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2a. OBJECTIVES

(1) Design visual tests based on the channel theory of visual processing,

7.- -in particular tests of suprathreshold motion discrimination, and find whether

these tests predict intersubject differences in flying performance.

(2) Explain how subjects are able to unconfound simultaneous changes in

target orientation, size and contrast, and still achieve spatial

discriminations of size and orientation that are considerably more acute than

the bandwidths of spatial frequency channels or cortical neurons.

(3) Compare visual detection (i.e. visual acquisition) of camouflaged

objects whose edges are defined by velocity differences with visual detection

-'l of objects that are brighter or dimmer than their surroundings, and find

whether these two kinds of object detection can be explained in terms of a

single neural mechanism or whether two kinds of brain mechanism are implied.

(4) Compare monocular and stereoscopic visual responses to motion in

depth, and find whether the human visual pathway contains monocular channels

tuned to different directions of motion in depth.

2b. STATUS OF THE RESEARCH EFFORT

(i) Motion-in-depth tracking technique and perturbed tracking technique

The NRC Committee on "Emergent Methods of Visual Assessment" has listed

three emerging techniques for visual assessment. Our motion-in-depth tracking

technique is one of these three. This is the technique we described in Ref

48. The motion-in-depth tracking device was patented by the U.S. Air Force

(Regan & Beverley, U.S. Patent 4,325,697). We have used the technique in

attempting to predict individual differences in subjects' ability to judge the

motion and location of objects in three dimensions, especially as regards

AlR FcrGE Icj7 '"T TNTIyrE EA7H YAI A )
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item (v) below. Other groups have also requested to use the motion-in-depth

tracker. These include the U.S. Navy, which has used the device in a study of

oversea flying performance in telemetry-tracked aircraft, and the Essex Corp.,

which has used the device in a study of overland flying and landing

2 performance of telemetry-tracked aircraft. I understand that a simulator

manufacturer (CAE), currently working on a project linked to Williams AFB,

plans to further develop and use the technique for pilot assessment.

In brief, the rationale for the technique was the hypothesis that the

visual system contains several, rather independent, functional subunits,

including the "looming" subunit. We have previously reported evidence that

the visual system contains a subunit that responds to line-of-sight motion

(i.e. looming) virtually independently of visual parameters including

trajectory, sideways motion, and contrast changes (Refs 66, 82).

Conventional eye-hand tracking tests have the subject track a target that

moves in the frontal plane only, i.e. it does not move in depth. This

conventional tracking test will not test visual responses to motion along the

line of sight. Our test has subjects track a target whose size changes

continuously and unpredictably and appears to move in depth. Our technique

tests visual sensitivity to line-of-sight motion. A variation of the

technique ("perturbed tracking") has the subject track the target's motion in

depth while the target is given random sideways motion. If motion-in-depth

L. tracking performance is unimpaired, this shows that visual sensitivity to the

line-of-sight component motion is independent of trajectory and of -4-

.- . simultaneous frontal plane motion caused e.g. by head vibration. iJ

(ii) Fine spatial discriminations and visual contrast sensitivity

A current idea in visual science is that the eye breaks up spatial

- information (e.g. size and shape) into spatial frequency bands that separately v,'
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N deal with fine detail, intermediate detail, and coarse detail. There is an

indefinite number of such channels, each tuned to a fairly broad range of

orientations. Because these spatial frequency and orientation bandwidths are

broad, this analysis is crude. Consequently, it is difficult to understand

" how subjects are so acutely sensitive to differences in size and orientation.

We collected the first data on spatial frequency discrimination in a

substantial group of control subjects (14-26 eyes in Ref 92). Previous data

were for two subjects only (Campbell et al, 1970). The subject's task was to

judge which of two sinewave gratings had the finer bars. Over a broad range

it is not the absolute difference but the percentage difference in spatial

frequency that determines threshold. Subjects can detect about 2% to 5%

difference. Other workers have noted ripples in the curve (Hirsch & Hylton,

1982; Richter & Yager, 1984), but our spatial frequencies were not close

enough to bring out that point. This finding agrees with Campbell, Jukes &

Nachrrias (1970).

How is size (or spatial frequency) discrimination related to spatial

detection? How does discrimination relate to the channel model? We

considered several possibilities, including the following: (a) the relative

activity of many channels determines discrimination; (b) Watson and Robson's

idea tht spatial frequency channels are "labelled", and the most active

channels signal the target's spatial frequency.

I
Our rationale was this: if one channel has its sensitivity depressed by

adaptation, then model (a) predicts that discrimination will be degraded, but

at a different spatial frequency to the contrast sensitivity loss. Model (b)

is inconsistent with this prediction. Our experiments rejected model (b) and

supported model (a). Figure I shows that, in control subjects, adapting to a

grating of 5 cycles/deg elevated contrast threshold at 5 cycles/deg as

, q

-----------
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Figure 3. The continuous lines represent tuning curves of
three neurons that are driven from the same retinal location.

A - Opponent-size hypothesis of spatial frequency discrimination.
Test grating frequency changes from (T-&T) to (T+AT) cycles/deg.
A small change in the spatial frequency of the test grating
produces little change in the firing of the most excited neuron
(a), but a considerable change in the balance of activity between
neurons (b) and (c), the greater contribution to this change in
balance coming from (b). B - Opponent-size hypothesis of
discrimination masking. Test grating frequency changes from
(T- T) to (T+ T) cycles/deg, and simultaneously the masker

-- grating's frequency changes between NL and Ne or between MH and
MH' cycles/deg. The balance between the excitations of neurons
b and c depends on the random change in masker frequency as well
as on the change in test frequency. Since the slope of neuron b
is lower at 3 than at 8 cycles/deg, the effect of the 3 cycles/deg
masker ML is less than the effect of the 8 cycles/deg masker MH).
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expected, but also elevated discrimination threshold--not at 5 but at 12

cycles/deg (Ref 139). We proposed that spatial frequency discrimination is

determined by size-opponent elements in the visual pathway. This hypothesis

can also explain our finding that spatial frequency discrimination was not

affected by randomly varying the contrast of successive gratings; the

discrimination process does not confound frequency change with contrast change

(Ref 139).

In a second study we measured the effect of masking upon spatial

frequency and discrimination (Ref 152 and presented to OSA, San Diego, 1984).

Although masked contrast detection thresholds were well known, masked

discrimination thresholds had not been previously reported. Discrimination

thresholds were measured by the standard temporal 2AFC procedure (method of

constant stimuli), but a masker grating was superimposed on the test grating.

With a constant frequency masker grating, subjects were able to use moire

pattern cues to frequency and achieved high discrimination (Fig 2, broken

line). In order to deny the use of moire cues we randomly changed the marker

frequency between presentations (by -10%). This procedure revealed that the

masker grating produced an elevation of discrimination threshold that was

greatest near the test frequency (Fig 2, continuous line). The area under the

4
curve was a little greater above than below the test frequency. These

discrimination changes are quite different from those produced by adaptation:

discrimination threshold is not elevated at the adapting frequency, but the

masking effect is large at the masker frequency; adaptation elevates

thresholds above the adapting frequency while the minor skew showo b masked

data is in the opposite direction.

Nevertheless, as shown in Fig 3, both masked and postadaptation

discrimination can be accounted for by the same opponent-size model.

9
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In a further study we investigated postadaptation orientation

discrimination (Ref 150). Confirming previous reports we found that adapting

. .to a vertical grating elevated contrast detection threshold for a vertical

test grating, and this detection threshold elevation had a half bandwidth of

Sabout 8 deg (Fig 4, dotted line). Our new finding was that orientation

discrimination thresholds were improved rather than degraded for vertical test

gratings, while for gratings inclined at 10-20 deg from the vertical,

discrimination was degraded though detection was little affected. These

* findings can be explained if orientation discrimination is determined by the

E ""relative activity of multiple channels, for example by opponent-orientation

elements. This hypothesis can also explain our finding that changes in

-. orientation were not confounded with simultaneous changes of contrast or

*spatial frequency.

An opponent model ot discrimination and a line element model are formally

rather similar. H. Wilson and I collaborated in an attempt to test his line

element model. We carried out the experiment "blind"; I acquired data

according to an agreed protocol, and he was required to predict the data after

- had acquired it, but he did not know the data. Quantitative and qualitative

agreement between prediction and data were good (Ref 152).

(iii) Spatial vision: extraction of figure from ground by motion

it is well known that some objects that cannot be seen in the absence of

motion become visible when there is relative motion between the object and its

background. A practical example is that grassy hillocks and ridges that

cannot be seen from a hovering helicopter can become clearly visible when the

helicopter is moving.

Figure 5 illustrates a laboratory version of such a target. These are

photographs ot a dot pattern on a CRT. A contains a camouflaged rectangle.
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In B and C the dots within this rectangle move and the rectangle becomes

visible (the moving dots appear as streaks in the two exposures). The

boundaries or edges of the rectangle are made visible (i.e. the camouflage is

broken) by motion: in the absence of motion the rectangle is invisible.

-. Compare this with a conventional target. A conventional target's boundaries

are brightness steps. Clearly, these are two quite different types of object.

One is defined by motion steps, the other by brightness steps.

We, and others, have previously explored target visibility produced by

abruptly displacing part of a dot pattern (Regan & Spekreijse, 1970; Julesz,

1971; Braddick, 1974; Baker & Braddick, 1981). Providing that the abrupt

displacement does not exceed about 20 min arc and take longer than 100 msec,

the "short range" process operates so that the target's camouflage is broken

and it becomes visible. However, these previous studies did not use

continuous motion, and thus confounded the effects of dot displacement and

stimulus duration. Our study used continuous velocity and explored the effect

of velocity on target visibility, looking at temporal and spatial summation in

fovea and periphery (Ref 138).

Figures 6 and 7 compare target parafoveal detection thresholds for: (a)

a dot target whose edges are defined by motion contrast, and (b) a

conventional target whose eyes are defined by luminance contrast. Figure 6

shows how target detection thresholds depend on stimulus area. The lines are

r- theoretical fits assuming that receptive fields have gaussian sensitivity

profiles. Receptive field area is about five times larger for targets whose

boundaries are defined by motion contrast, the areas for camouflaged targets

being about 0.16 deg 2 in the parafovea.

Figure 7 shows how target det -tion threshold depends on presentation

- duration. The line in Fig 7B is a theoretical fit assuming a single stage

eq .o . % -.- °. . o . o .



Dalhousie University
Departments of Ophthalmolop and Medicine

Gerard Hall. 5303 Morris St.. Halifax. Canada B3J 1B6

0

,-J

w DEEC T6ARGET

0-2

O (D DISCRIMINATE MOTION

0*" 01- ABWA

S0 05[

' A00d

0, A

< 0

o 0 DETECT TARGET
0

-j A A

WA

z 5 A A A

0001 001 0-02 0,05~) 0'.1 2  05 1 2 5

F:

Figure ( - Effects of target area. A is for camouflaged targets whose
boundaries were defined by relative motion, and 5 is for conventional
targets whose boundaries were defined by luminance contrast. The
curves in A and B are theoretical fits assuming a gaussian sensitivity
profile for sumation fields. Spatial summation area is about 5 times
larger for targets defined by relative motion (A) than for targets
defined by luminance contrast (B). Targets were square and presented
for 150 msec.
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Figure 7 - Effect of presentation duration. A is for camouflaged
targets whose boundaries were defined by relative motion, and B is for
conventional targets whose boundaries were defined by luminance

*--- contrast. The dotted line in A plots a constant-displacement law,
displacement being 1 min arc. The curves In B are theoretical fits
assuming a single integration time constant Ti1" The theoretical
curves in A assume a two-stage temporal integration, the same time

eN constant T1 being followed by a time constant T over 12 times lar er.
The rectangular targets were of constant shape (K = 2.8) and I degl
area.
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exponential integration process. The time constant is 60 msec, consistent

with classical data. The theoretical curve fitting the new data in Fig 7A

assumes a two-stage exponential integration process. The first stage has the

same time constant as the luminance integration stage of Fig 7B. The second

stage has a time constant of 750 msec. Thus, temporal integration extends

over about 12 times longer duration for a target whose edges are defined by

motion contrast than for a target whose edges are defined by luminance

contrast.

Figure 8 shows how thresholds varied as a function of eccentricity for

different target areas. Log threshold was linearly proportional to

eccentricity between U deg and 32 deg eccentricity at least. The slope of the

plot depended on target area, sensitivity to larger targets being less

affected by eccentricity.

(iv) Judging the direction of motion in depth from looming information alone

Discriminating the directions of motion in depth. The direction of a

target's motion in depth can be discriminated with a remarkable acuity of

about 0.2 deg when viewing is binocular (Beverley & Regan, 1975). It has been

proposed that this high acuity can be explained in terms of sensitivity to

relative motion, in this case a velocity ratio. Because the two eyes are a

few centimeters apart, the left and right eyes' images of an object moving in

depth move with different velocities, V and V respectively. The ratio V /VD S D S

is uniquely related to the direction of motion in depth. We reported

psychophysical evidence that the human visual system contains elements tuned

to the velocity ratio (Ref 34). In the experiment of Fig 9 the subj ect viewed

two dot patterns, one with each eye. Each pattern oscillated from side to

side at the same rate, but with different velocities. The subject's task was

to set thresholds for Just-visible motion in depth. Figure 9 show. thresld

- -A
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measured for different ratios of the left (V and right eye's
%'s) retinal image velocities. Threshold elevations were

plotted as ordinates versus the velocity ratio of the test
oscillation after adapting to four different directions of
motion in depth. A negative sign means that VS and VD are
in opposite directions. Filled circles, fine continuous line -
adapting ratios VS/VD = +0.5 (trajectory to left of left eye).
(open circles, heavy continuous line - adapting ratio Vs/VD= +0.5

:trajectory passes between eyes to left of centre). Crosses,
fine continuous line - adapting ratio VD/VS = -0.5 (trajectory
passes between eves to right of centre) . Stars, broken line -
idapting ratio VD/V s = -0.5 (trajectory passes to right of right
,e. rrows mark the adapting stimulus ratios.
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vat in ,Aused t separately adapting to four different V D/V ratios. The

it ei ith inderstan(d it the visuial syste contains eight kinds ot hinocua

S,,iont ,aicn tuned to I d1t trent value ot V /Vs , four preferring movement

a ard the head and tour pret erring movement away from the head. These

,lements are not arranged orthogonally. For the purpose of the following

discussion, note that adapting to a direction inclined just to the left of the

nose (open circles) gives a clearly different threshold elevation curve than

adapting to a direction inclined just to the right of the nose (crosses),

consistent wit), the idea that the two central elements sharply differentiate

between trale-tories to the left and right of the nose. By analogy with

ering"- theory of color vision we suggested that, in binocular vision,

directional discrimination is mediated by interaction between these

overlapping elements, much as color discrimination is mediated by difference

signals between the three color mechanisms (Ref 49). According to this

suggestion, directional acuity would be determined, not by the bandwidths of

these ratio-tuned binocular elements, but by the noise level of the elements.

Monocular discrimination of the direction of motion in depth is a

different problem, but can be approached analogously to the binocular case.

--4 An object moving along an arbitrary trajectory is simultaneously changing size

and moving in the frontal plane. Figure 10 illustrates how the ratio between

the velocities of a square's vertical edges is related to its direction of

motion. When the centre of the square moves directly through the eye, the

speeds of the left and right edges are equal and opposite (V L/V = -1.0 in Fig

tOA). When the square moves to the right as it comes towards the eye but

still hits the eye, the left and right edges move in opposite directions with

the lett edge moving slower than the right (VL/VR = -0.5 in Fig 1OB). When

the square's left edge just grazes the eye, the left edge appears stationary

e-.q
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Figure 10. Monocular correlate of the direction of motion in
depth. A-F show a square object oscillating along various
directions of motion in depth with respect to the eye. F-J
show the oscillations of the object's left and right edges seen
b the eye. VL and VR are the instantaneous angular velocities.
of the left and right edges. A negative sign means that V1, and

Vare in opposite directions. When 0< (VL/VR) 1.0, the square
would pass to the right of the eye. When (VL/VR) = 0 the left
edge of the square would just graze the eye. When -1.-0 <

V 1 V) <0 the square, would hit the eye. Similar relations hold

for-
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ijVIV = in Fig IOC). When the square passes to the right of the eye, the

Left and right edges move in the same direction, the left edge slower thani the

right (VL/V = +0.5 in Fig ID), and when the square moves in the frontal

plane, left and right edges move identically (VL/VR = +1.0 in Fig 10E).

Subjects are quite sensitive to differences in the V /V ; the trajectory V /V
L R L R

= 1.1 is seen to be clearly tilted in depth compared with V /V = 1.0.
L R

One possible explanation for monocular discrimination of the direction of

motion in depth would be that the visual pathway contains several elements

tuned either to different V /V ratios (Fig 10) or to different combinations
L R

of changing size and frontal plane motion. For example, one kind of element

might prefer increasing size combined with rightward motion (stimulus A),

while a second kind preferred increasing size combined with leftward motion

(stimulus B). Discrimination would be determined by the relative activity of

these notional elements. In order to test for the presence of such selective

sensitivities, a monocular adaptation experiment was carried out whose

rationale was analogous to the binocular experiments of Fig 9. In the

monocular experiment, subjects set oscillation thresholds for stimuli A and B

e:.-" before and after adapti to stimulus A, and before and after adapting to

stimulus B. Figure 11 plots postadaptation threshold elevations versus the
. o-

V iV ratios of the 12 different test stimuli. Test and adapting squares were

Centrally viewed, 1.0 deg side length and of luminance 12 cd/m superimposed

*it a IP deg x L deg background of luminance 25 cd/m. Each edge oscillated

sinusoidally with a frequency of 1.0 Hz. The initial adaptation period was 15

mirn. The trial interval was 6 sec with 20 sec readapt between trials. Four

difterent adapting stimuli were used: L12R6 inphase (filled circles, fine

dotted line); LI2Rb antiphase (open circles, heavy continuous line); LhRI2

antiphase (crosses, fine continuous line); L6RI2 inphase (stars, broken line),

• %° °-. ..
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wtiere L and R refer to the left and right edges and the numbers are

oscillation amplitudes in minutes of arc.

Figure It clearly rejects the idea that threshold elevations were

entirely determined by the oscillations of individual edges. For example, the

*two LI2Rb adapting stimuli had identical oscillation amplitudes and

velocities, but gave quite different threshold elevations (compare filled and

open circles). These two adapting stimuli differed only in the phase relation

between opposite edges. On the other hand, the Fig 11 monocular data differ

trom the Fig 9 binocular data in that adapting to trajectories inclined just

0. to the left and right of centre did not produce clearly different elevation

curves (compare open circles and crosses in Figs 9 and 11) so that, in

• "contrast with the binocular findings, there was no evidence for elements that

sharply distinguished between trajectories inclined slightly to the left and

right of a collision course. The only evidence for a monocular element that

preferred increasing size with rightward motion and decreasing size with

leftward motion was the asymmetry of the Fig 11 curve marked by stars. There

was no evidence for elements tuned to the converse V /V ratio (filled
L R

circles). Thus, the Fig 11 data can almost entirely be explained by assuming

that, in contrast with the binocular analysis of motion in depth, monocular

analysis is chiefly into orthogonal velocity components. These components

"omprise motion towards and away from the eye along the line of sight, and

loeftwards an rightwards in the frontal plane. [Different directions in the

frontal plane would be dealt with by different frontal plane motion elements

(Sekuler, Pantle & Levinson, i978).J On the other hand, Fig II gives some

suggestion that, in addition, thtre might be elements tuned to values of V /V R

tliother than +I.[) and -1.

..............-.i . .".... -'". ... ... .. .. .. ".. -. . "... . ... .- ,. .
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(v) Correlation between visual test results and flying performance in

simulators and telemetry-tracked high performance jet aircraft

. Laboratory visual tests comprised a manual tracking task of frontal plane

motion (TII), a manual tracking task of motion in depth (TAI), and a supra-

threshold velocity discrimination task in which subjects viewed a radially-

. expanding flow pattern and were required to judge which of two rates of flow

was the taster (FF). The airborne visual tests were carried out between two

- - A4 aircraft flying towards each other from a range of about 25 miles. One was

designated as attacker. In order to record visual acquisition distance the

attacking aircraft was instructed to fire a simulated missile on first

sighting the target aircraft. The target was instructed to turn sharply to

left or right immediately on hearing the audible firing tone from the attacker

aircraft. This turn was typically about 70 deg bank and 3G acceleration. The

- attacker was further instructed to call the direction immediately on being

able to discriminate the direction of the target's turn. The attacker s

ability to detect the direction of the target's turn was measured in two ways:

first as the angular displacement of the target aircraft between the start of

the target's turn and the attacker's correct call, and second as the distance

between aircraft at the instant that the attacker gave his correct call.

Flying performance was measured in a low-level bombing task (A4 aircraft) and

in air-to-air combat (A4 versus F-14).

Tables I and 2 shows correlations between flying performance and the

results of both laboratory and airborne visual tests. Flying performance wa,

measured in air-to-air combat between A4 and F-14 aircraft. Resu I t t or bhth

*airborne vision tests correlated with combat success as measured by the

w n/inlOss ratio (i.e. numbe r of hits on opponents versus number ot hit -

rece ivo'f) . Judging a tleftward or rightward turn could invilv the ol-1 wili,

A..- .-..- -*..'- v. !
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TABLE I LOW-LEVEL FLYING TASK

Correlation t'teen no-drop
bombhng accuracs and r p

FF 0 67 001
TPI 0.63 0 02
Tit 052 005

Correlanion bcitccn bomihng
accurac, (real bombs) and

FF 0o.71 M 0
TPI 0 5- 0 (

Correlation betc'een no drop-bimbing
accuracy and bombing accuraL>
real 'nbsi 0 0 0 01

TABLE II AIR-TO-AIR COMBAT

Nonsmoking aircralt Smoking aircraft
(N=6) (N 9)

Correlations Between r p r p

Acquisition range
kills/engagement 0.80 0.03 0.69 0.01
died/engagement -0.85 0.02 NS -

witvloss ratio 0.74 0.05 S -
direction detect

range 0 79 0.03 0.96 0 001
flow pattern

threshold -060 0 10 -0.61 002
)Direciion detection ranre
died shot at -0 77 004 NS -

died engagement -0 8 (1 01 NS --

, n lo s ratio 0 79 0 03 NS
kills'shot NS 0 65 0.04
angular detlection -0 9) 0 006 NS --

-4n.u/ar deflection
shot, engagement -0 1 0 02 NS
-hot aciengagemeni (7 0 0 0 7' (1 O1

tied engagement 0 6) (1.06 0 7) 0 (
-in lo , - g5 0 02 N'S 0 0

T I S .0 " f) ()2

TAI (sn n0n3 N4

Ff NS W, h (04

p POOLIED r

• " • ,Shw t c .n.!~,J~rmlenr

TAI 0 r7 0i
TPI -)67 00i

b=. • . .. . . . .
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two factors: (a) Visual sensitivity to aspect, since the target aircraft

assumed leftward or rightward bank when changing heading; (b) visual

sensitivity to frontal plane motion. The angular deflection measure was

intended to bring out sensitivity to frontal plane motion. On the other hand,

the importance of aspect has been emphasized by Kennedy et al. (1982). In

order to find whether sensitivity to aspect alone could explain our findings

we carried out a laboratory experiment using a stationary three-dimensional

model A4 aircraft whose aspect was varied by setting it at the angles of bank

for a left or right turn. Subjects judged left and right bank at different

viewing distance, and we plotted the percent correct judgments on probability

paper (Fig 12). Subjects' discrimination of bank angle did not fall to 75%

correct until the angular size of the model aircraft fell to 3.3 min arc

(subject KB) or 3.8 min arc (subject RP) wingtip to wingtip. This

corresponded to a viewing distance of 8226 meters (subject KB) or 7130 meters

(subject RP) for a real A4 aircraft. Our Fig 12 data suggest that, providing

the target aircraft's contrast is about 60% at 7300 m distance or a little

less, pilots could judge a change of heading merely by detecting the angle of

bank. The broken lines in Fig 12 show that reducing target contrast from 6M7.

to 30% is equivalent to a scaling factor.

one uncertainty about our laboratory study is that visual conditions in

the air and in the laboratory were, unavoidably, quite different. We tried to

ompare airborne distances with our laboratory data by normalizing relative to

visual acquisition distance. Therefore, we measured visual acquisition

distance in the laboratory. For the 30. contrast model, detection was 25,'

above chance (75Z correct) when the model's angular size was 2 min arc (both

subjects), i.e. at a little less than twice the range at which change of

direction could be detected. For a contrast of 60%, detection was 25% above

.....% .""." ' .'" ..... ........
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chance when the angular size was about 1.8 min arc (subject RP) and i . mil

arc (subject KB). This comparison, however, is likelv to tavor the laboratory

data because of the lag while pilots made a motor response and because ot the

pilots' initial uncertainty as to the location of the adversary aircraft.

Because laboratory subjects knew the model's location, because we used a 75%

detection criterion (pilots would likely use a higher-certainty criterion),

and because there was no atmospheric haze, laboratory acquisition distances

are likely to be spuriously large. However, the roughly 1.6:1 to 1.9:1 ratio

between the two laboratory measures compares with the roughly 1.6:1 ratio

between mean visual acquisition distance for real aircraft and mean distance
4

at which change in heading was detected. This suggests that aspect alone

could account for discriminating change in heading in our airborne visual

tests.
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