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- 0.06 sec, and the spatial summation field area was about five times
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2a. OBJECTIVES

(1) Design visual tests based on the channel theory of visual processing,
in particular tests of suprathreshold motion discrimination, and find whether
these tests predict intersubject differences in flying performance.

(2) Explain how subjects are able to unconfound simultaneous changes in
target orientation, size and contrast, and still achieve spatial
discriminations of size and orientation that are considerably more acute than
the bandwidths of spatial frequency channels or cortical neurons.

(3) Compare visual detection (i.e. visual acquisition) of camouflaged
objects whose edges are defined by velocity differences with visual detection
of objects that are brighter or dimmer than their surroundings, and find
whether these two kinds of object detection can be explained in terms of a
single neural mechanism or whether two kinds of brain mechanism are implied.

(4) Compare monocular and stereoscopic visual responses to motion in
depth, and find whetner the human visual pathway contains monocular channels
tuned to different directions of motion in depth.

2b. STATUS OF THE RESEARCH EFFORT

(i) Motion-in-depth tracking technique and perturbed tracking technique

The NRC Committee on "Emergent Methods of Visual Assessment" has listed

three emerging techniques for visual assessment. Our motion-in-depth tracking

technique is one of these three. This is the technique we described in Ref

48, The motion-in-depth tracking device was patented by the U.S. Air Force

(Regan & Beverley, U.S. Patent 4,325,697). We have used the technique in

attempting to predict individual differences in subjects” ability to judge the

motion and location of objects in three dimensions, especially as regards
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item (v) below. Other groups have also requested to use the motion~in-depth
tracker. These inélude the U.S. Navy, which has used the device in a study of
oversea flying performance in telemetry-tracked aircraft, and the Essex Corp.,
which has used the device in a study of overland flying and landing
performance of telemetry-tracked aircraft. I understand that a simulator
manufacturer (CAE), currently working on a project linked to Williams AFB,
plans to further develop and use the technique for pilot assessment.

In brief, the rationale for the technique was the hypothesis that the
visual system contains several, rather independent, functional subunits,
including the "looming" subunit. We have previously reported evidence that
the visual system contains a subunit that responds to line-of-sight motion
(i.e. looming) virtually independently of visual parameters including
trajectory, sideways motion, and contrast changes (Refs 66, 82).

Conventional eye-hand tracking tests have the subject track a target that
moves in the frontal plane only, i.e. it does not move in depth. This
conventional tracking test will not test visual responses to motion along the
line of sight. Our test has subjects track a target whose size changes
continuously and unpredictably and appears to move in depth. OQur technique
tests visual sensitivity to line-of-~-sight motion. A variation of the
technique ("perturbed tracking") has the subject track the target”s motion in

depth while the target is given random sideways motion. If motion-in-depth

tracking performance is unimpaired, this shows that visual sensitivity to the —
- —Eth
o line-of-sight component motion is independent of trajectory and of
A 0
v'{'.‘ -
Lo simultaneous frontal plane motion caused e.g. by head vibration. al
o . —
P (ii) Fine spatial discriminations and visual contrast sensitivity T
;;' A current idea in visual science is that the eye breaks up spatial -
oY information (e.g. size and shape) into spatial frequency bands that separately o
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deal with fine detail, intermediate detail, and coarse detail. There is an
indefinite number ;f such channels, each tuned to a fairly broad range of
orientations. Because these spatial frequency and orientation bandwidths are
broad, this analysis is crude. Consequently, it is difficult to understand
how subjects are so acutely sensitive to differences in size and orientation.

We collected the first data on spatial frequency discrimination in a
substantial group of control subjects (14-26 eyes in Ref 92). Previous data
were for two subjects only (Campbell et al, 1970). The subject”s task was to
judge which of two sinewave gratings had the finer bars. Over a broad range
it is not the absolute difference but the percentage difference in spatial

frequency that determines threshold. Subjects can detect about 2% to 5%

difference. Other workers have noted ripples in the curve (Hirsch & Hylton,

1982; Richter & Yager, 1984), but our spatial frequencies were not close
enough to bring out that point. This finding agrees with Campbell, Jukes &
Nachmtas (1970).

How is size (or spatial frequency) discrimination related to spatial
detection? How does discrimination relate to the channel model? We

considered several possibilities, including the following: (a) the relative

activity of many channels determines discrimination; (b) Watson and Robson”s

gf; idea tht spatial frequency channels are "labelled", and the most active

Egzz channels signal the target”s spatial frequency.

}:Ei Our rationale was this: if one channel has its sensitivity depressed by
;?; adaptation, then model (a) predicts that discrimination will be degraded, but
EEE; at a different spatial frequency to the contrast sensitivity loss. Model (b)
:}E; is inconsistent with this prediction. Our experiments rejected model (b) and
:f:i supported model (a). Figure | shows that, in control subjects, adapting to a

-

grating of 5 cycles/deg elevated contrast threshold at 5 cycles/deg as
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Figure 2. Masked spatial frequency discrimination thresholds

k. (ordinates) for a vertical 5 cycle/deg test grating versus

kr the spatial frequency of a vertical masker grating (abscissae).
o Broken lines (open symbols) are for a masker whose frequency
L was the same on every trial. Continuous lines (filled symbols)
@y are for a masker whose frequency was slightly different on

e each trial (up to *10% difference). Data are shown for two
A subjects.
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NEURAL FIRING FREQUENCY

balance coming from (b).
discrimination masking.

My cycles/deg.
b and ¢ depends on the random change in masker frequency as well
as on the change in test frequency.
is lower at 3 than at 8 cycles/deg, the effect of the 3 cycles/deg
masker ML is less than the effect of the 8 cycles/deg masker My).
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The continuous lines represent tuning curves of

three neurons that are driven from the same retinal location.

A - Opponent-size hypothesis of spatial frequency discrimination.

Test grating frequency changes from (T-AT) to (T+4T) cycles/deg.

A small change in the spatial frequency of the test grating

produces little change in the firing of the most excited neuron
(a), but a considerable change in the balance of activity between

neurons (b) and (c), the greater contribution to this change in
B - Opponent-size hypothesis of

Test grating frequency changes from

(T- T) to (T+ T) cycles/deg, and simultaneously the masker

grating's frequency changes between M; and M;' or between My and

The balance between the excitations of neurons

Since the slope of neuron b

AT
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expected, but also elevated discrimination threshold~-not at 5 but at 12
cycles/deg (Ref 139). We proposed that spatial frequency discrimination is
determined by size-opponent elements in the visual pathway. This hypothesis
can also explain our finding that spatial frequency discrimination was not
affected by randomly varying the contrast of successive gratings; the
discrimination process does not confound frequency change with contrast change
(Ref 139).

In a second study we measured the effect of masking upon spatial
frequency and discrimination (Ref 152 and presented to 0SA, San Diego, 1984).
Although masked contrast detection thresholds were well known, masked
discrimination thresholds had not been previously reported. Discrimination

thresholds were measured by the standard temporal 2AFC procedure (method of

constant stimuli), but a masker grating was superimposed on the test grating.
- With a constant frequency masker grating, subjects were able to use moire
w; pattern cues to frequency and achieved high discrimination (Fig 2, broken
F: line). In order to deny the use of moiré cues we randomly changed the marker
f{ frequency between presentations (by thZ). This procedure revealed that the
Ef masker grating produced an elevation of discrimination threshold that was
E; greatest near the test frequency (Fig 2, continuous line). The area under the
;’ curve was a little greater above than below the test frequency. These
i: discrimination changes are quite different from those produced by adaptation:
fi discrimination threshold is not elevated at the adapting frequency, but the
¢
. masking effect is large at the masker frequency; adaptation elevates
E: thresholds above the adapting frequency while the minor skew shown by masked
:; data is in the opposite direction.
)
= Nevertheless, as shown in Fig 3, both masked and postadaptation
é discrimination can be accounted for by the same opponent-sizc¢ model.
¢
ki ;L“figikl;JLfisilgclk.;-;Lx.]z;i;ﬁjl.';;;g;f;";_;pigi;;g';;u;f;lggﬁff;}?V.}-};,}.;‘Jij'Q.lzl\j
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In a further study we investigated postadaptation orientation
discrimination (Rek 150). Confirming previous reports we found that adapting
to a vertical grating elevated contrast detection threshold for a vertical
test grating, and this detection threshold elevation had a half bandwidth of
about 8 deg (Fig 4, dotted line). Our new finding was that orientation
discrimination thresholds were improved rather than degraded for vertical test
gratings, while for gratings inclined at 10~20 deg from the vertical,
discrimination was degraded though detection was little affected. These
findings can be explained if orientation discrimination is determined by the
relative activity of multiple channels, for example by opponent-orientation
elements. This hypothesis can also explain our finding that changes in
orientation were not confounded with simultaneous changes of contrast or
spatial frequency.

An opponent model of discrimination and a line element model are formally
rather similar. H. Wilson and I collaborated in an attempt to test his line
element model. We carried out the experiment "blind"; 1 acquired data

according to an agreed protocol, and he was required to predict the data after

e 1 had acquired it, but he did not know the data. Quantitative and qualitative

agreement between prediction and data were good (Ref 152).

2
}.

e
L.

(iii) Spatial vision: extraction of figure from ground by motion

L.

. Q.
PR R

1t is well known that some objects that cannot be seen in the absence of

i;é motion become visible when there is relative motion between the object and its
*

3;; background. A practical example is that grassy hillocks and ridges that

;;;: cannot be seen from a hovering helicopter can become clearly visible when the
:2:: helicopter is moving.

>

Figure 5 illustrates a laboratory version of such a target. These are

photographs ot a dot pattern on a CRT. A contains a camouflaged rectangle.
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In B and C the dots within this rectangle move and the rectangle becomes
visible (the moviné dots appear as streaks in the two exposures). The
boundaries or edges of the rectangle are made visible (i.e. the camouflage is
broken) by motion: in the absence of motion the rectangle is invisible.
Compare this with a conventional target. A conventional target”s boundaries
are brightness steps., Clearly, these are two quite different types of object.
One is defined by motion steps, the other by brightness steps.

We, and others, have previously explored target visibility produced by
abruptly displacing part of a dot pattern (Regan & Spekreijse, 1970; Julesz,
1971; Braddick, 1974; Baker & Braddick, 1981). Providing that the abrupt
displacement does not exceed about 20 min arc and take longer than 100 msec,
the "short range' process operates so that the target”s camouflage is broken
and it becomes visible. However, these previous studies did not use
continuous motion, and thus confounded the effects of dot displacement and
stimulus duration. Our study used continuous velocity and explored the effect
of velocity on target visibility, looking at temporal and spatial summation in
fovea and periphery (Ref 138).

Figures 6 and 7 compare target parafoveal detection thresholds for: (a)
a dot target whose edges are defined by motion contrast; and (b) a
conventional target whose eyes are defined by luminance contrast. Figure 6
shows how target detection thresholds depend on stimulus area. The lines are
theoretical fits assuming that receptive fields have gaussian sensitivity
profiles. Receptive field area is about five times larger for targets whose
boundaries are defined by motion contrast, the areas for camouflaged targets

being about 0.16 deg2 in the parafovea.

Figure 7 shows how target det “tion threshold depends on presentation

duration. The line in Fig 7B is a theoretical fit assuming a single stape
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! profile for summation fields. Spatial summation area is about 5 times
T larger for targets defined by relative motion (A) than for targets
:,? defined by luminance contrast (B). Targets were square and presented
. for 150 msec.
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e Figure 7 - Effect of presentation duration. A is for camouflaged

targets whose boundaries were defined by relative motion, and B is for
conventional targets whose boundaries were defined by luminance
contrast. The dotted 1line in A plots a constant-displacement law,
displacement being 1 min arc. The curves in B are theoretical fits
assuming a single integration time constant Ti+ The theoretical
curves in A assume a two-stage temporal integration, the same time
constant 1, being followed by a time constant T, over 12 times larger-
The rectangular targets were of constant shape zK = 2.8) and 1 deg

area.
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exponential integration process. The time constant is 60 msec, consistent
with classical dat;. The theoretical curve fitting the new data in Fig 7A
assumes a two-stage exponential integration process. The first stage has the
same time constant as the luminance integration stage of Fig 7B, The second
stage has a time constant of 750 msec. Thus, temporal integration extends
over about 12 times longer duration for a target whose edges are defined by
motion contrast than for a target whose edges are defined by luminance
contrast.

Figure 8 shows how thresholds varied as a function of eccentricity for
different target areas. Log threshold was linearly proportional to
eccentricity between U deg and 32 deg eccentricity at least. The slope of the
plot depended on target area, sensitivity to larger targets being less
affected by eccentricity.

(iv) Judging the direction of motion in depth from looming information alone

Discriminating the directions of motion in depth., The direction of a

target”s motion in depth can be discriminated with a remarkable acuity of
about 0.2 deg when viewing is binocular (Beverley & Regan, 1975). It has been
proposed that this high acuity can be explained in terms of sensitivity to

relative motion, in this case a velocity ratio. Because the two eyes are a

;i few centimeters apart, the left and right eyes” images of an object moving in
ne depth move with different velocities, VD and VS respectively. The ratio VD/Vq
[ .
-

" is uniquely related to the direction of motion in depth. We reported

psychophysical evidence that the human visual system contains elements tuned
L to the velocity ratio (Ref 34). In the experiment of Fig 9 the subject viewed

two dot patterns, one with cach eye. FEach pattern oscillated trom side to

L]

side at the same rate, but with different velocities., The subject”s task was

,-.’-.,I "f":ﬂ

to set thresholds tor just-visible motion in depth.  Figure 9 shows threshold
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Figure% - Log detection threshold for camouflaged dot targets is
proportional to eccentricity. The effect of eccentricity is less for
. larger targets.

-
. P . .
. . PR

‘. b - et e
P R vt B
ot e e e

L L e T = T
X L PR Sl e, S
P e A At At e e o

A Sl e . P’ P .
- - » - . . * N - e ‘e - . - - - . LI
i e . SN AV N RV S S S P PO L Y NI TP




A e 0 2 e i SR e S SR Tt Rt At e Y s A 3
W Ol e AR i St~ AR i At e e ie At Srhe gt

P SR A e A0 R A he RAah te St han S4s Ate Aie ives e 4

Dalhousie University 16
Departments of Ophthalmology and Medicine
Gerard Hall, 5303 Morns St. Halifax, Canada B3 IB6

2501

"o*

200

150-

* \l
bl *eg >
\~‘-~
"'
-

THRESHOLD ELEVATION (7))

. /
100 PY o
4 :
{ T* ) § j ! ;1 ) 8 " L
1.0 Y -1.0 0 1.0
Vs/ Vo Vo/ Vs

BINOCULAR VELOCITY RATIO

Figure 9. Thresholds for the detection of motion in depth were
measured for different ratios of the left (V) and right eye's
‘\g) retinal image velocities. Threshold elevations were
plotted as ordinates versus the velocity ratio of the test

. oscillation after adapting to four different directions of

e motion in depth. A negative sign means that Vg and Vp are

in opposite directions. Filled circles, fine continuous line -
adapting ratios Vg/Vp=+0.5 (trajectory to left of left eye).
Open circles, heavy continuous line - adapting ratio Vg/Vp=+0.5
(trajectory passes hetween cyes to left of centre). C(rosses,

fine continuous line - adapting ratio V /VS- -0.5 (trajectory
pusses between eves to right of centre}. Stars, broken line -
adapting ratio Vp/Vg=+0.5 (trajectory passes to right of right
2ve).  Arrows mark the adapting stimulus ratios.
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cievations caused by separately adapting to four different VD/VC ratios, The
- O

tita can be anderstood it the visual system containsg eight kinds ot binocuiar

rement , oedact tuned to o a ditterent value ot VD/VS, four preferring movement
towards the head and tour preterring movement away from the head. These
vlements are not arranged orthogonally, For the purpose of the following
discussion, note that adapting to a direction inclined just to the left of the
nose (open circles) gives a clearly different threshold elevation curve than

adapting to a direction inclined just to the right of the nose (crosses),

consistent with the idea that the two central elements sharply differentiate

rf

2

¢ petween trajertories to the left and right of the nose. By analogy with
..

B
. Hering” s rheory of color vision we suggested that, in binocular vision,
b .

directional discrimination is mediated by interaction between these

AR O e Mt

. o

Y] e Tl e
P .
. L

Sl

overlapping elements, much as color discrimination is mediated by difference
sivnals between the three color mechanisms (Ref 49). According to this

supygestion, directional acuity would be determined, not by the bandwidths of

SaTe i e

these ratio-tuned binocular elements, but by the noise level of the elements.
Monocular discrimination of the direction of motion in depth is a

different problem, but can be approached analogously to the binocular case.

-

L‘.q An object moving along an arbitrary trajectory is simultaneously changing size
Eii and moving in the frontal plane. Figure 10 illustrates how the ratio between
E%S; the velocities of a square”s vertical edges is related to its direction of

Lol

'“;: motion. When the centre of the square moves directly through the eye, the

>,

;Ei; speeds of the left and right edges are equal and opposite (VL/VR = -1.0 in Fig
k%} l0A). When the square moves to the right as it comes towards the eye but

E

Yo still hits the eye, the left and right edges move in opposite directions with
Y

EE; the left edge moving slower than the right (VL/VR = -(0.5 in Fig 10B). When
3;? the square”s left edge just grazes the eye, the left edge appears stationary

.
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Figure 10. Monocular correlate of the direction of motion in
depth. A-E show a square object oscillating along various
directions of motion in depth with respect to the eye. F-J]

show the oscillations of the object's left and right edges seen
by the eye. V| and Vp are the instantaneous angular velocities
of the left and right edges. A negative sign means that V; and
\p are in opposite directions. When 0< (V;/Vp) 1.0, the square
would pass to the right of the eye. When (V;/Vp) =0 the left
edge of the square would just graze the eye. When -1.0¢

(Vi Vp) <0 the squiare would hit the eye. Similar relations hold
for (\'R/\'L).
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(VL/VR = () in Fig yOC). When the square passes to the right of the eye, the
left and right edges move in the same direction, the left edge slower than the
right (VL/\’R = +0.,5 in Fig lUD), and when the square moves 1n the frontal
plane, left and right edges move identically (VL/VR = +]1.0 in Fig 10E).
Subjects are quite sensitive to differences in the VL/VR; the trajectory VL/\’R
= ].]1 is seen to be clearly tilted in depth compared with VL/VR = 1.0.

One possible explanation for monocular discrimination of the direction of
motion in depth would be that the visual pathway contains several elements
tuned either to different VL/VR ratios (Fig 10) or to different combinations
of changing size and frontal plane motion. For example, one kind of element
might preter increasing size combined with rightward motion (stimulus A),
while a second kind preferred increasing size combined with leftward motion
(stimulus B). Discrimination would be determined by the relative activity of
these notional elements. In order to test for the presence of such selective
sensitivities, a monocular adaptation experiment was carried out whose
rationale was analogous to the binocular experiments of Fig 9. In the
monocular experiment, subjects set oscillation thresholds for stimuli A and B
before and after adapti. - to stimulus A, and beftore and after adapting to
stimulus B. Figure 1] plots postadaptation threshold elevations versus the
VL/VR ratios of the 12 different test stimuli. Test and adapting squares were
centrally viewed, 1.0 deg side length and of luminance 12 cd/mz superimposed
on a 16 deg x 10 deg background of luminance 25 cd/mz. Each edge oscillated
sinusaidally with a frequency of 1.0 Hz. The initial adaptation period was 15
min, The trial interval was 6 sec with 20 sec readapt between trials. Four
difterent adapting stimuli were used: LI2R6 inphase (filled circles, fine

dotted line); L12Rb antiphase (open circles, heavy continuous line); LboRI2

antiphase (crosses, fine continuous line); L6R12 inphase (stars, broken line),
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Figure 11, Monocular threshold clevations caused by adapting
to different directions of motion in depth. Abscissac plot
ratios hetween the velocities of the test square's left and
right edges. The four curves are for the four adapting

Jirections arrowed. Filled circles, fine dotted line -
adapting ratio Vp/V, =+0.5 (trajectory to left of eye).

Jpen circles, heavy continuous line - adapting ratio Vgp/V = -0.5

ftrajectory passes through eye just left of centre).
Crosses, fine continuous line - adapting ratio Vy/Vp=-0.5
{trajectory passes through eve just right of centre).
Stars, broken line - adapting ratio V[ /Vp=-0.5 (trajectory
to right of eve).
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where L and R refer to the left and right edges and the numbers are
oscillation amplitﬁdes in minutes of arc.

Figure 11 clearly rejects the idea that threshold elevations were
entirely determined by the oscillations of individual edges. For example, the
two L12R6 adapting stimuli had identical oscillation amplitudes and
velocities, but gave quite different threshold elevations (compare filled and
open circles). These two adapting stimuli differed only in the phase relation
between opposite edges. On the other hand, the Fig 1] monocular data differ
trom the Fig 9 binocular data in that adapting to trajectories inclined just
te the left and right of centre did not produce clearly different elevation
curves (compare open circles and crosses in Figs 9 and 11) so that, in
contrast with the binocular findings, there was no evidence for elements that
sharply distinguished between trajectories inclined slightly to the left and
right of a collision course. The only evidence for a monocular element that
preferred increasing size with rightward motion and decreasing size with
leftward motion was the asymmetry of the Fig 1l curve marked by stars. There
was no evidence for elements tuned to the converse VL/VR ratio (filled
circles)., Thus, the Fig Il data can almost entirely be explained by assuming

that, in contrast with the binocular analysis of motion in depth, monocular

analysis is chiefly into orthogonal velocity components. These components }
comprise motion towards and away from the eye along the line of sight, and

leftwards an rightwards in the frontal plane. [Different directions in the

trontal plane would be dealt with by different frontal plane motion elements

(Sekuler, Pantle & Levinson, 1978).,] On the other hand, Fig 11 gives some

suggestion that, in addition, there might be elements tuned to values of VI/VR

other than +1.0 and -].0.
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(v) Correlation between visual test results and flying pertormance 1in

simulators and telemetry-tracked high performance jet aircraft

Laboratory visual tests comprised a manual tracking task of frontal plane
motion (TIl), a manual tracking task of motion in depth (TAl), and a supra-
threshold velocity discrimination task in which subjects viewed a radially-
expanding flow pattern and were required to judge which of two rates of flow
was the taster (FF). The airborne visual tests were carried out between two
A4 aircraft flying towards each other from a range of about 25 miles. One was
designated as attacker. In order to record visual acquisition distance the
attacking aircraft was instructed to fire a simulated missile on first
sighting the target aircraft. The target was instructed to turn sharply to
left or right immediately on hearing the audible firing tone from the attacker
aircraft. This turn was typically about 70 deg bank and 3G acceleration. The
attacker was further instructed to call the direction immediately on being
able to discriminate the direction of the target”s turn. The attacker’s
ability to detect the direction of the target”s turn was measured in two ways:

first as the angular displacement of the target aircraft between the start of

. the target’s turn and the attacker”s correct call, and second as the distance

.
A
KN

between aircraft at the instant that the attacker gave his correct call.

B it
P
@

Flying performance was measured in a low-level bombing task (A4 aircraft) and

in air-to-air combat (A4 versus F-14).
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Tables ] and 2 shows correlations between flying performance and the
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R
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results of both laboratory and airborne visual tests. Flying performance was

« .
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o
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L S

A measured in air-to-air combat between A4 and F-14 aircraft. Results tor bhoth
‘., airborne vision tests correlated with combat success as measured by the
. win/ioss ratin (i.e. number of hits on opponents versus number of hits

LI T

received).  Judging a leftward or rightward turn could involve the tollowing
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TABLE |

LOW-LEVEL FLYING TASK

Correlation between no-drop

bombing accuracy and r p

FF 0.67 0.01
TP! 0.63 002
T 052 005

FF
TPl

Cormrelation between no drop-bombing

Correlation between bombing -
accuracy (real bombs) and

[ d} 004

accuracy and bombing accuracy

{real bombs}

057 004
073 001

to
(93]

TABLE Il AIR-TO-AIR COMBAT
Nonsmoking aircraft Smoking aircraft
(N=6) (N=8)
Correlations Between r p r p
Acquisition range
kills/engagement 0.80 0.03 0.69 0.0t
died/engagement -0.85 0.02 NS —
win’loss ratio 0.74 0.08§ NS —
direction detect
range 0.79 0.03 0.96 0 001
flow patten
threshold -0 60 0.10 ~0.61 002
Direction detection range
died shot at -07 004 NS -~
dred engagement -0 8R 001 NS --
win Joss ratio 079 0n.03 NS -
kitls'shot NS - 065 0.04
angular detlection -0 9} N N6 NS -
Angular defleciion
shots engagement -0.xR? 0.02 NS —
shot at engagement 07X 00 077 001
died engagement 069 0.06 07 000y
win Joss -1 RS 002 NS 0 0R
™ N§ - 07 no2
TAal 0 %t 00l NS
¥ NS 0l b6 004
p POOLED r
Shotrs engagement
TAl 67 0Ot
067 00l
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two factors: (a) Visual sensitivity to aspect, since the target aircraft
assumed leftward or rightward bank when changing heading; (b) visual
sensitivity to frontal plane motion., The angular deflection measure was
intended to bring out sensitivity to frontal plane motion. On the other hand,
the importance of aspect has been emphasized by Kennedy et al. (1982). 1In
order to find whether semsitivity to aspect alone could explain our findings
we carried out a laboratory experiment using a stationary three-dimensional

model A4 aircraft whose aspect was varied by setting it at the angles of bank

:

» *
Pttt

for a left or right turn. Subjects judged left and right bank at different

'
-

viewing distance, and we plotted the percent correct judgments on probability

It Uy

paper (Fig 12). Subjects” discrimination of bank angle did not fall to 75%
correct until the angular size of the model aircraft fell to 3.3 min arc
{subject KB) or 3.8 min arc (subject RP) wingtip to wingtip. This
corresponded to a viewing distance of 8226 meters (subject KB) or 7130 meters
(subject RP) for a real A4 aircraft. Our Fig 12 data suggest that, providing
the target aircraft”s contrast is about 607% at 7300 m distance or a little
less, pilots could judge a change of heading merely by detecting the angle of
bank. The broken lines in Fig 12 show that reducing target contrast from 60%
to 30% is equivalent to a scaling factor.

One uncertainty about our laboratory study is that visual conditions 1n
the air and in the laboratory were, unavoidably, quite different. Wwe tried to

compare airborne distances with our laboratory data by normalizing relative to

visual acquisition distance. Therefore, we measured visual acquisition

vy v v vy -
AR
A
B

-.. distance in the laboratory. For the 304 contrast model, detection was 25&

-
.

¥ w
.

above chance (75% correct) when the model”s angular size was 2 min arc (both

-y v

subjects), i.e. at a little less than twice the range at which change of

.
a'e s

A%

direction could be detected. For a contrast of 60%, detection was 25% above
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chance when the angular size was about 1.8 min arc (subject RP) and (.4 min
arc (subject KB).‘ This comparison, however, is likelv to tavor the laboratory
data because of the lag while pilots made a motor response and because ot the
pilots” initial uncertainty as to the location of the adversary aircraft.
Because laboratory subjects knew the model”s location, because we used a 75%
detection criterion (pilots would likely use a higher-certainty criterion),
and because there was no atmospheric haze, laboratory acquisition distances
are likely to be spuriously large. However, the roughly 1.6:1 to 1.9:1 ratio
between the two laboratory measures compares with the roughly 1.6:1 ratio
between mean visual acquisition distance for real aircraft and mean distance
at which change in heading was detected. This suggests that aspect alone
could account for discriminating change in heading in our airbormne visual

tests.
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