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Asymptotic solutions for the nonlinear, nonhomogeneous, Korteweg-

deVries (KdV) partial differential equation <pde) with slowly varying

coefficients are not in general uniformly valid. A uniform asymptotic

expansion is obtained by finding separate expansions for different

regions and matching. A KdV solitary wave propagating in slowly varying

media is examined. Quasi-stationarity for the core reduces the problem

to solving ordinary differential equations for that region. However, in

the leading tail region, hyperbolic pde's must be solved to determine

the amplitude and phase. The method of characteristics predicts triple

valuedness after a caustic (penumbral or cusped) develops. Singular

perturbation methods show the solution near first focusing satisfies the

diffusion equation and involves either an incomplete Airy-type integral

or an exponential integral similar to the Pearcey integral. Laplace's

method shows that the critical points of the exponential phase satisfy

the fundamental folding equation. A linear multi-phase solution is

determined which does not become triple valued (break). Instead, a wave

nunber shock develops, which separates two different solitary wave
.,*
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.9 tails, and travels at the shock velocity predicted by conservation of'

waves. Thus, a unique uniform leading tail solution is obtained corre-

sponding to a specified moving core (the problem is shown to be well-
%~4

posed).
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CHAPTER I

INTRODUCTION

1.1 History

The objective of this thesis is to add to our understanding of a

A physical phenomenon which was first scientifically observed over 150

years ago by J. Scott Russell. The incident in 1834 is best described

by Russell himself:

* "I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat
suddenly stopped--not so the mass of water in the channel
which it had put in motion; it accumulated round the prow
of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined head of water, which
continued its course along the channel apparently without
change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of

* some eight or nine miles an hour, preserving its original
figure some thirty Feet long and a foot to a foot and a
half in height." [30J

Russell's life was dramatically changed by this single event, and so was

our understanding of wave motion to change as the investigation began.

He found no mathematical theory available which predicted such a

phenomenon and proceeded to study it experimentally. At the time he

could hardly have imagined the controversy that would arise between him

and Airy over the existence of such a permanent waveform, much less have

appreciated the bountiful applications in science that would arise and

the number of great minds that would apply themselves to broadening our

IV
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understanding of this phenomenon! It was nearly fifty years before the

controversy was put to rest by such men as Boussinesq, Rayleigh, and

Korteweg and deVries. They demonstrated the existence of a permanent

-1 solitary wave for nonlinear partial differential equations of shallow

water theory. There was little scientific activity for another half

century until other physical applications were shown to be governed by

similar mathematics. Then a variety of situations were shown to give

rise to nonlinear dispersive partial differential equations (collision-

free hydromagnetic waves by Gardner and Morikawa and a nonlinear meson

field theory by Perring and Skyrme). Fermi, Pasta and Ulam's study of

heat conductivity in solids then motivated Zabusky and Kruskal's

important numerical study of solitary waves, coined "solitons" by them

because they observed particle-like interactions. In order to under-

stand these interactions, a theoretical investigation was undertaken

resulting in one of the most significant developments in applied mathe-

matics and mathematical physics in recent years. Gardner, Greene,

Kruskal and Miura related inverse scattering for the Schrodinger eigen-

value problem to the nonlinear Korteweg-deVries (KdV) equation. In this

way they obtained solitons and multiply-interacting solitons. Shortly

thereafter Lax showed that other nonlinear partial differential

equations could be analyzed in this way. A series of interesting

physical problems was studied (self-induced transparency by McCall and

Hahn collaborated by Lamb, and the nonlinear Schrodinger equation by

Zakharov and Shabat, both important examples since they introduced a

different eigenvalue problem). Finally, Ablowitz, Kaup, Newell and

Segur showed how the inverse scattering transform (IST) could be used to

@I
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solve a wide class of nonlinear evolution equations. Thus Russell's

discovery of the solitary wave has led to much research and no doubt

will lead to much much more.

1.2 Motivation

A search of the literature shows much activity and excitement in

the area of solitary waves and solitons once Gardner, Greene, Kruskal

and Miura [4] demonstrated their method for obtaining exact solutions to

the nonlinear KdV equation. Their method of direct and inverse

scattering, which views the eigenfunctions as the transmitted portion of

a wave coming in from infinity and being scattered by the initial

conditions, was formalized by Ablowitz, Kaup, Newell and Segur in 1974

[2]. This formalization demonstrated permanent solitary wave solutions

for a large class of problems. The technique, however, requires that

the problem be integrable, which is not the case for many problems which

involve slow variations. It is precisely these type problems which

arose in many physical applications. Researchers thus began using
t

numerical techniques to gain understanding, and singular perturbation

methods to analytically demonstrate asymptotic behavior. In the late

1970's several independent studies showed the formation of a "shelf"

behind a slowly varying KdV solitary wave. Kaup and Newell [14] and

Knickerbocker and Newell [19] used perturbations on the inverse

scattering solution, while Ko and Kuehl [16,17], Karpman and Maslov

[13], and Grimshaw [5] used direct perturbation methods. For the case

of a KdV soliton propagating to the right through a region of slowly

changing depth, Kaup and Newell write:

0k'
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"if a soliton propagates through a region of decreasing
depth to a new constant level hl at x = x1, the
solution in the region to the right of x = x, will
consist of (1) the original soliton, whose height n2 has
adjusted in the transition region so as to be just the
correct height for the new depth plus (2) a number of
secondary solitons produced by the arrival at x = x1 of
the elevated shelf (which may be treated approximately as
a rectangular well potential of width L : (7 - x0) and
average height H = -L/3n; the number of solitons will be
proportional to RHE) and (3) some left-over radiation."

p.-..[14]

It is this case of a solitary wave propagating on the surface of water

of variable depth which Grimshaw [5] considers using a multiple scale

approach. He shows that the amplitude and phase of slowly varying

solitary waves are determined by hyperbolic partial differential

." equations. In his paper he points out for the region in front of the

* wave:

"A caustic develops...Beyond the caustic fg becomes
multivalued, and it is tempting to conjecture that the
breakdown is associated with the formation of further
solitary waves." [5]

It is here that we pick up the study. The development of a shelf behind

a slowly varying solitary wave has been extensively studied (see above),

but the situation in which characteristics cross in front of the wave

has not been analytically explained. The primary impetus for the study

is thus to explain analytically what the development of a caustic in

front of the wave means in terms of the physical solution. Is,-...

Grimshaw's conjecture correct?

1.3 Results

First we show that the problem separates asymptotically into two

parts. We call the two parts of the slowly varying solitary wave the

k .4.
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"core", or the region where the mass is concentrated, and the "leading

tail", or exponentially decaying region in front of the core with

respect to its motion. Our first results came by making some

simplifying assumptions. Looking first to the leading tail we linearize

the problem and then consider the special case of constant coefficients,

with slow variations introduced through initial conditions only. We

use the methods of characteristics, multiple scales, matched asymptotic

expansions and asymptotics of exponential integrals. The results are

quite interesting. Further solitary waves are not created in the

leading tail as conjectured by Grimshaw. Instead, we find that the

triple valuedness predicted by the method of characteristics actually

leads to a "wave number shock", or a relatively rapid transition from

one slowly varying wave tail to another. Details of these results are

given in Haberman and Allgaier [8]. The idea of wave number shocks was

first discussed by Howard and Kopell [10] in their work on slowly

varying reaction-diffusion equations. Also Haberman and Sun [9] used

similar asymptotic calculations in their work on slowly varying

oscillatory dispersive waves.

The remaining chapters of this thesis show how the properties of

the leading tail relate to the structure of the solitary wave core.

Futhermore, the most general cases of arbitrary slowly varying co-

efficients and arbitrary slowly varying initial conditions for both the

core and the leading taii are solved.

We show, in fact, Grimshaw's conjecture (see Section 1.2) is

partially correct, that under the right conditions characteristics for

the leading tail will cross and lead to the formation of a new type of

% solitary wave tail. We show that the set of different conditions, which

%R.
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lead to a wave number shock in the leading tail of a solitary wave,

contains the particular conditions which Smyth [2] demonstrates lead to

the formation of further solitary waves in the region behind the core.

Finally, we find some very interesting facts concerning the

formation of caustics. The specific slowly varying coefficients and

slowly varying initial conditions are what determine the type of caustic

which arises. In general, a cusped caustic (so named because of its

shape, see Figure 4.1) occurs when the crossing of characteristics is

approximated by a complete cubic equation. This can occur both for

characteristics generated by the moving core and for characteristics

generated by initial conditions in the leading tail. On the other hand,

a penumbral caustic (here penumbral means partial illumination resulting

from the cut-off of some rays or characteristics as in an eclipse)

occurs when the crossing of characteristics is approximated by an

incomplete (or cut-off) quadratic or cubic equation. This only occurs

when the characteristic eminating from the initial moving core catches

* * up to the characteristic from the nearest initial leading tail (see

". Figures 3.1 and 3.3). For much more detail on the classification of

caustics we refer the reader to the work by Kravtsov and Orlov [20].

1.4 Synopsis

In Chapter III we derive two asymptotic eq ations, valid in

different regions, which describe the behavior of Korteweg-deVries

solitary waves in slowly varying media. In the core we use quasi-

stationarity to obtain the asymptotic solution. However, in the

leading tail quasi-stationarity is not appropriate, thus we use the more

'- -'- ,>,'--- .-. , j._ .'- .. 44.. i - . - '4... . .. . ,.. 4-.. . .. - - ..... .4. -.. * .. .4 .
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standard multiple scale approach.

We next show, in Chapter III, that the problem of a KdV solitary

' .,5_" wave propagating through slowly varying media is similar in some

respects to the accelerating piston problem in gas dynamics. The method

of characteristics shows that, for certain physically interesting

problems, characteristics cross in the leading tail causing a caustic to

form which predicts a region of triple valuedness. By examining the

local behavior near the point of first crossing, we find it useful to

introduce a similarity variable. The breakdown of the asymptotic

expansion leads to rescaling. The new scales show that the leading

order solution near the first crossing of characteristics satisfies the

diffusion equation, even though the wave could be purely dispersive

* .3 without dissipation. Using Laplace's method for the asymptotics of

exponential integrals, we show that the solution does not become triple

valued (break), but instead rapid transitions occur from one exponen-

tially decaying tail to another, a wave number shock.

In Chapter III we show that a penumbral caustic is generated when

the first crossing of characteristics occurs along the characteristic

eminating from the initial core position. Then, in Chapter IV, we show

for the other two cases (first crossing along a characteristic eminating
.4-

from the moving core at a later position or eminating from the initial

leading tail) that a cusped caustic is generated. In all three of these

cases we show that the predicted triple valuedness actually corresponds

to the propagation of a wave number shock in the leading tail.

--'-
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CHAPTER II

DERIVATION OF THE EQUATIONS

2.1 Introduction

* -In this chapter we seek partial differential equations (pde's),

using perturbation techniques, which describe the behavior of slowly

varying solitary waves and solitons [1] moving in inhomogeneous media.

Since the pioneering work of Gardner, Greene, Kruskal and Miura

[4] in 1967, it has become well known that the constant coefficient

Korteweg-deVries (KdV,' equation has a family of exact N-soliton

solutions. These solutions can be obtained using the inverse scattering

transform technique [1,29] which was derived for exactly integrable

equations. The variable coefficient KdV equation, which in general is

not exactly integrable, describes many interesting physical phenomena

[6, 11, 12, 17, 21, 25, 26] and has been discussed extensively in the

literature. Grimshaw [5] and Johnson [6] consider the case of a

solitary wave propagating on the surface of water of variable depth. We

make a minor generalization to their work by allowing the variable

!0 coefficients to depend on space as well as time

" Using a multiple scale approach, Grimshaw [5] showed that the

asymptotic expansion breaks down as one gets too far from the peak or

center of the wave. We thus consider two cases, first the "core" or

thin region near the center, and then the "leading tail" or semi-

4,'
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infinite region on the forward side of the wave.

2.2 The Core

We consider the nonhomogeneous, variable coefficient KdV equation

U t + VuU x + XUxx -FIu (2.1)/

with a solitary wave initial condition. In this equation 0 < E << 1 is

a small positive parameter and , and are slowly varying functions

of X = -x and T = et. Using the standard multiple scale approach, we

take the fast phase variable to be

n :(X,T)/E, (2.2)

and assume

u(x,t) : U(X,T,n). (2.3)

The usual chain rule yields

Ut = E(Ut + UnnT /

.ux = (Ux + U nx)

and

u E:. :+ UnnX<x +
3UxnnXX + 3Uxxnx• ,..xxx x lx+ nx+3UXnnx

+ 3U nnx +3U X n(nx)2 + U nn(nx) ]

.* We define a slowly varying wave number, k, and a slowly varying

frequency, w, as follows:

"@,, x  OX - k, (2.4+.a)

ft- eT :-w , (2.4.b)

which yields conservation of waves

.. kT + wX  0 .(2.5)

Using (2.3) and (2.4), equation (2.1) becomes

..

.,

~~~~~~~~~~~ .+ ., . . . . .. . . . .. ,. .. . . , •, . ,. ; '' 'W ' ' '''A'
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-wU n + vkUU -s+XkU

,E(UT + vUUX + 3XkkxUnn + 3 kx UUxn + yU)

- \2(Xk U + 3Xk Uxn + 3XkU - . (2.6)XX n X Xnn Uxx)

To solve this equation, we expand U, k and w in powers of e

U = U0 + eU 1 +e
2  + ...

Sk = k 0 + ekI1 + e 2 .k,

and
2w = w0 +ew 1 + w 2 +...

Thus, to leading order, equation (2.6) becomes

-woU + vkoUoU + Xk3Uon 0 . (2.7)
0 On o 0 On k0 OJ0

The well known solitary wave solution for equation (2.7) is

, 0  A sech 2n, (2.8)

3w0

0

(W0k)1/2

4Xk 3
0

which agrees with Grimshaw [5]. Continuing to higher orders shows that

the expansion for U breaks down when Inl > 0(0). We thus define the

core by n = 0(1) (assuming a = 0(1)), since otherwise U is exponen-
0

tially small. The center of the core is n = 0. We take the position of

this center to be an unknown function of time

S Xc= Xc (T) = Xc (T) + eX c(T). (2.9)

Thus, at any given time, we find from equation (2.4.a) that the fast

phase expanded around its center is given by



to leading order. Thus the core occurs where X-X 0 (E:) (where (2.10)

S....,

is valid), or to within order E of the path X = X (TN. Now using

to denote evaluation at X = X ,we find that the leading order solution

(2.8) in the core, is given by

U0 sech2[( )1/2 (2.11)

Svk 04Xk 0

This is a quasi-stationary solution [18]. We redefine the fast phase

to be-:..-

x-x
- (2.12)

From (2.4) this choice of phase yields

k = 1 , (2.13.a)

and

w= X'(T) , (2.13.b)

automatically satisfying (2.5). We will shortly determine the unknown

w(T). In terms of it the center of the core is
X T

(T) X (0) W(T)dT (2.13.c)
c c f 0w..Cd,

where X (0) is the initial center. It is thus easier to directly solve
c

(2.1) in the core using a quasi-stationary approach with two scales,

rather than the standard slowly varying approach with three scales:

u(x,t) = V(n,T)y. (2.14)

We expand the coefficients around X X to obtain
c

S. 0
-wV + vVV + XVn

- T[ +x\n + X c )VV + XX +Xc )V + YV]

+ O( 2 ) . (2.15)

.. P ;:.9.-
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Thus the leading order equation is

-wV + VV +XV 0 , (2.16y
0 On 0On 0nnn

with the solution
~3Wo o 12X- f w(T' dT

V0 =-:=sech [W2 )1/2 ].(2.17)
0 E

Here we have taken the center oF the core to be initially at X = 0. Note

that the sign of w0 equals the sign of X and hence equations (2.13.b)

and (2.17) show that the core must move in the direction of the sign of

X. Continuing to the next order we obtain
4...A A

-, 0 -WoV 1  + V(V0V1) + VO

- (V0  + VX(n +X C)VV on. + X X(rI + XCl)vOnnn + NV0 ) (2.18)
T 11

A
We now define the linear operator, L, and its adjoint, L, as did

Kodama and Ablowitz [18]:

Ly -w0y n + v(VoY) n + Ynnn

L Ay w0 YN - VV0Yn " Y nn

so that

- 0(VoLV1  V lLA 'odn

[+X(V 0V1  - + Orin V1 + vV0 V1 - w0 V0 V1 -0

Thus V1 and its first two partial derivatives with respect to n will be

well behaved if the following capatibility condition is satisfied

/ V A 2 2xn~
" - Vo OT + 0 or 01(n+Xc )V V + c 5 ) V r YVo1 dn : 0 . (2.19)

Using equation (2.17) to evaluate (2.19) we obtain

-
-w 2-Y) /3/ (2.20)

54 0

.4°2

-, -" ' .' , ; " ." .: .' ." -' . , -, ." , --. ' " . • ." -" ." .' , ' ." ., ..' -." ..." .-.' ' ' " -.-.-.- V ., . --". " "
, ,,. ' ' ., ? .-i., . -, .' ., . .- ' . ' , ' ' . " .. - .¢ F " ' ' ; ' : < " " " " " " ' ' ., -L .k ' ' , . -
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which can be solved for wo(r) from an initial condition w(O' (we assume

w(O)' independent of E so that wo(0) = w(OD). Thus, the leading order core

solution, (2.17), is completely determined using (2.13.b).

Equation (2.20) appears to be a first order ordinary differential

equation (ode) with variable coefficients. However, in general the

position of the core depends on the unknown w0 via equation (2.13.c).

We see that w0 = X' and w' = " Thus (2.20) is actually a
* second order ode with variable coefficients. To solve it we must know

the initial conditions X (0)' and X'(Q). If v and A are functions of T
cc

only, then (2.20) has the solution

wo(T) w(O)[ I(O)v4(T)]I/3 exp[- 4f y(T)dT3

S0,(T)

as shown by Ablowitz and Segur [1].

We note here that if the perturbation analysis using equation

(2.3) is carried forward without assuming quasi-stationarity, we can

--obtain a hyperbolic system of pde's, in X and T, for the wave number and

amplitude, as did Grimshaw [5]. We must be careful to realize that

these pde's are only valid in the core; X is in a very thin region near

the center. From equation (2.10). we see that

x = X (T) + 0(c).

In this thin region, X is, to leading order, a function of T, thus

reducing the pde's to ode's. If we fail to show proper care, and use

the method of characteristics to solve the hyperbolic system, after much

tedious algebra and some complicated matching, we find that the solution

.-. Fails to focus in the core region. This is the same result we have

- obtained using quasi-stationarity!

x°

.........
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2.3 The Leading Tail

The semi-infinite regions on either side of the core we refer to

as tails. The tail on the side of the core in the direction of its

motion we call the leading tail. We call the other one the trailing

tail. There is much discussion in the literature concerning the

trailing tail of slowly varying solitary waves and the development of a

"shelf-like" structure [13, 16, 17, 18, 19, 24, 25, 28]. There appears

to be very little discussion concerning the crossing of characteristics,

which leads to the formation of a caustic, for the leading tail [5]. It

is this problem we are concerned with here.

In the leading tail the quasi-stationarity assumption is not

valid, since the tail is not localized in space. However, due to the

decay as of the solution, (2.17), the nonlinear term in equation

(2.1) is exponentially small. Thus, as is justified by the method of

matched asymptotic expansions, we seek a slowly varying solution to

u ut + XU xxx  : (.1

We expect the leading tail of the solitary wave to be exponen-

tially decaying. A steady traveling decaying wave solution would be

AeKX- QT

similar in mathematical form to an oscillatory dispersive wave. However,

(2.21) has slow variations including a slow decay or growth introduced

by the term with . Thus we use the multiple scale approach and intro-

duce terminology similar to that used for oscillatory dispersive waves:

the fast phase, H, slowly varying wave number, K, and slowly varying

frequency, . They satisfy the conditions

No, o •.1

l-i.

A.s
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H = (,)~ (2 .22'x

H z =,x (2 .23 .a)

and

Ht ~e (7.23.b'

so that conservation of waves

KT +\ 2 =0 ,(2.24)

also holds in the leading tail. Using the chain rule on

u(x,t) =U(X,T,H),

equation (2.21) becomes

3 2H+A UHH -F(UT + 3XKKXUH + 3)4< UXH +YU)

2QU + HH T X (xHx (2.25+
xK xUH+ 3xKXUX + 3xKU~~

The leading order equation

--U OH +XK 0U OHHH =O, (2.26)

has the decaying solution (as H - ,assuming X>O or a right going

wave)

U =A(X,TI/exp[( --L" H ] 2.27)0 K3'
K0

The next order equation is

-2U + XK U Q 2U -3XK K U -U

0O1H 0O1HHH 1 OH 0 1 OHHH OT

-3XK K U - 3XK 2U - YU (.8
0OX OHH 0 OXHH 0 2.8

The right hand side of this equation produces secular terms for U1

(terms which, for large H, cause the asymptotic expansion to break down),

unless

3
Q XK0  (2.29'0V

' L. 4-e2 A -
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and

A + 3XK 2A = -(+ + 3XKoK - 3XK K1 + Q )A. (2.30/T 0X0Ox 0 U

Using (2.29) and (2.30) in (2.28) we can solve to obtain

U1  B(X,T)exp[-H] . (2.31)

From equations (2.27) and (2.29), and (2.31) we see that it is not

necessary to expand H, the phase, since the order c and higher order

terms can be absorbed into the amplitudes. Thus equations (2.29) and

(2.30) become

Q XK ,(2.32)

and

A + 3XK 2AX = -(y + 3XKK ')A. (2.33)
T X

Equation (2.32) is the "dispersion relation" for exponential tails for

the linearized KdV equation. Using this relation, equation (2.24) for

the conservation of waves becomes

KT + 3XK
2 Kx = -X K3  (2.34)

which must be solved along with equation (2.33). The leading tail

solution must then be matched to the core solution. Under physically

reasonable conditions, we will show in Chapter III, using the method of

characteristics for equation (2.34), that characteristics will cross

causing a caustic to form. Then we will consider this caustic formation

and its interpretation.

S.
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CHAPTER III

ACCELERATING PISTON PROBLEM

3.1 Introduction

In their now classic monograph [31, Courant and Friedrichs

briefly discuss a gas dynamics problem in which a compression wave is

produced by a uniformly accelerated piston. Figure 3.1 shows the

envelope formed by the crossing of straight characteristics which de-

scribe this problem. In this chapter we show that the moving core of a

slowly varying solitary wave acts like the piston of this gas dynamics

problem. In Section 3.6 we show that the constant coefficient problem,

equation (2.1) with constant coefficients, has straight characteristics,

which for an accelerating wave form the same envelope as the uniformly

accelerated piston 'Figure 3.1). If on the other hand the wave is

decelerating, then a rarefaction wave is produced as with a uniformly

decelerated piston ,Figure 3.2). In Section 3.2 we show for the more

general case of variable coefficients that an envelope may or may not

form depending on the medium and on the motion of the wave. The usual

*@ case of an accelerating wave with variable coefficients is illustrated

7- in Figure 3.3, where the characteristics are now curved due to the

""-" variable coefficients.

*We also show in Section 3.2 how the characteristics arise and

can lead to a focusing solution. Then, in Section 3.3, we utilize a

VA7e
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AT

Figure 3.1 Envelope of straight characteristics
for a compression wave produced by a

uniformly accelerate( piston [3].

L%
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Figure 3.2 Straight characteristics of the rarefaction
wave produced by a uniformly decelerated piston [3j.
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similarity variable to determine equations for the envelope (boundary of

the region of multiple characteristics), and to obtain a "fundamental

folding equation". Examining the local behavior near first focusing

leads us to new scales. We show, in Section 3.4, how these new scales

relate the solution to a solution of the diffusion equation. In Section

3.5, we use Laplace's method for the asymptotics of exponential

Y'. integrals to determine the asymptotic behavior of our solution near

first focusing. We find the solution to be a single exponential tail

everywhere except in a relatively thin neighborhood of a "shock path",

where the solution makes a transition from one exponential tail to

another. In this neighborhood the solution is the sum of two tails. The

"shock path" is actually the location in space time of a rapid change in

wave number or a "wave number shock". This idea of a wave number shock

was first discussed for slowly varying solutions of reaction-diffusion

equations by Howard and Kopell [10]. Finally, in Section 3.6, we work

through an example of our analysis using constant coefficients.

3.2 A Focusing Solution

In the last chapter we determined the leading order solution for

both the core

VC 3~~sc 2[ 12 (3.1)
V 3nic T

and the leading tail (right goiig with X > 0)

U0  A exp[-H] .'3.2)

Using (2.13.b.' and the given coefficients v, X and y, we can solve

equation (2.20'. to completely determine V0 , and thus to leading order
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tne path of the core, X c(T). We now seek the behavior of U by solving

the system of pde's given by equations (2.33) and (2.34). First we

match U0 and V using the basic matching principle (see [15,20]). We

write V0 in terms of X and T, U0 in terms of n and T, and expand for

0- 0. Thus we have

- X' X" cO M/ X-X

V n' 12 exp[-( I/2..]
0

and

X-X
U0  A exp[-K - ]

where 1' -11 again means evaluation at X X Now the matching of U0 and
CO*0

V0 yeilds the matching conditions

A 12 co (3.3)

. •.

co 12 =(3.4)

Next we use the method of characteristics to solve the leading tail

equations (2.33) and (2.34):

SAT + 3XKA X  (Y + 3XKKX)A

and

2 3
KT + 3XK K XXK

Taking

dX 2 (35)
dT 3xK,

n,-al
,.>:- .. .

-. .p" %'.*°.

% . .~~~~~~ ~~ .. .. . . . . . . .- •.--.- o -. %"-.. .-- ",.•
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we see, using equation (3.4), that near the core the characteristic

velocity for the leading tail is three times the core velocity. This

means that disturbances, in the leading tail near the core, will move

away from the core into the tail. Thus, the moving core acts as a

space-like boundary for the leading tail. The problem of solving the

leading tail equations subject to a specified core (amplitude and phase)

is well-posed; there is a unique leading tail matching to the core. On

the characteristics our system of pde's reduces to a system of ode's
-.-.-. dA

AT -A
.( Y + V (3.6)

and

dK 3
K " (3.7)

TY% x

Equations (3.5) and (3.7) imply that the characteristics are given by

X = F(T; ) , (3.8)

where Z is the parameterization of time along the path of the leading

order core (at T =, X = X (c)):

F(X;) = X , > 0 . (3.9)

We call the crossing of characteristics focusing, and the locus of all

such focusing points is a caustic. The caustic is obtained by simul-

taneously solving (3.8) and

F (T f:) 0 . (3.10)

The times, T = Tf, for which focusing occurs, due to the moving core,

are obtained by solving equarion (3.10) for T

,.. T = Tf() . (3.11)

Focusing occurs ahead of the core if

T >

_ * o •
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The corresponding positions at which focusing occurs are then determined

from equation (3.8':

Xf F(Tf;) . (3.12)

- - Equations -3.11) and (3.12) are the parametric representation of the

caustic due to the moving core.

Thus far we have considered only those characteristics eminating

from the path of the core (see Figure 3.4). We now consider the charac-

teristics due to initial conditions which eminate from the positive

X-axis (see Figure 3.5). Equations (3.5) and (3.7) imply that these

characteristics are given by

X G(T; ) (3.13)

where is the parametrization of initial position (at T=O, X=¢):

>. .'. G(O;;)=' > 0.

Analyzing these characteristics as above we see that they too can focus.

We do not pursue the case where neither (3.8) nor (3.13) leads to

focusing since there is then no difficulty with our asymptotic

expansions. We proceed under the assumption that there is focusing due

to the movement of the core only, and will consider the other

interesting case of focusing due to initial conditions in Chapter IV

(see also [8]).

Returning to the characteristics, (3.8), we determine the time of

first focusing, T=TI, by minimizing (3.11) for E>0. There are two

possibilities. First we can have

T T "0 3.14)
1

with

)Tn > 0 (3.15)

*~v -_
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Figure 3.4 Characteristics eminating from the path
of the core (due to the movement of the core).

XCMT

w.q.

"['J (TXc(T

SFigure 3.5 Characteristics eminating from the
X-axis (due to initial conditions).

--(T)

G(;+
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In this case first focusing occurs along the characteristic, r=0,

eminating from the origin; focusing due to later movement of the core

happens at a later time (thus giving rise to a penumbral caustic, see

Fig. 3.4 and [20]). The other possibility is

Ti Tf( 1 ) , (3.16)

with

0 T 0 (usually with T F(El) > 0) . (3.17)

In this case first focusing occurs along the characteristic,& =& > 0;

focusing due to earlier and later movement of the core occurs later

(thus giving rise to a cusped caustic). We consider the first

possibility, equations (3.14) and (3.15), in the remainder of this

chapter. The second possibility, equations (3.16) and (3.17), will be

covered in Chapter IV along with focusing due to initial conditions.

' 3.3 First Focusing from the Initial Core Position (Local Behavior)

We now consider the case where first focusing occurs due to the

immediate movement of the core from its initial position, that is

equations (3.14) and (3.15) apply (of course the time to first focus is

finite, Tf(O)>O). We approximate the equation for the characteristics

near first focusing by Taylor expanding (3.8) around =0 and T=TI=Tf(O).

In this way we obtain the "fundamental folding equation":

X-X1FT(TI;O)(T-Tl) - 1TT(TI;O)(T-Tl)
2

FTE(T I ;O)(r-T I ) + 2 F U(T 1 ;0) 2, (3.18)

a cut off quadratic in . From equations (3.10) and (3.11) we see that

ql%"
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F(T F (T ;)Tf( ) + F (T ") = 0 (3.19)
w w

Thus if T'(O) 0, then F (;0 = 0 and we would need to include

cubic terms in the approximation (3.18). The analysis for the cubic

will be done in Chapter IV. We now proceed under the assumption that

T.(O) > 0. Equation (3.18) is valid for & > 0, since the parame-

terization for the position of the core begins at P = 0. We notice from

equation (3.18) that the change of variable

(T-T1 )f(S, (3.20)

shows that f(S) is a function of the similarity variable S, where

* S [X-X 1 - Cg(T-T1 ) - C(T-T )2]/(T-TI'2 (3.21)

with the constants C and C defined by
9

Cg FT(T 1 ;0)

and

C -_FTT(T I ; 0 )

Thus the approximation for the characteristics, (3.18), becomes

af2 (S) + bf(S) = S , (3.22)

where the constants a and b are defined by

a I (T 1 ;0N

and

b - FT (T ;N.

From equation (3.19) we then have

a T (f b. (3.23)
2f

Now, for T<T 1 , X-X1 < C (T-T N + C(T-T N2 and > 0, we see from (3.21'
,n1, s1m'
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that S < 0. From (3.2' we have

fS, = [-b _ + 4aS]/2a (3.24)y

and (3.20) implies f(S) < 0. In this region of space time there is no

crossing of characteristics, so there must be a single characteristic

for each S. From (3.24) we see that in order for f(S) to have a single

negative value, and thus from (3.20) for c to have a single positive

value, we must have aS > 0 or a < 0. Equation (3.23) then yields b >

0. Examining equations (3.20) and (3.24) for T > T shows that these

signs for a and b yield the required two positive values of f(S) in the

appropriate region of crossing characteristics. Physically, b > 0 means

the velocity of the leading tail is increasing, with respect to the

position of the core, at first focusing ( =0 and T = Ti).

Since TI is the time of first focusing, all focusing occurs

for times T>T I, and thus the envelope of crossing characteristics

is, given by equation (3.24), the boundary of the region where f(S,

has two positive values:

5 0, T > Ti

and

5: b T>T

The neighborhood of first focusing can be divided into three regions

according to the number of characteristics passing through each point

0 (see Figures 3.3 and 3.6). Region I is given by

N x < x1 + Cg("T-T 1) + C(T-Tl)

and has a single characteristic, eminating from the moving core, passing

through each point, i.e. f(S) has one value satisfying both (3.20) and

. . . . . . . - ,." ". . . .. . ... . ,
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(3.22). Region II is given by

X + Cg(T-T i ) + C(T-TI2 1 +x Cg (-T 1 + (C - a(T-TI) T>T I .

This region has two characteristics, eminating from the moving core,

passing through each point, i.e. f(S) has two values satisfying both

(3.20) and (3.22), and a third characteristic, eminating from the

initial conditions, also passes through each point. Region III is given

by

X > X + C (T-T I + C(T-T1 )2 T < TI

or

X > + Cg(T-T + (C -- )(T-T T > T

This region has a single characteristic, eminating from the initial

conditions, passing through each point and no value of f(S) satisfying

both (3.20) and (3.22). Figure 3.6 shows these regions, and Figure 3.7

gives the evolution of the number of characteristic values at each X due

to the moving core.

We now seek the behavior of K and A near first focusing, X=X1 and

T=T I . From equation (3.8) we have
1

K(X,T) = K[F(T; ), T] = R(T;)

and expanding in a Taylor series around T=T1 and = 0

K = R(T 1;O) RT(TI;OY(T-T1N + R (TI;0)& +

Substituting (3.20) into this expression yields

K (TI ', N + [KT T;0 + Rr'T ;O'Sf5](T-T I) .... (3.25)

1( T 1 1'

and thus as T - TI (keeping S fixed so that 0)

K X RT (Of'(S/'T-T . (3.26)

q, ... -€ ,. • - . x , 1''-. - . . . .- - " '- -. . , , . .- ".-'.- . . ' " " '. .
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Figure 3.6 Number of characteristics passing through
each point in regions of the neighborhood of

first focusing due to: <moving core, initial conditions>.
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.OKTKT
o .. 0 <T <T 1

1

x '- x
C 1

PI
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T - --- T > T

x 1

- X 1

Figure 3.7 Evaluation of the number of characteristics
at each X due to the moving core.
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From equations (3.5) and (3.18) we have

3I( 2 C +b
g

and thus

3-x-x K3 2 + 2XKKx) ' x (3.27)

For well behaved X, '3.25), (3.26) and (3.27' yield

6XKK - b-x

and From (3.18)

"-'- b6XKK 1 b (3.28)

X bT-TI) + 2a

Thus, equations (3.6) and (3.28) yield

dA 1 bA
-T 9":':':.... do - (T-T1 )N + 2a

or

1/2A E) ( )b(T-T 1J + 2a. - /

where a(:) is determined by the matching condition (3.3). Using

(3.20) we now have

A A( (,l[b + 2af(S)](T-T1)I-1/ (3.29)

The singular behavior of A at first focusing suggests the use of

different scales, which we introduce in the following section.

3.4 A Relation to the Diffusion Equation

From equation (2.25) we obtained the leading order equation (2.26)

with solution

U0 = A(X,T) exp[-H] . '.30'

U-: ,.. . ..-. . . . .. -"t. - . " .,. ' .. '. . ' . . .. -.-. . . - w,. ' ,.-., ' . ' ' . . . "'""' . ,
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Near first focusing A is singular as given by (3.29). We will show

higher order terms in the expansion are more singular. At the next

'- order we obtained the solution

U1 = B(X,T) exp[-H] . (3.31,

The next order equation is very important:

3
- 2U2H + 2HHH -yU - 1T- KxxUOH

~3XKK Ul - 3XK U 2 x ,K (3.32/X 1H X OXH - x 1XHH -
3 KOXXH

We see that the right hand side produces secular terms for U unless
2

B + 3XK B -(Y + 3XKKx)B + XK A
T XXXX

+ 3K A + 3KA . (3.33)
X X XX

The asymptotic behavior of A, k3.29), leads us to assume

B 'IVIT-T I IP T(S). (3.34)

Substituting (3.25), (3.29) and (3.34) into (3.33) yields P - 7/2.

Continuing this process for higher orders shows that the expansion for U

breaks down when

1/3,
T-T1 =O(

'. which suggests the scaling

C -1/3 (T-T1) 2/3(t-t1) (3.35)

In order to kee the similarity variable, S, order one, we must take

1/3

[x-xl -C -t- ,. (3.36)

• o.
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Equations (3.35) and (3.36) are the appropriate independent variables in

a neighborhood near first focusing. We note that the scales of these

-- variables are intermediate to the other two scalings, large compared to

the scales of the solitary wave and small compared to the scales of the

slowly varying media. Using equations (2.22), (2.23) and (2.32), near

first focusing we have

H = 1[O(X1,T1) + K(X-) - X(XI,T1)K 3 (X,T1)(T-T) +

1e 1 1

).K = [X1 + X( 1K1) 3 T1  + K(1)[x-X(1) K t] +E:. (3.37)

* -' where the superscript "(1)" means evaluated at X=X 1 and T=T Since,
1 1V

from (3.29), the amplitude is singular at first focusing, equations

(3.30) and (3.37) motivate us, using the intermediate scales (3.35) and

(3.36), to seek a solution of the form

u = ¢(Z,T)exp[-K(l'(x-X(1)K ( 1)t)] , (3.38)

where the large constant in (3.37) will be part of (Z,-). This is a

different multiple scale approach than the one we began with in Section

- 2.2 (equation (2.3)). Thus we have

u(x,t) = u(x,t,Z,) , (3.39)

(1)K(1) 1/3 2/3 4/3

exp[-K()x-X1K t)]

and

(1/3K 2 2/3K(1N
= K + 1 K ) 3  K ZZ + 3EZZZ ]

exp[-K ' (x-Xl K1 t)]

. . . . . ." . . . . . . . . . ." % % " . % . ° - -, % ".- % " - -
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Substituting these values into equation (2.21) we have

3X(1 (1), 1/3 (1) (1) 1'3
3,,' K + E [ (x-x 1 ) + A (t-tl)]K"

i I ) _ y(1) + H.O.T.

~zzz

Near first focusing the leading order term for satisfies the diffusion

equation

0 3X(1)K(1) 0 Z  
. (3.40)

We showed in Chapter II that for the right going wave, which we have

considered here, X > 0, and hence (3.40) is the well-posed diffusion

equation. It is extremely interesting to note that even if y H0 we

still easily obtain the diffusion equation from the KdV equation even

though the KdV equation is dispersive with no dissipation! If we

momentarily consider the crossing of characteristics for the trailing

tail of a right going wave, then the analysis is nearly identical to the

above. However, equation (3.38) becomes

: exp[K(1) (x- 01)1

and leads to the backwards diffusion equation, which is ill-posed. In

this case the solution is grossly unstable, and therefore the assump-

tion of a slowly varying exponentially decaying tail is not valid for

the trailing tail of a right going wave. In fact, the trailing tail is

known to not be exponentially decaying. Ko and Kuehl [16, 17], Kaup and

Newell [14], Karpman and Maslov [13], Knickerbocker and Newell [19],

Grimshaw [5], Kodama and Ablowitz [17], and Smyth [28] show that a

"shelf" exists there and thus the prediction of our analysis is

consistent.
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We now return to the discussion of the leading tail of a right

going wave. We wish to solve equation (3.40) subject to matching the

leading order singular solution (3.30). Details of the matching will be

presented in Section 3.5 where we will show that the desired matching

solution of ',3.40) is a superposition of exponentials:

0 (Z,T) :_=fD(a)exp[-cxZ + 3X( 1 )K 1 )a2 T]da, (3.41)

where

0 O<0
D(ct.) ~ exp[12a( X()K 2 2) 3 a >0

b

and D is determined by matching. Equation (3.41) obviously solves the

diffusion equation. The substitution

U 6X( 1 K 1; ,

into (3.41) yields

-1/3 bb b _ (2/3Z, + 1/3b2 1 3-f bD exp , 2 b + Ta \d&0 (11K(1) 0 6 (1)K I 2 1 -a
0 X K 6eX K (3.42)

a convergent integral since a < 0. It is an exponential integral with a

cubic phase, an incomplete Airy integral of the type which would arise

in the analysis of the formation of a shock wave for a piston (Lighthill

[22], although no details are presented).

Using Laplace's method for the asymptotics of exponential

integrals we will show in Section 3.5 that (3.42) is the desired

matching solution. In addition we will show that the critical points of

the exponential phase satisfy the fundamental folding incomplete
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quadratic (3.18'.

We point out here that if we solve equation (3.40, as an initial

value problem (which, it is not", with the initial condition given by

equation (3.41) with T = 0, then the fundamental solution of the

diffusion equation yields the solution we have obtained by matching.

_, For details of this relationship see the Appendix.

3.5 Asymptotics and the "Shock Path"

We now show that the leading order solution near first focusing

(1 12
06

, -1"7-... 0=0 expE-K(1(- 1K 1t)] ,(3.43)

matches to the leading order singular solution

U0 = A exp[-H] . (3.44)

The basic matching principle is to express each solution in terms of the

other variables, expand for small 6, and equate the resulting expansions

to obtain the matching conditions (see for example [15, 23]). To change

variables we use the scaling equations:

-"j1/3 (T-T1 ) 2  
1(t-t1'

and

Z -2/3[X C(T-T1 )-C(T-T )2]

I , 1 I
c.E : € x-Cg(t-tl C(t-tl],

From Section 3.4. Solving for T and X we have

1/3'? T T + £

and

1 I/3 2/3(
X 1 + C gT + (Z + CT2 )

S..
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Thus, for small E we have

HU [ K(1E(E2/3Z + sL'3C E2/3Cr2)~H 1 +01 K 1/3

- x(1)K(1) 3 E/3] , (3.45)

and from (3.29)

1/3 1/2
A AW(i"b + 2af(S)]e /t -  (3.4.6)

From (3.422) we have

'- -~1/3 ,. d
C- Udoexp[- h(&)]d, (3.47)-o

where

d =  b
6X K

and

S- a + .bT-T ' - [X-X -C (1-T1)-C(T-T1)2] .

We now use Laplace's method for the asymptotics of exponential integrals

on (3.47). The critical points of the cubic phase are determined by

solving

hl'( E ac + b(T-T 1)CC- [X-X1-C (T-T1)-C(T-T1
2  0 (3.48)

for C " Equation (3.48) is the fundamental folding incomplete

quadratic equation (3.18)! Using (3.21) and solving (3.48) we hive
4

S b / 4a bLc 2 7 (T-T 1 )[1 ± 1+-- S ], S < (3.49)

Since h(s,) is a cubic with a negative leading coefficient, its local

maximum must be to the right of its local minimum (when they exist for

I o
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>u 0 or

-7 T <T andS5< 0

-2
max 2a T-T1 ) b 1

/ 1 +-. S T > T and S<

b 1 -4a

We now have

-1+3(1 + L ) - 2(1 + 4aS , T<T I and S < 0... h( b - (T-TI) 3 2b b'2-

max 2'a 4a 4a S3/2 b 2

-1+3(1 + b2 + 2(1 + T and S<_a

b b

h'( ) =0,
max

"/1/1
4a 1+ S ,T <T I  and S 0

h"(&ma b(T-TI1) /1+ a S T>T n

T >T , andS -
b

In Figure 3.8 we have extended the domain of h to illustrate its evolu-

tion throughout the neighborhood of first focusing. The location of

ma and the magnitude of h(ma) are critical in the determination of
max max

the asymptotics of 0 using Laplace's method. We must keep in mind

that &=0 is a cut-off value for the integral in 0 This cut-off gives
0'

rise to a penumbral caustic in contrast to a more common cusped caustic

(for further discussion of the classification of caustics we refer the

reader .o [10]). In order for the asymptotics to be affected by &max

. we must have m > 0 and h(a) > h(O) = 0, otherwise the asymptotics

Vmax max'-

will be completely determined by the endpoint of the integral, & 0.

Laplace's method, for fixed S > 0 and T < T1 in (3.47), yields

.'

4,.'.. .-. ,',z .. *vr ., . , . ,' - ,-'.v .. ,""¢ ," N ' -, " ' '"- % -''- ' -
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:v. ".2 S = 0 3b

_ --.
S 3b 2

Q 1 6a

X 4a

...T T

hh

max\

*max

h h

0 Q max

Figure 3.8 Evolution of exponential phase, h( ), near firsc
first focusing with domain of h extended to

negative r for illustration only. Laplace's method
for equation (3.42) uses the maximum of h(r) for r 0.

0?

s I
=T



40

" " ' ~0 00 a-/df=x~[hmax') + th"( max )  -max )2 ]d

AU':' -2E 1 / 3 d 1/ d

5L /2exp [=ma' (3.50)h"-E " max' a

Now using (3.45), (3.46) and (3.50) in equations (3.43) and (3.44)

V yields the matching condition

" A(0)[2s-13 di] - 1/2 exp{-Ie (1 )-K '(X - X()K(1)
2T1)]} (3.51)

Having thus determined 5 we can now obtain the asymptotics of 6, for
2 0

T > Ti and fixed S - b2/4a. For fixed S < -3b /(16a), =  iax

dominates the asymptotics (see Figure 3.8) as before and Laplace's

22
":- method again yields (3.50). However, for S fixed and -3b /(16a) < S <

-b 2/(4a, the endpoint E = 0, dominates the asymptotics (see Figure

3.8) and thus using Laplace's method for an endpoint contribution we

find from (3.47) that

(3.52)

The most interesting case is when both 0 and > 0 contri-

maxx-,bute to the asymptotics. This occurs when h(& maxy = hO)= 0 or

S = -3b2/(16a). Laplace's method then yields

-D 25/d 1D / 22(353

0" z +  6Ul --h( max)] (3.53)

This :learly demonstrates that, near first focusing, there is a transi-

tion region where the asymptotic solution is determined both by the

moving core, E = Emax > 0, and by the initial conditions, E = 0. This in

fact is the initiation of a "shock path". The solution remains

continuous, but there is an abrupt change in wave number or a wave



number shock. Howard and Kopell [10] have discussed a similar concept

For slowly varying solutions of reaction-diffusion equations. The shock

path near first focusing (and T>T 1 ) is determined from
1'

S = [X X C (T-T ,-C(T-T )2 ]/(T-T I 2 3b2

s  1 1 1 1' 16a

the points where the asymptotic are determined from both the moving core

and the initial conditions. The shock path near first focusing is thus

3b2  2
X = 1 + Cg(T-T 1 / + (C - ,-I 1 T-T (3.54)s 1l g 16a"~ 1'

with shock speed

dX 3b2
dT =g + VC - 1-,(T-T1) . (3.55)

As we entered the region near first focusing (T < T1), we matched

the leading tail solution to the solution near first focusing. This

matching determined the solution near first Focusing. We must match

this solution to the solution after first focusing (T > T1 ). This

matching is identical to the matching prior to first focusing. Thus we

see that, after first focusing, the moving core cor'tributes a single

exponentially decaying tail to the leading tail solution. Since in this

chapter we are considering the case with no crossing of characteristics

due to the initial conditions, it is easy to show that these initial

conditions also contribute a single exponentially decaying tail to the

leading tail solution. Therefore, for each space-time point ahead of

the core where a single characteristic passes, the leading order

solution is a single exponentially decaying tail. However, inside the

envelope of crossing characteristics (see Figure 3.3) superposition

yields the leading order solution:
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u(x,t) A z exp[-H ] + Ar exp[-H] ' 3 56)

where the subscripts "Y" and "r" denote the solutions due to the moving

core and initial conditions respectively. Equation (3.56) is a linear

" multi-phase slowly varying tail (see [9, 24]). The asymptotic solution

for the leading tail is a single tail everywhere except at or near where

-- the phases in (3.56) are equal, or

H H . (3.57)

Applying the chain rule to a :H we have

d= K- . (3.5)
dT dT

Taking X X (T) to be the points where the two phases are equal,
s

we have

K dXS dX Q

- dT r dT r

or
dXS  f -

= S 2 r[ .] (3.59)
dT :K2 -Kr [K]

This is the well known Rankine-Hugoniot relation for conservation of

waves, equation (2.24). Using (2.32), equation (3.59) becomes

*--(K K 2 (360
dT X(K + KzK r + K r ,

and as T - T we see that (3.55) and (3.59) do match since

7 -C = 3X1 'K') .

g
Figure 3.9 illustrates the asymptotic solution near the wave number

stock.

4.
4."

So,

' .............. , r * .a*. -.-.-.-
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3.6 Constant Coefficients

We now illustrate our analysis for the special case where v,I and Y are constant in equation (2.1). Thus (2.20) becomes

dw
0

or

4
w0 (T) =w 0(.0exp[- yT] , (3.61)

which agrees with Karpman and Maslow [13], and Ablowitz and Segur [1].

The leading order core solution, (2.17), is now completely determined,

and from (2.13.b) and (3.61) the center of the core is located at

3

Xo(T) 4 y-{ wo(0) - wo(T)] . (3.62)

We assume X > 0 and thus from (2.17) we must have w0 (T) > 0, which means

the core moves to the right.

Now turning to the leading tail we see that equation (3.7)

becomes

dK = 0 (3.63)

on the characteristics, (3.8), or

~K(X,T) = K[X co() 5

From the matching condition, (3.4), to leading order we have

K(X,T) 0 1/2 2

K(XT) [--- ] exp[-r%],

or

XK 2 =W( ) . (3.64)

The characteristics, (3.8), are thus

I-.- --- .'. ..,- .-.--.--.'- .' .'.'- .. ...- -'.. .' ..' , , : -" "-.' '...'.."..% -: -.-..'-
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X 3 w ,T-,, + X . "3.65)

For Focusing we must have

3w-)(TrE) - 3W+( ) + Xo 0

f-:- 3w c

0

or

TF- 2y (thus T (i) : 1 > 0) .(3.66)

We see from this relation that we must have y < 0 for focusing ahead of

the core, thus the core must accelerate! First focusing occurs at

T

- and

J-9 3w (o)

1 2Y

From (3.64, we have

and (3.65) yields

x N( /',,E'-_2Wo(

so that

X 2 "I(3.67)

Using (3.67) in (3.6) yields

A(X,T) = A[X , Nw((-1/2 ex[-y(T-E)]

and the matching condition, (3.3', then yields

. 12w0( E( / 2Wo(w ( 11 /2
~~~~~A(X,T/' -- - 3w ( ', T -  - - ,* t '. ,  exp[-y(T-&)] . ( . 8

From equations (2.23) we have

."

,;'.,'" ...................... ..... . . ..... ..... . .. ,. ,--,.--,--,-,
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3(X,T) =KLX-X c - E/ + eX c ;,;
C , -, CO- ) [ (

on the characteristics, or from (2.32. and matching to the core

-(x,T) = K[X-Xo( , - XK2(T-;)] . '3.69,'

*Thus, from (3.68) and (3.69), the leading order singular solution for

the leading tail is

U = A exp[- . '5.70"

From (3.48) we see that max satisfies the fundamental folding

incomplete quadratic so that the matching solution in the leading tail,

(3.43), becomes

2e 1 / 3 d ]1/2 ep_(1)(x~K1 ) N2;71

0 N exp[-K (x-XK 't)J. (3.71)

Matching (3.70) and (3.71) we obtain the condition
12w(a) e 0 0'1

0 0 1/2

E1/3 rd

so that

'". [e12 l d ]1/ 2  [ (2/3Z + 1 1/3 _2 +1U.. L2 f exp[.2(- +-r y )I

''exp[-K (1 ) (x-XK(1  (.72

Using (3.23) and the definitions of C C, a and b we find from
9

(3.65) that

C 3w o0)- g

C 0
:,:::.- b : w6(o0% -- (o

3w -4'(w (0)

and

e ,'a,.

%% ... ................................................................

? 'a "- ,: - " ' . • . ,' ' '. , - ",'l - *' , '* *' ' ' .G ** .* '*,4 " S' i .*-:3i 4m . J'
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a=2yw IO .

Substituting these values into ( 3.54) and (3.55) we find the initial

* - shock path and speed are

x X+ 3w 0 (\T-T~ 3-yw (O)(T-T

* and

dX
S 3w 0 ) -3yw (O\(r-T1

T- 0
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CHAPTER IV

CUBIC FOLDING/CUSPED CAUSTICS

4.1 Introduction

In Chapter III we considered the case of focusing due to the

moving core of a slowly varying solitary wave with first focusing

occurring along the characteristic 0 and T (O) > 0. We found for

this case that the fundamental folding equation was quadratic in (see

Figure 3.7), and gave rise to a penumbral caustic (see Figure 3.4 and

[20]). We now turn our attention to the other two possibilities: Section

4.2 gives the analysis for first focusing due to the moving core along a

characteristic I > 0 and TY( I) = O,and Section 4.3 gives the

analysis for first focusing due to initial conditions. In both of these

cases we find that the fundamental folding equation is cubic in the

characteristic variable (see Figure 4.2), and gives rise to a cusped

caustic (see Figure 4.1).

4.2 First Focusing along r > 0 and T.( I) = 0

In Section 3.2 we found that the characteristics for the leading

tail due to the moving core were given by

*'-"-". X = F(T;&), F(&: , Xc , >0 , (4.1)

where

"- "dK K3K' ,"X (4.2'

f.' = - '" '

r °.... .. ..° : . - . t - t ft . ..ft f .t .t ° . . - . .-%-... -.. ° -. -. -.. . . •. -- .*. tft* f"

• ~ ~ ~ ~ 7 "-.-x"q'""' ..,'.-'" " .."""'.. " "" """ "-"" """"" """ "
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and

d = 3XK2 " (4.3/'

. For focusing we have

FZ(Tf;) 0 , (4.4)

or

Tf = Tf( . (4.5)

Thus the time, TI, of first focusing is determined by minimizing Tf for

Z > 0. Chapter III analyzed the case where T1 = ff(0, and T(O) > 0.

We now consider the case where

S f f ) 1 > 0, (4.6)

and

T 0 . (4.7)

Using (4.7) in equation (3.19) we find that

F (TI ( I  = 0 , (4.8)

so that the fundamental folding equation, (3.18), must include cubic

terms:

X-XI- FT(TI l)T-T' - --F (T -& 'l(T-TI

1 l~T(Tl; ld( 1' 2 TT' 1' 1 1

6. FT (T 1 ;E1(T-T 1 3 = T (T1;C1 (T-T1( 1

+ FT '(T-T 122 TT i 1,; ' -l

1 1 3
+2" F T(T 1; l T- -1 +T" (T-1;E ) l •

The change of variable

-q

',p#'
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- '/f(s) ,(4.9),,"T (4 { .9)

then yields the similarity variable

S H [X-Xl-Cg(T-TI ,J/IT-T 1 13/2 (4.10)

and the fundamental folding cubic is

af 3 (S) + bi(S' = S (4.11'

For this case we have

'a. g . F (T;)

.%. and

-.- b F FTE(T 1; I .

By differentiating equation (3.19) with respect to E, we find that a < 0

and b > 0. From equation (4.11) we find that there is one real root, and

thus from (4.9) one characteristic value at each point (X,T) if

S 2 bN3/T + (T > 0

two distinct real roots (one a double root), and thus two charac-

teristic values at each point (X,T) if

(52 , b 3
2a Ta 0

and three distinct real roots, and thus three characteristic values at

each point (X,T) if

..

"a (S_2-• -, "2 + (_,-3 < 0.
2a 3

,.%

Therefore, using (4.10), the cusped caustic is given by

,.7
,'a:'-'.-'''>::--'. -. • . .: i- . -:.: ; -, -.":: :-,. :: . " -.<¢ :'-"-,,; .:v:
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-b 3/2X = X + Cg(T-T 1 ) +2a[ (T-T1 ) (4.12)

Figure 4.1 shows this cusped caustic and the number of characteristics

in each region due to the moving core, while Figure 4.2 gives the

evolution of the number of characteristics at each X due to the moving

core.

.. Proceeding as in Section 3.3, but with the new similarity

variable, (4.10), we find that

K R(TI; 1 ) + KT(TI;E,)(T-Tl) + Q(T 1 I )f(S)IT - TI 1/2+

and

A A( C )I[b-3af2(S)](T-TI)h-/2. .(4.13)
w.-

Using these expressions in (3.33) we then find that

B IT-T1 1-5/2 Ts)

and continuing to higher orders shows that the expansion for U breaks

down when

T-T1  0(E1/2)

Our new scales are thus

T, -l/2 1/2 (.4

T= E- (T-TI ) E 1 (t-t) ,(4.14)

and

Z =-3/ 4 [X-X 1 -Cg( T-T1 )) = 1/4 [x-x1-C (t-t1 )]. (4.15)

Now seeking a solution of the form (3.38) we have

ut [+X(1)KM1 3  /4 C  E1/2 ]

exp[-K(1) (1) (1)2
ex[K (x-x K t))

~V.
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x C(T)

cusped caustic

F (T; )

Figure 4.1 Cubic folding, cusped caustic, and the number
.4 of characteristics at each X due to the moving core.

W4.9



- i 1':-

53

T 0--T<

xcx

TT

xci xl

xc xi

Figure 4.2 Evolution of the number of characteristics
at each X due to the moving core.
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and

N 3/4 (1N21/ 1/2(1) 3/4
U [-K' / + 3 1  K 'z 3 K z z + E Zzzz

exp[_K () (xx 1 K 1 ) t ]

Thus from (2.21\ we have

*T 3X)' (1) 1/4

-1/2 (1) () 13 (1
"" [x '(x-x I) + x (t-t1)]K ( - y '41

+ H.O.T.

As in Chapter III, to leading order we have the diffusion equation (3.40)

OT 3X(1zK(1OZZ

'. with the solution (3.41)

0 ="1"0 _O D(a)exp[-uZ + 3X(1)K(1 ) 2 Tda.4, =

For the case we are now considering, we find from matching that D(c) is

different from the previous case and

-1/

0 <

:; . , O ( a )
D exp[54a(, K ) ,> -E

D 6X K 1)

The substitution

-- 1/4

L -"  "~6 "( 1) K )

._

sd.\ ' e . " -,'-.' '-' .,' *.,'. " -, ".', ' ' ' ' ' ' '.,..-.,.', ' -. ,. ,-.-,. " ,.-.-.,.,.',-,'L; -,,,
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into (3.41) now yields

-1/4 
(4.160 : d Df=0 exp [d h(r)]d , (4.16)

where

bd 56X\ O"K(1

and

1 4 1 2
=  +

-[X-X1- Cg9(f-f 1 ]T - 1

The integral, (4.16), with quartic phase, is similar in spirit to the

oscillatory Pearcey integral which arises for cusped caustics in diffrac-

tion (see [91). Laplace's method for the asymptotics of this exponential

integral shows that the critical points of the quartic phase determined

by

h'~c( a( c- )3 + b(T-T1)( c- 1) - [X-Xl-Cg(T-T1 )= 0

satisfy the fundamental folding cubic (4.11). We see that there are

one, two, or three real distinct critical points which correspond to a

maximum, a maximum and a double point of inflection, or two relative

maximums and a relative minimum of the quartic phase. Figure 4.3

illustrates the evolution of the quartic phase in the region near first

focusing (the cusp of the caustic). The asymptotics of (4.16) are

determined as in Chapter III. We find that the asymptotic solution is a

single, slowly varying, exponentially decaying tail everywhere except at

or near the points where h(&) has two maximums of the same magnitude.

The points where this occurs yield the initiation of a "shock path" as
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*T T

F(T; )

T <T

Figure 4.3 Evolution of the quartic phase
near first focusing.
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in the last chapter, where the asymptotic solution is the sum of two

slowly vary tails and is in transition from one to the other. After the

wave number shock forms, the shock path is determined by the inter-

section of two characteristics. For a while both of these charac-

teristics initiate from the moving core (C> 0). However, if the

characteristic on the right (E < tends to zero, then afterwards the

- - shock path is determined by the intersection of two characteristics, one

from the moving core ( > E1)and one From the initial tail ( > 0).

We have now considered two of three possible cases For focusing

due to the moving core. In Chapter III we showed the analysis for first

focusing along the characteristic =0, with T,1(0) > 0, which led to

a fundamental folding incomplete quadratic and a penumbral caustic. We

have just shown the analysis for first focusing along the characteristic

S= 1> 0, with T (% = 0, which led to a fundamental folding cubic

and a cusped caustic. The final possibility for focusing due to

* - the moving core is where first focusing occurs along the characteristic

0, with T (O) = 0. The analysis for this case yields a

,J1. fundamental folding incomplete cubic (due to T ,(O) =0, see Section

3.3), but the caustic is penumbral because we have C > 0 and we would

need & < 0 to generate a cusp. Thus, cutting off the characeristic

.Ar values at 0 is equivalent, in this case, to cutting off one side of

the cusp. This case of an incomplete cubic can be easily analyzed by our

earlier methods. We do not include these details since we judge this

case to be of little physical interest.
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4.3 Focusing Due to Initial Conditions

In Section 3.2 we found that the characteristics for the leading

tail due to initial conditions were given by

X G(;;, G(O;;) = ;, ; > 0 , (4.18)

where, as before, the method of characteristics yields

dK _K3

and

dX 2T-= 3XK
2

From equation (4.18) we see that focusing occurs for

G (T 0 , (4.19)

or at times

Tf = Tf() . (4.20)

The remaining analysis for this case is identical to that in Section 4.2

for the previous case of focusing. The only differences in the two

cases are seen by comparing Figures 4.1 and 4.2 with Figures 4.4 and 4.5

1:1 respectively, which show that the characteristic leading to first

focusing, C1, eminates from the initial conditions instead of the moving

core, and the evolution of the number of characteristics at each X is

slightly changed since all of the characteristics originate at time

T : 0.

SFor a specialized treatment of focusing in the leading tail due

to initial conditions (where slow variations leading to focusing are intro-

uced strictly through slowly varying initial conditions and not by

slowly varying coefficients) the reader is referred to [8].
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cusped caustic

* .*G(T; ',)

x

'.°

Figure 4.4 Cubic folding, cusped caustic, and the number
of characteristics at each X due to the initial conditions.

*..
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xl

xl

Figure 4.5 Evolution of the number of characteristics at each X
due to initial conditions.

% %,
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APPENDIX

Matching Solution of the Diffusion Equation Obtained from the

Fundamental Solution

We have obtained a rather unusual solution, (3.41), of the

diffusion equation, (3.40). Here, we will show that there are initial

conditions which will yield this solution from the fundamental solution

of the diffusion equation:

0 (Z, ) 1 (  ' 0 )

/4.T- r(3X(1 )K (1) T

exp (d8 . (A.1)

We take the initial condition, 0(B,0), from the matching solution,

equation (3.41), which we have derived:

"0(ao) Of exp[-aat-pa ]da (A.2)

,@1 where = -12a((1)k()2

Substituting (A.2) into (A.1) and interchanging the order of

integration we obtain

0( 3
(Z J0 IQ(Z,T)exp(-Pac Idaz, (A.3)

0 0

C4. ,-'. rwr
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where

Q(Ztr) 1 f{expEch

Q(ZT)(Z S) i2})K1)

ep()()- d3 (A.4)
exp 

4(3 j K (1))T

However, (A.4) is the fundamental solution of the following initial

value problem:

Q r = 3X(1)K(1

"'-" ~Q(Z,O) = exp[-cZ].

Thus, we solve for Q and obtain

Q(Z,[) = exp[-aZ + 3X(1)K(1)t2 t] . (A.5)

Substituting (A.5) into (A.3) then yields the solution of the diffusion

equation which we have obtained by matching

' oZz = oexp[ -aZ + 3 X'lK"1az T a Ida. (A.6)

-0
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