution of the diffusion equation. In Section
3.5, we use Laplace's method for the asymptotics of exponential
integrals to determine the asymptotic behavior of our solution near
first focusing. We find the solution to be a single exponential tail
everywhere except in a relatively thin neighborhood of a "shock path”,

where the solution makes a transition from one exponential tail to

. v s
SO L
a8 0, )
. Tt

another. In this neighborhood the solution is the sum of two tails. The

{

T
:f; "shock path" is actually the location in space time of a rapid change in
b -
;{j wave number or a "wave number shock". This idea of a wave number shock
::‘..-
; was first discussed for slowly varying solutions of reaction-diffusion
S
R equations by Howard and Kopell [10]. Finally, in Section 3.6, we work
.';«.:
:}:- through an example of our analysis using constant coefficients,
R«
™
ﬁ;: 3.2 A Focusing Solution
'ﬁf‘ In the last chapter we determined the leading order solution for
- both the core
ol : \
N XCD ) XCO 1/2
e Vg = 3 —= sech — ni (3.1)
Ve v 45
® . S o .
ot and the leading tail (right going with A > 0}
re U, = A exp[-H] . (3.2)
._.‘.' 0
e
L Using (2.13.b) and the given coefficients v, A and vy, we can solve
f;ﬁ equation (2.20) to completely determine Vg» and thus te leading order |
X
::':';
' |
i :
o \

. A e B R S R L R R S AT T T R T R PR TR L I ST R N
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the path of the core, Xc (T). We now seek the behavior of U0 by solving
0

the system of pde's given by equations (2.33) and (2.34). First we

match Uy and Vj using the basic matching principle {see [15,20]). We

write V., in terms of X and T, U0 in terms of n and T, and expand for

]

e = 0. Thus we have

X! X! X=X
c c -
Vg v 12 ) exp[ - ( 0)1/2 =],
3 Y €
and
. R X-Xc
Ug v A exp[ K —] ,
€
where " ~" again means evaluation at X = XC . Now the matching of U0 and
: 0
V0 yeilds the matching conditions
X'
c
A = 12 0 ] (3'3)
[ o)
v
and
)
R xc0 1/2
K =( ) . (3.4)
X

Next we use the method of characteristics to solve the leading tail

equations (2.33) and (2.34):

> Ap + 3AK2AX = (v + 3AKKX)A ,
1’ <
';a and
K+ KK, = K
Taking
X o o3k2, (3.5)
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::_‘\ we see, using equation {3.4), that near the core the characteristic
NN

N
h W velocity for the leading tail is three times the core velocity. This
_x:} means that disturbances, in the leading tail near the core, will move
ey
:-::f- away from the core into the tail. Thus, the moving core acts as a

R

" space-like boundary for the leading tail. The problem of solving the
1
‘:::::j leading tail equations subject to a specified core {amplitude and phase)
[l

_{::? is well-posed; there is a unique leading tail matching to the core. On
N

“\

oo the characteristics our system of pde's reduces to a system of ode's
- dA ( \

e = =(y + 3XKK_ A (3.6
~ ar Y ) SO

o and

A

dK _ 3 \

:':T' -d—]r' - -AXK . A (3.7/
\._

N Equations {3.5) and {3.7) imply that the characteristics are given by
v,

s X = F{(T;8) , (3.8)
r_..'-:: where £ is the parameterization of time along the path of the leading
.-;.:

f:}'.. order core {at T = £, X = X_ (£)):
[t )

Flzse) = x_ (g3, €20. (3.9
J 0
.:-:'-: We call the crossing of characteristics focusing, and the locus of all
I ,_-:.
.{;:{ such focusing points is a caustic. The caustic is obtained by simul-
k!L':'x
. taneously solving (3.8) and
e F (Teie) =0 . (3.10)
.-‘\:
_~.__\.
-:-::- The times, T = Tf., for whichk focusing occurs, due to the moving core,
Sadi)
o are obtained by solving equacion (3.10) for Te:
e
h - \ \
SO Te=Telg) . (3.11)
S
b_‘.‘_
;ﬁ Focusing occurs ahead of the core if
R 705

O g > .
::E.. r t"/ E
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The corresponding positions at which focusing occurs are then determined
from equation (3.8;:

Xf z F(TF;E) . (3.12)
Equations {3.11) and {3.12) are the parametric representation of the
caustic due to the moving core.

Thus far we have considered only those characteristics eminating
from the path of the core (see Figure 3.4). We now consider the charac-
teristics due to initial conditions which eminate from the positive
X-axis (see Figure 3.5). Equations (3.5 and (3.7) imply that these
characteristics are given by

X = G(T3z) , (3.13}
where & is the parametrization of initial position (at T=0, X=%):

G(035) = ¢ , ¢ > 0.

Analyzing these characteristics as above we see that they too can focus.
We do not pursue the case where neither (3.8) nor (3.13) leads to
focusing since there is then no difficulty with our asymptotic
expansions. We proceed under the assumption that there is faocusing due
to the movement of the core only, and will consider the other
interesting case of focusing due to initial conditions in Chapter IV
{see also [8]).

Returning to the characteristics, (3.8), we determine the time of
first focusing, T:T1, by minimizing (3.11) for £>0. There are two

possibilities. First we can have

with

—
- -
~
(@]
-~
| v
[en]
.

(3.15)
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caustic

- Figure 3.4 Characteristics eminating from the path
. of the core (due to the movement of the core).
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In this case first focusing occurs along the characteristic, £=0,

)

0y

i’(:‘i
o -

eminating from the origin; focusing due to later movement of the core
happens at a later time (thus giving rise to a penumbral caustic, see

Fig. 3.4 and [20]). The other possibility is
Ty o= Tele,) (3.16)

with

T}(g1) = 0 (usually with Tg(g,) > 0) . (3.17)

In this case first focusing occurs along the characteristic,& =€1 > 03
focusing due to earlier and later movement of the core occurs later
(thus giving rise to a cusped caustic). We consider the first
possibility, equations (3.14) and (3.15), in the remainder of this
chapter. The second possibility, equations (3.16) and (3.17), will be

covered in Chapter IV along with focusing due to initial conditions.

3.3 First Focusing from the Initial Core Position (Local Behavior)

We now consider the case where first focusing occurs due to the

immediate movement of the core from its initial position, that is

equations (3.14) and (3.15) apply (of course the time to first focus is i
finite, Tf(0)>0). We approximate the equation for the characteristics
near first focusing by Taylor expanding (3.8) around £=0 and T=T1=Tf(0).

In this way we obtain the "fundamental folding equation":
X=X, =F (1,300 (T-T,) = oF (T, 50)(T-T,)% =
17Ty 1 =7ty 1) =

1 2
rrg(n;o)(r-y)a»f—r (T,30}£%, (3.18)

7t gt T30

a cut off quadratic in £. From equations (3.10) and (3.11) we see that




- o

e e vt
Y R R )
A

LR YR ]

S

s

N PR
. )
L@

ML URS

NS

{ 4
%

."d ST e

.l
e

-
3
q
?j

R Bl Bk B k-2l g o A e AN i AR A A MY el L e o B - 2 - ol il el i - ol el o et aNR il il b AC A i S Al Sl Sl el B Al Bl Aol ek} Salk Al 5% %
26
EE Fg(Tf;E) = FTa(Tr;g)T%(g) + FEE(TF;E) =0. (3.19)

Thus if T%(O) = 0, then Fia(T1;0> = 0 and we would need to include
cubic terms in the approximation {3.18). The analysis for the cubic
will be done in Chapter IV. We now proceed under the assumption that

T%(U) > 0. Equation (3.18) is valid for ¢ > 0, since the parame-

terization for the position of the core begins at £ = 0. We notice from

>

equation {3.18) that the change of variable

g = (T-T1)F(S), (3.20)
shows that f(S) is a function of the similarity variable S, where
Sz [X=X, - C(T-T,) - c(T-1.321/(1-1}2, (3.21)
1 g 1 1 1
with the constants Cg and C defined by
Cg = FT(T1;0) ,
and
C= e _(1.;0) .
2 171
Thus the approximation for the characteristies, (3.18), becomes
af?(s) + bF(S) = S , (3.22)
where the constants a and b are defined by
azlF (1,0
2 g1
and
b= Fr(Ty300.
From equation (3.19) we then have
a:z — TLOD. (3.23)
2 'f

v 2

Now, for T<T1, X=X, < Cg(T-T1) + C(T—T1, , and & > 0, we see from {3.21)

A |
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that 5 < 0. From {3.22) we have

?
F(S) = [-b + v{' + 4aS]/2a , (3.24)

and {3.20) implies f(S) < 0. In this region of space time there is no
crossing of characteristics, so there must be a single characteristic
for each S. From (3.24) we see that in order for f(S) to have a single
negative value, and thus from {3.20) for £ to have a single positive
value, we must have aS > 0 or a < 0. Equation (3.23) then yields b >
0. Examining equations (3.20) and (3.24) for T > T, shows that these
signs for a and b yield the required two positive values of f(S) in the
appropriate region of crossing characteristics. Physically, b > 0 means
the velocity of the leading tail is increasing, with respect to the
position of the core, at first focusing (£ = 0 and T = T1).
Since T1 is the time of first focusing, all focusing occurs
for times TZT1’ and thus the envelope of crossing characteristics
is, given by equation (3.24}, the boundary of the region where f(S}

has two positive values:

S5=0,T 3_T1 ,
and
2
b
S—-a—a’ Tz_T1

The neighborhood of first focusing can be divided into three regions
according to the number of characteristics passing through each point

{see Figures 3.3 and 3.6). Region I is given by

2
(1_T FT_T
X < X1 + Cg\T T1/ + C(T T1/ y

and has a single characteristic, eminating from the moving core, passing

through each point, i.e. f(S}) has one value satisfying both (3.20; and
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(3.22). Region II is given by

|U
ol T~

T-T )2, ™7

2
(T_7 T\
X1 + Cg\T T1, + C(T T1, <X K< X1 1 1

A\
+ Cg(r‘T1/ + (C -

This region has two characteristics, eminating from the moving core,
passing through each point, i.e. f{S) has two values satisfying both
{3.20) and {3.22), and a third characteristic, eminating from the

initial conditions, also passes through each point. Region III is given

by
2
- \ (T 3
X > Xy €T w0105, T T,
or
X > X, +C(T-T.) + (C <93)fr T2, 1>
1 SRR KA Ay YA K 1°

This region has a single characteristic, eminating from the initial
conditions, passing through each point and no value of f(S) satisfying
both (3.20) and (3.22). Figure 3.6 shows these regions, and Figure 3.7
gives the evolution of the number of characteristic values at each X due
to the moving core.

We now seek the behavior of K and A near first focusing, X:X1 and

T=T1. From equation (3.8) we have

K(X,T) = K[F{T;£3,7] = K(T3¢) ,

and expanding in a Taylor series around T=T, and ¢ = O

1
K = R(T,300 4 Kp(T,500(T-T0 + R (75008 + ool
Substituting 73.20) into this expression yields

K = R(T,300 « (R (T pOASII-T) ey 3225

1;0: + Rgﬁr

and thus as T - T, (keeping S fixed so that 7 - 0}

1

4 AVFYISN/IToT D 14 \
Kx ~ Ki(Tj.O,F (871 T1, . (3.26,




Region II

< >
Region I 2,1

Region III
<0,1>

:-\._v
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at each X due to the moving core.

Figure 3.7 Evaluation of the number of characteristics
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::ﬁ: From equations {3.5) and (3.18) we have
Lo
L 332 & €+ be
b g
n and thus
RS
N
> b2
- 3UAKT + 2XKK, ) ~ bg, . (3.27)
N X X X
l rd
o For well behaved A, {3.25), {3.26) and {3.27) yield
b 6AKK, ™ bi,
{2 and from (3.18)
o . o
s s
- 6 KKy v 51T-T,7 + Zat 3.28)

Thus, equations (3.6) and (3.28) yield

1 _ oA
e T 2 D(T-T1) + 2ag ’

o or

A~ BCe) o1, + 202

’

where A{:) is determined by the matching condition (3.3). Using

ﬂii {3.20] we now have

o

'J.-:: PN \ -1/2 ‘ \
o A v ACz) (b + 2af(S)](T-T, ) . (3.29)
oo

!ﬂ The singular behavior of A at first focusing suggests the use of

%ﬁ{ different scales, which we introduce in the follaowing section.

X . N .

.. 3.4 A Relation to the Diffusion Equation

E:; From equation {2,25) we obtained the leading order equation (2.26]
.':j with solution

L)

- Ug = A(X,T) exp[-H] . 3,30,




%

A

{";,'_“’

w &
RN Near first focusing A is sinqular as given by {3.29). We will show
'»'~:'7 higher order terms in the expansion are more singular. At the next
-j-.:f order we obtained the solution

\‘-:f:; U, = B{X,T) exp[-H] . 73.31)
‘  The next order equation is very important:

o ,

i = Qo + A Uppn = vy - Ugp - Ky Ugy

5 2 )
S - KK Uy - BAKXUOXH - KUy - 3AKUpyxn (3.32)
'j.::’ We see that the right hand side produces secular terms for U2 unless
":r::

Vil 2

By + KBy = -(y + 3AKK,)B + XKy, A

o + BAKXAX + BAKAXX . (3.33)
The asymptotic behavior of A, (3.29), leads us to assume

o B ~|1-T. |° (s). (3.34)
\_‘_'. 1

o

LS

'-::- Substituting (3.25), (3.29) and (3.34) into {3.33) yields P = - 7/2.
C

Continuing this process for higher orders shows that the expansion for U
'_ breaks down when

o T-T, = 03y,

::{:: which suggests the scaling

o =173 2/3

i‘-‘ T= (T- T1 = (t—t,‘) . (3.35)
®,

I In order to keep the similarity variable, S5, order one, we must take
o

W,

o 2 = e 2P0xax,C (1-1,3-01-157]

AN 9

o = e P Mxex, € (ot dent ot 32T (3.36)
o g 1

-

o

o
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e Equations {3.35) and {3.36) are the appropriate independent variables in
S

D, a neighborhood near first focusing. We note that the scales of these
variables are intermediate to the other two scalings, large compared to
:fff:j the scales of the solitary wave and small compared to the scales of the
- slowly varying media. Using equations {2.22), (2.23) and (2.32), near
~

1

_': first focusing we have

-..':‘.

S H = 1o0x,T)) o+ KOG, T (XD = 206, TR0, T DT + L]
oy T T 1717 107¢ 1771’ 11 1

: 1 (1) (1) (3, (1) (1, (1) (172

P =—={8"""-K 'X1 A K T1] + KM [x=2Y K t] + . ,
o € (3.37)
o

".:: where the superscript "(1)" means evaluated at Xr.X1 and T=T1. Since,

from (3.29), the amplitude is singular at first focusing, equations

'.j‘_'.. {3.30) and {3.37) motivate us, using the intermediate scales {3.35) and
o (3.36), to seek a solution of the form

) 4 4 2

S = 02,0 expl k' (xan P ey (3.38)
KR

3‘_:: where the large constant in (3.37) will be part of ¢(Z,t). This is a
A0

e

' different multiple scale approach than the one we began with in Section
:f:- 2.2 (equation (2.3)). Thus we have

e ulx,t) = ulx,t,Z,1) , (3.39)
N
= (1,1 173 2/3, _ , /3
N Ut=[>‘ K ¢ - ¢ C¢Z+e 6 -2 C(tt) ]
::.)-: g T
g

\ .

"’ 2

e, exp[-K(”(x-}\(”K(” )],
S and

4.”

e T EPL LSRR V2 M C DL Y2 M DI

% xxx b+ bz - e 22 * %7222

N NS \2

e exp[ K‘1” ' ’K“’ t)] .

o

lfi

e

' s

EN

e

s
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Substituting these values into equation (2.21) we have

3
ray ¢
5 = 3x\1’K‘1)¢

/ {1\
. 7+ © PO e+ al (e

|
- A(1)¢ZZZ - Y(1é} + H.0.T.

Near first focusing the leading order term for satisfies the diffusion

equation
o = k(W (3.40)
P T 7
4 We showed in Chapter II that for the right going wave, which we have

considered here, A > 0, and hence (3.40) is the well-posed diffusion

equation. It is extremely interesting to note that even if y =0 we

A still easily obtain the diffusion equation from the KdV equation even
- though the KdV equation is dispersive with no dissipation! If we
{ momentarily consider the crossing of characteristics for the trailing

tail of a right going wave, then the analysis is nearly identical to the

above. However, equation (3.38) becomes

2
U= 9 exp[K(1)(x-K(1)K(1) t)1,

and leads to the backwards diffusion equation, which is ill-posed. In
this case the solution is grossly unstable, and therefore the assump-
tion of a slowly varying exponentially decaying tail is not valid for
the trailing tail of a right going wave. In fact, the trailing tail is
known to not be exponentially decaying. Ko and Kuehl [16, 17], Kaup and

Newell [14], Karpman and Maslov [13], Knickerbocker and Newell [19],

» e a4 & &

Grimshaw [5], Kodama and Ablowitz [17], and Smyth [28] show that a
"shelf" exists there and thus the prediction of our analysis is

consistent.
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. We now return to the discussion of the leading tail of a right
s
k& going wave. We wish to solve equation {(3.40) subject to matching the

j leading order singular solution (3.30;. Details of the matching will be
" presented in Section 3.5 where we will show that the desired matching

Pl

‘ solution of (3.40) is a superposition of exponentials:

1 © 1).,01) 2

N ¢0(Z,r) =/__Dlalexp[-aZ + 31" "'K' ’a"1]da, (3.41)
L »

l\

) where

: 0 a <0

3 D(a} = V(1) 2 5

- Dexp['IZa(———b—-)a], a>0,

.

! -

* and D is determined by matching. Equation (3.41) obviously solves the
LY

b diffusion equation. The substitution

b ) €-1/3b

" o = (15 \715 £

. 61" ‘K

g into {3.41) yields

: V35w b 2/3 1 132 1.3

Y ¢0 =—ﬁw—ﬁ-\—fo exp[——rTr-TT\- (-e""71¢ +5 ¢ brg” + 338 vdg

~ 6K /K / 6€)\\ /K\ / \
“ (3042/
; a convergent integral since a < 0. It is an exponential integral with a
L cubic phase, an incomplete Airy integral of the type which would arise
N in the analysis of the formation of a shock wave for a piston {(Lighthill
L,

o (22], although no details are presented).

Using Laplace's method for the asymptotics of exponential
integrals we will show in Section 3.5 that (3.42) is the desired
matching solution. In addition we will show that the critical points of

the exponential phase satisfy the fundamental folding incomplete
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quadratic (3.18).

We point out here that if we solve equation (3.40) as an initial
value problem {which, it is not}, with the initial condition given by
equation (3.41) with T = 0, then the fundamental solution of the
diffusion equation yields the solution we have obtained by matching.

For details of this relationship see the Appendix.

3.5 Asymptotics and the "Shock Path"

W2 now show that the leading order solution near first focusing

2
_ 14N fa
o= o explk{T (a0 gy (3.43)

0 = %
matches to the leading order singular solution

Ug = A exp[-H] . (3.44)
The basic matching principle is to express each solution in terms of the
other variables, expand for small €, and equate the resulting expansions
to obtain the matching conditions (see for example [15, 23]). To change
variables we use the scaling equations:

By 2 23

T = ¢ 1> = (t't1> ’

and

7 . 23

2
X -C (T-T )= -
[x X4 Cg\T T)-c1 11) ]

. /3 (t-t.) 2
. E [X—X1—Cg\t-t1 1= C(t‘t1) ] [

from Section 3.4. Solving for T and X we have

and
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Thus, for small ¢ we have

1) \ /
H ,\_‘% [8\1/ + K(1;(€2/3Z + 5113(:91' + EZ/}CT2>

ran ¢ \3
T By (3.45)
and from (3.29)
A~ R(E)|Ib + 2af(s)1e'/2<|71/2 . (3.46)
From (3.42) we have
6 = 8-1/3dﬁfwexp[g h(g)lde , (3.47)
0 0 €
where
_ b
9F AT
6)\\ /K /
and
13 e 2 \ 2
h(g) = 3 a8 + zb(T-T,38° - [X-X1-Cg(T-T1,-C(T-T1) e .

We now use Laplace's method for the asymptotics of exponential integrals
on (3.47). The critical points of the cubic phase are determined by

salving

2

h'(g ) = L1

2
(T-T Ve = [X=X,=C (T-T,}-C(T- - )
. + B(T-T e = [X=X=C (T-T2-C(T-T)T = 0, (3.48)

for & .. Equation (3.48) is the fundamental folding incomplete

quadratic equation (3.18)! Using (3.21) and solving (3.48) we have

2
r = b A éﬂ b
2o 7 —(T-T 01 & Ao+ 7 s1, S< - . (3.49)

e %4a
Since n(3) is a cubic with a negative leading coefficient, its local

max imum must be to the right of its local minimum (when they exist for
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'f_':-.. £ 10), or
-‘,::;
. 4a
> 1-/1+—=5, T<T, andS <0
= g - (1T, b’ L =
e max ~  2a 1/
= /1.8, 151 s <t
::-t: 1 - + ;2' ’ 1 an — G .
v Y
- We now have
VR ; 14301 + 22 5) - 201 +iza- 53372, T<T, and § <0
\ b \ 3 b b
h(¢ ) = — (T-T,)
I max 2482 1 )
o 301 +225) + 201 + 23632 o1 and s< T2
o 2 2 1 —4a
? b b
e ' =
N h (gmax) =0,
::i:.
& 1+28s ,1¢T, ads 0
b
. h(g_ ) = b(T-T,) 2
- max V) A+%s, 15T, ,ads -2,
e ?- 1 H
ol
o
:xi In Figure 3.8 we have extended the domain of h to illustrate its evolu-
Py tion throughout the neighborhood of first focusing. The lacation of
e
o £ and the magnitude of h(§__ ) are critical in the determination of
P max max
‘h -
f:{ the asymptotics of ¢0 using Laplace's method. We must keep in mind
?{i that £=0 is a cut-off value for the integral in ¢0. This cut-off gives
, -I
D&
;ﬁ: rise to a penumbral caustic in contrast to a more common cusped caustic
e
t?: {(for further discussion of the classification of caustics we refer the
I @1
rfj reader .o [10]). In order for the asymptotics to be affected by Emax
..
E:Ej we must have & > 0 and h(§ ) 2 h(0) = 0, otherwise the asymptotics
Qo
Ef}' will be completely determined by the endpoint of the integral, £ = 0,
v Laplace's method, for fixed S > 0 and T < T, in (3.47}, yields
7
Ny
o
A
e
o
05 . . e e e e i A L A A A AL A A R A e ot e e an
I~I s n_"t.r‘.{'c.’\:'.ja.:':.’.4"-' . "-:" :‘ > ‘.:"' :‘ '.—.:'~l:" o S h
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o Figure 3.8 Evolution of exponential phase, h{z), near firsc
R first focusing with domain of h extended to

negative 5 for illustration only. Laplace's method

for equation (3.42) uses the maximum of h(z) for z > O.
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Y e e ) 2
¢0 de_weXp{'g[h\Emax> +7h"\€max/(€'€max) ]}dg

2e1/3 4

h"( gmax>

] 1/2

d
~v Bl exp [Eh(gma Y1 . (3.50)

X

Now using (3.45), (3.46) and (3.50) in equations {3.43) and (3.44)

yields the matching condition

/3, 1-1/2 (1) (1 _x(‘>K(‘)271>]} (3.51)

b = A2 Pdn] /2 expills (X,

Having thus determined D we can now obtain the asymptotics of ¢0 for

T>T, and fixed S < - b%/4a. For fixed S < -3b,/(16a), &= g

1
dominates the asymptotics (see Figure 3.8) as before and Laplace's
method again yields (3.50). However, for S fixed and -3b2/(16a) <S <
-bz/(aa), the endpoint § = 0, dominates the asymptotics (see Figure
3.8) and thus using Laplace's method for an endpoint contribution we
find from (3.47) that

% w% . (3.52)

The most interesting case is when both £ = 0 and £ = ¢ x > 0 contri-

ma

bute to the asymptotics. This occurs when h(gmax) = h(0) = 0 or
S = -3b2/(16a). Laplace's method then yields

1734

=r=2 1/2 \
+ DE—EﬁTET-—74 . (3.53)

max

v
¢U

N O

This clearly demonstrates that, near first focusing, there is a transi-

tion region where the asymptotic solution is determined both by the

moving core, ¢ = £ max > 0, and by the initial conditions, £ = 0. This in

fact is the initiation of a "shock path". The solution remains

continuous, but there is an abrupt change in wave number or a wave
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nunber shock. Howard and Kopell [10] have discussed a similar concept
for slowly varying solutions of reaction-diffusion equations. The shock

path near first focusing (and T>T1) is determined from

2
2 2 __3b
_ X -0 (T-T Y(fToT (1T Y4 = o 22
Sg = [XgX=C T-TR-CT-TR"W/(T-T 3% = - =

the points where the asymptotic are determined from both the moving core
and the initial conditions. The shock path near first focusing is thus

2

3b 2
= - \ { - M T A\ \
Xs = X1 + Cg(T T1, + (C 168"T T1, , (3.54)
with shock speed
dx 3b2
s =C_ + 2(C - =)(T-T,) . (3.55)
- g 16a 1

As we entered the region near first focusing (T < T1), we matched
the leading tail solution to the solution near first focusing. This
matching determined the solution near first focusing. We must match
this solution to the solution after first focusing (T > T1). This
matching is identical to the matching prior to first focusing. Thus we
see that, after first focusing, the moving core cor*ributes a single
exponentially decaying tail to the leading tail solution. Since in this
chapter we are considering the case with no crossing of characteristics
due to the initial conditions, it is easy to show that these initial
conditions also contribute a single exponentially decaying tail to the
leading tail solution. Therefore, for each space-time poinl ahead of
the core where a single characteristic passes, the leading order
solution is a single exponentially decaying tail. However, inside the

envelope of crossing characteristics {see Figure 3.3) superposition

yields the leading order solution:
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NS 1 Yo, - - / 56
e ulx,t) Alexp{ Hi] + AL exp( Hr] , (3.56)
o where the subscripts "&" and "r" denote the solutions due to the maoving
L
:5{ core and initial conditions respectively. Equation (3.56) is a linear

multi-phase slowly varying tail {see [9, 24]). The asymptotic solution

for the leading tail is a single tail everywhere except at or near where

7 et

the phases in (3.56) are equal, or

KJ
A

- )
H, = Hr . (3.57)

L

Applying the chain rule to § = ¢H we have

‘<II.
2t

s B N

Wt

o

S N

A do _ ,dX \
A w = Km,- - Q. (3,58

Taking X = XS(T) to be the points where the two phases are equal,

- we have
dX X
. S _ S
Ko a7 = % = Kear - % o
>
‘:::'- or
e
- Q,-Q
T S ) (3.59)
’ ar " Ky - KL 7«
:if: This is the well known Rankine-Hugoniot relation for conservation of
’z_'_.
;: waves, equation (2.24). Using (2.32), equation (3.59) becomes
o
o S _ 2 2
:::- T = X(KZ + KQ,K[’ + Kr) ’ (3.60)
L:% and as T > T, we see that (3.55) and (3.59) do match since

. 2

raN f

o ¢ = T
o g
[Qk Figure 3.9 illustrates the asymptotic solution near the wave number
- stock.
W
w3,
S~
v)'.

SOk Jainnt
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- 3.6 Constant Coefficients
We now illustrate our analysis for the special case where v, A

and Y are constant in equation (2.1). Thus (2.20) becomes

or

wolT) = wo(0expl- ¥T1 (3.61}

which agrees with Karpman and Maslow [13], and Ablowitz and Segur (1].
The leading order core solution, (2.17), is now completely determined,

and from {2.13.b}) and (3.61) the center of the core is located at
3
v oL v \
X (T) = 4_—1‘{ wO(O, wO(T)] . (3.62)

We assume A > 0 and thus from {2.17) we must have wO(T) > 0, which means
the core moves to the right,

Now turning to the leading tail we see that equation (3.7)
becomes

g% =0, (3.63)

on the characteristies, (3.8}, or
K{X,T) = K[X_ (£),e] .
0
From the matching condition, (3.4}, to leading order we have

w.(0)

k1) = 2 12 expl-Byed
or
2 - 3\ \
AKE = wo(e, . (3.64)

The characteristics, (3.8, are thus
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G(T;0)
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Xf(T)

v
®...-" .
h " ... . .

.

b ‘:'

'.':,:I Figure 3.9  "Shock path", X.(T), of the wave number shock and
l'j.: asymptotic solution as a sEperposition of left and right

o tails due to the moving core and initial conditions,
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‘o=
o 4
5
o
N X o=z 3w (2)(T-20 + X_ (2 . {3.65)
TN o
&
7
%.; For focusing we must have
R
Y
0 3wh () (Tem2) = 3waled + x50<a) =0,
V) or
fiﬁ feN - f 1 ( VOEY / \
o Telg) = & - 5y (thus TF\,, =1>0) . (3.66,
oot
;C:ﬁ We see from this relation that we must have y < 0 for focusing ahead of
Ej . the core, thus the core must accelerate! First focusing occurs at
O 1
.‘::-- T,] - - _2-"{ ’
e and
¢ S (0
< 1= =23 :
iﬂf From (3.64) we have
‘ 2XKKy = wilEdey

and (3.65) yields

1
BW6(gTTT-g)-2w6(§7 ’

.Cv\l v' .'_ .‘.-"-'.' -
. e
Y
>

-
e 3
v
N
P

so that

v s

o u ®
-.l.l‘

;‘a '\.';:l,'

.
l.l‘

0
N

' \
1 3w0(£,

PR T LS A TN G (3.67)

BMKX:

2

P
)
.l

Using {3.67) in (3.6) yields

—
AR,
[N

®
- «

',

X

exd[-y(T-£)]

\ . sz(g) 1/2
AT = AL () | '

0

e g
ey

“~ a4

and the matching condition, (3.3}, then yields

SR
« A

<«

1/2
exp[-y(T-£)] . (3.68)

12wy (g3

\

A(X,T) =

i |

VaR'y
b

From equations (2.23) we have

)
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3UX,T) = KIX=X_ (23] - ar-&) +5[x_ (&,:],
c c
0 0
on the characteristics, or from (2.32) and matching to the core
5 f A [ =\ 2 -\ ’ \
HX, T = KIX=Xy(g) - AKT(T-2] . 3,69
Thus, from {3.68) and (3.69), the leading order singular solution for
the leading tail is
9 P \
Ug = A expl- =] . 3,70,
€

From (3.48) we see that Emax satisfies the fundamental folding
incomplete quadratic so that the matching solution in the leading tail,

{3.43), becomes

1/3
EJ'VD[ 2¢ d

]1/2
0 -Zag-b(T-T1)

2
\ \
exp[-K(1’(x-AK(1’ t)]. (3.71)

Matching (3.70) and (3.71) we obtain the condition

\ \
i 12w0(0,rew0(0,]1/2
= [ ,
v 51/3wd
so that 1
= eng(0:d w /3,2 1.3
U, = 12 [_Q___ ]1/2f exp[-g(-€2/326 , e 3bf€ + 328 )1de
0 v T 0 € 2
\ ’ \2
exp[-K(1’(x-AK\1’ t]. (3.72>

Using (3.23) and the definitions of Cg, C, a and b we find from

(3.65) that

o
"

YA - 4
3w0(0/ = Q{WO(O) ’

and
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a s ZYwO(O) .
Substituting these values into (3.54) and {3.55) we find the initial
shock path and speed are

3 2
- VOT_T Y - 2 (1-T.)°
XS = X1 + BWD(O,\T T1, zwa(O)\T T1) ’

and

dXS
— = - 14 \ - \
dT = BWO(O) 3YWD\D/(r T.]/ .




CHAPTER IV

CUBIC FOLDING/CUSPED CAUSTICS

4.1 Introduction

In Chapter 11l we considered the case of focusing due to the
moving core of a slowly varying solitary wave with first focusing
occurring along the characteristic § = 0 and T} (0) > 0. We found for
this case that the fundamental folding equation was quadratic in £ {see
Figure 3.7}, and gave rise to a penumbral caustic {(see Fiqure 3.4 and
[20]). We now turn our attention to the other two possibilities: Section
4.2 gives the analysis for first focusing due to the moving core along a
characteristic 61 > 0 and T%(£1) = 0,and Section 4.3 gives the
analysis for first focusing due to initial conditions. In both of these
cases we find that the fundamental folding equation is cubic in the
characteristic variable (see Figure 4.2), and gives rise to a cusped

caustic {see Figure 4.1).

4.2 First Focusing along g, > 0 and Ti(g,) = 0

In Section 3.2 we found that the characteristics for the leading

tail due to the moving core were given by

X = F(T3¢e), Flgsg) = Xc(g), £>0, (4.1
where
dK 3
= = A ( . )
- L XK~ 4.2
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and

dX - 2 /i \
d—T- = 3XK o (4.},

For focusing we have
FelTese) = 0, (4.4)
or

- { 3\
TF - Tf’(g) . \4.5}

Thus the time, T1, of first focusing is determined by minimizing Tf for
£ > 0. Chapter III analyzed the case where T1 = TF(O) and T%(O) > 0.

We now consider the case where

T, = T.(8.) , g, >0, (4.6)
and

Using (4.7) in equation (3.19) we find that

F,_(T,;6,) = 0

\
ce 1138 , (4.8

so that the fundamental folding equation, (3.18), must include cubic

terms:

X=X, =F (T 56 {T=T,) = aF (T, 36,0(1-T, )2
. (A AR EAS EARREE ESRNAR & AR RAT KRR K
: - b P (T8 (T3 = (T 58, (1T, 3 (68, )
6 TIT 17> 1/ LEN R ¢ 1’ 1’
2
b
L | 2
N - 14 . \ - A - \
:‘t + 7 FTTE\T1’£1/(T T1/ (E Q1/
4
N 1 (1T o7 ) \ 2 ] er Mrop V3
" * 7 Freg (g (T-Ty0(6-80% + 2 Feee(Ty580(8-607 .

The change of variable
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g -5y = |1-1,1"20(s) (4.9)
then yields the similarity variable
5 = [X-X1-Cg(T-T1)]/|T-T1|3/2 : (4.10)
and the fundamental folding cubic is
af>(§) + bf(S) = S . (4.11)

For this case we have

or N
Cq = FrlTyigy
azaF _ (T.:6)
=% Pecet T3

and

o
[}

- . \
FretTysgy.
By differentiating equation (3.19) with respect to g, we find that a < 0

and b > 0. From equation (4.11) we find that there is one real root, and

thus from {4.9) one characteristic value at each point {X,T) if

(S
‘2a ’ 3a
two distinct real roots {one a double root), and thus two charac-

teristic values at each point (X,T) if

=0,

and three distinct real roots, and thus three characteristic values at

each point (X,T) if




‘V“""'w"w-‘*"m‘-&v‘ﬁ“‘*‘t—"("vvv‘W!'  audh Sat Gad tug o Bukh Sof Suh Al Sk Gad Sl Sk Gl Aok Iad Bl Aok Bad Bl Sl Bl S i Sall ShAN AN Tl Bl S AL Sl S I NS |

51

3/2

X = X, + cg(r-r1) _‘tZa[%- (1~ T )] (4.12)

1
Figure 4.1 shows this cusped caustic and the number of characteristics
in each region due to the moving core, while Figure 4.2 gives the
evolution of the number of characteristics at each X due to the moving
core.
Proceeding as in Section 3.3, but with the new similarity

variable, (4.10), we find that

1/2

K= R(Ty58) + Ro(T56)(T-T,) + KE(T1,£1)F(S)|T-T1| + e,

1359
and

A v B9 |[b-3aF2($)1(T-T,) -1/2 (4.13)

Using these expressions in (3.33) we then find that

|—5/2

B |T-T, f(s) ,

and continuing to higher orders shows that the expansion for U breaks

down when

Qur new scales are thus

-1/2 1/2

(T- T ) = ¢

(t-t1) R (4.14)

and

7 = &/%x- Xy=Co(T-T)1 = M8 xex 1€, (t-t D1 (4.15)

Now seeking a solution of the form (3.38) we have

3
- [A(1)K(1) s - E1/&C o + €

1/2
t g’z ¢r]

2
(1)K(1)

exp[-K(1)(x-A £,

- RICHRE TR S SR C et e .
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o Figure 4,1 Cubic folding, cusped caustic, and the number
P of characteristics at each X due to the moving core.
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and

o,

(1)°
u = [-K

2
1/4,(1) 1/2,(1) 3/4
XXX K ¢, - 35: K ¢ + ]

o+ Je ¥4 zz ¢ZZZ

Hh%

A

2
1) (1Y (1)
BXp[-K\1’(x—A‘1'K\1’ t\] .

v
RN

~.

s

Rl

Thus from (2.21) we have

PN
o L

13

L L. (1), () 1/4
¢, = 3K %7 = € 22z

4

s 4 o s

ry
2 a8
2 T IR

3
) ) (1) Zh
w20 o)+ P e T -

P S S R A

+ H.0.T.

2 "".'IA. ‘ o

As in Chapter III, to leading order we have the diffusion equation (3.40)

LAk

¥ _ o
P, = 3K gz

e with the solution (3.41)

W ¢0 = fiwD(a)exp[-aZ + 3x(1)K(1)azr]da-

DA

For the case we are now considering, we find from matching that D(a) is

A

4, -8,

different from the previous case and

T
2

.« &

.

[}

m
[
Y

-—

..l. "1' "n A
o
-
N
o
>
—
x
—|
-~

D(a) =

> ;o
LT e

o

D expl sga(A X , >

/7 O

\ \
(D (13 3 ‘) " Poe,
D

T —
el
233
>

The substitution

L=

-h

-1/4
a =& b (£-£.)
;j{TT;T1) 1

b
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into {3.41) now yields

-1/¢ - O
b = < V84 bs ) expl2 h(e)1d (4.16)
where
4z 2
"_'11—('1—, ]
6A\ IK 11
and
h(g) =1 a(g-¢ . b(T-T,)(e-¢ )2
‘ 4 1 2 1 1

- [x-x1-cg(T-r1)](s-s1) .

The integral, (4.16), with quartic phase, is similar in spirit to the
oscillatory Pearcey integral which arises for cusped caustics in diffrac-
tion (see [9]). Laplace's method for the asymptotics of this exponential
integral shows that the critical points of the quartic phase determined

by

h(g) = alg =) + BT (5 8;) = X=X =C_(T-T)] =

satisfy the fundamental folding cubic (4.11). We see that there are
one, two, or three real distinct critical points which correspond to a
maximum, a maximum and a double point of inflection, or two relative
maximums and a relative minimum of the quartic phase. Figure 4.3
illustrates the evolution of the quartic phase in the region near first
focusing (the cusp of the caustic}. The asymptotics of (4.16) are
determined as in Chapter III. We find that the asymptotic solution is a
single, slowly varying, exponentially decaying tail everywhere except at
or near the points where h(£) has two maximums of the same magnitude.

The points where this occurs yield the initiation of a "shock path" as
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oy
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P

in the last chapter, where the asymptotic solution is the sum of two

slowly vary tails and is in transition from one to the other. After the

wave number shock forms, the shock path is determined by the inter- ;
section of two characteristics. For a while both of these charac-

teristics initiate from the moving core (¢ 3_0). However, if the
characteristic on the right (g < 51) tends to zero, then afterwards the

shock path is determined by the intersection of two characteristics, one

from the moving core (¢ > 51) and one from the initial tail (z > 0).

We have now considered two of three possible cases for focusing
due to the moving core. In Chapter III we shawed the analysis for first
focusing along the characteristic ¢ = 0, with T(0) > 0, which led to
a fundamental folding incomplete quadratic and a penumbral caustic. We
have just shown the analysis for first focusing along the characteristic

£= &, >0, with T}(€1) = 0, which led to a fundamental folding cubic

1
and a cusped caustic. The final possibility for focusing due to

the moving core is where first focusing occurs along the characteristic
£ = 0, with TL(0) = 0. The analysis for this case yields a

fundamental folding incomplete cubic (due to T%(O) = 0, see Section

3.3), but the caustic is penumbral because we have £ > 0 and we would

.P‘ Iy

need £ < 0 to generate a cusp. Thus, cutting off the characeristic

LAy

values at = 0 is equivalent, in this case, to cutting off one side of

[ ]

IR ERARR)
' P e
Jole Ty g

A

the cusp. This case of an incomplete cubic can be easily analyzed by our

earlier methods. We do not include these details since we judge this

-Qé case to be of little physical interest.
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G 4.3 Focusing Due to Initial Conditions
gy In Section 3.2 we found that the characteristics for the leading
e tail due to initial conditions were given by
W\
R X = G(T33?, G(03;3) =3, >0, (4.18)
-"J -
N\ where, as before, the method of characteristics yields
-1 oK 3
N = N
h
o and
o dx 2
:,.::. a’f - 3XK
L2
e From equation (4.18) we see that focusing occurs for
: G, (Te36) = 0, (4.19)
or at times
.
‘_1}:3 Te = T.(2) . (4.20)
PG
0y ’ The remaining analysis for this case is identical to that in Section 4.2
:ii for the previous case of focusing. The only differences in the two
ot
2,
;:j cases are seen by comparing Figures 4.1 and 4.2 with Figures 4.4 and 4.5
S
159
f?: respectively, which show that the characteristic leading to first
= focusing, ¢,, eminates from the initial conditions instead of the moving
T core, and the evolution of the number of characteristics at each X is
ii slightly changed since all of the characteristics originate at time
-.-_'
Y n = 0.
:k T=0
:t For a specialized treatment of focusing in the leading tail due
oy
Wy to initial conditions (where slow variations leading to focusing are intro-
"5 uced strictly through slowly varying initial conditions and not by

slowly varying coefficients) the reader is referred to [8].
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Figure 4.4 Cubic folding, cusped caustic, and the number
of characteristics at each X due to the initial conditions.




60

0<TKT

AT a e a K
s w_ & s _a_¥
IJ!I{'I.'.

_.l.l"‘

R

J

—

"

+

]

A4

=)

—

’l

. @
LU Y

<

B X
o
{:’ Figure 4.5 Evolution of the number of characteristics at each X

o

due to initial conditions,

CHRPU ST S Y
Date et
vretet At

M N At d® Sah G i Sl el la i da i il Sl Al Sal Wl Gl ind h St Pd 20t ai " ia- Sl A0t R A AR ngte. Al i AAch A A AR At AR A A

e e
OUCARE CUCE RN LY
NS B B Ko X B i A A

Al




61

APPENDIX

Matching Solution of the Diffusion Equation Obtained from the

Fundamental Solution

We have obtained a rather unusual solution, (3.41), of the
diffusion equation, (3.40). Here, we will show that there are initial
conditions which will yield this solution from the fundamental solution

of the diffusion equation:

1 co
(z, ) = I $,(8,0)
0 L0
#ﬂn(3x(1)K(1)r -
2
-(2-8)
exp e dg . (A.1)
a3 V(M

We take the initial condition, ¢g(8,0), from the matching solution,

equation (3.41), which we have derived:

r{; 05(8,0) = D/pexpl-as-ua’lds (A.2)

D,

1 where u = -12a(=>

Substituting (A.2) into (A.1) and interchanging the order of

integration we obtain

5g(Zy7) = B/5a(Z,0)expl o’ Jdu, (A.3)

Ry
» "

Y, |
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where

.lrl',l..
[l o'
Pl

ap

1 ]

AP

1 ©
Q(Z,7) = ! {exp[-ag]}
oDy =

R
_ AOI

2
- -(Z-3)
exp - ds . (A.4)
a(n(ﬂ \17)

B .

1
«

-
PR a]
)

LI

.
2 &
3

AT
v'l’.'l.l

However, (A.4) is the fundamental solution of the following initial

RN value problem:

B Q(Z,0) = exp[-aZ].
Thus, we solve for Q and obtain

Az, = expl-az + 3XVkMaqy (A.5)
Substituting (A.5) into (A.3) then yields the solution of the diffusion
g

J equation which we have obtained by matching

T - ua 3]da . (A.6)

%exp[-al + 32

-::':' ¢U(Z,T) =D o '\1)K‘\1)a2
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