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Abstract

- The paper develops a theory of tearing for circumferential through-cracks in pipes.

Resistance to tearing is postulated to be a consequence of invariance in shape at the tip of a

growing crack. '-

NOTATION

E Young's modulus R pipe mean radius

J fracture parameter h pipe thickness

M applied bending moment U axial displacement

av flow stress - (hIR)[l2(l-v 2)]-1 2

y = N/(7thR2) u - Efl/(oFR)

INTRODUCTION

A method of J-estimation for a circumferentially through-cracked pipe subjected to bending

loads was presented in [1]. The method was based on the Dugdale model and the semi-membrane

theory of cylindrical shells. The results of that analysis can be used in conjunction with a material
es

resistance curve to examine questions of crack growth stability by well-known procedures. Ile "--
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present paper is concerned with the use of a crack growth hypothesis in place of a resistance curve

to serve as an alternative theoretical foundation for stability analyses. The idea for such an

hypothesis has appeared repeatedly in the literature [2] - [7] in the form of a statement that some

quantity or other associated with the crack tip remains constant as the crack grows. A common

feature of such crack growth or "tearing" hypotheses is that they lead to a nonlinear first-order

differential equation for J as a function of crack extension. In other words the resistance curve

itself is determined theoretically instead of experimentally. The determination of a resistance curve

is not really necessary in applications of the idea to cracks in structures as the present paper will

show. Such an approach has theoretical appeal partly because the difficulties with geometry

dependance in experimentally determined resistance curves are avoided. In applications the effects

of geometry dependance are an essential part of the problem. Of perhaps greater theoretical appeal

is the prospect that a growth hypothesis (provided the idea proves to be correct) brings

phenomenological fracture mechanics one step closer to what must be its physical foundations.

The tearing hypothesis used in the present paper is an adaptation to the pipe problem of a

similar criterion set forth in [6] for the case of cracks in flat plates according to a Dugdale model.

The analysis is based on results from [1] and leads to a first order nonlinear differential equation

governing the effects of crack growth. The applied bending moment as a function of the crack

advance angle and the increased flexibility of the pipe due to the crack follow directly from the

solution to the equation.

ANALYSIS

Figure 1 (a) shows a sketch of the upper half of the crack profile at the instant of crack

growth initiation. The shaded region indicates plastically deformed material according to the

Dugdale model. The crack tip lies at 0 = a, and the Dugdale zone ends at 0 = 0o. The value of

u at 0 = ao is half the critical crack opening displacement 8c related to the critical value of the

fracture parameter J. and the flow stress by the familiar relation

Jc IF(8)
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The picture after the crack tip has advanced to 0 - a is shown in Fig. 1(b). An hypothesis of the

model is that the crack advances into the plastic region leaving behind a strip of "dead" material

(shown unshaded). The crack face is thought of as lying along the lower edge of the dead

material. If the upper curve is given by the function U(O, cc) then the width of the dead strip is by

definition 1(9, 0). The width of the crack opening is given by

A = 2U(e,c)-2U(,e) , CE< 0< cc (2)

The usual terminology isn't quite appropriate but the crack tip opening angle & will be defined to

be

Rro -lim. I

(3)
9- SL (a

where 8= 25(ot, a). With use of J = op8 , and put in dimensionless form, Eq. (3) reads
E d J + . E F 4

where

F =-2 (5)

Equation (4) might be called the "tearing"equation.

The crack growth hypothesis set forth in [6] is that the crack opening shape in the

neighborhood of the crack tip remains invariant as the crack grows. The obvious adaptation of that

hypothesis in the present case is that the angle Co remain constant. In essence the hypotheses

adopted here are the same as those in [6] but there is some difference in detail In [6] the analysis

is made according to plane stress theory for cracks in flat plates. Here the semi-membrane theory

for cylindrical shells applies. Results from semi-membrane theory are certain limits of results from

a more complete shell theory. What that means, for instance, is that the angle 63 given by (3) is a

parameter associated with the shape of the crack opening near the tip, not an actual angle.

However, it is a somewhat remarkable fact that quantities important to fracture mechanics turn out
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to be given accurately by semi-membrane theory provided the crack is long enough. See the

discussion after Eq. (62) in [1].

What remains to be done is to relate the angle F) to material properties and the radius and

thickness of the pipe. In order for the theory to make sense r3 cannot in any way depend upon the

crack length. A material resistance curve is generally assumed to have been obtained as though

small scale yielding conditions were adhered to. A crack growth hypothesis such as the one

adopted here is tantamount to assuming that the whole resistance curve is determined by conditions

at the initiation of crack growth. There is, however, no reason to suppose that ro cannot depend

upon the curvature and thickness of the pipe. Obviously the effect of curvature on ro must be

established on theoretical grounds because curvature is not a material property.

The required detenion of 63 is accomplished here by analysis of certain hypothetical

experiments. Small scale yielding conditions must exist in the limiting case aY -. F. In such a

case the extent of the Dugdale zone is small and results from [1], repeated here

- 2 (0 - a)2  (6)

,F , 2,r2 (P - a) (7)

imply
F 2/4/

F,, cc;(8)

in which case the tearing equation reads

E dJ + 2 54 _ f E (9)

The coefficients in the equation do not depend on a therefore the solution depends only on

a- ao. Initially J = J. and initially the first term in (9) is the Paris tearing modulus To obtained

from the initial slope of a resistance curve for small scale yielding. The angle 63 is thus

determined to be given by

"j M To+ 2OF 4F (10)

....~~ ~~~~ c ' ""° + "1 +' '' ' q



A somewhat different, but related, calculation was made based on the analysis of a semi-infinite

circumferential crack in a shallow cylindrical shell. The mathematical formulation of the problem

in terms of a semi-membrane theory turns out to be well-set and the problem can be solved. The

details will not be reproduced here but the resulting determination of 65 is exactly the same as

(10). Since the equations of the model are indifferent to the magnitude of the parameters involved

the determination (10) is expected to hold in all cases. In the general case the tearing equation has

the form
E dJ (11)

in which F is a complicated implicit function of J and a.

The following expression for the dimensionless axial displacement on the cracked section

was derived in [1]

"N4u(O,a)=CcosO-A+(3cosO-OsinO)ca 1O<a (12)

where A and C are functions of azP, y, and a (results arereproduced in the Appendix). The

load parameter a (proportional to the applied bending moment on the pipe) is also a function of

the three angles. The angle y marks the beginning of a compressive Dugdale zone on the side of

the pipe away from the crack (back yielding). In the absence of such a zone = z. From (12)

and definitions the taring equation (11) can be put in the following form

C'cos a-( + (3c" a - a sin a)O'- 0)
(13)

where 0 . /' 2 o

and where a prime denotes total differentiation with respect to a. In terms of A, C, a, and a

the fracture parameter J is given by

J-('-r oFR/Ft)[C cosa-A + (3cosa-Ia sin a)o] (14)

Since J is not a convenient dependent variable P will be used instead. For values of a

less than that for which back yielding appears A, C, and a are known explicitly in terms of a and

alone. Beyond that range y is known implicitly as a function of a and P and a root-fmding
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routine must be included as part of the numerical integration procedure. In either range the

differential equation for [3 has the form

[3' = f ([3,a) (15)

The initial value of [3 is determined from (14) by the condition J = Jc at a = a0 , and by a root-

finding process. For very tough materials back yielding can occur before crack growth initiation,

in which case initial values of [3 and y must be obtained by root finding.

The procedure for setting up (15) will be described in some detail in the case y'< . From

results in [1] there are two expressions for c involving the three angles a, [3, and y. These

have the form

N1 (a,[3,y) - aD1 (3,Y) -0 (16)

N2 (a3,Y) -aD 2 (3,Y) 0 (17)

Eliminate u between these two equations to obtain
N, D2- N2 A =0 (18)

For a and [3 given this is an implicit equation for the determination of y. It must be solved by

some root-finding method. Then a is given by Nt/D1 or by N2/D2 (which are equal). The

total derivative of (16) with respect to a yields

..- ._a-)-p (19)

A similar equation follows from (17) containing subscripts 2 in place of 1. These are two

simultaneous equations to solve for y' and a' in terms of [3'. Let the result be expressed in the

form

Y' =r + r2 [3' (20)

' = I+1 2[3 '  (21)

Equation (13) can now be written in the form
g2 [3'+ g1 =C) (22)

where



-7-

& = cos a A cosa - + (23)

g2  Co CzJAA r(C Cosa aA+-M (24)

and where

q-3cos a - a sin a (25)

The f in (15) can now be expressed as
f - (0- g1 Yg 2  (26)

The various functions required to calculate g and g2 are given in the Appendix.

So long as the dimensionless axial stress at 6 = x is greater than minus one back yielding

does not occur. This condition can be written

a+ - 2(P-a- sin P)/sin x < 1

(27)

where x = (x - D)/-'2

Let a B denote the value of a for which the condition is first violated. For a < a B the above

formulas simplify because 'y= x . Equation (16) determines a, and a' is obtained from (19) by

dropping the term containing y '. The terms with r, and 172 drop out of (23) and (24) and the

formulas in the Appendix hold with y = x . The numerical integration of (15) proceeds in two

stages, one for a < aB and another for c > % . Two difficulties arise. One is simply a matter of

matching the two stages. In any step-by-step process a is not likely to equal aD exactly at the end

of a step. Some sort of interpolation scheme is required to ensure accuracy in the starting values of

the second stage. A more troublesome difficulty arises from the fact that y = x is always a root,

but not the desired root, of (18). the spurious root can be eliminated by division of both N2 and

D2 by x - y and using a polynomial approximation to sin(z)/z to be found in [9]. However,

finding the root when xc - y is small is still difficult Fortunately it turns out that inaccuracies in

small values of x - y matter very little later on in the calculations.
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For any given value of a there is a value of the load parameter a sufficiently large to cause

plastic collapse. This limit load is given by

C L 1(cos sina) (28)

Some example results are shown in the figures. These come from the following round-

number choices for the parameters: R/h = 10, oF = 100 ksi, E = 30x10 6 psi, Jc = 1000 lb/in.,

R = 15 in., To = 100 or 25. Figure 2 shows load curves for initial crack angles of .3, .5, and .7

radians; the dashed curve is for To = 25. The points where a = aD are indicated by tick marks.

The upper curve represents the limit load according to (28). In the cases where To = 100 the load

reaches a maximum slightly below the limit load after a small amount of tearing. In the case

To = 25 the load reaches a maximum considerably below the limit load after a larger amount of

tearing. Theoretically the load curves should approach the limit curve asymptotically. Numerically

they appear to become tangent to the limit curve. Typically the computer indicates an overflow

condition and the program may as well be stopped. Figure 3 shows computed resistance curves in

three cases. In these cases (and in many computed but not shown) the initial slope corresponds

very closely to T0 . There is very little dependance on ao0 in the case To = 100.

CONCLUDING REMARKS

The results from the theory appear to be qualitatively correct but no extensive comparisons

with the results of experiments have yet been made. A tearing theory such as that presented here

substitutes a crack growth hypothesis for the hypothesis that there exists a "material" resistance

curve. The theory calls for the experimental determination of three material constants Jc , and T

instead of Jc , and a resistance curve. Such simplicity is appealing. The very need for a material

resistance curve (always a rather troublesome object) is bypassed. Should the theory turn out to

have validity a search for a more realistic model accounting for strain hardening would be

indicated.

As previously noted the numerical implementation of the theory given here runs into

difficulties when the load parameter gets close to the plastic collapse value. Examination of the
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limiting case [3- y small or even [3y - 0 (fully yielded cracked section) has not yet been carried

out analytically. Because shell theory is involved results in the limiting case should be similar to

but not identical to results from theories such as those in [7] or [8] in which the cracked section is

assumed to be fully yielded from the outset. The crack growth hypothesis in [7] bears an

interesting similarity to the one adopted in the present paper.

ACKNOWLEDGEMENT

This work was supported in part by the Office of Naval Research under Contract N00014-

84-K-05 10, and by the Division of Applied Sciences, Harvard University.

REFERENCES

[1] J. L. Sanders, Jr, Dugdale model for circumferential through-cracks in pipes loaded by

bending. (submitted for publication).

[2] F. A. McClintock and G. R. Irwin, Plasticity aspects of fracture mechanics. Fracture

Toughness Testing and its Applications American Society for Testing and Materials, STP

381, p. 84 (1965).

[3] M. P. Wnuk, Proceedings of the International Conference on Dynamic Crack Propagation,

Lehigh University, pp. 273-280 (1972).

[4] J. R. Rice and E. P. Sorensen, Continuing crack-tip deformation and fracture for plane-

strain crack growth in elastic-plastic solids. J. Mech. and Phys. of Solids 26, pp. 163-186

(1978).

[5] W. J. Drugan, J. R. Rice, and T-L. Sham, Asymptotic analysis of growing plane strain

tensile cracks in elastic-plastic solids. J. Mech. and Phy. of Solids 30, No. 6, pp. 447-

473 (1982).

[6] B. Budiansky and E. E. Sumner, Jr., On size effects in plane stress crack-growth

resistance. Developments in Mechanics, 13, pp. 131-138 (1985).

1,1III J ' I



-10-

[7] E. Smith, The geometry dependence of the J-R curve for circumferential growth of

through-wall cracks in cylindrical pipes subject to bending loads. Engineering Fracture

Mechanics 22, No. 2, pp. 263-267 (1985).

[8] H. Tada, P. C. Paris, and R. M Gambel, A stability analysis of circumferential cracks for

reactor piping systems. Fracture Mechanics, American Society for Testing and Materials,

STP 700, pp. 296-313 (1980).

[9] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau

of Standards, Applied Mathematics Series 55 (1965).

ol1 - i



APPENDIX

Q = a sin y- (x~ -y

P sin x = Q cos x - a sin 3+0 - a

where x = (

A = cos P+ -1(p - a)2 _ Nr (P cos x +Qsin x)

C sin 3-(7 sin p+13cos1)a+- a+ sin (03-a)

F =(p - a) + Nrcot x

aA =(p - a - csin p)Cot 2 X- .5(1 - ccos P)cot x -[asin y - (x - ]cot xsin x

aA =-,r2-(1+ cacos'y)Isinx+f[[asiny-(7r'-y)]cosx+ 1-a-a sin 13/sin2 X

cT =cos P - 4r2 sin 'y/sin x + ;2 sin 0 cot x

=-c[I + cos (p -a)]sin 0

W -1 p - in 0cos 0) a+ sin a +sin - (p - a)cos 1/sin2 p

=c- -1( sin P3+13 cos 13)/sin 13

aN1 -(cos a +cos P)sin x- ;2-sin 0 cos x

aN cs si x+ 1 2 -[sin + sinczai+ (p - a)cos P]cos x-F2(n - y)cos 0

aN1  - [sin 3sin a+ (p - a)cos O]cos x -(p -a) sin sin x +F2sin P

11 OWN
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D, = f+ 3 sin P cosP)s x + f21 2 Sin y Sin

_2 cos 2Jp sin x- (r - 5 sin I cosos osx- 4 siny cos P

r-=4 (p 3 sin 3 cos 3)cos x - sin 2 sin x -4 cos sin P

N2 -[sin y- (x - y) cos ylsin x + ;-(X -7 y cos x- ( - a) sin

aN2, ;2 Sin y

--. - 2 [sin y- (x -y) cos y]cos x + (it - y) sin y sin x -4  sin y
jp 2

aN22 os sny-12[sy- (x- y)cosy]cos x- V2(J3-)cosy

D,= (x -y - 3 sin y cos y/)sin x+ N2 sin2y cos x- N5 sin ' sin

aD 2 0

4D2  2''Q -y-3 sin ycosy)cosx+ sin sin x -N2 sin ycos

-.-2 -cos=y sinx + I(2-y+5 sinycosy)cos x- r cosy sin3

0-Ily
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Fig. 1 CRACK PROFILES
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