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FOREWORD 

A workshop for research personnel involved in the 

DARPA program on Expert Systems was held in Palo Alto and at 

the Asilomar Conference Center, Monterey, California, from 

16-18 April 1986. The purpose of the workshop was to demon- 

strate working systems tools and to review progress on the 

technical aspects of the research being undertaken. Research 

organizations participating in the workshop included the 

University of Massachusetts at Amtierst; Ohio State Univer- 

sity; Stanford University; the Information Sciences Institute 

of the University of Southern California; Bolt, Beranek and 

Newman Laboratories, Inc.; General Electric Corporation; 

Teknowledge, Inc.; and the IntelliCorp Company. Representing 

the Department of Defense in addition to the DARPA program 

manager were experts from the Rome Air Development Center, 

the Air Force Wright Aeronautical Laboratories, the Space and 

Naval Warfare Systems Command, and the Naval Underwater 

Systems Command. Also attending was a representative from 

Texas Instruments, the integration contractor for the Navy 

Battle Management Program. 

This proceeding is intended to document important 

progress being made in the knowledge-based systems part of 

the DARPA Strategic Computing Program. The papers included 

give a good insight into the current accomplishments. 

Included in this foreword is a short documentation of the 

demonstrations that were presented but are not further 

described in the proceedings. 

The workshop met on Wednesday, 16 April 1986, in 

the new offices of Teknowledge, Inc., in Palo Alto, 

California.  The first morning consisted of a series of live 



demonstrations given by IntelliCorp, Ohio State university 

and Tekuowledge. CDR Allen Sears, the DAPPA program manager, 

welcomed the forty attendees to the demonstration and thanked 

the Teknowledge people for their assistance in setting up the 

demonstrations, providing the necessary equipment, and their 

hospitality in providing conference space to view the 

programs. Ohio State University provided the lead off demon- 

stration. Dr. Chandrasekaran, the principal investigator, 

explained that the program was a prototype mission planning 

associate in the domain of an offensive counter air planning 

task. This is, he explained, a generic tool using DSPL 

representation. DSPL is a language developed at Ohio State 

which uses knowledge representation rich in planning primi- 

tives. Dave Herman, Dean Allemang and Anne Keuneke of Ohio 

State explained the workings of the system as the demonstra- 

tion progressed. The program accepted the plan inputs and by 

use of design plans selected the aircraft type and ordnance 

configuration most appropriate for the mission factors under 

consideration. In making its selection the program uses a 

functional representation of the plan and the capture of the 

agents understanding of how things work. This includes as a 

piece of knowledge the order that things are considered in 

the planning cycle. The audience was able to see on the 

screen the progression of the logic flow as the events 

progressed. 

Dr. Rick Hayes-Roth explained the genesis of the 

Teknowledge research effort as the creation of a foundation 

on which to build systems with reusable knowledge processing 

modules and skeletal systems, modularity and standard inter- 

faces, encapsulation and cooperative systems, integration of 

technologies, and the ability to take partial solutions off 

the shelf and put them together into new systems thus provid- 

ing customized solutions to new problems.  Hayes-Roth stated 



that the program is a twenty four month effort of which they 

were now eleven months into the research. The Teknowledge 

system, called ABE, was able to integrate new modules into 

its tools catalogue and to provide a capability to use which- 

ever tools best suited the problem domain. The system archi- 

tects' catalog contains applications, customizations, ^Jcele- 

tal systems, capabilities, abstract data types, frameworks, 

and languages in a descending order of layered structures. 

As goals, the ABE project deems it important to import tech- 

nologies, layer systems, and glue them together in a robust 

and disciplined way. The demonstration covered six items: 

the system architects catalog, a first example, composing 

frameworks, importing a capability, variations, and composing 

with heterogeneous frameworks. Assisting in the demonstra- 

tion were Lee Erman, Jay Lark, Terry Barnes, Kamal Bijlani, 

Michael Fehling, Bruce Bullock, and Neil Jacobstein. 

The IntelliCorp demonstration was presented by 

Richard Fikes. He explained that the essence of their pro- 

gram was to take pieces of A.I. technology and integrate them 

for use in systems. The outcome is to develop tools which 

may be used by others. KEE, the central IntelliCorp product, 

has been in use for several years, Fikes noted, and the pro- 

tocols for access and use of the system have remained stand- 

ard. The recent effort is to develop new tools, such as 

distributed knowledge bases, and to fit these new tools into 

KEE for use by applications developers. The DARPA program 

has now been on-going for one year and a new initial set has 

been produced called DARPA-KEE. They have built interfaces 

to an assumption based truth maintenance module and to world 

based problem solving routines. The demonstration was 

designed to include model based reasoning, symbolic descrip- 

tion and reasoning about descriptions. The domain selected 

involved knowledge based tools to aid the dispatcher of a 



trucking delivery system over a mid-west geographical area. 

Involved were manual context exploration, a semi-automatic 

task completion rule system, and programmatic automatic 

problem solving routines. The progression of the task was 

easily followed on the terminal screen as the problem moved 

from initiation to suggested solutions and as new parameters 

were added or changed. 

CDR Sears remarked that the demonstration proved 

that a lot has happened in the year since the program was 

initiated and that we are now looking at bringing technology 

to the applications developers. This, he noted, will require 

planning to insure successful implementation. 

The remainder of the workshop was conducted at the 

Asilomar Conference Center. Each of the organizations 

attending presented one or more technical reviews of the 

status of the expert systems research being undertaken in the 

DARPA program. This proceeding contains copies of those 

reviews in order to provide a wide distribution of the pro- 

gram and results achieved to date. Following the technical 

talks, the participants discussed applications and transition 

strategy, future goals, and integration of expert system 

technology with other parts of the DARPA research prog-ram. 

The program concluded with a discussion of high level tools 

for expert systems led by Dr. Chandrasekaran of Ohio State 

University. 

The cover layout for this proceedings was created 

by Tom Dickerson of the Graphics Department at SAIC using 

diagrams of a multicast-map from the paper: "CAREL: A 

Visable Distributed Lisp," by Byron Davies of the Knowledge 

Systems Laboratory at Stanford University and of the Texas 

Instruments Corporation.  The diagrams are samples from the 
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execution of the XDENTIFY-YOURSELF program which is descrioed 

in Davies paper included herein. This proceedings has been 

provided to the Defense Technical Information Center (DTIC) 

and copies may be secured from that agency. 

Lee S. Baumann 
Science Applications International 

Corporation 
Workshop Organizer 
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The BBN Laboratories Knowledge Acquisition Project: 
KREME Knowledge Editing Environment 

Glenn Abrett and Mark H. Burstein 

BBN  Laboralones 
10 Moulton  Street, 

Cambridge,  MA 02238 

Abstract Managing large knowledge bases is difficult. 

One of the major bottlenecks in large-scale expert 
system development is the problem of knowledge 
acquisition the construction, maintenance, and testing of 
large knowledge bases The BBN Laboratories Knowledge 
Acquisition Project is investigating ways of easing these 
problems and, where possible, ailtoma ing the knowledge 
acquisition process This paper details the current state 
of development of the KREME Knowledge Represenlation 
Editing     and     Modeling     Environment KREME     is     an 
extensible experimental environment lor developing and 
editing knowledge bases using a variety of styles of 
representations It provides tools for effective viewing 
and browsing in each kind of representational base, 
automatic consistency checking, and macro-editing 
facilities to reduce the burdens of large scale knowledge 
base revision and reformulation. Our goal is to explore a 
number of approaches to knowledge acquisition and 
knowledge editing that could be incorporated into 

existing and future full-scale expert system development 
environments. 

1. Introduction 

1,1, The Knowledge Acquisition Problem 
There is substantial agreement within the Al 

community that the way to make expert systems more 
closely approximate the level of performance exhibited by 
people is to give the systems more knowledge. The 
creation of the large and detailed bodies of knowledge 
needed to substantially improve performance has proven 
to be excrutiatmgly painful. Beyond a certain point, 
several factors make the building of very large knowledge 
bases a practical impossibility with  current technology. 

Knowledge comes in many forms. 

Human knowledge about the world comes in many 
disparate forms Squeezing all the knowledge that an 
expert system needs into one, or at best two, 
representational formalisms (eg rules and frames) is 
difficult, time consuming, often inappropriate and, in 
many cases,  an  inadequate solution to the task at hand. 

'This research was supported by the Defense Advanced 
Research Projects Agency of the Department of Defense and was 
monitored  by RADC  under  contract   number  F306e2-85-C-e005. 

As knowledge bases grow in size and complexity 
they strain the capacities of software tools for knowledge 
editing, maintenance, and validity checking. Viewpoints at 
the right level of detail are hard to construct, 
consistency checking takes up more and more time, and 
global reorganizations and modifications can no longer be 
done    casilv    one    piece    at    3    time Eventually,    user 
confidence in the internal coherence of the knowledge 
base erodes and must be restored by the inefficient, 
incomplete, and indirect method of running applications 
programs using  the knowledge base. 

Previously encoded knowledge is not re-used. 

It is customary to start building a new expert 
system with an empty knowledge base, even though the 
completed knowledge base will contain at least some 
general knowledge about the world. To make matters 
worse, this general world knowledge is usually entered in 
a fragmentary and sketchy manner that adds little to the 
power of the system If general knowledge about the 
world could be transferred across systems, the gradual 
accumulation of detail, precision, and richness which 
would occur would tremendously enhance the 
performance and robustness of most individual expert 
systems 

1.2. Overview of the BBN Knowledge Acquisition Project 
Our goal has been to develop an environment In 

which the problems of knowledge acquisition faced by 
every Knowledge engineer attempting to build a large 
expert system are minimized To this end, we have 
organized the task of developing knowledge acquisition 
tools into two stages. First, we are developing a well- 
integrated knowledge representation. editing and 
modeling      environment,      dubbed      KREME Knowledge 
engineers and subject matter experts with some 
knowledge of basic knowledge representation techniques 
will find it easy to use KREME to acquire, edit, and view 
from multiple perspectives knowledge bases that are 
several times larger than those found in most current 
systems KREME provides, within a uniform environment, 
special purpose editing facilities that permit knowledge 
to be represented and viewed in a variety of formalisms 
appropriate to its use, rather than forcing all knowledge 
to be represented in a single, unitary formalism During 
phase two of the nroject, we will consider such automatic 
kinds of knowledge Requisition as developing 
representations from  examples, and learning by analogy. 

In addition to a general editing environment, the 
first phase has also focused on developing tools that 
provide  the  kinds  of  validation  and  consistency  checking 
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so   essential   during   the   development   or   modification   of 
knowledge   bases.   As   the   size   of   knowledge   bases   grow, 
and   more   people   become   involved   in   their   development, 
this aspect  of knowledge  acquisition  becomes  increasingly 
important In       the       hybrid       or       multi-formalism 
representational    systems    that    are    becoming    prevalent 
[11.  2.   19],  techniques   must   be  provided  for  consistency 

checking     not     only     within     a     single     representational 
system, but between related systems. 

A third important area of investigation In 
developing the KREME editing environment has been the 
attempt to provide of facilities for large-scale revisions 
of    portions     of    a    knowledge     base. Our    experience 
indicates that the development of an expert system 
inevitab'v requires systematic, large scale revisions of 
portions of the developed representation This is often 
caused by the addition or redefinition of a task the 
system is to perform These kinds of systematic changes 
to a knowledge base have, to dale, only been possible by 
painstaking piecemeal revision of each affected element, 
one at a time Our initial approach has been to provide 
a macro-editing facility, in which the required editing 
operations can be demonstrated by example and applied 
to specified sets of knowledge structures automatically 
We plan to provide a library of such generic marro- 
editing operations for the most common and conceptuallv 
simple (though potentially difficult to describe) 
operations during phase two of the project 

1,3. The KREME Knowledge Editor 
KREME attempts to deal with the inextricably 

related problems of knowledge representation and 
knowledge acquisition in a unified manner by organizing 
multiple representation languages and multiple knowledge 
editors inside of a coherent global environment A key 
design goal for KREME was to build an environment in 
which existing knowledge representation languages, 
appropriate to diverse types of knowledge, could be 
integrated and organized as components of a coherent 
global     representation     wystera. As     it     is     presently 
conceived (and for the most part implemented) the KREME 
Knowledge Editor can be thought of as an extensible set 
of globally coherent operations that apply across a 
number of related knowledge representation editors, each 
tailored to a specific type of knowledge Our approach 
has been to integrate several existing representation 
languages in an open ended architecture that allows the 
extension of each of these languages. In addition, we 
have provided for the incorporation of additional 
representation languages to handle additional types of 
knowledge. 

To accomplish this goal, we envisioned a 
decomposition of existing knowledge representation 
techniques, to be implemented as objects or FLAVORS [6], 
in terms of which we could reimplement existing 
representation     languages. Each    object     encoding    an 
aspect of some representation would be responsible for 
its     own     display,     editing     and     internal     forms. By 
organizing this "mela-knowledge base" modcilarly. 
behavioral objects implementing inheritance behavior, 
subsumption testing, and coreference mechanisms, etc., 
could he "mixed in" to a number of representational 
subsystems. 

The current implementation of KREME partially 
accomplishes our goal We have organized a small library 
of component behavioral objects for knowledge 
representations and succeeded in rnmplementing our 
frame language in terras of this object base We expect 
this library to be an extremely useful set of building 
blocks as we attempt various extensions to the 
expressive power of our system. 

The current version of KREME contains individual 
editors   for   three   distinct   representation   languages,   one 

for frames, one for rules and one for procedures. The 
frame and procedure editors are fully integrated into the 
global environment and the rule editor is in the process 
of     becoming     so Eventually,     the     rule     editor,     the 
procedure editor and a functional method editor will all 
be accessible through a global mechanism that, treats 
these types of knowledge as forms of procedural 
attachment to concepts In phase two of the project, we 
plan to add a language for representing causal and other 
qualitative constraint systems, and several types of 
instantiation mechanisms, including p truth maintenance 
system  for proposilional representatiHi; 

1.4. The KREME Frame Language 
Much of the werk done in the current 

implementation of KREME has been focused on building a 
knowledge editor for a frame representation language 
Such languages have been well researched, and while we 
had to have some frame language on which to base our 
initial editor, we did not want to design and implement a 
new one Our most important criteria for a suitable 
frame representation language were that  it. 

1 Allowed  multiple inheritance 

2 Was a logically worked out  mature language 

3 Had some mechanism for internal consistency 
checking. 

4. Would allow individuals to be instantiated as 
objects from the definitions of frames 

5. Was built on a modular object oriented base so 
that the language could be decomposed in such 
a way as to make it easily extensible 

NIKL  (the  definitional  or  frame  language   component, 
of KL-TWO) [9.   14,   19]  seemed  an  ideal  candidate     It  is a 
fully    worked    out    frame    representation    language    that 
allows  multiple  inheritance,  is  reasonably  expressive  and. 
perhaps   most    importantly,   contains   a   fully   worked   out 
automatic   classification   algorithm   that   could    be    easily 
adapted  to  provide  a  powerful  mechanism  for  consistency 
checking      and      enforcement      during      knowledge      base 
development. However, no object-oriented 
implementation of NIKL existed, and the NIKL classifier 
was not designed to allow modification and 
redassificatxon of previously defined concepts A second 
frame language, known as MSG, had been built as part of 
BBN's STEAMER project and was readily available MSG is 
object oriented in both of the above senses but it has no 
classifier and is not as mature or thoroughly specified a 
language as NIKL. 

To develop KREME, we elected to reimplement NIKL 
as an object oriented language using MSG as a guide 
The NIKL data structures were decomposed into a 
modular hierarchy of flavor definitions, and the KREME 
version of NIKL was then built out of these flavors. This 
enabled us to incorporate a great deal of the fairly 
sophisticated instantiation mechanism of MSG with 
minimal effort. In the process, we were also able to re- 
implement the NIKL classifier algorithm to provide the 
kind of reclassifit ation capability required for a 
knowledge editing environment We will refer to this 
enhanced, object oriented implementation of NIKL as 
KREME Frames 

The   remainder   of  this  section  will   review  the  basic 
features     of     the     KREME     Frames     language As     the 
definitional syntax of KREME Frames coincides almost 
exactly with the structure of the NIKL language, 
interested readers are referred to [9] for more detail 
Section   2   will   describe   the   KREME   editing   environment 

tea 



and the frame editor. Section 3 will discuss the 
classifier, and its use m an interactive editing 
environment. 

1,5. Definition of KREME Frames 
In KREME, a frame is called a concept. Collections 

of concepts are organized into a rooted inheritance or 
subsumpHon lattice sometimes referred to as a taxonomy 
of concepts, A single distinguished concept, usually 
called THING, serves as the root or mosf general concept 
of the lattice. Figure 1-1 shows a simple subsumption 
lattice, 

A concept has a name, a textua. description a 
primitiveness flag, a list of defmed parents (concepts 
that it specializes or is subsumed by), a list of role 
restrictions, a list of role equivalences, and a list of 
concepts that it is disjoint from2 In KREME, as in NIKL 
a concept may be subsumed bv more than just the 
concepts   that   are   its   defined   parents.   Thus,   classified 

Figure  1-1:      A Simple Concept Taxonomy 

concepts in a KKEME hierarchv also contain distinct lists 
of those concepts that directly subsume it, and those 
which it directly subsumes or are its direct children. 

(defconcept   HOUSE 
: pr ihi i t i ve   t 
: spec ioli zes   (buiIding) 
:role-rest r i et i ons 

{(residents  (a  person)   nil   (a  person)) 
(front-door   (o  door)   (1   1)   (a   door))) 

:equ i voIences 
((main-entrance)   (front-door)) 

:disjoint   (office-building  apartment-building)) 

Figure  1-2:      LISP form  of a KREME frame definition 

The lists of role restrictions, role equivalences and 
disioint concepts are collectively referred to as the 
features of a concept. If each concept can be thought 
of as defining a unique category, then features of the 
concept define the necessary conditions for inclusion in 
that category. If a concept is not marked as primitive (a 
case sometimes referred to as a defined concept) the 
features also constitute the complete set of sufficient 
conditions for inclusion m that category. A concept 
inherits  all  features  from  those  concepts  above  it   in  the 

lattice (those concepts thai subsume it, and, thus, are 
more General) and may define additional features that 
serve to distinguish it  from its parent or parents. 

Role restrictions define the necessary slot-value 
pairs for any instance to be considered a member of the 
clasa defined by a concept A role restriction consists of 
a role name, a value restriction, a number restriction 
and  an  (optional)  default  form3. 

The role name refers to an object called a role 
Roles in KREME, as in NIKL and some other frame 
languages like KEE [5], and KnowledgeCraft [T], are 
actually    distinct,    first    class    objects Roles    describe 
relations hetv/een concepts, A role restriction at a 
concept is thus a specification of the ways a given role 
can be used to relate that concept to other concepts. 
As first - class objects, roles form their own distinct 
taxonomy, rooted at the most general possible role 
usually called RELATION. Figure 1-3 shows a portion of a 
simple  role taxonomy. 

ure  1-3:      A Simple Role Taxonomy 

A role has a name, a description, a list of roles 
that it speciahzes, a domain and a range. In a formal 
sense, a role is a two-place relation that maps instances 
of concepts in its domain onto sets of instances in its 
range The domain of a role is the most general concept 
at which the role makes sense. That is, it specifies the 
class of things for which the role can name a slot. The 
range of a role specifies the general class of concepts 
that can serve as values in slots defined using that role 
All concepts filling slots whose name is a given role must 
be elements  of the range of that  role. 

Each role restriction at a concept has as part of 
its definition a value restriction, which is the class of 
allowed values for that slot The value restriction must 
always be a sub-class of the range of that role, and a 
subclass of the value restrictions defined for that role at 
all concepts subsuming the one restricted. At present 
following the structure of NIKL, value restrictions must 
be defined concepts We expect to relax this constrains 
in  the  near future 

Role restrictions also include a number restriction 
that specifies the minimum and maximum (if any) number 
of things that may be related by the role to the concept 
at any given time For example, if all elephants have 
four legs, then the concept ELEPHANT might be defined to 
restrict the role LEGS to Exactly 4 ELEPHANT-LKGs4 A 
number restriction must be at least as specific as all the 
number restrictions for the same role et any of the 
concepts parents5 

Role Equivalences describe slots (and slots of slots) 
that by definition refer to the same entities They are 
defined as pairs of paths whose referents are the "same 
concept A path is a list of role names, the head of which 
is     a      role      restricted     at      the     concept      defining      the 

One     concept      is     disjoint     from     another     if     being     one 
precludes  being  the other. 

Defaults  were   not   part   of   the   definition  of   NIKL 



equivalence. Each subsequent role (slot name) in a path 
must be a valid slot in the concept that is the value 
restriction of the previous role in the path The referent 
of a path is the value restriction of the last role 
restriction in the chain Figure 1-4 shows a simple 
example  of role  equivalence 

The SUCTION of the PUMP is equivalent to the 
INLET of Ihe SUCTION VALVE of the PUMP. 

Figure   1-4:      A Role Equivalence 

Concepts marked as primitive (sometimes referred 
to as Natural hinds) have no complete set of sufficient 
conditions. For     example.     an     ELEPHANT     must,     by 
necessity, be a MAMMAL, but without an exhaustive list of 
the attributes that distinguish it from other mammals, it 
must    be    represented    as    a    primitive    concept WHITE 
ELEPHANT, on the other hand, might be completely 
described by stating that it is a specialization of 
ELEPHANT, where the  role COLOR was  restricted to WHITE 

KREME Frames permit slots to have default values 
as well as value restrictions. If present, the default must 
be the description of some concept which satisfies the 
restrictions on the role at *het concept. The default is 
used as a slot filler for instances of a concept that do 
not specify a value for the slot at instantiation time 
Defaults are inherited from the most specific parent at 
which they are defined, just as in most other frame 
languages, rather than hy logical set intersection, as the 
classifier does for other KREME concept features. 
Specialization     of    defaults     is     not     enforced Figure 
1-6 shows an example of default inheritance Here, the 
default color of elephant is grey, while the color of a 
white elephant is white, which is not a specialization of 
grey. 

restriction and default 

colorT-" 

Figure  1-5:      Restrictions and Defaults 

E,g.,     Number     restriction:     min 
Restriction:   (an  ELEPHANT-LEG). 

5A number restriction of Exactly 1 (min - max - 1) is more 
specific then a number restriction of At most 2(min = e, max 
= 2J. 

1.5.1. Instantiation 
We envision that a number of different instantiation 

mechanisms may be appropriate for KREME Frames, N1KL, 
as part of the KL-TWO system, instantiates concepts as 
predications in the RUP truth maintenance system [8], On 
the other hand, MSG instantiated concepts as flavor 
instances, and this is the instantiation mechanism 
currently provided by KREME Frames We plan to provide 
a truth maintenance system as an alternative form of 
instantiation in the future 

When a concept is defined, a corresponding flavor 
is also defined. This flavor is composed of the flavors 
corresponding to the concepts immediate parents and an 
additional flavor called KROBJECT which provides the 
additional functionality required for instances of KREME 
Frames, 

Instances of a concept (also known as objects) are 
created by the MAKE-OBJECT function MAKE-OBJECT 
creates an instance of the concept's corresponding 
flavor, installs defaults in unfilled slots, and installs 
coreference-handhng objects in each slot for wl ich a 
role equivalence was defined at the concept The same 
coreference object is placed in all equivalent slots 
These objects are "transparent" to the slot access and 
modification functions. Modifyinc any equivalenced slot 
changes the value of the coreference object, and 
accessing such slots returns the coreference objects 
value (rather than the object itself). 

2  The Knowledge Editor 

2 1. Background 
The KREME Knowledge editor currently consists of 

three editor modules, a frame editor, a procedure editor, 
and a rule editor, and a large tool-box of editing 
techniques that are shared among the editor  modules 

The original design goal was a global editing 
environment that could accommodate distinct editor 
modules for the various kinds of knowledge that would be 
represented. However, from the point of view of the 
user, there would be a single editor with the interfaces 
between the modules completely transparent Moreover, 
the user would see a single, integrated knowledge base 
that had various means for organizing different types of 
knowledge. The user would move through this space by 
pointing at various knowledge chunks which would cause 
the system to present an appropriate view Alternatively, 
the user could directly request a specific view for a 
specific piece of knowledge 

2.2. Basic Features 

2.2.1. Views 
Each distinct type of representation included in the 

system (currently concepts, roles, procedures and rules) 
has defined for it one or more views A view is a 
collection of panes in a Symbolics window configuration, 
each of which displays some aspect of the particular 
piece of knowledge being edited and/or a set of editing 
operations on it. A view can show various aspects of the 
specific piece of knowledge as well as various details of 
the context in which the piece exists 

When the user desires to enter or edit a specific 
piece of knowledge. the system opens the most 
appropriate view for the type of knowledge and the 
editing operation requested When editing a particular 
piece of knowledge, the user has available a menu of 
different views which are appropriate for different 
aspects of that knowledge and can be accessed from a 
menu 
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Figure 2-1:      A f     > with overview 

2.2.2. Pointing 
Pointing with the mouse is the primary means for 

performing editing operations, browsing, adding, and 
modifying definitions. In general, all visible references to 
an object can be pointed at, in order to view the object 
in more detail. For example, a concept can be displayed 
as a node in a graph as a value restriction or default, 
as a parent of another concept, or as an item on the 
editor stack. Whatever the form of the display, the 
displayed item will respond to the same set of operations 
when someone points at it. Similarly, when the system 
requires the entry of a concept name, the user may 
either type the name or point at any visible concept 
name In     windows     displaying     features     of     concept 
definitions, pointing also is  used  to  tell  KREME  to  replace 
parts of those definitions 

Commands that cannot be performed by pointing 
directly at an object are usually contained ni command 
menus which are associated with particular windows in 
each editor view. Such commands are used for changing 
views, entering new concept definitions, loading and 
saving taxonomies, etc 

2.2.3. The Grapher 
The KREME grapher is a powerful, generalized 

facility that rapidly draws lattices of nodes and links At 
present, its main use is to provide a dynamically updated 
display of the concept or role currently being edited and 
a11 ol its classifier determined abstractions and 
specializations Other concepts may be added to the 
displayed graph at any lime simply by pointing at a node 
that is already present and requesting all of its 
abstractions or specializations to be displayed as well. 
Nodes and their children (or just the children) may also 
be concealed or removed from a presented graph if they 
are not relevant and are making it hard to read other 
portions of the graph One may also point at nodes to 
show a textual form of their current definition and to 
edit the definitions (which pushes the current definition 
on the editor stack, as it does by pointing at, it in other 
displays). 

An important featu' e of the grapher is that it can 
display graphs that an much larger than the window 
through    which    it    is    v ewed     When    dealing    with    large 

taxonomies, pointing at the graph anywhere else but at 
nodes and dragging the mouse causes the grapher to pan 
in the direction of mouse motion, making previously 
obscured portions of the graph instantly visible as 
though one was moving a window across a larger page 
The grapher also provides an "overview" facility to show 
the shape of the full graphed lattice. Pointing at 
positions in the overview is another way to move to a 
particular part of the lattice. Figure 2-1 shows a graph 
of one portion of the STEAMER frame base, with the 
overview exposed. 

Currently, the grapher can be used to display only 
directed lattices with no loops, e.g., specialization 
hierarchies and relationships like part-whole. We expect 
to use the grapher to display arbitrary networks of 
relationships between between sets of concepts. These 
other kinds of views are critical for displaying partially 
ordered plan sequences, causal relationships and 
constraint systems in general, 

2.2.4. Buffers and the Editor Stack 
The editor maintains a level of indirection between 

the knowledge being edited and the representation of 
that piece of knowledge in the knowledge base. This is 
done by the mechanism of editor buffers, analogously to 
the distinction between a text editor buffer and an 
associated file Changes are always made to definition 
objects, which can be subsequently classified The edilor 
raamtains a stack or list of the objects that have been 
edited, and constantly displays this list, indicating which 
ones have been modified and not reclassified. 

The top item in the stack is the definition 
currently being viewed and edited. The user is free to 
modify this definition in any way without directly 
effecting     the     k-owledge     base. When     the     modified 
definition is to be placed into the knowledge base a 
defining function appropriate to the type of knowledge 
(eg,, classification for concepts and roles), is executed 
and the  knowledge base is modified. 

The editor stack is always visible in its own window 
and provides one convenient method for browsing The 
user may make any definition item currently m the stack 
the top,  visible  item  by pointir,;,  at  it     The  object  will  be 
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Figure 2-2:      The Main Concept Editing View 

displayed   in   the   same   editor   view   as   when   it   was   last 
edited 

2.2.5. Files and Multiple Language Support 
All definitions manipulated by the editor are read 

and stored in lisp-readable text files of defining forms 
Files are created by the SAVE command which converts 
each of the items of the current knowledge base to its 
LISP defining form and writes it to the fil? specified The 
files are in human readable form and can be edited 
offline using an ordinary text editor In fact, KREME can 
read files that were developed independently using a text 
editor or some other frame editor. 

Files are read in using the LOAD command A file 
can be loaded into a blank KREME knowledge base or can 
be loaded on top of an already existing knowledge base 
This mechanism, which relies heavily on the use of the 
classifier to keep things coherent, enables KREME to 
organize information from multiple knowledge bases to 
create a single unified whole. 

KREME currently will read and write definitions in 
either its own frame language syntax or in NIKL syntax 
In addition, there is some customization of the displays 
viewed while editing networks in either of these 
languages (eg., the presence of defaults in role 
restrictions). This flexibility makes it possible for KREME 
to be used regularly to examine and update a knowledge 
base of approximately 1000 roles and concepts for a 
natural langrage query system that was built using KL- 
TWO       KREME   can   also   read   files   of  MSG   defining   forms. 

providing  us  access  to  the   extensive  STEAMER  knowledge 
base of concepts and procedures 

We feel that this multiple language handling facility 
is a crucial feature of KREME and are committed to 
extending it, where possible, to other representation 
languages. A rich library of input translation programs 
will enable a knowledge base builder, working in KREME, 
to draw upon many previously existing knowledge bases 
to create a larger and more detailed whole It is our 
opinion that this kind of flexibility will be crucial if 
knowledge bases developed in different languages are 
ever to related and conveniently modified to create a 
greater whole Given the la'ge intersection of features 
provided by most current-day frame language 
representation systems, we do not see this as an 
impossible goal In the near future, we will be considering 
extensions uf KREME Frames to provide an environment in 
which many KEE knowledge bases could conceivably be 
edited One of our goals in redesigning the classifier 
was  to  make such  extensions feasible. 

Frame Editor 
editor   for    the    KREME   Frames    representation 
s   the   most   fully   realized   editor   in   the   KREME 
though   we   have   a   host   of   improvements   and 
planned  for  it,   the  current  operational  version 

i IK    frame   editor   is   already   an   extremely   useful   tool 
for    the    creation,    modification    and    viewing    of    KREME 
Frames   networks.       The   main   components   of   the   frame 
editor  are discussed in the section which follows 



2.4, Windows and Views 
The current KREME frame editor has six \iews, each 

a fixed configuration of windows appearing at once on 
the screen Three windows (screen regions) are common 
to all of these views, the global command window, the 
editor stack window, and the state window Figure 
2-Z shows the main concept editing view, which contains 
most of the windows used for editing portions of a 
concept's definition. The descriptions of each window 
below will refer to the numbers superimposed on that 
figure 

The global command window (1) contains commands 
that operate on the network as a whole It is always 
visible. 

The editor slack window (2), which is also always 
visible, shows the names of the things being edited and 
some information about their current edit state (eg, 
whether they have been modified) Items in the stack 
window can be removed from the editor, made the 
currently visible edit item, or reclassified (if modified) by 
pointing at them 

The state window (3), which is visible in all views 
for concepts and roles, displays the name, textual 
description, primitive class flag, parents and information 
on  the classification state of the item 

The concept graph window (4) displays a 
dynamically updated graph of all of the abstractions and 
specializations     of    the     current     concept. This     view 
provides constant visual display of the relative position 
of the concept being edited in the subsumption 
hierarchy 

The role restrictions window (5) displays a table of 
the role restrictions for the current concept. Columns 
in the table show the source (where it was inherited 
from) of the restriction, its role name, value and number 
restrictions,  default value, and  a  description. 

This window ran also be used to display the 
concept's inverse role restrictions, which are all of the 
restrictions that use the concept as their value 
restriction. This display resembles the role restrictions 
display,  though  some parts of it   cannot be edited 

The role reslnctions command window (6) This menu 
contains commands for the role restrictions window. 
Currently, commands are available to display the locally 
defined restrictions, the full inherited set of restrictions, 
or the inverse restrictions. In addition, there is a 
command to delete redundant defined restrictions that 
would be inherited  anyway. 

The Editor Interaction Window (7) is a Lisp Listener 
which can be scrolled backward and forward through a 
history of the current session. This window also is used 
lor some data entry and messages 

Four other views are currently defined for 
concepts,  and one view is defined  for roles. 

The role editing view (figure 2-3) appears whenever 
the Edit Role or New Role commands are issued. It 
contains windows showing a graph of the role network 
highlighting the currently visible role, and another 
displaying the concepts that restrict the role. The role 
editing view also contains a role editing commands 
window 

The four other concept views mix some of the 
windows above with windows for displaying and editing 
disjoint classes, role equivalences, and inverse role 
restrictions. In addition to the global commands window, 
the editor stack and state windows, these views show the 
following 

o An enlarged graph window, filling most of the 
screen, for viewing large sections of the 
concept hierarchy. (No display or commands for 
editing role restrictions are provided in this 
view.) 

o Windows for a concept's inverse restrictions, 
role restrictions, equivalences and disjoint 
classes, but no graph 

o Enlarged regions for all concept features, role 
restrictions, equivalences and disjoint classes 
(but no graph) 

Figure 2-3:      The Role Editing View 



o    The   structure   editing   windows   and   the   macro 
editor displays, descnhed in section 4  below 

2.5. Operations 
The basic operations used to make new concepts or 

roles, change existing ones, and delete concepts and 
roles from the network are discussed in the sections 
which follow 

Making new concepts. Clicking on the New Concept 
command in the global command menu will cause a menu 
of possibilities to pop up From this pop-up menu, the 
user can choose to make a new concept that is similar to 
the currently visible concept or to some other concept, a 
specialization of the current concept or some other 
concept, or a specialization of several concepts 

When the initial form for the new concept has been 
specified the system creates a new concept definition for 
it and shows this new definition in the mam concept 
view. The user is then free to add specific details (slots, 
equivalences, additional parents, etc ) to the new concept 
definition, classify it. or edit other concepts, leaving the 
new concept definition on the editor stack to be finished 
and classified later There are no constraints on the 
order of these operations The new concept definition is 
treated like any other concept definition in an editor 
buffer, except that it is marked as never having been 
classified. 

Making new roles. The operations for adding new 
roles are essentially the same as those for making new 
concepts. 

Adding and modifying slots. Whenever the window 
displaying role restrictions is visible, as m the main 
concept view, role restrictions can be added or modified 
A new slot is added to the defined slots of the concept 
with the Add Slot command When this command is issued, 
the system asks for a role name, a value restriction, a 
number restriction and a default form. Any of these 
items can be entered by typing or bv pointing to the 
desired name or form if it is visible If a role or concept 
named in a role restriction or default does not exist the 
system will offer to make one with the name given 

The user may modify any defined slot or any slot 
that is inherited from a parent or created by the 
classifier. Slots     are     modified     by     pointing     at     the 
appropriate subforra and then either typing in or 
pointing to a replacement form If any portion of an 
inherited or classifier created slot is modified, the new 
slot definition becomes part of the definition of the 
concept  being  edited 

Modifying parents. The system displays the classifier 
determined parents of a concept in two places in the 
main concept view. The concept graph displays them as 
part of the abstraction hierarchy of the concept In 
•Hddition, the state pane shows 'both the defined and 
direct     or     computed    parents     of    the     concept The 
classifier may have found that the concept specializes 
some concepts more specific than the defined parents, 
thus defined parents may or may not be direct parents 
In the state pane, defined parents that are not direct 
parents are preceded by a "-", while classifier 
determined parents that were not defined parents are 
preceded by a  " + ". 

Adding new defined parents to a concept's 
definition is done by clicking on the Add Parent (ommmid 
and typing a concept name or pointing to any visible 
concept. The    system    prohibits    users    from     defining 
concepts   as   parents   of   concepts   which   subsume   them 
(This would form an abstraction-specialization loop.) 

Defined parents may be deleted by clicking on their 
names in the list of parents displayed in the slate 
window     A  parent  can  either be  deleted  or "spliced  out" 

Splicing out a parent both deletes that parent from the 
list of defined abstractions and makes the deleted 
parent's parents parents of the current concept. That 
is. it connects the current concept to (some of) its 
grandparents. Commands are also available to delete all 
defined parents that the classifier has determined are 
not direct parents, and to make all classifier-discovered 
parents part of the concepts definition 

Changing names and killing concepts and roles, 
KREME allows the user to change the names of concepts 
and roles or to delete them completely. Name changing 
is accomplished simply by pointing at the concept or 
role's name in the state pane and entering a new name 
Changing the name of a concept or role directly effects 
the network, since the name of the concept definition, as 
well as the name of the corresponding classified concept 
(if there is one), is changed. All pointers to the concept 
(as a parent of other concepts, in value restrictions as 
the domain or range of roles etc) are automatically 
updated with the new name both in the classified 
network and in all editor buffers. 

Killing concepts is a somewhat complicated 
operation, because of the need to reconfigure the 
network    following    the    deletion In    essence    the    Kill 
command splices a concept out of the taxonomy by 
connecting all of its children to all of its parents Any 
concept that used to define the concept as a parent is 
reclassified. If    the    concept    was    used    as    a    value 
restriction, the editor tries to find an appropriate parent 
to substitute for the killed concept. Because this attempt 
is not always successful, user interaction is sometimes 
required 

Our current version of Kill is only one of several 
that might prove useful. For example. We plan to provide 
a second kill function that deletes the entire lattice 
under the killed concept (the concept and all of its 
children) and a third Kill function that preserves the 
properties of the killed concept by either moving them 
up to the concepts parents or down to all of its 
children. 

Adding and deleting equivalences or disjoint classes. 
KREME provides commands to add equivalences and 
disjoint classes For equivalences, the user enters two 
paths whose referents are to be equated, and the system 
checks to make sure that both paths are valid (all slots 
along the path are defined) and that the referents of the 
paths are subsumption related to each other (that is the 
restrictions on the referents of both paths ' are 
consistent). For disjoint classes, the svstem checks 
whether the concept entered can he disjoint from the 
current one (i.e., a concept cannot be disjoint from its 
parents) To delete an equivalence or disjoint concept 
the user merely clicks on its display in the equivalence 
or disjoint concept window,  respectively. 

Deleting redundant slots. Clicking on the Delete 
Redundancies command causes the svstem to delete any 
defined slots whose definitions are the same as the 
inherited definitions This operation alters the definition 
of the concept, but not its classification or completed 
description 

N 
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3. Classification in KREME-FRAME 
networks 

3.1. Background 
One of the most time consuming tasks in building 

knowledge bases is maintaining internal consistency. 
Adding, deleting and modifying slots and parents in a 
frame taxonomy may affect the subsumption relations 
between frames and, perhaps more important, may alter 
the sets of properties inherited by more specific frames 
The possible consequences of a change m one part of a 
network grows rapidly as taxonomies get larger. 
Consequently, the size and complexity of knowledge bases 
is limited by the extent to which automatic means are 
provided for consistency checking 

A central feature of the N1KL representation 
language is a classification algorithm that allows one to 
build networks of NIKL concepts that are not only 
consistent (all subsumption links in the network are 
consistent with the sets of properties enclosed by nodes) 
but also, for all practical purposes, complete (all 
subsumption links in the network that are logically 
entailed by the sets of properties enclosed by the nodes 
are explicit in the network). 

Unfortunately the NIKL classifier can only handle 
monotonic changes to a concept hierarchy. NIKL can 
construct a consistent and complete network from a file 
of randomly ordered concept definitions and users may 
add new concept definitions to existing networks, but 
once a concept has been placed in a network, it cannot 
be modified or deleted, a severe shortcoming for an 
ir.   -ractive knowledge editor. 

In order to develop a fully interactive knowledge 
editing system we had to extend the NIKL classifier so 
that it could deduce all of the consequences of any 
modification to any part of the intertwined concept/role 
taxonomies, and effect the redasstfication of all 
concepts and roles necessary to maintain internal 
consistency. 

The remainder of this section will give a brief 
description    of    the    KREME    classifier. For    a    formal 
description of the NIKL classifier algorithm see [14, 15] 
For a more complete description of a somewhat simpler 
interactive classifier see []]. 

value restrictions for that role at the concept, or a 
conjunction of several, if no single one is subsumed by 
all the others. The effective number restriction for each 
slot is similarly determined by intersecting the number 
ranges in all of that slot's role restrictions. 

Complications arise when there is more than one 
restriction for a given role in the initial list, none of 
which is more specialized than all of the others Figure 
3-; illustrates one way this can occur, when the most 
specific value restriction is inherited from one parent 
(AW1WAL) and the most specific number restriction is 
irJteerlted from another parent (4-L1MBED-THING) to form 
the restriction of LIMBS at 4-L1MBED-ANIMAL. 

Figure 3-2 shows another example of completion in 
which the resulting value restriction must logically be 
the conjunction of several concepts. Since ANIMAL- 
W1TH-LEGS is an ANIMAL, and a THING-WITH-LEGS all of 
its LIMBS must be both ORGANIC-LIMBs and LEGs. If the 
concept ORGANIC-LEG. specializing both ORGANIC-LIMB 
and   LEG,   exists  when  ANIMAL-W1TH-LEGS  is  classified  for 

exactly 4 

Figure 3-1:      Inheriting Number and Value Restrictions 

the first time, the classifier will find it and make it the 
value restriction of the slot LEGS at ANIMAL-WITH-LEGS. 
It it does not exist, the classifier stops and asks if the 
user would like to define it 

3.2. Completion 
Completion refers to the basic inheritance 

mechanism used by KREME Frames to install all inherited 
features of a concept in its internal description. Given a 
set of defined parents and a set of defined features, the 
completion algorithm determines the full, logically 
entailed set of features at a concept (or role). 
Completion always occurs before classification or 
reclassification of a role or concept 

The completion algorithm is broken up into modular 
chunks that correspond to the decomposition of the 
frame language. There is a distinct component that deals 
with role restriction inheritance, another component that 
deals with disjoint class mnentance, a third that deals 
with role equivalence inheritance and so on. This 
organization makes it quite straightforward to extend the 
language with new features that handle inheritance in 
different  ways. 

A concept inherits all the role restrictions from all 
of its direct parents and adds them to the list of 
restrictions that it defines locally. For each role naming 
a slot in the combined list, the algorithm creates a single 
restriction that conjunctively combines all restrictions 
for    that    role    at    that    concept The    effective    value 
restriction   is   either  the   single   most   specific   of   all   the 

\ 

Figure 3-2:      Combining Value Restrictions 

In   general,   whenever   a   value   restriction   can   only 
be   defined   as   a   conjunction   of   several   concepts.   KREME 



offers   to   form   a   concept   representing   the   conjunction, 
and   asks  for   a   name  for   the  new  concept        As  it   turns 
out,   forming  the  suggested  conjunction  is  not  always  the 
right     thing     to     do. It     often     indicates     a     missing 
subsumplion relationship between the concepts involved 
KREME provides several options at this point, as 
described  in  section 3 6 

3.3. Subsumplion checking 
The KREME classifier algorithm is built around a 

modularly constructed test for a valid subsumplion 
relationship between two objects, based on their 
effective, inherited features. When a definition is being 
classified, it is repeatedly compared to other, potentially 
related, objects in the lattice to see whether its 
completed definition subsumes or is subsumed by those 
other objects The subsumplion lest compares features 
of one with features of the other. For Cl to subsume C2 
in this sense means that the features of Cl form a 
proper subset  of the features of C2 

KREME partitions the work of this subsumplion 
check in much the same way it deals with inheritance 
Each feature type (i.e role-restriction, disjoint-class 
etc) decides whether, with respect to that type, Cl 
subsumes C2, Cl is equivalent to C2, or Cl does not 
subsume C2, If any of these tests return DOES-NOT- 
SUBSUME. the the entire subsumplion check fails 
immediately. If all of the checks return EQUIVALENT or 
SUBSUMES, then the subsumplion lest succeeds as long 
as there was one vole for SUBSUMES. The advantage of 
this kind of modular organization is extensibility If a 
new feature that contributes to concept subsumplion is 
added to the language one need only define a 
subsumplion predicate for that feature, and objects 
having that  feature will be appropriately classified 

3.4. The Classifier 
The basic classifier algorithm takes a completed 

definition (that is, a definition plus all its effective, 
inherited features) and determines that definitions single 
appropriate spot m the lattice of previously classified 
definitions. The result of a classification is a unique set 
of the most specific objects that subsume the definition 
and a unique set of the most general objects that are 
subsumed     by     the     definition When     the     classified 
definition is installed in the lattice all the concepts that 
subsume its features will be above it in the lattice and 
all the concepts that are subsumed by its features will 
be  below it 

The details of the classifiers implementation and 
operation are beyond th« scope of this paper 11 should 
be noted that the basic classifier is nearly functionally 
equivalent to the NIKL classifier. However, NIKI, merges 
concepts that are exactly classifier equivalent, while the 
KREME classifier does not normally do this. The decision 
not to merge concepts in KREME is due in part to the 
different environments in which these classifiers are 
being used In an editing environment, where definitions 
are expected to change, there may be more to a 
concept's definition than had been stated when it was 
first defined In addition, we foresee a time when not all 
of a concept's defined properties are classifier sensitive 
In such an environment, merging concepts when their 
classifier sensitive properties are identical would be a 
mistake 

defined or redefined The classifier first completes the 
definition by gathering all of its inherited features, and 
then determines exactly where it should be placed in the 
lattir?. If the object has never been classified before, 
the basic classifier algorilnm is run to find the most 
specific parents and children of the completed definition, 
and insert the new object into the network. 

If the new definition redefines a previously 
classified object, the process is more complex. First, the 
previously classified object must be sp;'i,ed out of the 
network, and the basic classifier algorithm is run to find 
the    correct    position    for    the    new    definition Since 
changing the subsumplion relationships of an object can 
change the positions of objects referring to it. the 
reclassifier must then find all other objects that must be 
reclassified because of the change The system compares 
the previously classified object with the redefined object 
in order to determine which other objects, dependent on 
the old definition, might be affected by the change 
These objects must all be reclassified. As one might 
expect, reclassifying those other objects may itself cause 
further reclassifications to be necessary. 

The reclassification algorithm which accomplishes 
this resembles the consistency maintenance algorithms 
found in truth maintenance systems, A queue of objects 
waiting for reclassification is maintained, called the 
pending reclassification queue. As each object is 
reclassified, all objects that could be affected by the 
changes caused by its reclassification are collected and 

placed in the queue if they weren't there already. 

Although the above algorithm is relatively 
straightforward in outline, its efficiency and correctness 
depends on determining exactly those dependent objects 
that    need    reclassification The    algorithms    efficiency 
depends on reclassifying only those objects that require 
it (i.e., whose classifier determined position may change) 
Its accuracy and completeness depend on reclassifyr.g all 
objects which require it 

The power of reclassification in an editing 
environment can be illustrated with the following 
relatively simple example Suppose a knowledge base 
developer had defined both GAS0L1NE~P0WERED-CAR and 
INTERNAL-C0MBUST10N-P0WERED-CAR as specializations of 
CAR. but had inadvertantly defined INTERNAL-- 
COMBUST10N-ENGINE as a kind of GASOLINE-ENGINE. In 
this situation. the classifier would deduce that 
1NTERNAL-C0MBUST10N-P0WERED-CAR must be a 
specialization of GAS0L1NE-P0WERED-CAR, as shown in 
figure 3-3. since the former restricted the role ENGINE 
to a subclass of the latter s restriction of the same role. 

'The      NIKL clossifier      forms      such     conjunctive     concepts 

automaticolly.   but   does   not   give   them   names. 

7Concepl5 that depend on each other pose special problems, 
but the details of how this is handled are beyond the scope 

of   this  document. 

3.5. Reclassification of KREME networks 
We are now ready to give a brief description of the 

mechanism that KREME uses to propagate modifications o.' 
a definition to related concepts and roles. The KREME 
classifier    is    invoked    whenever    a    concept    or    role    is 
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- defined parent 

Figure 3-3:      An  Error Affecting Classification 

Redefining INTERNAL-COMBUSTION-ENGINE as a kind 
of ENGINE, rather than a GASOLINE-ENGINE and 
reclassifying causes all of 1NTERNAL-COMBUSTI0N- 
ENGINEs dependents to also be reclassified. including 
INTERNAL-COMBU3TI0N-POWERED-CAR Since GASOLINE 
ENGINE no longer subsumes INTERNAL-COMBUSTION- 
ENGINE, the restrictions for GASOLINE-POWERED-CAR no 
longer subsume those of INTERNAL-COMBUSTION- 
POWERED-CAR. and the classifier therefore finds that 
GASOLINE-POWERED-CAR does not subsume INTERNAL- 
COMBUSTION-POWERED-CAR,  This is shown in figure 3-4 

internal 
combustion \NJ—i     engine 

engine 

Figure 3-4;      After Reclassification 

3.6. Editor Interactions with the Classifier 
The following sections describe several ways in 

which the frame editor and the classifier interact to 
support the knowledge acquisition process. 

Defined/Completed feature displays. The frame 
editor uses the classifier's completion algorithm in its 
display and editing of role restrictions (slots), role 
equivalences and disjoint classes, and in displaying the 
set of all concepts using a role In a value restriction (in 
the role editing view) When the role restrictions window 
is visible, the user may toggle between a display that 
shows the defined role restrictions for the current 
concept and a display that shows all the effective role 
restrictions at the concept. When all role restrictions 
are displayed, the user may modify a restriction that was 
inherited or created by the completion algorithm 
Modifying a restriction automatically adds the modified 
restriction to the list of defined restrictions at the 
concept Similar mechanisms are available for viewing 
and modifying role equivalences, disjoint concepts and 
concepts  restricting  a  role 

Classification fron the editor. One especially useful 
feature of the KREME frame editor is its ability to 
immediately display the effects of classifying a concept 
or role definition When the user modifies a concept or 
role's definition and classifies it. the editor redisplays 
the relevant visible windows to show all classifier added 
information. For example, the graph of a concept will 
show the concept's possibly modified place in the 
taxonomy. Links added or deleted by the classifier seem 
to appear or disappear instantaneously. 

Making new concepts and roles needed by the 
classifier. The KREME classifier sometimes needs to form 
new concepts in order to satisfy some logical 
relationship This      occurs      primarily      during      role 
restriction completion, when the effective value 
restriction for a slot can only be described as a 
conjunction of two defined concepts, rather that a single 
concept (See section 3.2). It also happens occasionally 
when a similar condition arises in determining the 
effective restriction on the range of a role. These 
classifier required conjunctions are sometimes called 
CMEETs. 

While forming the appropriate conjunction is the 
logically correct thing to do to ensure consistency of the 
knowledge base as then defined, it often turns out that 
the conjunction suggested by the classifier is needed 
because one of the concepts to be conjoined has been 
improperly defined. In particular, a CMEET condition 
most frequently arises because the concept used as the 
value restriction of a role in the concept being classified 
is not subsumed by the restriction for the same role at a 
higher concept, and the restriction must logically satisfy 
both constraints. This is illustrated in figure 3-5. The 
figure shows 2-PORT-TANK defined as both a TANK and a 
2-PORT-DEV1CE Each of those concepts restricts the 
role     INLET-VALVE The     classifier     finds     that     the 
restriction for slot INLET-VALVE at 2-PORT-TANK must be 
both a VALVE and a STOP-VALVE, given the restrictions of 
that slot at 2-P0RT-TANK"s parents. Since STOP-VALVE 
was not defined as a kind of VALVE, the conjunction is 
not the single concept STOP-VALVE, and so the classifier 
asks if it should create a new concept, the CMEET of 
VALVE and STOP-VALVE 

Whenever the KREME classifier requires that a 
CMEET be formed, it stops and queries the user, explains 
the situation and requests a name for the concept to be 
formed for the conjunction, and enumerates several 
alternative options. If all of the concepts are defined 
correctly, and the proposed CMEET correctly describes 
the required restriction, the user simply enters a name 
for the new concept and classificution continues. If the 
problem really lies with an existing definition, as is the 
case with VALVE and STOP-VALVE, the user can choose an 
alternative course of action, rather than introducing a 
useless new concept Most often, the correct action is 
to alter the subsumption relations between the named 
concepts,  so that  one  of them  is subsumed  by the  others. 
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This is done simply by naming one of the concepts to be 
conjoined instead of giving a new name In our example. 
the user would simply type STOP-VALVE, in response to 
the   query.  The  classifier  would  then  make  STOP-VALVE  a 

—*r valve J 

^MustbeaVALVE 
sand a STOP-VALVE , 

Figure 3-5:     Discovering a missing subsumer 

kind    of   VALVE   and    continue    classifying    2-PORT-TANK. 
resulting in the relations shown in figure 3-6 

We are taking two different approaches to this 
problem First, we have develop-'d a macro facility for 
reformulations that can be expressed as sequences of 
standard, low-level editing operations which allows users 
to define editing macros that can be applied to sets of 
concept definitions by giving a single example Second, 
we are building a small library of functions providing 
operations that cannot be defined simply as sequences of 
low level editing operations. Our main purpose is to 
collect and categorize these utilities, and explore their 
usefulness in a workin.a enviroi.ment. Our hope is that a 
large fraction of thes.' operations can be conveniently 
described using the macro facility, as it is more 
accessible to an experimental user commuiity than any 
set of "prepackaged" utilities. and can be more 
responsive to the. as yet. largely unknown special needs 
of that community 

The current state of this research effort is 
described below. First, we will describe and provide 
illustrations of the macro-editing facility. Then we will 
describe an example of the latter class of operations, a 
"generalization" utility for discovering and presenting 
potentially useful generalizations of concepts to the 
knowledge  engineer. 

Add Parent 

Figure 3-6:      After interaction with the classifier 

This interaction effectively allows a user to correct 
an oversight in a previously defined concepts definition 
at the point the error is detected by the classifiers 
completion algorithm. By making the classifier less 
automatic" in this way. we have made it more effective 

as a consistency maintenance tool, and avoided some of 
the problems incumbant in using a classifier with a less 
than totally complete and accurate knowledge base. 

We are investigating additional ways in which the 
classifier. as well as other kinds of consistency 
maintenance facilities, can be used interactively to aid 
the acquisition and refinement of knowledge bases We 
feel this kind of functionality will become increasingly 
important as the size of knowledge bases grows. 

4. Macro Editing of Knowledge 
Bases 

An important focus of the first phase of the BBN 
Knowledge Acquisition Project that will be continued in 
phase two is an investigation of and development of tools 
supporting macro-editing procedures for automatic 
modification and enhancement of partially defined 
knowledge bases The need for methods of expressing 
and packaging conceptually clear rcformulattons of 
concepts and other representations, as well as similar 
facilities for developing new concepts from old ones is 
clear. 

4.1. The Macro and Structure Editor 
One of the views available when editing concepts in 

KREME is the macro and strvcture editor This view (See 
figure -4-1) provides display and editing facilities for 
concept definitions, which is based loosely on the kind of 
structure editor provided in many LISP environments 
The view provides two windows for the display of stylized 
defining forms for concepts The current edit window 
displays the definition of the currently edited concept 
(the top item on the editor stack). The display window 
is available for the display of any number of other 
concepts Any concept which is visible in either window 
can be edited, and features can be copied from one 
concept to another by pointing. Both windows are 
scrollable to view additional definitions as required 

As in the normal KREME editing views, both 
inherited anc defined features can be displayed. Clicking 
the mouse over the keyword indicating each feature class 
in a concepts definition (e.g.. Abstractions. Role 
Restrictions. Equivalences,, etc) toggles the display of 
that component between defined and all inherited 
features of that type That is. clicking on the Role 
Restrictions changes the display of the concepts role 
restrictions from locally defined role restrictions to .4// 
Role Restrictions and vice versa 

There is a menu of commands for displaying and 
editing definitions that includes the commands Add 
Structure, Change Structure, Delete Structure, Display 
Concept and Clear Display Arguments (if any) to these 
commands may be described by pointing or typing. Thus, 
to delete a role restriction, one simply clicks on Delete 
Structure and the display of the restriction to be 
deleted Adding a structure is done by clicking on Add 
Structure, the keyword of the feature class of the 
concept one wisher to add to (eg,. Role Restrictions:) 
The new restriction itself may be copied from a displayed 
concept by pointing, or a new one may be entered from 
the keyboard Changing (that is, replacing) a structure 
can be done either by pointing in succession at the 
Change Structure command, the item to be replaced, and 
the thing to replace it with. In most cases. Change 
Structure can also be invoked simply by pointing at the 
structure  to be  replaced, without  the  menu command 

The last two commands in the structure view's mam 
menu provide the means to change what is displayed in 
the display window Pointing at Display Structure and 
then at any visible concept name places the definition of 
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Figure 4-1;      The Macro Structure Editor View 

: 

that    concept    in    the    d)splay    window Clear    Display 
removes all items from the display window. Individual 
concepts can be deleted from the display window by 
pointing    at     them    and    clicking The    Edit    Concept 
commend is used to change what is displayed in the 
current edit window. Editing a new concept moves the 
old edit  concept to the bottom  of the display window 

4.2. Developing Macro Editing Procedures 
These operations, together with the globally 

available commands for defining new concepts and making 
specializations of old concepts essentially by copying 
their definitions. provide an extremely flexible 
environment in which to define and specify modifications 
of concepts with respect to i.ther defined concepts. 
Virtually all Knowledge editing operations can be done by 
a sequence of pointing steps using the current edit 
window and the display window This style of editing is 
also used in the rule editor (See section 5 ) This 
corabmaUon of editing features and mouse-based editor 
interaction style provides an extremely versatile 
environment for the description, by example, of a large 
class  of editing  macros. 

The remaining windows in the Macro and Structure 
Editor View are used for defining, editing, and running 
macros composed of structure editing operations Macro 
operations are defined by editing a concept, for which 
the macro will make sense, and then invoking the Define 
Macro command from a menu Until the macro definition 
is terminated, all editing and concept display operations 
performed are recorded as steps in the macro Some 
basic facilities are also provide ! for editing (inserting 
and deleting steps, changing referents) macros once they 
are defined 

If the macros defined in this fashion are intended 
to work on concepts other than those for which they 
were defined, the operations recorded cannot refer 
directly to the concepts or objects which were being 
edited when the macro was defined Instead, a kind of 
implicit vanablization takes place, to replace the named 
objects with their relationship to the initially edited 
object. In most cases, these indirect references can be 
thought of as references to the location of the object in 
the structure editors display windows In fact, each new 
object    that    is    displayed    or    edited    in    the    course    of 

defining a macro is placed on a stack called the macro 
items list, together with a pointer to the command that 
caused the item to be displayed. 

For example, if one was editing the concept 
ELEPHANT, a command to Display the concept that was 
the value restriction of the role LEGS at that concept 
would both place ELEPHANT-LEG in the display window 
and add that concept to the macro items list, 
Thereafter, all editing commands issued that involve 
pointing at ELEPHANT-LEG or any part of it are recorded 
in the macro as operations on the item in the macro item 
list at the position ELEPHANT-LEG was when the macro 
was defined The utility of this form of reference can be 
made clear with  a couple of examples. 

4.2,1, Macro Example 1: Adding Pipes 
When the STEAMER [20] system was developed, a 

structural model of a steam plant was created to 
represent each component in the steam plant as a frame, 
with links to all functionally related components (e.g., 
inputs and outputs) represented as slots pointing at 
those other objects So, for example, a tank holding 
water to be fed into a boiler tank through some pipe 
that was gated by a valve was represented as a frame 
with an OUTPUT slot whose value was a VALVE The 
OUTPUT of that VALVE was a BOILER-TANK The pipes 
through which the water was conveyed were not 
represented since they had no functional value in the 
simulation  model 

If it became important to model the pipes, say 
because they introduced friction or were susceptible to 
leaks or explosions, then the representational model that 
STEAMER relied on would have required massive revision 
Each component object, in the system would have needed 
editing to replace the objects in its INPUT and OUTPUT 
slots with new frames representing pipes that were in 
turn connected by their OUTPUT slots to the next 
component in the system 

One of our goals in developing the KREME macro 
editor was to be able to make such changes, which are 
simple to describe but require many tedious editing 
operations to accomplish, given the number of concepts 
affected In the example below, we show how a macro is 
defined that can be applied to all objects in a system 
with  OUTPUT  Blot»,  in   order  to  generate  and  insert   PIPEs 
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Figure 4-2:      View   vhen defining the PIPE macro 

into those slots The macro also sets the OUTPUTS of 
those PIPEs to be the concept that WHS the old value of 
the OUTPUT slot  in  the  concept   edited. 

In this example, the macro is defined by editing a 
simplified representation of a tank (TANK1) connected (by 
role OUTPUT) to a valve (VALVE2). as shown in figure 4-2. 
The sequence of steps required is shown in figure 4-3, 
as they appear in the Wacro Definition window. (The 
italic comments in parentheses do not appear in the 
actual window) Each step describes an editing operation 
invoked with the appropriate mouse operations, starting 
with the old definition of TANK], as shorn i; the Current 
E'dit Item window in figure 4-2 Figur» 4-4 shows the 
state of the editor at  the  end of this definition process. 

The PIPES macro shown here is sufficient to insert 
concepts representing pipes between concepts with a 
single OUTPUT and the concepts represented as receiving 
that output The macro works as long as the role 
OUTPUT, or a specialization of that role, ey.sts at the 
affected concepts 

The current KREME macro and structure editor is 
still a very preliminary version, and there are still a 
number of issues to be addressed Wt are working on the 
general problem of extending the macro facility so that 
macros of this type will work when component objects 
have multiple OUTPUT slots, with different names What 
is required is a way to specify that a .uacro should be 
applied to all such slots. 

4.2,2. Example 2: Changing features into concepts 
Our second example is of a mure common kind of 

restructuring (hat occurs when developing frame 
knowledge bases In developing frame representations. 
the choice must often be made between giving frames a 
slot to denote that the concejl has some attribute and 
doing the same thing by defining it as specializing 
another concept denoting the set of all objects with that 
attribute Neither option is exclusive, but only one way is 
typically  needed  for  the  purposes  of  a  given  application. 

1.1.   Ifllli 1   UI.'.-I 
1      PIPElj   toper 

cept] 

Steps in  PIPE macro 

Edit  TANK1 
Click on Define Macro   {Makes Macro Item 0  =   TANK1) 

I      Make a  new concept  which  specializes PIPE, 
named bv generating  a number  suffix  (Trcafcs 
I'IPEO as item t.  puts it in  thi   current edit 
item window) 

2.    Change the INPUT value  restriction of item   1 
{INPUT of PIPED) to item  0 (TANEt) 

3 Change the OUTPUT value  restriction  of item   1 
{OUTPUT of PIPED) to th.   OUTPUT value 
restriction of item  0 {OUTPUT of TANK1   = 
VALVE 1) 

4 Classify the current edit  concept {Defines. 
PIPED). 

5.    Change the OUTPUT value  restriction  of item 0 
{OUTPUT of TANKt was VALVE1) to item   1 
{PIPED). 

G.    Classify item 0 {TANK1) 

?     Edit   the OUTPUT value  restriction of item   1 
{Create:   item 2 =   VALVE1) 

8.    Change the INPUT value  restriction  of item  2 
{INPUT of VALVEI   =   TANKt)  to  item   1   {PIPED) 

End  Macro PIPE 

Figure 4-3:      Steps in  PIPE Macro 
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Steps in COLOR-OBJECTS macro. 

Edit  RED 

Click  on  Define Macro 
{Makes Macro Hem 0  = RED). 

1 Make a new concept which specializes OBJECT, 
named by adding as prefix item 0 s naraf 
(Creates RED-OBJECT as item 1. puts it in the 
cvrreni edit  item window) 

2 Change the COLOR-OF value restriction of item 
1  to item  0 {RED) 

3 Change the pnmitiveness  of item   1   to No 

4 Classify item 1, (This finds all conecpts with 
COLOR-OF slots restricted to RED. and makes 
them specializations of RED-OBJECT.) 
The remaining steps make these specialization 
links defined links, and remove the COLOR-OF 
slots completely, 

5 Do on SPECIALIZATIONS of item 1, Add item 1 to 
the parents of iteration item {This makes each 
red object hai'e defined parent RED-OBJECT ) 

6 Do on SPECIALIZATIONS of item 1: Classify 
iteration  item 

7. Change the  pnmitiveness of item   1   to Yes, 

8. Delete the COLOR-OF  restriction of item  1 

Quite frequently the choice made early on in the 
development of a KB proves to be inappropriate, and 
massive editing is required to convert the accumulated 
representation base. A macro facility of this type will 
make these decisions easier to reverse and, therefore, 
less disruptive and costly in their pragmatic 
consequences 

We illustrate this kind of restructuring operation 
with a macro that provides a way of forming a concept 
RED-OBJECT denoting the set of all objects with the role 
restriction COLOR = RED. and then removing those COLOR 
slots.    Figure 4-5 shows this macro's  steps. 

This macro uses the classifier to help make some of 
the required deductions. First, for a given COLOR, say 
RED, it defines RED-OBJECT. a non-primitive 
specialization of OBJECT, with COLOR-OF restricted to 
RED, Classifying this concept automatically pla es all 
cither objects with COLOR-OF restricted to RED (or 
specializations of RED) beneath it in the specialization 
hierarchy , which simplifies the job of defining the macro 
considerably. 

The remaining steps in the macro remove the 
COLOR-OF restriction from RED-OBJECT and all of its 
specializations. First, the concepts the classifier found 
to specialize RED-OBJECT must be given RED-OBJECT as 
one of their defined parents, RED-OBJECT must also be 
made primitive before it is reclassified. since it no longer 
has any  defined  features to distinguish it  from OBJECT 

The steps required to add defined parents t i 
specializations of RED-OBJECT and to remove thetr 
COLOR-OF restrictions make use of the KREME MAP-EDIT 
command This command is used to perform a single 
editing  operation  on  a  set   of concepts  related to the  one 

9     Do on ALL SPECIALIZATIONS  of item   1    Delete the 
COLOR-OF restriction  of iteration  item 

10     Classify item   1 

Figure 4-5:      Changing RED to RED-OBJECT 

RED-OBJECT must be marked non-primitive, since it is fully 
defined by the feature that distinguishes it from OBJECT, its 
restriction of the COLOR-OF slot to RED, If marked primitive, 
it would only subsume concepts that defined it as one of 
their   parents, 
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being edited (eg. direct specializations, all 
specializations. abstractions. all abstractions) The 
limited iteration mechsmsm provided by MAP-EDIT has 
proven useful in several macros, and at present we have 
not found the need to extend the macro language wi'h 
further control  mechanisms 

4.2.3. Future Directions 
Work on macro editing has really just begun 

However, it already shows promise as a method for 
accomplishing a number of large scale restructurings of 
knowledge bases which are relatively simple to describe, 
but tedious to perform. ^s example 2 above shows 
macros can also make use of the classifier to discover 
relationships in the knowledge base  and exploit  them 

At present, the macro editor is only available for 
editing concepts in the KREME frame language. As the 
PIPEs example shows, there are still limitations on its 
capabilities, even there We are continuing to develop the 
abilities of the macro editor, and in future will have 
version.. 'iat can be used with the other representation 
language^ ^hat KREME can manipulate As it stands, the 
system is already powerful enough to describe a number 
of transformations between semantically equivalent 
though functionally and syntactically        distin: t 
representations. We are building a library of these 
operations so that other users of KREME will not be 
required to  reinvent them 

We see our investigation of macro editing as only 
the first step m developing a knowledge reformulation 
facility that will have and make use of more 
understanding of the logical structure of the represented 
knowledge as well as providing a basic means of 
describing procedures to manipulate the syntactic 
structure of knowledge representations. During the 
second phase of this project, we will be attempting to 
generalize the functionality provided by this library in a 
system that is capable of reasoning about the kinds of 
structural  changes the  macro editor can perform 

exhaustive search Potentially useful generalizations are 
found by searching for sets of concept features 
(primarily role restrictions) that are shared by several 
unrelated concepts. Finding concepts with a given set of 
features is relatively easy since KREME indexes all 
concepts under each of its features 

When the generalizer finds a set of at least k 
features shared by at least m concepts, where k and m 
are user setable parameters, the system forms the most 
specific concept definition that would enclose all of the 
features but would still be more general than any 
concept in the set This concept definition is displayed 
to the user. For example, figure 4-6 shows three 
concepts that are all ANIMALs and independently define 
the slot WINGS. Given this, the generalizer would suggest 
forming a specialization of ANIMAL with the slot WINGS 
that these concepts would all specialize If the user 
wanted to introduce this concept, he would respond by 
naming the new generalization, which is then classified 
and inserted into the network The features that are 
enclosed by this new, more general concept, are removed 
automatically from each of the more specific concepts 
being generalized Figure 4—7 shows the result with a 
new concept  named FLYING-ANIMAL. 

As one might imagine, the generalizer algorithm is 
fairly slow (taking about 8 minutes to go through a 
network of 500 concepts and 300 roles). It must look at 
a fair percentage of all the possible combinations of 
features in the network. Consequently, we have designed 
the algorithm to run in a low priority background 
process, looking for generalizations only when the editor 
is waiting for input from the user 

As yet, the effectiveness of this generalizer remains 
substantially untested. We have used tried it on the two 
reasonably large taxonomies that we have available, and 
it finds several potential generalizations in each, but the 
real test must wait until there are new applications 
under development using the KREME environment. The 
taxonomies that we have available currently have been 
carefully   developed   over   long   periods   of  time,   and   have 

\ 

4.3   The Generalizer 
One of the tasks faced by .nowledge engineers m 

developing robust computerized knowledge bases is 
getting experts to express their often unconscious 
gcneralizaiions about their domains of expertise. While 
much of the detailed information about particular 
problems can be accessed and represented by looking at 
specific examples and problems, the experts abstract 
classification of problem types and the abstract features 
he uses to recognize those problem types are less readily 
available 

Experienced knowledge engineers are often able to 
discover and define useful generalizations that help 
organize the knowledge described by a human domain 
expert. The expert, although not previously aware of 
such a generalization, will often immediately perceive its 
relevance to and existence within his own reasoning 
processes, going so far as to suggest improvements, 
related generalizations, more abstract generalizations 
and so forth 

An automatic facility for deducing potentially useful 
generalizations from a network of relatively specific 
concepts would be an extremely useful lapability for a 
knowledge    editing    system    to    provide An    overriding 
difficulty in building such an engine is the difficulty of 
estahlishing criteria for determining what constituies an 
"interesting" or useful generalization 

As an initial experiment in automatic generalization 
within frame taxonomies. KREME provides a relatively 
simple generalizer algorithm that deals with this 
difficulty by relying on the user to select from a set of 
potential      generalizations      discovered      essentially      by 

Figure 4-6:      Find a Generalization 

-16- 

■Ai taMM 



' 

1 

Figure 4-7:      After Generalization Added 

few remaining  "holes". 

We are also considering developing another version 
of this generahzer that would attempt to find new 
concepts in sets of conditions repeatedly appearing as 
parts     of     rules. Introducing     such     concepts     could 
conceivably simplify, and reveal more of the structure of 
the reasoning involved in rule sets It might also make 
extending such rule sets easier, A generahzer of this 
type will be investigated during phase two of the project 

5. Editing Rules in the KREME 
Environment 

We are in the process of incorporating into the 
KREME environment an editor for rules written in the 
FLEX rule l-mguage [16] FLEX is similar to the rule- 
based portion of the LOOPS language and currently runs 
on a Symbolics 3600 FLEX provides rule packets, and 
rule objects Rule packets provide a wav to organize 
rules. Rule packets can be invoked like functions, with 
arguments and local variables, and return values via the 
ZETALISP multiple-values mechanism Flex incorporates a 
mechanism for dealing with uncertainty, based on that in 
EMYCIN 118] The system also provides an elementary 
history and tracing mechanism, and an explanation 
system that produces pseudo-English explanations from 
rule traces 

The forward chaining rule packets come in four 
varieties, indicating the type of control mechanism used 
for  rule firing 

o    do-l-rule-packets     execute     the     first     rule 
whose test succeeds 

o    do —all —rule—packets    execute    all    rules    whose 
tests succeed 

\ 
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o    while-1-rule-packets repeatedly  test   all  rules, 
firing one, until no tests succeed. 

o    while-all-rule-packets     repeatedly     fires     all 
rules whose tests succeed,  until none succeed 

An important feature of FLEX is the capability to 
compile rules into a lower level language, and run 
without    the    rule    interpreter    present For    example, 
forward chaining rule packets can now be compiled 
directly into LISP functions. This compiling can be 
handled by a separate code generator or translator 
which can produce code for other languages 

Rule packets in FLEX can be connected to KREME 
frame systems or other data contexts by specifying an 
access em'ironmcn/ An access environment is an object 
that receives messages dealing with the accessing of 
values for references in the rules. It handles all 
messages to get or set the values of variables and their 
confidences. Flex uses the notion of paths. These are 
composed references. Flex sends the access environment 
messages to resolve paths that it encounters in rules. 
When connected to KREME frame hierarchies, these paths 
describe  role or slot  chains,  as in role equivalences. 

5.1. The FLEX Rule Editor 
The original FLEX rule editor, shown in figure 5-1, 

was a predecessor of the KREME structure editor, in 
terms of its functionality and style of interaction Thus, 
its functionality closely resembles that for the frame 
editor described above One defines and edits rules by 
specifying and filling out portions of rule templates The 
user refines these templates either by using the mouse 
to copy parts of existing rules or by pointing at slots to 
be filled and typing in the desired values Once a rule- 
set has been developed, the FLEX editor provides 
commands to run packets and debug them It can also 
generate traces or rule histories paraphrased in pseudo- 
English Mechanisms are also provided for deleting and 
reordering rules,  and  loading  and saving them  from files. 

5.2. Interactions with the Frame editor 
Although FLEX was onginally designed as a stand- 

alone system, packages of rules can now be written that 
refer tc instances of KREME Frames using the KREME 
Frames-ACCESS-ENVIRONMENT This access environment 
provides the interface functions necessary for FLEX rules 
to refer to KREME frame instances, and their slots It 
also allow« one to write rule packets that 
methods on frames. 

serve    as 

The KREME access environment allows the FLEX rule 
editor to validate references (paths) to slots in KREME 
frames when building and debugging rules. When an 
unresolvable reference is encountered. the invalid 
portion of the path is pinpointed and a menu of pos ibk 
actions to fix it is offered to the user The options at 
this point include switching to a KREME view in which the 
suspect concept or role can be edited, defining new 
concepts. changing the invalid path element, and 
rhunging the root element  of the path 

We are still in the process of integrating this rule 
system into the KREME world. In the near future, it will 
also be possible to associate rule packets with concepts, 
and browse or edit those packets from within the KREME 
editing environment. 

6. Editing Procedures in the 
KREME Environment 

6.1. The KREME Procedure language 

6.1.1. Background 
An obvious weakness of many knowledge 

representation languages is their inability to handle 
declaratively expressed knowledge about procedures as 
partially ordered sequences of actions, particularly if 
that knowledge is represented at multiple levels of 
abstraction Although a number of systems have been 
developed that do various forms of planning. 

1-4. 12, 13, 17], most have not encoded their plans in an 
entirely declarative or inspeclable fashion Certainly the 
current generation of expert system tools does not 
provide for the description of this kind of knowledge 
Although it is clear thai much of an experts knowledge 
about, a domain is about procedures and their 
application, little work has been done on devising ways 
to capture that information directly 

The STEAMER project began to address the issue of 
declarative representations for procedures in the course 
of developing a mechanism to teach valid steam plant 
operating      procedures. The     representation     system 
developed for this task had to be directly accessible to 
the students who were the system's users, and it had to 
serve as a source of explanations when errors were 
made STEAMER was able to describe these procedures, 
decompose them, show how they were related to similar 
procedures and, in general, deal with them at the 
"knowledge level" [10] rather than as pieces of programs 
or rule sets. Although the syntax of the language was 
quite primitive, with no provisions for branching or 
iteration, the mechanisms for procedural abstraction, 
specialization md path or reference reformulation that 
formed the heart of the language seemed to form the 
kernel  of an  extremely useful representational facility. 

The STEAMER procedure language was well 
integrated with the MSG frame language that was one of 
the starting points for KREME Frames, and minimal effort 
was necessary to incorporate a very similar language 
into KREME We refer to the results of this effort as 
KREME Procedures We expect to expand the KREME 
Procedures language, and provide much improved editing 
facilities for procedures in the near future. 

6,1,2. Basic syntax 
A procedure consists of a its name, its description. 

the action that the procedure is meant to accomplish, a 
list of sfeps. and a list of ordering constraints that 
determine the partial ordering of the steps. Procedures 
are  attached to  specific frames (concepts), 

A step consists of an action and a pn^i. The path 
(as in role equivalences) refers to a particular concept 
which is said to be the object of the step For example, 
a concept called SUCTION-UNE might have a slot for a 
part named PUMP, which is restricted to being a 
CENTRIFUGAL- PUMP We might define a procedure for 
ALlGNing the SUCTION-LINE which would have a step to 
OPEN the DISCHARGE-VALVE of the PUMP This would be 
expressed in step form as OPEN PUMP DISCHARGE- 
VALVE' and would induale a step that opened the 
discharge valve of the centrifugal pump which was the 
pump  of the  suction  line. 

A constraint is an ordering between two steps (the 
before step and the after step) Each constraint is 
supported by a principle. A principle consists of its 
name, a description of its rationale and a numeric 
priority 
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Each step in a procedure may either be a primitive 
action or another procedure. If the object of a step 
defines a procedure for the action of that step then this 
procedure is said to be a sub-procedure of the 
enclosing procedure. Using our example from above, the 
ALIGN procedure attached to the concept SUCTION-LINE 
could have a step ALIC.N - PUMP-. If the concept 
CENTRIFUGAL-PUMP, which is the object of this step in 
AL1GN< SUCTION-LINE-, defined a procedure for the action 
ALIGN, then the step ALIGN <PUMP> could be expanded 
into the steps of the procedure for aligning a centrifugal 
pump. 

6.1.3. Procedural abstraction and structure mapping 
For knowledge acquisition purposes, it would be 

very useful if procedures were represented in an 
abstraction hierarchy like that for concepts. In a strong 
sense, saying that one abstract procedure subsumes 
another seems mfeasible However much power can be 
gained if abstract procedures form templates upon which 
more specific procedures can be built, much as was done 
in NOAH [13] For example, if you have some idea about 
how to grow plants in general, and you want to grow 
tomatoes, you will use your knowledge about growing 
plants in general as a starting point for learning about 
growing    tomatoes The    final    procedure    for    growing 
tomatoes will include some (presumably more detailed) 
versions of steps in the more general procedure, and may 
also include steps that are analogous to those used in 
growing   other   plants   for   which   more   detailed   knowledge 

Q 

exists KREME Procedures has a mechanism for building 
templates of new procedures out of abstract procedures 
When a new procedure is being defined at a concept, the 
procedural abstraction function determines whether any 
of that concept's parents have a procedure for 
accomplishing  the   same  action      If  one   or   more   do,  the 

new procedure organizes the steps and their ordering 
constraints, with suitably reconstructed paths, to form a 
template on which the new procedure can be built As 
yet this facility does not have the ability to do detailed 
reasoning with constraints on steps, as NOAH does We 
expect to greatly expand this capability during phase two 
of the  project 

6.2. The Procedure Editor 
When procedures are attached to particular 

concepts, a procedure editing view is one of the views 
available for that concept. In this view, the editor 
displays a list of all of the existing KREME Procedures 
for the current concept. (See figure 6-1.) When the 
procedures view is visible, the user can choose to delete 
any existing procedure, edit a procedure or create a new 
procedure. Several      procedures      can      be      edited 
simultaneously, with the topmost procedure in the 
procedure list window being the current, visible 
procedure 

The current procedure (of the current concept) has 
its steps and ordering constraints displayed. Steps and 
constraints can be added to or deleted from the current 
procedure Editing of the current procedure can be 
interrupted by the user choosing another procedure to 
edit, switching views for the controlling concept or 
interrupting the edit of the controlling concept. 

When the user is satisfied with the definition of a 
procedure he has edited, it is ready to be inserted into 
the    knowledge    base The    Define   Procedure    command 
accomplishes this by first ordering the procedure's steps 
based on their ordering constraints. If the constraints 
are contradictory, the user must resolve the 
contradiction by eliminating constraints or by making 
some   constraints   higher   priority   than   others.      Next,   a 
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Figure 6-1;  The Procedure Editor 

For o detoilec discussion of related issues see Carbonell 
[3] on derivational analogical planning. 
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procedure object is made and associated with the 
classified version of the concept in the knowledge base 
The procedure may also be compiled into a flavor method 
that becomes part of the behavior associated with the 
concept. After a procedure has been installed the 
procedure editor redisplays the procedure steps, showinfi 
them in their proper partial order. 

nicking on a step that is itself a procedure causes 
the editor to replace the step with the steps of thai 
procedure, adjusting the paths of the expanded steps 
and adding appropriate constraints so that the expansion 
falls logically between the steps surrounding its 
unexpanded form in the original procedure 

A step expansion can be closed by clicking on anv 
of the expanded steps The editor simply replaces the 
expanded set of steps with the original step and adjusts 
constraints     accordingly. Expanded     steps    are    made 
permanent     when     the     Define     Procedure     command     is 
invoked 

A new procedure is entered by typing the 
procedure name, description and action. The procedure 
editor checks to see if anv of the parents of the 
controlling concept have procedures for the same action 
f so an initial procedure template is built bv combining 

the steps and conctramts of all the inherited, more 
abstract     procedures The    paths    of    the    steps    are 
adjusted to use "local' slot names, as much as possible 
using the concept's role equivalences as described m 
section 6 The procedure definition object thus formed 
is then displayed for editing 

The KREME Procedures language is currently being 
refined for use in a new framing svstem under 
development at BBN That system will teach diagnostic 
procedures for the maintenance of a large electronics 
system We expect that KREME will greatly ease the 
knowledge acquisition problems faced by the' developers 
of that system It will also provide the first serious test 
of the effectiveness of the KREME acquisition environment 
in general 

checking 
generating 

Now that we are well along in constructing a first, 
experimental version ol the editing environment, we are 
beginning to address the second aspect of our research 
plan, the development of more automatic tools for 
knowledge     base     reformulation     and     extension. An 
important part of this endeavor is the discovery 
categorization and use of explicit knowledge about 
knowledge representations, methods for viewing different 
knowledge representations, techniques for describing 
knowledge base transformations and extrapolations 
techniques for finding and suggesting useful 
g( nerai zations in developing knowledge bases, semi- 
automatic procedures for of eliciting knowledge fron 
experts, and extensions of consistency 
techniques to provide a mechanism for 
candidate expansions of a knowledge base. 

Our ultimate goal is to explore a number of 
approaches to knowledge acquisition and knowledge 
editing that, could be incorporated into existing and 
future development environments, not to develop the 
definitive knowledge editing environment. Al is still a 
young field, and new knowledge representation techniques 
will continue to be developed for the foreseeable future. 
We are attempting to provide a laboratory for 
experimenting with new representation techniques and 
new tools for developing knowledge bases. If we are 
successful, many of the techniques developed in our 
aboratory will be adopted by the comprehensive 

knowledge acquisition and knowledge representation 
systems required to support the development and 
maintenance  of Al systems in the future. 
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Project Richard Shapiro and Albert Boulanger Rich and 
Albert jointly developed the FLEX rule svstem and editor, 
and Rich was also largely responsible fo- the 
implementation of the Macro and Structure Editor. Dr 
Ed Walker read and substantially edited several dral s of 
this paper. 

7. (Conclusion 
The goal of the BBN Labs Knowledge Acquisition 

Project is to build a versatile experimental computer 
environment for developing the large knowledge bases 
which     future    expert    systems    will    require We    are 
pursuing this goal along two complementary paths First 
we have constructed a flexible, extensible. Knowledge 
Representation, Editing and Modeling Environment in 
which different kinds of representations (initially frames 
rules, and procedures) can be used, and we can 
investigate the acquisition strategies for a variety of 
types    of   knowledge    representations In    building ' and 
equipping this "sandbox", we are adapting and 
experimenting with techniques which we think will make 
editing, browsing, and consistency checking for each 
style of representation easier and more efficient so that 
knowledge engineers and subject matter experts can work 
together to build with significantly larger and more 
detailed knowledge bases than are presently practical 
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1.     Introduction 

This paper describes four projects to develop tech- 
niques for reasoning under uncertainty in knowledge 
systems. The work is based on the premise that knowl- 
edge about sources of uncertainty and evidence should 
be represented explicitly, so that knowledge systems can 
reason about their uncertainty. This position raises 
many questions: How should knowledge about uncer- 
tainty be represented? what aspects of uncertain sit- 
uations should be explicit? How should evidence be 
combined? How can a system minimize its uncertainty? 
How are decisions taken under uncertainty? These and 
other questions are the foci of the four research efforts 
described here. One project has resulted in an archi- 
tecture for planning medical consultations, that is, de- 
termining appropriate questions, tests, and treatments 
given previous results during the consultation. The goal 
of the project in to integrate current research on explicit, 
sophisticated control with explicit reasoning about un- 
certainty: the causes of uncertainty and characteristics 
of evidence effect control decisions. A second project 
shares this concern for control: we have developed a 
general method for constructing decisions under uncer- 
tainty. By classifying decision-making situations, one 
can "read off" actions that will transform uncertain de- 
cisions into more tractable ones. This opens the pos- 
sibility of sophisticated control by table lookup. The 
third and fourth projects focus on the representation of 
uncertainty. One proposes a model for reasoning about 
the uncertainty inherent in semantic matching prob- 
lems. The other extends this work to a view of com- 
mon sense inference as "generalized syllogisms" over an 
associative knowledge base. 

This report is taken from three recent papers: "Man- 
aging Uncertainty in Medicine" by Paul Cohen, David 
Day, Jeff Delisio, Mike Greenberg, Rick Kjeldsen, and 
Paul Herman, M.D.; "A Typology for Constructing De- 
cisions" by Adele Howe and Paul Cohen; "Classification 
by Semantic Matching" by Paul Cohen, Philip Stan- 
hope, and Pick Kjeldsen. The section on plausible in- 
ference was written by Paul Cohen and David Lewis. 

2.     Management of Uncertainty in 
Medicine 

2.1     Introduction 

MUM is a knowledge-based consultation system de- 
signed to manage the uncertainty inherent in medical 
diagnosis (the acronym stands for Management of Un- 
certainty in Medicine).    Managing uncertainty means 
planning actions to minimize uncertainty or its conse- 
quences. Thus it is a control problem - an issue for the 
component of a knowledge system that decides how to 
proceed from an uncertain state of a problem.  Uncer- 
tainty can be managed by many strategies, depending 
on the kind of problem one is trying to solve. These may 
include asking for evidence, hedging one's bets, deciding 
arbitrarily and backtracking on failure, diversification 
or risk-sharing, and worst-case analysis.    The facility 
with which a consultation system such as MUM man- 
ages uncertainty is evident in the questions it asks:  it 
should ask all necessary questions, no unnecessary ques- 
tions, and it should ask its questions in the right order. 
These conditions, especially the last one, preclude uni- 
form and inflexible control strategies.  They prompted 
the development of the MUM architecture in which con- 
trol decisions are taken by reasoning about features of 
evidence and sources of uncertainty. 

2.2    The Goals of MUM 

MUM diagnoses chest pain and abdominal pain. This 
includes taking a history, asking for physical findings, 
ordering tests, and prescribing trial therapy. Physi- 
cians call a diagnostic sequence of questions and tests a 
workup. MUM's primary goal is to generate workups for 
chest and abdominal diseases that include, in the cor- 
rect order, all necessary questions and tests and none 
that are superfluous. Since we built MUM to study the 
management of uncertainty, the goal of correct diagnosis 
is secondary to generating the correct workup. We were 
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influenced by a distinction physicians make between ret- 
rospective diagnosis, in which all evidence is known in 
advance and the goal is to make a correct diagnosis, and 
prospective diagnosis, which emphasizes the workup and 
proper management of the patient, even under uncer- 
tainty about his or her condition. MUM is definitely 
prospective. Figure 1 illustrates part of the workup for 
coronary artery disease. Clearly, we could build a sys- 
tem that follows this and other stored workups, but the 
point of the research is to be able to reason about the 
features of evidence, and the uncertainty in partially- 
developed diagnoses, to decide which questions to ask 
next. If MUM does this properly then its questioning 
will correspond with a standard workup, or at least be 
a reasonable alternative workup. 

2.2.1    Managing Uncertainty and Control 

MUM is based on the idea that managing uncer- 
tainty and controlling a complex knowledge system are 
manifestations of a single task, namely, acquiring evi- 
dence and using it to solve problems. There would be 
little basis for variation in problem-solving strategies if 
all evidence was equally costly, reliable, available, and 
pertinent; but if available and attainable evidence is 
differentiated along these and other dimensions, then 
problem-solving can be guided by the ideal of maxi- 
mum evidence for minimum cost. For example, here is 
a strategy for focusing attention on available evidence: 

CONTEXT: to minimize cost 

CONDITIONS:    testl and test2 are pertinent, and 
iesti is potentially-confirming, and 
testz is potentially-supporting, and 
cosi{testi) » costltest?) 

ACTIONS: begin 
do lesti 
if supporting then do testi 

else do not do test) 
end 

That is, given cheap, weak evidence and expensive, 
strong evidence, get the weak evidence first and don't 
incur the cost of the strong evidence unless the weak 
evidence lends support. The rule serves to manage the 
uncertainty associated with the weak evidence - it says 
seek strong corroboration only if the weak evidence is 
positive. It also uses features of evidence such as cost 
and reliability to control the acquisition of evidence; 
for example, it explains why an angiogram (an expen- 
sive, risky, and excruciating test) is done only after a 
stress test in Figure I.   We distinguish these functions 

- managing uncertainly and control - only because un- 
certainty and control have, with a few exceptions noted 
below, been viewed as different topics. In fact, if con- 
trol decisions are based on features of evidence, then 
control and managing uncertainty are the same thing. 
This is the principle that motivates the design of MUM 
discussed in Section 2.3.3. 

2.2.2    Related Work 

The close association between control and manag- 
ing uncertainty has been apparent in the literature on 
sophisticated control for several years ' but is largely 
absent from the AI literature on reasoning under un- 
certainty. Three important, results have emerged from 
research on control: First, complex and uncertain prob- 
lems must be solved opportunistically and asynchronouslt 
~ working on subproblems in an order dictated by the 
availability and quality of evidence (Haves-Roth and 
Lesser, 1977). Second, since control tends to be accom- 
plished by local decisions about focus of attention, the 
behavior of complex knowledge systems sometimes lacks 
global coherence. Coherence can be achieved by plan- 
ning sequences of actions instead of selecting individual 
actions by local criteria2. Third, programs are impossi- 
ble to understand if the factors that affect control deci- 
sions are implicit. For example, the focus of attention 
in Hearsay-II was difficult to follow because it depended 
on many numerical parameters calculated from data and 
combined by empirical functions with "tuning" parame- 
ters (Hayes-Roth and Lesser, 1977). A better approach 
is to explicitly state and reason about the implicit fac- 
tors, called control parameters (Wesley, 1983), that the 
numbers represent (Davis, 1985; Clancey, 1983). If the 
control parameters are features of evidence and uncer- 
tainty, then control strategies can be developed to man- 
age uncertainty. 

This last point colors our reading of the AI literature 
on reasoning under uncertainty. Much of it is concerned 
with the mathematics of combining evidence, the calcu- 
lation of degrees of belief in hypotheses. (A represen- 
tative sample includes Shortliffe and Buchanan, 1975; 
Duda, Hart, and Nilsson, 1976; Zadeh, 1975; Shafer, 
1976. See Cohen and Gruber, 1985; and Bonissone, 
1985, for literature reviews, including nonnumeric ap- 
proaches to uncertainty; and Szolovits and Pauker, 1978 
for a discussion of uncertainty in medicine ) Degrees of 
belief can serve as control parameters, but it is neces- 
sary to maintain a distinction between combining ev- 
idence and control.   Otherwise, degrees of belief (and 

1 For example, the classic paper by Erman, Mayer-Roth, Lesser, 
and Hecldy (1980) is called "The Hearsav-Il soeech uiiderstandintr 
system: [ntegrating knowledge to resolve uncertainty.'' 

'Personal communication, Victor Lesser, 
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the functions that combine them) have to be "tuned" 
not only to find the most likely answer but also to fo- 
cus attention in a reasonable way. Inevitably they be- 
come ambiguous summaries of implicit control parame- 
ters. For example, MYCINV certainty factors contained 
probabilistic and salience information, an indirect result 
of using them to focus attention (Buchanan and Short- 
liffe, 1985). 

Another important reason to maintain the distinc- 
tion between combining evidence and control ii that 
combining evidence is only a part of the problem of rea- 
soning under uncertainty. Other aspects include formu- 
lating decisions, assessing the need for more evidence, 
planning how to get it, deciding whether it is worth 
the cost and, if it isn't, hedging against residual uncer- 
tainty. In MUM we address the problem of combining 
uncertainty in the context of these other tasks. 

2.3     An Architecture for Managing Un- 
certainty 

Managing uncertainty in MUM requires many kinds 
of knowledge, discussed in this section. Anticipating 
section 2.3, on control, it may be useful to think of data 
moving bottom-up through Figure 2 as it triggers hy- 
potheses and is requested by MUM's planner. 

2.3.1     Typos of Knowledge 

Data,  Evidence,  and Interpretation  Functions. 
Evidence is abstracted from data through interpre- 

tation functions. All data about a patient are stored 
in frames that describe personal history, family history, 
tests, histc-y of episodes, and other data. Interpreta- 
tion functions map data to evidence; for example, in- 
formation that a patient smokes 3 packs of cigarettes 
a day is abstracted to the evidence heavy-smoker by 
an interpretation function that maps data about smok- 
ing habits to one of (non-smoker light-smoker moderate- 
smoker heavy-smoker). Interpretation functions are of- 
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ten graphs called belief curves that relate ranges of a 
continuous data variable to belief in evidence. Figure 
3 shows a belief curve relating the duration of chest 
pain to the evidence classic-anginal-pain. Belief curves 
and other interpretation functions are acquired from an 
expert. They provide the same functionality as fuzzy 
predicates (Zadeh, 1975), and generalize Clancey's view 
of data abstraction as categorical (Clancey, 19S3). 

Features of Evidence. Evidence may be character- 
ized by its cost, reliability, and roles. The cost of evi- 
dence reflects monetary cost as well as discomfort and 
risk to the patient (later versions of MUM will separate 
these and other determinants of cost). Reliability refers 
to several factors, including false-positive and miss rates 
of tests, and also the belinf in evidence derived from be- 
lief curves (e.g., is c/ass> i 7ma/-pam at least support 
by data about the pain nation?) The most important 
feature of evidence is the roles it can play with respect 
to evaluating hypotheses. MUM recognizes five roles, 
two of which are symmetric pairs: 

Potentially-conflrming and potentially-discon firming. 
Ifevidenceplaysa potentially-confirming role with 
respect to a hypothesis, then acquiring it might. 
confirm the hypothesis, though not all potentially- 
confirming evidence will, in actuality, confirm. For 
example, an EKG confirms the hypothesis of angina 

only if "positive" (i.e., shows ischemic changes.) 
Once confirmed (ur disconfirmed), a hypothesis 
requires no further evidence, though a diagnos- 
tician may continue working to disconfirm other 
hypotheses, especially if they are dangerous. 

Potentially-supporting and potentially-detracting. 
Like potentially-confirming and potentially-discon- 
firmmg, but not conclusive. However, combi- 
nations of supporting or detracting evidence may 
be confirming and discoiifirming, respectively (see 
"Combining Func tions," below). The combina- 
tion referred to as cluster-2 (Fig. 2) is potentially- 
supporting with respect to disease-2; cluster-1 is 
potentially-detracting with respect to disease-1. 

Trigger. A piece of evidence plays the triggering role 
with respect to a hypothesis if its presence focuses 
attention on the hypothesis, or "brings the hy- 
pothesis to mind," or, in MUM, adds the hypoth- 
esis to a list of potential diagnoses. Cluster-4, if it 
is supported triggers disease-] (Fig. 2). This role 
of evidence is found in virtually all medical expert 
systems. 

Modifying. Some evidence does not support or detract 
from a hypothesis so much as it alters the way di- 
agnosis proceeds. For example, risk factors for 
coronary artery disease (e.g., hypertension, ele- 
vated cholesterol) play a modifying role with re- 
spect to the hypothesis of angina since diagnosis 
will proceed aggressively if they are present and 
less aggressively otherwise. 

These are the only roles currently used in MUM; 
others are contemplated. Note that evidence can play 
multiple roles with respect to any hypothesis; for ex- 
ample, risk factors are both potentially-supporting and 
modifying with respect to angina; and most triggers are 
individually or in combination with other evidence at 
least potentially-supporting (e.g., note the roles cluster- 
4 plays with respect to disease-l in Fig. 2). Also, one 
piece of evidence can play different roles with respect 
to several hypotheses (illustrated by the roles cluster-2 
plays with respect to disease-1 and disease-2 in Fig. 2). 
Finally, note that some evidence potentially plays two 
symmetric roles, while some are "asymmetric". For ex- 
ample, a stress lert will either support coronary artery- 
disease or detract from it, while an EKG supports angina 
if it is positive and is useless otherwise. That is, EKG 
plays a potentially-supporting role only. 
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A belief curve ploiung the datum   Duralion of Pain in Minutes 
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Clusters. Physicians often see collections of evidence 

that play particular roles in diagnosis; for example, short- 

ness of breath that comes on suddenly but is unrelated 

to exercise or other inciting factors triggers the diagno- 

sis of pulmonary embolism. Just as evidence has roles 

with respect to clusters, so clusters have roles with re- 

spect to diseases, and these roles need not be support- 

ing; for example, the cluster (patient-age < SO and no- 

fami'y-history-oj-coronary-events) plays o. potentially-de- 

tracting role with respect to all coronary diagnoses of 

chest pain. Instead of saying that the available evidence 

is a poor match to coronary diagnoses, we can say the 

evidence is a good match to a cluster that potentially 

detracts from or disconfirms coronary diagnoses. 

Combining Functions. Every cluster includes a func- 

tion, specified by the expert, that combines the avail- 

able evidence for the cluster and returns a value for the 

cluster given evidence. The values returned by combin- 

ing functions are just "realizations" of potential roles of 

evidence. For example, the value returned by the com- 

bining function of a cluster supported by potentially- 

confirming evidence could be confirmed. The value 

for a cluster with several pieces of potentially-detracting 

evidence might be disconfirmed, or perhaps detracted. 

Combining functions are further discussed below. 

Diseases. A disease is technically a cluster. It is a col- 

lection of clusters, each of that plays an evidential role 

in diagnosis and is combined by combining functions 

with other clusters. Thus diseases reside at the top of a 

hierarchy of clusters (as shown in Fig. 2), each of which 

has its own combining function and specifications of the 

roles played by the clusters below it. 

Strategic Knowledge. We characterize strategic kno 

ledge as heuristics for deciding which triggered disease 

hypotheses to focu1 i. and how to go about selecting 

actions to gather evidence pertinent to these hypothe- 

ses. These heuristics have the same contingent nature 

as Davis' meta-rules (Davis, 1985) and control rules in 

Neomycin (Clancey, 1985). Strategies are represented 

as rules which include: 

• conditions for selection of the strategy; 

• a focus policy which guides the choice of a subset 

of the triggered disease hypotheses to focus on; 

• planning criteria whHi guide the selection of ac- 

tions to gather evidence for and treat diseases cur- 

rently in the focus. 

Examples of focus policies are plausibility (choose 

hyr otheses based on their degree of support); criticalxty 

(focus on hypotheses that, if true, would require imme- 

diate action); and differential (focus on hypotheses that 

offer alternate explanations for the symptoms). Exam- 

ples of planning criteria are cost (prefer evidence that 

is easy to obtain, and inexpensive on some cost metric); 

roles (prefer potentially-confirming over potentially-sup- 

porting); and diagnosticity, meaning that a given result 

has the potential to increase the belief in one hypothesis 

and decrease belief in the other, as indicated by belief 

curves. 
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2.3.2    Combining Evidence and Propagating Be- 
lief 

MUM combines evidence with local combining func- 
tions, as shown in Figure 2. Typically, knowledge sys- 
tems require three functions to combine evidence and 
propagate belief. These are illustrated in the context of 
two inference rules: 

Rl: 
R2: 

A   AND   B) 
D  AND  E) 

C 
c 

One function calculates the degree of belief (dob) In a 
conjunction from degrees of belief in the conjuncts: 

dob(AND A B) = f1(dob(.4)dob(B)) 

The second function calculates the degree of belief in a 
conclusion from 

a) the degree of belief in its premise (computed by Fi) 

b) the "conditional" degree of belief in the conclusion 
given the premist; 

often called the degree of belief in the inference rule: 

dob(CH1) = f2;dob(AND A B),dob(C|(AND A B))) 

The third increases the degree of belief in a conclusion 
when it is derived by independent inferences: 

dob(CWW2) = F3(dob(Cfil),dob(CR2)) 

In MUM, these three kinds of combining are main- 
tained, but with two important differences. First, there 
are no global functions corresponding to F,, F2, and 
F3; all combining is done by functions local to clusters. 
Second, instead of the usual numeric degrees of belief, 
MUM has seven levels of belief: disconfinned, strongly- 
detracted, detracted, unknown, supported, strongly-sup 
ported, confirmed. These are just "realizations" of the 
roles of evidence described earlier. 

Combining evidence and propagating belief in MUM 
is illustrated in Figure 2. Each cluster, including dis- 
eases, has its own local combining function, specified by 
an expert. For example, cluster-1 is strongly-supported 
if the data support evidence-1 and if the data on a pa- 
tient's smoking habits support evidence that he or she 
is a nonsmoker. This is a conjunction of evidence of 
the kind calculated by Fi, above. Another is found in 
the combining function for disease-1. If clustei-2 and 
cluster-4 are both confirmed, then disease-1 is strongly- 
supported. This illustrate;) the kind of combining for 
which F2, above, is required: even when the evidence 
for a disease is itself certain, the conditional belief in the 
disease given the evidence may not be certain. Disease- 
2 also contains a conjunctive rule, but the entire com- 
bining function  illustrates the corroborative situation 

for which 7^3 is needed. In this case, cluster-4 and 
cluster-2 individually play potentially-supporting roles, 
and taken together , jase the level of belief in disease- 
2 to strongly-supporting. 

Local combining functions have many advantages. 
Foremost is the ease with which an expert can specify 
precisely how the level of belief in a cluster depends 
on the levels of bclior in the evidence for that cluster. 
Control of combining evidence is not relinquished to an 
algorithm, but is acquired from the expert as part of 
his or her expertise. Since local combining functions are 
specific to clusters, they can be changed Independently. 
And since the values passed between them in MUM are 
few, it is easy to trace back the derivation of a level 
of belief and pinpoint a faulty local combining function. 
The prospect of having to acquire many functions seems 
daunting, but we have found it easy and intuitive, and 
much easier to explain than a global numeric method. 

2.3.3    Control of Diagnosis in MUM 

Strategic control knowledge, which may be acquired 
and modified like any other domain knowledge, will be 
described in the context of the basic control loop which 
it directs. The implementation of MUM's basic control 
involves three components: 

User Interface: uses data description frames in the 
knowledge base to ask questions and create pa- 
tient data frames for the results; 

Matcher: uses the interpretation and combining func- 
tions to record the effect incoming data has on the 
belief states for clusters and disease frames, and 
triggers new hypotheses as appropriate; 

Planner: uses strategic control rules from the knowl- 
edge base to guide the selection of focus and the 
planning process. 

The planner controls the user interface and the matcher 
by requesting their services as described below. 

Basic Control. The planner follows a basic control 
loop within which it interprets strategic control rules. 
It is implemented in a blackboard system, with knowl- 
edge sources specified in the same syntax as that which 
strategic control rules are compiled into. This facili- 
tates modification of the basic control described here 
as dictated by the strategic knowledge. The design of 
the blackboard system was influenced by Hayes-Roth 
(1985), and shares the emphasis on explicit solution to 
the control problem. We first describe the basic control 
loop, then strategies and their selection. 

The basic control loop is initiated with the choice 
of a strategic phase. All strategic phases but one in- 
clude a focus policy that directs MUM's attention to 
a subset of candidate hypotheses.   This is followed by 
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the generation of short-term plans to gather evidence 

and select treatment pertinent to these hypotheses (the 

rule in Section 2.2.1 represents such a plan). Since the 

effort of developing lengthy plans may well be wasted 

in a domain permeated with uncertainty, we currently 

constni.i plans to single actions or sequences of two ac- 

tions v here the applicability of the second depends on 

the outiome of the first. Several short-range plans may 

be generated and executed. 

Carrying out plans typically consists of invoking the 

user interface to request some information, updating the 

status of the diseases with the matcher, and conditional 

continuation of the plan. When no short-term plans 

remain, the system iterates the basic control loop to de- 

termine if a new strategic phase is appropriate, update 

the focus, and generate new short-term plans. MUM 

may respond to asynchronous events such as the alter- 

ation of a previously obtained data item by interrupting 

this basic control loop to reconsider its strategy. 

Strategic Control. We represent MUM's overall 

strategy as an ordered set of rule-like strategic phases, 

shown in Figure 4. Each phase has conditions that acti- 

vate it. Once activated, a phase controls MUM's focus 

of attention and the choice of actions pertaining to the 

hypotheses in this focus. 

The phase Get General Picture is invoked when 

the system is started, and may also be used if all pre- 

viously considered hypotheses are ruled out. It has 

no focus policy because no hypotheses are active when 

it is invoked. It directs the planner to ask for evi- 

dence that plays the potential-trigger role for one 

or more hypotheses, pursuing the lowest-cost evidence 

first. The cluster initial-consultation (consisting of 

age, sex, and primary compla' .(,J meets the criteria of 

potentially triggering many hypotheses and costing lit- 

tle. The initial consultation i jually triggers some hy- 

potheses, which result in a nsw strategic phase being 

selected. If no hypotheses were triggered, the planner 

asks for potential-triggers of higher cost. 

The Initial Assessment for Triggered Hypothe- 
ses phase is invoked when new hypotheses are triggered. 

Since the conditions of the other strategic phases de- 

pend somewhat on the level of belief in candidate hy- 

potheses, this phase gathers preliminaiy evidence for 

the hypotheses. The focus is on the triggered hypothe- 

ses, so only evidence playing some role relative to tiiese 

hypouheses is considered by the planner. This phase 

directs the planner to gather low-cost evidence for the 

hypotheses. For example, MUM asks about aspects of 

the patient's episode (the event which is the primary 

complaint) which bear on the triggered hypothesis, and 

about risk factors. 

As soon as the easy questions for triggered hypothe- 

ses have been asked, MUM decides between the next two 

phasves based its belief in the hypothese. and whether 

any of the hypotheses are critical, that is, require im 

mediate treatmetit if supported. Critical Hypothese im- 

dealt with first. 

The Deal With Critical Hypotheses pha*EpIacu> 

all candidate critical hypotheses in MUM's focus.   The 

short range planner is then directed to attempt to -\ii 

out these hypotheses. It begins with potentially dis OVJ 

firming or potentially-detracting evidence.  If it i.'ls i,-. 

Strategic Phase: 

Conditions: 

Focus Policy: 

Planning Criteria: 

Strategic Phase: 

Conditions: 

Focus Policy: 

Planning Criteria: 

Strategic Phase: 
Conditions: 

Focus-Policy: 

Planning Criteria: 

Strategic Phase: 

Conditions: 

Focus-Policy: 

Planning Criteria: 

Get General Picture. 

No candidate hypotheses. 

None. 

Evidence must phy trigger 

role; prefer low cost on all 

cost metrics. 

Initial Assessment lor 

Triggered Hypothese;;. 

One or more hypotheses 

are triggered. 

Focus on triggered hypoth ?ses. 

Must be low on all cost 

metrics; prefer stronger roles. 

Deal With Critical x   ssibilities 

There are critical hypotfu-es 

which have not been confirmed, 

discorfirmed or strongly 

detracted, and if they are 

detracted, no other hypothesis 

is confirmed. 

Criticality. 

Kule Out if possible, 

else gather support. 

Utility of evidence. Low cost 

first; as needed let discomfort 

and monetary cost increase. 

Discriminate Strongest Hypotheses 

More than one hypothesis 

is supported. 

Plausibility. 

Diagnosticity, Low cost first. 

Utility of evidence. Substitute 

high cost confirmation 

for one hypothesis with lower cost 

disconfirmation for the other. 

■ 

Figure 4: Four Strategic Phases in MUM's Diagnosis 



find any, then it looks for potentially-supi/ofting evi- 
dence. It will not seek evidence that plays a lesser po- 
tential role than evidence it already has. For example, 
it will not seek potentially-supporting evidence for a hy- 
pothesis that is already strongly supported, but rather 
focuses on potentially-confirming evidence. The plan- 
ner will focus on low-cost evidence first, but it is not 
prohibited from pursuing high-cost evidence as it was 
in the previous phase. 

If the focus of attention is not captured by critical 
hypotheses, it is dictated by plausibility. The strategic 
phase Discriminate Strongest Hypotheses discrim- 
inates competing alternatives with as little cost to the 
patient as possible. As before, the potential roles of ev- 
idence are used to decide whether it is worth acquiring. 

Currently MUM stops work when a hypothesis is 
confirmed and no critical hypotheses remain in its focus. 
We are implementing the next strategic phases, progno- 
sis and treatment. Both provide evidence of diagnostic 
significance; for example, MUM may begin treatment 
for angina if it is strongly supported, rather than incur 
the cost of absolute confirmation. If the treatment re- 
lieves the symptoms, then it is additional evidence for 
the diagnosis. If not, it is evidence that detracts from 
the diagnosis and may support others. Since treatment 
provides evidence, we represent treatments as clusters, 
exactly the same way as we represent tests such as an- 
giography. 

The emphasis in MUM is on asking the right ques- 
tions in the right order without superfluous questions. 
MUM's control knowledge is not yet sophisticated enough 
to satisfy all these criteria. It asks questions in a rea- 
sonable order, but it sometimes focuses on the wrong 
disease. Since MUM is a nascent system, this does not 
yet concern us. We believe the system is successful in 
providing a framework for exploring management of un- 
certainty by sophisticated control, that is, by making 
control decisions based on the roles, costs and other 
clsdracteristics of evidence, the criticality of diseases, 
and the credibility of diagnoses. 

2.4     Conclusions 

MUM manages uncertainty by reasoning about evi- 
dence and its current state of belief in hypotheses. Its 
goal in to generate appropriate workups for chest and 
rbdominal pain, that is, to ask the right questions in 
the right order without unnecessary questions. To the 
extent it succeeds, it demonstrates its ability to man- 
age uncertainty, and to select the appropriate action 
given uncertainty. We have said this is a control task. 
Indeed, much of MUM's architecture is devoted to ex- 
plicit, evidence-based control. 

Much work remains to be done. Currently, MUM re- 
sembles a programming environment more than a medi- 
cal expert system. We are devoting ourselves to building 
up its knowledge base of clusters, functions, and control 
rules, while experimenting with improved representa- 

tions for them. 
Although MUM was designed for medical problems 

and is discussed in that context, we believe the approach 
to uncertainty and control it engenders is general to 
classification problem solvers, as well as to other sys- 
tems responsible for the management of uncertainty. An 
empty version of MUM called MU is being developed 
and will be tested in other domains. 

3.     A Typology for Constructing 
Decisions 

3.1     Introduction 

Decision making involves identifying, comparing, and 
ultimately selecting from among a set of alternatives. 
When the alternatives are not known in advance, or 
when the set of alternatives is large, decision making 
becomes a constructive, action-oriented process. The 
alternatives and their features, implicit in the descrip- 
tion of a decision problem, must be compared and so 
must be made explicit as the problem is solved. As 
these comparisons are made, preferences among alter- 
natives on features are also made explicit. We present a 
typology of decision-making situations that tells how to 
construct a decision, that is, when to add an alternative, 
a feature, or a preference to a developing decision. 

The emphasis of this work is constructive decision 
making for AI programs. We focus first on problems 
where alternatives are supported by conflicting evidence. 
The many variants of this type of problem are organized 
into a typology of decision-making situations. Some sit- 
uations permit an immediate choice between alterna- 
tives. Others require actions to further construct the 
decision. The typology associates appropriate actions 
with decision-making situations. 

The typology shows how to solve "apples and or- 
anges" problems and generalizes this result to provide 
a view of sophisticated control for decision-making AI 
programs as table lookup. 

Comparing the Incomparable. Decision alterna- 
tives are compared on their salient features. Often, the 
values of these features cannot be easily combined. We 
call this the apples and oranges problem: When yon 
compare apples and oranges in a grocery store you may 
find one fruit preferred on the basis of flavor and the 
other on the basis of quality. If yon can combine the fea- 

! 
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tures to compare the alternatives on a single, composite 
feature, then the choice is clear. But if, as in this case, 
flavor and quality cannot be combined, then the choice 
between apples and oranges is problematic. Tradition- 
ally, thä apples and oranges problem has been solved by 
mapping the values of features such as flavor and qual- 
ity onto a uniform utility scale. The approach described 
here keeps the features distinct. The inevitable problem 
of conflicting features is solved by constructively adding 
features and preferences to a decision. 

Closer inspection shows that the apples and oranges 
problem is not one, but a family of decision problems 
with different solutions. In this paper, we derive the 
space of decision problems and show how actions asso- 
ciated with difficult decision problems can be taken to 
reformulate them as easier ones. 

3.2     Decision Typology 

We begin with a basic decision problem in which two 
alternatives are compared on two features, then show 
how the typology of two-alternative, two-feature prob- 
lems guides the construction of more complex decisions. 
Alternatives are referred to as p and q, features as F, 
and fy, and values of features for specific alternatives as 
Fi\p]. The symbol > indicates preference between two 
values. Although we will be using some mathematical 
symbols, none of the values need be numbers; for exam- 
ple, we can say y?awr(apples) > /Jawrforanges) without 
quantifying quality. 

Characteristics of a Decision Two-alternative, two- 
feature decision problems can be characterized along 
five binary and ternary dimensions: 

Sd\F,\. A significant difference on feature F, indicates 
that the values of the two alternatives are distinct. 
If a decision between alternatives p and q can be 
based on the values ^-[p] and Fs{q], then the values 
are distinct. 

Sd\F'\ = |  1   '^ ^W antl ^»'W are distinct 
[ 0   otherwise 

Otherwise indicates no significant difference or that 
we lack evidence to tell whether there is a signifi- 
cant difference. 

SdlFj] Like SdfjFl], but for F,-. 

C[F,, Fjj.   A  conflict exists when F, and Fj support 
different alternatives. 

CM] 
[  1   if^H^JandFylpj^jor 

tt FtlplZFtlq] and FilpfiFilg] 
[ 0   otherwise 

01^,, Fj]. One feature is often more important than 
another. This means that one feature is preferred 
to another (e.g., quality is preferred to flavor), or 
that there is a greater difference between the two 
alternatives on one feature than the other. 

OlF^Fj] 

0 if importance^,) = importance^,) 
?    if relative importance unknown 
1 if importance^',) > importance^,) 

or importance^-) < importance(F,) 

S'lFijFj],   Assuming that OlF^F,] =  1, We need to 
know which feature is preferred. 

>[*,*>] 
0 or importance^;) < importance(F,) 
1 if importance^) > importance(F,) 

We illustrate these dimensions in the context of the 
problem of selecting fruit: F, is quality and I') is fla- 
vor. If the quality of apples is "good" and the quality 
of oranges is "poor," then SdlF] = 1 because good and 
poor are distinct values. Similarly, if one prefers the 
flavor of oranges to that of apples then Sd[Fj] 1. 

Since apples have better quality but oranges taste bet- 
ter, C\Fi,Fj\ = 1. Finally, if quality is preferred to taste 
0[F,F,1 = 1 and >lF„Fj] = 1. 

The space of types characterized by these dimen- 
sions can be arranged in a table. The problem we just 
described is case 23 in this table, illustrated in Figure 
5. In English, case 23 says "the quality of evidence for 
F,[p] and F,(q] is sufficient to claim that the difference 
supports » choice between p and q; the quality of evi- 
dence for F;(p) and F,[qj is sufficient to claim that the 
difference supports a choice between p and q; there is a 
conflict between p and q on F, and F,, and the feature 
F is more important than F,." 

Collapsing the Table Figure 5 does not represent all 
40 combinations of the possible values of S(f[F], 5d[F,-), 
C[F,F,j, 0[^,F,], and >|F,F,]. From the perspective 
of how a decision-maker acts, the 40 decision types con- 
tain some redundancies. Consider these cases: 

Case 18a:   S|F,1 - 1, S[F,-J = 0, C[F„ Fy] = I, F>F, 

Case 18: S[F,J = 0, S|F,) = 1, C|F„ Fy) = 1, F;5-F, 

In English, the dimension tor which your evidence 
supports a decision is the most important dimension. 
The cases are identical in the sense that a decision- 
maker would not act differently in response to them. 
Consequently, the two cases are represented only by case 
18 in the table. 
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C<H# 0 1 2 3 4 5 6 7 8 9 10 11 
Sdf, 0 1 1   '   0 1 1 0 0 1 0 1 1 
Sd F, 0 0 1   1   0 0 1 0 1 1 0 0 1   1 
C F„ f, o 0 0   !   I ' 1 0 0 0 1 1 1 
o f.,f, ? ? ? 7 7 ? ; o Ü 0 0 o 0 
> M * * * * « 

i 
* * * « * 

c««# 12 13 14 15 16 17 18 19 20 21 22 23   1 
Uli 0 1 0 1 0 1 0 1 0 1 0 > %t. 0 0   |    1 1 0 0 1 1 0    |    1 0 1 
C|f„ ft] 0 0 0 0 1 1 1 1 o 0 1    1    1 
0 
> 

f., ft 1 1 1 1 1 1 I 1 1 1 1         1 
ft, ft 0 0 0 0 0 0 0 0 1 1 >    I    1 

Figure 5: Typology of Decisions 

Decision Actions The point of characterizing deci- 
sions is to select appropriate actions. In our approach 
there are three basic actions: decision, transformation, 
and stuck. Decision means choosing an alternative based 
on available evidence; for example, in case 8 (Fig. 1) 
there are significant differences between the alternatives 
on both features and their evidence does not conflict. 
The decision is straightforward. 

Transformations of one decision type into another 
are appropriate when a decision cannot be made given 
tiie avaiiabie evidence. In case 0 (Fig. 1), the values of 
the alternatives on features F, and Fj do not distinguish 
the alternatives, nor do we know whether one feature 
is preferred. A decision in this case cannot be made 
with confidence, but several transformations of case 0 
are possible: If further evidence about F, potentially 
shows that the alternatives can be distinguished on Ft, 
then obtaining the evidence transforms case 0 into case 
1 (i.e., the 0 in row iSd[,F<] is replaced by a 1). Obtaining 
evidence of this hind for both features transforms case 
0 into case 2. From case 2, one may confidently make a 
decision. Similarly, if evidence exists that F, is preferred 
to Fj, then obtaining the evidence trr forms case 0 into 
case 20. Alternatively, evidence may . " that neither 
feature is preferred; obtaining this evidence transforms 
case 0 into case 6. The idea of transformations is to 
change one decision type into another, hopefully more 
facilitative, type. Transformation is an appropriate ac- 
tion for any decision type with 0 in either of its first 
three rows or ? in its fourth. 

The most obvious way to effect a transformation is 
to seek more evidence. The table in Figure 5 allows us to 
plan actions to obtain evidence, thus it guides the pro- 
cess of constructing ä decision. However, the planned 
transformation may not be possible; the actual transfor- 
mation depends on the evidence obtained. For example, 
we may gather evidence about F, with the intention of 

transforming case 7 to case 8. But if the evidence, when 
obtained, indicates that Fj and Fj actually support dif- 
ferent alternatives, then we end up in case 11 instead of 
case 8. 

In case 11, we are stuck: all available evidence about 
the features has been acquired, but it supports conflict- 
ing alternatives, and neither feature is preferred. From 
case 11, no further transformation is possible, no action 
is apparent. In fact, there actions appropriate for the 
stuck case, but they expand the decision beyond the 
two-alternative, two-feature case under discussion. If a 
decision cannot be made on the basis of evidence about 
the current features, then the appropriate action is to 
further distinguish the alternatives with additional fea- 
tures. Because we view decision making as a construc- 
tive process in which alternatives and features emerge 
only as needed, we imagine a decision-maker adding fea- 
tures only when stuck, that is, in case 11. 

Each of the 24 decision types has at least one appro- 
priate action. Some suggest two (see Fig. 2). These are 
situations in which a decision can be made, but with- 
out complete confidence. For example, in case 9 there is 
significant evidence for Ft, but not Fj, they don't con- 
tradict given the available evidence, and neither feature 
is preferred. A decision could be based on f,, but not 
without some uncertainty that Fj actually supports a 
different alternative than F^. Multiple actions permit 
different strategies for selecting specific actions. For ex- 
ample, a conservative strategy that tries to minimize 
uncertainty in decisions encourages transformations. 

3.3     Extensions to a Multifeature Model 

The decision tables described so far allow compari- 
son of two alternatives on two of their features. Some- 
times, as noted above, a decision cannot be based solely 
on these features. These situations arise in three ways. 
First, evidence such as the preference for features may 
be missing. Second, complete evidence may not support 
a decision; for example, the values of the alternatives on 
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the features may be accurately known, but not signifi- 
cantly difTerent to support one alternative. Third, these 
values may be accurately known, and significantly dif- 
ferent, but support different alternatives. In the first 
situation, it is fairly obvious that we should seek the 
missing evidence. In the last two, it is necessary to add 
another feature. Psychological evidence suggests that 
humans in these situations add features and alterna- 
tives conservatively, what (Svenson 79) calls "choice by 
feedback processing." Our model emulates this iterative, 
constructive behavior. 

Adding Features Features may be added by substi- 
tuting one for another or by combining a new feature 
with an old one. In either case, the typology of Fig- 
ure 6 suffices to represent two-alternative, multi-feature 
decisions. In substitution, one of the two features cur- 
rently under consideration is discarded and a new fea- 
ture is substituted. This is appropriate when we know 
that two alternatives are not differentiated on an fea- 
ture (Sd{Fi] = 0). The feature does not provide a basis 
for a choice. It should be replaced by another, more 
informative, feature. 

The second method for adding features is combina- 
tion: the evidence provided by the new feature is com- 
bined with evidence accrued from previous comparisons. 
This is appropriate when the previous features favor dif- 
ferent alternatives. For example, when we add another 
feature Fnew to case 11, (1110*), we hope to move to col- 
umn 19, [11110], or 23, [11111]. Unlike case 11, cases 19 
and 23 indicate a preference between features. Assum- 
ing that the alternatives are distinguished on Fnew (oth- 
erwise adding it would gain nothing), and assuming that 
a combination of two significant features are preferred 
to one, Fncw ir..-3duces a preference order when com- 
bined with the old feature it corroborates, resulting in 
case 19 or 23. Thus, the typology of Figure 6 suffices for 
a two-alternative, three-feature decision and, by induc- 
tion, for two-alternative, multi-feature decisions. Since 
case 11 involves a conflict between features, Fnew must 

corroborate either f; or F,.   Thus, new evidence can 
clustered to support one of two alternatives. Th;s addi- 
tional support contributes to an ordering over clusters 
of features, represented by values in the fourth (order) 
and fifth (preference) rows. 

Clustering is the key to extending the two-alternative, 
two-feature situations to two-alternative, N-feature cases 
and finally to N-alternative, N-feature problems, be- 
cause it permits complex decision situations to be con- 
structed iteratively within the framework of our decision 
typology. 

c ase 0 1 2 3 4 5 8 7 
S'l\F,\ 0 1 1 0 1 1 0 0 
SilFA 0 0 1 0 0 1 0 1 
V *i. t) 0 0 0 1 1 1 0 0 
u F., F. ? 7 7 ? 7 7 0 0 
> F... F, * * • * * * i * 
A ;tioii D/T D/T D T D/T S/T D/T D/T 

8 9 10 11 12 13 14 IS 
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Figure 6: Decision Actions 

Revised Set of Decision Actions With the abil- 
ity to cluster evidence, we can determine what to do 
even in very difficult decision situations. The initial 
set of actions, decision, transformation, and stuck can 
be augmented. The new set is decision, transforma- 
tion by feature, transformation by order, substitution, 
and combination. In transformation by feature (T/j, we 
acquire additional evidence about whether a feature dis- 
tinguishes alternatives. This can change Sd[Fi\ = 0 to 
Sd[Fi\ = 1. Transformation by order (To) is the corre- 
sponding action for gathering order preference informa- 
tion. It can transform OjF,, F,] =? to OlF, F,j = 0 or 
^l-F'.-^l = !• If complete knowledge of the alternatives 
is available, but a decision still cannot be made, a state 
can be transformed by adding a new feature, either by 
substitution (5u) or combination (Co). 

Figure 7 contains the decision states with their ap- 
propriate actions. The actions are divided into two 
rows. The first row shows the actions for states with 
complete evidence. The second describes actions to be 
performed when some of the state information is miss- 
ing. The transformations are listed with numbers that 
indicate tne set of possible states you might end up in. 
Note it is not possible to say exactly which of these 
fc tales will arise. 

The actions presented in Figure 7 are somewhat sub- 
jective. In general, combination ran be done in an) 
state. It isn't listed because other actions are often mort 
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Figure 7: Revised Multi-Feature Decision Actions 

appropriate; for example, substitution is more appropri- 
ate when one feature is insignificant. Decision could be 
made in cases other than those listed, but they would 
be precarious decisions. 

3.4     Changes to Decision State 

Adding a new feature potentially affects every cell in 
a decision state, that is, each value Sd|F,|, SdjFyJ, GIF,, 
Fj], 0[F;, FJ], and >[F<,Fy|. In combination with a new 
feature, a previously insignificant one may becomes sig- 
nificant (e.g., Sd[Fi] = 0 but Sd[F,andFnfw\ = 1). Less 
obviously, adding a new feature can make a previously 
significant one insignificant. This happens when the al- 
ternatives differ so enormously on the new feature that 
any differences on the old one(s) cease to be significant. 
C[F,, Fj] may change if the new feature produces a con- 
flict, and OlFi, Fj] and >[.Fl,.F}] change by clustering 
features. Within the framework of our typology, the 
effects of adding a new feature are: 

1. to introduce a conflict where there was none 

2. to take a side in a conflict 

3. to join the consensus {C{Fi,Fj,Fk] = 0) but lend 
it legitimacy since SdfjFi] = 1 

4. to introduce an ordering where there was none 
(e.g. 01^,^1=0 but 01^,(^,^)1 = 1) 

5. to change an ordering  (e.g.,  >[#,/}]   =   1  but 
>{F„{FJ,Fk)] = 0 

6. to produce a change in relative significance when 
adding radically divergent features. 

Figure 8 shows all the possible actions and their ef- 
fects for a single case in the typology, case 4. In this 
example, there is enough of a difference to support a 
decision on F, but not F, and the evidence of the two 
features is contradictory. Four actions are appropriate: 
transformation by feature (the 0 value for Sd|/;] may 
indicate insufficient evidence), transformation by order, 
substitution (for Fj), and combination. Note that it 
is possible to return to the same state, case 4, but by 
different paths. Substituting Fj or combining features 
transforms case 4 to case 5. But note that when case 5 
was reached by combining features, one of them, Fj or 
Fj, actually represents the evidence of two features Lnd 
so supports a decision more strongly. (This difference 
will be represented explicitly in a more complete state 
table). 

The Mechanics of Combining Features As men- 
tioned above, combining features may produce major 
changes in the decision state. However, the set of possi- 
ble new states can be enumerated. Figure 9 presents the 
set of possible states that can be reached by combining 
a new feature with all previous states. 
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Figure Si Single Transition with Multiple Features 

The first five columns of Figure 9 have the same val- 
ues as the rows in previous tables. Sd|Ft| is the signifi- 
cant difference value of the new feature; it is always 1, 
indicating that the new feature discriminates the alter- 
natives. Sd|Fr| is the significant difference of the com- 
bined features; the values in its column arc the features 
that have been combined along with their possible val- 
ues. C|allj shows whether there is a conflict between the 
combined values and the single feature. >[FN,FX\ de- 
scribes an order between the combined feature and the 
single feature. The column labeled 'Transition' shows 
the possible transitions from that state. Finally, # indi- 
cates how many significant features had been combined 
to produce the Fc feature. 

Figure 9 presents the single step transitions when 
adding features to states as represented in the two fea- 
ture tables. We are currently working on a state tran- 
sition diagram that will describe all the possible tran- 
sitions in the construction of a decision between two 
alternatives. 
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3.5     Conclusions 

We have presented a model of constructive decision 
making. We envision a decision-maker starting with a 
two-alternative, two-feature problem, then acquiring in- 
formation, and perhaps adding features, under the guid- 
ance of actions associated with decision types. This 
model raises the intriguing possibility of controlling de- 
cision making in AI programs by table lookup. Each 
decision situation is first classified, then modified by 
one of the associated actions. The model is not in- 
tended to produce optimal solutions to complex decision 
problems given complete information, but rather to ex- 
plore methodologies for structuring decision problems, 
performing symbolic comparisons, and reasoning about 
uncertain decisions. 

Other systems have viewed decision making as a con- 
structive process. GODDESS, a domain independent 
decision support system, constructs a hierarchical goal 
representation of decision alternatives by selectively fo- 
cusing the users attention on the most crucial issuer 
[Pearl 82]. Users assign numeric values *o probabili- 
ties and importance, and the program proppgates them 
through the structure. ARIADNE does not address 
the decision formulation problem, but rather empha- 

sizes evaluation by using linear programming algorithms 
to produce a dominance structure for the alternatives' 
probabilities and utilities and by allowing the iterative 
addition of alternatives (Sage 84). 

Three facets of the decision typology model are par- 
ticularly appealing. First, two-alternative, two-feature 
decisions can be characterized according to the dimen- 
sions of the decision without requiring an underlying 
scale of comparison. Second, the typology relates ac- 
tions to decision types. Finally, the model shows how 
to change difficult decisions into more tractable ones us- 
ing well defined transformations that explicitly identify 
the possible results of actions. 

Before the model is fully realized, we must resolve 
two issues. First, the conditions and mechanisms for 
adding new alternatives must be specified as they were 
for new features. We believe that alternatives can be 
clustered like features, so the two-alternative, two-feature 
typology might serve for multiple alternatives and fea- 
tures. The second issue is to add continuous values to 
the model. The binary/ternary formalism is abstract. 
For most situations, this abstraction is not only accept- 
able, but fully indicative of the appropriate actions. 
However, it does not explicitly capture the effects of 
extreme values or context. Sc/[F,] indicates a disparity 
between alternatives on fj, but not its magnitude. The 
difference in degree of differentiation between alterna- 
tives on features is captured in the OlF,,^] dimension, 
which may favor the feature that produces a great dis- 
parity. This, in turn, implies that 0\F,,Fj\ is not inde- 
pendent of alternatives. 

^Classification by Semantic Match- 
ing 

4.1 Introduction 

Classification problem solving involves matching data 
with pre-established prototypes (Clancey, 1984). Often 
the match is not exact: it may be partial because some 
aspects of the prototype lack matches in the data. This 
paper describes another kind of partial matching and 
the role it can play in classification problem solving. Se- 
mantic matches hold between concepts that are linked 
in characteristic ways in a semantic network. We have 
found that the degree of fit between data and a pro- 
totype depends on these semantic matches. Moreover, 
the likelihood of a prototype given the data (in the con- 
ditional sense) depends on these matches. In another 
paper we argued that degrees of belief in classification 
problem solvers should be interpreted in terms of seman- 
tic matches (Cohen et al. 1985). We have developed a 
program called GRANT that exploits semantic match- 
ing to find sources of research funding that are likely to 
support particular research proposals, 

4.2 GRANT 

GRANT is a knowledge system that finds sources of 
funding for research proposals. The user builds a repre- 
sentation of a research proposal and instructs GRANT 
to search for funding agencies that are likely to pro- 
vide support. GRANT first constructs, then ranks, a 
candidate list of agencies. An agency is added to the 
candidate list if a single topic in its statement of inter- 
ests is a good semantic match to a topic in the research 
proposal. Semantic matches exist between topics that 
are the endpoints of particular paths through a seman- 
tic network. Agencies on the candidate list are ranked 
by the number of semantic matches between all the top- 
ics in the proposal and all the topics in each agency's 
statement of interests. The best-ranked agencies are 
thus those that support the largest number of topics 
that are semantically related to the proposal. 

4.2.1    Knowledge Representation 

GRANT depends on a knowledge base (KB) of re- 
search topics and a set of rules for searching it. The 
latter is described in the next section. The KB is a se- 
mantic network of approximately 4500 node with over 
800 research topics. Figure 10 shows a fragment of 
GRANT'S knowledge about the heart, cardiovascular 
illness, and related topics. Nodes in the network are 
defined in terms of their relationships with others; for 
example, the heart is something with the purpose of 
circulation, the setting of cardiovascular illness, and an 
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Figure 10: 

example of an organ3.  Appendix 1 lists the most com- 
mon relations between topics in the GRANT KB. 

The GRANT KB acts as a semantic index to fund- 
ing agencies. Nodes are added to the semantic network 
as necessary to define the research interests of agen- 
cies. An agency is represented as a frame with slots 
for stated research interests, average award size, citi- 
zenship restrictions, geographic preferences, and so on. 
The research-interest slot holds pointers to instances 
of one or more activities that are linked with topics in 
the KB. GRANT recognizes 10 activities: 

Design 
Plan 

Educate 
Promote 

Improve 
Protect 

Intervene 
Study 

Manag' 
Train 

For example, the agency associated with study-689 
in Figure 10 is interested in funding studies of cardio- 
vascular illness and the heart. GRANT's KB currently 
includes the 690 agencies that together provide most of 
the research monies at the University of Massachusetts. 

When GRANT'S user creates a research proposal, 
it is linked into the KB through its research interests 
just as funding agencies are. The frames that represent 

agencies and proposals have the same slots, illustrated 
in Figure 11. 

4.2.2     Search Algorithms 

GRANT finds agencies to fund a research proposal 
by finding paths between the nodes that represent the 
proposal's research interests and nodes associated with 
agencies. A blind search of the network In Figure 10 
would begin, say, at the node study-5S7 and extend to 
its associated node cardiovascular system, then to the 
associations of this node physiological-system, vascular- 
system, heart, study-609 and so on, like ripples in a 
pond. If a node is found that represents a research in- 
terest of an agency, then a path has been established be- 
tween the proposal and that agency. The GRANT KB 
includes so many agencies and is so highly connected 
that, on average, blind search finds 245 agencies within 
4 links or any proposal. But according to our expert, on 
average 93.1% of these agencies are unlikely to fund the 
proposal. For GRANT to be useful, this false-positive 
rate must be reduced. One method is to avoid finding 
unlikely agencies, and the other is to discard them once 
they are found. These methods are discussed in turn. 

And thus, by a plausible iufeieiue, a cvrnponentnf (lie body. 
See Section 5. 
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The ABC Foundation is interested in provid- 
ing both grants and direct loans in order to 
help promote sexual education and to help 
control sexually transmitted diseases. Funds 
are available for the management and main- 
tenance of clinics ... 

Funding-source*4: 
is-a : funding-source 
title : "ABC Foundation" 
descr :  "... promote sexual 

education and to help 
topic : manage*4 

Manage*4: 
is-a        : manage 
topic-of : funding-source*4 
object    : clinic 
subject  : sexually-transmitted-disease 
focus      : gonorrhea herpes 

venereal-disease contraceptive 
purpose : control educate 

Figure 11: The ABC Foundation is represented by the 
frames FUNDING-SOURCE*4 and MANAGE*4 

Best-first Search. One can avoid finding unlikely 
agencies by pruning the pa .hs that lead to them during 
search. Figure 12 shows th ee kinds of paths. The first is 
an atomic match between the proposal and the agency: 
the object of the proposed study-418 is vascular-disease, 
which is also the object of study-S<J7, a research interest 
of the agency. With few exceptions an atomic match 
indicates that the agency is likely to fund the proposal. 

Since the links in GRANT are directional, and searche; 
proceed from proposals to agencies, the path between 
the proposal and NHLBI is 

object-i study-4lS —> vascular study- 
297 

A path endorsement is a generalization of a set of 
paths, obtained by dropping intermediate nodes and 
preserving only the relations. The path above is thus 
an instance of a general (object, object-inverse) path en- 
dorsement. 

The second path in Figure 12 is a semantic match 
between a proposal and an agency. The proposal wants 
to study hypertension. Whereas an atomic match, rep- 
resented by a path endorsement like (object, object-inverse), 
guarantees that proposal and agency have a common 
interest, a semantic match ensures only that the inter- 
ests of the proposal and agency are somehow related. 

The nature of the relationship, represented by a path 
endorsement, determines the likelihood that the agency 
will fund the proposal. For example, when an agency 
says it funds research on vascular disease, it means that 
it funds research on many or all kinds of vascular dis- 
ease, ir.cluding hypertension. This argument holds for 
agencies and topics in general: if agencies say they fund 
X, they are likely to fund instances of X. By this rea- 
soning, il we begin a search at a proposal and follow a 
(object, isa, object-inverse) path to an agency, then the 
agency is likely to fund the proposal. Any path that 
is an instance of the (object, isa, object-inverse) path 
endorsement is apt to find a likely agency. 

Just as path endorsements mark likely paths to agen- 
cies, so they mark paths to be avoided. The third path 
in Figure 12 is an example. The research topic of the 
proposal is anorexia and that of the agency is bulimia. 
Now bulimia is an instance of an eating-disorder and 
when an agency says it will fund the study of an instance 
of X it usually means that it will not fund tue study of 
other instances of X. This agency is unlikely to fund 
the study of other eating disorders such as anorexia. In 
general, if a path between a proposal and an agency 's 
an instance of the path endorsement (object, isa, isa- 
inverse, object-inverse), then the agency is unlikely to 
fund the proposal and the path should be avoided 

Path endorsements thus constrain the search for agen- 
cies in GRANT. Appendix 2 lists some of GRANT'S 
path endorsements. The complete set of path endorse- 
ments is still only a fraction of the combinator'.ally pos- 
sible path endorsements. Any path that has not been 
classified as likely or unlikely is denoted unknown. Best- 
first search in GRANT proceeds as follows 

Assume the program starts at a proposal 
and follows link /, to node nt: (l<Rj). If 
a continuation of this path along link lj to 
node n, results in a path endorsement (/,,/y) 
that GRANT recognizes as poor, then ny is 
pruned from the list of nodes that GRANT 
tries to expand. If (/,,/;) is a good path en- 
dorsement, then GRANT will give n; prior- 
ity to be expanded before any node nt found 
by an unknown path (/<n<i*»»). Search from 
any path longer than 4 links is terminated. 

Ranking Agencies by Pprtial Matching. The re- 
sult of best-first search is a candidate list of agencies. 
Each is known to have a single research interest that 
atomically or semanticaMy matches one research inter- 
est of the proposal. To the extent that the proposal 
and an agency share several common research interests, 
the agency is more Likely to fund the proposal. Thus, 
GRANT ranks the candidate list of agencies by the de- 
gree of overlap between the research interests of the 
proposal and each agency.   This is done by a partial 
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matching function based on both atomic and semantic 
matching. Hayes-Roth (1978), Tversky (1977), and oth- 
ers measure the degree of overlap between sets in terms 
of set intersection and symmetric difference; for exam- 
pie, Tversky's contrast model (1977) calculates overlap 
this way: 

S{a,b) = Of {A n S) - af{A ~ B) - ßf(B - A). 

The function / returns the cardinality of the set to 
which it is applied. If A and B are frames, then /(A 
n B) is the number of slot-value pairs shared by A and 
B, and /(A - B) is the number of slot-value pairs in 

A not shared by B. The parameters 0, a, and ß are 
set empirically; in GRANT each is 1.0. If A and B are 
fr?,mes representing the research interests of a proposal 
and an agency, respectively, then S(a,b) measures the 
number of research topics they have in common relative 
to those they do not share. Agencies for which S[a,b) 
is higher ..re more likely to fund the proposal. 

In GRANT, (A n B) includes both atomic and se- 
mantic matches. If a path between A and B contains 
a single node (e.g., the first case in Fig. 12), or if the 
path is an instance of a likely path endorsement (e.g., 
the second case in Fig. 3), then /(A n B) is incre- 
mented. Unlikely path endorsements, such as the third 
case in Figure 12, and unknown paths do not contribute 
to /(A n B). The quantities /(A - B) and /(B - A) 
are increased when research topics in the proposal lack 
an atomic or semantic match to the agency, and vice 
versa. 

In summary, GRANT searches for agencies in two 
stages. First it constructs a candidate list of agencies 
by best-first search in a semantic network of research 
topics, then it ranks the agencies on the list by their 
degree of overlap with the research proposal. 

4.3     Analysis of GRANT Performance 

GRANT'S performance has been tested at all stages 
of its development. The basic method is to run sam- 
ples of proposals and compare the agencies selected by 
GRANT with the choices of our expert. Sample sizes 
have ranged between 20 and 30 proposals. We compute 
many statistics for each search from a proposal, but two 
are broad indicators of GRANT'S performance: 

hit-rate 

false-positive rate 

Figure 12: 

Paths Between Proposals and ARencies 

{ Proposol ~—-. 

f Vascular ] 
I     DlB»tt—   J 

t Proposol   'pv. 

(Hyp©rt«nsion\—~jsa 

f   Tascular 1 
I    DISMS«  J 

\    Agency ) 

Agency ,i 

Study 
297 

f Proposal -^ 

Study 
02<  r~-N*)eci 

c i   Agency ■ 

( Anorpila ')-^?. la^-C Bul"°" ) 

Eatlnj   ^ 
Dl sorter  ( 

We average these statistics over the searches from 
the individual proposals in a sample. 

When we first tested GRANT (Cohen et al., 1985) 
its knowledge base contained approximately 700 nodes 
and 50 agencies. We contrasted blind and best-first 
search as follows: for each of 23 proposals the system 
searched blindly for agencies until it reached a prede- 
termined stopping criterion. Oi a. erage, blind search 
found 15.1 agencies per proposal. We gave our expert 
the list of agencies found for each proposal by blind 
search and asked him to rank each agency as likely or 
unlikely to fund the proposal. On average, only 2 agen- 
cies per proposal were considered likely; that is, the 
false-positive rate for blind search was (15.1 - 2)/15.1 = 
86%. In contrast, best-first or path endorsement con- 
strained search found on average just 2.78 agencies per 
proposal, of which 1.48 were judged likely to fund the 
proposal. The false-positive rate was 32%, a big im- 
provement over blind search. The downside was a hit 
rate of 80%, indicating that GRANT had pruned away 
one likely agency in five. We have tested all subsequent 
versions of GRANT this same way, using blind search 
to find candidate agencies and an expert to rank them. 

agencies judged good by GRANT and by the expert 
agencies judged good by the expert 

agencies judged good by GRANT and bad by the expert 
number of agencies judged good by GRANT 
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then comparing best-first search with the expert's rank- 
ings. Table 1 shows best-first search statistics for sev- 
eral versions of GRANT. Blind search statistics are not 
represented; in all tests blind search had a false posi- 
tive rate greater than 80%, and as the knowledge base 
Increased in size this figure increased dramatically. 

Grant, Spring 85 (700 nodes, 50 agencies) 
Hit Rate 80% 
False Positive Rate 32% 

Grant, Fall 85 (2,000 nodes, 200 agencies) 
Hit Rate 80% 
False Positive Rate 26% 
Contrast Model 

Hit Rate 76% 
False Positive Kate livo 

Grant, Winter 86 (4,500 nodes, 700 agencies) 
Hit Rate 98% 
False Positive Rate 61% 
Contrast Model 

111: Hit Rate 96.1% 
111: False Positive Rate 57% 

Grant, Winter 86 (4,500 nodes, 700 agencies) 
Modified Path Endorsements 
Hit Rate 96.3% 
False Positive Rate 55.8% 
Contrast 

111: Hit Rate 96.4% 
111: False Positive Rate 53.4% 

Table 1. 

The differences between GRANT today and the ver- 
sion we tested in Spring, 1985 are its size and the in- 
corporation of Tversky's contrast model for summing 
the total degree of overlap between proposals and agen- 
cies. The false positive rate of the early ve-sion, 32%, 
decreased during the subsequent months as the knowl- 
edge base increased to 2000 nodes with 200 agencies. At 
that time we introduced the contrast model, described 
above, and realized a further small decrease in the false 
positive rate, which was offset by a decrease in the hit 
rate. In the last two months we have again more than 
doubled the size of the knowledge base and more than 
tripled the number of agencies from the Fall, 1985 level. 
As a result, performance has decreased substantially. 
The hit rate of best-first search is 98%, but the false 
positive rate is 61%: the system finds virtually all the 
agencies it should, but nearly two-thirds of the agencies 
it finds are not likely to fund the proposal. 

Why did the increase from Spring, 1985 to Fall, 1985 
not decrease GRANT's performance, while the latter 
one did? Many factors are involved. First, the densit> 
ot agencies is increasing. In the early version, 700 nodes 
supported 50 agencies - a ratio of 14:1. In Fall, 1985, 
the ratio was 10:1. The most recent knowledge base has 
a ratio of 6.4:1. It is much easier to find many agencies 
close to a proposal in GRANT's semantic net than it was 
in the past. Indeed, we have evidence to suggest that 
as the density of the knowledge base increases, the hit 
rate goes up and the false positive rate down: An inter- 
mediate versioi. of the Winter, 1986 knowledge base in- 
cluded approximately 600 orphans, nodes used to define 
another node but disconnected from all other nodes. In 
this version, the density of nodes per agency was 5.8:1. 
There were too many agencies and too few associative 
paths to differentiate good agencies from bad ones. 

A second contributor to the high false positive rate 
in the Winter, 1986 version is the kinds of agencies being 
represented. Roughly 200 of the new agencies were for 
the arts and humanities. Their descriptions of research 
interests were fairly broad and gave I'ttle basis for dif- 
ferentiation. Consequently, when GRANT searches in 
that part of the knowledge base, its false positive rate 
increases dramatically. A related problem is that in 
the most recent version of GRANT, new agencies were 
not represented in as much detail as old ones. Neces- 
sarily, this meant viable distinctions between agencies 
were lost. 

The relations we use to represent agencies have not 
changed appreciably since the early version of GRANT, 
but the number of things they are required to repre- 
sent is greatly increased. Combined with the fad that 
GRANT was developed to represent "hard science" top- 
ics and now includes arts, humanities, and social sci- 
ences, this suggests that the relations must be aug- 
mented and perhaps reworked. This also requires re- 
working the sei of path endorsements. In fact, an exper- 
imental set of path endorsements gave somewhat better 
performance for the Winter, 1986 version. The hit rate 
remained very high but the false positive rate dropped 
to 55.8%. 

The partial matching algorithm, based on Tversky's 
contrast model, was not as effective as we had hoped in 
pruning agencies based on the total degree of overlap be- 
tween proposals and agencies. In general, the false pos- 
itive rate can be reduced but not without a correspond- 
ing reduction in the hit rate. The algorithm contributes 
little because in most cases, a proposal shares only one 
research topic with an agency. Since this overlap is usu- 
ally found by semantic matching, best-first search will 
continue to be the heart of GRANT's problem-solving 
method, and path endorsements will receive more atten- 
tion than tuning the partial matching algorithm. The 
next section describes an algorithm for learning path 
endorsements. 
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4.4     In Prospect: Learning Path 
dorsements 

En- 

The likelihood that an agency will fund a proposal 

depends on the path endorsement that characterizes 

the semantic match between them. Path endorsements 

as discussed above either support the proposition that 

the agency will fund the proposal, or detract from it, 

or their support for the proposition is unknown. In 

practice, GRANT's path endorsements are empirically 

ranked into six classes: very likely, likely, maybe, un- 

known, and trash. Detracting path endorsements be- 

long to the class trash. The class very likely is reserved 

for atomic matches. Thus, semantic matches that sup- 

port the proposition that an agency will fund the pro- 

posal are differentiated only by the classes likely and 
maybe. 

We have developed an algorithm to assign a contin- 

uous weight to path endorsements, based on whether 

they find likely agencies or false positives. The algo- 

rithm learns from examples presented by a human tu- 

tor. Each example is a pair of nodes for which the tutor 

expects GRANT to hnd a semantic match. The algo- 

rithm generates a set of paths between these nodes from 

GRANT's knowledge base, and adjusts the weight of 

each path to favor short paths over long ones. After 

many iterations, short paths that are commonly found 

between training examples have high weights, relative 
to other paths. 

The algorithm has been tested on small samples 

of examples and it has not yet been integrated with 

GRANT. In prospect, however, its principle advantage 
is that it learns the empirical worth of path endorse- 

ments, in contrast to our a priori efforts to categorize 

path endorsements as likely or maybe. Kjeldsen (1986) 

describes the algorithm in detail. 

Two other extensions to GRANT should be men- 

tioned. First, we have developed an "empty" version 

and will be experimenting with semantic matching in 

other domains. Second, we are generalizing the infer- 

ence rule that underlies GRANT — "if an agency is in- 

terested in X then they will be interested in Y = R(X)" 

— to a logic for plausible inference in associative knowl- 

edge bases. This project is discussed in the next section. 

4.5     Appendix 1 
Relations for funding agencies: 

1. The TITLE slot should contain a text string with full 
title that will include the P^^ent Agency, Department, 
and Program Name. 

2. The UNIQUE-ID slot should contain a text string that 
is the unique number assigned by the Catalogue of Fed- 
eral Domestic Assistance (CFDAj. 

3. The FUNDING-TYPE slot should contain the type of 
funding that is available, e.g., project-grant, large-grant, 
small-grant, direct-loan, fellowship, or scholarship. 

4. The CONTACT slot should contain the name, address, 
and phone number of the person to contact for more 
information and applications. 

5. The DEADLINES slot should contain the application 
and renewal deadlines for the program. 

6. The DESCRIPTION slot should contain the abstract 
that is provided by the agency and describes their in- 
terests and motivations. 

7. The TOPIC slot should contain one or more instances 
of the STUDY, MANAGE, EDUCATE, or ENGINEER 
frames. 

8. The PURPOSE slot is optional for the top-level of a 
funding-source frame since it might be present in one 
of the values for the TOPIC slot. 

Relations for defining research interests: 

1. The OBJECT slot contain the person, place, process, 
or thing that is being studied. 

2. The SUBJECT slot contain the particular filed of study 
that is to be applied to the object. 

3. The FOCUS slot should contain the particular aspect 
of the subject that is being considered. 

4. The UV slot should contain the object that is being 
studied. 

5. The IV slot should contain the variables that whose 
effect upon the dependent variable are being studied. 

6. The HV slot should contain one or more variables that 
are being studied. 

7. The PURPOSE slot should contain the overall goal of 
the funding source. 

8. The WHO-FOR slot should contain an instance of a 
social-group that will benefit from the proposed re- 
search and funding. 

9. The SETTING slot should contain the place in which 
the object will be studied. 
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10. The LOCATION slot should contain a geographical place 
to which funding is restricted. 

Relations for organizing knowledge in GRANT'S knowledge 
base: 

1. The CAUSES slot should contain a concept that has a 
causal association with the node. 

2. The EFFECTS slot is used to represent relationships 
that are not necessarily causal but nonetheless present. 

3. The HAS- COMPONENT slot should contain those things 
that make up the node.   For example, one could say 
that a earthquake has-compc.nent shock-wave. 

4. The HAS-MECHANISM slot is used to represent those 
processes that a concept might have. For example a 
seismology has-mechanism seismometer. 

5. The HAS-PURPOSE slot is used to hold an instance of 
an action. For example, a seismometer has-purpose 
measure, with the object of the measure being shock- 
wave. 

4.6    Appendix 2 
Path Endorsements for the Knowledge Base   ir 
the rule set that is used in a bottom-up data driven search 
from proposal to funding source Many of these traversal 
rules are effectively used to prune the number of potential 
nodes to expand. A SUCCESS-NODE is any node that can 
be found as a value for wither the TOPIC or PURPOSE slot 
of a funding-source. 

• The class SELF has 1 traversal rule 

- Self- basically an identity rule for paths of length 
0 

• The class VERY-LlKELY includes 7 path endorsements, 
all atomic matches. For example, 

- X-» subject--» Y^ subject-of^ SUCCESS-NODE 

- X~> focus-. Y-> focus-of-* SUCCESS-NODE 

• The class LIKELY has over 50 path endorsements rep- 
resenting semantic matches between a proposal and a.' 
agency that is likely to fund it. For example, 

- X-^ subject- Y-. isa- Z~» aubject-of-* SUCCESS- 
NODE 

_ X—> subject—»  Y—> component-of—> Z—» focus- 
of-» SUCCESS-NODE 

- X-» done-by-» Y— does-» object-of-» SUCCESS- 

NODE 

The class MAYBE has 18 path endorsements. These 
represent semantic matches between a proposal and 
runding agencies that are somewhat less likely to fund 

the research, for example: 

- X— focus-» Y—» subject-of-» Z—> subject-of—» 
SUCCESS-NODE 

- X-> object-» Y-» focus-of-» Z-» subject-of-» SUCCESS- 

NODE 

- X-. object-» Y-» object-of-» Z-* focus-of-» SUCCESS- 

NODE 

The class UNKNOWN accepts any path less than 6 links 

long 

The class of UNUÖAELE path unes GRANT'S search. 
Among these path- are any l -it contain a node with 
an extremely high branching factor (e.g., science, ed- 
ucation). Specific pathways of the kind listed above 

include 

- STEP*-» isa-» example-» Y 

- STEP*^ subfield-of-* has-subfield-* Y 

- NOT(new-investigator)-»STEP*-> new-investigator 

- NOT(minority-student)-»STEP*   • minority-student 

- X-» object-^ Y— subject-of-^ Z- • focus-of-t SUCCESS- 

NODE 

- X-» rv~ 

X—» subject—» Y 
NODE 

dv-of-^ SUCCESS-NODE 

isa-* Z-» dv-of- SUCCESS- 

5.     Plausible Inference 

This research is concerned with the formal underpin- 

nings of common sense plau jie inference, the ability 

to give plausible aps-wcrs to arbitrary questions from 

a very large knowl dgt; base of associated statements. 

The goal is to find one or more answers to a question 

by consulting the kn< wledge base, and to say which of 

the answers are most credible. This has been a goal of 

AI since its earliest days (McCarthy, 1958, 1968), and 

is now seeing a resurgence (Collins, 1978a,b; Lenat et 
al, 1986). The motivation for such work comes fiom the 

increasing realization that powerful Al programs will 

depend on very large knowledge bases. It will be neces- 

sary for the system to use thn ' aowledge base to answer 

questions that were not anticipated at the time of its 

construction. To handle both the broad ranging nature 

of possible queries, and to make use of large amounts 

of knowledge in an efficient manner, it is expected that 

the use of heuristics, or plausible inference rules, as well 

as traditional truth-preserving on        vill be necessary. 
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Our research is Hirected by these concerns, as well as by 
a desire to bring a formalism to plausible reasoning sim- 
ilar to that enjoyed bj deductive !ogic, so that jsteMi 
using plausible reasoning need tivt have thci ■ S' fi-inticK 
established on a case-by-case, ad hoc basis. 

The most important question to be answered about 
plausible inference is how to judge its credibility. Since 
plausible inference need not be truth-preserving, some 
other semantic property besides truth must be the basis 
of judgments of credibility. We propose to develop a 
semantics for common sense plausible inference based 
on the associations that hold between the antecedents 
and consequents of inferences. Our approach is strongly 
motivated by evidence-based control: the cmlibilit of 
a statement is represented by reasons why it may be 
false, reasons that can be used to control backtracking 
and retraction of plausible but false inferences. 

Plausible inferences, unlike deductive inferences, need 
not be truth-preserving.   The distinction is clear in a 

contrast between two rules of inference, modus ponens 
and abduction: 

Modus ponens is truth-preserving: if A -» B and A 
are true. B cannot be false. Abduction is a rule of plau- 
sible inference because A is a plausible conclusion given 
A —> B and B, but this conclusion is not guaranteed to 
be true, as the conclusion B is in modus ponens. 

Since rules of plausible inference do not make guar- 
antees about the truth values of their conclusions, how 
are we to assess the credibility of conclusions of plausible 
inference? In the deductive case we associate credibil- 
ity with the semantic property truth: true statements 
are credible, false statements are not. What semantic 
property of conclusions derived by plausible inference 
will be associated with credibility? We could use truth, 
since some conclusions of plausible inference have truth 
values. The proolem is that rules of plausible inference 
make no guarantees about these truth values, as rules of 
deductive inference do. So the question remains: What 
properties of conclusions are preserved by rules of plau- 
sible inference and are the basis for judgments of credi- 
bility? 

Truth is not the semantic property we seek to pre- 
serve in plausible inference. This is because of out a'c 
ing interest in uncertainty, the state of not knowing 
whether a proposition is true or false. Many attempts 
have been made to modify deductive logic to repre- 
sent uncertainty, including modal logics, 3-valued log- 
ics, nonmonotonic logics, fuzzy logics, and probabilistic 
logic (Turner, 1984, Zadeh, 1975; Nilsson, 1984) Some 
of these approaches "sequester" uncertainty by intro- 
ducing a new argument that rep'esents the uncertainty 
but is itself true or false. Modal logics do this. Other 
approaches augment the vak 3 true and false; for exam- 
ple, three-valued logics add the value "unknown." and 

fuzzy logics introduce numeric arguments. Nonmono- 
tonic logics go further and replace the notion of truth 
with one of support. Nonmonotonic formulations differ: 
hi McDermott and Doyle's version, the notion of truth 
ia generalized to support and falsity to lack of support 

(McDermott and Doyle, 1980). 
Although uncertain statements are neither tru- "or 

false one can say a great deal more about them. F ten- 
sions to logic, however, say little. With the possible ex- 
ception of nonmonotonic logic and dependency-directed 
backtracking, none of the extensions to logic enable us 
to say why we are uncertain and what we might do 
about it (de Kleer, et al, 1977). Shortly, we will dis- 
cuss an alternative approach, but first we must address 
another common paradigm in AI for plausible inference 
and explain why we are avoiding it. 

Much of the AI community favors probabilistic rep- 
resentations of uncertainty. We believe that, with one 
exception, the semantics of these representations are 
opaque. The exception is when the probabilities are 
relative frequences, combined by Bayes' theorem. This 
case is akin to deductive inference in that a semantic 
property (relative frequency) is guaranteed to be pre- 
served by a rule of inference (Bayes' theorem). Just 
as we associated credibility with truth in deductive in- 
ference, we can associate it with relative frequency in 
probabilistic inference. In both cases, we can guarantee 
that the credibility of a conclusion can be unambigu- 
ously determined. Unfortu itely, the numbers used in 
knowledge systems are not relative frequencies. Until 
we know what they represent, we cannot know whether 
their intent or meaning is preserved by the functions 
that are used to combine them. The plethora of com- 
bining functions discussed in the AI literature suggests 
that no common interpretation of degrees of belief is 
available (Duda and Hart, 1976; Pearl, 1982; Shafer, 
1976). 

So we are led back to the question, if truth or relative 
frequency are not the basis of credibility when reasoning 
under uncertainty, what is? Wh't properties of state- 
ments determine their credibility, and can we guarantee 
that these properties are preserved by inference rules? 
In Section 4 we saw that the credibility of inferences 
depends on the semantic associations on which they are 
based. For example, if a researcher is interested in VLSI 

layout, and a funding agency is interested in electronics, 
the fit between them is good and the agency is apt to 
fund the proposal. The semantic association bet'veen 
electronics and VLSI is "has-subfield," and it is the ba- 
sis of this plausible inference: 

interested-in (agency, electronics) 
has-subfield (electronics, VLSI) 

interested-in(agency, VLSI) 
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In brief, degree of fit between two objects, X and Y, 
was defined to mean that some rule of plausible infer- 
ence could be invoked to conclude interested-in(agency, 
Y) given interested-in(agency, X). 

The GRANT system (Section 4) sets the stage for 
the current research. It is the first step toward a com- 
mon sense plausible inference system as defined above 
- a program that answers arbitrary questions from a 
large, associative knowledge base. But GRANT does 
not, in fact, answer arbitrary questions. It answers the 
single question, "If a funding agency is interested in X, 
will it be interested in Y?" It can be generalized to a 
common sense plausible inference system as follows: 

1. Assume that all questions are about properties 
of objects; for example, "Does Fido have fur," 
or "Is coughing caused-by bronchitis." Abbreviate 
such questions R(Oi,Oj)?; for example, caused- 
by (coughing,bronchitis)?. 

2. The answer to R(01,02)? is yes if the knowledge 
base contains Oi and 02 connected by R. The an- 
swer is plausible if there is a rule of plausible in- 
ference of the form 

Q(03,O2)? 
RIOa.Ox) 
R(01,02) 

and Q(03, O2)? is plausible. For example, imagine ask- 
ing a system, "Are gin-and-tonics intoxicating?" or, has- 
effect(gin-and-tonic, intoxication)? Assume that the ob- 
jects ginand-tonic and intoxication are not linked by 
has-effect in the knowledge base. The question can be 
answered, however, by plausible inference using the rule 

has-component(x,y)? 
has-efTect(y,z) 
has-effect(x,z) 

and the knowledge that gin-and-tonics contain alcohol 
and alcohol is intoxicating: 

has-component(gin-and-tonic,alcohol)? 
has-effect (alcohol,intoxication) 

has-effect (gin-and-tonic,intoxication) 

Property inheritance in frame systems is a special 
case of this kind of inference. The rule for property 
inheritance is 

isa(X,Y) 
R(Y,Z) 
R(X,Z) 

where R is any relation. For example, isa('ollie,dog) 
and part-of(dog,fur) implies part-of(collie,fur). The ap- 
proach we propose here allows us to infer the answers 
to questions based on semantic associations other than 
isa. Thus, the approach unifies several kinds of plau- 
sible inference, including causal inference (Weiss et al, 
1977). 

The model of plausible inference is not complete, 
however, since it lacks statements about the credibility 
of inferences drawn by plausible inference rules. Obvi- 
ously, do not intend to include rules that draw er- 
ror inclusions, but credibility is not guaranteed, 
as logic, by plausible inference. We discussed 
how our rules implement a notion of credibility based 
on degree of fit, but this still does not guarantee credi- 
bility. We know of two general approaches to this prob- 
lem. One is to attach to each conclusion a set of condi- 
tions that, if met, would increase its credibility. Collins, 
who developed this idea, calls these certainty conditions 
(Collins, 1978b). The other is to attach a set of con- 
ditions that, if met, would decrease credibility. We 
have called these negative endorsements (Cohen, 1984). 
From the standpoint of control, certainty conditions can 
guide a system to increase its belief and negative en- 
dorsements can help a system recover from errorful con- 
clusions by pointing to reasons a conclusion might be 
wrong. Obviously, both are required for evidence-based 

control. 
Given a set of rules of plausible inference, with rea- 

sons to believe and disbelieve their conclusions, we can 
engage in a range of common sense plausible inference 
tasks. Our proposed work thus involves several stages: 

• Develop common sense plausible inference rules. 
These are based on semantic associations, so clearly 
we need a set of associations at the outset. We be- 
gan with the associations in GRANT'S knowledge 
base. Next, we generated all combinations of as- 
sociations of the form 

Ai(x,y) 
At{y,z) 

Ai(x,z) 

These can be filtered by case-semantic consider- 
ations: y must be a particular kind of object to 
fill the Ai case of x, and z is also restricted by its 
relation to y. In many cases, though, z will not 
fill the Ai case of x, and so a potential rule can 
be filtered out. Even with this filtering, GRANT'S 
associations generated about 600 rules of plausible 
inference. 
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The rules are further pruned by automatically gen- 
erating, from GRANT'S knowledge base, exam- 
ples of inferences made by the rules. Thus we can 
select empirically a set of rules that make a high 
proportion of truly plausible inferences. 

• Endorse the rules. Given these rules it remains 
to specify the conditions under which they are 
more or less likely to generate plausible conclu- 
sions. This work remains to be done. 

• Test the rules. Recently, Cohen et al. (1985) 
tested GRANT by comparing its performance again 
that of an expert. The same approach will be used 
to test our common sense plausible inference sys- 
tem both in the GRANT domain, for which we 
have a very large associative knowledge base, and 
in other associative domains such as causal rea- 
soning. 

Further extensions involve generalizing rules of plau- 
sible inference to include conjunctions, negations, and 
quantification. It will probably be easy to make these 
extensions given the propositional form of the rules as 
shown above. However, the inference mechanism that 
underlies GRANT is a tightly-controlled spreading ac- 
tivation. This has several advantages that are discussed 
in Cohen et al. (1985), so we want to maintain this ap- 
proach in our proposed work. We currently know how to 
model the plausible inference rules above as spreading 
activation, but we are not sure how to extend this ap- 
proach when the rules include conjunctions, negations, 
and quantifiers. 

The result of this work will be a set of rules of in- 
ference whose plausibility for the GRANT knowledge 
base has been discovered empirically and confirmed by 
comparison with expert judgment. We hope, however, 
to go beyond this result to explore the reasons WHY 
the rules discovered are plausible, in what situations 
they would not be plausible, etc. To this end, we plan 
to extend our work on plausible reasoning to domains 
that already have algorithmic solutions (e.g. deadlock 
prevention in operating systems). The use of an algo- 
rithmic solution as a foil for plausible ones will aid in 
the discovery of formal characterizations of the nature 
of plausible inference rules. 
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ABSTRACT 

This paper summarizes our research efforts in the area of 
Reasoning with Incomplete and Uncertain Information, and 
is organized into three parts covering reasoning with uncer- 
tainty, reasoning by analogy, and reasoning with incom- 
pleteness. Part I, entitled Uncertainty Calculi: How Many, 
When, and Why?, is a collection of two papers describing the 
evolution of an architecture for reasoning with uncertainty. 
The first paper of this collection, entitled Selecting Uncer- 
tainly Calculi aid Granularity: An Experiment in Trading-off 
Precision and Complexity, describes the experiments that led 
to the derivation of equivalence classes among the 
(apparently) different uncertainty calculi as a function of the 
input granularity. The second paper, entitled Summarizing 
and Propagating Uncertain Information imth Triangular Norms, 
describes an architecture for reasoning with uncertainty, 
which is organized in three layers; representation, inference, 
and control. The representation Ifyer describes the struc- 
ture required to capture information used in the inference 
layer and meta-information used in the control layer. The 
inference layer defines uncertainty ca'culi based on Triangu- 
lar norms (T-norms), intersection operators whose truth 
functionality entails low computational complexity. The con- 
trol layer specifies the policy selection for the different cal- 
culi used in the inference layer, based on their meanings, 
properties, and contextual information. Conflicts and 
ignorance measurements are also proposed. 

This work was partially supported by the Defense Advanced 
Research Projects Agency (DARPA) contract F30602-85-C-0033. 
Views and conclusions contained in this paper are those of the 
authors and should not be interpreted as representing the 
official opinion or policy of DARPA or the U.S. Government. 

which is based on a multi-staged decomposition; the 
knowledge representation scheme which uses a hierarchy of 
models that are ordered by complexity; the search strategy 
tor dynamically creating a domain model for the current 
goal, and the global control method for forming an analogy. 
The supporting model paradigm is then described in detail 
and a few preliminary results are noted. 

Part HI, entitled Theories of Non-Monotonic Reasoning and 
Reason Maintenance, is a collection of two papers describing 
the evolution of the theorv and the algorithm for reasoning 
with incomplete information. The first paper of this collec- 
tion, entitled Modal Propositional Semantics for Reason Mainte- 
nance Systems, defines a propositional dynamic logic of 
derivation (PDLD). PDLD is a specification logic in which 
to express declarative control. This is achieved by character- 
izing the mental states of a reasoning agent attempting to 
reason with respect to ome logic theory. The second 
paper, entitled Reason Maintenance from a Lattice-Theoretic 
Point of Vieio, provides a mathematical framework (lattice) in 
which assumption-based justifications (ATMS) and non- 
monotonic justifications can be directly and transparently 
described. From this formulation it is possible to derive 
algorithms that support efficient revision of beliefs, as a rea- 
soning agent changes its assumptions and/or its constraints 
on beliefs. 
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SELECTING UNCERTAINTY CALCULI AND GRANULARITY: 
AN EXPERIMENT IN TRADING-OFF PRECISION AND COMPLEXITY 

Piero P. Bonissone and K.S. Decker 

ABSTRACT 

The management of uncertainty in expert systems has 
usually been left to ad hoc representations and rules of com- 
binations lacking either a sound theory or clear semantics. 
The objective of this paper is to establish a theoretical basis 
for defining the syntax and semantics of a small subset of 
calculi of uncertainty operating on a given term set of 
linguistic statements of likelihood. Each calculus is defined 
by specifying a negation, a conjunction and a disjunction 
operator. Families of Triangular norms and conorms consti- 
tute the most general representations of conjunction and 
disjunction operators. These families provide us with a for- 
malism for defining an infinite number of different calculi of 
uncertainty. The term set will define the uncertainty granu- 
larity, i.e. the finest level of distinction among different 
quantifications of uncertainty. This granularity will limit the 
ability to differentiate between two similar operators. 
Therefore, only a small finite subset of the infinite number 
of calculi will produce notably different results. This result 
is illustrated by two experiments where nine and eleven dif- 
ferent calculi of uncertainty are used with three term sets 
containing five, nine, and thirteen elements, respectively. 
Finally, the use of context dependent rule set is proposed to 
select the most appropriate calculus for any given situation. 
Such a rule set will be relatively small since it must only 
describe the selection policies for a small number of calculi 
(resulting from the analyzed trade-off between complexity 
and precision). 

INTRODUCTION 

The aggregation of uncertain information (facts) is a 
recurrent need in the reasoning process of an expert system. 
Facts must be aggregated to determine the degree to which 
the premise of a given rule has been satisfied, to verify the 
extent to which external constraints have been met, to pro- 
pagate the amount of uncertainty through the triggering of a 
given rule, to summarize the findings provided by various 
rules or knowledge sources or experts, to detect possible 
inconsistencies among the various sources, and to rank dif- 
ferent alternatives or different goals. 

In a recent survey of reasoning with uncertaintv [1-3], it 
is noted that the presence of uncertainty in reasoning sys- 
tems is due to a variety of sources: the reliability of the infor- 
mation, the inherent impredsion of the representation 
language in which the information is conveyed, the 
incompleteness of the information, and the aggregation or 
summarization of information from multiple sources. 

The existing approaches surveyed in that study are 
divided into two classt < numerical and symbolic represen- 
tations. The numerical approaches generally tend to impose 
some restrictions upon the type and structure of the infor- 
mation, e.g. mutual exclusiveness of hypotheses, condi- 
tional independence of evidence, etc. These approaches 
represent uncertainty as a precise quantity (scalar or inter- 
val) on a given scale. They require the user or expert to 
provide a precise yet consistent numerical assessment of the 
uncertainty of the atomic data and of their relations.    The 

output produced by these systems is the result of laborious 
computations, guided by well-defined calculi, and appears to 
be equally precise. However, given the difficulty in con- 
sistently eliciting such numerical values from the user, it is 
clear that these models of uncertainty require an unrealistic 
level of precision that does not actually represent a real 
assessment of tlv uncertainty. 

Models based on symbolic representations, on the other 
hand, are mostly designed to handle the aspect of uncer- 
tainty derived from the incompleteness of the information. 
However, they are generally inadequate to handle the case 
ot imprecise information, since they lack any measure to 
quantify confidence levels. 

The objective of this paper is to examine the various cal- 
culi of uncertainty and to define a rationale for their selec- 
tion. The number of calculi to be considered will be a func- 
tion of the uncertainty granularity, i.e., the finest level of 
distinction among different quantifications of uncertainty 
that adequately represent the user's discriminating percep- 
tion. To accomplish this objective we will establish the 
theoretical framework for defining the syntax of a small sub- 
set of calculi of uncertainty operating on a given term set of 
linguistic statements of likelihood. 

In Section 2 of this paper, the negation, conjunction, and 
disjunction operators that form the various calculi of uncer- 
tainty are described in terms of their most generic represen- 
tation: families of tunctions (Triangular norms and conorms) 
satisfying the basic axioms expected of set operations such 
as intersection and union 

In Section 3, linguistic variables defined on the |0,1| 
interval are interpreted as verbal probabilities and their 
semantics are represented by fuzzy numbers. The term set 
of linguistic variables defines the granularity of the confi- 
dence assessment values that can be consistently expressed 
by users or experts. A nine element term set is given as an 
example 

Section 4 describes two experiments, consisting of 
evaluating nine and eleven different F-norms with the ele- 
ments of three different term sets containing five, nine, and 
thirteen elements, respectively. A review of the techniques 
required to implement the experiment is also p.ovided. The 
review covers the implementation of the extension principle 
(a formalism that enables crisply defined functions to be 
evaluated with fuzzy-valued arguments) and describes 
linguistic approximation (a process required to map the 
result of the aggregation of two elements of the term set 
back into the term set). 

Section 5 shows the results of computing the closures of 
selected operators on common term sets. An analysis of the 
results of these experiments shows the equivalence of some 
calculi of uncertainty that produce indistinguishable results 
within the granularity of a given term set. Possible interpre- 
tations for the calculi that produce notably different results 
are suggested in the last part of this section. 

Section 6 illustrates the conclusions of this paper. 
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AGGREGATION OPERATORS 

According to their characteristics, there are three basic 
classes of aggregation: conjunctioni, trade-offs, and disjunc- 
tions. Dubois and Prade [4) have shown that Triangular 
norms (T-norms), averaging operators, and Triangular 
conorms (T-conorms) are the most general families of binary 
functions that respectively satisfy the requirements of the 
conjunction, trade-off, and disjunction operators. T-norms 
and T-conorms are two-place functions from [n,l|x[0,l] to 
[0,1] that are monotonic, commutative and associative. 
Their corresponding boundary conditions satisfy the truth 
tables of the logical AND and OR operators. Averaging 
operators are symmetric and idempotent but are not associa- 
tive. They do not have a corresponding logical operator 
since, on the [0,1] interval, they are located between the con- 
junctions and the disjunctions. 

The generalizations of conjunctions and disjunctions play 
a vital role in the management of uncertainty in expert sys- 
tems: they are used in evaluating the satisfaction of prem- 
ises, in propagating uncertainty through rule chaining, and 
in consolidating the same conclusion derived from different 
rules. More specifically, they provide the answers to the fol- 
lowing questions: 

— When the premise is composed of multiple clauses, how 
can we aggregate the degree of certainty \, of the tacts 
matching the clauses of the premise? i.e., what is the 
function T(XV ,.v„) that determines v , the degree of 
certaintv of the premise? 

— When a rule does not represent a logical implication, but 
rather an empirical association between premise and con- 
clusion, how can we aggregate the degree of satisfaction 
of the premise x„ with the strength of the association sr? 
i.e., what is the function G(.Y;,,sr) that propagates the 
uncertainty through the rule? 

— When the same conclusion is established by multiple 
rules with various degrees of certainty i/,,...,i/,.,, how can 
we aggregate these contributions into a final degree r c 

certainty? i.e., what is the function S(i/1,...,i/m) that con- 
solidates the certainty of that conclusion? 

The following three subsections describe the axiomatic 
definitions of the conjunction, disjunction, and negation 
operators. 

Conjunction and Propagation Using Triangular Norms 

The function TUi.b) aggregates the degree of certainty of 
two clauses in the same premise. This function performs an 
intersection operation and satisfies the conditions of a Tri- 
angular norm (T-norm): 

Although defined as two-place functions, the T-norms 
can be used to represent the intersection of a larger number 
of clauses in a premise. Because of the associativity of the 
T-norms, it is possible to define recursively 
nv,,...,*,,,*,,,,), for *„...,*„,, i [0,1], as: 

T(x] x„,x„ + ]) = T(T{xv...,xn)lx„+T) 

A special case of the conjunction is the detachment function 
G(Xp,sr), which attaches a certainty measure to the conclu- 
sion of a rule. This measure represents the aggregation of 
the certainty value of the premise of the rule xv (indicating 
the degree of fulfillment of the premise) with the strength of 
the rule sr (indicating the degree of causal implication or 
empirical association of the rule). This function satisfies the 
same conditions of the T-norm (although it does not need to 
be commutative.) 

Disjunction Using Triangular Conorms 

The function Sta.b) aggregates the degree of certainty of 
the (same) conclusions derived from two rules. This 
function performs a union operation and satisfies the condi- 
tions of a Triangular conorm (T-conorm): 

5(1,1)= 1 
S(0,fl) - S(n,0) = a 
S{a,b) < S(c,d) if D s c and b 
S(a,b) = S(b,a) 
S(a,S(b,c)) = S(S(fl,Hc) 

[boundary] 
[boundary] 
[monotonicity] 
[commutativity] 
[associativity] 

A T-conorm can be extended to operate on more than 
two arguments in a manner similar to the extension for the 
T-norms. By using a recursive definition, based on the asso- 
ciativity of the T-conorms, we can define: 

so/, ym,yw+i) = s (S (_i/,,..., v,„),i/„M i) 

Relationships Between T-norms and T-conorms 

For suitable negation operations Nix), such as N(x)^l-x, 
T-norms T and T-conorms S are duals in the sense of the 
following generalization of DeMorgan's Law: 

S(a,b) = N(J{N(a),N(b))) 

T(a,b) =N{S{N(a),N(h))} 

This duality implies that the extensions of the intersection 
and union operators cannot be independently defined and 
they should, therefore, be analyzed as DeMorgan triples 
(Tf.,.), Sf.,.), N(J) or, for a common negation operator like 
N(a) = 1-a, as DeMorgan pairs (Tf.,.), S(.,.)) ' Some typical 
pairs of T-norms T(a,b) and their dual T-conorms S(a,b) are 
the following: 

7(0,0) - 0 [boundary] 
r(a,l) = T(l,a) = a [boundary] 
T(((,/i) s T{c,d) if a £ c and b s d [monotonicity] 
T(a,b) = T(b,a) jcommutativity] 
T{n,T(b,c)) = T{T(a,b),c) (associativity] 

1, QuinUn [W] raised a criticism regarding the use ot the mm operator, 
considered an optimisth intersection operator, and the ma.\ operator, 
considered a pessimistic union operator. The use ol this pan of 
operators is actually not a contradiction, since then are their 
respective DeMorgan duals. 
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Toi**) min (a,/') if max (a,h) = 1 
0 otherwise 

SoO',/') max (a,b) if min (a, 
1 otherwise 

1,(8,6) max (0, a +^-1) S, ("-'') min (l,rt +/;) 

Thi{a,b) (a,b)l[2-{a+b- nb)\ Si.5(fl>) (fl+b)/(l+flii) 

r2(fl,b) =     at S2{a,b) a + b - nb 

T2i{a,b) (a^y^+fr-ai)) S2^a,b)     - =         («+i)-2fli7)/(l-flfc) 

T3{a,h) min (u,/') S3(a,b) max (a,/;) 

These operators are ordered as follows: 

Ts T, T, Ti^Ti- 
S2.3 £ S, S S, 5 SS, 

^3 

An analysis of their properties can be found elsewhere [5]. 
The Appendix provides a summary of such properties. 

Notice that any T-norm T(a,b) and anv T-conorm S(a,b) 
are bounded by: 

T0(fl»s r(a,fe)< T,(„,b) 

S3(a,b) s S(.;,/•) s S,,^,/)) 

This set of boundaries implies that the averaging operators, 
used to represent trade-offs are located between the MIN 
operator T3 (upper bound of T-norms) and the MAX opera- 
tor S, (lower bound of T-conorms). These limits have a 
very intuitive explanation since, if compensations are 
allowed in the presence of conflicting goals, the resulting 
trade-off should lie between the most optimistic lower 
bound and the most pessimistic upper bound, i.e., the 
worst and best local estimates. Averaging operators are 
symmetric and idempotent, but, unlike T-norms and T- 
conorms, are not associative. A detailed description of 
averaging operators can be found elsewhere [4|. 

Negation Operators and Calculi of Uncertainty 

The selection of a T-norm, Negation operator and 1- 
conorm defines a particular calculus of uncertainty. The 
axioms tor a Negation operator have been discussed by 
several researchers [6-8|. The axioms are: 

N(0) -  1 
,V(1) - 0 
iV(.t) > N(i/) it.v 
N(fl)=lim IV(,r) 

N(N{x)) = x 

[boundary] 
[boundary] 
(strictly monotonic decreasing] 
[continuitv] 

[invotudon] 

Bellman and Giertz [6| have shown that the above 
axioms do not uniquely determine a negation operator. In 
iddition to the above axioms they imposed a highly con- 
straining symmetry condition, i.e., "...A certain change in 
the truth value of n(S) of S [i.e., x] should have the same 
effect on the acceptance of "not S" [i.e., iV(.v)| regardless of 
the value of |j.(S) [i.e., x]". Only with this (sometimes 
questionable) axiom is it possible to determine uniquely 
iV(.v) = 1 - x. Klement [9| provides an excellent summary 
of equivalences among the arious sets of axiomatic defini- 
tions of conjunction, disjunction and negation operators. 

It is important to notice that, like intuitionistic logic, 
most" multiple-valued logics defined by selecting the three 
operators (T (.,.), S (.,.), iV(.)) disregard the excluded middle 
law and its DeMorgan's dual law of non-contradiction. The 
historic reason for this depaiture from classical logic goes 
back to Godel's proof of incompleteness: if it might not be 
possible to derive a true theorem from a given set of 
axioms, i.e., if it is possible for a theorem to be logically 
uncertain, it would then be necessary to consider at least 
three logic values: true, false, unknown. Therefore a state- 
ment could be something other than true or false and the 
excluded middle law does not apply. 

The requirements of distributivity (or idempotency) 
uniquely determine the conjunction and disjunction opera- 
tors to be the min (7,) and max (S,) operators [6,11]. This 
DeMorgan triple, ('T^S-, 1 -()), was first used in Lukasiewicz 
Alepn-l multiple-valued logics and has been widely adopted 
in fuzzy logic [12-13]. Dubois and Prade ]I4] have shown 
that the DeMorgan triple (TI,S1,l-()) satisfies-1 the excluded 
middle but is not distributive. They have also demonstrated 
that the distributivity property is mutually exclusive* with 
the axiom of the excluded middle. 

Th" only multiplc-vjlucd logics that s.itisly the excluded middle .ire 
those defined by {T(., ). S(.,.). N(.)), where the three operators were 
derived from the same generator, the additive generator of a T-norm 
is a function f that is continuous, strictly decreasing on (0,1|, and 
satisfies the boundary conditions; ((0) = /!,)^ x and f(U = 0. Then 
any continuous Archimedean T-norm (10) T(a.h) can be defined K 

T(a.h) = f (f(fl)+f(/')) 

where f is a function defined on |0,x] by 

fix) =  f''{x) for v i[0,ba] 

= 0 for v 6(*o,*J 

and f is :he inverse function of f. The generator of a negation 
operator is a function / that is continuous, increasing and satisfies the 
boundaries conditions: ((0)=0 and /(!)<':. Then anv negation 
operator Vv; can be defined by: 

.\(A)      (   '(((I) -MO) 

The T-norm will  lave the same generator if: f(\) = f<l)-t<.\)     The 
T-conorm will have ihe same generator if derived from the T-norm 
using the DeMnrgan dualiu condition [5,8]. 

For this triple, the common generator is t(x)=x. 

The min and max operators, which form the only pair satisfying 
distributivity, iBiimrf be defined by anv additive generator. Thus there 
is no a DeMorgan triple, based on the these two operators and a 
negation operator, in which all three operators have a common 
generator 
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In most expert systems, a common selection of functions 
is: 

CON UNCTION = r(n,i.) = T3{a,b) = mm(a,b) 

WEIGHTING = G(a,b) = T,^^) = at 

DISJUNCTION = S(«,b) = S3(a,b) = imx{a,b) 

NEGATION = N(a) = l-a 

Families of T-norms and T-conorms 

Sometimes it is desirable to blend some of the previously 
described T-norm operators in order to smooth some of 
their effects. While it is always possible to generate a linear 
combination of two operators, in most cases this would 
imply giving up the associativity property. However, asso- 
ciativity is the most crucial property of the T-norms [10,15] 
since it allows the decomposition of multiple-place functions 
in terms ot two-place functions. The correct solution is to 
find a family of T-norms that ranges over the desired opera- 
tors. The proper selection of a parameter wi'l then define 
the intermediate operator with the desired effect while still 
preserving associativity. 

There are at least six families of T-norms Tx(a,h,p) with 
their dual3 T-conorms Sr(a,b,p). The value of the subscript 
x will denote the family of norms; p, the third argument of 
each norm, will denote the parameter used by the 
corresponding family. 

Table I 

RANGES OK THE SIX PARAMETRIZED FAMILIES OF T-NORMS 

T^a.b,,)    TD(a,b,n)    T^a.h,-,)    T^.b.p]   T^a.b.s)     T5u(a.l.,X) T-norm 

-0T 

1 

—• 00 -* -oo 

• 1 —* oo 

2 

1 - 0 - 1 

(1 

-* 00 -0 + 

■    v 

0 

The vertical bars | used in Table 1 indicate the legal 
ranges of each parameter. The table for the T-conorms is 
identical to the above except for the header, where the fami- 
lies of T-norms are replaced by the corresponding families of 
T-conorms, and the last column, where the T-norms are 
replaced by their respective dual T-conorms, i.e., T() by Su, 
etc. 

LINGUISTIC VARIABLES 
DEFINED ON THE INTERVAL [0,11 

These families of norms can specify an infinite number 
of calculi that operate on arguments taking n'iü number 
values  on   the   [0,1]   interval.    This   fine-tuning  capability 

YAGER: Tv{a,b,(/) = 1 - MIN fl, [(l-a)'' + (l-b)'']''''} for Cj > 0 

YAGER: Sy{a b,<j) = MIN {1, (a'' + b'')' ■'} for q> 0 

DUBOIS: TD(a,b,a) = (ab)/MAX {a,b,a} for a € [0,1] 

DUBOIS: SL,(a,b,a) = [a+b-ab - MIN {a,b,(l-a)}]/MAX {(l-a), (l-b),«}      for a £ [0,1] 

HAMACHER: TH(a,b,7) = (ab)/(7-t-(l-Y)(a+b-ab>i 

HAMACHER: SH(a,b,7) = [a+b+{y2)aby[\ ' {y-i::b\ 

SCHWEIZER: T&(a,b,p) = MA:> {0, (a"'' +b^'-l)}H'" 

SCHWEIZER: Ss,(a,b,fi) = 1 - MAX {0. ((l.-a)"'' f (l-bp'-lir1'' 

FRANK: Tf (a,b,s) = Log, [l + (; '-l)(s''-l)/(s -1) [ 

FRANK: Sf(a,b,s) = 1 - Log, [l + (s(1"'"-l)(s1'''',-l)/(s -1) | 

SUGENO: Ts,((a,b,\) = MAX (0, (X-f l)(a + b-l) -\ab} 

SUGENO: Ss„(a,b,\) = MIN {1, a+b-X.a.b} 

tor "j ^ ■j 

tot j ^ u 

for p e [-:c «] 

for ;; e [-- 
xl 

tors > 0 

for s > 0 

for \ > -1 

for X >• -1 

The above families of T-norms and T-conorms are indivi- 
dually described in the literature [5,15-20]. 

The following table indicates the value of the parameter 
for which the above families of norms reproduce the most 
common T-norms {7,1, ..,7"^]. 

?,    I he   ki.il  T-conorms ^irc obtained  \xvm the T-norm bv  using  the 
gener.ili/ed  DcMorgan's  L.iu  with  negation defined b\   \\\}- l-\ 
This   negation   operator,   however,   is   not  unique  as illustrated   bv 
Urnen (7j 

would be useful if we needed to compute, with a high 
degree of precision, the results of aggregating information 
characterized by very precise measures of its uncertainty 
However, when users or experts must provide these meas- 
ures, an assumption of fake precision must usually be made 
to satisfy the requirements of the selected calculus. 

Szolovits and Pauker [21 [ noted that "...while people 
seem quite prepared to give qualitative estimates of likeli- 
hood, they are often notoriously unwilling to give precise 
numerical estimates to outcomes." This seems to indicate 
that any scheme that relies on the user providing consistent 
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and precise numerical quantifications of the confidence level 
of his/her conditional or unconditional statements is bound 
to fail. 

It is instead reasonable to expect the user to provide 
linguistic estimates of the likelihood of given statements. 
The experts and users would be presented with a verbal 
scale of certainty expressions that they could then use to 
describe their degree of certainty in a given rule or piece of 
evidence. Recent psychological studies have shown the 
feasibility of such an approach: "...A verbal scale of proba- 
bility expressions is a compromise between people's resis- 
tance to the use of numbers and the necessity to have a 
common numerical scale" [22]. 

Linguistic probabilities offer another advantage. When 
dealing with subjective assessment of probability, it has 
been observed [23] that conservatism is consistently present 
among the suppliers of such assessments. The subjects of 
various experiments seem to stick to the original (a priori) 
assessments regardless of new amount of evidence that 
should cause a revision of their belief In a recent experi- 
ment [24], linguistic probabilities have been compared with 
numerical probabilities to determine if the observed conser- 
vatism in the belief revision was a phenomenon intrinsic in 
the perception of the events or due to the type of represen- 
tation (i.e., numerical rather than verbal expressions). The 
results indicate that people are much closer to the optimal 
Bayesian revision when they are allowed to use linguistic 
probabilities. 

Each linguistic likelihood assessment is internally 
represented by fuzzy intervals, i.e., tuzzv numbers. A fuzzy 
number is a fuzzy set defined on the real line. In this case, 
the membership function of a fuzzv set defined on a truth 
space, i.e., the interval [0,1], could be interpreted as the 
meaning of a label describing the degree of certainty in a 
linguist c manner [25-26]. During the aggregation process, 
these fuz/v numbers will be modified according to given 
combinafion rules and will generate another membership 
distribution that could be mapped back into a linguistic term 
o; !!ie user's conveniem v or to maintain closure. This pro- 

cess, referred to as lingi istic approximation, has been exten- 
sively studied [27-28] and will be briefly reviewed in Section 

Example of a Term Set of Linguistic Probabilities 

Let us consider the following term set L-,: 

{impossible extremely_mlikely veryJowj:hance small chance 
itjnay meaningful_chance mostjikely extremelyJiksly certain) 

Lach element E, in the above term set represents a state- 
ment of linguistic probability or likelihood. The semantics 
of each element £, are provided by a fuzzy number iV 
defined on the [0,1] interval. A fuzzy number N, can be 
described by its continuous membership function ,i.'v (x), for 
x i ((1,1]. 

A computationally more efficient way to characterize a 
fuzzy number is to use a parametric representation of its 
membership function. This parametric representation [26] is 
achieved by the 4-tuple (a,, b,, a,, ß,). The first two param- 
eters indicate the interval in which the membership value is 
1.0; the third and fourth parameters indicate the left and 
right width of the distribution. Linear functions are used to 

define the slopes. Therefore, 
M-v W, of the fuzzy number N, 
as follows: 

the   membership   function 
(a,, b,, a,, (i,) is defined 

M-.yW      = 0 forx < (a, -«,) 
=  (l/a,)(x-a,+«,) torx f [(a,-c<,),a, J 
= 1 torx d (a,,b,[ 
= a/ß,)(b,+ ß,-x) for x C [b.^b,+ß,)] 
= Ü for x > (b, + ß,) 

Figure 1 shows the membership distribution of the fuzzv 
number Nl = (a,,b,,a,^,). 

1-- 

N 

» x 

Figure 1.   Membership Distributions of N        (a    b    a 
ßi). "    "    " 

pose 
The following table indicates the semantics of the pro- 

■ed term set Ly. 

TABLE 2 

THE NINE ELEMENT TERM SET L, 

impossible 
extremelyjunlikely 
veri/Jow_clumce 
smalljohanci' 
itjnay 
meaningful _chance 
mostjikely 
extremely Jikely 
certain 

(0 0 0 0) 
(.01 .02 .01 .05) 
(.1 .18 .06 .05) 
(.22 .36 .05 .06) 
(.41 .58 .09 .07) 
(.63 .80 05 .06) 
(.78 .92 .06 .05) 
(.98 .99 .05 .01) 
(110 0) 

The membership distributions of the term set elements 
are illustrated in Figure 2. The values of the fuzzy interval 
associated with each element in the proposed term set were 
derived from an adaptation of the results of psychological 
experiments on the use of linguistic probabilities [23|. For 
most of the elements in the term set, the two measures of 
dispersions used by Beyth-Marom, e.g., the interquartile 
range (C:--C7,) and the 80 per cent range (C,()-Q(J), were 
used to define respectively the intervals [a,, b, ] and 
[(a,-u(,),(br-ß,)] of each fuzzy number N,. 

Figure 2.   Membership Distributions of Elements in L,. 
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DESCRIPTION OF THE tXPERIMENTS 
AND REQUIRED TECHNIQUES 

The First Experiment 

The first experiment consists in selecting nine different 
T-norms thai, in combination with their DeMorgan dual T- 
conorms and a negation operator, define nine different cal- 
culi of uncertainty. Three different term sets-containing 
five, nine, and thirteen elements-provide three different 
levels of granularity for quantifying the uncertainty. For 
each of the three term sets, the T-norms will be evaluated 
on the crossproduct of the term set elements, thus generat- 
ing the closure of each T-norm. Each closure will be com- 
pared with the closure of the adjacent T-norm and the 
number of differences will be computed. If there are no sig- 
nificant differences, the T-norms will be considered similar 
enough to be equivalent for any practical purpose. A thres- 
hold value will determine the maximum percentage of 
differences allowed among members of the same 
equivalence class. This concept is analogous to the hierarch- 
ical clustering technique typical of Pattern Recognition prob 
lems. 

Selecting the Term Sets 
The term sets used to provide the different levels of granu- 

Selecling the T-Norms 
To select the T-norms for the experiment, we first took the 
three most important T-norms, i.e., 7,, " T-,, T3l which pro- 
vide   the  lower  bound   of  the  copulas,7 an  intermediate 
value, and the upper bound of the T-norms.   We then used 
a parameterized family of T-norms capable of covering the 
entire spectrum between T, and T,.   Our choice fell on the 
family of T-norms proposed by Schweizer and Sklar,  i.e., 
TSl ((!,(',;>),  described  in Section  2.4.    The selection  of this 
particular family of T-norms was due to its full coverage of 
the spectrum and its numerical stability in the neighborhood 
of the origin.   We then selected six values of the parameter 
p to probe the space between 7, and 7, (/; i  [-1,0]), and 
between 72 and 7, (p 6 |0,x|).  The six T-norms instantiated 
from  this fami'v  were:  TSl.(a,h,-0-8),  TSc(a,b,-0.5),  TSc(a,b,- 
0.3), Ts.(a,h,0..    TSc(a,b,l)~ric(a,b,2). 

The selection of the parameter values was guided by the 
relative location of the six T-norms within the T-norm space 
bounded by 7, and 7,. Figure 3 describes the space of T- 
norms T,(a,b) = K in the [0,llx[u,l] universe of axb for 
K=0.25, 0.50, and 0.75. From this figure we can observe 
that, for small and medium values of K, the six T-norms 
instantiated from the parametric family proposed by 
Schweizer and Sklar, i.e., T^.ia.b r , provide a well distri- 

larity in both experiments are: /.,, Lj, and / ,.   /.-, contains buted coverage8 of the space between 7,, 72, and Tj 
seven elements, and was defined In Fable 2. L, and L, con- 
tain five and thirteen elements, respectively. Their labels 
and semantics are defined in the following tables: 

TABLE 3 

THE FIVE ELEMENT TERM SET L, 

impossible (0 0 0 0) 
unlikely (.01 .25 .01 .1) 
maybe (.4 .6 .1 .1) 
likely (.75 .99 .1 .01) 
certain (110 0) 

Table 4 

THE THIRTEEN ELEMENT TERM SET L, 

impossible (0 0 0 0) 
extremely _unlikely (.01 .02 .01 .05) 
notjikely (.05 .15 .03 .03) 
veryJow_cliance (.1 .18 .06 .05) 
smalljchance (.22 .36 .05 .06) 
it may (.41 .58 .09 .07) 
likely (.53 .69 .09 .12) 
meaningful _chance (.63 .80 .05 .06) 
high_chance (.75 .87 .04 .04) 
mostjikely (.78 .92 .06 .05) 
veryjiigh_chance (.P7 .96 .04 .03) 
extremely Jikely , •. .99 .05 .01) 
certain r   TQ) 

The Second Experiment 

The second experiment was motiva.ed by the behavior of 
the triangular conorms for high values of K, as illustrated in 
Figure 3. It was noted that the area of the triangular spaces 
corresponding to the various Ks decreases as K increases in 
value, i.e.. Area = (l-K)2/2. This can be explained by the 
saturation effect that most T-norms have for low values of K 
(and T-conorms for high values of K).   However, it was also 

6. Tu, the lower bound of the T-norms, is rather uninteresting since its 
discontinuous and extreme behavior limits its applicability. 

7. A copula is a continuous 2 place function T: [0,l)x[0,l] - |Ü,11 lhal 
satisfies the boundary and monotonicity conditions of the f-norms 
plus the following condition: 

r(fl,(/) + T(c,b) s T(a,b) + T{c,d) 
when a s c, /i« ,/ 

Schweizer and Sklar |I5| have shown lhal it a T-norni has an 
additive generator, the T-norm is a copula if and only it the additi.e 
generator is a convex function. With this more restrictive condition, 
wc have that any copula Tia.b) is bounded bv; 

7(«,M s T(n,h) s T,(a,b) 

rhis is the more familiar sol of boundaries used for the probabiliu 
(and tor the belief function) of the intersection of events. 

8. The nine T-norms considered in this experiment (six instances of the 
Schweizer   and   Sklar   family   in   addition   to   T,,   T,,   and   T3   arc 
maximally separated at the point a=b.   The coordinates of the points 
in which the line ii = h intersects the six T-norms T^.{fl ,b,p) = 0.23   ■ 
can be obtained from the expression: 

(i = [0.5(1 + (K)-'')]""' 
The values of the coordinate a for the intersection points ol the 

nine T-norms (f 1(11 ,/i),r,, (n,/', - .8), rs, (u ,/i, - .5), r* (a,(),-.3), 
r,(,i>), Fs, («,(>,.5), n, (,(,/>,I), r,,(/i,)i,2), r^«,*)) with the line a=(> 
arc: 

0.2S0 0.342 0.400 0.444 0.5000.573 Ü.562 0.600 0.625 
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Figure 3.    Space of T-norms T^a»   -  K,  for K       0.25, 
0.50, and 0.75. 

noted that for large values of K, most T-norms (all but T3) 
seemed to converge toward T,, therefore the space between 
r& (a,b,2) and T3 was much larger than the space between 
any other T-norm. Figure 4 shows a plot of the nine 1- 
norms Tjuji), evaluated on the plane a=b. '"his figure 
illustrates both the saturation effect tor small \alues of K 
and the convergency effect for high values of K. 

For the sake of completeness, a second experiment was 
designed to provide a better sample of the space between 
rSl(a,b,2) and T3. Two more T-norms were instantiated 
from the same family of T-norms, namely TSi (a,b,5) and 
TSl(a,b,8), and added  to the original nine,  tor a  total of 

eleven T-norms. The same three term sets used in the lirst 
experiment were also used in this second experiment to 
define the input granularity. The objective of the second 
experiment was to verify if the first experiment had over- 
looked any relevant calculus requiring its own equivalence 
class. 

Computational Techniques 

The above experiments can be performed only if some 
particular computational techniques are used It is necessary 
to evaluate the selected T-norms (crisply defined functions) 
with the elements of the term sets (linguistic variables with 
fuzzy-valued semantics). Furthermore, the result of this 
evaluation must be another element of the term set. This 
implies that closure must be maintained under the applica- 
tion of each T-norm. The following two subsections 
describe the techniques necessary to satisfy these require- 
ments. 

The Extension Principle 
The extension principle |26| allows any non-fuzzy function 
to be fuzzified in the sense that if the function arguments 
are made fuzzy sets, then the function value is also a fuzzy 
set whose membership function is uniquely specified. The 
extension principle states that if the scalar function, f, takes 
n arguments (.t,, .v2, . . ., .vj, denoted by X and if the 
membership funcHons of these arguments are denoted by 
M-V,), M-:(.V,), .   .   ., |i,(x„), then 

HMXJCV) -SUP 

s.t.  f{X) 

[Wf M',)l 

1/ 

where SUP and   [NF denote  the  Suprmum  and  Infimum 
operators. 

Ihe use of tlv irmal definition entails various types of 
computational dif jlties [26]. The solution to these difficul- 
ties is based on the parametric representation of the 
membership distribution of a fuzzy number," i.e N, = 
(a,, b,,a,,ß,), described in Section 3.1. Such a representation 
allows one to describe uniformly a crisp number, e.g., 
(a,,a,,0,0); a ens;) interval, e.g., (a,,b,,0,0); a fuzzy number, 
e.g., (a^a,,!»,,^); and a fuzzy interval (a,,fe,,a,,ß,/ 

The adopted solution consists of deriving the closed-form 
parametric representation of the result This solution is a 
very good approximation of the result obtained from using 
the extension principle to evaluate arithmetic functions with 
tuzzy numbers, and has a much more limited computational 
overhead. Table 5 shows the formulae providing the closed 
form solution for inverse, logarithm, addition, subtraction, 
multiplication, division, and power.   The scope of each for- 

Figure 4.    Space of T-norms Ti(x,jr) plotted for jc=y. 

4. Two restrictions arc imposed 1111 the shape of the membership 
(unction o( the tu/^y number represented bv this parametric 
representation; normality and convexily. All the fu'^/y numbers used 
to define the semantics of the proposed term sets satisfv this 
condition. Furthcrmore-except for imjmtible, the first element of 
each term set Lj, L,, /,-,, corresponding to a crisp rmi-all the other 
elements are posiim normal convex fuzzv numbers. They are the only 
type of iuiiy numbers that form a commutative semi-^roiip |33J. Thev 
do not form a group since thev lack the inverse elements for addition 
and multiplication. All other tu//v numbers either do not ■satisfy the 
closure condition under some operation or do not s.ilisu the 
dlslnbulivitv law 
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Table 5 

FORMULAE FOR ARITHMETIC OPERATIONS 
WITH FUZZY NUMBERS 

Operation Result Conditions Formula No. 

-h (-d, -c, S, y) all n (1) 

1 116               y 
fi > 0, n < 0 (2) 

h d' c' d(d+6)' c(c-y) 

efi (ec, ed, ec (l-e"y), ed (e'-D) ii > 0 (3) 

logri 
c              (d+6) 

log c. log d. log ■; r. log —-— 
yc—yi              a 

ii > 0 (4) 

m + n (a + c, b + d, a+y. 0 + 6) all til, fi (5) 

m - n (a-d, b-c, a+6. ß+y) all m, n (6) 

rii x n (ac. bd, ay + co-ay, b6 + d/3+/ä6) m > 0, ii > 0 (7) 

(ad, be, da-a6+a6, -by+cß-ßy) m < 0, n > 0 (8) 

(be, ad, by-0+ßy. -da+a6-ti6) m > 0, n < 0 (9) 

(bd, ae, -b6-d/3-05, -ay-eo+ay) m < 0, fi < 0 (10) 

m - n 
a    b     a6+da     hy+cß 
d' e' d(d+6)' c(c-y) 

m > 0, n > 0 (111 

a    b    co-ay     d/3-b6 
e' d' c(c-y) ' d(d+6) 

ill < 0, ii > 0 (12) 

b   a     b6-d/3     ay-ca 
d,   c' d(d+6) ' e(e-y) 

m > 0, ii < 0 (13) 

b    a    -by-c/J    -aS-dn 
c' d'   e(e-y)  '   d(d+6) 

ill < 0, ii < 0 (14) 

ms la' b", ac,-(a-a)'-', (b+/3)d*» -b") rtl«ll,~) 
h > 0 (15) 

jbc, adb'-(b+p)l->, (a-(.)d"-ad| itlf (l.oo) 

h < 0 (16) 

|al1 b1, aVU-o)"1**, (b+0)1 '-b') iti«IO,ll 

ii > 0 (17) 

(bd aM)11-   b+ßV1*», (a-Q)'-'-ac) rhdOJl 

ii < 0 118) 

where if) A ( a, b, a, fi) and n A (c, d, y. 6) 

n.ula is defined by its attached condition1" on the third 
column ot Table 5. fable 6 shows the formulae for evaluat- 
ing the minimum and maximum of two normal convex 
fuzzy numbers. All these formulae were used in the imple- 
mentation of the experiments described in Sections 4.1 
and 4.2. 

Table 6 

FORMULAE FOR MINIMUM AND MAXIMUM OPERATORS 
WITH FUZZY NUMBERS 

MAX (P,0) = (max (a.c), max(b,d), 1. r) 

if (b * |)) > (d * B ) 
if (b t p) < (d ♦ B ) 

: (b +  ß) - max(b,d) 

! (d +  B) - max(b,d) 
if b > d 

fb < d 

f b = d 

if (a - a) > (c - 7 ) 
it (a ~ a) < (c - Y) 

j s <n 
I p=6 if t 

(c + a) - IT 

(a + 7 ) - n 

(a if a - ^ 

7 if a < c 
a=7 if a = c 

I = (c + Q) - min(a.c) 
I = (a + 7 ) - min(a,c) 

if a > c 

i • 

MIN (P,Q) = imin(a.c), minfb.d), t. r) 

r = (d * 6) - min(b.d) 
r = (b + ß) - min (b.d) 

if b > d 

if (b + ß) > (d * S ) 
if (b » ß) < (d 16 ) 

if (b ( ä) = (d t8 I 
( 

ti        if b < 

6=ß    if b . 

if la - u) > (c -7) 
if (a - o) < (c - 7 ) 

if (a - o) = (c - 7 ) 

I = (a + 7 ) - max(a.c) 
1 = (c + or} - max(a.c) 

if a > c 

f a < c 
.V I. 

I =  J iv        If a 

17=a    If a 

the result of some arithmetic operation, two features were 
extracted; the first moment of the distribution and the area 
under the curve. A weighted Euclidean distance, where the 
weights reflected the relevance of the two parameters in 
determining semantic similarity, provided the metric 
required to select the element of the term set that more 
closely represented the result. 

This process was used in the experiments described in 
Sections 4.1 and 4.2 to provide closure under the application 
of the various T-norms. The closure requirement is required 
by any calculus of uncertainty to maintain the form and 
meaning of the linguistic confidence measures throughout 
the rule chaining and aggregation process. 

EXPERIMENT RESULTS AND ANALYSIS 

Linguistic Approximation 
The process of linguistic approximation consists of finding a 
label whose meaning is the same or the closest (according to 
some metric) to the meaning of an unlabelled membership 
function generated by some computational model. Bonis- 
sone [27-28] has discussed the general solution to this prob- 
lem. 

For our experiments, this process was simplified by the 
small cardinality of the term sets. Therefore, a simplified 
solution was adopted. From each element of the term set 
and from the unlabelled membership function representing 

10 The conditions described in the third column of Table 5 roter to the 
sign of .1 tii//s number. A tu«y number ,\ = («,, (', .<«,. U,) is 
positive, i.e.. \ - 0, iff its support is positive (i.e., .i-« K t1 if <«*() 
or i-a > 0 it a=0). Analogously, N, < 0 implies that its support is 
ncgaHvcti.c, b + ß s Oif ß*0or b+(ä < Uif(i = (i). 

Tabulated Results 

Selected results of the experiments are shown in tabular 
form in Tables 7, 8, and 9. Fach table illustrates the effects 
of applying T,, T2, and T, to the elements of a particular 
term set. Because of the commutativity property ol the T- 
norms, the tables are symmetric. 

Analysis of the Results of the Experiment 

The three previous tables graphically illustrate the dif- 
ferent behaviors of T,, T2 and T, when applied to a common 
term set. As expected, T, was the strictest operator and T, 
was the most liberal operator. However, the interesting 
aspect of the experiment was not rediscovering the behavior 
of the two extremes but determining how many different 
variations of behavior we had to consider from the operators 
located between T, and T3. 



Table 7 

CLOSURE OF T,, T2, T„ ON I, 

T3 

, ■ 1 p 
Tl 

: 

n 
_ I 1 ■ 

: ■.;.; ■ ■ 
1 ■ 

Table 8 

CLOSURE OF T,, T3, T„ ON L, 

13 

■■ 

n 
".' 

.y'.1 

■   ■■' Wk ■ 

Impossible 
Extremely Unlikely 
Very Low Chance 
Small Chance 
It May 
Mf • . mgful Chance 
Mo.t Likely 
Extremely Likely 
Cenaln 

Tl 

■|_H 

m. "'"' ^TO 

.-.:■ 

:*;- 
^ 
■ 

In the first experiment, the closures of seven T-norms, 
bounded hy T, from below and by T, from above, were 
computed and compared with the closures of the two 
extremes. For each of the three term sets, each element in 
the closure of a given T-norm, i.e., TV(E,, E;), was com- 
pared with the same elerm \t in the closure of a different 1- 
norm, i.e., !„(£,, E,). The number of differences found by 
moving from one T-norm to the next was tabulated for each 
term set and the results shown in fable 10. Hie percentages 
of the differences shown in Table It) were computed as the 

Fable 9 

CLOSURE OF T,, r2, Tv ON L, 

T3 

.. 

\ 
' - 

: - 1 1 

t^ L 1 1 '$? $? 
"" ■ ■ 

■■■ ■A 1 m 
^ ._ m m m    I 

Impossible 
Extremely Unlikely 
Not Likely 
Very Low Chance 
Small Chance 
It May 
Likely 
Meaningful Chance 
High Chance 
Most Likely 
Very High Chance 
Extremely Likely 
Certain 

T2 

':'. ;■: 

m ^ ̂  
h ' 

m SBBWB! 

m ^ ■ 

: 
: 1 

W m 
Table 10 

NUMBER OF OIFFERENCES AMONG THE NINE T-NORMS 
APPLIED TO L,, L:, AND L,. 

%!•<■• IJ.K,        i,.., ! 

n      ^-O^ 
/ 

~~\   Püft Cquinlen« C 

ratio ol the number ol changes divided by the cardinality ol 
the closure for each term set. Since the closures were sym- 
metric due to the commutativity property of the t-norms, 
the cardinality ol the closure lor a term set with r elements 
was considered to be HOI ■ l)/2. The percentage differences 
are shown in fable 11. 

By analyzing fable 10, it is evident that lor / ,, no differ- 
ences were found among the intermediate ("-norms. I here 
are indeed  three equivalence classes of  [-norms producing 
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Table 11 

PERCENTAGE DIFFERENCES AMONG THE NINE T-NORMS 
APPLIED TO L,, L2, AND L, 

T».« v....-« y..,..» 

» ̂ -^~~ ■o -\ 
\i- " TJ..» v->« 
/^O^^ ■o ^ / \ 

V*" ■^..bl) ,.,., 

/^ (1 -^ ^ ~0 -^ 

I   Pure E.qiiiv»ltntt 

]   « Threihold 

H    1H Dueihold 

1 '■'^ nwMboU 

different results when applied to elements of Li. These 
classes of equivalence are: 

r1(fl,fc),Ts<-(fl,b<-0.8),Ts,.(O,   0.5) 

7S( (,;,/>,   ().3),T2(n,;-),TSl («,(),0-3), 

TSl («,(.,l),Ts,(rt,;',2),r,(,;,/') 

From the same fable 10, we can observe that few significant 
differences were found among the intermediate T-norms 
when applied to elements of L-,. To create equivalence 
classes among the T-norms, we need to establish a thres- 
hold value indicating the maximum percentage of differ- 
ences that we are willing to tolerate among F-norms of the 
same class of equivalence. With a threshold of 7%, using 
table 11 we find five classes: 

r^j./.U'.vK/', -Ü.8), 

TSl(ri,/',-0.5), 

r^(a,b,-03),r2(n,h). 

TSc{a,b.0.5),TSc(a,b,l), 

r^ („,(>,2),r,(„,;.) 

With a threshold of 15% we find three classes: 

T^J^U'S, ("'''' ■a-8)'7s ("'■'■   0-5)' 

rs^n,b,- 0.3),r2((i,H 

Ts>,M.5),rSl(ii,M), 

TSc(a,b,2),T3(a,b) 

Finally, we can observe that for L3 a larger number of differ- 
ences were found among the intermediate T-norms. Using a 
threshold of 12% we find five classes of equivalence. 

;, (((,;> ),rSl (,(,/>,-0.8), 

TSl (K,;',   0.5), 

rSl.(fl,i>, o.3),72(fl,H 

Ts,(a,b,0.5),TSe{a,b,l),TSl.{a,b.2). 

In the second experiment, the closur.'s o line T-norms, also 
bounded bv T, from below and K r, h. m above, were 
computed and compared with the .i' ures of the two 
extremes. For each of the same three term sets, each 
element in the closure of a given T-norm was compared 
with the same element in the closure of another, different 
T-norm. The number of differences found by moving from 
one T-norm to the next was tabulated tor each term set and 
the results shown in Table 12. The percentages of the differ- 
ences shown in Table 12 were computed as before. The per- 
centage differences are shown in Table 13. 

Table 12 

NUMBER OF DIFFERENCES AMONG THE ELEVEN T-NORMS 
APPLIED TO L,, L2, AND L,. 

53^ ^R^ßß 

B a a 

;   1 lifKlll'li1 

"t Till eih old 

'V  I Ibrr.tmM 

V 
V t-«-- \- %l-'<> 
V V" I,. >,„ 
T,.  V.«    « V ij-"' 
W>" I,. v--. 

Table 13 

PERCENTAGE DIFFERENCES AMONG THE ELEVEN T-NORMS 
APPLIED TO L,, L2, AND L, 

^ÄgE&gEÄ^Ä? 
^^g 

13 V 

I  Tnunni 

)   Pure Equivalence QUM 
\. v,..-.,      %,- y,.< 
v v "     x.- y-' 
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By analyzing Table 12, it is again evident that for L,, no 
differences were found among the intermediate T-norms. 
The three equivalence classes of T-norms producing dif- 
ferent results when applied to elements of L, are: 

Tx(a,b),TSl {n,b, - 0.8),TS, (a,0,-0.5) 

TSl (,;>,   0.3),r2((;,/'),rs, (11,/',().5), 

Tc [a,bA),TSc(a,bftJscia,b,5),TSc{a,bWJ^a,b) 
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From the same Table 12, we can still observe that few sigmft- 
cani differences were found among the intermediate F-norms 
when applied to elements of L2. After establishing a thres- 
hold of 7% and using Table 13 we find six classes (rather 
than the five obtained in the first experiment): 

T,((i,HTSL(n,(',-0.8), 

TSt (<?,(',-0.5), 

T^(a,b,~0.3);: ■!• b), 

TSc{a,b.0.5),Tscia'b'l)'TSc(a'b'2)' 

TSc(a.b,S).T3(a,b) 

However, with a threshold of 8%, the last two classes of 
equivalence collapse into one, represented by Tv This indi- 
cate that, for a slightly larger threshold (8% instead of 7%) 
the additional two T-norms added in the second experiment 
are not significantly different from T5. 

With a threshold of 15% we find three classes (the same 
as in the first experiment); 

T,(a ,/'),TSl (w ,/',-0.8),TSl (((,/',-0.5), 

r&M,-o.3),T2M)' 

TSl (a ,b ,0.5),TSl.(«,b,l),TSl [a ,b ,2),TSl (a,(' ,5),TSl (a ,b MJJfl * I 

Finally, we can observe that tor L, a farmer number of differ- 
ences'wte still found among the intermediate T-norms. 
Using a threshold ot 127, we again find live classes ot 
equivalence: 

;,w,/'),rs, M,-o.8), 

Ts,M,-0.5), 

Ts,(fl,b,-0.3),T2(fl,b), 

T&(a,b,0.5),Tsc(fl'b'1)'TSc(fl'{''2)' 

rSl(1(,i',5),Ts, (rt,;',8),T1((i,/') 

In summary, we can see that three T-norms are sufficient to 
define the relevant calculi using the five element term set 
L,- five T-norms are required to represent (88% ot the lime) 
the variations in relevant calculi foi the thirteen element 
term set L3. For the case of U the same three T-norms 
used for L, will suffice if we are willing to accept results 
that might be slightly" different 15% of the time. Other- 
wise we will have to use five F-norms, as for Lv to reduce 
the number of slight differences to 8%. These results hold 
for both experiments. 

For any practical purpose, the three classes of 
equivalence represented by I,, T2, and T, more than ade- 
quately represent the variations of calculi that can produce 
different results when applied to elements ot term sets with 
at most nine elements. 

The results of both experiments hold for the T-conorms 
as well The elements of each term set are almost sym- 
metric with respect to the middle point of the scale, 0 5. 
Therefore, by using the Linguistic Approximation, the clo- 
sure of the negation operator can be simply computed by 

reversing the order of the elements in each term set. 1 he 
closures for the T-conorms can then be computed from the 
closures of the T-norms and the closure of the negation 
operator, using DeMorgan's identity. The classes of 
equivalence obtained for the T-norms are the same as those 
obtained for their dual T-conorms. 

The appropriate selection of uncertainty granularity (i.e., 
the term set cardinality) is still a matter of subjective judge- 
ment However, if we use the very well-known results on 
the spa« of absolute judgement [2% it seems unlikely that any 
expert or user could consistently quantity uncertainty using 
more than nine different values. 

Meaning of T , T., T 

T|, T-,, and T, were the three operators that produced 
notably different results for L, and L2. A challenging task is 
to establish the meaning of each F-norm, i.e., the rationale 
for selecting one F-norm over the other two. 

A first interpretation indicates that F, seems appropriate 
to perform the intersection of lower probability bounds [30]. 
Similarly, T, is appropriate to represent the intersection of 
upper probability bounds. T: is the classical probabilistic- 
operator that assumes independence of the arguments; its 
dual T-conorm, S:, is the usual additive measure lor the 

union. 

Fo provide a better understanding of these T-norms, we 
will paraphrase an example introduced by Zadeh [31]: 

if 30% of the students in a college are engineers, and 80% of the 
students are male, how mam, students are both male and 
engineers7 

Although we started with numerical quantifiers, the answer is no 
longer a number, but is given by the interval [10%, 30%i 

Fhe lower bound of the answer is provided by T,](0.3, 
0.8); T3(0.3, 0.8) generates its upper bound. 1,(0.3, 0.8) gives 
a somewhat arbitrary estimate of the answer, based on the 
independence of the two pieces of evidence. 

In Figure 5, we fry to describe geometrically the meaning 
of the three T-norms. The figure illustrates the result ol 
1,(0.3, 0.8), T2(0.3, 0.8), and T,(0.3, 0.8). T, captures the 
notion of worst case, where the two arguments are con- 
sidered as mutually exclusive as possible (the dimensions on 
which Ihev are measured are ISO'' apart). T2 captures the 
notion of independence of the arguments (their dimensions 
are 90° apart). T, captures the notion of best case, where one 
of the arguments attempts to subsume the other one (their 
dimensions are collinear, i.e., 0° apart). 

- ~~iza 
.1 

s  

Figure 5.    Geometrical Interpretation of T^O.S, 0.8), T2(0.3, 
0.8), and 1,(0.3, 0.8). 
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Meaning of TSc(a,b,.0.5) and T^U,!,,!) 

There are two cases in which we will need to deal with 
five calculi instead of three. In the first case, we want to 
decrease the input granularity hv using a term set with a 
finer resolution than L3 (e.g., /,,). [n the second case, 
within the granularity provided by L2, we want to decrease 
the percentage of differences within an equivalence class bv 
lowering the tolerance threshold from 15% to 8%. In either 
case, we must provide an interpretation for the meaning of 
the two additional T-norms, i.e., T^a.b.-O.S} and T^a.b.l). 

A rather straightforward interpretation of TSl (i!,/),-0.5) 
and T^(a,b,\) is to consider them the ini.-rsection operators 
for pieces of evidence that exhibit mild negative or positive 
correlation, respectively. This is in contrast with I", and Tj 
that represent the extreme cases of negative and positive 
correlation, respectively. 

CONCLUSIONS 

Summary of the Results 

In this paper we have presented a formalism to 
represent any truth functional calculus of uncertainty in 
terms of a selection of a negation operator and two elements 
from families of T-norms and T-conorms. Because of our 
skepticism regarding the realism of the fake precision 
assumption required by most existing numerical 
approaches, we proposed the use of a term set that deter- 
mines the finest level of specificity, i.e., the granularity, of 
the measure of certainty that the user'expert can consistently 
provide. The suggested semantics for the elements of the 
term set are given by fuzzy numbers on the 10,1] interval. 
The values of the fuzzy numbers were determined on the 
basis of the results of a psychological experiment aimed at 
the consistent use of linguistic probabilities. 

We then proceeded to perform two experiments to test 
the required level of discrimination among the various cal- 
culi, given a fixed uncertainty granularity. We reviewed the 
techniques required to implement the experiments, such as 
the extension principle (that permits the evaluation of cris- 
ply defined function with fuzzy arguments), a parametric 
representation of fuzzy numbers (that allows closed form 
solutions for arithmetical operations), and the process of 
linguistic approximation of a fuzzy number (that guarantees 
dos«re of the term set under the various calculi of uncer- 
tainty). 

We computed the closure of nine and eleven T-norm 
operators applied to three different term sets. We analyzed 
the sensitivity of each operator with respect to the granular- 
ity of the elements in the term set; and we finally deter- 
mined that only three T-norms — 7",, T2, and 7, — gen- 
erated sufficiently distinct results for those term sets that 
contain no more than nine elements. 

Impact of the Results to Expert System Technology 

In our final conclusions, we would like to establish an 
explicit link between the results of this paper and the prob- 
lem of reasoning with uncertainty in expert systems In 
building expert s>stems architectures three distinct layers 
must be defined: representation, inference, and control layers. 
The treatment of uncertainty in expert systems must address 

each of these layers. The characterization of uncertainty 
measures as linguistic variables with fuzzy-valued semantics 
and the use of a given uncertainty calculus address the 
representation and inference layers, respectively. The selec- 
tion of the most appropriate calculus to be used must be 
addressed by the control layer. 

However, in most expert systems, the control layer has 
been procedurally embedded in the inference engine, thus 
preventing any opportunistic and dynamic change in order- 
ing inferences and in aggregating uncertainty. Usually, the 
same type of aggregation operators, i.e., the same uncer- 
tainty calculus, is selected a priori and is used uniformly for 
any inference made by the expert system. The most recent 
trend in building expert systems is moving toward having a 
declarative representation for the control layer. 

As an integral part of this layer, we suggest to define a 
set of context dependent rules that will select the most 
appropriate calculus for any given situation. Such a rule set 
will be relatively small since it must describe only the selec- 
tion policies for a small number of calculi. The reduced 
number of calculi is the result of the analyzed trade-off 
between complexity and precision. These rules will rely on 
contextual information -- such as the nature, reliability, and 
characteristics of the evidence sources - as well as on the 
meanings of the three or five analyzed calculi that will be 
used in the inference layer. 
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APPENDIX: PROPERTIES OF T-NORM OPERATORS 

The subset of properties satisfied by a given T-norm 
operator succinctly defines its behavior, the properties that 
capture the most salient features of such an operator are 

Continuous: 

Archimedean: 

Idempotent: 
Strict: 

an infinitesimal change in one of the 
arguments cannot cause a  noticeable 
change in the result 
continuous and satisfying the follow- 
ing conditions: 
T(x,x) < x S(x,x) > x for all x t (0,1) 
T(x,x) = x S(x,x) = x for all x € [0,1] 

continuous and strictly increasing in 
both places, i.e, satisfying the the fol- 
lowing conditions: 
T(x,y) < T(x,y') and 

T(y,x) < T(y',x) 

for x>0, y<y', and 

T(a,b)=limT(c,b) = limT(a,d) 
c-a d -b 

Given     a     sequence     {x,,.. 
numbers   in   (0,1),    there   is 
number n for which: 
T(x1/...,x„) = 0 and v"   f ^ 
where f(x) i-l 

is the additive generator of the T-norm 
[10,15]. 

12 The nilpotcnt property is defined in terms of the T-norm's additive 
generator Both T(1 and T, do not have any additive generator (Tn is 
not continuous, I, is nor Archimedean) 

Nilpotent: 
}     of 
finite 

/(0), 

The T-norm operators used in the last column of Table 1 
satisfy the following properties: 

To T,        T,,5 T2       Tj.5 

Continuous NO YES YES YES YES YES 

Archimedean NO YES YES YES YES NO 

Idempotent NO NO NO NO NO YES 

Strict NO NO YES YES YES NO 

Nilpotent YES      NO      NO      NO      —' 

Any continuous Archimedean T-norms is either strict or 
nilpotent Its classification can be obtained by analyzing the 
T-norm's additive generator: 

Continuous Archimedean Strict T-norms have an addi- 
tive generator f(x) such that: 

/'(0) = ^and Ml) - 0 

Continuous Archimedean Nilpotent T-norms have an addi- 
tive generator fix) such that: 

/(O) < »and /(I) = 0 

It is worth noting that the three T-norms analyzed in the 
conclusions, i.e., T,, T2, and T3, are nilpotent, strict, and 
idempotent, respectively. 

< 
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SUMMARtZING AND PROPAGATING UNCERTAIN INFORMATION 
WITH TRIANGULAR NORMS 

Piero P. Bonissone 

ABSTRACT 

A large variety of numerical or symbolic approaches to 
reasoning with uncertainty have been proposed in the AI 
literature. In this paper we postulate a desiderata that any 
such formulism should attempt to satisfy. We then propose 
a new formalism for reasoning with uncertainty, which is 
organized in three layers: the representation, inference, and 
control layer. In the representation layer we describe the 
structure required to capture information used in the infer- 
ence layer and meta-information used in the control layer. 
In this structure, numerical slots take values on linguistic 
term sets with fuzzy-valued semantics. These term sets cap- 
ture the input granularity usually provided bv human experts 
or users. In the inference layer we describe a large number 
of uncertainty calculi based on Triangular norms (T-norms), 
intersection operators whose truth fimctiomlity entails low 
computational complexity. We show that, tor a common 
negation operator, the selection of a T-norm uniquely and 
completely describes an uncertainty calculus. From previ- 
ous experiments we have determined the existence of a 
small number of equivalence classes among the uncertainty 
calculi (as a function of the input granularity). This pro- 
perty drastically reduces the number of different combining 
rules to be considered. In the control layer we specify the 
policy selection for the different calculi used in the inference 
layer, based on their meanings, properties, and contextual 
information. Conflicts and ignorance measurements are 
also proposed. 

INTRODUCTION TO REASONING WITH UNCERTAINTY 

In most realistic situations, the information available to 
the decision maker is incomplete and uncertain. In 
automated reasoning systems, these two facets of the infor- 
mation have usually been treated independently. Theories 
and techniques for dealing with incomplete (but precise) 
information have evolved into the development of non- 
monotonic logics [17-18], Truth Maintenance Systems (IMS) 
[16], and Reason Maintenance Systems (RMS) |4,7|. 
Theories and techniques for dealing with uncertain (but 
complete) information have been either adapted from other 
fields, such as probability theory, by accepting unrealistic 
global assumptions, or proposed as an ad hoc solution 
without formal justifications [6]. 

In this paper we want to analyze the problem of reason- 
ing with uncertainty within the context of automated reason- 
ing. This implies that the formalism tor reasoning with 
uncertainty must exhibit the same structural (layered) 
decomposition typical of other automated reasoning metho- 
dologies. The formalism must be based on sound theoreti- 
cal foundations to guarantee its general applicability to a 
variety of reasoning tasks. The proposed layered approach 
will be suitable to integration with Reason Maintenance Sys- 
tems that provide a distinction between the object logic 
theory (inference layer) and the meta logic theory (control 
layer). 

Three Layers Organization 

In building expert systems architectures three distinct 
layers must be defined: representation, inference, and control 
layers. It is our claim that the treatment of uncertainty in 
expert systems must address each of these layers. 

The majority of the approaches to reasoning with uncer- 
tainty do not properly covei these issues Some approaches 
lack expressiveness in their representation paradigm. Other 
approaches require unrealistic assumptions to provide uni- 
form combining rules defining the plausible inferences. 

Specifically, the non-numerical approaches [8-10], are 
inadequate to represent and summarize measures of uncer- 
tainty. The numerical approaches generally tend to impose 
some restrictions upon the type and structure of the infor- 
mation (e.g., mutual exclusiveness of hypotheses, condi- 
tional independence of evidence). Most numerical 
approaches represent uncertainty as a precise quantity 
(scalar or interval) on a given scale. They require the user 
or expert to provide a precise yet consistent numerical assess- 
ment of the uncertainty of the atomic data and of their rela- 
tions. The output produced by these systems is the result 
of laborious computations, guided by well-defined calculi, 
and appears to be equally precise. However, given the diffi- 
culty in consistently eliciting such numerical values from She 
user, it is clear that these models of uncertainty require an 
unrealistic level of precision that does not actually represent 
a real assessment of the uncertainty. 

With tew exceptions, such as MRS |14|, ihe control of the 
inference process in most expert systems has been proccdur- 
iilly embedded in the inference engine, thus preventing any 
opportunistic and dynamic change in ordering inferences 
and in aggregating uncertainty. Usually, the same type of 
aggregation operators (i.e.. the same uncertaintv calculus) is 
selected a priori and is used uniformly for any inference 
made by the expert system. In the few numerical 
approaches where contlictive information is detected [22| its 
handling is done in the inference layer, where the conflict 
resolution procedure Is embedded in the same combining 
rules. This procedure consists of removing the contlictive 
part of the information. The non-conflictive portion is then 
normalized and propagated as if the conflict never existed. 

In this paper we describe an alternative paradigm, where 
some of the above shortcomings will be avoided. In Section 
I, we postulate a desiderata that specifies the most impor- 
tant requirements for each of the three layers of representa- 
tion, inference, and control. We then propose an approach 
to reasoning, with uncertainty, organizing its description 
around the three layers structure. In Section 2, we discuss 
the representation layer that determines issues such as the 
appropriate data structure for the uncertainty information 
(used in the inference layer) and meta-information (used by 
the control layer), the input granularity selection, and the 
term set calibration. In Section 3, we illustrate the inference 
layer that determines the uncertainty calculi to perform the 
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intersection, detachment, union, and pooling of the Infor- 
mation. In Section 4, we analyze the control layer that deter- 
mines the calculi selection, the conflict measurement and 
resolution, the ignorance measurement, and the resource 
allocation. 

Desiderata for Reasoning with Uncertainty 

The following desiderata represents a list of requirements 
to be satisfied by the ideal formalism for representing uncer- 
tainty and making inference with uncertainty. A compara- 
tive evaluation of existing approaches to reasoning with 
uncertainty against a subset of this requirements list can be 
found in [6]. To be consistent with the organizing principle 
described in the Section 2, the desiderata is subdivided into 
the same three layers of Representation, Inference, and 
Control. 

Representation Layer 

1. There should be an explicit representation of the amount 
of evidence tor supporting and for refuting any given 
hypothesis. 

2. There should be an explicit representation of the reasons 
lor supporting and for refuting any given hypothesis, to be 
used for conflict resolution by the control layer. 

3. The representation should allow the user to describe the 
uncertainty of information at the available level of deta-l 
(i.e., allowing heterogeneous information granularity). 

4. There should be an explicit representation of consistency. 
Some measure of consistency or compatibility should be 
available to detect trends of potential conflicts and to 
identify essential contributing factors in the conflict. 

5. There should be an explicit representation of ignorance to 
allow the user to make non-committing statements, i.e., to 
express the user's lack of conviction about the certainty 
of any of the available choices or events. Some measure 
of ignorance, similar to the concept of entropy, should be 
available to guide the gathering of discriminant informa- 
tion. 

6. The representation must be, or at least must appear to be 
natural to the user to enable him/her to describe uncertain 
input and to interpret uncertain output. The representation 
must also be natural to the expert to enable him/her to 
elicit consistent weights representing the strength of the 
implication of each rule. 

Inference Layer 

7. The combining rules should not be based on global 
assumptions of evidence independence. 

8. The combining rules should not be based on global 
assumptions of hypotheses exhaustiveness and exclusivcness. 

9 The combining rules should maintain the closure of the 
syntax and semantics of the representation of uncer- 
tainty. 

It). Any function used to propagate and summarize uncer- 
tainty should have clear semantics. This is needed both 
to maintain the semantic closure of the represt tation 
and to allow the control layer to select the most 
appropriate combining rules. 

Control Layer 

11. There should be a clear distinction between a conflict in 
the information (i.e., violation of consistency), and 
ignorance about the information. 

12. The traceability of the aggregation and propagation of 
uncertainty through the reasoning process must be 
available to resolve conflicts or contradictions, to explain 
the support of conclusions, and to perform meta- 
reasoning for control. 

13. It should be possible to make pairwise comparisons of 
uncertainty since the induced ordinal or cardinal ranking 
is needed for performing any kind of decision-making 
activities. 

14. There should be a second order measure of uncertainty. 
It is important to measure the uncertainty of the infor- 
mation as well as the uncertainty of the measure itself. 

15. It should be possible to select the most appropriate com- 
bination rule by using a declarative form of control (i.e., 
by using a set of context dependent rules that specify 
the selection policies). 

REPRESENTATION LAYER 

Representing      Uncertainty      Information      and      Meta- 
Information 

In a previous paper [3|, we noticed that "...the uncer- 
tainty of some type of evidence or facts is a complex object, 
and it is unlikely that a single, uniform representation will 
ever be sufficient to model it. An intriguing approach is 
that of attempting to combine, whenever possible, the sym- 
bolic information provided by a complex data structure 
(frame-like), as in the theory of endorsements, with some of 
the quantitative representations previously described, such 
as the theory of necessity and possibility." 

This suggestion has evolved into the development of a 
representation that captures uncertainty information, used 
in the inference laver, and meta-information, used in the 
control layer. This representation is a certainty-frame (or 
unit) with a set of associated slots. Some of these slots con- 
tain numerical values, such as the amount of confirmation 
and the amount of refutation of evidence A, denoted by 
N(A) and N(-A), respectively, that will be used and com- 
bined by the uncertainty calculi. \(A) represents the lower 
bound of the degree of confirmation of evidence A. As in 
the case of Dempster's (or Shafer's) lower and upper proba- 
bility bounds, the following identity holds: \'(^A)- l-PHA), 
where PI(A) denotes the upper bound of the certainty in A, 
and is interpreted as the amount of failure to refute A. 

Other numerical slots contain the evaluation of the 
measure's uncertainty (a second order measure analogous to 
the concept of variance), the evaluation of an entropy func- 
tion defining the quality of the given information, and a 
measure of the (potential) conflict. These slots will quickly 
provide the control layer with a numerical summary to 
assess the presence and amount of ignorance and conflict. 
A description of these slots is given in Section 4. 

The non-numeriral slots provide further information to 
the control layer allowing it to reason about the evidence's 
uncertainty,   rather  than  with  the  evidence's  uncertainty. 
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The selection of the appropriate uncertainly calculus must 
be determined in the control layer on the basis of the 
calculi's characteristics and the contextual information cap- 
tured by these slots. Such contextual information is 
described by slots such as the evidence's source, the 
source's prior credibility in providing that type of evidence, 
the (environmental or operational) conditions under which 
the source obtained such information. 

Defining Input Granularity for Numerically Valued Slots 

S/olovits and Pauker [24] noted that "...while people 
seem quite prepared to give qualitative estimates of likeli- 
hood, they are often notoriously unwilling to give precise 
numerical estimates to outcomes." This seems to indicate 
that any scheme that relies on the user providing consistent 
and precise numerical quantifications of the confidence level 
of his/her conditional or unconditional statements is bound 
to fail. 

It is instead reasonable to expect the user to provide 
linguistic estimates of the likelihood of given statements. 
The experts and users would be presented with a verbal 
scale of certainty expressions that they could then use to 
describe their degree of certainty in a given rule or piece of 
evidence Recent psychological studies have shown the 
feasibility of such an approach: "...A verbal scale of proba- 
bility expressions is a compromise between people's resis- 
tance to the use of numbers and the necessity to have a 
common numerical scale" |1|, 

I inguistic probabilities offer another advantage. When 
dealing with subjeetive assessment of probability, it has 
been observed [19] that conservatism is consistently present 
among the suppliers of such assessments. The subjects of 
various experiments seem to slick to the original (a priori) 
assessments regardless of new amount of evidence that 
should cause a revision ot their belief. In a recent experi- 
ment [27\, linguistic probabilities have been compared with 
numerical probabilities to determine if the observed conser- 
vatism in the belief revision was a phenomenon intrinsic in 
the perception of the events or due to the type of represen- 
tation (i.e., numerical rather than verbal expressions). The 
results indicate that people are much closer to the optimal 
Bayesian revision when they are allowed to use linguistic 
probabilities. 

The use of three different term sets, with five, nine and thir- 
teen elements, respectively, has been proposed in a previ- 
ous paper [5]. Each term set defines a different verbal scale 
of certainty, by providing a different set of linguistic esti- 
mates of the likelihood of any given statement. Thus, the 
selection of a term set determines the uncertainty granular- 
ity (i.e., the finest level of distinction among different quan- 
tifications of uncertainty). The semantics for the elements of 
each term set are given by fuzzy numbers on the [0,1] inter- 
val. A fuzzy number is a fuzzy set defined on the real line. 
In this case, the membership function of a fuzzy set defined 
on a truth space, i.e. the interval [11,Ij, could be interpreted 
as the meaning of a label describing ihe degree of certainty in 
a linguistic manner [2,26(. The values of the fuzzy numbers 
have be'^n determined from the results of a psychological 

experiment aimed at the consistent use of linguistic proba- 
bilities |1|. 

The triangular norms, which form the basis for the various 
uncertainty calculi discussed in Section 3, take as arguments 
real number values on the [0,1| interval, which must be ini- 
tially provided by the user or the expert. Their applicability 
is extended to fuzzy numbers by using a parametric 
representation for fuzzy numbers that allows closed form 
solutions for arithmetical operation. 

INFERENCE LAYER 

This section summarizes the functionalities and axiomatic 
definitions of the operators that form an uncertainty cal- 
culus. A detailed discussions of these operators can be 
found in a previous paper [5], except for the detachment 
operators. These operators, not discussed in reference 5, 
are examined in Section 3.1.4. 

Defining the Uncertainty Calculi 

The generalizations of conjunctions and disjunctions play 
a vital role in the management of uncertainty in expert sys- 
tems: they are used in evaluating the satisfaction ol prem- 
ises, in propagating uncertainty through rule chaining, and 
in consolidating the same conclusion derived from different 
rules. More specifically, they provide the answers to the 
following questions: 

— When the premise is composed of multiple clauses, how 
can we aggregate the degree of certainty x, of the facts 
matching the clauses of the premise? (i.e., what is the 
function r(x] x,,) that determines x , the degree of 
certainty of the premise?). 

— When a rule does not represent a logical implication, but 
rather an empirical association between premise and con- 
clusion, how can we aggregate the degree of satisfaction 
of the premise Xj, with the strength of the association sr? 
(i.e., what is the function G(x|,, sr) that propagates the 
uncertainty through the rule?). 

— When the same conclusion is established b/ multiple 
rules with various degrees of certainty y,, . . ., y„, how 
can we aggregate these contributions into a final degree 
ot certainty? (i.e., what is the function S(v1, . . ., ym) that 
consolidates the certainty of that conclusior ?). 

Triangular norms (T-norms) and Triangular conorms (T- 
conorms) are the most general families of binary functions 
that satisfy the requirements of the conjunction and disjunc- 
tion operatois, respectively. T-norms and T-conorms are 
two-place functions from [U,l[x[0,1[ to [0,1] that are mono- 
tonic, commutative and associative. Their corresponding 
boundary conditions satisfy the truth tables )t the logical 
AND and OR operators. 

Conjunction Operators 

The function T(ti,h) aggregates the degree of certainty of 
two clauses in the same premise. Vhis function is a conjunc- 
tion operator and satisfies the conditions of a Triangular 
norm (T-norm); 
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T(0,0) = 0 Iboundaryl 
T(a,l) = T(l,a) = a [boundarv] 
T(a,b) s T(c,d)  if a -s c and b s d       (monotonicity) 
T(a,b) = T(b,a) (commulativitvl 
r(a, T(b,c)) = T(T(a,b),c) [associativity] 

Although defined as a two-place function, a T-norm can 
be used to represent the intersection of a larger number of 
clauses in a premise. Because of the associativity of the T- 
norms, it is possible to define recursively 
r(*i. • ■ •, x„, *„ M)' torx,, . . ., x„ + 1 € [0,1], as: 

r(xi x„, x„t,) - T^x, xj, x„+,) 

Disjunction Operators 

The function S(a,b) aggregates the degree of certainty of 
the (same) conclusions derived from two rules. This func- 
tion is a disjunction operator and satisfies the conditions of a 
Triangular conorm (T-conorm): 

S(l,l) = 1 [boundarv j 
S(0,a) = S(a,0) = a [boundary] 
S(a,b) s S(c,d) if a ^ c and b s d [monotonicitv] 
S(a,b) = S(b,a) [commutativitv] 
5(a,S(b,c)) = S(S(a,b)/c) [associativity] 

A T-conorm can be extended to operate on more than 
two arguments in a manner similar to the extension for the 
T-norms. By using a recursive definition, based on the asso- 
ciativity of the T-conorms, it is possible to define; 

S(yi- ■ • •, Ym' Ym + l) = S(S(yi' • ■   ' Ym)' Ym + l) 

DeMorgan's Duality 

For suitable negation operations N(a), such as N(a)=-l-ax, 
T-norms T(.,.) and T-conorms S(.,.) are duals in the sense of 
the following generalization of DeMorgan's Law: 

S(a,b) = N( T (N(a), N(b))) 

T(tt,b) = N(S (Ma). N(b))) 

This duality implies that the extensions of the intersection 
and union operators cannot be independently defined and 
they should, therefore, be analyzed as DeMorgan triples 
(Tf..J, S(.,.), N(.)). Given a common negation operator like 
N(a) = 1-a, the selection of a T-norm T(.,.) uniquely con- 
strains the selection of the T-conorm SC,J. 

Some typical T-norms T(a,b) and their dual T-conorms 
S(a,b) are the following: 

T(l(a,b)       = min(a,b)   ifmax(a,b)=l 
= 0 otherwise 

r,(a,b) - max(0, a + b-1) 

T,.^^) = (ab)/|2-(a t b-ab)] 

T2(a,b) - ab 

T2.3(a,b) = (ab)/(a + b-ab) 

T3(a,b) = min{a,b) 

Sü(a,b)      = max(a,b)  if mm(a,b)=0 
= 1 otherwise 

S^a^)       = min(l,a + b) 

S,.3(a,b)   = (a+b)/(l + ab) 

S2(a,b)      = a -b - ab 

S25(a,b)    = (i + b-2ab)/(l-ab) 

S3(a,b)    = max(a,b) 

\ 
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These operators are ordered as following: 

T0 s T, - T,.5fi T2 - T2,5 -_■   r, 

S3 s S2.5 s S2 s S,,5 £ S, -  So 

Detachment Operators 

S3(a,b) = max(a,b) Given a statement P, whose certainty 
value is located in the interval [b.B], and an inference rule P 
- Q, whose lower bounds for sufficiency and necessity are s 
and n, respectivelv, one can derive the boundaries for the 
certainty value of the conclusion Q by using the detachment 
operator. Such boundaries, denoted by [N(Q), Pl(Q)\, are 
represented by the interval [TCs.W, S((1'H),B)], where 77.,J 
and SC,J stand lor any T-norm and its dual T-conorm. Bv 
using DeMorgan's identity, this interval can be rewritten as 
IN(Q), Pl(Q)\ [Tfs.W, l-T(n,(l-B))]. Therefore, the detach- 
ment operator can be uniquely defined by specifying a F- 
norm 7Y.,J. 

P        (P - Q) 
[b,Bl   Is, I 

(Q - P) 
In, I 

(-P - -Q) 

Q 
[T(s,b), S(B,l-n) 

Proof: 

Let: b =   N(P) 
s -   N(P - Q) 

B =   P1(P) 1   -   N(^P) 
n =    N(-P - -Q) 

where  N(A) and P1(A) indicate the lower and upper bounds 
of the A's certainty, respectively. 

The lower bound N(Q) can be obtained by applying 
Modus Ponens to the minor premise and tba aufpcient part 
of the inference rule: 

P AND (P - Q) =^ Q 

Bv using any T-norm TC, ) to represem liie AND operator, 
we liavt 

T(N(P), N(P - Q)) =  N(Q) 
N(Q) = T(b,s) 

The upper Bound P1(Q) can be obtained by applying Modus 
Tollens to the minor premise and the necessary part of the 
inference rule: 

-P AND (-P - ^Q) =* ~Q 

By using any T-norm T(.,.) to represent the AND operator, 
we have: 

HNH'), N(-P - -Q)) = N(^Q) 

Using the identity N(-.Q) = 1 - P1(Q); 

I'l(Q)     1 - r(N(-P), N(-P - -Q)) 

Again, using the identity N(-P) =  1 - P1(P): 

P1(Q) = 1-T(1-PI(P), NH'-^Q)) 

Using DeMorgan's identity S(x,y)      1- T((l-x),(l-y)): 

Pl(Q) = S(PI(P), 1 - N(^P - ,Q)) 
P1(Q)      S(B, (1-n)) 

The upper bound P1(Q) r SiCl-iO.B) correspond to the impli- 
cation operator used in multiple-valued logics |20|. 
For S(x,y)  =  S3(x/y)  =   Max(x,y),  the upper bound  P1(Q) 
becomes Mrt.x (1-n, B), the Kleene-Dienes implication opera- 
tor. 
For S(x,y) = S2(x,y) = x + y-xy, the upper bound P1(Q) 
becomes 1-n+nB, which has been called the Kleene- 
Dienes/E-ukasiewicz implication operator. 
For S(x,y) = S^x^) = Min(l, x+y), the upper bound PI(Q) 
becomes Mind, l-n +B). the (Lukasiewicz implication opera- 
tor. 

Clearly, the interval [T|(s,b), l-T^n^l-B))] subsumes 
[r2(s,b), 1-T2(n,(l-B))|, which, in turn, contains the interval 
[T,(s,b), 1-T3(n,(l-B))|. The selection of the f-norm (and 
therefore the selection of the detachment operator) will 
determine the amount of ignorance [width of the interval) 
associated with the conclusion by the detachment operator. 

rhe previous analysis of the detachment operator 
assumed that the conclusion is inferred from the minor and 
major premise bv applying tnodtis ponens. The symbol "-" 
that is present in the major premise P-Q (sufficiency) and 
Q-P (necessity) represents the material implication. 

An alternative interpretation of "-" is that of condition- 
ing. Under this assumption, if the certainties of statements 
P and Q are given a probabilistic interpretation, then the 
boundaries for the certainty of Q is derived from a perturba- 
tion analysis of the probability formula: 

P(Q)= p(QlP) + p(Q I-P) pC-P) 

Let: b = N(P) 
B = P1(P) - 1 - N'(-P) 
s     N(Q|P) 
S      PI(Q I P) 
r - N(Q I ^P) 
R =  PI(Q I -P) 

where   N(A) and P1(A) indicate the lower and upper bounds 
of p(A), the probability of A.   Then: 

P        P-Q (i.e., Q I P) 
|b,B]    [S,S1    |r,Rl 

.P-Q (i.e, Q I -P) 

|min((sb + r(l-b)),(sBfr(l-B)),  max((Sb ■ R(l-b)),(SB- R(l-B))| 

When p(Q I -P) is unknown (i.e., |r,R| =[0,1I), then: 

|min(sb, sB),   max((l-b fSb),(l-B - SB))| 
|s(min(b,B)), max(l- b(l-S)),(l- B(l-S))| 

' 

\ 
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since: bsB and max(l-a,l-b)= l-min(a/b) 

(sb, l-min(b(l-S)),(B(l-S))l 
[sb, ]-(l-S)(min(b,B))| 
[sb, 1- b(l-S)] 
[sb, (1 - b + Sb)] 

This result was reported by Ginsberg r29-31| and bv Dubois 
and Prade [28]. 

Notice that under the assumption of ignorance about p(Q | 
-P) (i.e., [r,R[ = [0,l]), the boundaries foi the probability of 
Q are defined by [T,(s,b),  S,((l-b),S)] or equivalency bv 
[T2(s,b), 1-T2(b,(l-S)]. 

Parametrized Families of T-norms 

The T-norms described in previous sections have dif- 
ferent properties and characteristics. It is sometimes desir- 
able to blend some of these operators, in order to smooth 
some of their effects. While it is always possible to generate 
a linear combination of two operators, this would imply giv- 
ing up the associativity property. However, associativity is 
the most crucial property of the T-norms [21] since if allows 
the decomposition of multiple-place functions in terms of 
two-place functions. The correct solution is to find a family 
of T-norms that ranges over the desired operators. The 
proper selection of a parameter will then define the inter- 
mediate operator with the desired effect while still preserv- 
ing associativity. 

In a previous paper (5), six parametrized families of f- 
norms and dual T-conorms, originally proposed by Yager 
[25], Dubois and Prade [11], Hamacher [15], Schweizer and 
Sklar [21], Frank [121, ''"d Sugeno [231, were discussed and 
analyzed Of the six parametrized families, one family has 
been selected due to its broad coverage and numerical 
stability. This family, proposed by Schweizer & Sklar, is 
denoted by T^ (a,b,/7), where p is the parameter that spans 
the space of T-norms From T0 to T,.  More specifically: 

TSl(a,b,;)) MAX{0, (a^'+tr''-])}"1''   lor/it [-x,»] 

SSt.(a,b,p)      = 1-MAXiO, I{l-ap'-{l-br',-lir1'''   forp€[-«,=o] 

The following table indicates the value of the parameter for 
which this family reproduce the most common T-norms {T0, 
. ■ ., T3}. 

TABLE 1: 
Ranges of values of parameter p 

for TSl. (a,b,p) 

TscW'P) T-norm 

—  -X 1., 
-1 T, 

-0 
h.5 
Tj 

-*  X 
T2.3 

The table for the T-conorms is identical to the above except 
for the header, where the families of T-norms are replaced 
by the corresponding tamilies of T-conorms, and the last 
column, where the T-norms are replaced by their respective 
dual T-conorms, i.e., T0 by S0, etc. 

These families of norms can specify an infinite number of 
calculi that operate on arguments taking real number values 
on the [0,1] interval. This fine-tuning capability would be 
useful if we needed to compute, with a high degree of pre- 
cision, the results of aggregating information characterized 
by very precise measures of its uncertainty. However, when 
users or experts must provide these measures, an assump- 
tion of fake precision must usually be made to satisfy the 
requirements of the selected calculus. 

Equivalence Classes Among T-norms 

Because of fhe difficulties in eliciting precise and vet con- 
sistent numerical values from the user or expert, the use of 
term sets has been proposed. Each term set determines the 
finest level of specificity (i.e., the granularity) of the measure 
of certainty that the user/expert can consistently provide. 
This granularity limits the ability to differentiate between 
two similar calculi. Therefore, only a small finite subset of 
the infinite number of calculi produces notably different 
results. The number of calculi to be considered is a function 
of the uncertainty granularity. 

This result has been confirmed by an experiment [5] 
where eleven different calculi of uncertainty, represented by 
their corresponding T-norms, were analyzed. Figure 1 illus- 
trates a plot of the eleven T-norms, where the parameter p 
in Schweizer's family has been given the following values: 
-1, -0.8, -0.5, -0.3, 0 (in the limit), 0.5, 1, 2, 5, 8, x (in the 
limit). This plot shows the space of T-norms that produce 
the same result K, for K =0.25, 0.5, 0.75. 

FIGURE 1; Space of T-norms 
T,(a,b) - K, for K-0.25, 0.50, and 0.75 

' 
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The eleven calculi were used wilh three term sets con- 
taining five, nine, and thirteen elements, respectively. For 
each of the three term sets, the T-norms were evaluated on 
the crossproduct of the term set elements, generating the 
closure of each T-norm. Each closure was compared with 
the closure of the adjacent T-norm and the number of differ- 
ences were computed. The T-norms that did not exhibit sig- 
nificant differences were considered similar enough to be 
equivalent for any practical purpose. A threshold value 
determined the maximum percentage of di; erences allowed 
among members of the same equivalence class. Only three 
calculi generated sufficiently distinct results for those term 
sets that contained no more than nine elements. Five calculi 
were required when a larger term set (containing thirteen 
elements) was used. 

The three calculi required in the first case were defined 
by the following operators: 

(1,(3,1?), Si(a,b), \(a)) 

(T2(a,b), S2(a,b), N(a)) 

(T3(a,b), 5,(a,b), N(a)) 

where N(a) is the negation operator N(a)= 1-a, and r,(a,b) 
(5,(1,b» are the T-norms (DeMorgan duals T-conorms) 
defined by the Schweizer family T^TaAp) (SSl (a,b.;))) tor 
the following three values of p: 

p = -1     r, (a,b) - max{0.a+b -1) 
S, (<(,/') = min{l,a *(') 

p-0 T2 (O) = ab 
S2 (a.b) = a -t-b-ab 

p-« T3 (tt,b) = min(a,b) 
S^{a,b) = max{a,h) 

In addition to the three operators defined above, the five 
calculi (required in the second case) need the following T- 
norms: 

TABLE 2: 

Percentage Differences Among the Eleven T-norms 
Applied to the Three Term Sets 

6 13 

□ Ttom 
| Pure B.ouiv»leri» Clum 

^] i% rhrwtiokl 

B I ^ Thtcthold 

H I'T Th[»hiild 

8  

T,- ^■••■-"       T„. I, 
X,- t-»-"        T„. r^ 

t,-Xl..b.5, T. T( 

Pi-'rccntace Differences across 11 T-Norms 

interpretation suggests that T, is appropriate to perform the 
intersection of lower probability bounds. T, is appropriate 
to represent the intersection of upper probability bounds. 
1% is the classical probabilistic operator that assumes indepen- 
dence of the arguments; its dual F-conorm, 5,, is the usual 
additive measure for the union. 

Figure 2 provides a geometric description of the meaning 
of thf three T-norms. The figure illustrates the result of T, 
(0.3, 0.8), T, (0.3, 0.8), and T, (0.3, 0.8). T, captures the 
notion of worst case, where the two arguments are con- 
sidered as mutually exclusive as possible (the dimensions on 
which they are measured are 180° apart). T2 captures the 
notion of independence of the arguments (their dimensions 
are 90° apart). T, captures the notion of best aisc, where 
one argument attempts to subsume the other one (their 
dimensions are collinear, i.e., 0C apart). 

■ 

p = -0.5     TSl (0,-0.5) = max(0, a05+b0-3-l)2 

SSt. (a,b.-0.5) --- l-max{0, [(l-a)u5+(l-b)a5-l]}2 

p=l TS( (i;,M) = max(0, a   '*b_l-l)   ' 
SSc (a,b,l) - 1-max {0, |(l-a)  ' i-(l-b)' '-l]}  ' 

Table 2 illustrates the equivalence classes. 

CONTROL LAYER 

Selecting Uncertainty Calculi 

The selection of the most appropriate uncertainty cal- 
culus depends on how well the calculus characteristics fit 
the local assumptions described by the context information. 
To accomplish this, it is essential to analyze the properties 
ot the calculi used in the inference layer. 

Since T-conorms and detachment operators can be 
expressed as functions of the negation operator and the T- 
norms. to understand the meaning of each calculus it is 
enough to analyze its underlying  F-norm operator.   A first 

FIGURE 2: Geometrical Interpretation 
of T^O.S, 0.8), T2(0.3, 0.8), and ^(0.3, 0.8) 

The other two F-norms, T^.(a.b,-0.5) and TSc(a,b,l), can be 
used when the information is known to be mildly negative 
or positive correlated, without requiring the drastic extremes 
of mutually exclusiveness or subsumption. The two addi- 
tional calculi provide intermediate degrees of pessimism and 
optimism in the range of worst case/best case analysts. 

Measuring Ignorance and Consistency 

Fhe numerical slots that provide control information are: 
the measure's uncertainty, the entropy function, and the mco»i- 
sistency measure. 
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The measure's uncertainty is defined as the area under 
the curve delimited by the (fuzzy) interval [N(A),PI(A)|. 
When N(A) and P1(A) are crisp numbers such measure is 
simply the difference PI(A)-N(A) [13]. 

The entropy function is defined as; f(x)= -K(x log(x) + 
(l-x) hgd-x)) where K is a normalizing constant (e.g., 
K=l/log(2) normalizes the range of f(x) to the interval [0,1]). 
The evaluation of the quality of the information is given by 
the interval [f(N(A)), f(PI(A))|. When N(A) and PI(A) are 
fuzzy numbers, a set of closed-form formulae [2,5], based on 
the extension principle [26], can be used to evaluate such a 
Function. 

The detection of inconsistency occurs when 
NlA) > PI.(A).   A measure of such inconsistency is given bv 
the difference Nr(A)-PI(A). 

CONCLUSIONS 

We have proposed a layered architecture to define the 
representation, inference, and control of uncertain informa- 
tion.  This architecture is summarized in Figure 3. 

REPRESENTATION LAYER 
Numerical Information: 

Confirmation 
Refutation 

Numerical Mcta-Information: 
2nd Order Uncertainty Measure 
Quality of Information (Entropy) 
Consistency Measure 

Non-numerical Meta-Information: 
Source of Information 
Source's Prior Credibility 
Information Gathering Task's Conditions 

INFERENCE LAYER 
Uncertainty Calculus UC 1: 

Negation   Nl 
T-norm   Tl 
T-conorm   SI = f(Nl, Tl) 
Detachment Dl = ■g(N , Tl) 

Uncertainly Calculus UC2 

Uncertainty Calculus UC3 

Uncertainty Calculus UC4 

Uncertainty Calculus UC5 

CONTROL LAYER 

Calculus Selection 

Ignorance Resolution 

ConTlict Resolution 

FIGURE 3; Three Layer Architecture 

In the representation layer we have advocated the use of 
frame-like structures, capturing uncertainty information, 
such as the degrees of confirmation and refutation, as well 
as uncertainty meta-information such as the information 
quality and measure's precision. The uncertainty informa- 
tion is used and combined in the inference layer by an 
appropriate uncertainty calculus. The uncertainty meta- 
information is used in the control layer to select the 
appropriate uncertainty calculus, based on local (i.e.. contex- 
tual), rather than global assumptions. We have proposed the 
use of linguistic term sets of likelihood statements to anchor 
the input granularity for the numerically valued slots. 

In the inference layer, we have shown that any truth 
functional uncertainty calculus can be represented (and 
analyzed) in terms of its underlying T-norm, an associative, 
commutative operator that extends the concept of set inter- 
section to multiple-valued logics. 

The truth functionality of the calculi used in this layer 
entails low computational complexity: the aggregated cer- 
tainty of any logic expression can be computed directly from 
the certainty of the individual components. The associa- 
tivity of the calculi guarantees the recursive decomposition 
of multiple-arguments aggregation into two-argument aggre- 
gations. This property is extremely useful when, by decom- 
posing large problems into smaller sub-problems, we can 
then make use of special hardware (custom VLSI chips) to 
concurrently evaluate the sub-expressions ad aggregate the 
partial results. 

We have shown that, for a fixed input granularity, the 
infinite number of uncertainty calculi (T-norms) can be 
reduced to at most five distinct equivalence classes. This 
fact allows us to individually study the calculi characteristics 
and to understand the assumptions that the use of each cal- 
culus would entail (mutually exdusiveness, uncorrelation, 
subsumption). 

In the control layer, we have proposed to select the 
appropriate calculus based on each calculus' properties (con- 
text independent information) and on the available meta- 
information describing the situation (context dependent 
information). Unlike the theory of endorsements, where a 
combinatorial problem occurs when the semantic rules 
(determining how endorsements are aggregated) must be 
defined tor every value combination, the selection policies set 
(meta-rules) to be defined in this layer is relatively small 
The selection policies set must only determine which of the 
three (or five) calculi, defined in the inference layer, is the 
appropriate one for any given case. Usually these cases are 
grouped in hierarchical contexts (subclasses) so that the 
selection policies can be assigned to the context nodes and 
inheritance methods can be used to pass the assignment to 
the rule instances. Once a calculus has been selected, the 
combining rules for every value combination are uniquely 
determined. 

Rather than embedding conflic resolution in the infer- 
ence layer, as it is the case for other approaches, we have 
proposed to perform conflict detection and resolution in the 
control layer. This is motivated by the fact that resolving 
conflicts or ignorance is part of the resource allocation prob- 
lem which is best done at this layer: deciding if, when, and 
how to eliminate conflicting information depends on various 
factors, such as the magnitude of the conflict, on the goal's 
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sensitivity to the information, on the cost of iiering 
further information, on the likelihood of succeeding. , gath- 
ering such information, and on the cost of failing in such a 
task. The cleaner solution is to declaratively express these 
contextually-scoped conflict policies in the control layer. 
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INTRODUCTION 

Reasoning by Analogy is a two edged sword: on one 
hand it attempts to solve problems that are beyond the 
scope of the knowledge contained in the Knowledge Base; 
while on the other, it provokes the insidious problem of 
searching a universe of potential candidate matches con- 
structed under the guise of similarity. This interim report 
summarizes some of the work in progress to strike a balance 
between these two opposing forces. First, we will describe 
the philosophy behind the decisions relating to the overall 
architecture of the system: its knowledge representation 
scheme, its search strategy, and its analogical method 
Then we will offer a few preliminary results and a status 
report. 

PHILOSOPHY 

The class of problems which are addressed by the 
method of reasoning by analogy described in this report 
have the characteristic that their solutions are not directly 
contained in the Knowledge Base either in the form of a 
fact, or as a belief which is directly deducihle from a set of 
rules applied to the facts. We refer to these problems as 
novel with respect to the knowledge base meaning that the 
solution must be derived from available solutions by one or 
more applications of what we mav looselv refer to as a sub- 
stitution. In performing a substitution, the reasoning sys- 
tem must hypothesize from uncertain evidence that, in 
deriving the required goal, a known reasoning step can be 
modified to produce a new step which is only weakly justi- 
fied bv the hypothesis and the knowledge base. 

To perform reasoning in which modifications may be 
made during the deductive process, the reasoning system 
must very carefully address the problem of search. The 
main objective of this work is to devise a reasoning method 
which can derive solutions to these novel problems by con- 
structing near miss solutions contained in the knowledge 
base in order to confine the search. We will address three 
issues regarding the machinery required to reason in this 

This work was partiallv supported bv the DetctiM Advanced 
Research Projects Agency (DARPA) contract F3Ü6Ü2-85-C-Ü033. 
Views and conclusions contained in this paper are those ot the 
authors and should not be Interpreted as representing the otticial 
opinion or policy of DARI'A or the U.S. Covcrnmenl 

This report summarises a forthcoming paper describing the details ot 
this work. 

manner: the knowledge representation scheme, the search 
strategy used by the model building scheme, and the ana- 
logical method. In this section on philosophy, e infor- 
mally describe the approach and requirements for analogical 
reasoning, an overview of the problem solving approach, 
followed by a discussion of the goals and requirements of 
the knowledge representation and search strategies. 
Although work is well along in producing an implementa- 
tion of the system we i-.''1 describe, the supporting ideas 
are, by no means, immutable: it is quite likelv that difficul- 
ties will inspire alterations. 

Motivation 

In our work, the term analogy will be used in a fairly 
broad sense: the comparison of problem solutions based on 
a notion of similarity for the purpose of recognition of solu- 
tions or synthesis of new solutions. As we have said, our 
work on reasoning by analogy will concentrate on finding 
solutions to problems which are not directly contained in 
the knowledge base. The motivation for this type of reason- 
ing is fairly simple: as expert system technology is applied 
to more complex problems, it becomes less practical to 
develop complete and consistent knowledge bases for these 
problems. One alternative is to build multiple cooperating 
expert systems that share in the solution of a multi- 
disciplined problem. Each expert could be quite complex 
but restricted to its specialty. We believe that this approach 
requires careful consideration of the communication 
between the systems to make them functional and implies a 
design coupling between the systems that would have hope- 
fully been avoided by the choice of a multi-expert architec- 
ture. The alternative we have chosen is to build an abstract 
problem solver which produces solutions from approximate 
information. 

Much o' the previous work on analogical reasoning has 
been based on the method of matching the structures 
representing the problem to a representation of a candidate 
solution, associated with the matching procedure is some 
sort of measure of similarity which is used rank the good- 
ness of a solution and, perhaps, to order the solution 
search. One serious problem which has been encountered 
attempting this sort of reasoning is that the representation is 
very important in evaluating the similarity. It is hard to 
devise a general representation scheme in which an often 
poorly    understood    problem/solution    can    be    uniformly 
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expressed. Additionally, as the problems become complex, 
there can be an excess of unimportant information in the 
representation which can cause the search for a solution to 
be unduly complicated. 

By building a system which uses approximate informa- 
tion, it is possible to span a larger class of solvable problems 
with less overall information. A major drawback to this 
type of system is that it is nearly impossible to know how to 
debug or expand a very large system due to the tenuous 
coupling between facts and solutions. To address this issue, 
we propose a representation which intends to capture the 
conceptual underpinnings of the facts in the knowledge 
base. We have focused on the problrti of making the 
representation scheme flexible and highly tuned to each 
specific problem. 

Constructing a problem specific model is done dynami- 
cally as reasoning proceeds. The basis for the specific prob- 
lem model is a hierarchical model definition which captures 
many levels of detail from various points of view. The 
intent of dynamic model construction is to provide a simple 
model of the problem from which analogies may be drawn. 
Creating a very simple, uncluttered model reduces 
irrelevant details that can hopelessly confuse the search. In 
a corresponding manner, the matching procedure avoids 
using detailed differences to measure similarity. Instead, it 
tries to move to the maximum level of abstraction before 
making a comparison. This has the benefit of making con- 
cepts important while prohibiting "un-semantic" comparis- 
ons. An un-semantic comparison is one for which there is 
no conceptual founding in the knowledge base. The most 
blatant human example is the pun, but there are also many 
more subtle and purposeful kinds of associations such as 
rhvming for poetry, thesaural inference, and seemingly 
unconnected insight, all of which may occur, initially, by 
chance but may be learned and practiced. When it is desir- 
able to make such undirected comparisons, a mechanism is 
provided for creating arbitrary associations but at a much 
higher cost (as we believe it should be). 

In the next sections, we will describe the overall strategy 
embodied in the reasoning system. Much of the discussion 
pertains to the modeling scheme which is the backbone of 
the system and deserves the majority of the attention. 

Th«' Problem Solving Strategy 

The analogical method described here is embedded in a 
problem solving system. In o^der to restrict the scope of 
this work, we have chosen to D\ | ass some issues and give 
only cursory mention to others. The important supporting 
philosophies are those regarding the overall architecture, 
the construction of the working representation for perform- 
ing analogy, and the search strategy. As a side issue, the 
philosophy regarding model content has raised some 
interesting questions which we will report. 

The approach embodied in the problem solver is a 
multi-staged decomposition procedure using a hierarchical 
model paradigm as the representation scheme. The reason 
for choosing a multi-staged decomposition is based on 
several observations. First, we observe that the known solu- 
tions to this class of problem are few and, usually, quite 
complex. If we consider the notion that a solution might be 
composed from a common, flexible set of techniques rather 

than a collection of new insights, then the multi-staged 
approach appears to be a more facile method for combining 
ill-mated techniques than a more tightly coupled integration 
method. 

Secondly, we observe that complex recognition problems 
are often solved by starting with a set of observables, which 
we shall call features. Features are of two kinds: natural 
features, which are usually associated with the physical 
characteristics of the involved objects, and process derived 
features, which have no observable correspondence but are 
essential to the implementation of the associated recognition 
process. The primitive features are combined and recom- 
bined into more complex process derived features in a 
staged sequence which reduces irrelevant information. The 
development of these features is usually ordered due to the 
nested feature composition. Additionally, due to the explo- 
sion of feature combinations, it is necessary to restrict the 
number of features which may be composed within a given 
stage. From the number of typically computed features the 
staged approach is again suggested. 

And finally, we observe that even if we were to try to 
use an unstaged solution, the potential connectivity of the 
various modules required to express the solution would be 
very large without some restriction which we propose as a 
function of the staging. 

As a result of this philosophy, we have chosen to use a 
relatively simple reasoning strategy which relies on com- 
plexity of the model structure for richness. The strategy 
may easily be repeatedly applied at each stage to create new 
sets of features. Preliminary results have indicated that a 
useful class of problems is solvable by this specialized 
method (this is a good sign since we are trying to devise a 
programming paradigm for analogical reasoning). It is 
encouraging that the same method appears to have applica- 
tion to a variety of problem categories such as planning, 
design, and diagnosis. Differences in the approach to these 
problems is controlled using the notion of point of view 
which orders the way in which information is portrayed by 
the knowledge base rather than a difference of method. 
The related, but orthogonal notion of context, meaning the 
semantics of a particular problem specification, will not be 
addressed here as it would have little bearing on the details 
of our method. 

And so, due to this choice of architecture, the notion of 
building a general problem solve» need not be addressed, 
rather, we will concentrate on techniques of using a special- 
ized method to solve a variety of problems. If the method is 
to be simplistic, then to gain the necessary variety in solu- 
tion capability, it must be applied successively under very 
select conditions imposed bv the goals. An example will 
illustrate our point thus far. 

Consider the problem of analyzing a visual scene: the 
image understanaing problem. This is a hard class of prob- 
lems and has achieved the most success for very constrained 
or restricted problems. Traditionally image processing has 
been based on the notion of extracting features from the 
image data, combining these, and repeating the process 
with higher level features until a high level representation 
of the scene is obtained. The high level representation may 
be matched against some models to derive the scene con- 
tent.   This is an admittedly terse, but not terribly inaccurate 
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summary of one kind of image processing process. As we 
would expect, many possible feature representations may be 
derived. For example, the natural features could be objects, 
subparts, collections, and other geometrically related 
features, while the process related features would be edges, 
corners, edge direction, intensity, intensity derivatives, 
regions, boundaries, and the like. To avoid the combinator- 
ics, a decoupling of the separable processes and the associ- 
ated data is necessary. By this we mean that the interfaces 
between the various processes must be organized around 
the features as the communications symbology, and the 
chosen features must adequately represent the content of 
the data. Further, the mechanisms which drive the 
extraction of features such as convolutions, grammars, and 
the like, must be very efficient and closely tuned to the 
expected image behavior to be effective in any real imple- 
mentation. We would like to dynamically construct a model 
which is carefully matched to the required observabies and 
internal states as we proceed. Then we must ask from what 
basis the model is constructed and how it is possible to 
derive the model for a problem which is initially unknown 
to the system? To understand this process, we must first 
describe the knowledge representation scheme in some 
detail. 

Knowledge Representation 

As we have said, knowledge is represented using a 
hierarchical model paradigm. Models are constructed and 
used from a specific point of view which may differ from 
construction to use. For example, a set of models for an 
object may be constructed from the point of view which 
represents the conceptual notion of how the object might be 
designed or constructed. In actual use, the models may be 
more effective if viewed from a different point of view. We 
wish to recognize and understand this issue before propos- 
ing a solution. Thus, the current philosophy is to directly 
encode the point of view information in order to make it 
explicit both to the reasoning program, and to ourselves for 
further examination. 

From a specific point of view, then, the set of models 
representing an object may be viewed as a succession of 
vertical layers that are ordered such that, in some sense, 
each layer is a more complete or complex description of the 
expected behavior of the object from the stated point of 
view. The top layer depicts the normative state and the 
confirming observabies. For example, if the behavior of a 
lead-acid storage battery (whose function is to supply power 
to a specific electrical system in a tank) is to produce a cer- 
tain voltage at the output terminals, then the corresponding 
top level model of the battery is one in which the required 
voltage is present - perhaps completely independent of the 
load, the charge condition, the electrolyte condition, the 
ambient temperature, and many other important, but secon- 
dary parameters. The observable is the voltage and is 
represented either by a procedure for obtaining its measure, 
or a pointer to another model for devising such a procedure. 

It is our philosophy that the model scheme should por- 
tray the expected behavior and perhaps some embedded 
functionality at a particular level of the model and from a 
specific point of view. If the observed or desired behavior is 
different than that predicted by the model, then, either the 
model   is   insufficient   in   detail,   or   the   model   has   been 

incorrectly constructed. At any particular level, these two 
faulte are indistinguishable and the reasoning system goes 
about irying to construct a more detailed model which 
predicts the correct behavior. In answering a query about 
what is known by the knowledge base, the reasoning sys- 
tem never alters the model. It is always assumed to be 
correct at its own level of detail. This is an important issue 
in that it is the foundation of the constructive procedure for 
a known solution. The precise relation between models is 
being formalized and will appear as a future result. 

So, for our example of the lead-acid battery, at the top 
level, we simply expect the voltage to be present at the out- 
put terminals. If we are designing a circuit in which no 
further information is required, then the query would only 
access the top level. Similarly, if we are diagnosing a 
failure, then if the voltage is not present, there is no expla- 
nation for the fault at this level, and the model is invalid 
(we will explain later what is to be done). In a planning 
situation, if we wish to install a new battery in the tank, 
then observing the output voltage may obviate any further 
steps to validate performance. Specifications involving 
other observabies which are not included in the top level 
model, simply invalidate the utility of the top level model: 
we re-iterate, the current level model is considered to per- 
fectly explain the expected behavior until a model failure is 
determined. The search strategy decides how to correct the 
failed model. 

In describing the search strategy, we will address two 
issues: the local creation of a model during a stage, and the 
global process of forming an analogical solution to a prob- 
lem. 

Search Strategy - Forming a Local Problem Model 

The process of forming a local problem model is 
intended to construct a very tightly tuned representation of 
only the information required to solve the immediate piob- 
lem - at least from the standpoint of search. The algorithm 
is intent on being very frugal about adding new information 
and, thus, the overly complex model paradigm. 

Continuing with our example, let us examine what 
occurs when a model failure is discovered. Suppose we are 
diagnosing the tank electrical system and find that the vol- 
tage on the output terminals is out of specification. Our top 
level model does not predict this behavior and, to proceed, 
we must construct a m^re detailed model to account for this 
performance. Assume that the next level model contains 
information on the voltage-current behavior of the batterv. 
Simplistically, we might just add this knowledge to our 
current understanding of the battery to conclude that some 
check of the loading conditions is relevant. There are two 
difficulties with this approach. First, this may not be the 
most likely fault; perhaps checking the charge condition is a 
better diagnostic method. Secondly, a more serious flaw is 
that the nvw information may be in conflict with the previ- 
ously expected behavior portrayed by the top level model. 

To deal with the first problem, we cast each problem 
class in the framework of a specific point of view. As a 
matter of choice, we could attempt to deduce the point of 
view from some sort of specification, but, for our work, this 
appears to be off the track. Hence, as we have said, we 
have specifically coded the point of view for each class.   In 
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addition, we have attempted to rode the point of view 
implicit in the model structure as il i. presented. We will 
evaluate this method for its facility in guiding the interpreta- 
tion of a design oriented model to be used for a planning 
and a diagnosis task. The utility of this approach remains 
to be shown as the implementation proceeds. As a matter 
of philosophy, we feel it is an important area which should 
not fail to be addressed. 

The second difficulty appears to have deep implications. 
It is certainly predictable that model conflicts might creep 
into the model code as a matter of course. The issue we are 
addressing here is that we may choose to create conflicting 
models at different levels simply to hide irrelevant details at 
the higher levels. Thus far, we have found this to h» a 
valuable asset. For example, the voltage/current relation 
above could have been modeled at the top level as allowing 
infinite current with no drop in voltage - no internal battery 
impedance. These simplifying assumptions such as ignor- 
ing complex impedance, ignoring friction, ignoring inertia, 
an a whole host of others, have been used effectivelv in 
problem solving by humans. Since it is unreasonable for 
the system to constantly check for model consistency, we 
have chosen to sidestep the problem by annotating the 
differences in the models to avoid complex inheritance 
methods. For our first implementation, any information 
replicated at a lower level subsumes the inherited informa- 
tion. Complex subsumptions will be directly noted and not 
deduced. At first glance, this does not seem to be the right 
approach, but it will serve to create instances of the problem 
until a more correct approach is understood. 

Global Control - Finding Known Solutions 

Let us, for a moment, step back from our example and 
look at the overall search process. Each stage of the solu- 
tion is a reversible process which builds a local model of the 
problem domain using two strategies for search which are 
oriented toward a specific point of view. The search stra- 
tegies are the equivalent of forward and backward chaining 
and represent recognition and synthesis. The point of view 
allows the application of these two strategies to be ordered 
in such a way that particular goal methods are observed. 

Now suppose that, in the process of searching for a 
problem solution in the knowledge base, the available infor- 
mation fails to satisfy the given goal. The results of the 
search leave us, if the notion of point of view is successful, 
with a near miss solution embedded somewhere in the his- 
tory of the search. Two questions arise at this point: 1) how 
do we identify the closest or set of closest misses, and 2) 
how can we modify one of the members of this set to pro- 
duce an acceptable solution? In order to consider these 
notions, we will first describe some details of the model 
scheme. 

A STRUCTURED MODEL 
REPRESENTATION PARADIGM 

A model is an abstraction for representing the class of its 
instances. It is internally consistent but may portray con- 
flicting beliefs that are differentiated by their context. For a 
given point of view, a model contains four specification 
components. As we have said, the function defines the 
intentional purpose of the model including side effects. 
This component of a model is the primary link between 

associated ideas. Function is predominantly represented in 
a hierarchy for genetically related classes, along with cross 
links which depict associations. Associations may be at dif- 
ferent levels since the functional information propagated 
across any of the links must undergo a transformation 
before it can be used to form an analogy. For example, the 
top level model of the battery model would depict it as a 
device for the storage of electrical energy and as a device for 
supplying electrical energy. In the same hierarchy, other 
kinds of energy storage devices would also be linked. Cross 
links would account for less conceptual associations such as 
other things that use lead or whatever. Not all intents and 
purposes can be accounted and thus the need for analogical 
methods. It may be necessary to perform fairly wide rang- 
ing search to form (previously) unlinked associations. We 
intend that these should be strictly confined by the search 
procedure. As an example, clearly the batterv could be 
used as a door stop, a boat anchor, or as a flower planter 
with a little ingenuity. These are not expected uses and 
would not be accounted. On the other hand, the model for 
an (electrical) resistor would usefully include the electrical 
definition as well as the side effect of producing heat. 

The model inierface defines the inputs, outputs, slates, 
and properties exhibited by its instances. This is a, more or 
less, conventioiu-.! black box representation which also 
serves the purpose ot identifying the observables. By this 
we mean those quantities which are somehow measurable 
by the enquirer. The plan for measuring these is contained 
in the behavior description, described shortly, and may be 
either a procedure or a complex plan which invokes other 
models. We see the need to supply an ordering mechanism 
for acquiring this information but it is not clear how it will 
be represented. Currently the notion of an additional 
model for each process is favored. For the batterv, the vol- 
tage characteristics would be described along with a pro- 
cedure or pointer to another model which describes how to 
measure it. Incidently, other properlies, such as physical 
characteristics, fall under another point of view and so it is 
possible to deduce the idea of using the battery as a boat 
anchor within the same model. Similarly, for the resistor, 
the notion of using it as a heater can be gotten from a side 
effect directly included in the functional specification. More 
complex associations use the functional association links. 

The model composition defines the internal structure of 
the model in terms of other models or components and their 
interconnections. This is the block diagram of the model 
internal structure. It is th? vehicle which allows the search 
process to find more detail when the model fails to explain 
the current information. Here, we will highlight the distinc- 
tion between our definition of a model and a component. A 
component has exactly the same composition as a model but 
it is designated to be able to act as a primitive concept in 
that it is self-sufficient without reference to its composition. 
In a crude way, components delineate the natural modular- 
ity present in the structure of the physical world (i.e. large 
separation of physical effects) which we mentioned earlier. 
This type of definition provides the means to avoid using 
"quantum mechanics" when analyzing a macroscopic physi- 
cal situation; or to avoid using Maxwell's equations when 
evaluating a simple electrical circuit. It alerts the reasoning 
system to the natural separation of treatment whicn occurs 
in most scientific disciplines. 
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Finally, the bcluwwr defines Ihe relationships between the 
states, inputs, outputs, and properties which define the 
external appearance of the model in the interface specifica- 
tion above. It defines any necessary action procedures 
either within the model or within another model to deter- 
mine how the terminal action processes get actual work 
done. 

SIMILARITY - FORMING AN ANALOGY 

Let us return, luw, to the two questions which arise 
after we have failed to find an acceptable solution in the 
knowledge base. We must be able to determine how to 
identify the closest or set of closest misses, and how to 
modify one of the members of this set to produce an accept- 
able solution. 

We nave chosen the strategy that each failure will be 
traced along the chain of supporting models to the point 
that is most abstract, but still embodies the failure. We will 
refer to the chain of models from this most abstract point to 
the leal model as ;he failure chain. Notice that the failure 
may not stem from 'he top level since new details may be 
introduced at any point. Contained in the function defini- 
tion of the top model in the failure chain is the abstract 
description of the conceptual functionality of the object of 
the model. From this model down the failure chain to the 
leaf model, is an ordered set of disrupting concepts: the top 
model being the most desirable since it has the strongest 
conceptual theory for the failure and also the fewest poten- 
tial search nodes. Each of the function definitions in the 
models along the chain points to the ISA hierarchy of 
related models. This ranking is the first factor in the meas- 
ure of similarity. The second factor relates to the use of 
cross association links from each model along the failure 
chain. It is not yet clear how to choose between proceeding 
down the failure chain and/or across the association links to 
propose new avenues for search. 

Once we have decided to evaluate a new model to 
replace part or all of the failure chain, we must decide how 
to modify it to effect a solution. We have approached this 
issue by assuming that the symbolic terms in the proposed 
model will not be directly compatible with the models in the 
failure chain. An equivalent of strong typing of these terms 
are described in auxiliary models which provide methods to 
perform translations. So, for example, if we were trying to 
find a mechanical component to perform a desired function 
by analogy of mechanical to electrical systems, then the 
required translation of terms would be based on the models 
for these term equivalences for a given xiinl of view. Lati- 
tude for proposed modifications is not irbitrarv and must be 
deduced from the term models. 

TEMPORAL DEDUCTIVE MAINTENANCE 

Since we allow modifications to be made (locally) to the 
facts during the reasoning process, the (local) appearance of 
the knowledge base is non-monotonic. Thus, the reasoning 
steps are not reflexive and the implication is that justifica- 
tions for facts can vanish. Since we wish to allow this type 
of reasoning in order to perform analogy, then to deal with 
this problem, we define the notion of a weak justification as 
one which is grounded in a time (i.e. event frame) prior to 
the current one and not grounded in the current one. 

A utilitv called the temporal deductive maintenance sys- 
tem, (TOMS), manages the sldte of the knowledge base to 
track these changes over time and maintain (relatively) effi- 
cient updates. It is a poor man's reason (or truth) mainte- 
nance system along with the appropriate machinery to 
automatically provide the reasoning system with this ser- 
vice. No interest in efficiency is pretended: the intent of 
this mechanism is strictly for its facility since it allows the 
automatic return to a specific reasoning system state without 
programming overhead. In addition, it maintains temporal 
event frames which will be useful for future projects. 

STATUS 

The system described here is currently in the preliminary 
stages of design and implementation. The deductive 
retrieval mechanism is in place along with the model build- 
ing search mechanism. Experiments have been performed 
on a simple planning problem which does not recjuire anal- 
ogy, in order to evaluate the model building strategy. Next, 
a simple diagnosis problem will be used to develop the 
point of view mechanism. Finally, a simple analogical prob- 
lem will be constructed to provide a well understood test 
case. Fach of these examples will use the same knowledge 
base which will be augmented as the implementation 
proceeds. 

RESULTS 
Although it is far too early to draw any conclusions, the 
chosen hierarchical model structure has uncovered some 
interesting issues regarding the distribution of functional 
information within the models. The philosophy described 
earlier departs from some previous work in causal reasoning 
in that there seems to be little penalty for mixing general 
laws about object behavior along with specific functionality 
since the two are separated within the model. It seems 
acceptable to even describe specific instance data as the 
expected behavior at one level with the assurance that it can 
be rescinded at another. 
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MODAL TROPOSITIONAL SEMANTICS FOR REASON 
MAINTENANCE SYSTEMS 

Allen L. Brown, Jr. 

ABSTRACT 

Non-monotonic logics are examined and found to be 
inadequate as descriptions of reason maintenance systems 
(sometimes called truth maintenance systems). A logic Is 
proposed that directly addresses the problem of characteriz- 
ing the mental states of a reasoning agent attempting to rea- 
son with respect to some object theory. The proposed logic, 
propositional dynamic logic of derivation (PDLD), is given a 
semantics, and a sound and complete axiomatization. The 
descriptive power of PDLD is demonstrated by expressing 
various inferential control policies as PDLD formulae. 

INTRODUCTION 

In this note we will elaborate the propositional fragment 
of an axiomatic semantics of reason maintenance systems 
(RMS's) |3|. The development of such a semantics stems 
from the desire to provide a declarative specification 
language for RMS's with particular emphasis on the descrip- 
tion of the control of their reasoning processes, and to serve 
as a formal setting within which to compare and contrast 
the properties of different RMS's. 

There is considerable ongoing research activity in the 
realm of non-monotonic reasoning [14]. The avowed aim of 
this research is to capture in a logical formalism some of the 
non-monotonic processes (e.g., default reasoning and 
defeasible reasoning) that are clearly part of the common 
sense reasoning repertoire enjoyed by humans. Implicit or 
explicit in many of these formalisms is the notion that the 
formalism in some sense describes the process carried out 
by the reasoning agent. In [11| McDermott and Doyle 
analyze Doyle's TMS [4] in terms of the non-monotonic logic 
that they elaborate in [11]. Their analysis suggests that the 
logic of TMS is a fragment of their non-monotonic logic. I 
believe that their analysis confuses the logic practiced by the 
reasoning agent (the TMS) with the particular object theory 
that the agent reasons about. A reasoning agent should be 
viewed as a finitary computing entity. The computations 
that it carries out have the express aim of mechanizing some 
object theory. Depending on the nature of the object theory 
or the reasoning agent's grasp of the theory, the mechaniza- 
tion may turn out to be imperfect. With respect to logics 
like that of [10] and [16], because there cannot be, in gen- 
eral, a recursive enumeration of the theorems of the object 
theory, a reasoning agent's mechanization of such theories 
is bound to be imperfect. In summary, the relation that 
obtains between an object theory and a reasoning agent is 
thai the theory is an ideal object that the agent might hope 
to compute. 

The sense in which many of the non-monotonic logics 
that have been studied might be descriptions of RMS's, or 
reasoning agents more generally, is roughly the sense in 
which a formalization of recursive function theorv might be 
the description of a programming language, say PASCAL. 
Recursive function theory can be taken as an ideal object 
that a PASCAL implemsmiation attempts to mechanize. 
However, recursive function theory has little to say about 
the actual semantics of PASCAL programs. Inevitably, a 
formal semantics of PASCAL would include recursive func- 
tion theory, but most of the meat in axiomatizing PASCAL 
is the formalization of the states of the abstract machine that 
is interpreting PASCAL. 

There are some researchers who have attempted to 
address the issue of describing the reasoning agent and its 
mental states. VVeyhrauch's FOL system [18] has an explicit 
notion of object theory and meta-theory. (Indeed, FOL per- 
mits the construction of arbitrary hierarchies of such 
object.meta pairs.) FOL is an axiomatic system, specifically, 
a first-order system with types. From my perspective, FOL's 
main defect is that a FOL meta-lheory, if taken as an 
attempt to formalize the properties of reasoning agents, has 
no explicit notion of the agent's mental state. We believe 
that an explicit notion of mental state is key to many 
representations and control issues. 

Doyle [3] develops a very powerful functional semantics 
for theories of reasoned assumptions. His semantics, in the 
guise of an admissible set, has a definite notion of the men- 
tal state of a reasoning agent. He elaborates his functional 
semantics so as to be able give taxonomic structure to a 
wide range of reasoning formalisms. He focuses primarily 
on giving an account of what inferential theories are sanc- 
tioned by different formal notions of reasoned assumptions. 
Our interest, in contrast, is in describing the behavior of a 
leasoning agent when constrained to adhere to particular 
ubject theories. We should also mention that we prefer 
axiomatic to functional specifications as we think there is 
much more available technology for compiling operational 
RMS's from axiomatic descriptions. 

Goodwin recentlv introduced [3] a new inferential for- 
malism, logics of current proof (LCP's). His intent is to cap- 
ture the dynamic reasoning processes of finite reasoning 
agents. LCP's are not logics in the usual sense as they have 
no proof theory or model theory. Goodwin's formal account 
of LCP's is functional in nature. The principal appeal of 
LCP's is that they explicitly encode the development of the 
deductive process.   It was in attempting to give a first-order 
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logic account oi I.CP's, having models thdl suitably inter- 
preted the sequence of databases in an LCP that we hap- 
pened upon the idea of a dynamic logic of derivation. 

The proximal technical inspiration of the dynamic logic 
of derivation (DLD) is the dynamic logic (DL) formalism 
introduced by Pratt and elaborated by Fischer, Harel, 
Ladner, Meyer, and others [6,7|. DL gives axiomatic mean- 
ing to programs by means of a first-order language aug- 
mented with a collection of modal operators corresponding 
to those programs. Formulae in the language are used to 
characterize the states of computational processes before 
and after the execution of some computational step(s). DL's 
model theory is a collection of Kripke-style worlds [8] con- 
nected bv binary relations corresponding to various possible 
programs. Just as the worlds of DL's semantics capture the 
states of a computational machine, the states ol a DLD 
model will capture the mental states of a rational agent. The 
approach that we shall be taking is presaged by Pratt in [15] 
where he uses variants of DL to formalize individual 
actions, sequences of actions (processes), and their effects. 
The remainder of this paper is devoted to elucidating propo- 
sitional dynamic logic of derivation (PDI.D). 

SYNTAX 

Let ;, be a first-order language equipped with functions, 
predicates, connectives, quantifiers, and perhaps even 
modalities. L has the usual formation rules for first-order 
languages. The details of L will not concern me very much 
here Let T be a theory over the language L. T is assumed 
to be axiomatizable with a set of axioms and rules of infer- 
ence. 'L, the language of PDLD, can to some extent be con- 
sidered a meta-language for for theories over L. Formulae 
over 'L will typically be used to specify how the formulae of 
T are actually derived from T's axioms and rules of infer- 
ence. This specification will be in the form of an axioma- 
tized theory T. We will call T the mechanization of T. In 
effect T, when so elaborated, will (partially) specify a rea- 
son maintenance system for the theory I.' 

L has two sets of symbols: the atomic formulae and the 
atomic derivations, collectively denoted as /„ and /0, respec- 
tively. The atomic formulae are further subdivided into two 
classes, the proper atomic formulae and the reified atomic 
formulae. '<t> is a reified atomic formula of 7. if, and only if, 
<t> is a formula of L. We will use (possibly subscripted) i>, I|J, 

and x to denote formula variables of L, 'I1, vl', and x to 
denote instances of formulat . f /.; p, q and r to denote for- 
mula variables of 'L; P, Q, and R to denote instances of 
atomic formulae of 'L; a and (i to denote derivation vari- 
ables; and a and b to denote instances of named atomic 
derivations. There is also the anonymous atomic derivation, 
H. The proper atomic formulae are meant to behave like the 
truth value bearing constants of ordinary propositional logic. 
Intuitively reified atomic formulae are formulae that are 
asserted as deduced after some instance of a rule of infer- 
ence in T has been applied.2 Similarly atomic derivations 
are specific instances of inference rules. The PDLD-wffs 
and PDLD-derivations are defined by simultaneous induc- 
tion: 

VVc vMih to distinguish PDLD (and the first-order dynamic logic ol 
derivation) trom the dynamic logics of programs investigated by Pratt 
el al. Ihe distinction is not grounded so much in their respective 
model theories or proof theories, hut rather in the fact that the 
model-theoretic worlds of the former arc related by program 
statements while in the latter thev are related by inferential slops. 

1. an aiomic formula is a PDLD-wff, 

2. an atomic derivation is a PDLD-derivation, 

3. for any PDLD-derivations a and ß (a;ß), («(Jß)' 01'' 
?nd a"1 are PDLD-derivations, 

4. for any PDLD-wffs ;) and q and PDLD-derivation a, 
-p, p ''q, and <(*>;) are PDLD-wffs. 

We will abbreviate -(-pV-^) to pA q; -pVjj to p- (j; (p-cj)A 
(<;-;) to p^q; <a;a"",>p (n>0) to <a">p; -<a>-^ to 
[a]!); and <aü>p to p. 

SEMANTICS 

Let W be a non-empty universe of states, elements of 
which are denoted by s and t (possibly with subscripts). A 
PDLD interpretation determines whether or not an PDLD- 
wff P is true in a state s (or s satisfies P). Atomic deriva- 
tions can be viewed as binary relations on W. Accordingly 
an interpretation is defined to be a triple <W,TT,()/>,3 

where W is a non-empty set, IT: /0-2
W
 and in: f()-2

u <w. TT 

and m provide meaning for atomic formulae and deriva- 
tions, and are extended inductively to the rest of 'L: 

m (a;ß) {<s,( >l 3M <s ,ii > C (a)^<it,t > £m (ß)} 

m(aUß)        m(«)Um(ß), 

ni(n') -    (m {<*)), 

iu{a   ') ==   {<s,f >|<f,s>€m(a)}, 

"'(l-)3    U,.e,o"'(") 

IT(PVQ)   = -rr(P)UTT(Q), 

Tr(-P)    = VV-TT(P), 

1T(<rt>P)    = {s|3(   <S,/>€   »/((l)'fClT(P)} 

TT(<r<;ß>P) - {s|3Ks,f>€»j(a;ß)Af€iT(P)) 

ir(<aUß>P) == {s|3f<s/f> €m(aUß)Af€Tr(P)} 

Tr(<a*>) =-- {s|3f<s,t>em(a*)A/eir(P)} 

ir(<«'1>( - {s|3(<s,/>em(c«'1) A(eiT(P)}. 

Denoting s(i7('I>) by s^* and <s,t>im{a) by sat and 
adopting free usage of conventional logical symbols, one 
may write for a fixed interpretation <W,ir,m> that s 1= 
<rt >* if and only if there is a ( such that saf and t l=<t>. 
Given an interpretation / = <W,tr,m>, a PDLD-wff P is /- 
valid (written I-,P) if for every s€ Wst=P. A PDLD-wff P 
will be said to be PDLD-valid (written t P) if tor every /, it 
is /-valid. P will be said to be /-satisfiable if there is an s 
such that sl=P and satisfiable if there is an / such that N^P. 

The distinction between proper and reified atomic formulae will play 
no role In the development of PDLD proper. Ihe distinction becomes 
important when the axioms that describe particular RMS's arc 
adjoined to the axiomati/ation of PDLD. 

V\e uill identif) the three constituents ol an interpretation with a 
particular interpretation / bv suing the notation W, it, m 
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A COMPLETE AXIOMATIZATION OF PDLD 

The system P will constitute an axiomatization of PDLI 
The axioms for P are the tautologies of propositional ca 
culus together with: 

[«Ußlp -([«l;'Alßlr) 
[o;ßlp »toltßlp 

[a\p ~{a]p 

[a]p -p 

[a  \fj -|a"l|(«-l/i 

i ;' -la]<a   '>p 

p -[a~ l]<a>p 

[\-z ]p -[a;|f 

when i is an integer or '*' and a C .'„ 

The rules of \t lerence 'or P are: 

if hf,  v .qand   p /»then -p q 

■1 i t pth.-n Hfajp 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

The   Coilo i u.g   two   theorems  are  straightforward   conse 
quences of I ■•■ syntax, semantics, and axiomatization above: 

Theorem 4.1 The axiomi 'I) through (10) are PDLD-tmlid. 

Theorem 4.2 The rules of inference (in and II2i arc sound with 
respect to PDLD interpretations 

Pafikh'i mmpleteness proot for propositional dynamic 
logic of programs [13] can be adapted to PDLD to obtain: 

Theorem 4.3 Every PDLD-vatid formula is in the dedvtclive clo- 
sure t'f the syblem V. ' 

DESCRIPTIVE POWER 

General Considerations on Monotonie theories 

Thus far we have done nothing that connects any partic- 
ular object theory T with a nMcHwiization 'T. In order to 
make that connection and to i-xln. ' the descriptive power 
of 'L, we will augment P with propt. axioms thai u, racter- 
ize a monotonic theory T. Assume tl> ■• I includes tht- first- 
order predicate calculus. For each axtam ( ol T, thei: is an 
axiom ''t> of T. Consider an instance ol taodi^ r^netw in 
T: 

if i-    <l>and h   «I'-H'then H V 
T r T 

This suggests an axiom for 'T of the form: 

'<t)A'(<t>-^)-<MP>,,l'3 

(13) 

(14) 

4. The principal technical hurdles m adapling Parlkh's compltK proc f to 
P are in validating certain claims that I'ankh maf.es tor 
"pseudo-models" and "closed sets   when applied to P 

5. For a complete charactcruation of a monotonic inference ruli such as 
modus ponens, one should also add the axiom '<I> '((!> -'I') •IMI'I'I' 
since the rule is entirely deterministic in its consequent. 

The second observation to be made about modus ponens is 
that it is "belief conserving." That is, anything that is 
believed before the application of modus ponens should 
continue to be believed afterward. Conservation of belief 
(and non-belief) is a property inherent in monotonic rules of 
inference. To generalize then from the case of modus 
ponens, for each inference instance (of 7 ) represented by 
the atomic derivation a, with antecedents <l'|,...,'t\ and con- 
sequent M7 there is an axiom of T of the form 

'ctjA ■ ■ ■ A'(|)n-<,;>'<I' (15) 

Given that T is monotonic, it seems natural lo require the 
following frame axiom schema to enforce belief conservation 
relative to each atomic derivation: a 

'(b-[iil'cb where <)) is any L ~wf f (16) 

-'iH«; K* where* is any L-wff ^V (17) 

It can be shown that < '<-' >'<t' can be proved from T 
(keeping in mind that T mechanizes the first-order predi- 
cate calculus), an augmentation of P, whenever 4> is a 
theorem of T. Indeed, P augmented with axioms 
corresponding to an object theory T together with deriva- 
tion and frame axioms as above will be termed the natural 
mechanization of T. This leads to asserting thai a PDLD 
theorv T completely mechanizes T just in case 

h O if and onlv if h     <!- 
T T 

.(<1)A[  h']'*.1 (18) 

Needless to say, if the object theorv 7" to be mechanized 
happened to be the pure first-order predicate calculus, for- 
mulae such as - <h >'it> cannot generally be proven in the 
natural mechanizing theorv T (1|. This observation has 
important consequences vis a' vb the proot theory of non- 
monotonic theories [10] and their mechanizations (see 
below). 

Notice that for an object theory T and mechanizing 
theory T, We have been implicitly taking <t- >'<t' to mean 
that T "believes" '<!> to be a consequence of believing the 
object theory T . Suppose P were taken as the object theorv 
of 'T.' 'T can be constructed in such a way that <!> is a 
theorem of T if, and only if, <(),;.. ;«„>'* is a theorem of 
'T for some sequence «],...,«„ of (reified) atomic derivations. 
On the other hand, it can also be demonstrated for T that 
(t is not a theorem of'T if, and only if, <(!,;...,((„ >'<!> is not 
a theorem of 'T for any sequence al a„ of atomic deriva- 
tions In fact, "f« is not a theorem of T if, and only if, 
-,'tl)-<fl ,;...,((„ >-''l' is a theorem of T for every sequence 
ii|,...,i;„ of tcificd atomic derivations. The situation that 
'rpears to obtain in ' /   then is the PDLD analogue of what 

The a' t'rtion >, > 'I does not suffice on the right hand side of the 
"if. and only it" as T m\h^i he a non-monotonic theorv. The second 
clause is necessary in order to assure that once T derives '<V it 
"sticks" and thai 7 does no; oscillate, believing and disbelieving ''l>, 
.'"■!'.g to sorrv1 belief revision policy. 

> v such a Ihing is possible, let 'L be the language L together 
i • t1 formula ''I* whenever <l> is a formula of 'L. Consider 'P. the 

- lsiLni " taken over 'L together with an axiom '<!> whenever '!> is an 
axiom of P, the natural axiomatic encodings of the rules of inference 
(modus ponens and necessitalion) of P, and the frame axioms for 
(hose rules of inference. In the same spirit as reified atomic 
formulae atomic derivations that arc instances ol modus ponens and 
necessitahon ol the system P will be called iufied. 
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Moore [12] calls autoepistemic stability of an ideally rational 
agent. Loosely speaking, 4> is a theorem of T if, and only 
if, from every mental state (wherein * mav or may not 
believed) there is a derivation leading to a mental state in 
which <J) is believed. Conversely, 4) is not a theorem of T 
if, and only if, (dis-)belief in «t is invariant under derivation. 

Specifying Breadth-first Search 

An explicit derivation of * is a formula of the 
<fl1,...,al>'<>. 'T enumerates the theorems of T 
breadth-first fashion if and only if 

1. 

torm 
in   a 

for each theorem <t> of 7, there is an explicit deriva- 
tion of <t> that is a theorem of T, 

2. the sequence of named atomic derivations that 
appears in the prefix of '<t> corresponds to the 
sequence of inference rules applied in the proofs of 
the theorems of T when enumerating them in 
breadth-first order, 

3. if ^| precedes V, in the breadth-first ordering, 
then the derivation of H', cannot be proved as a 
theorem of '7 until y, has been proved. 

A formula T is said to be of rank n if the shortest proof 
of that formula is of length n. Then axioms of T are of rank 
0. Let A„ be an ordered list of the last atomic derivations 
applied in the proofs of each of the formulae of rank n." 
Breadth-first enumeration is achieved by replacing axiom 
(15) above with (19,20) below: 

C      A'<t>       ,A A'lt n ,m .k - <a     >'H'     AD n ,m   ^ n ,m 

(19) 

(20) 

and adding boundary conditions 

D
n .,„ 'i",, ,„, |C„ „, 11 if there exists «„ ,„ M (21) 

D„ ,m -K ,m \cn M,I otherwise (22) 

where the a„ „, is the »i'th atomic derivation on the list A,,, 
and the *„ m's and V,, „, are, respectively, the antecedents 
and consequent of the atomic derivation a„ ,„. The interac- 
tion of the C's and D's prevents H',, m + , from being derived 
before f „ „, is derived. Indeed, no formula of rank n is 
derived before every formula of lesser rank is derived The 
^'s are thereby forced to be produced in breadth-first order. 
Of course it must be verified that a theory T that mechan- 
izes T completely, when modified with the breadth-first 
axioms, continues to mechanize T completely. To that end 
the following holds: 

Theorem 5.1 // T (S the natural mechanization of T with axiom 
(15), and if 'T is the breadth-first mechanization of T with 
axioms (19,20,21,22) replacing {15), and if h < H'> '*, then 
h '< |-*>'*. r 

With a different set of boundary conditions, a depth-first 
enumeration of the theorems of T could have been 
achieved. That is, there is a set of boundary conditions such 
that 

1. for each theorem <1> of T there is an explicit deriva- 
tion of <t> that is a theorem of T, 

2 the sequence of named atomic derivations that 
appears in the prefix of ''t corresponds to the 

sequence of inference rules applied in the proofs of 
the theorems of 7 when enumerating them in 
depth-first order, 

3. if M', precedes H', in the depth-first ordering, then 
the derivation of M'2 cannot be proved as a theorem 
of T until H'I has been proved. 

The interaction between the axioms (19,20) and boundary 
conditions suggests a general "programming" methodology 
tor controlling the application of derivations. The proposi- 
tional constants D„ ,„ and C„ „, should be viewed as "ena- 
bling" and "completion" flags for the firing of the atomic 
derivation nnm. These constants indicate respectively that a 
derivation can be used and that a derivation has been used. 
Programming then consists of designing systems of boun- 
dary conditions to achieve the desired sequencing of infer- 
ences by suitably controlling the truth values of enabling 
flags in various mental states. 

Goodwin [5] (and McDermott before him in (101) cites a 
number of problems in using deduction to control deduc- 
tion. He remarks that attempts at controlling inferences by 
deductive methods have typically resulted in invalidating 
particular inferences altogether, or alternatively resulted in 
RMS states that assert that some proposition has been pro- 
ven if and only if it has not been proven. It should be clear 
from the discussion of programming above that atomic 
derivations are enabled with respect to particular states. As 
a consequence, an inference can be temporarily en-(dis)- 
abled, and there is no problem whatsoever in having some 
proposition 'V be derived by some derivation that has since 
become disabled. The axiom schemata (21,22) could just as 
well have been written 

D« .m -I",, .,„ lC„,m + iA-D„ „, if there exists a„ ,„ t,      (23) 

D
n,m-K,mIC„+i,iA-'Dnm otherwise (24) 

which have the effect of disabling each of the (19,20) after 
use. 

Finite Reasoning Agents 

At the outset of this nole we proclaimed PDLD ?s p 
mechanism for describing the behavior r fin>*e reasoning 
agents. Careful scrutiny of PDLD inti-pfe*ation« w:i| n u 
that PDLD theories admit ir.terprefc tions v Itu it *; ..o-, - 
with any reasonable notion o   a Sn,  ■   i^ nt iside- ■■•: 
following observation"' I. ov. lb •'...> of aw je ol imntal 
states related by va-.kv.. afiirrk derivations ., a- •'spond- 
ing to the fK-'w ot SOI.K <n 

extend infinitely info 'he /■as1 

tai state can he imrnedi i ^.v 
Finally, stat,j-> -an be "•••.■list." 
can be ; u. h th->t or i. ,t( 
<s,f >€m(«)  tb' i    is  ,   /( 
<»,/ >0/M.M. 

r .Tic"'t--,1 t.me, th'.r time ^an 

. .■' '"tui t. , lorf.iive,-, -i -nen- 
■t.Tc lei' ; n.^'tiple stall-:, 

Tliai -s, PDLD mteypretattons 
'vw derivation a whi.'never 
i.h   tmit   <.-     >tm(fl) anc1 

8    ll could bo th,u the Formuldc of rank n arc intinitc in number. In that 
case the enumeration will never get beyond the formulae o( rank it. 
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As it turns out, all of these anomalies can be legislated 
away with appropriate axioms. Tense logics |17| that impose 
various topologies on the ordering of time provide much of 
what is needed. To focus on one of the anomalies, consider 
the infinite extension into the past. This can be eliminated 
with: 

<h'>^<h_,>f)V-,f). (25) 

This last formula says that every state either is, or is pre- 
ceded by, a state which is not immediately preceded by a 
state that satisfies pV-p. But since every state satisfies pV-.p, 
this formula can be satisfied if, and onlv if, every state is 
either immediately preceded by no state at all, or is pre- 
ceded by some state which is in turn preceded by no state. 
This axiom prevents infinitely long (receding) chains of 
states. On the other hand, it does not prevent interpreta- 
tions having a particular state from which there is a reced- 
ing chain of any given finite length. More axiomatic 
machinery still i.-; required to prevent that 

Non-monotonic Theories 

In considering the descriptive power at PDLD with 
respect to non-monotonic theories it should first be noted 
that the intuitive statement of the rule of possibilitation 
introduced in [11] is directly expressible in PDLD. Recall 
that McDermott and Doyle first gave an informal definition 
of their non-monotonic rule of inference which stated that if 
a proposition were not provable in a theory T, then the 
negation of the proposition is provably possible. Though the 
intent of this rule is clear, it is unfortunately circular. 
McDermott and Doyle had to appeal to an indirect technical 
device to capture possibilitation. In the PDI.D mechaniza- 
tion of T, however, their original notion of possibilitation 
can be expressed as; 

>'^(b- <h <> (b (26) 

where "<>" is the consistency modality of [10,11|. Possi- 
bilitation is well defined but, unfortunately, not effectively 
computable in general. Since there is no magic, a non- 
monotonic theory T that is not recursively enumerable, can- 
not have a complete mechanization that is recursively enu- 
merable It a (partial) mechanization 'T is to remain re., 
such mechanizations cannot in general have the formulae 
^<(-' >'-.(b (on the antecedent side of 26) as theorems. 

The whole point of a non-monotonic logic is to formalize 
the default and defeasible inferences that are evident in 
common sense reasoning and practiced by various RMS's. It 
should be evident that PDLD provides a mechanism for 
directly formalizing such reasoning without necessarily 
resorting to the sorts of infmitary processes implicit in 
McDermott and Doyle s rule of possibilitation. In order to 
realize defeasible inferences, a PDLD theory cannot have 
the general frame axioms (16,17); not all atomic derivations 
will be belief conserving. A default introducing axiom 
scheme might be: 

,cl>-<|->' (27) 

which says that if -ib is not currently believed then <\> can be 
believed. Of course, it might be the case that I- <l_ >'-'<t>- 
Thus, the simple notion of default reasoning supported by 
[27) would admit states to interpretations of T that sanc- 

tioned inconsistent beliefs. Now for 'T to have inconsistent 
beliefs is not the same as T's being inconsistent. On the 
other hand, states that have 'it>A'-'t> Irin? are irrational, and 
to have <l-*>'(t)A'-,<|) as a theorem of T makes T irra- 
tional. RMS's generally have backtracking mechanisms to 
revise the set of current belle's so that consistency of beliefs 
is restored. Although PDLD as presented here is not expres- 
sive enough to describe all the details of those mechanisms, 
it can describe the general policies that are typically 
enforced by those mechanisms. A weak policy might be: 

(■<t.A^(t>HH-,('.t,A^(t>) (28) 

which says that if the reasoning agent is in a state that is 
irrational with respect to a particular formula tf), all states 
immediately reachable from that state should be rational- 
ized. A much stronger (and typically unenforceable by effec- 
tive computation) policy is stated by: 

('cK-tbHH^H  > C*'-*) (29) 

This schema says that if the reasoning agent is in a state 
that is irrational with respect to a particular formula (b, the 
agent should do something (e.g., withdraw sufficient prem- 
ises or hypotheses in which the irrational state is grounded) 
such that at no future time can the agent be in a state irra- 
tional with respect to 6. These examples of deduction and 
premise control policies seem to respond directly to 
McAllester's (9| objections to non-standard logics: 

The problem with non-monotonic logics is that 
they bring in non-traditional formalisms too early, 
muddying deduction, justifications, and backtrack- 
ing. The aspect of truth maintenance which cannot 
be formalized in a traditional framework is premise 
control... 

Dynamic logics of derivation offer an opportunity to make 
the various issues explicit. 

CONCLUSIONS 

In the foregoing we have developed the syntax and 
semantics of the propositional dynamic logic of derivation, 
and presented a complete axiomatization for the logic. By 
way of examples we have illustrated some of the expressive 
power available in PDLD for specifying and analyzing the 
behavior of reason maintenance systems. Finally we have 
offered dynamic logic a; an alternative to the sorts of non- 
monotonic logics investigated heretofore as a means for giv- 
ing a formal account of some aspects of common sense rea- 
soning. 

PDLD obviously cannot be completely expressive of all 
properties that might be ascribed to an RMS. Lor that, one 
r 'quires the first-o.der dynamic logic of derivation [2]. In 
the latter formalism one can not only give a complete first- 
order account of control protocols, but also of the collateral 
data structures (viz. "no-good" lists, hypothesis contexts, 
dependency relations, etc.) that RMS's utilize in the belief 
revision process. Between PDLD without the h derivation 
and full first-order dynamic logic of derivation there are 
many alternative logics having different powers of expres- 
siveness. The analogous dynamic logics of programs have 
been extensively investigated. We believe that those investi- 
gations will offer a good starting point for developing an 
RMS specification logic which is suitably expressive, while 
being deductively tractable. 
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ABSTRACT 

Goodwin and de Kleer have each investigated certain 
fundamental aspects of reason (or truth) maintenance sys- 
tems (RVlS's), non-monotonic justifications in the case of the 
former and assumption-based justifications in the case of the 
latter. To a certain extent, each of their mechanisms can 
simulate the other, though not altogether satisfactorily. By 
recasting the reason maintenance problem in a lattice- 
theoretic framework we are able to develop a body of 
mathematical theory that elucidates reason maintenance in a 
general way so as to include both assumption-based and 
non-monotonic justifications in a direct and transparent 
fashion. More generally, if a method of labelling proposi- 
tions so as to justify them according to some reasoning 
agent's constraints of belief also happens to conform to the 
postulates of Boolean lattices, the labelling system can be 
accommodated under the same umbrella of abstraction. The 
mathematics immediately suggests a collection of algorithms 
that support efficient revision of beliefs as a reasoning agent 
changes its assumptions and/or its constraints on beliefs. 

[NTRODUCTION 

We propose here a single theoretical framework which 
subsumes various notions of reason maintenance, including 
the assumption-based justifications reported by de 
Kleer |9,8,10,11] and the non-monotonic justifications 
reported by oodwin [16, ."MS,19). In this note we will give 
an abreviated account of a body of work that is fully 
reported in [4|. Our aim here is to motivate the work, 
present some of the mathematical theory, and interpret the 
theory in relation to other reason maintenance systems and 
in terms of algorithmic realizations. 

We have a conservative view of the scope of reason 
maintenance systems. A similar view is implicitly evi- 
denced in de Kleer's work and explicitly articulated by 
Goodwin; A reason maintenance system is a utility that 
supports deductive problem solving. It maintains a data- 
base of facts, some of which a client reasoning system holds 
as currently believed, others not.1 It also supports relations 
over the facts that serve to record the arguments that sanc- 
tion a reasoning agent's belief therein. Because a reason 
maintenance svstem must be founded on low-level facilities 
for retaining and matching data structures representing 
facts, it may also be convenient for the reason maintenance 

1    Note   that   failure   to  believe  a   fact  is  not  identical  to 
believing its negation. 

svstem to export interfaces for detecting database incon- 
sistency and other "interrupts" triggered by the occurrence 
of various patterns in the database. Indeed, we see facts or 
propositions as exhibiting a number of salient characteristics 
for a problem solver; true, provable, and proven. The prob- 
lem solving mechanisms for attributing those characteristics 
are observation, deduction, and reason maintenance. 

Because of our views on how a problem solving system 
should be structured, there are some functions that we 
believe the reason maintenance system should iwt fulfill. It 
should not be a mechanism for managing the restoration of 
consistency when a reasoning agent discovers itself to be in 
an inconsistent state. It should neither determine what con- 
stitutes a valid deduction nor manage the sequencing of 
inferences. The reason maintenance system may provide 
support for all of the foregoing, but is not the most 
appropriate place to marshall such efforts. 

The initial motivation for this work was the desire to 
unify in a single mechanism the reason maintenance 

paradigms of de Kleer and Goodwin. The systems of both 
investigators can be viewed as constraint propagation 
mechanisms. Given disjunctive sets of sets of premises and 
a set of (monotonic) deductive constraints, de Kleer's ATMS 
tells a client problem solving system what things it is 
currently obliged to believe assuming one or another of the 
sets of premises. Goodwin's LPT, on the other hand, tells 
the client problem solving system what things it is currently 
obliged to believe given a single set of premises under 
deductive constraints, some of which may be non- 
monotonic in nature.2 Our original intuition was that it 
shojld be possible to account simultaneously for multiple sets 
of premises and non-monotonic deductive constraints. 

This intuition arose from the striking similarity that we 
observed in the computations of reason maintenance sys- 
tems and the computations of global flow analysis that 
underly modern optimizing compilers [2,20,21,23]. Global 
flow analysis can be couched in the following terms; Given 
the constraints imposed by individual program statements 
and their interconnecting topology, what tacts is a reasoning 
agent  (in  this case concerned  with  programs) obliged  to 

A monot :onic deductive constraint obliges a rational agent 
to believe its consequent given that if currently believes 
all of its antecedents. A non-monotonic deductive 
constraint obliges a rational agent to believe its 
consequent given that it believes all of its monotonic 
antecedents and none of its non-monotonic antecedents. 

REASON MAINTENANCE 
FROM A LATTICE-THEORETIC POINT OF VIEW 

Dan Benanav, Allen L. Brown, Jr., and Dale E. Gaucas 
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believe about the state of computation at various points in 
the program's control flow? In a sense the Information pro- 
pagation problem solved by global tlow analysis can be 
viewed as the dual of the reason maintenance problem. The 
former assigns propositions to contexts established by vari- 
ous paths through a program. The latter assigns contexts of 
belief to propositions under various deductive constraints. 
There are two principal methods of solving information pro- 
pagation problems. Both hinge on solving systems of equa- 
tions whose unknowns range over the domain of an alge- 
braic lattice. The work that we will describe presently 
retains the idea of equations over a lattice, but for various 
technical reasons (principally non-monotonic constraints) the 
solution methods used in global tlow analysis turn out to be 
inappropriate. A rather different solution method has been 
developed. 

REASON MAINTENANCE 
IN A LATTICE-THEORETIC FRAMEWORK 

We begin by introducing the idea of a Boolean latfice. A 
complete account of such structures can be found in any ot 
[3,5,22]. For our purposes here, the elements of such a lat- 
tice are meant to capture the idea of alternative situations. 
With respect to any particular situation a finite reasoning 
agent takes certain formulae as premises. 

Definition 2.1 Let ß be a Boolean lattice equipped with the 
usual meet, join, and complementation operators; a partial 
order, <; and maximum and minimum elements, T and i 
respectively. Elements of ß will be called situations, and will 
be denoted by A and B. A and B (possibly subscripted) are 
lattia' expressions in ß. Moreover, if A and B are expres- 
sions in ß then soare-4vB,,4Aß,Ä and E. 

Especially important to us will be the existence of the 
partial order, the complement, maximum and minimum ele- 
ments, and the mutual distributivity of meet and join. 

A lattice unknown is a super- and/or subscripted S or (. 
Each lattice expression in ß and unknown is a lattice form in 
ß. Moreover, if X and Y are forms in ß then so are 
X v V, X A V, X and 7. Individual (fixed) lattice forms in 
ß will be denoted by X and Y, possibly subscripted. Lattice 
unknowns correspond to what some investigators have 
called nodes. Every fact or proposition has an associated 
unknown. Note that a proposition and its negation have 
distinct associated unknowns. 

Definition 2.2 A kltke equation over ß is a relation of the 
form X ;   Y where X is a lattice unknown and Y is a lattice 
form. 

Definition 2.3 A lattice equatioml system over ß, 1, is any 
collection of lattice equations over ß such that the total 
number of lattice unknowns occurring on the right-hand 
sides of the equations is finite and any lattice unknown 
occurs at most once on the left-hand side of an equation. 
The equation on whose left-hand side S apptars will be 
called the s equation. If the right-hand side of the s equa- 
tion is a lattice expression, s will be termed trivial. 

2 will be sub- or superscripted on those occasions when 
it is useful to distinguish among various equational systems. 
Unless there is some ambiguity in the context, we will freely 
say "system" without modifiers. A lattice equational system 
should be interpreted as encoding the way a reasoning 
agent's belief (or disbelief) in a collection of propositions 
entail belief in others. 

Definition 2.4 If S is a lattice equational system such that 
the right-hand side of each equality is of the form v'.X,, 
where each X,, is an element of ß or an unknown (possibly 
complemented), then i is said to be in disjunctive normal 
form. 

Disjunctive normal form, a consequence of distributivity 
in ß, gives us a useful way of presenting lattice forms in 
general, and lattice equational systems in particular. Since 
we can transform any form to disjunctive normal form, we 
will usually treat forms over ß and lattice equational sys- 
tems as if thev were in disjunctive normal form. 

Definition 2.5 A solution to a lattice equational system, 2, 
is a function, F, from the lattice unknowns appearing in the 
system into ß such that if for each equation in the system, 
each unknown s in the equation is replaced by r(s) the 
equation holds in ß. A lattice equational system having a 
solution will be termed solvable. 

We will, in fact, take solutions as assigning values from 
ß to every unknown, s, whether it is mentioned explicitly 
on the left-hand side of an equation or not. Put another 
way, unknowns, s, not having an associated equation, 
implicitly have the equation s - i. We will interpret lattice 
equations as constraints. A solution, then, is a labelling of 
propositions with situations. In particular, the situations are 
those in which a reasoning agent is obliged to believe the 
correspondingly labelled proposition given acceptance of the 
constraints imposed by the system. 

Definition 2.6 Let X be a form in ß and lattice unknowns 
of a system, S. If F is a solution of S, then F(X) is the 
expression over ß that results from substituting for each 
occurrence of each unknown, s, the value F(s). 

Definition 2.7 A justification of a disjunctive normal form 
lattice equational system, S, is an ordered pair d = s,X , 
where s appears on the left-hand side of some equation in 2 
and X is a disjunct on the right-hand side of that same 
equation. Also, s is called the consequent of the justice, rcn 
d and each conjunct of the disjunct X is called a non- 
monotonic or monotonic antecedent of d depending on whether 
or not it is complemented. The sets of monotonic and non- 
monotonic antecedents of d are respectively denoted a(d) 

and a(d). 

Definition 2.8 A justification, d, is valid with respect to a 
situation. A, and a solution, F, of an equational system X if 
and only if, 

A <:    A    F(s)A    A    r(s) 
sta{ä) sm{ä) 

form    is 
and    not 

The assumption of disjunctive norma 
convenience for mathematical analysis 
requirement for the algorithms engendered bv this 
analysis. This is in contrast to the ATMS's requirement of 
a disjunctive normal form representation. 
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We will write VaM(A,d,T) to indicate that d is valid with 
respect to A and solution P. 

Definition 2.9 A solution, F, is well-founded with respect to a 
lattice eqmlioml system. V, at lattice unknown, s, if and only if 
r(s) = V. A;, and for each A,-, there is a partially ordered 
set, '.PA, < ^), such that PA is a set of justifications from S 
and 

1.    there is a justification, (/  in PAl whose consequent is 

2. for every justification tl, in T, , Valid(4,,t/,r), 

3. every unknown, s', that is a monotonic antecedent of 
some d in PA is also the consequent of some justifica- 
tion d' in P, and d' < Al d. 

Definition 2.10 A solution to a lattice equational system is 
well-fou, 'ed if and only if it is well-founded with respect to 
the system at every lattice unknown mentioned in the sys- 
tem. 

We interpret justifications, validity and well-foundedness 
in the following way: Validity describes the circumstances 
under which the consequents of a justification are to he 
believed given the belief status of the antecedents. A justifi- 
cation therefore constitutes an independent source of sup- 
port justifying belief in a consequent. Chaining justifica- 
tions together constitutes a supporting argument. Since we 
wish for our arguments to be non-circular, we impose an 
additional condition, well-foundedness, to guarantee that 
state of affairs. 

Using only the concepts we have introduced thus far, it 
can be demonstrated that finding solutions to systems is 
NT-hard in the number of equations. Doyle [12] and 
Goodwin [19] have questioned whether or not the well- 
foundedness condition might simplify the solution finding 
process. Unhappily, finding well-founded solutions is also 
NT-hard in the number of equations. 

Definition 2.11 A path from s0 to sa is a sequence of triples 
of the form X,,/,,«,., X.,Y?,s2, ■■■, X„,Y„,5„ , where X, is 
an antecedent of the l", disjunct of the s, equation in S. X, 
is a complemented (uncomr/lemented) unknown if it is a 
complemented (uncomplemented) conjunct of Y, with 
X, e {s, -i,s,. ,} and 1 s / s n. A path is odd if it has an 
odd number of complemented unknowns and even other- 
wise. A system is odd (and even otherwise) if it has an 
unknown, s, and an odd path from s to s. 

Thus far we have established a framework within which 
we can formally describe reason maintenance problems. For 
this framework to be truly useful we must provide a way of 
finding solutions in a structured fashion. There is no obvi- 
ous means of finding solutions of lattice equational systems 
because of the nature of the meet and join operators. Infor- 
mally we may say that meet and join do not have 
"inverses" in the sense that subtraction and division are the 
respective inverses of addition and multiplication in an alge- 
braic field. For the sake of brevity in the remainder of this 
section, we will focus on even lattice equational systems.4 

To the best of our knowledge, the only use to be made of 
odd lattice equational systems is to implicitly encode 
alternatives. We believe, as does de Kleer, that 
alternatives are better encoded explicitly in assumptions. 

Finding solutions depends on  a pair of lattice equational 
system   transforming  operations that   yield   new  systems 
whose well-founded solutions are well-founded solutions of 
the original system. 

Definition 2.12 A local substitution transformation under s of 
a lattice equational system, S, results in a new system 1' such 
that 

1. the s equation of S is in S', 

2. if S has no equation having an occurrence of s on its 
right-hand side, (r,(2) = I; otherwise, all the equa- 
tions of S except for one having an occurrence of s on 
the right-hand side, say the s' equation, are in S', 

3. a new s' equation is included in S' that is identical to 
the s' equation in 2 except that one occurrence of s on 
the right-hand side of the s' equation is replaced by 
the right-hand side of the s equation, 

4. there are no other equations in S'. 

This transformation is denoted a, (S) = 1'. 

Definition 2.13 A global substitution transformation under s of 
a lattice equational system, 2, denoted (/(S), is defined by 
crs = a" where n is the least non-negative integer such that 
(Ts"+1(2) = (rs"(2). 

Definition 2.14 A minimizalton transformation under s of a 
lattice equational system, S, results in a new system £' such 
that 

1. if the s equation of S is of the form5 s = Xj v 
(X-, A s) v (X3 A s), then the equation, s = X, V X3, is 
in 2', 

2. all the equations of 2 except for the s equation are in 
2', 

3. there are no other equations in 2'. 

This transformation is denoted m(2) = 2'. 

When applied to an even equational system, 2, a compo- 
sition of the above transformations in the sequence 

M-s.. 0 as 

where {sjl si s M} is the set of non-trivial unknowns in 
2, yields a new system having only lattice expressions (con- 
stants) on the right-hand sides of its equations. These 
expressions can be demonstrated to constitute a well- 
founded solution for 2. Such a composition of transforma- 
tions in analogous to Gaussian elimination [6,14]. There is a 
phase of M pairs of minimization and global substitution 
operations followed by a phase of M global substitution 
operations. The first phase corresponds to "forward elimi- 
nation;" the second phase corresponds to "backward substi- 
tution." We now know that for even lattice equational sys- 
tems, at least, we can always find solutions. We have addi- 
tional mathematical results that essentially guarantee a 
unique   factorization    for   a    solution,    F.     Those   results 

The s  equation can always be rearranged to be in this 
form. 
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together with the "Gaussian elimination" just described can 
be used to generate in a structured fashion all the solutions6 

to every system, even or odd. 
The lattice-based theory of reason maintenarce suggests 

a number of algorithmic performance improvements, some 
oriented toward batch processing, some toward incremental 
processing. Certain improvements derive from topological 
considerations. A particular notion of connectivity can be 
attributed to equations, whence derive notions of strong 
connectivity [1,13,15] and strongly connected subsystems 
Considerations on the structure of strongly connected sub- 
systems lead to improved computational complexity results 
in suitably restricted cases. Similarly, purely algebraic con- 
siderations can lead to performance improvements in incre- 
mental algorithms when certain local conditions are met. 

EMBEDDING ATMS AND LPT 
IN A LATTICE-THEORETIC FRAMEWORK 

Having introduced our own formal machinery, we turn 
now to applying it to the description of the reason mainte- 
nance formalisms of de Kleer and Goodwin. 

Assumplion-based Truth Maintenance 

De Kleer's basic7 ATMS labelling algorithm can be cast in 
a lattice-theoretic framework as follows. Given de Kleer 
assumptions {/l,|l < / s tt}, let the domain of the lattice, ß, 
be the closure under meet, join and complement of 
{Ajll s i< n}. An atom of (i is an expression of the form 
A"=l %, where X, is either Al or A,. Let ,4 denote an atom 
of ß and B, and ß2 b arbitrary elements. If A and A' are 
distinct atoms, l = A * A' and T = A v A. The partial 
order for ß is defined as follows; 

AsAl  m A, appears uncomplemented in 'V/1., %, 

AsA,  ■ Aj appears complemented in /\"=1 X}, 

/Vsß1AB2 = 4 sß, and/l<B2, 

Asß,VB2 m ,4 sB, or/\sß,, 

B\-B2 - for every atom ,4, AsB,-,4sB-,. 

For a given set, /, of AIMS justifications, a lattice equa- 
tional system, 1, over ß can be constructed as follows. For 
each justified node, s, in /, S contains the s equation, 
s = vtA.Xft, where X,k is the ith antecedent node or 
assumption of the <:th justification of s. For each unjusti- 
fied node s' in /, S contains the s' equation, s' = i. 

Since de Kleer does not supply a formal proof of correct- 
ness of the ATMS algorithm, we have no direct way of 
establishing equivalence between the ATMS label propaga- 
tion and solving the lattice equational system just given. 

6 Lattice equational systems with complemented 
unknowns have, in general, more than one solution. 
This is in contrast to the reason maintenance problem 
addressed bv the ATMS. Although de Kleer counts each 
disjunct of an ATMS label as a "solution," from the point 
of view of lattice-theoretic reason maintenance the entire 
disjunctive expression of an ATMS label is a single 
solution. 
For the purposes of this discussion we exclude de Kleer's 
nogood mechanism from the basic ATMS. Anv nogood 
environment can be accounted for if we algebraically 
identify the corresponding lattice expression with i. 

On the other hand, de Kleer gives a formal specification for 
the ATMS solutions. We can show that solutions to the lat- 
tice equational encoding satisfy the specifications given for 
ATMS solutions. In particular, we demonstrate in [4] that 
the lattice equational solution is soumi, complete and minimal 
in the sense that de Kleer uses those terms. 

Logical Process Theory 

Many of the formal concepts we introduced in §2 are 
either algebraic restatements or generalizations of 
Goodwin's graph-theoretic notions. Consequently, framing 
logical process theory within our Boolean lattice formalism is 
completely straightforward. The main task in LPT is to 
determine an admissible labelling of a given database, D, of 
inference steps. Briefly, an admissible labelling is a function 
from a language L to the set of labels \IN,OUT}, where 
every formula labelled IN has a well-founded argument. 
An inference step, ii, is a triple, [M,N,c) where 
M,N C i, c f. L, and / is the set of all inference steps. The 
set M ; M-antes((/) contains the non-monotonic 
antecedents of d, the set N = NM-antes((/) contains the 
non-monotonic antecedents of d, and c is a consequent of 
d. Given a database D, one can construct a lattice equa- 
tional system 1, such that a well-founded solution of S 
corresponds to an admissible labelling of D, To do this let 
{5,1/ t L} be a set of lattice unknowns and let ß be the 
Boolean lattice consisting of the set {T, i}. For each prem- 
ise, /, let S contain the equation s, = T, otherwise ot / is 
the consequent of some inference step in D let 2 contain 
the equation, 

u n n •• 
l.€NM 

where D' = {d\J t D /\conseq{d) = /} and M and NM are, 
respectively, the monotonic and non-monotonic antecedents 
of d. If I is not the consequent of any inference step in D 
we let S contain the equation s, = i. Any well-founded 
solution, P, of S determines an admissible labelling if we 
associate T with IN, and l with OUT. 

Extensions to ATMS and LPT 

We have now seen how the model of reason mainte- 
nance proposed in §2 can embed both ATMS and LPT. 
Given that one wishes to have justifications that admit both 
non-monotonic and assumption-based support, the formal- 
ism that we have introduced can do this directly without 
appeal to these embeddings. De Kleer has used the nogood 
and choose mechanisms to simulate non-monotonic justifica- 
tion. The Goodwin formalism can accommodate assump- 
tions by solving multiple labelling problems. It is instructive 
to contemplate natural extensions of each of their formal- 
isms to treat (respectively) non-monotonicity and assump- 
tions as first-class citizens. 

The natural and immediate extension of the embedding 
of L! f considers solving n Goodwin systems of equations in 
parallel. We require that the n systems differ only in terms 
of the unknowns that correspond to premises, that is, un- 
knowns, s, satisfying equations of the form s = T. This is 
a semantically natural extension in that it corresponds to the 
reasoning agent's entertaining different sets of propositions 
as hypotheses. We augment the definitions of LPT as fol- 
lows: 

s 



Definition 3.1 A premise set p is any subset of the language 
L. A labelling G is a function from L ~P\P(L)) where Z'fL) 
denotes the power set of L. A database is a pair D,P where 
D is a set of inference steps and P is a set of premise sets. 
The antecedents of an inference step are non-empty. 

Definition 3.2 Given a premise set, p, and a labelling, G, 
we can define functions IN and OUT as follows: 

f2V(G(p)= {/lpeG(/)} 
OL/T(G,p) = {l\p IG[1)} 

Definition 3.3 An inference step d is valid with respect to a 
labelling G and a premise set p written Valid(;My,G) if and 
onlv ff M-Antes(ii) C IN(G,p) and NM-Antes(d) £ 
OUT(G,;0- 

Definition 3.4 G is a relaxation over database D,P if and 
only if 

Vp t P. lN(G,p) = {iBd e D. Va'ij (;7,d,G)and 
(conseq(J) = /)} U/' 

Definition 3.5 A labelling G is well-founded for a database 
D ,P if and only if tor all ;) e P there exists a partial order- 
ing < of/   \J I such that: 

- e IN'(G,p). =y « D    (con8eq(d) =/) and  Valid(p,d,G) 
and (J- /) 

and 

vd e D. Valid(p,d,q) -v/ e M-antes (d) (/<d) 

Definition 3.6 An admissible labelling of a database (D,P) is a 
well-founded relaxation of ;D,P\ 

Now we are in a position to encode a database in terms 
of a lattice equational system. Given a database, 'D,P), let 
{s, 1/ ^ L} be a set of lattice unknowns. Let ß be the 
Boolean lattice consisting of the power set of P. For each 
/ t L construct the following equation8 

u n s/, 
l.lM 

n   n «i U {pip € P and / ep} 

where D' = {d|d « DA conseq(t/) = /} and M,NM as 
before. Let 2(D,P,L) be the set of all such lattice equations 
for each / e L. Note that only if the / is the consequent of 
some inference step in D will the / equation contain lattice 
unknowns. Since D is a finite set there are finitely many 
equations with lattice unknowns. In [4] we formally 
demonstrate the equivalence of the above encoding to the 
extension of Goodwin's LPT that we informally described at 
the beginning of this subsection. 

We extend de Kleer's ATMS to accommodate non- 
monotonic justifications bv first reinterpreting the basic 
ATMS in terms of the embedding above of the extended 
LPT. The basic ATMS accepts a set of justifications and 
assumptions, and determines all possible contexts and their 
contents. We take the language, I., to be the set of nodes 
and        assumptions. Each        de Kleer        justification, 
«I, a,, ■ , «„ ^ ß can be viewed as an inference step 
{a),a;,, •••, a„}, 0,ß .   Each de Kleer premise, ,t, is replaced 

It is worth comparing this equational system with the 
one constructed for the unadorned Goodwin embedding. 
It differs onlv in the adjoined premise set. 

by the set of justifications {A, =*• ,v|l s i s «} where 
{A,|l s I S n} is the set of assumptions. For any set of 
de Kleer justifications and assumptions, let D,P be a data- 
base, where D is the corresponding set of inference steps 
and P is the power set of the assumptions. It can be shown 
that for any admissible labelling, G, of D,P , the set 
IN(G,p) corresponds to the context of the environment p. 
The non-monotonic extension follows immediately by allow- 
ing the non-monotonic antecedents of an inference step to 
be non-empty. Observe that LPT allows for the direct 
introduction of non-monotonic justifications whereas the 
basic ATMS mechanism does not. This is because 
de Kleer's native semantics for the ATMS is essentially pro- 
positional logic. To accommodate non-monotonicitv some 
other semantics is required, hence our reinlerpretation. A 
final note: lattice-theoreticr.llv framed reason maintenance, 
in its full generality does not appear to be naturally describ- 
able as an extension to either ATMS or LPT". 

CONCLUSIONS 

In the foregoing we have introduced a general model of 
the problem of reason maintenance couched in a lattice- 
theoretic framework. We believe that any of the reason 
maintenance systems familiar to us in the literature can be 
construed as solving systems of lattice equations. In partic- 
ular, we have shown how to encode de Kleer's ATMS and 
Goodwin's LPT in this framework, as well as natural exten- 
sions of each of those systems to accommodate aspects of 
the other. We introduced the fundamental transformations 
of substitution and minimization and showed how they 
could be used to produce solutions. We have observed that 
we have other mathematical results that allow us to con- 
struct all solutions to all systems. We have also informally 
described some mathematical considerations that lead to 
very efficient algorithms in special cases. 

We continue to investigate a number of issues in our 
ongoing research in reason maintenance. On the theoretical 
side, we believe that the assumption of a Boolean lattice that 
underlies our current results can be considerably loosened. 
In particular, we think that those results are preserved 
assuming only a lattice with complements. This is of both 
theoretical and practical interest as many measures of uncer- 
tainty are of a (non-distributive) lattice-theoretic nature [7]. 
No longer requiring distributivity, we can treat certainty as 
yet another kind of belief context to be propagated by con- 
straints. 

On the practical side, we are engaged in an implementa- 
tion of the lattice-theoretic model of reason maintenance. 
As we gain experience in using this implementation, we 
will attempt to answer a number of questions. Do the 
theoretical improvements to which we have alluded have 
any practical effect on the kinds of problems that can be 
tackled? Are such improvements even necessary given that 
the worst case computational complexities are achieved 
through somewhat contrived pathological examples? Are 
the incremental algorithmic variants of practical value7 If 
so, should they always be engaged, or should thev be 
driven by some algorithmic or heuristic consideration' 

\ 
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Abstract 

Intelligent systems combine the capabilities of 
expert/knowledge systems with conventional computer 
technologies, significantly extending the capabilities of 
either technology. Current expert/knowledge system tools 
do not address the key problems of intelligent systems 
engineering: large-scale applications and the reuse and 
integration of existing software components. ABE is a 
software architecture that directly addresses these 
problems. 

ABE is a multi-level architecture for developing 
intelligent systems. ABE defines a virtual machine for 
module-oriented programming and a cooperative operating 
system that provides access to the capabilities of that 
virtual machine. On top of the virtual machine, ABE 
provides a number of problem-solving frameworks, such as 
bl„ ,' oards and d ■ MOW. Problem-solving frameworks 
supp/rt the construcii :; of knowledge engineering tools, 
whicii span a range from knowledge processing modules to 
skeletal systems. Finally, applications can be built on 
skeletal systems. In addition, ABE supports the 
importation of existing software, including both 
conventional and knowledge engineering tools. 

1. Background and Objectives 
Expert systems have emerged from about fifteen years 

of research and development activities in applied Artificial 
Intelligence (AI). Numerous prototype applications have 
been demonstrated in government and industry, several 
commercial systems have been fielded, and the potential 
value of expert systems has become widely recognized. 
This value derives from their ability to provide a means 
for capturing, preserving, applying, and distributing 
human knowledge. 

As experience has accumulated, it has become clear 
that most applications of this technology will not be as 
isolated, "expert" systems. Rather, the application of 
expertise (or more generally, knowledge) will occur in the 

'This is an early description of in-progress research. The ideas 
described here require experimental testing and will likely change. 
This does not constitute a commitment by Teknowledge to any 
product or service.  ABE is a trademark of Teknowledge Inc. 

larger context of integrated systems. We refer to such 
comprehensive systems, which combine the capabilities of 
expert/knowledge systems with those of more conventional 
systems, as intelligent systems. Intelligent systems differ 
from conventional systems by a number of attributes, not 
all of which are always present: 

• They pursue goals and objectives. 
Goals form a larger context for the operation of 
the system. That context often makes static 
algorithms insufficient, requiring the system to 
exhibit more flexible behavior than 
conventiona' systems. 

• They      incorporate, 
knowledge. 

use,      and      maintain 

• They    exploit    diverse,    ad    hoc    subsystems 
embodying a variety of selected methods. 
The subsystems may be "intelligent" or 
conventional. 

• They interact intelligibly with users and other 
systems. 
Intelligibilty is one of the most striking 
attributes of knowledge systems, 

• They    allocate     their    own     resources     and 
attention. 
Intelligent systems often need to be 
introspective and aware of their progress in 
applying their knowledge and subsystems in 
pursuit of their goals 

Most people now perceive a gap between what the 
intelligent systems technology should be able to do and 
what can be done today. While the technology holds great 
promise, it cannot yet supply solutions readily for many of 
the problems for which it should be applicable. Today, 
that technology transfers fro,., research environments to 

applications chiefly through knowledge engineering tools. 
Prominent examples of these are the commercial products 
ART (from Inference Corp.), KEE (from Intellicorp), 
KnowledgeCraft (from Carnegie Group), and S.l (from 
Teknowledge). These tools incorporate the best methods 
of applied artificial intelligence, and they reflect some of 
the best techniques for building expert systems.   However, 
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these tools currently have several weaknesses. Generally, 
these reflect the small-scale and isolated nature of the 
applications that motivated the tools. Specifically, the 
major problems include the following: 

• The best current tools are monolithic, single- 
purpose software packages. Hence they are 
hard to extend or apply beyond their current 
range of applications. They are also difficult to 
integrate with conventional data processing and 
computer technologies. 

• The tools provide capabilities that are low- 
level. Most applications require the user to 
build a solution structure on top of those 
primitive capabilities. This design and 
implementation work is expensive and time- 
consuming, and requires a skilled and 
experienced knowledge engineer. 

• The tools support a limited variety of data 
types and inference schemes. 

• The inference schemes in current tools are 
built-in and practically hard-wired. 

• Current tools do not support large-scale 
applications. 

• The tools have been designed exclusively for 
uniprocessor implementations. 

• The tools have not been designed in a way that 
makes them easy to port to alternative new 
machines. 

To cover a larger set of potential applications, and to 
handle the larger context of intelligent systems, new tools 
are needed. In general, this new generation of tools must 
provide application developers with facilities to support 
reuse of previously-constructed components, incorporating 
the best methods of AI and knowledge engineering, 
integration of diverse component technologies, and 
large-scale application system development. 

In particular, these tools need to support alternative 
implementations of the various knowledge engineering 
functionalities, and need to provide ways to configure 

intelligent systems and intelligent system tools out of 
modular functions. To be practical, such a new tool must 
consist of many preprogrammed functional modules and 
provide an effective technique for configuring these 
modules into larger systems. In addition to low-level 
capabilities, the tool must provide high-level, generic 
solutions to classes of problems (similar to the way that 
fourth-generation languages provide generic solutions for 
classes of database processing tasks); we call such partial 
solution structures skeletal systems. Finally, the tool 
must also allow the accumulation and incorporation of new 
and existing functional modules, both "intelligent" and 
conventional. 

ABE   is   a   new   generation   tool   that   satisfies 
requirements for building intelligent systems.   ABE is 

1. an architecture and methodology for building 
intelligent systems by integrating heterogeneous 
components,  including conventional (i.e.,  non- 
AI) components; 

the 

open/extensible 

intuitive to learn 

The various levels in ABE will be 
accessible for modification and 
augmentation. 

To support modification and 
augmentation, the various facilities, and 
their implementations, must be 
understandable. 

high per forming 
ABE must be capable of being used to 
build systems that execute efficiently.   It 
will allow for arbitrary tuning of 
application systems, in response to 
particular requirements. 

portable ABE will be portable to a variety of 
machines with relative ease.   This 
includes both the ABE development 
environment and, especially, applications 
built on ABE. 

distributable/parallelizable 
ABE will support applications on a wide 
variety of machine architectures, 
especially those that are distributed and 
parallel. 

* - Features unimplemented at present; scheduled for 
phase 2. 

Table 1-1:    Key design characteristics of ABE 

2. a modular and ever-expanding collection of 
knowledge-engineering capabilities, including 
skeletal systems; and 

a    useful    initial    set    of    proven, 
knowledge-engineering capabilities. 

valuable 

Certain characteristics of ABE are essential for its 
effective use. Table 1-1 lists these. Although some of 
these characteristics will not be implemented substantially 
until Phase 2, the design is committed to facilitate all of 
them. 

1.1. Status and Plans 
Direct work on ABE began in spring of 1985, under 

contract to the Defense Advanced Research Projects 
Agency (DARPA) and Rome Air Development Center 
(RADC). A preliminary implementation, in Common LISP 
on Symbolics workstations, is operational now (spring 
1986). Section    4    describes    portions    of    a    recent 
demonstration of that version. A few selected projects will 
begin using an early delivery version of ABE in summer 
1986. These early versions provide the basic ABE 
functionalities as described here, including a few 
frameworks and access to several existing general-purpose 
knowledge engineering tools. The phase 1 prototype 
version will be released to DARPA in 1987. 

i 
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Proposed phase 2 work will emphasize higher 
performance, distributed configurations, versions for other 
computing equipment, and refinement and extension of the 
knowledge engineering capabilities. 

2. Overview of ABE 
Central to ABE is a multi-level architecture for 

developing intelligent systems. This architecture supports 
aggregations of cooperating, autonomous, problem-solving 
components. At the lowest level is a general model of 
computation. Organized around the central notion of 
communicating moünles, the computational model is called 
Module-Oriented Prcqramming (MOP). This model of 

computation provides the foundation and building blocks 
for the higher levels - for expressing designs of intelligent 
systems as networks of cooperative problem-solving agents. 
The computational model also defines a virtual machine; 
this can be mapped onto underlying hardware and 
operating system environments. 

The ABE architecture is a general-purpose software 
architecture for building intelligent systems. In particular, 
the ABE architecture supports the construction of 
problem-solving frameworks (see below). A framework is 
an architecture for building particular intelligent systems, 
and MOP is a meta-architecture for building intelligent 
system architectures. 

The process of building an intelligent system is best 
accomplished by building up layers of capabilities. Each 
layer draws on the capabilities made available by the layer 
beneath it and presents a new set to the layer above it. 
New capabilities are often developed by modifying, 
restricting, or reconfiguring the capabilities from the next 
lower level. 

The ABE architecture defines several functional levels 
in intJligeut systems. These are listed in Table 2-1, in 
descending     order. The    ABE     research     effort     is 
concentrating on providing levels 2, 3, and 4. Associated 
with each level is a class of user who uses the facilities at 
that level to provide the functionality of the next higher 
level: system designer, tool builder, knowledge engineer, 
and domain expert. Here a brief description is presented, 
with some examples of the facilities to be included in 
ABE's early delivery system. Section 3 provides more 
details. 

The current underlying computing environment is the 
Symbolics LISP machine and Common LISP, augmented 
with Coral, an object-oriented language developed for 
ABE. The virtual machine is ABE's MOP (Module 
Oriented Programming system) and the operating system 
that supports it is called KIOSK. On this base the system 
designer layers problem-solving frameworks of various 
kinds. ABE's early versions include a dataflow framework 
and a blackboard framework. 

Given one or more frameworks, the tool builder 
supplies knowledge processing modules. These might 
include capabilities such as a rule interpreter, and facilities 

Level 
Users of capabilities 
at this level 

5. Intelligent system applications End users 

4. Knowledge engineering tools Knowledge engineers 
4b. Skeletal systems and domain experts 
4a. Knowledge processing modules 

3. Problem-solving frameworks Tool builders 

2. Virtual machine and cooperative System designers 
operating system 

1. Underlying computing 
environments 

ABE implementors and 
system programmers 

Table 2-1;     Intelligent system levels, 
and associated users 

for tasks such as maintaining knowledge bases, running 
cases, creating English-like translations of rules and other 
constructs, and producing explanations of system behavior. 
For example, one set of modules in ABE's library is built 
around structures for plans, and includes facilities for 
rep-esenting, creating, analyzing, and modifying them. 

A knowledge engineer can create a skeletal system by 
adding structure to and control over the knowledge 
processing modules and their interactions with other 
facilities (such as databases). One skeletal system in 
ABE's library, called PMR (which stands for "Plan 
Monitoring and Replanning"), analyzes an existing plan, 
monitors a database for critical assumptions of the plan 
that might become invalid, replans around violated 
assumptions, and interacts with various external agents 
about these activities. 

The knowledge engineer customizes a skeletal system 
for a particular application domain by replacing some of 
the generic constructs with more appropriate terms. One 
example application domain of the PMR is planning for 
offensive air strike missions. For this, terms such as 
"flight", "target", and "ordnance" are appropriate. This 
customized skeletal system is called AS-PMR. 

Finally, a domain expert adds to this skeletal system 
knowledge of specific objects and relationships to create a 
domain-specific application system. For AS-PMR, this 
includes such information as characteristics of particular 
aircraft models, targets, and ordnances. It also includes 
the particular rules which govern their interactions, e.g., 
that a particular ordnance is available on a particular 
aircraft and is able to destroy a particular target. 

i 
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2,1. What ABE Addresses 
ABE's design addresses the weaknesses described in 

Section 1. 

An important aspect of ABE's design is the multi-level 
architecture and the particular choice of levels. The 
multiple levels provides flexibility, and have been chosen 
to support the goals of building intelligent systems by 
selecting, customizing, and combining modules from 
growing libraries. 

As shown in Table 2-1, certain classes of users are- 
associated with each of the levels. Although in practice a 
single individual might encompass more than one of these 
functions, the multi-level organization also supports 
specialization of these user roles. 

The MOP computational model provides flexibility for 
expressing a wide range of cooperative problem-solving 
architectures, each with its own control and 
communication scheme. Diverse schemes, from highly 
centralized to fully distributed, are needed to implement 
the large variety of intelligent system applications. The 
virtual machine supplied with the computational model 
can be mapped onto a wide range of underlying 
hardware/OS environments. Primary targets are parallel 
and distributed environments. The model's flexibility an 
also be exploited within a single ABE application system; 
various subsystems can be implemented in heterogeneous 
problem-solving frameworks, and they can be implemented 
on heterogeneous computing facilities. 

The developer of a framework needs both a general- 
purpose, open organization and a strong computational 
model. The open organization of communicating modules 
provides the needed flexibility, and the MOP 
computational model gives ? strong semantic basis for 
understanding the computational properties of the systems 
built. 

Most current efforts at Duilding and improving tools 
are concentrating on improving particular AI techniques 
used in knowledge engimering tools. A major emphasis in 
the ABE project is on providing an organizing framework 
and facilities that allow such tools to be accumulated and 
re-used. ABE complements these other efforts, since it is 
able to import and integrate their efforts. 

Another chrust of ABE is in skeletal systems. With a 
few notable exceptions (especially see [Clancey 83] and 
[Chandrasekaran 83]), the field of intelligent system 

engineering has largely ignored and skipped over this level, 
in favor of programming shells (at a level below) and 
applications (above). A typical knowledge-system project 
starts from a shell (e.g., backward-chaining rules over 
frames) and creates a new application system, bypassing 
the skeletal system level. However, explicit identification 
and design of generic, skeletal systems has several 
important advantages, including 

• increased modularity of systems, 

• increased   reusability  of solutions  or  parts  of 
solutions. 

Local 
nodules 

Cor trol] 

^ ) 

er 

I/O Nettiork 

Ports 
«— 

-'  * 

Figure 3-1:    A standard KIOSK module organization 

• easier knowledge acquisition, and 

• easier maintenance of the application. 

3. System Description 
We now discuss in greater details levels 2 through 4 of 

the ABE architecture. 

3.1. Virtual Machine/OS 
The base level of ABE is the virtual 

machine/cooperative operating system level. The virtual 
machine designed for ABE embodies a computational 
model called Module-Oriented Programming (MOP). The 
cooperative operating system that supports this model is 
called KIOSK. 

At the virtual machine level, an ABE system is 
composed of a set of modules - see Figure 3-1. Modules 
communicate with one another by sending messages over 
networks. Modules can connect to many networks 
simultaneously and can communicate with each network 

independently. Modules are either primitive or recursively 
composed from another set of modules communicating on 
a network. Each composite module has a local controller, 
which manages both the communication activities on its 
network and the communication between the composite 
module as a whole and the networks external to it. The 
local controller also controls the allocation of processing 
resources among the modules on the network. 

KIOSK is called a cooperative operating system for the 
MOP virtual machine because it provides services 
analogous to the services provided by a standard operating 
system. These services include module and network 
creation, communication primitives, computationa: 
resource modeling, and primitive resource allocation 
schemes. KIOSK provides an abstraction bsrrier which 
allows the ABE system to be mapped to arbitrary physical 
computing environments. The term "KIOSK" is used to 
refer to both the MOP virtual machine and the KIOSK 
cooperative operating system. 

i 
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3.2. Problem-solving Frameworks 
The  next   level   of  ABE   consists  of r~Mem-solving 

frameworks,     also      referred      to      as ''lem-solving 
architectures or  programming  language f! have  not 
found a satisfactory distinction betwe« )gramming 
languages and problem-solving architectures, ^o we group 
them together in one level. 

A framework is a collection of design choices: control 
and resource allocation regimes, communication protocols, 
shared languages (syntax), and computational organizing 
principles. These design choices manifest themselves in 
ABE within the local controller of a module, because the 
local controller has responsibility for all of these things. 
An ABE system may contain instances of many different 
frameworks, although not all frameworks can coexist on 
the same network. 

A framework may present a view of the world quite 
different from the underlying KIOSK "modules-on-a- 
network" view. For example, ;i framework may designate 
certain modules as having some special significance to the 
global operation of the system (o.g., the shared blackboard 
module in a blackboard-oriented framework). Also, the 
framework may provide its own visual representation 
which totally masks the underlying virtual machine. 

ABE's library currently includes two primary problem- 
solving frameworks: a dataflow framework (called DF) 
and a blackboard framework (BBD). both of wi.'ch are 
still evolving. Additional frameworks will be added. Also, 
the separation between the problem-solving frameworks 
and the underlying MOP/KIOSK level is still evolving, 
based on experience developing the frameworks. 

The DF framework implements many of the concepts 
found in standard dataflow languages Davis 82]. It also 
includes extra data structuring techniques and a semi- 
deterministic scheduler. A program for the DF framework 
consists of a number of independent processing modules 
which perform computations and commun'cate with each 
other and the outside world. The data structuring 
supports the use of abstract datatypes (ADTs) as the 
tokens passed between processing modules. The semi- 
deterministic scheduler supports building programs with 
side effects (such as communicating with the external 
environment). 

BBD is a framework based on the blackboard 
metaphor [Erman 80] A blackboard system consists of a 
number of individual computation agents, known as 
knowledge sources (KSs), which communicate with each 
other through a shared global database, known as the 
blackboard. KSs monitor the blackboard with trigger 
patterns. When the posting of a datum on the blackboard 
matches a KS's trigger pattern, the KS triggers itself. The 
triggering operation informs the BBD scheduler that a 
particular KS was triggered by a particular set of 
blackboard objects. This KS instantiation (KSI) is itself 
posted on the blackboard. 

The BBD interpreter has a scheduler whose function is 
to select a KSI for execution. This scheduler is very 
simple, and is refered to as a base scheduler. A special set 
of KSs known as "scheduling KSs" can manipulate the set 
of KSIs on the blackboard, thereby producing different 
scheduling behavior from the base scheduler. 

3.3. Knowledge Engineering Tools 
The third level of ABE is the knowledge engineering 

tools level. This level spans a range, with knowledge 
engineering capabilities at the lower end and skeletal 
systems at the higher. A primaiy research goal at this 
level is to develop a methodology for modularizing, 
describing, cataloging, reusing, and combining knowledge 
engineering tools. 

Skeletal systems can be characterized as a way to 
organize and control knowledge and other facilities to solve 
a class of problems. In an ABE system, a skeletal system 
is a particular set of modules defined within a particular 
framework. Many of these modules will have mechanisms 
for customization by the knowledge engineer with 
application-specific knowledge. Other modules may serve 
as place holders, which the knowledge engineer will replace 
by totally new,  but  functionally equivalent,  application- 

9 
specific modules. Yet other modules may represent a 
class of modules or a generator of new modules which the 
system will create at runtime. In general, a skeletal 
system is a partially instantiated assembly of modules for 
solving a class of application problems. 

The Plan Monitoring and Replanning (PMR) 
Skeletal System 

The PMR is the first skeletal system implemented for 
the ABE library. It is a generic structure for adaptive 
replanning — keeping a plan consistent with a changing 
world.   More specifically, it provides facilities to 

• analyze a plan to determine its key 
assumptions about the world, 

• monitor a database describing the unfolding 
world situation, looking for key assumptions 
that no longer hold, 

• incrementally replan around these problems, 
and 

• keep selected agents informed of important 
changes in the situation and the plan. 

This skeletal system is independent of any particular 
application or application domain. For example, we have 
built one instance of the PMR customized for planning of 
air strike missions. We have built a second application, in 
the domain of personal travel planning. 

i 

o .        . . 
This can be viewed as an extreme form of "customization. 
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Figure 3-2:    PMR: Plan Monitoring and Replanning 
skeletal system (dataflow version) 

There are actually two different versions of PMR. 
The first one is implemented in the DF (dataflow) 
framework. Figure 3-2 shows the modules and places in 
the DF version of the PMR skeletal system. The second 
version, is implemented in the BBD (blackboard) 
framework.   It reuses the PMR modules, and incorporates 

addition;; ones that exploit the greater control flexibility 
of the BBD framework to implement more complex 
scheduling behaviors of its component modules. Section 4 
shows some details of these skeletal systems and 
applications. 
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Basic Facilities 

At the lowest level of knowleuge engineering tools, 
ABE allows the user to program modules in Common 
LISP. Above that level, the Coral object-oriented 
programming facility, embedded in Common LISP, can be 
used. 

Somewhat higher still, ABE supports the concept of 
abstract data types (ADT) as a commonly useful 
methodology for defining and accessing structured objects. 
For example, most DF programs use ADTs to implement 
the data tokens passed among the process modules. 
Similarly, the BBD framework uses ADTs to implement 
blackboard objects. In addition to this general ADT 
facility, ABE's initial library contains particular ADTs for 
the plan structures used in the PMR skeletal system; these 
(as well as the individual PMR modules) are available for 
reuse, perhaps with some customization or other 
modification. 

ABE's initial library contains an abstract, symbolic 
database facility, known as GDB (generic database), vhich 
can be used to define, store, and retrieve symbolic 
structures. GDB is used by various PMR modules, both as 
internal databases and to represent the external world. 
There are two alternative implementations of the GDB — 
one in MRS and one in Prolog. 

Integration of Pre-existing KE Tools 

One goal of ABE is to allow the use and combination 
of existing knowledge engineering tools of various kinds. 
The early delivery version will contain interfaces for 
several of these, including MRS, Knowledge Craft, and S.l. 

MRS [Russell 85] is a research system developed at 
Stanford University, and available under license from 
Stanford. MRS provides general-purpose facilities (with an 
underlying first-order predicate calculus basis) for 
representation and, especially, control. MRS is highly 
articulated and modular, and therefore allows intimate 
integration with relative ease. A user can access MRS 
directly from within Common Lisp code in ABE (e.g., from 
within DF or BBD modules). As noted above, ABE's 
library also contains a version of its GDB symbolic 
database facility implemented in MRS. 

Knowledge Craft [Knowledge Craft 85] is a 
commercial product of Carnegie Group, Inc. It is a 
general purpose knowledge-engineering "shell''. The heart 
of Knowledge Craft is a schema (frame) system, called 
CRL ("Carnegie Representation Language"). Knowledge 
Craft also has several separate facilities, including 
implementations of the OPSö forward-chaining rule system 
and the PROLOG logic programming language. Each of 
these facilities is augmented to allow access to CRL 
schema. ABE's initial Knowledge Craft interface supports 
the implementation of abstract data types as CRL 
schemata and, in general, translating between schemata 
and ADTs.    The ABE library also contains a Knowledge 

Craft version of the same abstract symbolic database 
mentioned above for MRS. Finally, the interface also 
allows fairly direct access to any of Knowledge Craft's 
facilities. 

The early delivery library will also supply an interface 
to S 1 [Erman 84). A commercial product of Teknowledge, 
S.l !a a higher-level knowledge engineering "shell". S.l 
provides a backward-chaining, rule-based system that also 
allows for expression of procedurally represented 
knowledge, usually for control purposes. 

4. Examples 
This section describes some of the features of ABE 

through examples of their operation and use. 

Figure 4-1 shows part of the current ABE catalog. At 
the lowest level are the programming languages, including 
Common LISP, Coral (an object-oriented system built on 
Common LISP), MRS, and three components of 
Knowledge Craft: Carnegie Representation Language, 
Prolog, and OPS5.   S.l will be available soon. 

Above the languages are the frameworks — the various 
ways in which modules can be implemented. Each 
framework has its identifying icon. The BBD blackboard 
and DF dataflorv frameworks are described in Section 3. 
The TX transaction framework is used for implementing a 
server module (such as a database) that has one or more 
client modules. The set of facilities for abstract data types 
{ADTs) is also considered a framework. A module 
implemented in the blackbox framework just has arbitrary 
code, not internally analyzable by ABE. An importer 
module is a special case of a blackbox module, one which 
imports some foreign code with a wrapper that makes it 
ABE-compatible. Finally, the catalog fgcility is itself a 
form of framework. 

Above the frameworks is a collection of modules of 
various capabilities. Included are a number of ADTs (e.g., 
for plans and actions). Finally, there are several skeletal 
systems, domain-specific customizations, and applications. 
An application is a skeletal system that has already been 
customize'. 

The largest window in Figure 4-2 shows the central 
part of the dataflow version of the plan monitoring and 
replanning (PMR) skeletal system. Using standard 
dataflow notation, processing modules are shown as 
rectangles and token places as ovals. The dashed oval 
indicates the input to the PMR as a whole. The Situation 
Monitor module is itself implemented as a dataflow 
program, and that is shown in the upper right-hand 
window. This version of the PMR uses the MRS 
implementation of the symbolic database system for the 
world situation, shown in the lower right-hand window. 
While the Situation Monitor is an example of 
hierarchically composed module, the connections between 
the Situation Database and its clients via i,he TX 
(transaction) framework is an example of non-hierarchical 
interactions between frameworks; we call such interactions 
meshing. 
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Figure 4-1:    A portion of the current catalog 
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Figure 4-B:    The Travel Planning application: 
a plan's structure and example action 

Figure 4-3 contains an example of replacing one 
module with another. The relatively simple replanner 
implemented originally for the PMR is being replaced by 
the KNOBS Replanning System (KRS), imported from the 
Mitre Corporation. (See [Engelman 79j for a description of 
the earlier KNOBS work which led to KRS.) The 
replacement is done graphically, by deleting the box 
representing the original replanner and connecting in a box 
representing KRS. 

Two applications of the generic PMR are shown in the 
next two figures.    The Air Strike application deals with 

planning offensive counter air missions and is similar to 
that used in the KNOBS system. Figure 4-4 shows the 
structure of an air strike plan and an example of one 
action of that plan. The Travel Planning application, 
shown in Figure 4-5, handles trips from one's home to a 
hotel in a distant city. ABE's current catalog contains 
customizations for specializing the PMR to each of these 
applications. Each customization includes definitions for 
actions and states, plan structures, and example test-case 
plans and situations. 
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Figure 4-6:    The PMR, with the Prolog database system 
and the added Failure Explainer module 

Figure 4-6 shows a version of the PMR with the 
Situation database implemented by Prolog, in place of the 
MRS implementation. This figure also shows the central 
part of the PMR augmented with a module that generates 
explanations of the detected plan failures. Near the 
bottom of the figure, the two-line output of that module is 
shown. This module is implemented in 0PS5 (and some 
internal tracing of the 0PS5 operation is also shown at the 
bottom of the figure). 

The control regime provided with the dataflow 
framework allows the system architect to configure a 
system without having to be overly concerned about 
control. However, if the architect wants to specify more 
fine-grained control, a dataflow framework is 
inappropriate or poor. For example, it is difficult to 
specify in a dataflow framework that the Failure Explainer 
should operate before the Replanner, which is probably 
desirable for the PMR. Figure 4-7 shows the same five 
processing   modules   of   the   DF    PMR    functioning    as 

knowledge sources within the BBD blackboard framework. 
In addition, two scheduling knowledge sources have been 
added, to provide explicit scheduling knowledge. 

Figure 4-7 shows the state of execution after the 
Failure Explainer and Replanner have both been triggered 
by the Situation Monitor posting on the blackboard one or 
more violated plan assumptions. The triggering of those 
two knowledge sources has also triggered the Explain- 
Failure-Before-Replanning scheduling knowledge source. 
Figure 4-8 shows the result of that scheduling knowledge 
source -- it has explicitly ordered on the agenda (near the 
top of the figure) the two other pending sources, to achieve 
the desired sequencing. This example shows not only the 
multiple frameworks and why they are desirable, but also 
shows that ABE's modult-oriented programming style 
allows for the reuse of modules within a variety of 
frameworks. 
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1. Background of the Research and 
Overview of Accomplishments 

1.1.  Introduction 

This    is    a    progress    report    on    our    project,    on 
"Explanation     in     Piannir      and     Problem     Solving 
Systems."      it,   is   being   written   approximately   at   the 
15-month  mark.    Conceptual  frameworks  for generation 
of explanation   of  two   kinds   have   been   built:   one   for 
explaining    how    decisions    are    made    during    problem 
solving,   explaining   control   strategies   as   well   as   other 
aspects of run-time   behavior,   and   the  other  to  give  a 
planner  the  capacity   to   represent   an   understanding of 
its   own   plan   fragments,   and   thus   to   explain   to   the 
user  how  a  plan   is  meant  to work.     A  prototype  mis- 
sion      planning      system      with      some      explanation 
capabilities  has  been  built,  and  a number of high-level 
know ledge-based   system   construction   tools   have   been 
built   with   features   that    facilitate   knowledge   acquisi- 
tion,   system   implementation   and   explanation   genera- 
tion.       Two   of   these   tools   (DSPL   and    HYPER)   are 
discussed   in   this   report   3,   one   (CSRL)   predates   this 
explanation   project   and   has   been  extensively   reported 
■-I1  [4, 5. 6, 7.   12]   and   several   others   are   in    various 
s'ages   of  design   and   implementation.      Together   they 
will   constitute  a   high-level   tool   box   for   the  construc- 
tion   of knowledge-based  systems.     They  will   be   useful 
for   building   a   variety   of   planning,   diagnostic,   abduc- 
tive,    and    retrieval   systems,   and   systems   which   are 
combinations    of   these    types.       These    tools    have   as 
design   features   a   number   of   "hooks"   for   the   attach- 
ment  of explanation synthesis  tools. 

In the first stage of the project, we have chosen 
"routine planning" as a task lor which to build a 
prototype. In particular, a planning task for Offensive 
Counter Air (OCA) missions was chosen for analysis 
and implementation. 

1.2. A Decomposition of the Explanation 
Problem 

A  brief recapitulation of our decomposition of the 
problem   of  explanation   generation   in   knowledge-based 

Intelligence  Research 
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systems is in order at this stage to motivate the issues 
discussed in this report. In our original proposal we 
had argued that there are three top-level components 
that can  be distinguished: 

• i) How a problem solver represents its own 
problem solving activity and retrieves the 
relevant portions appropriately in response 
to user queries. Here the language in 
which the problem solving behavior is en- 
coded is very important for whether the 
response is  perspicuous. 

• ü) How user's goals, state of knowledge, 
etc, are used to filter and shape, the output 
of the process in i) above so that the ex- 
planation is responsive to user's needs, is 
not overly and unnecessarily detailed, is 
couched in terms which are appropriate to 
the user's level of understanding, etc. Mere 
user modeling is an important  issue. 

• m) How an appropriate human-machine in- 
terface displays and presents the infor- 
mation to a user in an effective way. Here 
the issues include natural language under- 
standing, natural language generation, and 
principles of effective graphical  displays. 

We argued in the original proposal thai no mat- 
ter how good the theories are lor ii) and iii). if a poor 
representation is adopted for i), then at best in- 
appropriate explanation will be presented packaged in 
a good interface. That is. the basic content of the ex- 
planation is generated in stage i). Thus we need to 
pay great attention to how a prahlen, solver can com- 
prehend its own problem-solving activity. Much of our 
Phase-| effort is devoted to developing a good theory 
ol this, testing it by implementation of a prototype 
system, etc. 

The   explanation   of   problem   solving   itself  in   our 
analysis  has .'i components: 

1. Explaining why certain decisions were made 
or were not made. This has to do with 

how the data in a particular case slated to 
the knowledge lor making specific decisions 
or choices. 
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2. Explaining the problem solving strategy and 
the control behavior of the problem solver. 
This would typically be at a higher level of 
abstraction than answers to  1. 

:!, Explaining the elements of the knowledge 
base itself. For example, if the knowledge 
base contains plan fragments which are to 
be instantiated and assembled into longer 
plans, the problem solver may be called 
upon to explain the rationale behind the 
plan fragments. Similarly if, during a par- 
ticular diagnosis, a trouble-shooter \ises the 
knowledge that a low voltage between cer- 
tain terminals is evidence for a particular 
malfunction, a user might want to know 
the reasoning behind the knowledge frag- 

ment. 

It should be noted that typically 1 and 2 above 
involve the run-time behavior of a problem solver (and 
thus cannot in general be precompiled without running 
into combinatorial problems), while explanation struc- 
tures for .'i above can in principle be attached to the 
knowledge fragments at the time the knowledge base 

is put  together. 

1.3.  Overview  of the  Work  So Far 

Our work in Phase 1 of the project has con- 
tributed to each of the above types of explanation. 
Our theoretical position is that in order to generate 
explanation of type 1 and type 2 at the appropriate, 

level of ahslrartion. the problem so'ving process needs 
to be represented at what we have called the generic 
task level. The essence of the argument is that most 
of the current approaches to expert system construc- 
tion use knowledge representation languages and con- 
trol primitives at too low a level of abstraction (the 
rule-frame-logical formulae level), and this makes both 
system design and explanation difficult, since the sys- 
tem designer often has to transform a higher-level 
problem into the lower-level implementation language. 
We have identified a set of higher-level building blocks 
in terms of which systems can be conceptualized, 
designed and implemented. The basic explanation 
constructs are then available (loser to the conceptual 
level of the user than they would be if they had to be 
extracted from the implementation language level. 
This point of view has led us to propose a new ap- 
proach to the design of knowledge-based systems, 
namely the generic task level. In order to facilitate 
expert system construction at this level, we have 
devoted a considerable amount of energy to the design 
and implementation of a set of higher level tools for 
the construction  of expert systems of various types. 

The theory itself is being put to the test at this 
stage for what can be called routine platinnig or 
routine   design   tasks.       We    have   identified    the   OCA 

mission problem as a problem of this type, used one 
of our generic task languages (DSPL) for both 
knowledge acquisition and system implementation, and 
by using the constructs in DSPL effectively, have been 
able to show how explanation at higher and more ap- 
propriate levels of abstraction can be automatically 
generated from the problem solver. Some of the tools 
that we have built to lay a proper foundation for 
explanation-capable expert system are described in a 

later section  (3). 

Explanation of Type .'{ above, viz., explanation of 
knowledge fragments in the knowledge base, has been 
approached by us in the context of the OCA mission 
as explanation of plans (i.e., the plans themselves, not 
the planning process). We propose that plans can be 
viewed as devices, and as such an earlier represen- 
tation developed in our laboratory for representing a 
device's functioning can be used effectively for explain- 

ing plans. 

1.4. Organization of the  Progress  Report 

The work that, has gone on in our laboratory is 
reported in two separate papers in this Proceedings. 
In this paper, we give a description of our work on 
the design and implementation of the MPA system for 
mission-planning, including the generation of explana- 
tion of various types. It ought to be emphasized that 
the Ml'A project is not completed, and so what is 
reported here should be viewed mainly as an interim 
report. Both the design of the planner and the ex- 
planation components are still in the process of further 
analysis and expansion. We also include in this paper 
reports on two high-level tools that we have been 
building for the construction of knowledge-based sys- 
tems: DSPL for construction of systems that help 
with routine design (including planning), and HYPER, 
for deciding how data match hypotheses, a component 
of a number of distinct kinds of problem solving. 
These two are part of a tool-kit that includes CSRL, 
a language already developed and reported on, and 
others that  are in  various stages of implementation. 

We include an additional paper reporting on the 
conceptual and theoretical foundations for much of our 
work on explanation. This provides the rationale for 
using the generic tasks approach, both for system con- 
struction  and  for explanation. 

1.5. I !   n  Plans 

ise to continue and add functionalities 
to the MPA System, and also to increase the range of 
explanations offered by the system. We also plan in 
the near term to show how our approach to explana- 
tion can I»1 incorporated to a diagnostic or situation 
assessment  task. 
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2. MPA: A Mission Planning 
Assistant in the KNOBS Uoniaiu 

2.1.  Design and  Construction of the Mission 
Planning  Assistant 

David  Herman, Anne Keuneke, 
Michael C, Tanner.  Ron Härtung, John Josephson 

iTvd    relevant    to    the 
is    planning   and    plan 

One major application 
Strategic Computing Program 

support systems. Our interest in planning concerns 
the explanation facilities that will be necessary in ex- 
pert systems that assist in planning. This report 
summarizes our current work in this area in the 
domain of tactical mission planning. After investigat- 
ing KNOBS [10|, an existing mission planning system, 
we have developed our own mission planning system 
(MPA) using our generic task approach to building ex- 
pert systems. The system is implemented in DSPL. a 
language initially developed in support of planning 
research in the domain of mechanical design  [1]. 

The task we are investigating involves one of the 
functions of Tactical Air Control Centers (TACCs). 
Their concerns are to assign available resources to the 
various tasks of an "appointment" order. The output 
is an Air Tasking Order (ATO), which summarizes 
the responsibilities of each unit with respect to the 
day's missions. Each mission planned requires atten- 
tion to such details as the selection of aircraft type 
appropriate to the mission, selection of a base from 
which to fly the mission, coordination with other mis- 
sions, etc. 

Our most recent objectives have been to deter- 
mine the knowledge a system would require to plan ,i 
particular type of mission, the Offensive Counter-Air 
(OCA) mission. We are interested in the planning 
process, as well as the ability to explain the reasoning 
of the planning process. Our selection of the OCA 
mission in particular arose partly from the availability 
of the KNOBS system and its knowledge base for tac- 
tical  planning support   in  this domain. 

J.I.I.   The  KNOBS System 

The KNOBS system was built to address plan- 
ning tasks which involve the specification of values for 
a set of pre-established components known to I»» 
necessary for the planned activity. Planning offensive 
counter air  missions can  he viewed as such  a task. 

KNOBS sees planning as template instantiation - 
,i   process   of  lilling   in   a   number  of  slots   with   accept- 
able values. The 
sidered is defined 

and   is   determine« 

order   in   which   the   slots   are  con- 
in   advance   by   the   plan   template. 

by    the   expert's   domain    planning 

knowledge. Acceptability of slot values is based upon 
satisfaction of constraints. Constraints are attached to 
the template (rather than the slots) to reflect, the view 
that "all action is in the interaction of the slots". 
Constraints are organized as a list of ■■buckets", or- 
dered to express priority in constraint satisfaction. 
Each bucket contains an unordered list of constraints. 
The testing of slot values is accomplished by travers- 
ing and checking constraints in the order specified by 
the priority  buckets. 

In order to determine acceptable choices for 
values of slots, KNOBS associates a generator with 
each slot to enumerate potential values. The gener- 
ator produces a subset of all possible values of the 
slot. The generator is derived by ■■inverting" con- 
straint knowledge pertinent to the slot. 

Given the slot ordering, constraints. and 
generators, KNOBS "plans" as follows: The generator 
of the first slot, is asked for its first candidate, the 
generator for the second slot is asked for its first can- 
didate, and so on. At, each slot filling, all applicable 
constraints are checked. If any are not satisfied, then 
the slot generator is asked for another candidate. If 
another candidate exists, it is tried, and so on until 
either all slots have accepted values or a generator 
runs out of candidates. If this happens. KNOBS 
would back up to the most recently filled slot that 
was involved in the constraint, thai failed. KNOBS is 
successful when all slots arc filled and all constraints 

are    satisfied. The     basic     planning    algorithm     for 
KNOBS can thus be described as generate and test 
with  dependency-directed  backtracking. 

KNOBS was successful in showing the feasibility 
of AI techniques for certain classes of mission plan- 
ning. The constraint, technique in particular is useful 
where applicable, but as far as we can determine 
KNOBS was not intended as a generic approach to 
planning in general. The methodology for planning 
based on template instantiation and constraint satisfac- 
tion will not typically scale up well, since, as the size 
of problem space increases, the exhaustive depth-first 
nature of the search makes the technique computation- 
ally infeasible. In addition extensions or adaptations 
to such a template would be difficult, since most, of 
the planning knowledge is implicit, (and thus hidden) 
in the ordering of template slots and constraints. 

These problems arise because the system does 
not have significant amounts of problem-solving exper- 
tise for planning. Any explanation in KNOBS is 
limited to answers based on a constraint - either a 
value is had because it fails a constraint, or it is good 
because    it    satisfies     a    constraint. There    is     no 
knowledge of why the system should satisfy a con- 
straint, (its functionality) nor why this constraint (vs 
any other) is being considered now (plan strategy). 
Similarly,  this   knowledge  is   missing  for  slots  -   why   is 
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this slot necessary, and why is this the best, ordering 
of slots - are questions which cannot, be answered by 
a KNOBS-like system. 

Thus the KNOHS mechanism does not allow for 
two major types of explanation: neither the planning 
control strategy, nor functional knowledge of the 
domain can be justified. These kinds of explanation 
for a planner are feasible if the planning and func- 
tional knowledge is represented with appropriate struc- 
tures. 

It should be added that the designers of KNOBS 
were also aware of these limitations and are currently 
building a system called KRS which includes some of 
the additional  functionalities described above. 

8.1.8.  Class III Design 

Our approach to tactical mission planning treats 
the Air Tasking Order (ATO) as an abstract device to 
be designed. The planning of the missions or groups of 
missions that comprise the completed ATO involves a 
process similar to the process a designer undergoes 
when faced with a complex device to design. An 
overview of the design domain will illuminate this 
analogy. For a more comprehensive description see 

I 

The general domain of design is vast. it in- 
volves creativity, many problem-solving techniques, and 
many kinds of knowledge. Goals are often poorly 
specified, and may change during the course of 
problem solving. However, a spectrum of design 
classes can be identified, varying from completely 
open-ended activity to the most routine, depending on 
what sorts of knowledge is available prior to the start 
of problem solving. 

What we have called •■('lass :i Design" charac- 
terizes a form of routine design activity. Complete 
knowledge of both the components and design plans 
for the device is assumed to be available prior to the 
problem     solving     activity. The     problem     solving 
proceeds by using recognition knowledge to select 
among the previously known sequences of design ac- 
tions. While the choices at each point may be simple, 
this does not imply that the design process itself is 
simple, nor that the components so designed must be 
simple. It     appears    that    a    significant    portion    of 
everyday activity of practicing designers falls into this 
class. In     order    to    explore    tills    class    of    design 
problems, the DSPL (Design Structures and Plans 
Language) system was developed. 1. 2. 3] The routine 
desigti task is viewed as decomposable into a hierar- 
chical planning task, where lypirally each level makes 
seme design commitmems. and the design is further 
refined by the lower level planners. A design problem 
solver   in   DSPL  consists   of  a   hierarchy   of cooperating, 

conceptual specialists, with each specialist responsible 
for a particular portion of the design. Specialists 

higher up In the hierarchy deal with the more general 
aspects of the device being designed, while specialists 
lower in the hierarchy design more specific, sub- 
portions of the device, or address other design sub- 
tasks. Any specialist may access a design data-base 
(mediated by an intelligent data-base assistant). The 
organization of the specialists and the specific content 
of each is intended to precisely capture the designer's 
expertise of the problem domain. 

Each specialist in the design hierarchy contains 
locally the design knowledge necessary to accomplish 
that portion of the design for which it is responsible. 
There are several types of knowledge represented in 
each specialist, three of which are described here. 
First, explicit design plans in each specialist encode se- 
quences of possible actions to successfully complete the 
specialist's task. Different, design plans within a 
specialist may encode alternative action sequences, bill 
plans within a particular specialist are always aimed 
at achieving the specific design goals of that specialist. 
A second type of nowledge encoded within specialists 
is encoded in design plan sponsors. Fach design plan 
has an associated sponsor to determine the ap- 
propriateness of the plan in the run-time context. 
The third type of planning knowledge in a specialist is 
encoded in design plan selectors. The function of the 
selector knowledge is to examine the run-time judge- 
ments of the design plan sponsors and determine 
which of the design plans within the specialist is most 
appropriate to  the current  problem context. 

Control in a DSPL system proceeds from the 
top-most specialist in the design hierarchy to the 
lowest. Beginning with the top-most specialist, each 
specialist selects a design plan appropriate to the re- 
quirements of the problem and the current state of 
the solution. The selected plan is executed by per- 
forming the design actions specified by the plan. This 
may include computing and assigning specific values to 
attributes ol the device, running constraints to check 
the progress of the design, or invoking sub-specialists 
to complete another portion of the design. Thus 
design plans which refer to a sub-specialist are refined 
by passing control to that sub-specialist. 

The discussion of the control strategies in a 
DSPL system has thus far only included successful 
plan execution. However DSPL does include facilities 
for the handling of various types of plan Failures, and 
for controlling redesign suggested by such failures. 
The details of these features of the language can be 
found  in  ] I . 

B.l.S.  Mission  Planning as (Hass III Design 

Our view of tactical mission planning is that it 
is  essentially   a  class  .'!  design   task.     The   problem   can 

•■■.     • 
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be decomposed into the design ol subcomponents of 
the mission plan. In the device design domain, the 
design of a device is decomposed into the design of 
sub-assemblies and their components, etc, where each 
sub-assembly or component can be designed in a fairly 
independent fashion. In the tactical mission planning 
domain the ATO is decomposed into various missions 
or groups of missions of known types, where each mis- 
sion or group of missions able to be planned relatively 
independently of the others, modulo resource conten- 
tion considerations. In both domains, of course, each 
of the solutions to the subprobiems must be ap- 
propriately combined into the solution for the problem 
which tiiey decompose. Due to the well known limita- 
tions of human problem solving capacities, it is ap- 
parent that a human problem solver can be successful 
in such a situation only to the extent that he can also 
decompose the problem into a manageable number of 
somewhat independent sub-problems which can be 
solved separately and combined into a final solution. 
Using DSPL as a natural mechanism for representing 
the necessary knowledge, the MI'A system closely mir- 
rors these ideas. 

Another type of local, declarative knowledge in a 
DSPL specialist is expressed in the form of con- 
straints. Constraints are used to decide on the 
suitability if incoming requirements and data, and on 
the ultimate success of the specialist itself (i.e., the 
constraints capture knowledge about those things that 
must be true of the specialists' design before it can be 
considered to be successfully completed). Other con- 

straints, embedded in the specialist's design plans, are 
used to check the correctness of intermediate design 
decisions. The use of such constraints in the MI'A 
system easily captures the kinds of knowledge encoded 
as constraints in KNOBS, but incorporating the con- 
straints into a rich overall control structure further al- 
lows the constraint knowledge to be utilized during 
problem solving in a sharply focused manner. 
Analysis of the success or failure of constraints during 
runtime, generated from the trace of the problem 
solver's execution, yields explanation capabilities 
similar to that found in KNOBS, but with the ad- 
ditional context provided by the rich DSPL control 
structure. 

The additional context of the DSPL control 
structure provides the springboard for a more com- 
prehensive explanation facility. in addition to the 
necessary ability to examine particular attributes of a 
mission plan, the control structure provides the ability 
to examine the problem solving strategies of the plan- 
ning system. This kind of explanation is not easily 
extracted from a system which uses template instantia- 
tion and constraint satisfaction as its primary 
mechanisms for problem solving, since problem solving 
strategies  are absent or at   best  implicitly  represented. 

J.1.4.  The. MI'A System 

The following discussion gives a general descrip- 
tion of the planning strategies particular to the MPA 
system as currently  implemented  in   DSPL. 

Several caveats are in order concerning the 
domain of the MI'A system. The MPA system cur- 
rently on. handles the planning of 0('A missions, al- 
though w« believe other missions could be handled in 
a similar fashion. Our prototype system does not ad- 
dress several minor bookkeeping aspects ol mission 
planning, which although of no theoretical interest. 
would be necessary to a fully functional mission plan- 
ner. Such items as assigning radio frequencies to a 
Right and designating mission call-signs fall into this 
category. Finally,    although     the    specific     military 
knowledge in the MPA system is adequate for 
demonstration purposes, it by no means meant to 
reflect complete or even accurate knowledge of aircraft 
capabilities. We     believe      that      the      knowledge 
represented is representative of the knowledge utilized 
by a human mission planner, and that the problem 
solving exhibited by the system fairly represents the 
human  problem solver's activities. 

The prototype MPA system contains six 
specialists. The topmost specialist, OCA. accepts the 
mission requirements and ultimately produces the final 
mission plan. The OCA specialist divides its work be- 
tween two subspecialists. base and airrraft. The base 
specialist is responsible lor selecting an appropriate 
base, while the aircraft specialist selects an aircraft, 
type. The aircraft specialist, has three subspecialists. 
one for each of the three aircraft types known to the 
MPA system. As needed, one of these specialists will 
select, an  appropriate configuration  for its aircraft  type. 

Problem solving begins when the OCA specialist 
is requested to plan a mission. Currently the OCA 
specialist contains only a single design plan which first 
requests the base specialist to determine a base and 
then requests the aircraft specialist to determine (and 
configure) an appropriate aircraft for the mission. 
The current base specialist simply selects a base from 
a list of candidate bases geographically near the tar- 
get. The aircraft, specialist uses considerations of 
threat types and weather conditions at the target to 
select an appropriate aircraft for the mission. The 
aircraft, specialist and its three configuration sub- 
specialists represent the most elaborate aspects of 
domain  knowledge in  the  MI'A  system. 

In the current version of the MPA system, the 
aircraft specialist, is entered with ;i tentative selection 
for the base already specified. The target and re- 
quired probability of destruction are known from the 
input requirements of the mission. At this point each 
of the plan sponsors in the aircraft specialist are ex- 
ecuted by the DSPL interpreter. The three plan 
sponsors determine the appropriateness of their  respec- 
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live plans. In this case, each of the three plans deter- 
mine which of the three aircraft, types should be used 
for the mission. Thus the three [dan sponsors deter- 
mine the appropriateness of using, respectively, [Mils, 
F-4s. or A-lOs for the mission. Plan sponsors may 
access a global database as necessary in their execu- 
tion. In the MI'A system, such Items as target 
characteristics and weather conditions are requested in 
determining the appropriateness of a particular aircraft 
type. After the suitability of ail plans in the aircraft 
specialist has been determined, the DSI'I, interpreter 
executes the plan selector in the specialist. The plan 
selector, given the suitabilities of each of the aircraft 
types, can then determine which aircrafl is most ap- 
propriate for the mission. The plan selector returns 
this information to the specialist, which then causes 
the selected  plan  to  be executed. 

Suppose the mission requirements call for a night, 
raid. The plan sponsors for both the A-10 and F-4 
would rule out the possibility of using these aircraft, 
since (in our domain model) neither of these aircraft 
have night flying capability. The F-lll plan sponsor. 
since it is an all-weather fighter with night 
capabilities, would not be excluded. The plan sponsor 
for the F-lll, based on this and other considerations 
(range, ability to carry appropriate ordinance, target 
characteristics, etc) would find the F-lll suitable for 
the    mission. The    plan    selector    in    the    aircraft 
specialist, finding that two design plans have ruled 
out, would select the •suitable' F-lll design plan, and 
return     this     informal ion     to     the    specialist. The 
specialist proceeds to execute the F-lll design plan, 
which includes marking the aircraft type in the mis- 
sion template to 'K-ill'. and invoking the F-lll con- 
figuration specialist, which in turn decides an accept- 
able ordinance load for the F-lll for this mission. 
Once the configuration of the aircraft is known, the 
single aircraft probability of destruction in the mission 
context can be computed. Finally, knowing the mis- 
sion capabilities of each aircraft, the required number 
of aircraft can be determined in order to achieve the 
required probability of destruction, and the required 
aircraft, can  be  reserved  from  the  proper  unit. 

The MI'A system could be readily extended in 
several directions. Additional situation knowledge at 
the OCA level would allow for more robust, planning 
with less backtracking. More complete knowledge of 
the OCA mission for specifying various aspects of the 
Highl plan, etc. could be added. Also, as previously 
mentioned, other types of missions coufd be encoded 
in hierarchies similar to the OCA hierarchy. The 
most theoretically interesting addition to the VI I'A 
system would be abstractions above the single mission 
level. Clusters of coordinated missions and even a 
complete ATO abstraction should be possible within 
the ('lass III Design framework. For example, ex- 
tended range OCA missions requiring coordination 
with    refueling   and   escort    missions   should   be   able   to 

be planned in a straightforward fashion. The single 
greatest hindrance to such work is the lack of acces- 
sibility of experienced  domain experts. 

2.2.  Explanation  in  the  Mission  Planning 
Assistant 

Michael C. Tanner, Dean  Allemar.g, 
.lohn Josephson, Matt  De.longh 

i'.^./.   Types of Questions for the. Mission  Planner 

We have generated a broad list of questions that 
a user may ask of a Mission Planning Assistant 
(MPA). Here we will give a categorization of those 
questions. In this preliminary analysis we will be able 
to sketch techniques for answering questions in some 
categories. But in others we have little to say at this 
point. 

2.2.1.1. Overall  Objectives 

There were questions about the objectives of the 
plan. Some questions of this kind can be answered 
directly   by  the  mission   planner: 

Question.     What  will  this  plan  achieve? 

Answer.     This   plan   will   achieve  destruction 
of large!   \  with   probability  Y. 

Other questions of this type have answers external to 
the  program.    For example, 

Question.    Why are you doing an  OCA? 

The trivial answer: 

Because you  told   me  to. 

is probably not the desired answer. The reasons for 
planning an OCA come prior to invocation of an OCA 
planning assistant. On the other hand il is perfectly 
reasonable for an MPA program to have some built-in 
definition  of the  reasons  OCAs  are done. 

2.2.1.2. Justifying   Decisions 

The most common kind of question asks for jus- 
tification of some decision made during problem- 
solving.    These seem  to come in  two kinds: 

1. Why  did you  do  X? 

2. Why didn't you do Y? 

Answering the "Why did you ....'" questions requires 
finding, or reconstructing, the point in problem-solving 
where the choice was made, then giving the reasons 
which support that  decision.    For example; 

-106- 



Question.    Why was an  P-J chosen? 

Answer.    The chokes wore A-10.   F-). and 
F-lll.     A-10  was   ruled   out. in   cases   where 
F-4  and   F-lll   are  available, I   prefei   to  use 
F-4. 

Any such answer may point, to further decisions which 
might be questioned in the same way. In the above 
example one may ask why A-10 ruled out, and pursue 
the decision  process Further. 

Answering "Why didn't you ...?" questions is a 
little harder. There are at least two distinct cases. 
In  one case,  the alternative  might  have  explicitly   been 

decided against. In the above example a "Why didn't 
you choose A-10?" would be answered by "A-10 was 
ruled out." The other case is that the explicit alter- 
native never came up. Answering the quest n in this 
case requires an understanding of the proHem-solving 
strategy and an explanation  in  those terms. 

Question. Why    didn't    you    allocate    a 
KC-135 for this mission? 

Answer. KC-13S is a tanker, tankers are 
only used if refueling is necessary, and refuel- 
ing is  not  necessary  for this  mission. 

2.2.1.3. Critique 

A number of questions were related to plan 
criticism. A user might want, to know where the 
weak points in the plan are. Or the user might want 
to know if some alternate plan is any good. We have 
not worked on questions of this kind but it seems as 
though critics could operate on the functional 
representation of the plan and that such criticism 
would not be closely related to the process of design- 
ing the plan. 

2.2.1.4. Questions  During  Problem-Solving 

Nearly all of the questions that might be asked 
after the MPA has produced an answer could also be 
asked during problem-solving. In addition there are a 
host, of questions about the problem-solving process it- 
self - why something is being done now, what is left 
to do, etc. 

2.2.1.5. Questions about  Function 

Many questions are about the function of various 
parts of the plan. If the plan is viewed as a device, 
it, can be represented using the functional represen- 
tation   of   Moorthy   and   Chandra    II.       This   will    be 
discussed   in   section   2 > '! sing   this   representation   ii 
would   be   possible   to  answer   questions   such   as   "Why 
are    airplanes     used?"    and     "Mow     will     I IK 

proceed?" 
mission 

2.2.1.6. Questions  About  the  Impact of Data 

Often it is useful to know how some fact affected 
the problem-solving and how the result would be dif- 
ferent if that fact changed. This could be related to 
critique. That is, if a small change in data makes a 
big difference then that data could be critical to suc- 
cess of the plan. It, might also be useful for making 
small changes in the final plan, such as forcing 
aircraft, type to be F-lll. If it makes little difference, 
the planner should  be able  to say  so. 

2.2.1.7. Questions  About Strategy 

Answering some questions requires understanding 
the problem-solving strategy used by the program. 
Questions of this sort can be directly answered using 
the explicit encoding of the generic aspects of 
knowledge and control for the generic task. The 
framework for this is discussed in the companion 
paper in this  Proceedings. 

2.2.1.8. Summary  Comments 

The categorization given above is not meant to 
be exhaustive or mutually exclusive. In fact, answers 
to questions of one type, say justification, may include 
answers of another type, say strategy. For explana- 
tion of the planner itself the most important kind 
given above is justification of run-time decisions. For 
one thing, such justification would be useful for debug- 
ging a planner and is likely to be a part of many 
other kinds of explanation. In the remainder of this 
report we will describe how we are implementing jus- 
tification of a certain kind for the mission planning as- 
sistant. 

S.S.S.  Eiplanafiot, for the MPA 

Our implementation is based on the organizing 
principle that the agent which makes a decision is 
responsible for justifying it. The MPA is built in 

DSPL so the agents which contribute to the final plan 
are: Specialists. Design Plans, Design Plan Selectors, 
Design Plan Sponsors. Tasks. Steps, and Constraints. 

In the present, implementation there are some 200 of 
these agents, though not all of them contribute to any 
particular     plan. All     of     these     agents     perform 
"knowledge-level" tasks (i.e., epistemically significant) 
so explanation of any one agent's problem-solving deci- 
sions can be given in terms of the goals of the agent 
which  uses  it,  and  the function  of the agents  it  uses. 

The final answer produced by the MPA can be 
viewed as a list of attribute-value pairs as in Knobs. 
That is. a   list   of the form: 

Target = Berlin 
Aircraft Type = F-lll 
Number Aircraft = 6 
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We have decided to concentrate on questions of ilic 
form, "How was it decided?" which can be asked of 
the value of any attribute. For example, selecting 
F-lll in the above list would initiale a dialog on the 
question of how MPA derided to use F-lll as the 
value of Aircraft Type. More particularly, an ex- 
planation window would appear containing the answer 
to "How was it decided?" produced by the agent 
which actually set the value of Aircraft Type to 
F-lll. in this window certain other things would be 
selectable. Selecting any of them will produce another 
window with a similar explanation for the proper 
agent. In this way the user will be able to pose 
follow-up questions by using the mouse to steer 
through the decision dependencies. 

To support "How was it decided?" explanations 
we determined three basic questions which all agents 
must  be able to answer: 

1. "Give me the bottom line: what did you 
do?" This question would be answered 
with a one-sentence summary of the result 
of the agent's action. 

2.  "What   is   your   purpose? This   question 
would be posed by sub-agents who want to 
have knowledge of the context they are 

operating in, and should be answered by a 
short description. 

3. "How did you do it?" This question would 
be answered by displaying a window with a 
complete explanation of the context of tin- 
agent's activation followed by a functional 
description of its action. The agent may 
have to ask its sub-agents Ql and its 
super-agent   Q2. 

Then, in general, the explanation for "How was 
it decided?" is the answer to question 3 above. The 
answer to q3 is a combination of the answer to q2 for 
the calling agent and ql for all sub-agents. So an ex- 
planation  window contains: 

In the context of <answer to Q2 for callin 
we did the following: 

onswer to Ql from subagentl> 
<answer to Ql from subagent2> 
<answer to Ql from subagent3> 

Below   we   show   detail«d   examples   of   all   the   agent 
types and  the explanations  they can  produce. 

Our work to this point is about generating ex- 
planation fragments and does not address other issues 
of explanation such as summarization, user modeling, 
or  human   factors. 

In figure I is a sample of the output for MPA 
on a particular problem. It is simply a list of at- 
tributes of OCA missions and the values that the 
MPA determines for them during problem solving. 
The user begins to get explanations by selecting one 
of the values and asking how MI'A decided on that 
value. 

Target 
I'D 
AircraftType 
NumberA/C 
Unit 
Airbase 
Configuration 

BrandenburgSAM 
.8704 
F-4 
4 
113TFW 
Wiesbaden 
B2 

FiKur«1  1:       Example of a particular OCA mission 

2.2.2.1. Step Explanation 

The values are actually set by a DSPL Step, so 
the first explanation a user gets comes from a Step. 
Suppose the value of NumberA/C, 4, was chosen. A 
slightly simplified version of the code for the step 
which actually set, this value is given in figure 2. 
This step sets some local variables by looking things 
up     in     the    data     base. E.g.,     the     local     variable 
configuration is set to the result of asking the data 
base what configuration is being used, (KB-FETCH 

CONFIGURATION). The KB-STORE tells the data 
base to set the attribute AIRCRAFT-NUMBER to the 
value returned by the function num-a c. which 
depends on the local variables. REPLY indicates that 
what follows is the main function of the step and sets 
DSPL up to handle failures if something should go 
wrong. 

(STEP setNumberA/C 
(SETQ configuration (KB-FETCH CONFIGURATION)) 
(SETQ requiredPD (KB-FETCH REQ-PD)) 
(SETQ targetType (KB-FETCH TARGETTVPE)) 
REPLV 

(KB-STORE AIRCRAFT-NUMBER (num-a/c configuration 

requiredPD 
targetType))) 

Figure  2:       DSPL code for a step 

Figure 3 shows the explanation of the step given 

in figure 2. The context, shown in italics, is retrieved 
frotn the task which invoked the step. The values set 
for the local variables an remembered bj the step at 
run-time as is the value returned by the Lisp function 
num-a/c. DSPL then fits these pieces into the general 
framework  for explaining steps. 

Piguratively, iiuce the system can only  .ui-wvr tin.- one (|ii 
tion at present. 
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The context of working out the de.tuil* of con- 
figuration ß5 determined that; 

• conftguratton was B'2 

• requiredPD was .65 

• targctType was SA-6 

So,    1    was    an    appropriate   choice    for    AIRCRAFT- 
NUMBER, 

Fignro 3:       Explanation for a step 

In figure 1 is a general description of steps show- 
ing the relationship between the code and the explana- 
tion which can be produced from it. The purpose of 
the calling Task is found by asking, "What is your 
purpose?" of the calling Task (see section 2.2.2). The 
values of local variables, and the value given to the 
attribute, are remembered by the step at run-time and 
retrieved  for explanation. 

2.2.2.2.  Task  Kxplanation 

After looking at the explanation for a step, the 
only further explanation is for the task which invoked 
it. This is obtained b) selecting the context given in 
the step explanation. 

Figure 5 gives the DSPL code for a Task. A 
task is simply a sequence of steps, with constraint 
checks possible. If the user had been looking at the 
explanation for the base-assign step and pursued its 
context, the explanation, which would come from the 
task shown in figure 5, would be that shown in figure 
6. As with steps, the context is obtained from the 
calling agent, in this case a Plan. The rest of the ex- 
planation is obtainec. from the steps which make up 

the task. 

Form; 

(STEP <stepNarae> 
(SETQ <localVarl> <vall>) 

(SETQ <localVarN> <valN>) 
REPLY 

(KB-STORE <attribute> <attributeVal>)) 

Kxplanation: 

The context of     purpose of containing task >  determined  that; 

• <localVarl>  was  <vall> 

• ... 

• ^localVarN >  was     val\ > 

So,     atlributeVal ■   was an apprroriate choice for     attribute   , 

Figure  4:        Template for Steps  and   their 

Kxplanal ion 

(TASK squadron 
(STEP squadron) 
(STEP base-assign) 
(STEP get-range)) 

Figure  6:       DSPL code for a Task 

Figure 7 gives a general description of Tasks 
showing the relationship between the code and the ex- 
planation produced from it. The purpose of the con- 
taining Plan is found by asking, "What is your 
purpose?" of the plan. What a particular step did, 
or its purpose, is found by asking. "What did you 
do?" or "What is your purpose?" as appropriate, of 

the step. DSPL fits these answers into a general 
framework  for explaining tasks. 

In the context of considering the feambility of nn 
F-4 for the. mission, I did the following step: 

• selection   of   113TFW   as   squadron   for   the 
mission 

I was  itt  the process of; 

• selecting a  base for the  mission 

I  had yet   to do the following step: 

• determine the range for  the mission 

Figure  6:       Kxplanation   for a Task, entered  from 
base-assign step 

2.2.2.3.  Plan  Explanation 

From a task tin user might select either ex- 
planation of the various steps in the tasks or of the 
task's containing Plan. The syntax of plans and their 
explanation is very similar to that of tasks. The ex- 
ception is that Plans can invoke design specialists, as 
shown   by   the   DESIGN statement   in   figure  8.     Figure 
9 shows   the  explanation   given   by   this   plan   and   figure 
10 gives   a   general   description   of  plans   and   their   ex- 
planation. 

2.2.2.1. Specialist Explanation 

As with Tasks, a user can choose to pursue ex- 
planation of a Plan's context or of its sub-agents. 
The sub-agents are Tasks, which have been described. 
The context is given by a design specialist. The logic 
of design specialists is implicit, thai is. defined by 
what a design specialist is. The Specialists' job is to 
choose a design plan and execute it. Il chooses the 
plan by invoking its design plan selector. The ex- 
planation for <i specialist is given in figure II and the 
general form of specialist explanation is in figure 12. 
The context, of a specialist is given In the plan which 
invoked it and it knows its own purpose. The pur- 
pose of the plan it selected is obtained by asking thai 
plan. 
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Form: 

(TASK  <taskNatne> 

(STEP  1) 

(STEP   i) 

(STEP   n)) 

Kxplanation, entered  tmm STKI1  i: 

In   the   context   of      purpose   of   containing 

plan     we did: 

• <what STEP   1   did 

• ... 

• <what ST El' i-1  did 

we were doing: 

• ^purpose of STEP i • 

and were about  to do: 

• purpose of STEP  it 1> 

• ... 

• ■ purpose of STEP  n ■ 

Figure 7;       Template for Tasks and  their Explanatio 

(PLAN  F-4 
(TASK   assignF-4) 
(TASK   squadron) 
(DESIGN  F-4Configuration)) 

Figure 8:       DSPL code for a  Design  Plan 

In  the  context  of selecting an appropriate aircraft 

for the  mission  I  was  in  the  process of: 

• assigning an  F-4  for the  mission 

I had yet to do the following steps: 

• find   an   appropriate   squadron   for   the   mis- 

sion 

• choose   a   configuration   for   the   F-1   in   this 

mission 

Figure  9:       Explanation for a  Design   Plan, 
entered from  the assignF-4 task 

best perfect plan, if there are any, or the best suitable 
plan if there are no perfect ones. The selector shown 
in figure 13, however, encodes the additional 
knowledge that if certain plans are available they 

ought to be chosen. 

The explanation of the selector in figure 13 is 
given in figure 14. Here the context comes from the 
specialist. The rest of the explanation comes from 
remembering the values of the predicates. The value 
returned by the selector, in this case, depends on both 
the fact that A-10 is nor a perfect plan and that F-4 

is. 

The general form of selectors and their explana- 
tion is shown in figure 15. A selector is essentially an 
IF-THEN-ELSE statement so it mw t be able to 
remember, or reconstruct, the values of the IF part to 

explain which   branch  was taken. 

Form: 

(PLAN <planName> 
(TASK 1) 

(TASK i) 

(TASK n)) 

Explanation, entered from TASK  1: 

In    the   context   of   ■  purpose   of   containing 

specialist ■  we did: 

• what   TASK   1  dld> 

• ... 

• what  TASK  1-1  did ■ 

we  were doing: 

• <purpose of TASK i> 

and were about to do: 

• -purpose of TASK i+l> 

•   < purpose of TASK  n > 

Figure   10:       Template for  Design  Plans and  their 

Explanation 

2.2.2.5. Selector  Explanation 

From the specialist a user could pursue the con- 
text of the specialist, the plan that called it. or the 
specialist's selector. Figure 13 shows the DSPL code 
for a Selector.     The  typical  selector simply  chooses the 
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In   the  context  of   using  the   otd-reliable   phut   to 
plan  the.  mission I was  performing  my  task of se.le.rttnij 
an appropriate, aircraft for the mission.     I  had: 

• <lo<i(l(>cl   to  consider   F-4   as   aircraft   for   the 

mission 

I was  in   l he  process of; 

• considering  the  feasibility  of an   F-4   for   the 
mission 

Figure  11:       Explanation for a Design Specialist, 
entered  from  plan  F-4 

Explanation, entered from  PLAN  1: 

In   the   context   of      purpose   of   containing 
plan>   I was  performing  my   task  of     purpose 

of self>.    I had: 

• selected  PLAN   1 

1 was in the process of: 

• ■ purpose of PLAN   I 

Figure  12:      Template for Explanation of Design 
Specialists 

(SELECTOR aircraftSelector 
(IF (MEMBER A-10 PERFECT-PLANS) THEN 

ELSEIF (MEMBER F-4 PERFECT-PLANS 
ELSEIF (MEMBER F-lll PERFECT-PLA 

Figure   13: DSPL code  for a  Design   Plan   Selector 

The   context,   of   selecting   an   appropriate   aircraft 

for the.  mission determined  that: 

•  Since     A-10    is     not     one     of     PERFECT- 

PLANS, 

Form: 

(SELECTOR  <selectorName> 
(IF <there  are  perfect  plans> 

THEN  <choose  the  best  perfect  plan> 
ELSEIF  <PLAN   1   is   suitable> 

THEN  <choose   PLAN   1> 
ELSEIF  <there  are  suitable  plans> 

THEN  <choose  the  best  suitable  plan>)) 

Explanation: 

The    context    of    ■   purpose    of    containing 
specialist  ■  determined  that: 

• Since there were no perfect plans. 

• I   chose   PLAN   I   because   PLAN   1   was 
suitable. 

Figure   15:        Template  for  Design   "Ian  Selectors 
and  i heir Explanation 

TABLE construct, which is essentially a group of rules 
which all depend on predicates of the same values. 
For example, the table setting the *..< iable conditions 
contains three rules which depend on the values 
returned by the functions night and weather. The 
first rule requires night to return F and weather to 
return     Ft'LL. If    the    predicates    are    true,    then 
conditions will be UNSUITABLE. The symbol 'V" in 
the tables represents a predicate which is always true. 
The table is finished when one rule matches. I!Et'L Y 
tells DSPL that what follows is the main function of 

the sponsor. 

The explanation for this sponsor is given in 
figure 17. Values for the local variables are given, 
those fetched from the database are not justified while 
those determined by tables are given justification. 
The final REPLY is used to determine the actual 
decision  made  by  the sponsor. 

•   I    chose    plan    F-4    because    F-4    is    one    of 

PERFECT-PLANS. 

Figure  14:       Explanation for a Design  Plan Selector 

2.2.2.6.  Sponsor Explanation 

From a selector the user could get explanation 
from any of the plan sponsors which it uses. A spon- 
sor matches characteristics of the plan to information 
about, the problem at hand and produces a measure ol 
how useful the plan will be on a scale of: Ruled-Out, 
Unsuitable, Suitable, and Perfect. The code for a 
sponsor is given in figure 16, It first, sets some local 
variables by looking I hem up in the data base (using 
KB-FETCH as  discussed  with  steps).     It  then   uses  the 

(SPONSOR  A-10 
ISETQ   target    (KB-FETCH   TARGET)) 
(SETQ   timeOvetTarget    (KB-FETCH   TIMEOVERTARGET)) 
(SETQ   threat 

(TABLE (airborne)(AAA)(SAM) 
(IF T ? 
(IF ? T 
(IF ? ? 
(IF ? 7 

(SETQ conditions 
(TABLE (night)(weather 

( IF F FULL 
( IF F 
( IF ? 

THEN UNSUITABLE) 
THEN UNSUITABLE) 
THEN UNSUITABLE) 
THEN PERFECT)|) 

THEN UNSUITABLE) 
PARTIAL  THEN SUITABLE) 

?    THEN PERFECT))) 

REPLY 
[TABLE conditions threat 

(IF UNSUITABLE ? THEN RULE-OUT) 
(IF     ? UNSUITABLE THEN RULE-OUT) 
(IF SUITABLE 7 THEN SUITABLE) 
(IF     7 7 THEN PERFECT)) 

Figure   16:       DSPL code for a  Design   Plan  Sponsor 
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A general picture of sponsors and their explana- 
tion is given in figure 18. Generally, the values set 
For local variables, the values of columns and predi- 
cates from tables, are stored away at run-time to be 
used in explanation. Explanation then involves pars- 
ing the sponsor's code and fitting these values into the 
explanation  template as needed. 

2.3. Understanding an OCA  Mission  Plan 

Anne Kenneke, John Joscphson 

Knowledge-based systems use knowledge to arrive 
at solutions. If a system will be used to provide con- 

sultation or 'dvise, it will need ti explain its 
knowledge and roblem solving in ordei to be accept- 
able and useful. In the task of planning, for instance, 
the planner must have access to its knowledge of 
problem solving strategies if it wishes to provide ex- 
planation of its design decisions. If the system hopes 
to provide an understanding of how the designed plan 
will work, it must have this knowledge, too, 
represented in  a meaningful and  accessible fashion. 

To illustrate the different types of explanation 
capabilities arising from knowledge structures within a 
system, consider the task of OCA mission planning. 
The planning task accomplished by the Ml'A (Mission 
Planning Assistant) system at OSU, involves specifica- 
tion for a set of pre-established components. That is. 
the planner knows the mission needs a certain type of 
component - its job is to make a concrete commitment 
3s to which specific component of that type would be 
Ijest. The planner requires only a limited knowledge 
of these components in order to make such decisions. 
Its understanding of the resultant mission plan is thus 

restricted. 

The   context   of   selecting   an   aircraft   to   consider 
for the mission determined  that; 

• target is BrandonburgSAM 

• timeOverTarget  is   1300 

.  threat  is  UNSUITABLE   because: 

SAM is TRUE 

• conditions are  PERFECT  because: 

weather  is  not   Kl LL 

J weather is  not  PARTIAL 

I     determined     the     value     of     plan      A-10     to     be 
RULE-OUT because: 

• threat is  UNSUITABLE. 

Figure  17:      Explanation for a Design  Plan Sponsor 

(SPONSOR <sponsorName> 
(PLAN 1) 
(SETQ <varl> <vall>) 

(SETQ <vari> 
(TABLE <col 1>  <col 2> 

(IE <pred L> <pred 2> THEN <val x>) 
(IF <pred 3>   ?    THEN <val y>))) 

REPLY 
(TABLE <C0l 3>  <col 4> 

(IF <pred 4>   ?    THEN <rating l>) 
(IP <pred 5> <pred 6> THEN <rating 2>))) 

Bxptartation: 

The context nf     parpost' of rontaitiing spjprtnr > determined  that: 

• van   1      la   ■ vat   I   ■ 

• 
• var i     i^i     val y     because: 

pred   1  ■   is  not  true of     cot   I 

:  - pred 3 >  is true of - col   I 

I determined  that the value of PLAN   I   to be     rdUng  I      because: 

■  ■ pred -1 ■  is true of     col :J ■. 

Figure   18:       Template for  Design   Plan   Sponsors 

and their Explanation 

For example, suppose a user of the mission plan- 
ner asks the question, "Why was an K-IS used'" 
Depending on the intentions of the inquirer, the ques- 
tion could be answered in different ways. For a 
particular mission, the question might be addressed 
directly   by   the   mission   planner.     Here,   the   inquiry   is 

interpreted as, "Why did you use an F-15 instead of 
any other aircraft for this mission?" Explanation 
would indicate what makes the F-15 appropriate 
(speed, weather compatible, etc.). Since this is the 
specific information the system used in making its 
decision,  the  planner should  be able to explain  it. 

In the above, interpretation of the question was, 
"Why choose an F-15?". An alternate interpretation 
could be, "Why is the F-15 used in the mission 
plan.'". A good response here might be. "The F-15 is 
an aircraft. Aircraft are used in OCA's because they 
have the ability to fly and to deliver the ordinance. 
These functions are used to get to the target location 
and to destroy the target - the primary goal of an 
OCA mission." This explanation requires a deeper 
understanding of the domain than the planner has 
readily available within its compiled planning 
knowledge. Here we need a structure to represent dis- 

tinctly how the plan  works. 

Moorthy, V.S. and Chandrasekaran, B., "A Representation l"i 
the Fiuictiuniii« c,f Devices that Supports Compilation of Expert 
Problem Solving Structures", Proceedings of MEDCOMP'i», IEEE 
Computer Society,  September,   1083 
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To represent this understanding, we propose use 
of a knowledge structure based upon the Functional 
Representation of Devices as designed by Moorlhv and 
Chandrasekaran.- A device is any structure (concrete 
or abstract) which serves a purpose, Thus, a plan 
can be viewed as an abstract device in llial it has 
components which fit together in such a way to ach- 
ieve a desired goal. We hope, in this paper, to il- 
lustrate how a functional representation for a plan can 
serve as a knowledge structure from which a more 
complete understanding of the specific planning domain 
can  be derived. 

The  Functional Reprexe.ntntion: An Overview 

The first concept is that an agent's understand- 
ing of how a device works is organized as a represen- 
tation that shows how an intended function is ac- 
complished as a series of behavioral states of the 
device. The device, itself, is represented in various 
levels. The topmost level describes the functioning of 
the device in terms of the roles of its components. 
The next level describes the functioning of these com- 
ponents using the roles of their subcomponents, and so 
on. At each level of a device's representation there 
may be five significant aspects to an agent's 
knowledge of the functioning of the device: 

-STRUCTURE: specifies the components of a 
device and  the relations between  them, 

-FUNCTION: specifies WHAT is the result or 
goal  of an  activity  of a device or component. 

-BEHAVIOR; specifies HOW. given a stimulus. 
the result  is accomplished. 

-GENERIC KNOWLEDGE: pointers to general 
knowledge  that shows how key states occur. 

-ASSUMPTIONS: under which a behavior is ac- 
< omplished. 

The functional speeifieation of the '"abstract 
device'' OCAMission is illustrated below by describing 
the  main  function of an OCA -  to destroy  a target. 

FUNCTION:     DestroyTarget: 
TOMAKE:   (Destroyed  Target) 
IF:  (Functional  'I arget) 
PROVIDED:   (Functional   Flight) 
BY; OCAplan 

throughout  the behavior. 

The behavioral specification of a device describes 
the manner in which a function is accomplished by 
using the functions of components, generic knowledge, 
and sub-behaviors. The behavior for an OCA plan is 
described by a chain of events caused by the specified 
actions: 

iUgBBEMamjiiffli 

(Functional Target) 

UsmgFunctian   Preparef lujht 

(Prepared Flight) 

UMHjFurtctian   OMenMveAir 
of Fkytit 

(Destroyed Target) 

Itangf-unctun   FaHowPlanHonie 
.,1 flajht 

(Location Flight HomeBase) 

The structure is meant to represent the temporal 
sequence (from top to bottom) of states which occur 
as a result of actions taken. The diagram thus in- 

dicates that, the OCAPlan's behavior begins when a 
Target is in a Functional state. Here an OCA plan 
will use the function I'repareFlight of the component 
AirHase to make the Flight Prepared. 1 pon achieving 
this state, the plan use the component Flight since it 
has the functionality (OffensiveAir) to Destroy the 
Target, (and so on). 

The structure of the OCAMission is defined by 
its components and relations: 

The description indicates that the plan. OCAMis- 
sion, has a function called DestroyTarget. This func- 
tion is used if a target is operalional(tunctional). 
When this function is used, the target will be 
destroyed by a behavior called OCAplan. This be- 
havior should succeed in accomplishing the goal of tar- 
get     destruction    provided    the    flight     is    operational 

- GroundCrew 

Flight* 

- Pilot - 
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Links in the chain indicate subcomponents in the 
sense that the first component, uses I h. next, in order 
to achieve its goals. The OCAMission uses the com- 
ponent, AirHase to prepare the aircraft and the com- 
ponent   Flight   to get  to the target  and destroy  it. 

Some important characteristics which make this 
representation useful for the design and repair of 
devices/plans  include: 
I) A component is specified Independenl of the 
representation of the device which contains it. More 
specifically, the specification of a component, does not 
refer to the role of the component in the composite. 
If replacements are necessary, this property allows for 
the determination of allowable substitutions by simply 
comparing functional capabilities of current components 
with  alternatives. 

2) Not the behavior specifications of components, 
but only the names of the functions are carried over 

to a higher level. This property is important if an 
agent needs to replace a malfunctioning component by 
a functionally equivalent but behaviorally different one. 
(le. It is not how the function is achieved that is im- 
perative,  but   what is achieved.) 

Since much of planning involves adaptations of 
already established plans, these trails which allow for 
such adaptations for components and behaviors are 
valuable. 

('iirre.i)t        Research:       Enhancements       to       the. 
Representation 

Enhancements to the Functional Representation 
are being made both to further the above capabilities 
for adaptation and for richer understanding and ex- 
planation capabilities. New primitives established for 
representations include: 

1. A means of distinguishing between the 
definition of a function and events which 
trigger the use of the function in the 
specified device. 
Example; An aircraft has the function 
""Fly" which is used to change location, 
ie. IF: (Location Aircraft x) the function 
Fl\ is used TOMAKE: (Location Aircraft 
y) For the OCA mission use of this func- 
tion is triggered when the current leg of 
the Flight p'an indicates a change of loca- 
tio'i ft );n x to y. 
The distinct ion between triggers and the 
""definition if" is useful for replacement con- 
siderations. Functions must match defini- 
tions to be equivalent. Triggers are relative 
to the device in which the component is 
being used. If a component is replaced, 
adaptations to a plan may be needed to 
change a triggering mechanism. 
To   determine   if  a   helicopter   could   be   used 

instead of an aircraft, within an OCA plan, 
a top-level response involves checking the 
functionalities of the two devices. Here the 
trigger is transferable to the other device 

(the FlightPlan could just as easily specify 
helicopters as airplanes). If the functions of 
the devices are equivalent, the question 
might be sent, to the plan designer of this 
level to determine why Micopters were not 
chosen as the device. Notice that, functions 
of devices should not, change but events 

that   trigger  their  use  may. 

2.  Explicit    distinct ion    of   device's   "'secondary 

functions". 
These are functions which are present in 

supiiorl o/another main function. Specifica- 
tion of such functions is needed for proper 
explanation and for information when con- 
sidering replacement of components. Three 

types  have been determined: 

a. Subfunctions: 
- functions a device possesses simply 
as a means to establish preconditions 
for a primary function, (e.g. takeoff 

for fly in aircraft) 
- functions a device possesses to sup- 
port a provided clause (assumptions) 
on behaviors for a primary function. 
(e.jj. windshield-wiper/car , 

FCM '0(  \) 

b. Secondary   functions: 
With respect to the desired use of the 
given device. these are extraneous 
functions. Consider a kerosene lamp 
one      hundred       years      ago. It's 
functionality then was to give light. 
Today its use is often decorative (the 
rustic look). When purchased for this 
purpose, the functionality of producing 
light,    is    rarely     used. Notice    that, 
secondary functions could be primary 
functions depending on the device 
designer's and or the user's purposes. 
(OCA  missions  have  none of these.) 

c. Other design considerations; 

- goals because of situation context of 
the device (e.g. The component Flight 
of device OCAMission has the function 
FollowPlanHome. The main goal of 
an OCA is to destroy a target. With 
respect, to the device OCAMission. ex- 
planation of why Followplanhome is 
needed involves "'external" considera- 
tions. It is present because in the 
process of destroying the target we 
also hope to protect our people and 
resources) 
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.'i. Specification   of   rationales   for   links   within 
behaviors. 

The designer of a device specifies a function 
or    behavior    for    a    purpose. Explicit 
representation of this rationale assists ex- 
planation. This feature is necessary in 
planning where states may be achieved to 
establish conditions for future use. Linear 
sequencing of events does not always 
provide a full understanding of the be- 
havior, (e.g. an aircraft is loaded with the 
ordinance long before the device OCA is 
ready  to use the ordinance) 

■1.  Availability   of   conditiorjs   on   links   in   be- 
haviors. 
Functions can be achieved through more 
than one behavior. Use of a specific be- 
havior may be contingent on specific con- 
ditions, (e.g. an aircraft may refuel while 

flying if it is at a refueling service and it 
requires fuel) 

To summarize, the changes to the original 
specification of the functional representation language 
as defined by Moorthy and Chandrasekaran that have 
been made involve the specifications of functions and 
behavior links. The primitives of these objects are 
now  as follows: 

FUNCTION: 
IF: 

TOMAKE: 
BY: 
PROVIDED: 
TRIGGERED  WHEN: 

SubFunctkmOf: ? 
ExtemalConsideration: ? 

Behavior  Links: 
CONDITION: 
RATION ALK: 
LINKTYPE:    (one   of:    as    per.    using    function,    by 

behavior) 

SPECIFICATIONS   contingent   on    linktype   choice: 
identification  of (knowledge    function     behavior) 

Explanation of Plans 

Understanding of an OCA plan can now be il- 
lustrated through the explanation capabilities inherent 
in its fuiiclion.il representation. The representation is 
capable of answering questions about its devices, func- 
I ,ons. and behaviors. Example answers to questions 
will be given in the context of a top-level device of 
OCAMission. Explanation responses are built using 
acc'-ss  to the  proper functional  primitives. 

I.  Devices 

1. QUESTION:  "Why   is  this  device  needed?" 
ANSWER:      Device       is   used   because 
it has the functional capabilities to , 
 , and  . 

EXAMPLE: "The device Flight is used be- 
cause it has the following functional 
capabilities: 
To achieve offensive air  missions 
To reach  t he target 

To return   to  the  homebase  alter a   mission" 

2. QUESTION:    "What    subcomponents    does 
this device require?" 

ANSWER: The structure of the device in 
the form ol a hierarchy of components is 
given (as was illustrated earlier by the 
structure of an  OCAMission). 

.'>. QUESTION:  "What  are  the secondary  func- 
tions of this  device and   their  roles?" 
ANSWER:     The     device           has     the 
functionality      because  it   supports  the 
primary  function 
ANSWFIC     The     device           has     the 
functionality present    because   it    has 
a design consideration  for 
EXAMPLE:   -The   device   AirCraft   has   the 
functionality    TakeOff   because   it    supports 
the primary  function  Fly." 
EXAMPLE:    ■■The   device    OCAMission    has 
the   functionality   Maintain Resources   present 
because    it    has    a    design    consideration    for 
preservation of the crew and aircraft." 

II.  Functions 

1. QUESTION:      "Why      is      this      function 
needed?" 
ANSWER: This function is needed to en- 
sure  that    .    Here,  secondary  functions 
specify thai they are needed for 
functionalities 

EXAMPLE: "The function Protection of 
ECM is needed for its capabilities to 
protect the aircraft and crew, to ensure 
that the Aircraft is not threatened, and to 
support conditions for the function 
DestroyTarget." ' 

Further  inquiry  shows  that   DestroyTnruel   has  n 
■I  the flight  hcinx functional. 

'ROVIDED 
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2. QUESTION: "What «Iocs this function do?" 
ANSWER: The function   is ac- 
complished   hy   behavior       to   ensure 
that The behavior can  be used if 

It is triggered when ■ 
EXAMPLE; "The function Offensive Air is 
accomplished by behavior OffensiveAirTac- 
tics to ensure that the target is destroyed. 
The behavior can be used it the target is 

functional, the flight is loaded, and the con- 
straint FuelSufficientForPlan is satisfied by 
Flight I'lan. It is triggered when the time 
of departure of the OCAMission is 

CurrentTime." 

:i. QUESTION; "How is this function 

achieved?" 
ANSWER; The behavior for the function is 
shown with the use of its "behavior 
browser" as previously shown lor l he 

OCAPlan. 

•1. QUESTION; "Where is this function used?" 
ANSWER: Functions; Behaviors of the mis- 

sion are inspected to see where the function 

is used. 
EXAMPLE; "The function fly is used in 
the behavior (ietThere of function Fol- 
lowPlanToTargel and in the behavior flet- 
Mark of function  FollowPlanHome." 

111. Behaviors 

QUESTION: •'Why is this action performed?" 
ANSWER: Either a specific rationale for the action is 
obtained from the link or a default answer of the fol- 
lowing slate in the behavior is specified. 
EXAMPLE: "The function LoadOrdnance is used in 
OffensiveAirTactics because it ensures that the flight is 
loaded which is needed for the primary goal to 

destroy the target." 

Potentiah  and  Future.   Research 

Capabilities of the functional representation as a 
structure of understanding are not limited to explana- 
tion of devices, functions, and behaviors. A diagnostic 
compiler which takes as input a functional represen- 
tation of a device, and outputs an expert system for 
diagnosis of problems of the device is already imple- 
mented. If one views debugging of a plan as trouble- 
shooting in an abstract device, such a diagnostic sys- 
tem is useful for reasoning about why a plan will or 

will  not work. 

Similarly, the representation may be useful for 
simulation of plans. The planner establishing the use 
of specific devices may wish to use this potential to 
check the feasibility of his planning decisions. Neces- 
sary provisions to the functional representation for 

such  use would  Include: 

1. the addition  of a clause  for  behaviors  which 
indicates side effects 
In simulating a mission plan, the system 
would need to know that using behavior 
Cruise (from function Fly of AirCraft) to 
change the location of the Aircraft will also 
cause a  depletion  of the fuel  in  the aircraft. 

2. a concept of time usage must be available 
The functional representation is illustrated 
with discrete state changes. Behaviors 
which cai.se these state changes may vary 
in the length of time required. Some ac- 
tions appear instantaneous (Ordinance 
delivered to target - • target destroyed), 
while others may have intermediate, un- 
specified states. This would also require a 
more specific definition of what constitutes 
a "state". Another time consideration in- 
volves the representation of behaviors which 
occur in  parallel or in synchronous motion. 

With the above capabilities of debugging and 
simulation in mind, obviously a planner has oppor- 
tunity to use the functional representation in making 
its decisions. Further research is needed to determine 
how much assistance the representation can donate 
towards the building of a planner. Much of the 
planner's domain knowledge can be derived from this 
representation which specifies how the domain works. 
How does the planner choose what information to use 
(and when) for making his decisions regarding the best 
choice? What influences does the deeper model have 

on the knowledge used by the planner? 

Other areas of concern include the creation ol 
plans and or adaptations to existing plans. Using a 
functional    representation,    components    of    plans    are 

specified independent of the representation of the plan 
which contains them. This makes it feasible to create 
and modify plans given the goals desired and the func- 
tional specifications of available  components. 

There are man} unexplored aspects to the task 
of    planning. It     is    apparent     that    the    functional 
representation  is a useful structure for approaching the 
problem - for an understanding of the problem solv- 
ing,  as  a   representation   of  knowledge  in   the  domain, 
and as an abstract knowledge structure to use in con- 
struction of plans. 

3. DSPL and HYPER: Two 
High-Level Tools 

In the companion paper, we describe a number 
of generic tasks around which we propose that 
problem solving, knowledge organization, and explana- 
tion   be  organized.      Two   of   those   are:   class   ?<   design. 
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and hypothesis matchint;. In our dcscripliotl of tin- 
Mission IMaiuiiiig Assistant, we indicated that a Nin- 
guage called DSPL was used to encode the system as 
well as to generate the explanations. DSPL was 
described in some detail as part of explaining the con- 
struction of the  MPA  system. 

in this section we present a manual for DSPL, 
and also a description for another tool that we call 
HYPER, These tools along with other tools that are 
under construction in our laboratory will provide a 
powerful set of high level tools for the construction of 
a  variety  of knowledge-based systems. 

3.1. The DSPL Manual 

David  Herman and David ('.  Brown 

DSPL (Design Structures and Plans Language) is 
a language developed for implementing expert systems 
which perform a kind of design problem solving. This 
document covers various details of loading and inter- 
acting with DSPL on a Xerox 1108 Lisp machine 
(a.k.a. Dandelion), running at least the Buttress 
release of LOOPS with at least the Koto release of 
INTERLISP-D. It is assumed that the reader is 
familiar with both LOOPS and INTKR USI'-D on a 
Dandelion, as well as an exposure to the theoretical 
motivations  underlying  the  DSPL  language. 

.i.Z. Loading DSPL 

DSPL may be loaded either by installing the 
DSPL sysout. or by loading the DSPL system onto an 
existing sysout. In order to load DSPL on an existing 
sysout, both Interlisp and LOOPS must be already 
loaded. A fresh version of LOOPS is recommended, 
although  not   necessary. 

To load DSPL. insert the floppy with the 

INTERLISP-D DSPL files on it and type in; 

LOAD({FLOPPY}LOADDSPL) 

Before any files are loaded, you will he asked 2 ques- 
tions. The first question asks if the DSPL source 
hi on Id be loaded, and the second question asks if the 
A1R-CYL expert system should be loaded. The AIR- 
CYI. expert system is written in DSPL ami is used to 
illusiiate the use of DSPL throughout this paper. If 
you , re exploring DSPL for the first time, you should 
answer "n" to the first question and "y" to the 
second. When DSPL has completed loading, the 
DSPL  icon  will  appear on  the screen. 

i.J.I.   The   DSI'L   Icon 

The DSPL icon facilitates access to the lop level 
DSPL functions through the use of the mouse. The 
icon   allows   new    DSPL   problem   solvers   to   be   created 

and existing problem solvers to be loaded from a file 
and browsed. It also allows certain modes of opera- 
tion of the DSI'L interpreter to be modified as 
desired. The specific commands available are briefly 
described  below. 

Left  Button Commands 

•Move • This command is identical to the Move com- 
mand for the LOOPS icon class. It allows the icon to 
be placed at an arbitrary location on the screen under 
mouse control. 

Middle liutton Commands 

Create> Creates a new instance of a DSI'L problem 
solver. The name of the new problem solver and its 
top-most      specialist       is      prompted      for      in      the 

PROMPTWINDOW. A Specialist Browser (described 
in section 3) is also created for the new problem sol- 
ver. This browser organizes all access to and 
modification of the problem solver as it is being 
developed. 

Urowse • Hrings up a Specialist Browser for an exist- 
ing problem solver. (See section 3.) The name of the 
problem solver is prompted for in t lie PROMPTWIN- 
DOW. 

Load ■ Causes an existing DSI'L problem solver to 
be loaded from disk or floppy. Several variants are 
available in a submenu, depending on the type of file 
to  be  loaded. 

• Load • This is the standard mechanism for loading 
an existing problem solver which was previously saved 
to disk or floppy. The name of the file must be 
typed into the PROMPTWINDOW when requested. 
All DSI'L source code and function definition are 
loaded directly from the file specified. This submenu 
command is identical to the main menu command. 

• Load Source ■ This version of Load reads the input 
file as a list of DSPL source code statements. The 
name of the file, the problem solver, and the top-most 
specialist must be entered into the PROMPTW1N- 
DOVV. as requested. Each statement is parsed bj the 
DSI'L system and added to the specified problem sol- 
ver. The input file may have been created either by 
the DSPL system (s.-e the Save source only command, 
section .'!). or bj a text editor on another host com- 
puter. 

--Set modes ■ This command controls certain aspects 
of the behavior of the DSPL system, A submenu ol 
options  is available. 

■ Set parser modes Controls the amount ol detail 
provided in the messages from the DSI'L system when 
parsing   pieces  of  DSI'L  source  code.     The  default   set- 
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ting prints a brief tneasage each time a DSPL agent is 
successfully parsed, ami an error message when a 
parse fails. 

■ Set   demo   fonts ■   Changes   the   display   fonts   in   the 
.RLISP-D   environment,   to   fonts   which   are   sized 

-, ..opnate for demonstrations.     A submenu command 
allows the fonts to be returned to the standar-i sizes. 

• llelp> Provides a brief introduction to the use of 
the DSPL system as implemented in  [NTERLISP-D. 

Kighl   Mutton  Commands 

■Move ■ Same as the left  button command. 

Close > This command is identical to the Close com- 
mand for the LOOPS icon class. Close removes the 
USl L icon from the screen. 

All of the middle button DSPL icon Functions 
can also be invoked under program control l,v sending 
the appropriate message to the DSPL icon instance 
Ihe pointer to the instance is maintained in the 

global variable DSPL.Icon, which is set when the 
DSPL interpreter is initially loaded. If no arguments 
are supplied with the message then they will be 
prompted for, just as if the DSPL icon was buttoned 
with the mouse. Alternately, the necessary arguments 
tnay be supplied with the message. The order of the 
arguments matches the order they are prompted for 
when  the  DSI'L  icon   is  used  interactively. 

S.2.S.   The  DSPL  Browsers 

Several types of browsers are used to organize 
and  access  problem solvers  buili   using  DSI'L. 

There are four different agent browsers in DSI'L, 
each of which display a particular grouping of DSPL 
agents, as described later in this section. All of the 
agent browsers, however, share the common ability to 
create and manipulate the various DSPL constructs of 
I lie language. The following describes the operations 
common  to all of l he agent   browsers. 

Left   Mutton  Commands 

The left button commands are displayed in a 
pop-up menu when left mouse button is pressed and 
held while the cursor is pointing to an agent label in 
any of the agent browsers. Again, the command 
selected will act on the agent which the cursor was 
pointing at when the mouse button was pressed. The 
following commands are available: 

PP     Pretty  prints the DSPL agent definition for the 
selected  agent  in   the  PPdefaull  window. 

Inspect      (ihis   agent)   Brings   up  an 
inspector   window   on    the   instance   o 

INTERLISP-D 
the    selected 

agent.     Two options  are available. 

Inspect this agent     Identical to the above command. 

■ Inspect component Similar to the inspect com- 
mand, bul (he selection is made from a submenu of 
agents which  are component:, of the selected agent. 

Mrowse specialist If the selected agent is a DSPL 
specialist, this command will bring up a Specialist 

Component Browser showing the internal structure of 
the specialist. If the selected agent is not a specialist, 
this command  has  no effect. 

• Mrowse plan ■ If the selected agent is a DSPL plan 
this command will bring up a Plan Component Brow- 
ser showing the internal structure of the plan. If the 
selected agent is a specialist, this command .vill bring 
up a submenu of all the plans contained in the 
specialist. Selecting one of the plans in the submenu 
Will cause thai plan to be browsed. If the selected 
agent is not a plan or specialist this command has no 
effect. 

Middle   Million  Commands 

The middle bul ton commands are displayed in a 
pop-up menu when the middle mouse button is 
pressed while the cursor is pointing lo an agent label 
m any ol the agent browsers. Again. Ihe command 
selected will act on the agent which the cursor was 

pointing al when the mouse button was pressed. The 
following commands are available. 

• Edit> Invokes Dedit on the DSPL source for the 
selected agent. The source may then be modified as 
desired. When Dedit is exited, the DSPL system 
parses the edited source and compiles a new agent in- 
stance, which is consequently installed into the 
problem solver. If any errors are encountered by the 
system during processing, the source may be re-edited 
or optionally saved for later consideration. (See the 
Edit Mad Source option below.) If „o changes are 
made to the source code, the parser is not invoked 
and no chang.. is made to the problem solver. Several 
submenu options are available. 

Edit  this agent  ■  Identical to the above command. 

Edit object code • Similar to the edit command, bul 
invokes Dedit on the INTERLISP-D code generated bj 
the DSPL parser for the selected agent. 

<Edit component Similar to the edit command, but 
the selection is made from a submenu of agents which 
are components of the selected agent. 

• Add undefined agent Allows lor the definition of 
new DSPL ngents from a list of agents currently 
referenced  but   undefined  In   the problem solver.    The 
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command causes a submenu of all DSI'L agent typos 
to be presented. Selection of an agenl type causes a 
menu of the undefined agents of that type to I»' 
presented. Selection of an agent causes Dedil to I»' 
invoked on a source code template of thai type. 
From  here, the  Add command  works similar  to  Edit. 

invokes Dedil on the INTKRUSI'-I) code «eneratod I)) 

i lie  DSI'l.  parser for I lie »elected  agent. 

■ Edit last objeel code invokes Dedil on the 
INTERLISP-D code of the last agent edited from the 

browser. 

■ Delete Deletes the selected agent from the problem 
solver. 

Delete!''roniHrowser Hemoves lire selected agenl and 
its subagents from the browser. This does not affect 
the structure of the hierarchy, only what is displayed. 
This command effects are undone bv the 
RemoveFromBadList command in the Title Menu 
Commands. 

Title Menu  Commands 

The title menu commands are displayed in a 
pop-up menu when either the left or middle mouse 
button is pressed and the cursor is pointing to the 
title bar within an agent browser. The following com- 
mands are available. 

• Recompute ■ This command is nearly identical to 
the Recompute command for LOOPS class browsers. 
The only difference is thai the submenu item Chan- 
geFontSize is replaced with Select Font. This new 
item allows a greater selection of fonts for the brow- 
ser. Recompute is called automatically when agents 
are added, deleted or edited via oilier browser com- 
mands. 

SaveValue Same as SaveValue in the LOOPS class 

browser. 

RemoveFromHadLisI Same as RernoveFromltadLisI 

in ihe LOOPS class browser. 

Where Is Agent? This command allows selection of 
a DSI'L agent type from a submenu, followed by the 
presentation of all agents currently defined for lire 
problem solver of the selected type. The specialist 
containing that agent is then flashed in the Specialist 
Browser. Additionally, any agenl browser containing 
the selected agent   is also flashed. 

Kdil ■ (agenl) Similar to I IK- Edit command of the 
Middle Button Commands, except thai lire desired 
agent is selected "ia a mechanism identical to I he 
Where Is Agenl'.' command. Several submenu options 
are available. 

Kdil  agenl      Identical  lo the above i ornmand 

Edit   last      Invokes   Dedil   on   the  source  ol   the   last 
agent edited  from  the  browser. 

Edit object   code      Similar   lo  the  edil   comtnand.   bill 

Kdil unreferenced agent ■ Similar to the edit com- 
mand, but the selection is made from a menu of 
agents which are referenced by no other agent in the 

problem solver. 

Edit bad source Similar lo the edit command, bill 
the selection if made from a menu of agents known to 
have syntax errors  in  their  DSI'L source code. 

Delete ■ Deletes I he selected agenl from the problem 
solver. The agenl is selected via a mechanism identical 
to the Where Is Agenl'.' command. 

■ Add (agent) Allows for the definition of new DSI'L 
agents. This command causes a submenu of all DSI'L 
agent types lo be presented. Selection of an agent 
type causes Dedil to be invoked on a source code 
template of that type. From here, lire Add command 
works similar to Edit. The following suboplions are 
available: 

Add   agerrl   ■   Satire  as  above. 

Add undefined agent ■ Identical to the Middle But- 
ton Command. 

Inspect ■ (agerrl) Similar to the Left Button Com- 
mand, except the selection mechanism is again similar 
to the Where Is Agenl'.' command. Several submenu 
options  are  available: 

Inspect   agenl      Identical  to  the  above command. 

Inspect last agenl Brings up an INTKRLISI'-D in- 
spector window on the LOOPS instance of the last 
agerrl   edited  from  this  browser. 

Inspect problem solver Brings up an INTERLISP-D 
inspector window on the instance of the problem sol- 
ver. 

Browse • (specialist) Creates a browser orr lire 
selected ageirl from a list of all agetrls of a certain 
type.    The default   lype is Specialist. 

Browse Specialist ■ This command will bring up a 
submenu of all the specialists current l\ defined rrr the 
problem solver. Selecting one of lire specialists in the 
submenu  will  cause that  specialist   lo  be  browsed. 

Browse I'larr Similar lo Browse- Specialist, but for 
plans. 
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< Browse   Failurcllamller ■   Creates   a   browser   contain- 
ing all failure handlers  in  the system. 

'i.'ä.ü.  The. Speeialist Browser 

The Specialist Browser displays a lattice which 
shows the hierarchy of design specialists of the expert 
system. Bumper, for example, is a snhspecialist of the 
Rest specialist, while the AirCylinder specialist is a su- 
perspecialist of the Spring. Head and Rest specialists. 
Each specialist of the AIR-CYL problem solver is 
responsible for a particular portion of the air cylinder 
design. As you might expect, the Spring specialist 
contains knowledge about designing the spring com- 
ponent, while the Bumper specialist contains 
knowledge about designing the bumper. In general, 
specialists lower in the hierarchy are responsible for 
progressively smaller sub-portions of the design 

problem, while the specialists higher in the hierarchy 
are responsible for larger assemblies in the design 
problem. In the AIR-CYL example, the top specialist 
coordinates the design of the entire air cylinder, while 
the tip specialists only contain knowledge about a 
single component   in   the device. 

The spe< ialisl browser has the following com- 
mands  in   addition   I"  the standard  commands. 

Left  Uulton  Commands 

Set trace modes Determines which components of 
the selected specialist will be traced during execution. 
Note that tracing agents does not alter the computa- 
tions made during execution. The agents to be traced 
are selected from a submenu of agent types in the 

system. 

Title Menu  Commands 

Save ■ Saves the entire problem solver to a loadable 
file. Since the both DSPL sou ce and any generated 
INTKHLISP-I) code is saved, no reparsing by the 

DSPL system is required when the problem solver is 

reloaded. 

Run ■ Initiates execution of the problem solver. 
Several submenu options related to running the 
problem  solver are available. 

If: Identical  to the above command 

Set default trace modes • Similar to the Left Button 
Command in operation, except that the modes set by 
this command affect the tracing of all agents in the 
problem solver. This setting is overridden by trace 
modes  sei   in  an  individual  specialist. 

Graphic trace ■ This command enables a browser 
oriented form of tracing of the execution of the 
problem   solver.      In   this   mode  a  box   is  drawn   around 

each agent as it, is entered, and removed upon exit. 
Only agents currently being browsed are affected. A 
submenu of this command allows this mode to be 
turned  cither on or off,  as desired. 

■ Single step • Causes the DSPL interpreter to halt 
before each agent is entered or exited. A menu pops 
up at the cursor to which must be buttoned to allow 
execution to continue. A submenu of this command 
allows single stepping to be turned either on or off, as 
desired. 

8,2.4.  T^e Specialist Component Browser 

The Specialist Component Browser displays a lat- 
tice which shows the internal structure of a DSPL 
specialist down to the plan level. The use of browser 
is very similar to the Specialist Browser. Each node 
in the lattice represents a DSPL agent, which may be 
directly edited, displayed,  or  deleted   via   mouse actions. 

The structure of a design specialist in DSPL is 
very constrained, and hence the lattice displayed in 
the Specialist Component Browser is very regular. 
The only types of DSPL agents that will be displayed 
in a Specialist Component Browser are specialists, 
selectors, plan sponsors, plans, and constraints. The 
root node of the lattice will always be the specialist 
whose components are being displayed. The rest of 
the agents in the lattice are organized to suggest 
relationships among the various components; selectors 
are displayed above the plan sponsors which the selec- 
tor uses, plan sponsors are displayed above the plans 
being sponsored, etc. 

The Specialist Component Browser has no ad- 
ditional commands over the standard commands 
described at the beginning of this section. 

:l.3.5.   The  Plan Component  Browner 

The    Plan    Component     Browser    parallels    the 
Specialist Component Browser in both function and 
use. The Plan Component Browser displays a lattice 
which shows the internal structure of a DSPL plan 
and its components. Again, each node in the lattice 
represents a DSPL agent, which may be manipulated 
via mouse  actions. 

Plans are represented in DSPL as a sequence of 
actions. These actions nia.v be thoughr of as com- 

mands to various types of agents to perform a specific 
job, DSPL plans currently contain only three such 
agerrt types; constraints, tasks, and specialists. The 
root node of the lattice will always be the plan whose 
components      are      being      displayed. The     agents 

referenced by the plan will appear directly beneath the 
plan in the browser. Additionally, the Plan Com- 
ponent Browser displays the structure of each task it 
contains.       Components    of   each    task    are    displayed 
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beneath the task in the browser. Tasks are composed 
of agents of two types, constraints and steps. Finally, 
any redesign or failure handling knowledge referred to 
by an agent, in the plan browser will be displayed 
beneath  that agent. 

The Plan Component Browser commands are 
identical to the Specialist (.'omponenl Browser com- 
mands. 

3.2.6.  The Failure.  Handler Browser 

The Failure Handler Browser displays a lattice 
showing relationships among every failure handler 
agent in the problem solver. Both system and user 
failure handlers are displayed. 

Note that consistency is maintained among the 
DSIM. browsers through any editing or other modifica- 
tions performed via the browser commands. Deletion 
of an agent, for example, will result in the removal of 
that agent from every browser that the agent appears 
in. 

:l.2.7.   The.  Message   Trace.   Browser 

The message browser does not show a lattice of 
ÜSPL agents. Instead, as its name implies, this brow- 
ser displays a trace of the messages generated during 
the    execution     of    a     DSPL     problem    solver. The 
problem solver is initialed when a design message is 
sent to it. The problem solver Forwards this message 
to the topmost specialist in its design hierarchy which 
in turn uses the message to activate its own plan 
selector in order to find an appropriate plan. etc. 
Each of the DSPL agents are activated by and 
respond with messages which can viewed via the Mes- 
sage Trace  Browser. 

Since the objects in the .Vlessage Trace Browser 
are not DSPL agents, the commands available some- 
what different   from the other  browsers discussed. 

Left  Button  Commands 

Most of the left button commands are identical 
to the left button commands In the agent browsers, 
except that the agent that is operated on is typically 
the originator of the message displayed in  the lattice. 

Kxplain Displays an explanation window for I his 
portion of the problem trace. This is the access 
mechanism to the explanation facilities of the DSPL 
problem trace. 

I'l' Same as the I'l* command in the agent brow- 

sers. 

Inspect (this message) Brings up an [NTKRLISP-D 
inspector window on the message instance buttoned, 
A    submenu    allows    the    originating   agent    to    be    in- 

spected. 

■ Inspect  this  message •  Same as above, 

< Inspect    agent >    Inspects   the   agent    which   originated 
this message. 

■ Browse>   Bring   up   a   browser   on   the   originator   of 
this message. 

<Wherels •  Same as the agent  browser command. 

Middle   lim ton  ( !ommands 

Edit -  Same as the agent  browser command. 

3.S.8.  Running DSPL 

The execution of a DSPL sysletn proceeds in a 
top-down fashion, beginning from the top-mosl node in 
the design hierarchy. At each node in the specialist 
hierarchy, the knowledge encoded in the plan selectors 
and plan sponsors is used to select a plan appropriate 

to the current state of the planner. On finding such 
a plan, if one exists, the specialist, proceeds to execute 
the plan. This overall control strategy of the DSPL 
interpreter is  known  as  plan selection  and  refinement. 

■1.3.9.  Building a DSPL Expert System 

This section gives a brief, incomplete description 
of how to build an expert  system  in   DSPL, 

Having loaded the DSPL system from floppy, the 
creation of a new DSPL problem solver is begun by 
buttoning the create command of the DSPL icon. 
The name of the problem solver as well as the name 
of the top-most, specialist, is prompted for in the 
PROMPTWINDOW. Enter these items as requested. 
An empty specialist browser is displayed, from which 
the structure of the design problem solver can be en- 
tered. Buttoning the Add undefined agent command 
will display a menu with a single item on it: the 
name of the top-mosl specialist which was entered 
when the create command was buttoned. Buttoning 
this item will cause Dedil to display a DSIM, specialist 
template with the name of the specialist already en- 
tered. Simply exiting from Dedil will cause this 
agent, the top-mosl specialist in the design hierarchy, 
to be added to the specialist browser. The first agent 
of the new design system has been created. Ad- 
ditional agents are added by using the Add agent 
command to edit   DSPL templates as needed. 

The recommended procedure for building a 
design system with DSPL is to first define the 
specialist hierarchy, then "flesh out" the hierarchy 
with design and rough-design plans and associated 
spotisor and selector knowledge in each specialist as 
appropriate. This gives a fairly complete overview of 
the   system's   organization.      The   addition   of  task   and 
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sic[) knowledge is typically the most time consuming 
job in building a system due to the proportionately 
larger amount of knowledge to be entered. The task 
of entering this potentially large volume of data is 
made easier by the organized nature of the specialist 
hierarchy. 

At any point in the development of the problem 
solver, the system may be executed to test its opera- 
tion. Any missing agents necessary for execution will 
be noted by the DSPL interpreter. Missing DSPL 
constraint and step knowledge may be "dummied out" 
taking advantage of facilities such as ASKUSER in ei- 
ther step or constraint   bodies. 

3.3.  HYPER:   Tin-  Hypothosis  Matrher Tool 

Todd  .Johnson  and  John  Joaephson 

INTRODUCTION 

This paper describes HYf'KR - a software tool 
that is used to build knowledge-based agents which 
perform the generic task of hypothesis matching for 
relevance. We first describe the classification tool 
called CSRL which gave rise to. and greatly in- 
fluences, HYPER. Next, we describe hypothesis 
matching as a generic task and proceed to discuss the 
particulars of the tool. We then describe the types of 
explanation we expect from a hypothesis matcher. 
Finally we give an example of a system which uses 
hypothesis  matching as a subtask. 

S.3.1. CSRL -- Motivation for HYPER 

Over the last two years much work has been 

done at OSU-LAIR using the classification system- 
building language called CSRL 1. 5, 6, 7, 12]. Using 
CSRL one can easilj build systems which classify a 
description of a situation into a set of nodes in a class 
hierarchy. Portions of medical diagnosis can be 
thought of as classification when- a patient's symptoms 
are classified into disease classes. Systems built using 

CSRL are organized as a classificatory hierarchy of 
conceptual specialists as in Figure I. This figure 
represents part of the hierarchy used by an automobile 
diagnosis expert system, called Auto-Merh. Auto- 
Mecl, asks questions about a particular car and at- 

tempts to diagnose the problem by classifying the cur- 
rent state of the car as a specific malfunction class. 
Fach specialist in the hierarchy represents a malfunc- 
tion, with subnodes representing a more specific mal- 
function than their parent nodes. For example. 
LowOctane, WaterlnFuel, and DirllnFuel are more 
detailed descriptions of the BadFuel "malfunction." 
Fach specialist in the hierarchy contains knowledge 
that helps it to estabrsh, thai is. to determine 
whether the current situation is relevant to its con- 
cept. Thus BadFuel must "look" at the car's 
symptoms    and    decide    if    they    "look    like"    a    fuel 

problem. 

In a CSRL system problem solving proceeds lop- 
down using the Establish-Refine strategy developed in 
MI)X :8 . First, the top node in the hierarchy at- 
tempts to establish itself, IF it, succeeds, then it, at- 
tempts to refine itself by establishing its subnodes. In 
Figure I, Auto-Mech establishes if it determines that 
something could be wrong with the car. Once Auto- 
Merh is established, FuelSyslem will attempt to estab- 
lish itself by determining whether the problem is with 
the car's fuel system. At run-time each specialist can 
be taken to represent, a hypothesis concerning the 
relevance of its concept. For instance, in order to es- 
tablish or reject itself BadFuel must, determine the 
relevance of the hypothesis: "Something is wrong with 
the fuel." Thus hypothesis matching for relevance lie- 
comes an  important subtask of classification. 

So lar nothing has been said about the represen- 
tation of the knowledge used by each conceptual 
specialist. This knowledge must be used to map a 

partial situation description into evidence- for or 
against     the    specialist's    hypothesis. That,    is,    l he- 
knowledge is used to determine the relevance of the 
specialist's concept to the current situation, CSRL en- 
codes this information in a mechanism called a 
Knowledge   Croup.      Knov. Croups   work   by   map- 
ping situation features into ..xed range of confidence 
values. Fach specialist contains a Knowledge Group 
which is invoked whenever the specialist is asked to 
establish^ itself. If the confidence value of the 
specialist's Knowledge Group is above a certain 
threshold, the specialist is considered to be established 
otherwise it, is taken to be rejected. Thus Knowledge 
Groups do the work of matching for relevance 

After building several systems we began to real- 
ize- the usefulness of this task in non-classification sys- 
tems. In fact, we derided that hypothesis matching 
for relevance should be a separate generic task. Work 
then began to separate CSRL into two separate tools: 
CSRL for classification and HYPER for Hypothesis 
Matching. 

Auto-Mech 

I 
I 

FuelSystem 

/   I   \ 
/   I   \ 

BadFuel  Delivery Mixture 

/  I  \   / \     / \ 
/   I   \ 

/   I   \ 
/    I    \ 

LowOctane DirtlnFuel WaterlnFuel 

Figure   19:       Auto-Mech's conceptual specialist 

hierarchy 
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S.S.8.  Hypothesis Matching as a Generic  Task 

A    Generic    Task    is    characterized    by    a    task 
specification,   the   specific   kinds   and   organization   ol 
domain knowledge, and a family of control regimes ap- 
propriate to the task [9], This information is vital to 
the production of a good knowledge level tool since 
without it we can produce little more than an adhoc 
and narrowly useful system. The generic task formula- 
tion for hypothesis  matching is .is  follows: 

Task Specification 
Given a concepl and a set of situa- 
tion features, determine the degree to 
which the concept matches the situa- 

tion. 

Organization of Knowledge 
A hierarchical organization of 
evidence abstractions. The top node 
computes the degree to which the 
concept matches the situation. Sub- 
nodes compute evidence components 
for their parent nodes. For example, 
the BadFuel hypothesis matcher in 
Figure 2 has two subnodes: Perfor- 
manceRelated and KillupRelated. 
These subnodes respectively rate the 
evidence for Performance problems 
and Fillup problems indicative of bad 
fuel. A similar task is performed by 
Samuel's signa ure tables. 

Kinds of Knowledge 
What the evidence components are, 
how to determine their strengths, and 

how to combine evidence. 

Control Control is initiated in a top-down 
fashion. The top node can call on 
any of its subnodes to '.ather 
evidence. Evidence abstractioe data 
flows  bottom-up. 

which maps features to confidence values. 
This language represents the internal struc- 
ture of each node in a hypothesis matcher's 

hierarchy. 

3.  Explanation  Facilities (Discussed  in the next 

section.) 

The hypothesis matchers produced using HYPER 
are independent knowledge-based agents. Invocation is 
accomplished by sending a N'-tch message to a par- 
ticular matcher. VVhei a hyp diesis matcher receives 
a Match message, it evaluates tue features and returns 
a confidence value. A confidence value is a symbolic 
measure of relevance. The default range provided by 
HYPER is: HighlyUnlikely, Unlikely, unknown. Likely. 
and Highly Likely. The range of confidence values can 
be supplied by the system designer to suit whatever 
purpose   is   needed. 

A tabular representation of the BadFuel 

hypothesis matcher is shown in Figure '■'>. The column 
headings represent, the features to be matched against 
eacli row of the table. The entries in each row are 
tests to be performed upon the corresponding features. 
Question marks represent "don't care" conditions. 
For BadFuel the features are actually the result of the 
evidence components FillupRelated and PerformanceRe- 
lated. Each row in the table represents a set ol tests 
to apply to the features followed by the confidence 
value to be returned if the row matches. The con- 
fidence value can either be one of the symbolic values 
or a hypothesis matcher which can be used to com- 
pute a value. For example, if both FillupRelated and 
PerformanceRelated returned lligidy Likely, then the 
first row in the table would match. In this case. 
BadFuel would return I lighly Likely. The rows are 
evaluated from top to bottom, left to right, until a 
row mal( lies. The confidence value of the matching 
row is then returned. A certain amount of optimiza- 
tion is done during the evaluation of the table to 
avoid  evaluating  unnecessary components. 

BadFuel 
/  \ 

/ 
Performance  FillupRelated 
Related 

Figure  20:       Hierarchical structure of the  BadFuel 
hypothesis  matcher 

Details of HYPER 

As a tool  HYPER  provides the following facilities 

to the system  builder: 

1. A browser for creating, displaying, and edit- 
ing the evidence abstraction hierarchy lor a 

hypothes-, s  matcher. 

2. A   language   for   representing   the   knowledge 

BadFueL; 
PerformanceRelated FillupRelated 

(EQ HighlyLikely) 
(EQ Likely) 

[GE Unknown) 
(GE Unknown) 
(LT Unknown) 

HighlyLikely 
Likely 
HiqhlyUnlikel 
PerformanceRelated 

Figure  21:       Top node of the  BadFuel  matcher 

3.3.3. Explanation in HYPER 

Since hypothesis matchers are viewed as inde- 
pendent, agents, it makes sense to directly ask a 
matcher about its behavior rather than an additional 
"module" whose purpose is to construct an explana- 
tion. Also, because hypothesis matching is a generic 
task,   knowledge  and  control  are  represented   at   a  level 
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which    racilitates    explanation. F''or    these    reasons, 
hypothesis matchers designed using HYPER come 
complete with the ability to handle the following ex- 
planatory  questions. 

\\\\\   Valii'''             Asks for   an   explanation   of  why   a 
certain value  was   returned.     This   re- 
qnires knowledge of run-time be- 
havior. 

Justify  Knowledge 

Questions of the form "Why do you 

say knocking and pinging indicate a 
high likelihood for bad fuel?" Such 
questions require justification of the 
knowledge  being  used   by   the agent. 

Why not value? This asks for an explanation of why 
a certain value was not returned. 
Such questions require knowledge of 
the control strategy, as well as. the 
run-time behavior. Other possible 
questions of this form inch de: Why 

not higher'lower, and What do I 
need  to do to make the value  \? 

"Why value" questions can easily be answered 
by simply stating why rows failed or succeeded. An 
example of this is given in the next section. Because 
Hypothesis Matchers represent compiled knowledge, 
justification requires the use of pre-canned strings. 
HYPER provides a facility for attaching appropriate 
explanatory strings to each row of the table. Ex- 
planations given by HYPER can appear in either a 
machine readable form or a human readable form, 
thus explanations can be used by both other agents 
and  the  human   user of the svster» 

3.S.4.   Using HYPER fron,  CSRL An   Exam file. 

The following example shows how a hypothesis 
matcher can be used from a classification system. We 
will use the portion of Auto-Mech shown in Figure I. 
To begin let us assume that BadFuel has received an 
establish-refine message. The top node of BadFuel's 
hypothesis matcher is shown in Figure .'i. The two 
subnodes. PerformanceRelated and FillupRelated, are 
shown in Figure 4. The function AskYNU? asks the 
user a question expecting a reply of yes, no. or un- 
known, and   returns  T,   F, or   If. 

Since in this case Highly Likely is returned, the com- 
parison succeeds and the matcher tries to determine 
whether FillupRelated is greater-than or »qwal to Un- 
known (. IK Unknown); continuing with ev,., ..iting the 
first, id', of liadFinl ,,s sjtown in Figure :;. Thus 

FillupRelated must be evaluated. Figure G shows the 
sequence of events resulting in a confidence vaV o'" 
Highly-Unlikely. Since HighlyUrduely is less than [In- 
known, (GE Unknown) fails thus causing the first i:.w 
of BadFuel to fail. The matcher then nines to &,, 
second row and immediately fails on (EQ Likely) sil -• 

Performance Related returned HighlyLikely. Next ttte 
third row is tried. The first test is a "dorrt care ' 
condition so evaluation proceeds to the second test IR 

the row (LT Unknown). Since FillupRelated .eturned 
HighlyUnlikely the test clearly succeeds, meaning the 
entire row has matched. The matcher then returns 
the associated confidence value, HighlyUnlikely, to the 
BadFuel  Specialist. 

Now that the BadFuel specialist has a conlid« 
value it must decide whether to reject, or establ 
The establish threshold is set at Likely so with a c 
fidence value of HighlyUnlikely BadFuel firmly rej« 
it >lf and does not attempt to establish any of its s 
nodes. 

PerformanceRelated: 
Qlj   AskYNU? ""Is the car slow to respond'' 
Q?:  AskYNU? ''Does the car start hard1' 
Qi:       (And AFkYNU? ""Do you hear knocking or pinging sounds' 

AskYNU? ' 'Does the problem occur while ac-.elerating' ' 

Ql Q2 «3 

(EQ T) 

EQ T) 

7 
(EQ T) 

HighlyUnlikely 
HighlyUnlikely 
HighlyLikely 
Unknown 

FillupRelated: 

Ql:  AskYNU? "'Have you tried a higher grade of gas'' 
Q2:  AskYNU? "'Did the problem start after the last fillup' 
Q3:  AskYNU? ''Has the problem gotten worse since the last 

Eillup'' 

Ql 

(EQ T) 

Q2 Q3 

(EQ T) 
(EQ F) (EQ T) 

HighlyUnlikely 
HighlyLikely 
Likely 
HighlyUnlikely 

Figure 22:      Tabular representation of Bad Fuel's 

subnodes 

When the BadFuel specialist receives an Estab- 
lish message it must attempt to establish or reject, it- 
self. To do this it sends a Match message to its 
hypothesis matcher. Referring to Figure 3, the 
matcher first attempts to evaluate (EQ HighlyLikely) 
with respect to I'erformanceRelaled. In order to per- 
form this comparison, PerformanceRelated must be 
evaluated. The matcher then calls I'erformanceRelated 
causing   the   sequence   of   events   shown    in    Figure   5. 

(BadFuel sends a Match message to PerCormanceRelated) 
Is the car slow to respond? no 
Does the car start hard? no 
Do you hear knocking or pinging sounds? yes 
Does the problem occur while accelerating? yes 
(PerformanceDolated returns HighlyLikely) 

Figure   23:        Run-time snapshot   of I'erformanceRelaled 
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(3adFiiel sends a Match message to Fi UupReU t'. 1) 
Have you tried a higher grade of gas? yes 
(FillupRelated returns HighlyUnlikely) 

Figure  24:       Run-time .snapshot of FillupRelated 

Suppose now that the pers< n running Auto-Mech 
wishes to know why the BadFuel specialist rejected it- 
self. Without appeal to its hypothesis matcher, the 
.specialist can only answer the question by saying that 
HighlyUnlikely was less than the establish threshold. 
However, since HYPER provides explanation facilities, 
BadFuel can send the message "Why HighlyUnlikely?" 
to its matcher and give the user a better explanation. 
such as thai shown in Figure 7. A general explanation 
browser may then be used to ask further questions 
about, I IK» initial explanation. 

BadFuel hypothesis matcher resulted in Hig 

PerformanceRelated returned Highly 
FillupRelated returned HighlyUnlik 

(GE FillupRelated Unknown) is fals 
(EQ PerformaiceRelated Likely) is 
(LT FillupRelated unknown) is true 

HighlyUnlikely is below the establish thre 
BadFuel rejected. 

Figuro  25:       Explanation about  why   BadFuel  rejecte 

CONCLUSION 

Because hypothesis matching appears to be a 
very useful generic task we feel that a robust version 

of HYPER is needed for our set of high-level tools. 
Such a version will greatly speed the development of 
other useful tools and systems. The first implemen- 
tation of HYPER has jusl been completed and is un- 
dergoing testing. Part of this testing involves the 
rewriting oi ('SKL to allow the use of hypothesis 
matchers as independent agents separate from the 
CSRL lai'ouage. This is beginning to bring up issues 
about agent integration, and about the designer inter- 
face needed to switch between several cooperating high 
level tools. Thus, HYPER is forcing us to look at 
issues vital to the production of a useful set of 
knowledge le"el tools. 
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GENERIC TASKS IN  EXPERT SYSTEM DESIGN AND 
THEIR ROLE IN EXPLANATION OF PROBLEM SOLVING1 

B. Chamirasckaran 
Laboratory  lor  Artificial  Intelligence  Research 

Department of Computer and  Information  Science 
The Ohio State  University 

Columbus, Ohio 43210 

ABSTRACT 

We outline the elements of a framework for ex- 
pert system design that we have been developing in 
our research group over the last several years. This 
framework is based on the claim that complex 
knowledge-based reasoning tasks can often be decom- 
posed into a number of generic tasks each with as- 
sociated types of knowledge and family of control 

regimes. At different stages in reasoning, the system 
will typically engage in one of the tasks, depending 
upon the knowledge available and the state of problem 
solving. The advantages of this point of view are 
manifold: (i) Since typically the generic tasks are at 
a much higher level of abstraction than those as- 
sociated with first generation expert system languages, 
knowledge can be represented directly at the level ap- 
propri t e to the information processing task. (ii) 
Since each of the generic tasks has an appropriate 
control regime, problem solving behavior may be more 
perspicuously encoded. (iii) Because of a richer 
generic vocabulary in terms of which knowledge and 
control are represented, explanation of problem solving 
behavior is also more perspicuous. We briefly describe 
six generic tasks that we have found very useful in 
our work on knowledge-based reasoning: classification, 
state abstraction, knowledge-directed retrieval, object 
synthesis by plan selection and refinement, hypothesis 
matching, and assembly of compound hvpotheses for 
abduction. 

1.   Information   Processing  Tasks   in 
Knowledge-Based Reasoning 

tion hierarchies, rule-out strategies, setting up a dif- 
ferential, etc., while for design, the generic terms 
might be device'component hierarchies, design plans, 
ordering of subtasks, etc. Ideally one would like to 
represent diagnostic knowledge in a domain by using 
the vocabulary-' that is appropriate for the task. But 
typically the languages in which the expert systems 
have been implemented have sought uniformity across 
tasks, and thus have had to lose perspicuity of 
representation at the task level. The computational 
universality of representation languages such as 
Emycin or OI'S,") - i.e.. the fact that any computer 
program can be written in these languages, more or 
less naturally — often confuses the issue, since after 
the system is finally built it is often unclear which 
portions of the system represent domain expertise and 
which are programming devices. In addition, the con- 
trol regimes thai these languages come with (in rule- 
based systems thej arc typically variants of 
hypothesize and match, such as forward or backward 
chaining) do not explicitl} indicate the real control 
structure of the system at the task level. E.g., the 
fact that Rl 12 performs a linear sequence of sub- 

tasks — a very special and atypically simple version of 
design problem solving - is not explicitly encoded: the 
system designer so to speak "encrypted"' this control 
in  the pattern-matching control of OPS5. 

These comments need not be restricted to the 
rule-based framework. One could represent knowledge 
as sentences in a logical calculus and use logical in- 
ference  mechanisms   to  solve   problems.     Or  one  could 

Intuitively one thinks that there are types of 
knowledge and control regimes that are common to 
diagnostic reasoning in different domains, and similarl) 
there would be common structures and regimes for say 
design as an activity, but that the structures and con- 
trol regimes for diagnostic reasoning and design 
problem solving will be generally speaking different. 
However, when one looks at the formalisms (or equiv- 
alently the languages) that are commonly used in ex- 
pert system design, the knowledge representation and 
control regimes do not typically capture these distinc- 
tions. For example, in diagnostic reasoning, one 
might   generically   wish   to  speak   in   terms   of   malfunc- 

Research supported by Defense Advanced Research Projects 
Agency, RADC Contract, F30602 85 C 0010, and Air force 

Office of Scientific Research Kraul Kl 0255. This paper was 
originally presented a( the Office ol Naval Research/National 

Academy of Sciences Symposium on Distributed Artificial Intel 

ligence,  May   1985. 

We  also  use  the  term   primtii»f..i  uf thi 
i'ie  paper to refer to  the  vocabulary 

in  (In 
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represent it as a frame hierarchy with procedural at- 
tachments in the slots. (It is a relatively straightfor- 
ward thing, e.g. to rewrite MYCIN |14| in this man- 
ner, see [161.) In the former, the control issues would 
deal with choice- of predicates and clauses, and in the 
latter, they will be at the level of which links to pur- 
sue for inheritance, e.g. None of these have any 
natural connection with the control issues natural to 
the task. 

Actually the situation is even worse: because of 
the relatively low level of abstraction relative to the 
information processing task, there are control issues 
that are artifacts of the representation, but often in 
our opinion misinterpreted as issues at the 
"knowledge-level."' K.g.. rule-based approaches often 
concern themselves with conflict resolution strategies. 
If the knowledge were viewed at the level of abstrac- 
tion appropriate to the task, often there will be or- 
ganizational elements which would only bring up a 
small, highly relevant pieces of knowledge or rules to 
be considered without any conflict resolution strategies 
needed. Of course, these organizational constructs 
could be "programmed" in the rule language, but be- 
cause of the status assigned to the rules and and their 
control as knowledge-level phenomena (as opposed to 
the implementation level phenomena, which they often 
are), knowledge acquisition is often directed towards 
strategies for conflict resolution, whereas the really 
operational expert knowledge is at the organizational 
level. 

This level problem with control structures is mir- 
rored in the relative poverty of knowledge-level primi- 
tives for representation K.g.. the epistemology of rule 
systems is exhausted by data patterns (antecedents or 
subgoals) and partial decisions (consequents or goals), 
that of logic is similarly by predicates, functions, and 
related primitives. If one wishes to talk about types 
of goals or predicates in such a way that control be- 
havior can be indexed over this typology, such a be- 
havior can often be programmed in these systems, but 
there is no explicit encoding of them that is possible. 
K.g., Clancey l8| found in his work using Mycin to 
teach students ;ha' for explanation he needed to at- 
tach to each rule i;: the Mycin knowledge base encod- 
ings of types of goals so that explanation of its be- 
havior can be couched in terms of this encoding, 
rather than onl\ in terms of "Because .. was a 
subgoal  of     ..  ■." 

The above is not to argue that rule represen- 
tation ; and backward .n forward chaining controls are 
not ■•natural"' for some situations. If all that a 
problem solver has in the form of knowledge in a 
domain is a large collection of unorganized associative 
patterns, then data-directed or goal-directed associa- 
tions may be the best that the agent can do. Hut 
that is precisely the occasion for weak methods such 
as  hypothesize and  match   (of which   the  above associa- 

tions are variants), and, typically, successful solutions 
cannot be expected in complex problems without com- 
binatorial searches. Typically, however, expertise ((in- 
sists of much more organized collections of knowledge, 
with control behavior indexed by the kinds of or- 
ganizations  and  forms of knowledge in  them. 

To summarize the argument so far: There is a 
need for understanding the generic information process- 
ing tasks that underlie knowledge-based reasoning. 
Knowledge ought to be directly encodeii at the ap- 
propriate level by using primitives that naturally 
describe the domain knowledge for a given generic 
task. Problem solving behavior for the task ought to 
be controlled by regimes that are appropriate for the 
task. If done correctly, this would simultaneously 
facilitate knowledge representation, problem solving, 
and explanation. 

At this point it will be useful to make further 
distinctions. Typically many tasks that we intuitively 
think of as generic tasks are really comple.i generic 
tasks. I. e., they are further decomposable into com- 
ponents which are more elementary in the sense that 
each ot them has a homogeneous control regime and 
knowledge structure. For example, what one thinks of 
the diagnostic task, while it may be generic in the 
sense that the task may be quite similar across 
domains, it is not a unitary tasK structure. Diagnosis 
may involve classificatory reasoning at a certain point, 
reasoning from one datum to another datum at, 
another point, and abductive assembly of multiple 
diagnostic hypotheses at another point, Classification 
has a different form of knowledge and control behavior 
from those for data-to-data reasoning, which in turn is 
dissimilar in these dimensions from assembling 
hypotheses. 

Thesis; (liven a complex real world knowledge- 
based reasoning task, and a set of generic tasks lor 
each of which we have a representation language and 
a control regime to perform the task, if we can per- 
form an epistemic analysis of the domain such that (i) 
the complex task can be decomposed iti terms of the 
generic tasks, (ii) paths and conditions for information 
transfer from the agents that perform these generic 
tasks to the others which need the information can 
also be established, and (iii) knowledge of the domain 
is available to encode into the knowledge structures 
for the generic tasks; then that complex task can be 

"knowledge-engineered"" successfully and perspicuously. 
Notice that an ability to decotupose. complex tasks in 
this way brings with it the ability to characterize 
them in a useful way. We can see, e.g., that the 
reason that we are not yet able to handle difficult, 
design problem solving is that we are often unable to 
find an architecture of generic tasks in terms of which 
the complex  task  can   be constructed. 
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In the rest of this paper, we will briefly describe 
some of the elementary generic tasks that we have 
had occasion to identify and use in the construction of 
expert systems. While we have been adding to our 

repertoire of elementary generic tasks over the years, 
the basic elements of the framework have been in 
place for a number of years. Our work on MDX 

[4, 51, e.g., identified cloBsification, knowledge-direcUd 
information passing, and hypothesis matehing as three 
generic tasks, and showed how certain classes of diag- 
nostic problems can be implemented as an integration 
of these generic tasks. (We have earlier referred to 
them as problem solving types, but in [6. we began to 
call them generic tasks.) Over the years, we have 
identified several others: object synthesis by plan selec- 

tion und refinniienl 1 state abstraction 7 . and 
abductive assembly of hypotheses 11). There is no 

claim that these are exhaustive: in fact, our ongoing 
research objective is to identify other useful generic 
tasks and understand their knowledge representation 
and control of problem solving. 

2.   Some  Cenerir   Tasks 

2.1.  Characterization of Generic  Tasks 

Each generic task is characterized by the follow- 
ing: 

1. A task specification in the form of generic 
types of input   and  output  information. 

2. Specific forms ir which the basic pieces of 
domain knowledge is needed for the task, 
and specific organizations of this knowledge 
particular to the task. 

■'i. A family of control regimes that are ap- 
propriate for the task. 

From the nature of the control regime, we can deter- 
mine the types of strategic goals the problem solving 
for the task has. These goal types will play a role in 
providing explanations of its  problem  solving  behavior. 

When a complex task is decomposed into a set 
of generic tasks, it will in general be necessary to 
provide for communication between the different struc- 
tures specializing in these different types of problem 
solving. Note that a decomposition does not imply 
that there is a predetermined temporal ordering on 
when the generic tasks are performed: typically the 
agent for a generic task is invoked when another agent 
needs information that the former can provide. fur- 
ther there is no implication that there is a unique 
decomposition. Depending upon the availability of 
particular pieces of knowledge, different architectures 
of generic tasks will typically be possible for a given 
complex  task. 

We   will   now   proceed   to   a   brief  characterization 
of these generic  tasks. 

•   /.   Classification 

Task    specification:        Classify    a    (possibly 
complex) description of a situation as an 
element, as specific as possible, in a 
classification     hierarchy. K.g,     classify     a 
medical case description as an element of a 
disease hierarchy. 

Forms    of    knowledge: partial    situation 
description • — ■ evidence belief about con- 

firmation or disconfirmation of classificatory 
hypotheses. K.g., in medicine, a piece of 
classificatory knowledge may be: certain 
pattern in X-ray &' bilirubin in blood —:■ 
high  evidence for cholestasis. 

Organization of knowledge: The above clas- 
sificatory knowledge distributed among con- 
cepts in a classificatory concept hierarchy. 
Fach conceptual "specialist" ideally contains 
knowledge that helps it determine whether 
it (the concept it stands for] can be 
established or rejected. The form of the 
knowledge as stated above is the form 
needed   for  this  decision. 

Control Regime: (Simplified form) Problem 
solving is top clown. Fach concept when 
called tries to establish itself. If it suc- 
ceeds, it lists the reasons for its success, 
and calls its successors, which repeal I he- 
process. If a specialist fails in its attempt 
to establish itself, it rejects itself, and all 
its successors are also automatically 
rejected. This control strategy can be 
called Establish-Refine, and results in a 
specific classification of the case. (The ac- 
count is a simplified one. The reader is 
referred  to   5   for details and elaborations.) 

Goal    types:     F.g.,    Establish 
Refine  (subclassify)   - concept > 

concept 

Example I ae: Medical diagnosis can often 
be viewed as a classification problem. In 
planning, it is often useful to classify a 
sil nation as of a certain type, which then 
might  suggest   an  appropriate plan. 

//.     Slate  abstraction 

Task Specification: (liven a change in 
some state of a system, provide an account 
of the changes that can be expected in the 

functions of the- system. (Useful for reason- 
ing about, consequences of actions on com- 
plex systems.) 
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Form of knowledge: change in slate of 
subsystem • — • < change in Functionality 
of subsystem change in state of the Im- 
mediately  larger system 

Organization of Knowledge: Knowledge of 
the above form distributed in conceptual 
specialists corresponding to 
system/subsystems. These      conceptual 
specialists are connected in a way that mir- 
rors the way the system subsystem is put 
toget her. 

Control regime: Masically bottom up, but 
follows the architecture of the 
system/subsystem        relationship. The 
changes it) states are followed I lirough, in- 
terpreted as changes in functionalities of 
subsystems, until the changes iti the 
functionalities at the level of abstraction 
desired  are obtained. 

Goal    Types: Ivg-,     Abstract     consequent 
state,   Deduce change  in   functionality. 

Kxample I'se: Answering (juesiions of the 
form: "What will happen if this valve is 
closed, while the turbine is running?" 
Generic  usefulness is in consequence finding. 

•  ///. Knowledge-Directed    Information 
Passing 

Task    specification: Given     attributes    of 
some datum, it is desired to obtain at- 
tributes of some other datum, conceptually 
related  to the original datum. 

Forms   of   Knowledge: 
attribute ■    of 
attribute -üjof 

i.      Default   value   of 
datum •    is    ■■ value >   ii. 

datum  ■i.'is   inherited   from 
■ attribute of     parent     of ■ datum ill. 
■ attribute of        datum is     related as 

relation  • to       attribute  • of   children of 
<datum  ■. iv.      attribute  ■ of   ■  datum is 
related    as • relation  •    to attribute ■ ol 
■concept,-. 

Organization of Knowledge: The concepts 
are organized as a jrnine hiernrrlnj. Default 
for slots corresponds to form i. above, the 
IS-A or PART-OF links between parents 
and children determine the types of in- 
heritance in form ii. and ill. Procedural at- 
tachments or "demons" are used to encode 
form iv. Each frame is a specialist in 
knowledge-directed data inference for the 
concept. 

Control   regime:     A  concept,  when  asked  for 
the value of one of its attributes first 
checks   the   data   base   to   see   if   the   actual 

value is known, then uses inheritance 
relationships to determine if the value can 

be obtained by inference from the values of 
appropriate attributes of its parent or 
children, then uses any demons that may 
be attached to the slot to query other con- 
cepts in other parts of the hierarchy F r 
values of their attributes. If none of it 
succeeds and if it is appropriate the default 
value is  produced as the value. 

This is basically a hierarchical information- 
passing control regime, with demons provid- 
ing an  override  of the  hierarchical   regime. 

Goal Types; K.g.. Inherit value of 
- attribute ■, Ask for concept, attribute 
value)   to infer  ■ attribute ■   by   •  relation    . 

Example      Use: Knowledge-based     data 
retrieval tasks in wide variety of situations. 
Inferring a medical datum from another. 
when the latter is available but the former 
is needed for diagnostic reasoning. K.g.. 
diagnostic reasoning needs information 
about whether the patient has been exposed 
to "anesthetics." because it has diagnostic 
knowledge that relates a diagnostic conclu- 
sion to this datum, but the patient data do 
not include any reference to "anesthetics," 
but mentions "major surgery a few weeks 
before." Assuming that the knowledge base 
for the data retrieval system encodes the 
piece of knowledge that relates "surgery" 
and "possible exposure to anesthetics," per- 
forming the reasoning that connects the two 
data items is an example of knowledge- 
based data retrieval. 

•   IV.      Object   Synthesis  by   Plan  Selection 
and Itefineinent 

Task Specification: Design an object satis- 
fying specifications (object in an abstract 
sense:  they can  be plans,  programs, etc.). 

Forms of knowledge: Object structure is 
known at some level of abstraction, and 
pre-cornpiled plans are available which can 
make choices of components, and have lists 
of concepts to call upon for refining the 
design at that  level of abstraction. 

Organization of Knowledge; Concepts cor- 
responding to "components" organized in a 
hierarchy mirroring the object structure. 
Each concept has plans which ran be used 
to make commitments for        some 
"dimensions" of the component. 

■ 
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Control   Regime:       Top   down   in   general. 
Th.. following is done recuraivel) until a 

complete design is worked out: A specialist 
corresponding to a component of the object 
ia called, ilie specialist chooses a plan based 

on some specification, instantiates and ex- 
ecutes some pan of the plan which suggests 
further specialists to call to set other details 
"I the design. Plan failures are passed up 
until    appropriate    changes    are    mad.-    by 
higher level specialists, so thai specialists 
who  jailed   may  succeed  on  a  rel r\, 

Goal     Types:     E.g.,     Choose    plan.    execuK 
plan   element    .    refine      plan 

(modify)        partial    design 
failure    of       subplan    S. 
plan, etc. 

redesign 
■   to   respond    to 
select     alternative 

Example:    Expert design tasks, synthesis of 
everyday  plans of action. 

•   V.  Hypothesis Matching 

Task  Specification:     Given  a hypothesis  and 
A   set   of   data   that    describe   the   problem 
slate,   decide   if   the   hypothesis   mat. lies   the 
situation. 

Form and Organization of Knowledge: 
(One  form)   A   hierarchical   representation of 
evidence abstractions, top nod,' is the de- 
gree of matching of the hypothesis to the 

data, and nodes at a given level are com- 
ponents of evidence for the evidence 
abstraction at the higher level. K. g., say 
the hypothesis of goodness of a position in 
a game is the one to be matched against 

the data describing the board configuration. 
Goodness may lv defined at the top level 
in terms of twj abstractions: (IrfenxihililIJ 

and     offensive    opportunities. Form     of 
knowle.ige then for this must be such as to 
enable mapping degrees of belief in each of 
these evidence abstractions to degree of 
belief in the goodness abstraction. The 
defensibility abstraction, e.g.. may in turn 
be defined either by direct data or inter- 
mediate abstractions. Samuel's sujiuit iirr 
tahlr.s can be thought of as performing this 
task. 

Goal types: Evaluate evidence for 
hypothesis, evaluate evidence for contribut- 
ing abstraction  . 

•   I/.     .Abductiue Assembly of Explanatory 
Ihipolhe.sr.s 

Task Specification: Given a situation 
[described by a set  of data  items)  to be ex- 

plained by the best explanatory account, 
and given a number of hypotheses, each as- 
sociated with a degree of belief and each of 
which offers to explain a portion of l he- 
data (possibly overlapping with data to be 
accounted for by other hypotheses), con- 
struct the liest composite hypothesis out of 
the given  hypotheses. 

Forms of Knowledge: causal or other rela- 
tions (such as incompatibility, suggestive- 
ness. special case of) between the 
hypotheses. relative significance' of data 
items. 

Organization of Knowledge: For relativelj 
small number of hypotheses, this is a global 

process. For large numbers, some form of 
recursive assembly will be called for. imply- 
ing knowledge organized at different levels 
of abstraction of the assembled  hypotheses. 

Control Regime; (Simplified version: see 
II for a fuller discussion.) Assembly and 

criticism alternate. In assembly, a means- 
ends regime, driven by the goal of explain- 
ing all the significant findings, is in control. 
At each stage, the most significant datum 
to be explained results in the best 
hypothesis that offers to explain it being 
added l< the composite hypothesis so far 
assembled. After each assembly, the critic 

removes explanatorily superfluous parts. 
This loops until all the data are explained, 
or  no  hypotheses .ire  left. 

Goal     Types:     e.g.     account-for        datum  ■. 
check-superfluousness-of     hypothesis >, 

Example Use: In medical diagnosis, the 
classification generic task may produce a set 
of classifications, each of which accounts for 
some of the data. The best account needs 
to be put together. The Internist system 

'•''' and the Dendral system 2 perform 
this type of task as part of their problem 
solving. 

3.  Encoding Knowledge at  the Level of the 
Task 

For each generic task, the form and organization 
ol the knowledge directly suggest the appropriate 
representation in terms of which domain knowledge for 
that task can be encoded. Since there is a control 
regime associated with each task, the problem solver 
can be implicit in the representation language. I.e., as 
soon as knowledge is represented in the shell cor- 
responding to a given generic task, a problem solver 
which uses the control regime on the knowledge- 
representation   created   for   domain   can    be   created    by 
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the interpreter, This is similar to what representation 
systems such as KMYCIN do, but note that we arc 
deliberate!) trading generality al ■ lower level to 
specificity, rlarity, richness of ontology and control al 
a higher level. 

We have (irsigncd and iinplcniiMili'd rcprcscn- 
lalion languages for a simpler versions of two of these 
generic tasks: ciassifiration [3], and object synthesis by 
selection and refinement [l;. We plan to implement a 
family ol such representation languages. 

4.  Generic  Tasks  and  Explanation  of Problem 
Solving 

We   have   developed   a   framework    for    providing 
explanations for the derisions recommended bj expert 
systems, and this is the basis of a four-year research 
effort sponsored by the Defense Advanced Research 
Projects Agency. For the purpose of this discussion, 
we can say that underslanding the prohlem solving be- 
havior of an expert problem solving system requires 
inspecting three structures, each corresponding to a 
type of explanation: 

'Vl"' l: trace of run-time, data-dependent 
problem solving behavior, viz., which pieces of 
knowledge were used and how. K.g.. Why do you say 
that the patient has cholestasis? Aus: Because the 
patient has high bilirubin in blood, and jaundice and 
Xrays suggest an obstruction in the biliary duct. This 
is typically done by checking which data items in the 
current case matched the piece of knowledge that en- 
abled  the system to make a particular decision. 

Type     2: understanding     how     a     piece     of 
knowledge relates to the domain, how ii can be jus- 
tified. K.g.. Why do you sa) that high bilirubin in 
blood suggests cholestasis? Mere whatever answer is 
given, no data about the current case are being used. 
The system is really being called upon to justify its 
knowledge. 

A:    Because I was trying to establith hepatitis. 

Q : Why? 

A: Because I had already established that the 
patient had liver disease. Now I am trying to sub- 
classify the case, and hepatitis is one of the sub- 
categories. If I can rrjerl hepatitis. I can reject all 
the  following diseases  which  are  its  subclasses. 

Sldir. Abitraetion 

Let us assume that the user had asked the sys- 
tem. ■'What  will happen if Valve A is closed?" 

Q:     Why  do wish   to  know  the engine speed? 

A:    Because  I am  trying to decide the ckange in 
functionality  of the   cooling   system   when   Valve   A   is 
dosed,  and  engine speed   is  a  datum   I  need  for  this. 

Q:   Why  are you  considering  the cooling system? 

A:       Because.    Valve    A    is    a    component   of   the 
('ooling system. 

Dnla Retrieval 

Q: Did the patient have exposure to anes- 
thetics? 

A:     Did  he have any surgery? 

Q:   Why  do you  ask? 

A: I do in,' have direct record of anesthetic ex- 
posure. I failed to inherit a value for this attribute 
from its parent - no direct record of any drug not 
being given. I also failed to infer No Kxposure. by 
ruling out its rhiLlren. Then the Anesthetic concept 
suggested that II surgery had been performed, anes- 
thetic can be reasonabK   inferred. 

Type .'{: understanding the control strategy used 
by the program in a particular situation. K.g. Why 
didn't you consider portal hypertension in this case? 
Ans: Because I had ruled out circulatory diseases, por- 
tal hypertension is a special case of circulatory dis- 
eases, and my strategy is not to eonnider special case* 
when   I have  ruled out  the  general case. 

The explicit encoding of the generic aspects of 
knowledge ancl control behavior for each generic task 
can be direct l\ used to produce explanations of Type 
■ i.     We will give some examples 

Classification 

Q:      Win    do   you   wish   to   know- 
been  exposed  to anesthetics? 

if   the   patient 

Hypothesis Assembly 

Q:   Why  was  hypothesis  part   IT  'ncluded   in   the 
best   explanation? 

A:   in  order  to  accoiinl-for     datum 

Q:  Whj   wasn't   M " chosen  to explain  I).' 

A:      Because      assuming partially      assembled 
conclusion  .,   IK  is   the   best   was   to explain      cluster  of 
data ■. 

(.}:   Wh)   was  hypothesis   II  acccpled? 

A:     Because    it     is    the    onl>     plausible    way    to 
acconnl-for     cluster of data    . 
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Plan Refinemenl 

Q:    Why <li<l you rhoone Plan  A'.' 

A:        Because,    I    am    trying    i"   complete    the 

specification   lor   Plan    V,   for   refining   which   I   need 

subgoal ■      accomplished. The      ^x'riiiliM      for 

siil)Boiil     selected  Plan A" due to     reasons ■. 

Q: Whal  will you do if you fail in Plan  A".' 

A:     Subgoal     specialist will se.lr.ri Plan  A". 

Q:    Whal  If it fails? 

A: Parent specialist will redesign Plan A. by 
weakening     constraint   . 

In the foregoing examples, the italicized terms 

represent the type of goal that is l)(.iriR pursued. 

Points to I»' noted here are: this explanatory richness 

(compared to the terminology of goal-subgoals) is 

made In possible In encoding the control regimes 

specific to each generic task: and. the explanation is 

directly  related to the problem solving of the system. 

■i.l. Comparison  with Related  Work 

With respect to providing explanation there are 

two ke> ideas that we are offering in this paper: one. 

explanation of problem solving strategies, which are 

manifested as appropriate control behavior In the 

problem solver, can be based on the generic task that 

a problem solver is engaging at a given stage in 

problem solving; and two. which is implicit in what 

we have said so far, is that control /or each task be 

represented abstractly so that explanations can be 

couched   in   terms  of these  abstractions. 

Swartout and Clance) have done significant in- 

vestigations of issues In explanation generation by 

problem solving systems. The work of both authors 

uses the notion of abttraet representation of control as 

a basic idea for explanation. It will be useful to re- 

late our  ideas  to  I hose of these  investigators. 

I The   Work  of ( lance' iroup: 

Ciancey has contributed several ideas that .in- 

relevant in this context: one. in ') . he discussed the 

advantage» of abstract representation of control in 

reasoning systems, and specific all\ pointed out their 

potential role in explanation: two, in H. he proposed 

tl.-t. in order to give explanatory capabilities to 

\IV( IN   for   purposes  of  teaching   (he  created   a   system 

called GUIDON based on MYCIN) an explanatory 

skeleton be attached to each rule encoding the role of 

the rule in problem solving: and three, in his work on 

NEOMYCIN 10 . he and his group represent the diag 

nostic strategy explicitly (in terms of abstract lubtaak^ 

and   their   relations   to   diagnosis   on   the   one   hand   and 

to  the  domain   data  on   the  other). 

The most advanced work In Ciancey's group on 

explanation is that on NEOMYCIN, and thus we will 

concentrate on that in this section. Here diagnostic 

strategy is represented explicitly as a collection of sub- 

tasks, with conditions lor moving from subtask to sub- 

task also explicitly stated. This representation enables 

an explanation of strategy to be produced at the task 

and sub-task level   if generalization. 

This work is in many ways quite close- m spirit 

to our approach, wilt the lollcming comments throw- 

ing light on the differences. 

1, NKOMVdVs representation of abstract 

strategies is implemented as a body of 

metarules  in   the  rule-based   paradigm.     We 

would note here that the rule paradigm 

plays no intrinsic role in this and can be 

viewed as merely an implemenlalion lan- 

guage. In our approach we would advocate 

a representation language with generic 

primitive terms for directly encoding control 

along the lines discussed earlier in the 
paper, 

2. The above comment raises the question of 

the appropriate language in which couch 

the tasks abstractly. In this paper we have 

proposed a set of generic tasks and sug- 

gested that the) land others to be added 

as needed on empirical grounds, but at 

about the same level of grain si/,e) comprise 

the elementar.« tasks in terms of which 

complex (generic) tasks such as diagnosis be 

decomposed. While we have been able to 

demonstrate this claim to a certain extent 

for the diagnostic strategy employed In the 

MDX system, it is a matter of further em- 

pirical research to see whether and how 

NKOMVCI.Vs diagnostic strategy be so 

decomposed. 

With respect to point 2 above, are there ad- 

vantages from an explanation point of view for such a 

decomposition even if it were possible.' At this point 

we can only gi\e the following tentative answers. To 

the extent that the subtasks in NKOMYCIN were 

developed   by   a   direct   study   of   the   diagnostic   task,   it 

is   likely    that    sot >|   these   tasks   (and   consecpiently 

the terms which t,ic> contribute to the explanation) 

are more informative at the- diagnostic task level. Hut 

il our theory is right, the additional abstractions 

specific to diagnosis can be obtained naturally from 

the abstraction at the generic task level. The generic 

tasks in our sense »ill have the further advantage of 

providing the primitives for other "molecular" tasks in 
addition to diagnosis. 

N 
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1.1.2, Swartoul .m«! the XPLAIN System: 

Swartout'a MM.AI.N lyitem l"> can be »um- 
tnarised tor our purpoea u follows. It Ims ■ com- 
panenl called Domain Principles, which is beat thought 
of .is a base of control abstraction* of the K0i'l-s|il>R"iil 
type. Thej <irc of the form, "If goal is (i, and if 

pattornl ■, ... • [»alternN ■ occur in I lie (loinain 
knowledge liasc. set up subgoals SCJl, ... S{;N 
respectively." As a concrete example, (I mi^lii I». 
"Administer «IniK ■." pattern! rninhi be, "• Rnding ■ 
and «IniK cause l)ail side effect •."" and S(;i 
minlii l>e, "Control toxiciu of dniR .'" One can im- 
agine an instructor teaching a KrmiP of students about 
administration of drugs in general, and tellinn them 
thai if. for a particular drug, there is a poasibilit) of 
a had side effect, then make sure to do whatever will 
he needed to control the drun toxicit>. Note that this 
has some degree of generality in that it can be used 
to set up systems for a number of different drugs: if a 
cert, n einig does not cause had side effects, then this 
particular subgoal will not be set up by the system. 
In    general    one   can    best    think    of   this    approach    as 

specification   of an   uprrt   systrrn   iji timiliir.   in   that   the 
same Domain Principles base can be used to generate, 
e.g.. systems to recommend the administration of dif- 
ferent drugs The Domain Principles then can be 
thought of as a collection of control abstractions. 
However, these control abstractions are domain-spei ific. 
Perms sue!, as adnuntnte.r and control loncily in the 
example above are used to index and name goals, but 
do not have general purpose problem solving relevance 
across domains. The only elements in the above ex- 
ample thai are generic in our sense are, // goal, and 
.••rt   up subgoal... 

As one would expect, the basis for the explana- 
tion capability of XI'I.AIN arises from the goal-subgoal 
control     abstractions     in      Domain     Principles. The 
generation of explanation in XI'I.AIN is very similar 
to that in rule-baaed systems in that the goal-subgoal 
structure in Domain Principles is used for the explana- 
tion in a way very similar to the rule-tracing in 
backward-chaining systems such as Mycin. While ex 
planation in Mycin is done using the trace of the 
rules that fired in a particular problem, XI'I.AIN uses 
the goal-subgoal relationships that went into the con- 
struction   of   the   expert    system,    with    wry    -irnilar   ef- 
fects.      XI'I.AIN   can   use  the   names  of  the  goal»  and 
subgoals and the terms in the pattern- to provide a 
richer ((iiality to the explanation: "üecause goal is to 
adminitter digitalis, and  ilii/italis  cniisi ■. dangtrou*  »idt 
effects,   there  is  a   need   to   control  loTicity of ilii/itolis." 

Where our work differs from this effort is in the 
power that is available in the control abstractions that 
are indexed by generic tasks. This enlarges the kinds 
of explanations that can be provided in a domain- 
independent way. and that can arise directly from the 
control   behavior  in   the  problem  solving  process. 

Acknowledgment: The.     paper     has     benefited 
from   the   comments   of   Tom   Bylander,   Jon   Sticklen 
and John Josephson. 
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ABSTRACT 

The Assumption-based Truth Maintenance System, 
introduced by de Kleer, is a powerful new tool for organizing a 
search through a space of alternatives. However, the ATMS is 

oriented towards inferential problem solving, and provides no 
special mechanisms for modeling actions or state changes. We 

describe an approach to applying the ATMS to the task of 
representing contexts that model actions. The approach extends 

traditional tree-structured conte), . mechanisms to allow context 

merges. It also takes advantage of the underlying ATMS to 
detect inconsistent contexts and to maintain derived results 

Some results are presented concerning possible approaches to the 
treatment of merges in questionable circumstances Finally, the 

analysis of actions in terms of a truth maintenance system 

suggests the need for a more elaborate treatmer.t of contradiction 
in such systems than exists at present. 

1. Introduction 
The Assumption-Based Truth Maintenance System 

(ATMS), introduced by de Klecr |2|, is a powerful new tool for 

organizing an efficient search through a space of alternatives. 

By explicitly recording the dependence of reasoning steps on 

individual choice» a truth maintenance system is able to share 

partial results across different branches of the search space. In 

effect, knowledge gleaned in one context is automatically 

transfered to other contexts where it is relevant. The ATMS 

permits simultaneous reasoning about multiple, possibly 

conflicting contexts, avoiding the cost of context switching. 

The ATMS as presently constituted views problem solving 

as purely inferential. This is an appropriate stance for a broad 

class of constraint satisfaction problems. However, problems 

involving temporal changes or actions require some additional 

mechanism.     As  de  Klecr [8j   points out,  "...  problem  solvers 

[may] act, changing the world, and this cannot be modeled in a 

pure ATMS in which there is no way to prevent the inheritance 

of a fact into a daughter context." In this paper we explore one 

approach to using the ATMS to support the modeling of actions. 

The basic idea is to extend a traditional tree-structured context 

mechanism (as in CONNIVER and QA4 [X]) to allow context 

merges and to lake advantage of an underlying ATMS to detect 

inconsistent contexts and to maintain derived results. This 

approach has been implemented in the KEEworlds™ facility of 

the KEE      (Knowledge Engineering Environment™) system.1 

In the following sections, we give a functional overview of 

the KEEworlds facility. We then describe the underlying 

representation in terms of the ATMS. Special attention is giv-n 

to the situation where a world has multiple parents. This is 

followed by a discussion of non-monotonic reasoning about 

actions in a more general TMS setting, suggested by the worlds 

mechanism.   We close with some remarks about related systems. 

2. Worlds 
The basic structure provided for modeling actions is a 

directed acyclic graph of worlds. Each world may be regarded as 

representing an individual, fully specified action or state change. 

A world together with its ancestors in the graph represents a 

partially ordered network of actions. Each successor of a world 

in the graph then represents a hypothetical extension of the 

world's associated action network to include a new subsequent 

action. The world graph as a whole may thus be regarded as 

representing multiple, possibly conflicting, action networks. 

Each partially ordered action network resembles a procedural net 

of NOAH 19], or NONLIN [10], where the actions are fully 

specified. We assume that the effects of a fully specified action 

can be represented by additions and deletions of base facts, so 

each world has a set of additions and deletions associated with it 

KEEworlds. KEE and Knowledge Engineering Environment are trademarks of 
IntelHCorp. 

-I  id- 



which represent the actual primitive changes determined by the 

action. Since an action corresponds to an application of an 

operator, not an operator itself, this assumption is somewhat less 

restrictive than that of STRIPS |8] in that it imposes fewer 

constraints on the representation of the operators. Figure 2-1 

shows an example worlds graph, from the blocks world. The 

deletion and addition at W2, for example, represents the 

movement of block a to the table. 

In keeping with the view that additions and deletions 

represent actual changes, they are only recorded where they are 

cffeciive, that is, an addition only occurs where the fact did not 

previously hold, and a deletion where it did hold. 

The inherited facts follow a principle of inertia (essentially 

the STRIPS assumption [11]); a fact wh'ch is added at a world 

continues to be true in succeeding worlds, up until (but not 

including) a world where it is deleted. 

+ on(a,b) 
+ on(b table) 

WI + on(c,d) 
/  \ + on(d,table) 

The deduced facts may include the distinguished fact 

FALSE, representing a contradiction. A world where FALSE 

can be deduced is marked as inconsistent. The system generally 

avoids further reasoning .n such worlds (however, it is possible 

and sometimes useful to do ta-ievel reasoning about 

inconsistent worlds). 

W2    - on(a,b) 
\    + on(a,table) 
\ 
\ 
\ 
\ / 
\ / 
\ / 

\ 
W3 
/ 

on(c,d) 
on(c,-able) 

\ / 
\ / 
\    / 

W4 

Figure 2-1:     Worlds Graph 

To simplify the discussion we will assume for the moment 

that the graph is a tree, i.e., each world has at most one parent 

and a branch of the tree corresponds to a linear sequence of 

actions. Later, we will consider the consequences of multiple 

parents. 

Observe that we may associate each world with the state 

that results from applying the changes encoded by the world and 

all of its ancestors. Hence, a world plays a double role, 

representing both a state change and a state. The facts in the 

state will in general be augmented with deductions using general 

knowledge of the domain. Thus, the facts which are true at a 

world fall into the following three categories: 

1. facts inherited from ancestor worlds 

2. direct additions at this world 

3. deductions from facts in 1 and 2 

3. Worlds in ATMS 
Before discussing how the worlds graph is implemented in 

terms of the underlying ATMS, we give a brief sketch of the 

ATMS mechanisms that are used, primarily to establish 

terminology. The reader is urged to consult de Xleer [3, 4, 5] for 

a full description of the ATMS. 

The basic elements of the ATMS are aestimptions and 

nodes. An assumption in the ATMS correspc ".i i,o a decision or 

choice, and is used as an element n context descriptor. Nodes 

correspond tu prepositional factf r jata, which may be justified 

in terms of other nodes, or assumptions. By tracing back 

through the justification structure, it is possible to determine the 

ultimate support lor a derivation of a node as a set of 

assumptions. Such a set is cal'ed an envtVonmeni ior the node. 

Since a node may have mi Itiple deriv-,:ons, it may also have 

multiple environments. The ^€t of (minimal) environments for a 

node is called its label. Co irnuing the labels of nodes is one of 

the major activities of the A'rM The primary transaction that 

the ATMS supports is adding a justification. This causes the 

labels of affected nodes to be recomputed. There is a special 

element called FALSE, denoting contradiction, which is similar 

to a node, and may have justifications. The environments that 

would be in its label are called nogoods and constitute minimal 

^consistent environments. Environments which are discovered 

to be inconsistent, i.e., which are supersets of nogoods, are 

removed from the labels of nodes so that they are not used for 

further reasoning. 
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Each world has two ATMS sntities associated with it, 

reflecting its double role: a world aaeu'npiio" and a twriV 

environment. The world assumption corresponds to the action 

encoded by the world, and may also be thought c f as the choice 

or decision that led to the action. The world environment, on 

the other hand, corresponds to the state, and actually consists of 

the set of world resumptions from the given world and all of its 

ancestors. It is convenient to use the ATMS itself to compute 

the world environment. This is accomplished by having a specHI 

world node associated with each world. This node may be 

thought of as representing the statement that ihe world's action 

occurs.   The world node, Nw, is given a single justification 

where NWp is the world node of the parent, and Aw is the world 

assumption of the given world. It is not difficult to see that this 

results in all world nodes having a single environment, of the 

form described. 

Adding a fact F at a world can now be accomplished by 

supplying a justification in terms of the world node However, 

to allow for the possibility of later deletion, a nondeletion 

assumption is included.   Thus, the justification has the form 

where Aw|, is the nondeletion assumption. A distinct 

nondeletion assumption is required for each separate addition of 

a fact at a world (to allow independent deletion). If F is deleted 

at a subsequent world Wl, the justification 

AynAA^-FALSE 

is supplied to the ATMS, wh2re Aw   is the world assumption for 

Wl.    We will call nogocds resulting from justifications; of this 

form deletion nogoods. 

Apart from the justifications supplied by the system to 

represent additions and deletions, and justifications for world 

nodes, thjre will be justifications installed by the user to 

repress t deductions from the primitive facts. These deductions 

need be performed only once as the presence of the justifications 

in the ATMS allows the efficient determination, via label 

propagation, of which derived facts hold in which worlds. 

Derivations of FALSE are used to determine inconsistent 

worlds, representing dead ends in the search. The nogoods 

determined by the ATMS may, however, contain nondeletion 

assumptions in addition to the world assumptions. However, 

only the latter represent choices in the search, and we wish these 

to take all the "blame" for dead ends (we discuss this further in 

section 5). Thus, the multiple worlds system incorporates a 

feedback loop which installs in the ATMS reduced nogoods with 

the nondeletion assumptions removed. These nogoods are 

jub.ti.-- nf the original ones, and so, in accordance with the 

miniirr.Uty requirement, the latter are removed. This process 

ensures that the deletion nogoods are the only ones containing 

i.ondeletion assumptions. 

To test whether a fact holds in a world, we can compare 

each environment in the node label with the world environment. 

The comparison is done as follows (in principle; the actual 

algorithm is equivalent, but more efficient). The world 

environment is extended with as many nondeletion assumptions 

as are consistent with it (the extension is necessarily unique since 

each nogond contains at most one nondeletion assumption). The 

extended world environment is then checked to see if it is a 

superset of the fact environment. If so, the fact is regarded as 

true in the world. 

4. Merges 
We now consider the more complex situation where a world 

has multiple parents: we call such a world a merge. The ability 

to perform merges allows a problem to be decomposed into 

nearly independent components, which can be worked on 

separately and later recombined. As before, the changes 

represented by the ancestor worlds are combined. In the 

example of figure 2-1, the world W4 is merge. Thus, the state 

corresponding to \V4 will have both blocks moved to the table. 

We wish to stress that a merge is not the same as a simple union 

of the facts in the parent worlds, but rather combines the 

changes from all the ancestor worlds. 

In the example of figure 2-1, the changes along the two 

branr: es are independent. More generally, a difficulty arises in 

that the effect of changes may depend on the order in which they 

are applied, resulting in an ambiguous merge. In figure 4-1, we 

show two examples of such merges. In both cases, the state at 

W5 depends on the order of the preceding changes. 

There are a number of ways of dealing with this difficulty. 

We have already introduced the requirement that additions and 

deletion; at worlds be effective with respect to the state resulting 

from actions in ancestor worlds. However, from a strict 

standpoint of fully specified actions, the additions and deletions 

could be required to be effective even with respect to actions in 

sibling or cousin worlds. Thus, one might forbid a merge if the 

ancestor subgraph ol the proposed merge possesses any 

linearization in which an addition or deletion is ineffective. One 

can then prove the following result. 

' 
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Figure 4-1:    Ambiguous Merges 

Theorem 1: A merge that is not forbidden by 
the above ciiterion is unambiguous. 

It is also possible t3 prove the following result, which assists in 

the identific. iion of such forbidden merges. 

Theorem 2: A graph of worlds admits a 
linearization in which an addition is ineffective if and 
only if there are at least two worlds where the 

addition occurs, such that neither is an ancestor of 
the other. 

A similar result holds for deletions.    With  this approach, the 

merges in figrre 4-1 would be disallowed. 

It is of interest that the above restriction resembles that 

required for uondict-free procedural nets [10] where actions that 

violate each others' preconditions must be ordered so that one is 

an ancestor of the other. Indeed, additions and deletions which 

are mandatory are, in effect, preconditions. From this 

perspective, the separate branches of the networks of figure 4-1 

are in conflict because each branch deletes a precondition of the 

other. 

such ignorance, not falsity. Notice that when the effect of the 

actions is order independent, this definition reduces to the 

previous one. With the pessimistic merge, the fact P is absent at 

W5 in both examples of figure 4-1. A dual to the pessimistic 

merge is the optimistic merge where a fact is true in the merge 

if it is true in some linearization. Again, this reduces to the 

original merge in the case of order independence. With the 

optimistic merge, P is present at W5 in both examples. 

We   : uss   the   ATMS   representation   for   merges. 

When  a wv multiple  parents,  the justification  for  the 

world node includes each of the parent world nodes among the 

justifiers. The justification scheme for additions and deletions 

works as before. The different merges are obtained by different 

selections of which additions the deletions affect, i.e., which 

justifications for FALSE are entered. For the pessimistic merge, 

the deletions are effective with respect to all except descendant 

additions. For the optimistic case, the deletions are effective 

with respect to ancestor additions only (the optimistic merge 

tends to be easier to implement efficiently, although less 

defensible on semantic grounds). 

One might imagine a wide variety of possible merge 

algorithms. There are two overriding constraints that led to the 

schemes described here. One is the necessity of quickly 

determining whether a potential merge would produce a 

consistent, world, since that is expected to be a high frequency 

operation. The schemes described allow the merge to be 

computed as a simple union of ATMS environments. The other 

constraint is the existence of a large core of unambiguous cases 

where there is only one reasonable value for the merge. 

If one does not require that additions and deletions be 

effective with respect, to non-ancestor actions, a weaker condition 

which guarantees unambiguous merges is as follows: 

Theorem 3: A sufficient condition for a merge 

to be unambiguous is that the ancestor subgraph may 
not contain two worlds, one of which deletes a fact 
and the other of which adds it, such that neither is an 
ancestor of the other. 

This criterion also prohibits the examples of figure 4-1. 

Another approach to removing the ambiguity is to adopt 

additional criteria for defining the merge. In the pessimistic 

merge, an individual fact belongs to the merge if it, survives in 

every linearization of the actions. The rationale is that we may 

then be assured the fact holds, irrespective of the order in which 

the actions were performed. Otherwise, we are ignorant of the 

fact, and the absence of the fact from the merge simply denotes 

A further merge type which has some intuitive appeal, but 

does not appear to admit an efficient implementation, arises as 

follows. It is possible to show that every linearization of the 

ancestor subgraph in which all additions and deletions are 

effective gives the same result for the merge. Thus, one might 

define the merge to be this common value (if there is any such 

linearization). In figure 4-1, this would lead to P holding at W5 

in the left example, but, not in the right. 

5. Actions and NonMonotonicity 
It, is instructive to consider how actions might, be 

represented in a more general TMS setting, as suggested by the 

worlds system. For definiteness, and for contrast, this will be 

cast in terms of a Doyle-style truth maintenance system [6|, The 

general approach we follow is to use a form of nonmonotonic 

inference to reason about the effects of actions.    However, the 
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behavior we  require  in  response to contradiction  is somewhat 

different   from   the  standard   approach   in   truth   maintenance 

systems. 

We will regard a context, or current state of the system, as 

describing the evolution of a situation to a particular point in 

time. Besides containing assertions about facts in the "present" 

such as "block a is on block 6," the context records past actions 

like A3: "block a was placed on block 6". Note that there may 

be several occurrences of individual actions with the same 

description; we distinguish between the occurrences by giving 

them unique identifiers such as A3. The numbering of the 

identifiers is not intended to imply temporal .»rder. Thus - so far 

- the relative timing of past actions has not been represented. 

The positive effects of an action can be represented by 

justifications linking the occurrence of past actions to present 

facts.   For example, 

A3 A fS —► block j is on block 6. 

P5  is a preservation  -ondition  of the  form  "block  a was not 

moved off block 6 after A3."    In order to allow deletion, we 

justify   P5   as   an   assumption   by   giving   it   a   nonmonotonic 

justification of the form 

(D5) — P5 

Here, "(D5)" indicates that D5 is an OUT-justifier, where D5 is 

the statement that "some action  after A3  moves  block  a  off 

block 6".   If a subsequent action, say A4, moves the block off, we 

supply a justification 

A4-.D5 

causing the OUT-justifier to come IN, thereby undercutting the 

derivation of "block a is on block 6." Note that the information 

about the relative timing of actions is now implicitly represented 

by these justifications. 

A difficulty with this representation arises when the 

problem solving process generates contradictions that represent 

dead ends in the search space. We do not wish the preservation 

assumptions to be implicated in these; rather, we wish the 

assumptions representing choices of actions to be the ones 

considered for revision. Choosing a preservation assumption as 

culprit during backtracking would amount to postulating the 

existence of an unknown action that deletes one of the facts 

leading to the contradiction. However, if we make the 

separation between problem solving and truth maintenance 

suggested by de Kleer, then from the point of view of the TMS, 

the only actions which exist are those which the problem solver 

has informed it about. Some new mechanism is required to 

ensure that the TMS handles this correctly.   One possibility is to 

have something like a "sheltered" assumption, which could be 

refuted directly, but not indirectly in response to a contradiction. 

Incidentally, the need for a more discriminating process of 

culprit identification is not confined to the difficulty with 

preservation assumptions. As another example, consider a 

situation where a burglar is planning to break into a house late 

at night. To accomplish his purpose, he must choose some 

method of entry. One method is to break in a window. 

However, this may have the consequence of waking the 

occupants, if they are home, which would defeat his purpose. 

Let us suppose the burgler makes the default assumption that 

the occupants are home. The difficulty is that a standard truth 

maintenance system, in attempting to resolve the 

"contradiction" of waking the occupants, might elect to revise 

the assumption that the occupants are home, even though that is 

not subject to the burglar's control, instead of the real culprit, 

breaking the window. The system would in effect regard the 

undesired consequence of waking the occupants as evidence for 

their absence. However, it is only when there is independent 

evidence for the occupants being absent that this possibility is 

worth considering. This example of "wishful thinking" suggests 

that truth maintenance systems in general need a more refined 

treatment of contradiction handling. 

Although the approach outlined here could be adapted to 

using the ATMS more directly for modeling actions, it would be 

cumbersome for a user to have to input the juslifications 

representing additions and deletions by hand. The worlds 

facility described earlier provides a framework which represents a 

more convenient interface to an action modeling system. 

6. Closing Remarks 
The worlds considered here resemble the data pools of 

McDermott [7]. However, the result of a merge in the data pool 

approach is determined by the arbitrary order in which items are 

added and deleted in worlds {beads in McDermott's terminology). 

This means that two graphs with the same apparent external 

structure may have different results for a merge. Another 

difference is that data pools apparently have no notion of 

contradiction. One attractive aspect of McDermott's approach is 

that justifications may have OUT-justifiers. 

' 
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The   Viewpoints facility   of   Inference   Corporation's 

ART system appears quite similar in behavior to the worlds 

facility described here."' However, it is difficult to make detailed 

comparisons since little information has been made available 

about the underlying mechanisms of ART. 

We have described an approach to constructing a context 

mechanism that represents a partially ordered net\ ork of actions 

or state changes. A realization of the mechanism has been 

described in terms of an underlying Assumption Based Truth 

Maintenance System. An examination of a similar representation 

in a classical TMS system suggests a shortcoming in the way 

existing truth maintenance schemes handle contradictions. 

The approach described has been implemented as part of 

the KEEworlds facility of KEE and appears to provide a useful 

and efficient tool for reasoning about multiple situations. The 

KEEworlds facility integrates the multiple worlds system with an 

existing frame-based representütion system, provides a graphical 

browser for manual exploration of worlds and allows rule-based 

generation of worlds during either forward or backward 

chaining. 
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CAGE and POLIGON: Two Frameworks for 
Blackboard-based Concurrent Problem Solving 

H. Penny Nii 

Knowledge Systems Laboratory 
Computer Science Department 

Stanford University 

The two articles following this one, User-Directed Control of 
Parallelism: The CAGE System and POLIGON: A System for 
Parallel Problem Solving, describe two different skeletal 
systems representing two models of concurrent problem 
solving. Both systems are designed for parallel execution of 
application programs built with the systems. This paper 
describes the context in which these systems are being 
developed and summarizes the differences between the two 
systems. 

The Context 

The POLIGON and the CAGE systems are being developed 
within the context of two different families of experiments 
within the Advanced Architectures Project. Each family of 
experiments consists of a vertically integrated set of programs 
from each level of system hierarchy outlined in the project 
proposal (i.e. application, problem-solving framework, 
knowledge representation and retrieval, implementation 
language, and hardware/system architecture levels). POLIGON 
and CAGE are two systems at the problem-solving framework 
level. The design of both the POLIGON and the CAGE 
systems are based on the Blackboard problem solving model 
[4]. 

The Experiments 

Each family of experiments starts with a different set of high- 
level constraints: 

Hardware/system architecture: The POLIGON system is 
designed for distributed-memory, multi-processor systems. It 
assumes that the underlying system has a large number (100's 
to 1000's) of processor memory pairs with very high bandwidth 
inter-processor communication. The CAGE system, on the 
other hand, assumes a shared-memory, multi-processor system 

'This research  was supported by DARPA/RADC (F30602-83-C-0On), by 

NArA (NCC 2-220), and by Boeing Computer Services (W-266875). 

with tens to hundreds of processors. The underlying system 
architecture influences the additional constructs at the 
programming language level needed to support parallel 
executions. It also has significant affect on the design of 
blackboard frameworks. 

Control of parallelism: The POLIGON system is designed with 
an assumption that the underlying problem solving framework 
on which the application is to be mounted must be 
intrinsically parallel. The POLIGON system is designed so 
that predefined constructs in the framework always run in 
parallel. For example, all rules are evaluated in parallel and 
all changes to blackboard nodes are made in parallel. The user 
has some ability to introduce serialization. CAGE, on the 
other hand, assumes that the user needs control over what is to 
run in parallel. Thus, everything in CAGE runs serially unless 
specified otherwise by the user. There are prespecified places 
where the user can introduce parallel, m. For example, the 
user can specify that the condition parts of rules be evaluated 
in parallel and the action parts be executed in series. 

The family of experiments of which CAGE is a part consists 
of CAGE (problem solving framework) implemented in Qlisp 
[2] (implementation language) running on a shared-memory 

architecture (system architecture) simulated on CARE [1] 
(system simulator). The other family of experiments consists 
of POLIGON (problem solving framework) implemented in 
CAOS [5] and Zetalisp (implementation language) running on 
a distributed-memory architecture (system architecture) 
simulated on CARF.. Both CAGE and POLIGON run on the 
same system simulation program and share its software 
measurement tools. Both skeletal systems will mount the same 
application problems. 

In keeping with the goals of our Project, the primary objective 
of the two families of experiments is to discover methods that 
would speed up the execution of knowledge-based application 
programs. There are, however, additional reasons for the two 
experiments that relate to the primary objective: 

To compare the performance gains between shared 
versus distributed-memory, multiprocessor systems. 

N 
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To provide input to the implementation language 
level (QLisp, CAOS and other concurrent Lisp 
languages); 

To gain some understanding of the differences in 
'programmability' between POL1GON and CAGE. 
More specifically, address the question of whether it 
is easier/better to let the user have complete control 
over the parallelism in a program; and as a 
corollary, to determine the limits of concurrency 
that can be designed into a framework, and the 
kinds of concurrencies that are problem specific and 
need to be expressed by the user. 

To determine the extent of control, or serialization, 
needed in both systems in order to solve a class of 
problems, and to discover how to apply the needed 
control. 

To determine if multiplicative speed-up can be 
effected between knowledge sources, rules, and lowtr 
level (for example, rule clause evaluation) 
concurrencies. 

To determine what level of process granularity is 
most appropriate for each hardware/systems 
architecture. 

Comparison of the CAGE and POL1GON Systems 

CAGE and POLIGON are concurrent blackboard systems with 
two different  underlying design  philosophies.     CAGE  is an 
extension of the AGE [3] system with primitives to express 
parallel  execution  of  knowledge sources,  rules,  and  parts of 
rules.    It is a conservative, incremental approach to building 
parallel   systems.     POLIGON   is  a  demon-driven   system   in 
which all  blackboard nodes are viewed as active agents (and 
thus     each     blackboard     node     can     potentially     be     a 
processor/memory  pair).     A  change made to a node causes 
appropriate rules  to  be evaluated and  executed.     POLIGON 
represents a shift in the way we view blackboard systems. 
Both   systems   have   programming   languages   associated   with 
them, the POLIGON language and the CAGE language.    The 
first objective in providing a language at the problem solving 
level is to facilitate the writing of application programs.   This 
is accomplished by abstracting much of the system detail into 
language constructs.    The second objective is to keep separate 
the parallelism in the application problem, as expressed by the 
language, and  the parallelism built into the framework  that 
remain  invisible to  the user.    This separation allows us to 
experiment   with   parallelism   in   the   application    program 
independent   of   experiments   with   parallelism   within   the 
framework. Thus, we can for example, keep the application 
constant   and   change   the   parallel   constructs   within   the 
framework, or keep the framework constant and rewrite the 
application.       In    oiüer   to   facilitate   the   porting   of   an 
application   program   between   POLIGON   and   CAGE,   both 
languages are syntactically similar.   However, the semantics of 
the languages are very different because the underlying systems 
are very different.   The differences are summarized below. 

CAGE 

Incremental additions 
of parallelism to a 
serial system 

User controlled 
parallelism 

Granularity of 
parallelism 
under user control 

Shared memory 
multi-processor 
machines 

POLIGON 

Redesigned 
parallel system 

User controlled 
serial operations 

Granularity of 
parallelism fixed - 
rules and actions 

Distributed memory 
multi-processor 
machines 

Figure 1:    Summary of Differences: CAGE and POLIGON 

We now describe and discuss some of the issues specific to the 
CAGE and the POLIGON systems. The discussions should 
serve as a background to the detailed description of the 
systems in the separate papers. 

CAGE 

There are several obvious places for concurrency in blackboard 
systems, the knowledge sources, rules within the knowledge 
sources, and the components of the rules. 

Knowledge Source concurrency: Knowledge sources are logically 
independent partitions of domain knowledge. Each knowledge 
source is event-driven and becomes active when changes 
relevant to the knowledge source are made to the blackboard. 
Theoretically, therefore, all knowledge sources can be active at 
the same time as long as events relevant to each of the 
knowledge sources occur at the 'same time'. However, 
knowledge sources are often serially dependent in order to 
solve a problem. At run time some synchronization (i.e. 
serialization) must be enforced. 

In the class of applications we are considering, the solution 
generation process characteristically occurs in a pipeline 
fashion up the blackboard hierarchy. That is, the knowledge 
source dependencies form a chain from the knowledge sources 
working on the most detailed level of the blackboard to those 
working on the most abstract level. When the program is 
model-driven, the pipeline works in the reverse direction. The 
task for CAGE in exploring concurrency at this level of 
granularity is to determine what percentage of the knowledge 
sources can be active at the same time in the pipe. 

Rule concurrency: Each knowledge source is composed of many 
rules. The condition part of the rules are evaluated for a 
non-NIL condition  (a match) and  the action  part of those 

\ 
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rules that match are executed. The condition-pait of all the 
rules in a knowledge source can be evaluated in parallel. In 
those cases where the action part of all the rules that match 
are to be executed, the action part can be executed as soon as 
the match is completed. However, if only one of the rules is 
to be fired (single-hit), then the system must wait until all the 
condition parts are evaluated, and one rule must be chosen 
whose action part will be executed. (Note that this is very 
similar to the OPS conflict-resolution phase.) In addition, one 
can imagine evaluating all of the condition parts in parallel 
and executing the appropriate action parts in series. 

The situation in which all rules are evaluated and fired 
concurrently will result in the most speed-up, since many rules 
will be in the state of being evaluated and being executed at 
the same time. However, if the rules need access to the same 
blackboard item, memory contentions become a hidden point 
of serialization. At the same time, the integrity of 
information on the blackboard cannot be guaranteed. The 
condition which triggered the action part of the rule may not 
be the same by the time it is executed. CAGE needs to 
address these problems, determine the effect on solution 
quality and overall performance gain of the application 
program. 

Condition-part concurrency: Each condition part of a rule 
consists of many clauses to be evaluated. These clauses can be 
computed in parallel. Often these clauses involve relatively 
large numeric computation (e.g. calculating a track), making 
parallel clause evaluation worthwhile. On the other hand, 
often the clauses refer to the same data item, making the 
clause evaluation appear to be parallel, but in fact forcing 
serialization at the data-access level with no gain (and most 
likely a loss) in speed of computation. The task at this level 
of granularity is to determine if parallelism at this level is 
worthwhile. It may be that what is needed at this level is a 
fast algorithm for matching the condition parts and an 
appropriate knowledge representation scheme. 

Action part concurrency: Often, when a condition part matches, 
there are many actions to be executed. This is one place 
where no difficulty if anticipated in parallel execution. 

priority basis (exemplified by the need for the Agenda 
mechanism in AGE), some control mechanism is needed. The 
task here is to determine the best (least overhead) control 
mechanism appropriate to the application. 

POLIGON 

As mentioned earlier, the application programs are event- 
driven in blackboard systems. Events are normally defined by 
the user and expressed as jhanges to the blackboard nodes. 
Because a knowledge source is activated by the occurrences of 
events, and because knowledge sources are collections of rules, 
one can view the rules as being activated (indirectly) by 
changes to some blackboard nodes. We can take this line of 
reasoning one step further and say that a rule is activated by 
changes to particular slots of blackboard nodes. If we 
associate a set of rules directly with a slot on a node and 
evaluate and execute the rules whenever the slot is changed, we 
have a system with active blackboard nodes. 

Conceptually, at least, every blackboard node can be thought of 
as a processor-memory pair. Each node contains a data 
structure to store the partial solutions, and the rules are 
activated whenever a particular slot is changed. Slots with a 
property that enable rule triggering are called "trigger slots". 
When the action part of a rule is executed, the changes to the 
blackboard are made via messages to the nodes to be changed. 
If the change to is to a trigger slot, then the condition part of 
the "triggered rules" are evaluated; changes to non-trigger slots 
do not cause processing. 

A major difficulty with this approach is the loss of control, 
specifically, an ability to control the order of rule firing. By 
bypassing the intermediate control step where manipulation of 
the events and selection of knowledge sources occurs, the 
system has no global control. The rules will be firing almost 
indiscriminately all over the blackboard as soli »ion state 
changes. There is no way to implement problem solving 
strategies, for example. In addition, rules will not be evaluated 
in situations when the non-occurrence of a change to the 
blackboard is significant. Such ability is important in signal 
interpretation programs. 

Combining the concurrencies: The action parts of rules generate 
events, and the knowledge sources are activated by occurrences 
of these events. In the AGE system events were posted on an 
event-list and a control monitor invoked the knowledge 
sources based on those i its. In order to eliminate the 
serialization inherent in this control scheme, a mechanism to 
activate the knowledge source upon the completion of the 
action parts of rules is needed. The immediate activation of a 
knowledge source after action part execution (for example, by 
broadcasting an 'event message' to all the knowledge sources) 
results in the loss of global control over knowledge source 
activation. In some cases, this is acceptable. In other cases, 
for example when knowledge sources need to be activated on a 

In spite of many anticipated difficulties, we have developed a 
demon-driven system in hopes of gaining experience with such 
a system and discovering solutions to the problems.   Although 
there is a substantial shift in  the problem solving behavior, 
POLIGON is being evolved out of the functionalities that were 
present in AGE.    At this point POLIGON is characterized by 
the following: 

Knowledge sources exist only as a conceptual aid in 
partitioning the problem space. 

Levels of in the blackboard data exist as a class 
hierarchy. A level is a class and a node is an 
instance of a class. There is also a super-class that 
knows about the classes. (For clarity, the class will 
be referred to a more familiar term, the level.) 
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All nodes are active entities. 

Each rule must specify, in addition to the condition 
and action parts, the level and the node with whicn 
it is to be associated, i.e. it must designate a 'trigger'. 
A trigger consists of a slot name and a trigger- 
condition, which are to be interpreted as follows: 
whenever the value of the slot is changed, evaluate 
the trigger condition. If the trigger condition is 
non-nil then the rule becomes triggered. A triggered 
rule is put on a process queue for later evaluation. 

The rules can use data futures, and for the time 
being all bindings are made through lazy evaluation. 
This means that all bindings are made only when 
needed. In addition, processing can continue while 
values are being fetched from other nodes. 

The major control problem to be addressed in 
demon-systems is the serialization of demon 
activations. Potential for control in POLIGON 
exists in three places: (1) On the node, where action 
parts of the rules can be serialized, for example. (2) 
In the level manager, which knows about the all the 
nodes on the level. (3) In the super-manger which 
knows about all the level managers. The level 
manager that can create and garbage collect the 
nodes, and knows which rules to attach to a newly 
created node. The level manager is the only agent 
that knows about all the existing nodes on its level. 
Thus, to send a message to all the nodes on a 
particular level, a message is sent to the level 
manager which forwards it to all its nodes. 
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In addition to the parallel evaluation of the 
condition parts of rules, the actions in the action 
part of the rules are executed in parallel. 

Because of POLlGON's uncontrolled parallelism the solution to 
a problem will be indeterminate. That is, every execution of 
an application problem can potentially result in different 
answers. The challenge is to organize the knowledge in such a 
way that "acceptable" solutions are produced each time. 

Most of the same concurrencies made available to the user in 
CAGE are built into the system in POLIGON. The major 
challenge in POLIGON is the serialization of rule execution. 
For example, the ability to synchronize the execution of 
actions in CAGE has no counterpart in POLIGON. Since the 
system is demon-driven at the rule level, there are very few 
handles available to control the activation of rule evaluation. 

Summary 

CAGE and POLIGON thus are two very different approaches 
to the expression of parallelism at the problem solving 
framework level. As we develop and test applications using 
these frameworks, we expect to gain a more concrete 
understanding of their relative strength and weaknesses with 
respect to usability, application characteristics, and speedup. 
Each system is discussed in more detail in the following two 
articles. 
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I   INTRODUCTION 

CAGE', Concurrent AGE", provides a framework for 
building and executing application programs as a concurrent 
blackboard system. With CAGE, the user can control which 
parts of the blackboard system are executed in parallel. A 
blackboard application can be implemented and debugged 
serially on CAGE. Once the serial version is debugged, 
concurrency can be introduced to different parts of the 
system, allowing the user to experiment with various 
configurations. We believe this incremental approach will 
facilitate the construction of concurrent piublem solving 
systems and will teach us much about programming in a 
parallel environment. This paper describes the design of the 
CAGE system and gives detailed instructions for 
implementing an application, using the CAGE language and 
compiler [Rice 86]. We have included advice, warnings, and 
caveats ba'sed on our experience using CAGE. 

The target parallel system architecture for the CAGE system 
is currently the same as that of QLAMBDA, a queue-baced 
multi-processing Lisp ( [Gabriel 84]and McCarthy) on which 
the parallel simulation is based. We are assuming a shared 
memory and a large number of processors. The user can 
specify his CAGE application in an extension of the L100 
language, called the CAGE language, and use the CAGE 
compiler to generate CAGE code. CAGE runs on LOQS, a 
functional simulator for QLAMBDA. CAGE is imp -mented 
in ZETALISP for Symbolics 3600 machines and TI Explorers. 

II   OVERVIEW OF CAGE DESIGN 

CAGE is a blackboard framework system. In addition to 
the basic AGE [Nil 79] functionality, CAGE allows user- 
directed control over the concurrent execution of many of its 
contructs. The basic components of a system built using 
CAGE are: 

1. A global data base (the blackboard) in which 
emerging solutions are posted. The elements on 
the blackboard are organized into levels and 
represented as a set of attribute-value pairs (a 
frame). 

2. Globally accessible lists on which control 
information is posted (e.g. lists of events, 
expectations, etc). 

3. An indefinite number of knowledge sources, each 
consisting of an indefinite number of production 
rules. 

•This research is supported by DARPA/RADC under contract number 
F306O2-85-C-0O12, by NASA under contract number NCC 2-220, and by 
Boeing Computer Services under contract number W-266875. 

••CAGE is based on the AGE System and we have assumed here that the 
reader is familiar with the AGE system. 

4. Various kinds of control information that 
determine (a) which blackboard element is to be 
the focus of attention and (b) which knowledge 
source is to be used at any given point in the 
problem solving process. 

5. Declarations that specify what components 
(knowledge sources, rules, condition and action 
parts of rules) are to be executed in parallel, and 
when to force synchronization. During the 
execution of the user's application CAGE will run 
these specified components in parallel. 

Using the concurrency control specifications, the user can 
alter the simple, serial control loop of CAGE by introducing 
concurrent actions. CAGE allows parallelism ranging from 
concurrently executing knowledge sources all the way down to 
concurrent actions on the right- or left-hand-sides of the 
rules. The serial execution and parallel executions possible in 
CAGE are summarized below. 

in KS Control 
serial: pick one event and execute associated KSs 

parallel: 
1. as each event is generated execute associated 

KSs in parallel"* 
2. wait until several events are generated then 

select a subset and execute relevant KSs for 
all subset events in parallel 

in KS 
«,. rlahl. 

2. 
evaluate bindings 
evaluate LHS then execute RHS of one rule 
whose LHS matches (in written order) 
evaluate all LHS then execute all RHS 
whose LHSs match 

parallel: 
1. 
2. 

evaluate bindings* 
evaluate all LHSs in parallel 

a. then synchronize (i.e. wait for all 
LHS evaluations to complete) 
and choose one RHS(pick one in order) 

b. then synchronize and execute the 
RHSs   serially (in written order) 

c. execute RHS as LHS matches* 

in Rule 
serial:evaluate each clause then execute each action 

parallel: 
evaluate clauses in parallel then execute actions 
in parallel* 
(first nil clause --> no match; first all non-NIL 
clauses --> match) 

in clause 
serial: Lisp code parallel: Qlambda code 

•••The starred options indicate the greatest use of concurrency. 
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Ill   BUILDING APPLICATIONS IN CAGE 

In each of the following sections we will outline the 
application data that must be supplied by the user and how 
that information should be structured for use by the CAGE 
System. The CAGE System provides a CAGE language with 
which the user can write his application. The type of user- 
supplied information is similar to that required for 
applications constructed in the original AGE system. 
However, the structure of the user information is somewhat 
different from that of an AGE application. 

A.   Blackboard Data Structure 

There are two major components in the CAGE blackboard 
structure, the hypothesis classes (frequently called levels in 
hierarchical blackboard structures) and the hypothesis nodes. 
The user must specify the classes that make up his 
application's blackboard structure. For each class, the user 
must define the fields to be associated with the nodes created 
in that class. Nodes are created in those classes, either a 
priori by the user or dynamically while executing the user's 
rules. The following example shows the definition of several 
classes and their fields in the CAGE language. 

Class Definitions for Model "example" : 

Class name-of-levela : 
attrlbutel 
attrlbuteZ 
attributes 

Class name-of-levelb 
attribute* 
attributes 

This will compile into two macro calls, DEFHYPOTHESIS- 
STRUCTURE and DEFLEVEL, which the CAGE System will 
in turn compile into the appropriate hypothesis structure. 

(defhypothesis-structure 
user-hypothesis-structure 
(appl1 cat Ion-system-root) 
name-of-levela 
name-of-levelb 
name-of-levelc 

...) 

(oeflevel name-of-levela 
{(attrlbutel nlll 
(attrlbuteZ nil) 
(attributes nil) 

Each of the levels(or classes) will be defined as an object 
with the attributes as instance variables and with the nod-s as 
instances of those objects as they are created. (The user can 
define methods for the level objects which are generally used 
for printing information contained in the nodes on those 
levels.) 

Definitions: 
user-hypothesis-structure: A name the user gives 

the application's blackboard structure. 
applicalion-system-root: A handle on the above 

hypothesis structure for user access, generally a node 
where the input data, or a massaged version of the 
input data will reside, or the top level of a 
hierarchical hypothesis structure. 

name-of-level: Each level or class must have a 
user supplied name. 

node: An instance of a level, created either before 
or during the execution of the application, 
inheriting  all   the  attributes of  that  level,  but  no 

values. 
attribute: For each level the user must specify 

the names of the slots, which will become a 
template for the instance nodes, which in turn will 
conuin the values used by the KSs. These values 
are initially NIL. 

link: The user may also define links for 
connecting nodes. These links are defined in the 
knowledge sources which use them and consist of a 
link name and an optional, opposite link. The 
value of a link on a node is the name of another 
node. 

value: The value of an attribute depends on what 
was stored there by the rules and its structure 
depends on how it was stored. Values can be 
modified only by the user's initialization function 
and by the application rules. The structure of the 
values is arbitrary. How values are added or 
changed is explained in the knowledge source 
section. 

B.   Control Structure 

All CAGE control information is referenced through the 
Control-Structure object. The major component* of the 
Control-Structure are: 

User-lnitlallMtlon: This is a user-defined 
function, handling any initialization needed for the 
user's program, e.g. setting-up the appropriate 
blackboard structure (on top of the predefined 
hypothesis framework) from the input data. 

Termination-Condition: Another user-defined 
function, which determines when the application 
should be terminated. The Termination-Condition 
can access the step-lists for events or expectations, 
perhaps checking for a significant event; or the 
blackboard, checking a particular node or nodes. It 
should return a non-nil value when the application 
is to be terminated. 

User-Post-Processor: When the termination 
condition is true, a user supplied post processing 
function is invoked. This function can be used to 
print out the application's results in a readable 
ronn. or to lundle any other post , rvxessmg defi-ls 

Fvfiit'Wo: This is s poSult; to <ne Ewit- 
inioimalton om'.a '-ftich vontains boiäi &« w • 
specific infornn-.tion on how ev.-nts shouiiJ be 
scheduled, and run-time data including the event 
list and the current focus event. 

Expect-Info: Similar to the Event-Info pointer, 
this object keeps track of the expectations generated 
by the application and information specifying how 
those expectation should be scheduled. 

Control-Rules: A list of of control rules defined 
by the user to determine when to execute which 
control step (event or expectation). The control 
rules are defined using the DEFCONTROL-RULE 
macro. Each control rule consists of a condition, 
an arbitrarv LISP expression and a steptype, either 
event or expect. The following example of a 
control rule says that if there are any events 
pending on the event list (steplist of event-info is 
not null), then do an event next. 

Example: 

Control Rule : Crule-1 
Condition Part: 

If  : event-1nfo©stepl 1st 
Action part : event 

I 
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LHS-Evaluaior The default function for 
evaluating the conditions of a rule if the knowledge 
source containing that rule has no left hand side 
evaluator over-riding this default. For most 
applications the CAGE provided function QAND 
will suffice. It i« a serial or concurrent boolean 
AND depending on the parallel options selected by 
the user. 

I. F.vent-lnformation 
A blackboard system can be executed in several ways, the 

simplest being event-driven. This means that each time a 
rule action is executed the system records that change to the 
blackboard as an event. Each event is added to a list called 
the event list. The scheduler selects an event from the event 
list to become the next focus event. The type of focus event 
is matched against the preconditions of the knowledge sources, 
and all the matching knowledge sources are activated. The 
rules of the activated knowledge sources are evaluated, those 
rules with satisfied conditions are executed and the cycle 
repeals until the termination is true. 

To run a blackboard model with an event-driven control 
structure, certain control information must be supplied by the 
user. 

selection-method a function that determines 
which event to select from the event list The user 
can write his own best-first selection method or 
use one of the CAGE provided functions. FIFO. 
LIEG, or AGENDA. If the AGENDA selection 
method is chosen, the user must also specify the 
agenda and an order. 

agenda: An ordered list of event types supplied 
by the user. (See knowledge source specification for 
definition of event type.) 

order: LIEG or FIFO order in which to check the 
agenda. There may be several different events of 
the same type on the event list. 

collection rules: In some applications many 
events of the same type and the same node are 
generated ai.d added to the event list. If the user 
specifies that type of evsnt as a collection rule, 
the i on!;- one event is pursued and th; others are 
tOU'-ied »nd deleted iw, the event lis" 

2. F.xpcct-lnformation 
In an expecution-driven system, a rule may specify an 

expected result or change on the blackboard as one of the 
actions of that rule (called an expectation rule). When an 
expectation rule is executed, the expectation part of the rule is 
added to the expectation list. Later, when the control rules 
specify that an "expect" step should be executed, a focus is 
selected from the expectation list. If a change has occurred 
on the blackboard that satisfies the expect portion, actions 
associated with the expectation rule are executed. 

Much of the information required to execute an 
expecution-driven system is similar to that of an event- 
driven system. The user must supply a selection-method, 
possibly including an agenda and order, and collection rules. 
Some additional information is required to execute 
expectation. 

matcher: a function which defines how to match 
expectations to the blackboard. CAGE provides on 
default. PASSIVEMATCH. which simply evaluates 
the expecution portion of the expectation rule to 
see if its value is non-nil. 

C   Knowledge Sources 

CAGE knowledge sources are a partitioning of the 
application knowledge into sets of rules. Each knowledge 
source consists of some declarative information and a set of 

rules. 

I. Knowledge Source Declarations 
The definition of a knowledge source consists of more than 

just groups of rules. In order to properly interpret those 
rules. CAGE needs to know certain knowledge source control 
information, e.g.. 

1. Under what circumstances should  this  knowledge 
source be invoked? 

2. How should the rule conditions be evaluated. 

3. what  levels of  the  blackboard  structure  will   be 
changed? 

4 Which one or all of the rules whose conditions are 
true should be executed? 

5. Are   there   any   local   variables   or   links   to   be 
defined for this KS? 

The following features are available for the user to tailor a 
Vnowledge source to his own specifications: 

Preconditions: A list of tokens, representing the 
event types used in rules. If the focus event has an 
event type that matches one of thi knowledge 
source's preconditions, then that knowledge source is 
activated. 

l/evels: A list of pairs of blackboard levels or 
classes The user must specify between which levels 
of his hypothesis structure a knowledge source 
makes inferences. 

Links: If a knowledge source adds links between 
nodes on the blackboard, they must be defined here. 
The definition consists of a list of pairs of link 
names, a link and its inverse. 

Hit Strategy: There are two main hit strategies 
available in CAGE. SINGLE and MULTIPLE. 
When a knowledge source with a single hit strategy 
is interpreted the rules of that KS are evaluated, in 
order, until one rule's condition evaluated to true. 
Then that rules actions are executed and no other 
rules are even considered. With a multiple hit 
strategy, the conditions of all rules of a knowledge 
source are evaluated and then all the actions of 
rules which successfully evaluated executed. In 
conjunction with either single or multiple hit 
strategies, the user can also specify ONCEONLY. 
This will cause a rule to be marked when its 
conditions are successfully evaluated. Its actions 
will be executed and it will never be evaluated 
again during that run of the applicaiion. 

Definitions: A list of local definitions, available 
to all the rules of a knowledge source. The 
definitions are an efficiency feature to avoid the 
repeated calculation of the same value by all the 
rules. The structure is similar to that of LET. a 
list of pairs, a variable name and an expressions to 
be evaluated and assigned to the the variable. If 
the value is NIL it can be omitted. 

Rule Order: A list of rule names, representing 
the rules of the knowledge source. This is the 
order in which the rules will be evaluated serially. 
Because the rules are actually defined as methods of 
the knowledge source to which they belong, each 
name should begin with a colon (:). 

I IIS Evaluator: The user can optionally specify a 
left hand side rule evaluation function for each 
knowledge source. There is also a default LHS 
evaluator specified for the entire application in the 
Control data. The evaluator specified here will 
override   the   default   evaluator   for   this   specific 

•1A8- 



knowledge source. The LHS evaluator is a function 
which determines how the rule conditions are 
evaluated. CAGE     provides    several     built-in 
functions which the user can select, including AND, 
for a simple boolean AND of the conditions and 
QAND for a concurrent boolean AND. 

The following is an example of the definition of a 
knowledge source from the CRYPTO system written in the 
CAGE language.**»* The name of this knowledge source is 
"combine-weights", it has two preconditions, makes inferences 
from the Cryptoletter level of the hypothesis structure to the 
alphabet-letter level, defines a pair of bi-directional links, 
and uses the single-hit rule selection strategy. The combine- 
weights knowledge source also makes two definitions, possible- 
values gets the value NIL and Ihs-evaluator the value QAND. 

Knowledge Source   :   combine-weights 
Preconditions   :  Confirmation,  Contradiction 
Classes   i   Cryptoletter   :   alphabet-letter 
Links   :   Pos$1ble-Va1ue-of   i  possible-Letters 
Rule Selection   |   Single 

Definitions   : 
possible-values s nil 
Ihs-evaluator =  qand 

This compiles to the following CAGE macros. 

(defknowledge-source C0MBINE-WEIGH1S 
:preconditions   (confirmation  contradiction) 
:levels  ((cryptoletter  alphabet-letter)) 
:11nk$((poss1ble-value-cf possible-letters)) 
:h1t-strategy  (single) 
bindings  ((possible-values)) 
:rule-order  (:letters   ) 
: Ihs-evaluator qand) 

2. Rules 
CAGE rules consist of three major parts; definitions, 

conditions, and actions. Here is an example from CRYPFO 
in CAGE. 

Rule   :     letters {3} 

Definitions   : 
possible-values  = 

poss1ble-values( focus-node(£ 
posslblf-letters) 

Condition Part   : 
If :   qand(focus-node 1s-cryptoletter, 

possible-values) 

Action  Part   : 
Changes  : 

Change  Type 
Updated Node 
Event  Type 
Updated Slots 

possible-letters •"• possible-values 

Update 
focus-node 
possible-assignment 

iCombine  the weights  of  Identical  possible 
lvalues. 

CAGE   also   provides  a   macro  for   defining   rules  called 
DEFRULE, to which the above will compile. 

****The colons in  the CAGF. language ar 
spaces from other words in  the language,    tuhnw 
they directly precede a word. 

■rs when separated by 
I licate keywords when 

(defrule  (combine-weights   :letters) 
((possible-values 

(possible-values 
(Svalue focus-node   :poss1ble-letters 

((1s-cryptoletter  focus-node) 
possible-values  ) 

((propose  :EVENT-TYPE   'possible-assignment 
:CHANGE-TYPE   "update 
:HYPOTHESIS-ELEMENT  focus-node 
:LINK-NODE  nil 
;ATTRIBUTES-AND-VALUES 

'((possible-letters 
,possible-values supersede)) 

:SUPP0RT  'romblne-welghts) 

After specifying the knowledge source to which a rule 
should be added and the name of the rule, preceded by a 
colon, the user m   t specify the three major parts of the rule. 

Definitio «: The definitior. part of a rule is 
similar to a LET in structure. The local variables 
set here are available only to this rule, both in the 
condition and action parts, as well as other 
definitions of this rule. This is an optional 
component of a rule, and can be NIL. 

Conditions: The second part of a rule contains 
the conditions. These can be one or more arbitrary 
LISP expressions which will be evaluated according 
to the left hand side evaluator as specified in the 
local knowledge source or at the control level. The 
conditions can reference both local variable 
definitions or variables bound at the knowledge 
source level. The CAGE system provides several 
access functions for retrieving values from the 
hypothesis structure, which can be used in the 
conditions of rules. It is important when writing 
the conditions of rules for a CAGE application to 
keep in mind the feasibility of running those 
clauses concurrently, i.e. keeping them independent 
of each other. 

Actions: The action clauses make up the final 
part of a CAGE rule. These clauses have a very 
specific structure as evidenced by the preceding 
examples. The actions specify what changes are to 
be made to the hypothesis structure by a rule and 
how those changes should be made. The user must 
specify what node and attributes on the blackboard 
are to be changed, what the new links or values are, 
and how those changes are to be made (possibly 
deleting some old values). The user must also 
specify an event type, a name representing the type 
of change this action makes to the blackboard. If 
and when the event created by this action is 
selected as a focus event, this token will be matched 
against the preconditions of the knowledge sources 
to determine which KS to invoke next. 

D.   Initialization 

There are two types of initialization which can occur at the 
beginning of a CAGE run. First CAGE must create the 
insunces of all the application defined flavors which will 
constitute the executable form of the user's system. In 
addition, the user can do any other initialization he feels 
appropriate by defining his own initialization function, the 
name of which should be stored in the application's control 
structure. Since the major components of the application are 
defined as flavors, initialization can be done by defining 
initialize or :after :init methods. 
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I.   Input Data 

The  user  must  define  two  functions  to  handle  his  input 
data. 

1. INPUT-PROCEDURE(Record. Time) : Given an 
input record, retrieved automatically at the correct 
time by CAGE, do what ever should be done with 
that input,e.g. add it to the blackboard. 

2. TIME-OF-INPUT-RECORD(Record) 
input record, return the time stamp. 

Given   an 

At the beginning of "ach run the user will be asked to specify 
an input data file by typing in the file name or selecting a 
file from a menu of pre-specified input data file names. The 
data file consists of records that can be read by the above two 
functions.   A time stamp is mandatory on each input record. 

IV   SPECIFYING CONCURRENCY 

CAGE supports the concurrent evaluation of pieces of 
knowledge. Once an application has been debugged in serial 
mode, the user can specify one or several knowledge source 
components to be executed in parallel. For example, the user 
might specify that the rules of the knowledge source be 
evaluated concurrently, or perhaps just the actions of the rules 
or a combination of the available options. With a minimum 
amount of recompilation, the user can change his parallel 
specifications and experiment with many different 
configurations. 

In general more speed-up should occur as more components 
are run in parallel. But for some applications the overhead 
of setting up the new processes and inter-process 
communication costs will be greater than the speed-up gained 
by executing particular components concurrently. For 
example, if most or all of the knowledge sources of an 
application contain only one rule, then it would not be 
efficient to evaluate rules in parallel since for any one KS 
invocation there would only be one item to evaluate. 

A.   Concurrent Components 

The use of knowledge sources to partition the knowledge in 
blackboard systems and. in particular, the structure of the 
knowledge sources in CAGE provide several obvious places 
for concurrency. The knowledge source." group the domain 
knowledge into independert modules, which theoretically, 
could be invoked independently and concurrently. Within 
each knowledge source the rules provide another source of 
parallelism, and within each rule, the clauses of the condition 
and action parts provide yet another. Of course not all 
clauses, rules or even knowledge sources are actually 
implemented totally independently of each other and some 
serialization may be necessary to correctly solve the 
application problem. 

The following ar« the options for parallelism niilable In 
CAGE, grouped according to their allowec use in 
combination. 

Clause  level: can  be  used  in  combination  with 
each other or any other parallel option. 

actions: Execute the RHS action clauses 
of a rule in parallel. Note: When 
running RHS actions concurrently a non- 
deterministic system may result if both 
destructive (Supersede in CAGE) and 
constructive (Modify) actions occur to the 
same object in parallel. (Same object and 
attribute) A QLOOP macro is used to 
initiate the parallelism for loop actions, 
requiring recompilation of the rules 
containing loop actions. 

Ihs: Evaluate the LHS condition clauses 
of a rule in parallel.   Note:   Use the rule 

bindings to set any local variables tested 
here, insuring that the Ihs clauses will be 
independent. A QAND macro is 
provided as the LHS-evaluator to initiate 
the concurrency for the conditions, 
requiring recompilation when this option 
is used. 

rule-bindings: Evaluate the definitions 
of a rule in parallel. Again, these 
definitions should be independent of each 
other if their concurrent evaluation is to 
result in an actual speed-up. 

Rule level: bindings can be used in combination 
with any of the other options, but only one of the 
rule options, single, multiple, sync or nosync can be 
used at a time. 

bindings: Concurrently evaluate the 
definitions at the beginning of a 
knowledge source. 

rules-single: Evaluate all of the 
conditions of the rules of a knowledge 
source concurrently, but only execute the 
actions of one successfully evaluated rule. 

rules-multiple: Evaluate all of the 
conditions of the rules of a knowledge 
source concurrently, then serially execute 
the actions of all '.he successfully 
evaluated rules. 

rules-sync: Evaluate all of the 
conditions of the rules of a knowledge 
source concurrently, then concurrently 
execute the actions of all applicable rules. 

rulcs-nosync: Begin evaluating the 
conditions of the rules of a knowledge 
source in parallel and execute the actions 
of each rules as soon as the conditions 
are known to be true. With this option 
there is no synchronization between the 
left and righ'   i    .1 sides of rules. 

level:    Only    ore    of    the 
ions  can   be  set at any  one 

Knowledge sour, 
knowledge source i 
time. 

kss: Invoke    all     the    applicable 
knowledge sources concurrently at step 
selection, synchronizing by waiting for all 
knowledge sources to complete execution 
and add events to the event list before 
concurrently invoking a new set of kss. 

kss-nosync: Invoke all applicable 
knowledge sources as soon as a new event 
is created. This option provides the least 
control of all the options available and 
does     no     synchronization. Many 
applications will have to be changed 
slightly to execute reasonably under these 
conditions, particularly removing any 
possible circular knowledge source 
invocations. To implement the parallel 
execution of knowledge sources without 
any synchronization, the control loop of 
CAGE was drastically altered from that 
described at the beginning of this paper. 
(See CAGE Overview.) Without any 
synchronization, as soon as an event is 
created it immediately allows all relevant 
knowledge sources to be invoked. No 
events are added to the eventlist and no 
focus event is ever selected. A timed 
loop was added to the top level control to 
re-invoke   the   user's   initial   knowledge 
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source in case the system exhausts all 
previous events before the termination 
condition is satisfied. 

kss-mlnisync: Add an event to the 
event list and do minimal computation at 
the point of synd'ionuation before 
invoking the next set of knowledge 
sources. The main computation done is 
the collection and pp-mng of similar 
events, leaving fewtr events to activate 
subsequent KSs. The mini-sync and no- 
sync options are different from the 
parallel kss option in that they don't use 
the serial step-selection procedure. 

B.   How to specify and change parallel 
components 

A function. SELECT-PARALLEL-OPTIONS is provided to 
ol!?^he user t0 quick|y change the selected parallel options. 
SELECT-PARALLEL-OPTIONS has no arguments. A menu 
of parallel options will pop-up on the screen and the user can 
select new options or delete old ones. 

V   DESIGN DETAILS 

CAGE is currently implemented in an object-oriented style 
using the Flavors feature of ZETALISP. The top level object 
in CAGE is called the BLACKBOARD. From the Blackboard 
object there are pointers to each of the principle components 
of the system, as follows 

control-structure: all control information 
specified before compilation is stored here, as well 
as pointers to run-time control structures. 

hypoth is-sliucturc: the blackboard solution 
space, which must be structured by the user. 

knowleJge-source-Iist: names of the knowledge 
sources containing the production rules of the user's 
application. 

user-functions:   optional, 
invoked by the ru' 5 

Information-structure: 
static data structures 

user-defined   functions 

optional,      user-defined. 

A separate data structure, Parallel-Specifications, is used to 
store the parallel options selected by the user. 

The DEFKNOWLEDGESOURCE macros will create, at 
compile time, an object for each knowledge source, and a set 
of associated methods. During the initialization process an 
instance of each knowledge source object is created. Other 
instances may be created during system execution if one of 
the concurrent knowledge source options is selected. One of 
the associated methods, SETUP-AND-START, evaluates the 
knowledge source definitions anJ initiates the rule 
interpretation when a knowledge source is invoked. 

Each rule is created as three methods, EVALUATE- 
DEFINITIONS, EVALUATE-CONDITION, and EVALUATE- 
ACTION, associated with the rule's name using the :case 
method-combination feature of Flavors. The keywords of the 
action clause listed above are keywords in the method 
definitions, and therefore must be preceded by colons in the 
macro definition of a rule. 

CAGE utilizes a global variable, PARALLEL- 
SPECIFICATIONS, whose value is a list of the current 
parallel options specified by the user. It is initially NIL and 
is updated using SELECT-PARALLEL-OPTIONS. 

^uring execution CAGE prints out messages indicating the 
state of the execution and uses some simple graphics to help 
the user observe the simulation of concurrency. A set of 
small windows will appear on the right side of the screen, cn- 
for  each   process  initiated   by   CAGE.     Any  state  messages 

generated by the parallel process will appear in one of these 
associated windows, instead of the main terminal i/o window. 
There is only room to display 12 of these small i/o windows 
at the same time and still have them large enough and lea e 
them up long enough to be readable. If more than 12 
processes are active at the same time, the windows will 
overlap. 

VI   FUTURE DIRECTIONS 

The next step for CAGE will be a reimplementation on 
CARE. The instrumentation in CARE will provide us with 
the needed tools for measuring the speed-up gained from each 
of the various concurrent options in the CAGE System. 
CAGE users will be able to implement and debug their 
applications in the current CAGE-on-LOQS system with its 
fast simulation time. Once an application is debugged it 
could then be run on the CAGE-CARE system for complete 
and accurate measurements. 
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Summary 
The Poligon1 system is a nev.'. domain-independent language 

and attendant support environment, which has been designed 
specifically for the implementation of applications using a 
Blackboard-like problem-solving framework in a parallel 
computational environment. 

This paper describes the Poligon system and the Poligon 
language, its salient and novel features. Poligon is compared 
with other approaches to the programming of parallel systems 

1. Introduction 
The larger project of which Poligon is on'y a small part will 

not be discussed here m any detail. Design decisions made in 
other parks of the project will be held to be axiomatic, though 
some mention of these decisions will be made in order lo 
show the motivation for the features of Poligon. The primary 
objective of the overall project is to achieve significant 
speedup of knowledge based systems, particularly those 
directed at real-time signal understanding. 

The purpose of the Poligon language is to "nriss the 
problem solving behaviour of human experts in o< • • to m D 
them onto a problem solving framework, which mil run on 
simulated parallel hardware. 

The fields of knowledge represenution and problem solving 
are rich and complex. This paper will not go into any great 
detail in describing the problem solving processes involved 
Poligon tries usefully to express knowledge both in a declara- 
tive and procedural sense, through rules [Davis 771; and in a 
structural sense, through the configuration of the solution 
space.   These will be described below. 

Some crucial design criteria and early design commitments 
hayeaffected the development of Poligon, the consequences of 
w-nc., wii, oc aescribed in this paper. These can be sum- 
marised as fo'lows. 

. Poligon is intended to be a language for both 
problem solving and the general purpose program- 
ming necessary to support it. Unlike most 
programs, Poligon programs must also address the 
problems of real-time processing, inch-ding 
asynchronous events and input data backup 
Poligon. therefore, must assist in this respect. 

cNo^rti.
Unnud^rÄ6n8U75mber NCC '^ BMing CompUt" ***** """" 

• The overall project's strategy is to solve problems 
significantly faster than existing systems through 
the exploitation of parallelism. Poligon is targeted 
at a MIMD, distributed-memory. message-passing 
machine with -thousands of processors. This 
hardware gives direct support for futures, remote 
objects and such efficient messagt-passing 
strategies as Broadcast and Multicast so as to take 
full advantage of its processor interconnection net- 
work. 

• A consequence of the desire to achieve a sig- 
nificant order of parallelism in Poligon programs 
is that many of the control mechanisms used in 
serial problem solving systems, such as schedulers 
and event queues, have been discarded because they 
are highly serial. Most actions in Poligon 
programs are. therefore, performed asynchronously. 
Rules, the primary mechanism in Poligon for 
describing things and for getting things done, are 
activated as daemons. Much of the work in 
Poligon is aimed at providing mechanisms to cope 
with this chaotic behaviour. 

This paper contains the following; 

• A discussion of related work in parallel languages. 

• A discussion of the design approach guiding the 
development of Poligon. 

. A description of the abstraction mechanisms 
provided by the Poligon system with some small 
examples. 

• Some concluding remarks. 

• References for further reading on the subject. 

1.1. Knowledge Representation and Problem Solving in Poligon 
The primary purpose of this paper is to discuss the Poligon 

language. It is. however, not possible completely to divorce 
this from the underlying hardware and from its purpose; 
knowledge representation and problem solving. 

Poligon can be described loosely as a "Blackboard System" 
What this means in practice is that the problem solving 
metaphor of Poligon is one of cooperating experts gathered 
around a blackboard, posting ideas about their deductions on 
the blackboard. For an exposition on the term "Blackboard 
System" the reader is encouraged to read [Nii 86]. Poligon 
tries usefully to express knowledge both in a declarative and 
procedural sense, through rules and functions; and in a struc- 
tural sense, through the configuration of the solution space on 
the blackboard. In particular, the term "blackboard" will be 
used to describe the set of all of the nodes in the solution 
space of the system. 

s 

-152- 



mm '-'-in 

The suggestion that Poligon is a blackboard system is a little 
controversial. There are a number of respects in which this is 
not a satisfactory label. This term will, however, be used 
freely from now on for lack of a better label. The reader is 
encouraged to substitute for the term "Blackboard system" any 
term, such as "Frame System" which seems best to fit his 
mental model of what is being described 

1.2. Pollgon's Model of Parallelism 
It seems appropriate here to describe Poligon's model of 

parallelism. In its simplest form this can be thought of as An 
tlement in the Solution Space as a Processor. 

This gives some idea of the granularity that is being sought 
It is. however, by no means the most efficient way to imple- 
ment Poligon. Poligon programs want to be able to execute 
rules and parts of rules associated with a particular Node in 
thr solution space in parallel. These rule activations need 
processors, on which to execute. 

Thus a modified version of Poligon's model of parallelism 
could be A Rule Activation as a Process, with sufficient 
processors to cope with the parallelism exhibited by the rule 
during its activation. This tends towards a mapping of solu- 
tion space elements onto a cluster of processors to service the 
rule activations. In practice, however, a number of nodes 
might be folded over the same set of processors, either be- 
cause nodes become quiescent or because the load balancing in 
the system is sub-optimal. 

14] are lumped 
2.2. MultlLisp and QLIsp 

MultiLisp [Halstead 84] and QLisp [Gal 
together because, at least in some senses,   r^y'have strong 
generic resemblances.   They are both, at the user level, exten- 
sions to existing Lisp dialects which provide mechanisms for 
the expression of parallelism, such as parallel Let constructs 
and parallel function argument evaluation (QLet and PCall) 
It is assumed by both of these systems that the hardware at 
which they are targeted is a form of shared-memory mul- 
tiprocessor.    Although there is no particular reason why such 
systems could not be implemented on a distributed-memory 
system, they are optimised for shared-memory multiprocessors 
These are currently the most readily available form of mul- 
tiprocessor.   They would, however, need significant extensions 
in order to be able to exploit a distributed-memory system as 
is shown in CAREL [Davies 86], an implementation of QLisp 
for distributed-memory machines.   The assumption of shared- 
memory,  MIMD  processors  in   these  systems  imposes  con- 
straints on the languages.   They assume, at least to an extent 
that processes will be expensive and that the user most have 
control over their creation.    Poligon assumes quite the OB- 
posite. F 

3. The Design of Poligon 
Poligon will be discussed first in terms of the way in which 

the language relates to the problems being solved and its un- 
derlying systems. Next the language will be discussed ir terms 
of the requirements for languages in general and parallel lan- 
guages in particular. 

I 

2. Related Work 
Work in this field falls into two distinct categories; work on 

parallel knowledge based systems and work on languages for 
parallel symbolic computation. The former is, at present a 
very sparse field and, will not be discussed here, though some 
references are given in § 6. The latter is much more highly 
developed. 

Much work is already being done on parallel languages for 
general^ computation. Amongst these languages are Actors, 
MultiLisp and QLisp on the one hand and concurrent logic 
programming languages and purely functional languages on 
the other. Often missing from this work is a thrust toward 
the investigation of large applications in parallel domains, for 
instance the development of parallel knowledge representation 
and problem solving systems. This is. of course, what Poligon 
attempts to do. This section will discuss briefly Actors. QLisp 
and Multilisp. since these are the parallel symbolic computa- 
tion languages which are most relevant to the development of 
Poligon and the software which lies beneath it. 

2.1. Actors 
Actors [Hewitt 73] probably come the closest in their be- 

haviour to Poligon. at least at an implementation level. Ac- 
tors are independent, asynchronously communicating objects. 
As is the way with purely object oriented systems they com- 
municate only through message passing and have tightly 
defined operatirns. The mutual control of Actors an paral- 
lelism is achieved by the support of procedure call and 
coroutine model message passing. The modularity afforded by 
this sort of programming metaphor may well be especially 
useful for the programming of distributed-memory, message- 
passing hardware, since having a close match between the 
hardware and software metaphors is likely to achieve better 
performance. It is not in any way surprising that the operat- 
ing system level software, which underlies Poligon, is founded 
on many of the same principles as Actors. It has yet to be 
seen whether this programming methodology is able in prac- 
tice to extract significant amount of parallelism from 
problems, though clearly this project hopes that it is. 

3.1. Background and Motivation 
The philosophy behind the design of Poligon comes from 

intellectual and pragmatic pressures. It attempts to steer a 
middle course between the extreme purism of applicativists 
and the extreme pragmatism of the proponents of side-effects. 

From the outset, the project was oriented towards real-time 
problem solving. Blackboard systems are well known to be of 
interest as tools in the knowledge engineer's toolkit. Little 
work has been done to investigate the appropriateness of the 
blackboard metaphor to parallel execution or the meaning of 
parallel blackboard systems, though it is frequently claimed 
that they are full of latent parallelism. The excellent formal 
properties of pure applicative and logic languages may well be 
of little use in a system which, for whatever reasons, needs to 
express side-effects and which has to cope with real-time 
constraints. Poligon is a system in which some of the formal 
rigour of truly applicative systems has been put aside in 
favour of a pragmatic approach to the exploitation of paral- 
lelism. 

The BB1 project [Hayes-Roth 85], also a project at the 
HPP, is an attempt to investigate the behaviour of highly 
j . i pjvoieni ...w,,.,i6 ojra T;ms. it «utempts to use a great 
deal of meta-knowledge and makes significant use of globality 
of reference in order to support an holistic view of its solu- 
tion space, thus providing a basis for meta-level reasoning. 
The Poligon project is an attempt to investigate quite the 
reverse. Poligon has very little support for meta-knowledge 
and allows no global data or global view of the solution space 
whatsoever. The purpose of this experiment is to determine 
whether a system, unconstrained by a great deal of serialising 
control knowledge, might still be able to find useful answers 
faster than an highly controlled system, such as BB1 which 
would be extremely difficult to speed up significantly through 
parallelism. 

The Poligon system pictures the elements in its solution 
space as processes resident on processors distributed across a 
grid, with the code necessary for them intimately associated 
with them. Because no global control is permitted in Poligon 
the  activation   of  rules   is   necessarily  completely   daemon- 

\ 
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driven. 

The project hopes to achieve significant speed-up through 
parallelism. This can be done only if much parallelism is ex- 
tracted from the problem. Ideally, the system would try to 
achieve its parallelism by exploiting parallelism in the 
program's implementation at a very fine grain. This can, in 
principle, extract the maximum amount of parallelism avail- 
able. On its own it has drawbacks, however. The costs of 
processes and the problems of synchronisation at a fine grain 
size make it difficult to exploit such parallelism without the 
use of hardware mechanisms signifi ■ 'y different from those 
available with prevailing technologies. This approach is also 
only part of the story. It neglects the fact that a properly 
parallel decomposition of the source problem is crucial to 
finding a lot of parallelism. One could summarise the 
problems, therefore, as expressing the problem in a suf- 
ficiently parallel fashion and the matching of the parallelism 
in the program to the grain size of the underlying hardware. 
Poligon addresses these issues. 

Parallelism is very hard to find in conventional programs. 
Applicative systems have an advantage in this respect because 
of their relative lack of need to express parallelism explicitly. 
Their unchanging semantics when parallelism is introduced 
eases matters considerably. Poligon has attempted to learn 
from this and has pure applicative semantics in a number of 
areas but takes a different approach to the finding of paral- 
lelism in programs. It attempts to execute everything in 
parallel that it can and leaves it to the programmer to find 
any serial dependencies. 

When the parallelism in a program is user-defined, 
problems can result from an inappropriate match between the 
granularity of the parallelism expressed in the program and 
the granularity of the underlying machine. In systems of the 
size and complexity of a typical Poligon application such a 
match would be particularly difficult to find because of the 
large number of processors involved and because it would be 
difficult for the user to keep track of the location of his data 
in the processor array. These characteristics are a consequence 
of the highly variable and data dependent state of the solution 
space in such programs. Poligon, because of its structure, 
should be able largely to obviate such granularity mismatches 
because parallelism is defined and controlled by the s>s.-rn 
and the Poligon system is closely matched to the gra-nferny 
of the underlying system. 

It is often thought that problems suitable for solution by 
means of the blackboard model tend to partition their solu- 
tion spaces into what look rather like pipe-lines. Pipe-lines 
are, of course a well known form of parallelism. In practice 
pipes in such systems are not pipes in the normal sense, since 
they are more like "leaky" pipes. It is one of the prime ob- 
jectives of these systems to reduce the amount of data as it 
percolates up through the abstraction hierarchy of the solution 
space. Because of the reduction in the data rate flowing in 
these pipes the contention problems that one might expect 
when pipes are connected into trees, as they often are, are al- 
leviated. 

A significant limitation of the performance of pipelines is 
that, at best, the parallelism that they can produce is propor- 
tional to the length of the pipe. This would typically be only 
of the order of half a dozen sections. This is clearly not the 
"orders of magnitude" of performance improvement that w« 
all hope for. In practice, though, given a large enough 
problem, it is often oossible to set up a large number of these 
pipes side-by-s'de. It is one of the major objectives of the 
Poligon language to encourage, facilitate and reward the 
decomposition of problems so that this form of independence 
can be exploited, so that such pipes will be created by the 
system. 

3.2. Language Requirements 
Poligon is a language which is by no means directed at 

general computation. It is nevertheless intended to be used 
for the solution of large, complex problems on distributed- 
memory parallel hardware. The following is a brief list of 
the ways in which Poligon attempts to address some of the 
primary requirements of programming languages. 

•   The language should provide a tangible method of 
expressing the ideas of the programmer. 

The Poligon language has been written with con- 
siderable input from those with experience in 
problem solving systems in the application 
domains at which it is targeted. It is therefore in- 
tended to match the ideas of the "Expert", whose 
knowledge is to be encoded, but in a domain inde- 
pendent way. 

. The compiler2 should provide a mapping between 
the language and the underlying systems, be they 
hardware or software. 
Poligon's compiler compiles Poligon language 
source into code understood by the underlying Lisp 
system and the concurrent object-oriented operat- 
ing system running on its target hardware. 

. The language should abstract the programmer 
from its underlying systems. 
The Poligon system shields the user from all 
aspects of the underlying hardware such as the 
topology of the processor network, the message- 
passing behaviour of the hardware and the location 
of any code or data within the network. 

. The language should provide mechanisms for the 
exploitation of the underlying systems to good ef- 
fect. 
The underlying hardware and software systems are 
exploited in a number of ways in Poligon. Firstly 
the language encourages the user naturally to 
decompose his problem into a form which will 
map efficiently onto the underlying hardware. 
Secondly the language offers a number of 
application-independent, high-level constructs, 
which are designed to exploit the hardware to the 
full.   These topics are covered moie fully in § 4. 

. The language should allow the development of 
software faster than would be the case if it were to 
be developed in a less abstract form. 
Considerable effort has been spent on making the 
Poligon language a high level way to describe the 
so'utions to parallel knowledge based system 
problems. A high level language with such fea- 
tures as infix, user-definable operators and user 
definable syntax, provides a natural way for the 
expert to implement his knowledge. 
Much effort has been spent also on integrating the 
Poligon system cleanly into the program support 
environment of the Lisp Machines on which it 
runs. For instance, incremental compilation is 
supported from within the editor. 

. Tne language should assist the development of 
reliable, maintainable and modular software. 

Language features are provided to minimise the 
possibility of inconsistent modifications to the 
source code and the structure of the language and 
its semantics are defined in a manner which min- 

! 

\ 

hhe term Compiler is used in its most general sense here, perhaps an in- 
terpreter or a machine wh.ch is clever enough to execute the language 
specified directly. 
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muses the probability of complex bugs being in- 
troduced by asynchronous side-effects. 

A sophisticated set of debugging facilities is 
provided. A system that emulates the semantics of 
full, parallel Poligon programs as closely as pos- 
sible in a serial environment has been produced. 
The user is able to debug his program serially to 
remove all possible serial bugs and bugs due to the 
non-deterministic execution order of Poligon 
programs before it is ported to the full parallel 
environment. 

In addition to these requirements a language targeted at 
parallel hardware should have a number of atuibutes which 
reflect the parallel nature of the target hardware. 

• The language should address the granularity of the 
hardware. 

Poligon is closely matched to the granularity of 
the hardware at which it is targeted. It is generally 
expected that the solution space of the problems 
addressed by Poligon programs will have of the 
order of thousands of nodes. This is of the same 
order as the granularity of the hardware. 

• The language should provide a mechanism for the 
extraction of parallelism from programs and from 
the programmer. 

Poligon extracts parallelism from programs and the 
programmer in two main ways. First the decom- 
position of the problem is encouraged to be as 
modular as possible. Secondly the semantics of 
Poligon programs are such that almost all of the 
program can be executed in parallel without 
changing their behaviour from that seen during 
serial execution. This allows the system to execute 
most operations in parallel if it has the resources 
to do so. 

• The language should, where appropriate, shield the 
programmer from those details of the hardware 
which are particular to parallel computing engines, 
such as topology. 

The hardware, on which Poligon programs runs, 
causes Poligon programs to have to cope with 
communication between solution space elements on 
different processor sites. All such message passing 
is hidden from the user. In fact the Poligon lan- 
guage has no concept of message-passing at all. 

Futures are used for all remote operations in the 
user's program. The hardware implements these 
such that there is no efficiency penalty associated 
with creating futures for such remote accesses. 
The Poligon language copes with these invisibly to 
the programmer. 

As can be seen quite easily from the above one of the fac- 
tors that must be well unde-stood before a language is 
designed is the general purpose of the language and the level 
of generality that is expected of programs written in it. A 
language, whose sole purpose is the expression of solutions to 
huge matrix problems on systolic hardware might well be jus- 
tified in expecting the programmer to express, at quite a low 
level, the mapping of the program onto the hardware 
provided. This is less likely to be a reasonable expectation of 
a language targeted at the solution of large, complex problems 
of an unpredicatable, dynamically-varying or data-dependent 
nature. Poligon is a fairly general purpose programming lan- 
guage with a very definite bias. 

4. Abstractions in Poligon 
To cope with Poligon's view of parallelism and with the 

chaotic execution of rules (see § 1) a number of linguistic 
abstractions are provided. 

Poligon provides abstractions for knowledge representation, 
control, data, parallelising, real-time and side-effect control. 
These will be described briefly in this section. 

4.1. Knowledge Representation 
Knowledge is traditionally represented in blackboard systems 

in a number of ways, listed below. 

• Declarative Knowledge is encoded in Rules. 

• Procedural Knowledge is encoded in procedures. 

• Knowledge concerning the sequencing of activities 
is encoded in the scheduling mechanism. 

• Knowledge about the structure of the solution 
space is encoded by the definition of the structure 
of the blackboard. 

• Knowledge about relationships between the objects 
in the system is often encoded using a Link 
mechanism. 

These all represent knowledge about the application domain. 
In addition, there is in any program a large body of implicit 
knowledge concerning the semantics of assignment, sequencing 
and the system's function as a whole, especially in for systems 
with poor formal properties. This will not be discussed here. 
The Poligon language does, however, go to considerable effort 
to make the semantics of the Poligon system as clear as pos- 
sible. 

4.1.1. Declarative Knowledge 
The encoding of Declarative Knowledge in blackboard sys- 

tems is conventionally done in Rules*, which exist within 
scheduling units known as Knowledge Sources. Poligon also 
has the concept of Rules and Knowledge Sources, though their 
meaning is somewhat different. Unlike serial blackboard sys- 
tems, the rules in a Poligon system are activated autonomously 
and asynchronously. 

Existing blackboard systems usually suffer from a confusion 
and overloading in the semantics and purpose of knowledge 
sources. It is useful to collect one's knowledge of one subject 
together into one chunk. These chunks are knowledge sources. 
Sadly, the implementors of blackboard system frameworks of- 
ten think of knowledge sources as scheduling units and thus 
design their scheduling strategies around the idea of the 
"invocation of knowledge sources", even though it is by no 
means necessarily the case that it is appropriate to schedule 
all of knowledge in a chunk at the same time. This has a 
detrimental effect on the modularity of the system. 

In Poligon, knowledge sources are used as linguistic and 
software engineering abstractions provided for the program- 
mer in order to allow him to collect related knowledge 
together. There are no scheduling semantics associated with 
knowledge sources in Poligon. Because of the underlying 
system's daemon-'ike rule triggering mechanism the rule 
writer is allowed completely to decouple the concept of 
scheduling from the concept of chunks of knowledge. 

Rules are activated as a result of "events" happening to the 
fields of nodes (see § 4.3.1).   These events can be caused ei- 

The term Rule is used here in the sense of "Pattern/Action pairs". It 
should be noted that these are quite unlike the structures called rules used, for 
instance, in Prolog. Pattern/Action rules move towards a solution to their 
problem by performing side-effects on their environment, in this case the 
blackboard, not through unification. 
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ther by a write operation to a field, by a semaphore being 
waved at a field or by the real-time clock. 

A powerful Expectation mechanism is provided, which al- 
lows the dynamic placement and specialisation of rules. An 
Expectation is a way of expressing model-based knowledge. 
Given a particular model of the behaviour of a system, cer- 
tain changes might be expected if the model's interpretation 
of the world is correct. Expectations allow such changes to be 
watched and even allow their associated rules to be triggered 
if the changes do not happen in a given time. Such expec- 
tations can be placed to watch for events happening, or not 
happening, in specific places on the blackboard, at specific 
times. Expectations provide a focussing mechanism4 and, 
coupled with the system's ability to trigger5 rules and "time- 
out" unsatisfied Expectations on the basis of the real-time 
clock, Poligon allows complex time-critical knowledge to be 
expressed and applied simply. 

An example rule is shown in figure 4-1. 

4.1.2. Procedural Knowledge 
Procedural Knowledge is an all encompassing term usually 

used indiscriminately to describe both knowledge about the 
relationships between values (Functions) and the mechanisms 
for performing side-effects and for sequencing events 
(Procedures). This is often a result of such systems being 
built on top of Lisp systems, which fail to draw distinctions 
between procedures with side-effects and those without. 
Poligon does not allow the encoding of arbitrary knowledge 
into procedures. Only side-effect free functions are allowed. 
Side-effects ?re permitted only in the bodies of rules, where 
they can be controlled. 

4.1.3. The Sequencing of Activities 
In most blackboard systems knowledge of the required se- 

quencing of events at a macroscopic level is expressed by the 
implementation of the system's scheduler. In many cases, such 
as AGE [Nii 79] this scheduler has fixed characteristics and 
the application has a fixed interface to it. In others, such as 
MXA [Rice 84], the user can specify the characteristics of the 
scheduling of knowledge sources. Poligon provides no such 
mechanism. Since all rules are activated as daemons, entirely 
asynchronously, the only analogue of scheduling is the im- 
plicit sequencing of the activation of rules due to some rules 
causing changes that trigger other's rules. 

4.1.4. The Structure of the Solution Space 
Poligon is unlike most blackboard systems in this respect. 

Most blackboard systems partition the blackboard into Levels, 
which represent the hierarchy of abstraction in the solution 
space. Poligon uses a much more general representation 
which is like that of some Frame systems, providing a "Class" 
mechanism with user defined classes and metaclasses, and 
compile-time and run-time inheritance. The functionality of 
the class mechanism in Poligon is a superset of that of the 
levels provided by most blackboard systems. The programmer 
can, of course, represent his solution simply using classes as 
levels in Poligon if he wishes. Classes are discussed more in 6 
4.3.1. 

It should b« noted that the term Focussing mechanism is used in a more 
general sense than by many blackboard systems. There can be any number of 
such foci all acting in parallel in a Poligon program. The expectation 
mechanism is another way of applying knowledge in order to take advantage 
of some local circumstances in order to solve a problem more efficiently or 
cleanly. 

A rule is said to have been Triggered when it is activated so that it tries 
to evaluate its preconditions and body. 

The following is a trivial example rule, which shows a small set 
of the features of Poligon. This rule could be interpreted as say- 
ing; "// the most recent two phonemes that hate been seen are 
oo and ph" then the word is "foo". Hiving concluded this the 

rule finds the set of sentence components, which represent poten- 
tial conclusions of the word "foo". and sets them so that they are 
no longer marked as hypothetical. It also makes a Sentence- 
Component type node, which represents the word "fjo", which has 
been found. 

Rule  :   Flnd-the-word-Foo 
Class   :   Phoneme 

{ Class of nodes with which the rule will  be associated 1 
Field  :   uncorrelated-phonemes 

{ Try to activate this rule when this field Is changed ) 

Definitions  i 
all-phonemes-ln-order = 

The-PhonemeStuncorrelaterl-phonemes 
{ The operator "©f" returns «11  values In a field In } 
f time order.    The-Phoneme represents the node,  that > 
{ triggered this rule } 

most-recent-phoneme = 
■11-phonemes-In-order-Head 

next-most-recent-phoneme = 
■11-phonemes-In-order-Tall Head 

f Heed and Tell  are like CAR and CDR only they operate 1 
{ on list«.   Lazy list« and Bags ) *    r i 

Condition Part  : 
When   :   a 11-phonemes   In-order length-of-list   >   2 

£ The "When" part 1« a locally evaluable precondition } 
If      :  most-recent-phoneme-Sound - "oo" 

And next-most-recent-phoneme Sound - "ph" 
{ The precondition for the Rule } 

Action Part : 
Definitions : 

new-sentence-component = 
New Instance of Sentence-Component 

{ The creation of the new Sentence-Component node } 
hypothetlcal-fooa = 

{ A Bag of words, which are "foo" } 
Subset of Words which satisfies 

X(a-word) 

a-word-hypothetlsed And «-word letters 
-[foo] 

EndX 

{ Process all elements In the Bag hypothetlcal-foos } 
Changes : 

In Parallel for each «-word In hypothetlcal-foos 
Change Type   : Update 
Updated Node  : a-word 
Updated Fields : hypothetlsed •■ nil 

{ Set fields of new sentence component In } 
{ parallel with updating the elements In the Bag ) 

Changes : 
Update 
new-sentence-component 
letters •■ [ f o o ] 
constituents *■ 

L1st(next-most-recent-phcneme, 
most-recent-phoneme) 

Change Type 
Updated Node 
Updated Fields 

Ail of ihe actions taken by this rule are performed in parallel, 
since they are independent of one anothe', though there is, of 
course, a serial dependency between the condition part and the ac- 
tion part of the rule. 

Figure 4-1:    An example Poligon rule 

4.1.5. Knowledge about Relationships 
Relationships between entities in blackboard systems are of- 

ten expressed by a form of Link mechanism. Sometimes this 
link is not so much a part of the system as a refl«ction of the 
fact that fields in nodes can have as their values other nodes 
in the system. Other systems have more sophisticated 
mechanisms that express links explicitly and allow property 
inheritance along links, e.g. BB1, or the propagation of 
likelihood, e.g. MXA. 

Poligon has a number of system defined relationships; "Is an 
Instance of", "Is a part of" and "Is a subclass of". The user 
can define arbitrary relationships between nodes on the black- 
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board. These links allow property inheritance and are, them- 
selves, represented as nodes and so can have attributes in the 
same way that any other nodes can. Links are therefore first- 
class citizens in Poligon and they allow Poligon programs to 
act like semantic nets. 

4.2. Control Abstractions 
The flow of control is a rather evanescent concept in a 

Poligon program. Any rule can be triggered at any time. It is 
important not to think of the control flow in a Poligon 
program in the same terms as that of a conventional serial 
program. There is a well defined flow of control within 
rules; the action part of a rule is activated after the condition 
part, upon which it is predicated. Apart from this, however, 
there is no flow of control in any normal sense. It should be 
noted also that what little flow of control there is only 
specifies the strict ordering of activities. The execution of a 
sequence of actions can be interrupted at any time. The size 
of the atoms for Poligon's atomic actions is very small. 

The triggering of rules is controlled by the user associating 
rules with particular fields of nodes or classes of nodes on the 
blackboard. The triggering of rules occurs when a field, 
which is being watched in such a manner, is updated or is 
semaphored. A semaphore mechanism is provided to allow 
rules to be triggered without a field being updated. This 
provides a form of explicit event-based programming, if it is 
needed. 

Clearly one of the objectives of the design of the Poligon 
language is to provide a language in which it is simple to ex- 
press logically distinct pieces of knowledge, independent of 
other such pieces of knowledge. The decomposition of the 
problem in this manner causes the system to appear to iterate 
towards the solution of its problem by small, simple and dis- 
crete steps, rather than by complex, giant leaps. 

4.3. Data Abstractions 
Poligon provides a number of distinct data abstractions. 

Dne is characteristic of other blackboard systems, one of pure 
functional languages and one is rather novel. 

• The structure of the blackboard is characterised by 
being made of Nodes, elements in the solution 
space These have a usei-defined, record-like 
structure. 

• Lazy evaluation is supported. 

• Bags are supported as data structures, which paral- 
lelism enhancing. 

Numerous operations are defined for these data abstractions, 
particularly a number of generic operations which can be ap- 
plied to lists, lazy lists and bags, which shield the user from 
the underlying data structures used by the system or by other 
segments of his program. 

4.3.1. The Structure of the Solution Space 
The most obvious data abstraction provided by Poligon is 

similar to that provided by conventional blackboard systems, 
that is, the Node on the blackboard as an element in the 
solution space. Such nodes are record-like internally. They 
have named fields, which can often contain multiple values to 
be associated with that name. Poligon provides this but also 
goes beyond it. 

Conventional blackboard systems, such as AGE, tend to 
provide nodes on a blackboard divided into groups, often 
called "Levels". "Levels" themselves are not represented. Ar- 
bitrary use of global data, held in global variables, distinct 
from the blackboard is also allowed. 

Poligon has a much more regular representation for data. 
The nodes are represented as instances of Classes. The 
Classes themselves are represented as Nodes, which "control" 
their instances. Knowledge concerned with classes as a whole 
can be associated with these nodes. Shared, global variables 
are not allowed in Poligon. 

Poligon also provides; 

Superclasses Classes  that  provide characteristics  to  the 
instances of classes.   These can be thought 
of as templates for the instances. 

Metaclasses Classes  that  provide characteristics  to  the 
classes themselves.   These can be thought of 
as templates for the classes. 

Thus the classes are themselves instances of metaclasses, 
which can be user defined, such that instances of a given class 
can have any number of superclasses, i.e. component 
templates, and any number of metaclasses, i.e. component 
templates for their parent class. It is possible to instantiate 
classes any number of times, as well as their instances. 

Automatic property inheritance allows shared data to be lo- 
cated on locally central nodes, which are immediately visible 
to the interested parties. This distributes shared data in such 
a manner as will, hopefully, minimise hot-spotting. 

An example class declaration, the specification of a template 
for a class of nodes, is shown below. The declaration defines 
a class of nodes called Words, each instance of which has two 
fields (slots) called Letters and Sound. 

Class Words : 
Fields : 

Letters 
Sound 

Extensions to this sort of syntax allows the definition of 
superclasses and metaclasses within class declarations. The 
following example defines the class Sheep. Each instance of 
the class Sheep will have the characteristics defined for sheep 
and for mammals. The class called Sheep (an instance, in 
fact, of the class Meta-Sheep) has the characteristics of types 
of animals. 

Class Types-of-ar,1mals : 
Fields : 

Rate-Of-Breedlng 

Class Mammals : 
Fields : 

Colour-of-fur 
Number-of-1egs : 4 

Class Sheep : 
Metaclasses : Types-of-anlmals 
Superclasses : Mammals 
Fields : 

Thlcknass-of-wool 
Flock 

4.3.2. Lazy Evaluation 
Lazy Evaluation is supported in the guise of Lazy Lists, 

Lazy Function Arguments and in the form of the lazy associa- 
tion of expressions with names. The following is an example 
of the lazy association of a name with a value. The name A- 
Meaningful-Name is associated with the value of the call to 
the function An-Expensive-Function6. 

Definitions : 
A-Mean1ngfu1-Name = 

An-[xpenslve-runction(an-arg, another-arg) 

\ 

Suitable Force operations are provided so that the time of evaluation can 
be controlled by the program if necessary. These force operators allow the 
program to perform Eager Evaluation if it is needed. 
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The value of an item defined in a Definitions construct is 
always a future if it is possible to evaluate it as a future. 

4.3.3. Bags 
One abstraction suited particularly to the parallel mode of 

execution of Poligon programs is the Bag data type. Bags are 
implemented in Poligon so that they are formed as the result 
of efficient parallel operation.; and can be processed in paral- 
lel efficiently. Even when the elements of Bags are processed 
serially they perform efficiently. The lack of a defined or- 
dering in the Bag means that the system can always return the 
first satisfied Future out of a Bag of Futures, causing min- 
imum waiting for values. Similarly, when a program attempts 
to extract an element from a bag and there are no satisfied 
elements the process in which this happens will go to sleep 
until the next available future is satisfied. 

A Bag is generated, for instance, as the value of the follow- 
ing expression. It is a Bag, which contains all of the Words, 
whose Sound is "phoo"1. 

Sublet of Words For Which Element - Sound ■ "phoo" 

4.4. Parallelising Abstractions 
Poligon supports data representations which are designed to 

give the user a high level handle on the exploitation of paral- 
lelism. Most values computed in Poligon are derived as Fu- 
tures. Computation is decoupled from the expressions which 
reference values. Futures are, however, completely invisible to 
the user in Poligon. It understands which functions are strict 
in their arguments and so waits for the satisfaction of a Fu- 
ture only when it is required. The programmer can, of 
course, declare his own non-strict functions and operators. 
All DeFuturing coercions are performed automatically by the 
Poligon system. Thus the following expression will deliver a 
list with two elements, one of which is the value of a and one 
of which is the sum of b and c. The first will be a future, if 
a is.   The second will be the DeFutured value b+c 

L1>t(a.  b+c) 

The efficient use of the bandwidth of the processor inter- 
connection network is enhanced by the use of Broadcast and 
Multicast operations. Broadcast messages allow messages to 
be sent to every node in the system in a single operation. 
Multicast messages allow messages to be sent to a collection of 
nodes in a single operation. The Poligon system uses these 
extensively in the processing of the Bag data type and in the 
execution of groups of actions in parallel. It uses the same 
mechanisms to provide an efficient implementation for 
searching a collection of nodes on the blackboard for patterns, 
which tends to cause significant slowing of serial implemen- 
tations because of the combinatorial nature of such searches. 
It allows the blackboard to be searched for bags of matching 
nodes in a single, fast operation. This provides a significant 
improvement over the serial construction of such collections. 

4.5. Real-time processing 
Real-time processing brings its own problems. Poligon 

provides a simple and regular mechanism for defining the in- 
terface between the Poligon system and its signal data. This 
data can be from an arbitrary number of different types of 
sources and is posted on the blackboard asynchronously. 

Poligon also provides a mechanism by which each datum is 

timestamped from the time that it enters the system. These 
timestamps are propagated automatically by the system so that 
it is trivial for the programmer to manipulate time-ordered 
collections of values. This mechanism is required because the 
conventional implicit time ordering of data in lists cannot 
apply here and the non-ordered nature of Bags is sometimes 
not sufficient. 

4.6. The control of assignment 
Assignment is something which is likely to cause significant 

problems in any parallel system. Poligon constrains assign- 
ment in a number of ways. Side-effects are only permitted 
on the fields of nodes. All side-effects can be monitored by 
rules that might be interested in the changes to values. This 
removes the possibility of the knowledge base getting confused 
because of surgical side-effects to data structures at arbitrary 
times and at arbitrary places in the processor network. As- 
signment is also constrained so that all of the updates to the 
fields of a given node are done atomically, before any rules 
which might be triggered by these changes are allowed to trig- 
ger. Such atomicity helps to preserve the consistency of the 
system. 

An example of a collection of updates to fields of a given 
node is given below. In this example the node an-instance- 
of-words is having two of its fields updated; Sound and Let- 
ters. Operators, such as "*■", allow different sorts of 
modifications to be made to fields. Such operations might be 
"add this value to the values in this field" or "replace all of 
the values in the field". This avoids complex and potentially 
expensive expressions in the old value of the field being 
evaluated non-locally. 

i 

Change Type 
updated Node 
Updated Fields 

Update 
an-1nstance-ot-words 
Sound *■  "phoo" 
Letters •■ [ f o o ] 

The expression "Element Sound" denotes extracting one of the values as- 
sociated with the "Sound" field of the potential element in the bag. " " is an 
operator that selects which of the values associated with the field is to be 
delivered. 

5. Conclusions 
This paper has described Poligon, a language and system for 

the investigation of problem solving on distributed-memory, 
parallel hardware. The language was described in the context 
of related work in the field and in terms of the abstraction 
mechanisms provided. No significant description of the un- 
derlying run-time support has been given. 

The Poligon system is still young. Only recently have ap- 
plications been mounted on it in earnest. Two distinct ap- 
plications in the field of real-time signal processing are now 
being implemented and more applications are likely to be 
started in the near future. Poligon has proved to be well 
suited to these applications as far as they have gone. No 
results from the simulation process regarding the performance 
of Poligon programs are yet available. Significant problems 
have been found in the simulation of the fine-grained paral- 
lelism required by the Poligon metaphor. Such simulations 
are very time consuming, prone to bugs in the underlying sys- 
tem software and simulator, and are difficult to debug. It is 
for these reasons that Poligon also has a serial version, 
Oligon, which accurately emulates the behaviour of the paral- 
lel system but without true parallelism. A simulated processor 
array of 256 processors has recently been made available to 
the users of Poligon. This simulation will allow more satis- 
factory investigation of the properties of Poligon programs in 
the future. 

6. Further Reading 
For a significantly more detailed treatment of the Poligon 

language and system the reader it encouraged to consult [Rice 
86]. 

i 

\ 

-158- 



mm ■rtfc IPM« T 
' 

The following topics were not described or discussed but are 
relevant to the work described above. The reader is en- 
couraged to consult the following for further information; 

• [KSL 85] for a description of the Advanced Ar- 
chitectures Project of which Poligon is a part. 

. [Delagi 86] for a description of CARE, the 
hardware simulator use«* by Poligon, and of the 
particular hardware being simulated. 

• [Schoen 86] for a description of CAOS. the con- 
current object oriented system running on the 
CARE machine, which Poligon uses as its operat- 
ing system. 

. [Ensor 85], [Lesser 83], [Aiello 86] and [Fennel 
77] for other approaches to parallel problem solv- 
ing using blackboard systems. 
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Abstract 

The CAOS system is a framework in which multiprocessor expert systems 
may be developed. This report documents the principal ideas, program- 
ming model, and implementation of CAOS. In addition, we describe a 
working CAOS application, and discuss its performance over a class of 
(simulated) multiprocessor architectures. 

1     Introduction and Overview 

This report documents the CAOS system, a portion of a recent experi- 
ment investigating the potential of highly concurrent computing archi- 
tectures to enhance the performance of expert systems. The experiment 
focuses on the migration of a portion of an existing expert system appli- 
cation from a sequential uniprocessor environment to a parallel multi- 
processor environment. 

The application, called EUNT, is a portion of a multi-sensor infor- 
mation fusion system, and was written originally in AGE[2], an expert 
system development tool based on the blackboard paradigm. For the 
purposes of this experiment, ELINT was reimplemented in CAOS, an ex- 
perimental concurrent blackboard framework based on the explicit ex- 
change of messages between blackboard agents. 

CAOS, in turn, relies on services provided by the underlying machine 
environment. In the present set of experiments, the environment is a 
simulation of a concurrent architecture, called CARE [5]. CARE simulates 
a square grid of processing nodes, each containing a Lisp evaluator, 
private memory, and a communications subsystem; message-passing is 
the only means of interprocessor communication. 

CAOS is principally an operating system, controlling the creation, ini- 
tialization, and execution of independent computing tasks in response to 
messages received from other tasks. Figure 1 illustrates the relationship 
between the various software components of the experiment. 

ZETALISP J 
Figure 1: The relationship between ELINT, CARE, and CAOS 

The following section briefly describes the salient features of the 

Thi« renearch WM supported by DARPA Contract F3O6O2-85-C-0O12, NASA 
Ame» Contract NCC 2-220-S1, and Boeing Contract W266875. Eric Schoen was 
supported by a fellowship from NL Industries. 

CARE environment. Section 3 discusses the ideas behind the CAOS frame- 
work. Section 4 summarizes the CAOS programming environment, and 
Section 5 describes its implementation. The final section details the 
results of our experiments. 

2    An Overview of CARE 

CARE is a highly-parameterized and well-instrumented multiprocessor 
simulation testbed, designed to aid research in alternative parallel ar- 
chitectures. It runs executes within Helios, a hierarchical, event-driven 
simulator which has been described elsewhere [3]. 

A typical CARE architecture is a grid of processing sites, intercon- 
nected by a dedicated communications network. For example, the re- 
search discussed in this paper was performed on square arrays of hexago- 
nally connected processors (e.g., each processor is connected to six of its 
eight nearest neighbors, excluding processors at the edges of the grid). 

Each processing site consists of an evaluator, a general-purpose pro- 
cessor/memory pair, and an operator, a dedicated communications and 
process scheduling processor which shares memory with the evaluator 
Application-level computations take place in the evaluator, a component 
which is treated as a "black box" Lisp processor. No portion of its inte- 
rior is simulated; the host Lisp machine serves as the evaluator in each 
processing site. The operator performs two duties. As a communica- 
tions processor, it is responsible for routing messages between processing 
sites. As a scheduling processor, it queues application-level processes 
for execution in the evaluator (we discuss the scheduling mechanism in 
greater detail below). The operator is simulated and instrumented in 
great detail. 

CARE allows a number of parameters of the processor grid to be ad- 
justed. Among these parameters are: the speed of the evaluator, the 
speed of the communications network, and the speed of the process- 
switching mechanism. By altering these parameters, a single proces- 
sor grid specification can be made to simulate a wide variety of actual 
multiprocessor architectures. For example, we can experiment with the 
optimal level-of-granularity of problem decomposition by varying the 
speed of both process-switching and communications. 

Finally, CARE provides detailed displays of such information as eval- 
uator, operator, and communication network utilization, and process 
scheduling latencies. This instrumentation package informs developers 
of CARE applications of how efficiently their systems make use of the 
simulated hardware. 

2.1    The CARE Programming Model 

CARE programs are made up of processes which communicate by ex- 
changing messages. Messages flow across streams, virtual circuits main- 
tained by CARE. The following services are used by CAOS: 

New Process; Creates a new process on a specified site, running a spec- 
ified top-level function. A new stream is returned, enabling the 
"parent" of the process to communicate with its "child." Pointers 

i 

■ 

-160- 



wmmmm N 

-161- 

to the stream may be exchanged freely with other known processes 
on other sites. 

New Stream: Creates a new stream whose target is the creating process. 

Post Packet: Sends a message across a specified stream to a remote 
process. 

Accept Paciet: Returns the next message waiting or a specified stream. 
If no message is waiting when this operation is invoked, the invok- 
ing process is suspended and moved into the operator to await the 
arrival of a message. 

Memory in each processing site is private. Ordinarily, intra-memory 
pointers may not be exchanged with processes in other sites. However, 
any pointer may be encapsulated in a rtmote-address, and may then be 
included in the contents of a message between sites. A remote address 
does not permit direct manipulation of remote structures; instead, it 
allows a process in one site to produce a local copy of a structure in 
another site. 

Scheduling on a CARE node is entirely cooperative, and is based on 
message-passing. The message exchange primitives post-packet and 
accapt-packet form the basis of process scheduling, A process wishing 
to block (yield control of the evaluator) does so by calling accept 
packet to wait for a packet to arrive on a stream. The application 
program's scheduler awakens the process by calling post-packet tosend 
a packet to the stream. The process is placed on the queue of processes 
waiting for the evaluator, and eventually regains control. The CAOS 
scheduler, which we describe in Section 5.3, is implemented in terms of 
this paradigm. 

3    The CAOS Framework 

CAOS is a framework which supports the execution of multi-processor 
expert systems. Its design it. predicated on the b-lief that future parallel 
architectures will emphasize limited communication between processors 
rather than uniformly-shared memory. We expected such an architec- 
ture would favor coarse-grained pmblem decomposition, with little or 
no synchronization between processors. CAOS is intended for use in 
real-time data interpretation applications, such as continuous speech 
recognition, passive radar and sonar interpretation, etc [7,11]. 

A CAOS application consists of a collection of communicating agents, 
each responding to a number of application-dependent, predeclared mes- 
sages. An agent retains long-term local state. Furthermore, an arbitrary 
number of processes may be active at any one time in a single agent. 

Whereas the uniprocessor blackboard paradigm usually implies 
pattern-directed, demon-triggered knowledge source activation, CAOS 
requires explicit messaging between agents; the costs of automatically 
communicating changes in the blackboard state, as required by the tra- 
ditional blackboard mechanism, could be prohibiti-ely expensive in the 
distributed-memory multiprocessor environment. Thus, CAOS is de- 
signed to express parallelism at a very coarse grain-size, at the level 
of knowledge source invocation in a traditional uniprocessor blackboard 
system. It supports no mechanism for finer-grained concurrency, such as 
within the execution of agent processes, but neither does it rule it out. 
For example, we could easily imagine the methods which implement the 
messages being written in QLisp [8], a concurrent dialect of Common 
Lisp. 

3.1     The Structure of CAOS Applications 
A CAOS application is structured to achieve high degrees of concurrency 
in two principal manners: pipelining and replication. Pipelining is most 
appropriate for representing the flow of information between levels of 
abstraction in an interpretation system; replication provides means by 
which the interpretation system can cope with arbitrarily high data 
rates. 

3.1.1     Pipelining 

Pipelining is a common means o. paralWiziag tasks through a decom- 
position into a linear sequence of independent stages. E^ch s.age i- 
assigned to a separate processing unit, which receives the output from 
the previous stage and provides input to the next stage. Optimally, 
when the pipeline reaches a steady-state, each of its processors is busy 
performing its assigned stage of the overall task. 

CAOS promotes the use of pipelines to partition an interpretation 
task into a sequence of interpretation stages, where each stage of the 
interpretation is performed by a separate agent. As data enters one 
agent in the pipeline, it is processed, and the results are sent to the 
next agent. The data input to each successive stage represents a higher 
level of abstraction. 

Advantages of Pipelining Sequential decomposition of a large task 
is frequently very natural. Structures as disparate as manufacturing 
assembly lines and the arithmetic processors of high-speed computing 
systems are frequently based on this paradigm. 

Pipelining provides a mechanism whereby concurrency is obtained 
without duplication of mechanism (that is, machinery, processing hard- 
ware, knowledge, etc). In an optimal pipeline of n processing elements, 
element 1 is performing work on task i + n- 1 when element 2 is working 
on task ( + n - 2, and so on, such that element n is working on task t. 
As a result, the throughput of the pipeline is n times the throughput of 
a single processing element in the pipeline. 

In the case of CAOS applications, the individual agents which com- 
pose an interpretation "pipeline" are themselves simple, but the overall 
combination of agents may be quite complex. 

Disadvantages of Pipelining Unfortunately, it is often the case that 
a task cannot be decomposed into a simple linear sequence of subtasks. 
Some stage of the sequence may depend not only on the results of its im- 
mediate predecessor, but also on the results of more distant predecessors, 
or worse, some distant successor {e.g., in feedback loops). An equally 
disadvantageous decomposition is one in which some of the processing 
stages take substantially more time than others. The effect of either of 
these conditions is to cause the pipeline to Se used less efficiently. Both 
these conditions may cause some processiig stages to be busier than 
others; in the worst case, some stages may be so busy that other stages 
receive no work at all. As a result, the ,i-element pipeline achieves less 
than an n-times increase in throughput. We discuss a possible remedy 
for this situation in the following subsection. 

3.1.2     Replication 

Concurrency gained through replication is ideally orthogonal to concur- 
rency gained through pipelining. Any size processing structure, from 
individual processing elements to entire pipelines, is a candidate for 
replication. Consider a task which must I e performed on average in 
time (, and a processing structure which is able to perform the task in 
time T, where T > t. If this task were actually a single stage in a larger 
pipeline, this stage would then be a bottleneck in the throughput of the 
pipeline. However, if the single processing structure which performed 
the task were replacf d by T/t copies of the same processing structure, 
the effective time to perform the task would approach (, as required. 

Advantages of Replication The advantages of replicating process- 
ing structure to improve throughput should be clear; n times the 
throughput of a single processing structure is achieved with n times the 
mechanism. Replication is more costly than pipelining, but it apparently 
avoids problems associated with developing a pipelined decomposition 
of a task. 

Disadvantages of Replication Our works leads us to believe that 
such replicated computing structures are feasible, but not without draw- 
backs. Just as performance gains in pipelines are impacted by inter- 
stage dependencies, performance gains in replicated structures are im- 
pacted by inter-structure dependencies. 
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Consider a system composed of a number of cop -f of a single 
pipeline. Further, assume the actions of a particular stag'. I 11 He pipeline 
affects each copy of itself in the other pipelines. In an v/.pf.'l ny^tem, 
for example, a number of independent pieces of evidence m-.y cause the 
system to draw the same conclusion; the system designei may require 
that when a conclusion is •rriver' at independently by different means, 
some measure of confidence in the conclusion is ..icrcased accordingly. 
If the inference mechanism which produces these conclusions is realized 
as concurrently-operating copies of a single inference engine, the indi- 
vidual inference engines will have to communicate between themselves 
to avoid producing multiple copies of the same conclusions. A strin- 
gent consistency requirement between copies of a processing structure 
decreases the throughput of the entire system, since a portion of the 
system's work is dedicated to inter-system communication. 

3.2    An Example 

We close this section by describing the organization of ELINT, illustrat 
ing the benefits and drawbacks of the CAOS Iramework applied to this 
problem. ELINT is an expert system whose domain is the interpretation 
of passively-observed radar emissions. Its goal is to correlate a large 
number of radar observations into a smaller number of individual signal 
emitters, and then to correlate those emitters into a yet smaller number 
of clusters of emitters. ELINT is meant to operate in r-al time; emit- 
ters and clusters appear and disappear during i he life'ime of an ELINT 
run. The basic flow of information in ELINT is through a pipeline of the 
various agent types, which we now describe in detail. 

Observation Reader The observation reader is an artificat of the 
simulation environment in which ELINT runs. Its purpose is to feed radar 
observations into the system. The reader is driven off a clock; at each 
tick (1 ELINT "time unit"), it supplies all observations for the associated 
time interval to the proper observation handlers. This behavior is similar 
to that of a radar collection site in an actual ELINT setting. 

Observation Handler The observation handlers accept radar obser- 
vations from associated radar collection sites (in the simulated system, 
the observations come from the observation reader agent). There may 
be a large number of observation handlers associated with each collec- 
tion site. The collection site chooses to which of its many observation 
handlers to pass an observation, based on some scheduling criteria such 
as random choice or round-robin. 

Each observation contains an externally-assigned niiml<ei \o distin- 
guish the source of the observation from other known sourf ■"> (the ob- 
servation id is usually, but not always, correct). In addition, inch obser- 
vation contains information about the observed radar sign^i, such as its 
quality, strength, line-of-bearing, and operating mode. Tfe« observation 
does /tot contain information regarding the soime't sptrJ: flight path, 
anu distance; ELINT will atu-mpt to d^term i•■ this imormation as it 
monit jrt ehe bei.»vk.-- n each source "vt  time 

When an observation budiw rece ves an observation, it checks the 
observation's id to see if it already k'iows about the emitter. If it does, it 
passes the observation to the appropriate emitter agent which represents 
the observation's source. If the observation handler does not know about 
the emitter, it asks an emitter manager to create a new emitter agent, 
and then passes the observation to that new agent. 

Emitter Manager There may be many emitter managers in the sys- 
tem. An emitter manager's task is to accept requests to create emitters 
with specified id numbers. If there is no such emitter in existence when 
the request is received, the manager will create one and return its "ad- 
dress" to the requesting observation handler. If there is such an emitter 
in existence when the request is received, the manager will simply return 
its address to the requestor. This situation arises when one observation 
handler requests an emitter than another observation handler had pre- 
viously requested. 

The reason for the emitter manager's existence is to reduce the 
amount of inter-pipeline dependency with respect to the creation of 

emitters. When ELINT creates an emitter, it is similar to a typical ex- 
pert system's drawing a conclusion about some evidence; as discussed 
above, ELINT must create its emitters in such a way that the individ- 
ual observation handlers do not end up eich creating copies of the same 
emitter. Consider the following strategies the observation handlers could 
use to create new emitters: 

1. The handlers could create the emitte's themselves immediately. 
Since the collection site may pass observations with tue same id 
to each observation handler, it is possible for each observation 
handler to create its own copy of the same emitter. We reject this 
method. 

2. The handlers could create the emitters themselves, but inform the 
other handlers that they've done this. This scheme breaks down 
when two handlers try simultaneously to create the same emitter 

3. The handlers could rely on a single emitter manager agent to cre- 
ate all emitters. While this approach is safe from a consistency 
standpoint, it is likely to be impractical, as the single emitter 
manager could become a bottleneck in the interpretation. 

4. The handlers could send requests to one of many emitter man- 
agers, chosen by some aroitrary method. This idea is nearly cor- 
rect, but does not rule out the possibility of two emitter managers 
each receiving creation requests for the same emitter. 

5. The handlers could send requests to one of many emitter man- 
agers, chosen through some algorithm which is invariant with re- 
spect to the observation id. This is in fact the algorithm in use in 
ELINT. The algorithm for choosing which emitter manager to use 
is based on a many-to-one mapping of observation id's to emitter 
maiagers 

Emitters Emitters hold some state and history regarding observations 
of the sources they represent. As each new observation is received, it is 
added to a list of new observations. On a regular basis, the list of new 
observations is scanned for interesting information. In particular, after 
enough observations are received, the emitter may be able to determine 
its heading, speed, and location. The first time it is able to determine 
this information, it asks a cluster manager to either match the emitter 
to an old cluster or creo(e a new cluster to hold the single emitter. 
Subsequently, it sends an update message to the cluster to which It 
belongs, indicating its current course, speed, and location. 

Emitters maintain a qualitative confidence level of their own exis- 
tence {possible, probable, and positive). If new observations are received 
often enough, the emitter will increase its confidence level until it reaches 
positive. If an observation is not received in the expected time interval, 
the emitter lowers its confidence by one step. If the confidence falls 
below possible, the emitter "deletes" itself, informing its manager, and 
any cluster to which it is attached. 

Cluster Managers The cluster managers play much the same role 
in the creation of cluster agents as the emitter managers play in the 
creation of emitters. However, it is not possible to compute an invariant 
to be used as a many-to-one mapping between emitters. If ELINT were 
to employ multiple cluster managers, the best strategy for choosing 
which of the many managers would still result in the possible creation 
of multiple instances of the "same" cluster. Thus, we have chosen to run 
ELINT with a single cluster manager. Fortunately, cluster creation is a 
rare event, and the single cluster manager has never been a processing 
bottleneck. 

As indicated above, requests from emitters to create clusters are 
specified as match requests over the extant clusters. Emitters are 
matched to clusters on the basis of their location, speed, and heading. 
However, the cluster manager does not itself perform this matching op- 
eration. Although it knows about the existence of each cluster it has 
created, it does not know if the cluster has changed course, speed, and/or 

1 
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1 The algorithm computes the observation id modulo the number of emitter man- 
agers, and maps that number to a particular manager. 
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direction since it was originally created. Thus, the cluster manager asks 
each of its clusters to perfo.m a match 

If either none of the clusters responds with a positive match, a new 
cluster is created for the emitter; if one cluster responds positively, the 
emitter is added to the cluster, and is so informed of this fact; if more 
than one cluster responds positively, an error (or a mid-air collision) 
must have occured. 

Clusters The radar emissions of clusters of emitters often indicates 
the actual behavior of the cluster. Cluster agents, therefore apply 
heuristics about radar signals to determine whether the behaviors of 
the clusters they represent are threatening or not. Th * information, 
along with the course parameters of each radar source, i^ the "output" 
of the KL1NT system. A cluster will delete itself if all constituent emitte-s 
have been deleted. 

(defagent  agtni-name (pannii   ■■■ parent„) 
(localvars  vanabki vanablen) 
(mossages  messagei   ■■■ messagrn) 
(synbolically-relerenced-agents agent,   ■■■ agentn)) 

Figure 2: The basic form of def agent 

4    Programming in the CAOS Framework 

CAOS is package of functions on top of Lisp. These functions are parti- 
tioned into three major classes: 

e Those which declare agents. 

e Those which initialize agents. 

• Those which support communication between agents. 

We now describe the CAOS operators for each of these classes. 

4.1    Declaration of agents 

Agents are declared within an inheritance network. Each agent inher- 
its the characteristics of its (multiple) parents. The simplest agent, 
vanilla-agent, contains the minimal characteristics required of a func- 
tional CAOS agent. All other CAOS agents reference vanilla-agent 
either directly or indirectly. Another predeclared agent, proce«»- 
agenda-agent, is built on top of vanilla-agent, and contains a priority 
mechanism for scheduling the execution of messages. 

Application agents are declared by augmenting the following char- 
acteristics of the base or other ancestral agents; 

Local Variabies: An agent may refer freely to any variable declared lo- 
cal. In addition, each local variable may be declared with an initial 
value. 

Messages; The only messages to which an agent may respond are those 
declared in this table. This simplifies the task of a resource allo- 
cator, which must load application code onto each CARE site. 

Symbolically Referenced Agents: Some agents exist throughout a CAOS 
run. We call such agents statte, and we allow code in agent message 
handlers to reference such agents by name. Before an agent begins 
running, each symbolic reference is resolved by the CAOS runtimes. 

There are a number of additional characteristics; most of these are 
used by CAOS internally, and we will document these in the next section. 

The basic form for declaring a CAOS agent is def agent. It has the 
form illustrated by Figure 2. The first element in each sublist is a 
keyword; there are a number of defined keywords, and their use in an 
agent declaration is strictly optional. An agent inherits the union of 
the keyword values of its parents for any unspecified keyword. Of those 
keywords which are specified, some are combined with the union of the 
keyword values of the agent's parents, and others supersede the values 
in the parents. Figure 3 contains the declaration of tha emitter agent, 
one of the most complex examples in ELINT. 

As we discuss in the next section, def agent forms are translated by 
CAOS into Flavors def flavor forms [4]. CAOS messages are then defined 
using the def method function of ZETALISP. These methods are free to 
reference the local variables declared in the defagent expression. 

(defagent el-emitter (procese-agenda-agent) 
(localvars 

(process-agenda  '(el-undo-collection-id-error 
el-change-cluster-association 
el-smitter-update-on-time-tick 
el-initialize-emitter 
el-update-emitter-from-observation)) 

(last-observed -1000000) 
(cluster-manager  'cluster-manager-O) 
manager 
id 
type 
observed 
fixes 
last-heading 
last-mode 
confidence 

cluster 
new-obsorvations-since-time-tick-flag 

id-errors 

gc-flag) 

(messages 
el-update-emitter-from-observation 

el-init ialize-emitt er 
el-change-cluster-association 

el-undo-collection-id-error) 

(symbolically-referoncad-agents 

el-collection-reporter-0 

el-correlation-reporter-0 

el-threat-reporter-0 
el-clustor-manager-O 

el-cluster-manager-l 
el-cluster-manager-2 

el-big-ear-handler 

el-gotcha-handler 
el-emitter-trace-reporter-O)) 

Figure 3: The emitter agent 

( 
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(caoB-initialize 
((ajen( - namei agent - class site - address) 

{(tniUal- messagei) 

Figure 4: The basic CAOS initialization form 

(caos-initialize 
((el-observation-reader-O el-ob»«rvation-reader (2 2)) 
(el-big-ear-handler-l «l-observation-handlar (1  1)) 
(•l-big-ear-handler-2 «l-observation-handl«r (1  1)) 
(el-gotcha-handler-1 el-obaervation-handler (1 2)) 
(•l-gotcha-handl«r-2 el-observation-handler (1 2)) 
(el-emitter-manager-O el-emitter-msuiager (2 1)) 
(el-emitter-manager-1 el-amitter-manager (2 2)) 
(el-collection-reporter-0 el-collection-reporter (1 2)) 
(el-correlation-reporter-0 el-correlation-raporter 

(1 3)) 
(el-threat-reporter-0 el-threat-reporter (1 3)) 
(el-emitter-trace-reporter-O el-emitter-trace-reporter 

(3 2)) 
(el-clneter-trace-reporter-O el-clu«ter-trace-reporter 

(3  D) 
(el-clw»ter-managor-0 el-cluster-manager (2 1))) 

((post el-observation-reader-O nil 
'el-open-observat ion-f ile 
»elint-data-file*) 

(^ost el-collection-reporter-0 nil 
•el-initialize-reporter t 
"elint:reports;collections.output") 

(post el-correlation-reporter-0 nil 
'el-initialize-reporter t 
"elint:reports;correlations.output") 

(post el-threat-reporter-0 nil 
'•1-initiali^e-raporter t 
"elint:reports;threats.output") 

(post el-emitter-trace-reporter-O nil 
'initialize-trace-roporter t 
"elint:reports;emitter.traces") 
el-cluster-trace-reporter-0 nil 
'initialize-trace-reporter t 
"elint.reports;cluster.traces"))) 

(post 

.Figure 5: The initialization declaration for ELINT. 

4.2    Initialization of agents 
The initial CAOS configuration is specified by the caos-initialize op- 
erator, which takes the form illustrated by figure 4; for example, figure 5 
is ELINT'S initialization form. 

The first portion of the form creates the static agents. In figure 5, 
a static agent named el-gotcha-handler-1, an instance of the class 
el-observation-handler, is created on the CARE site at coordinates 
(1,2) in the processor grid. 

The second portion of the form is a list of LISP expressions to be eval- 
uated sequentially when CAOS's initialization phase is complete. Each 
expression is intended to send a message to one of the static agents de- 
clared in the first part of the form. These messages serve to initialize 
the application; in figure 5, the initialization messages open log files and 
start the processing of ELINT observations. 

Agents may also be created dynamically. The create-agent- 
instance function accepts an agent class name and a location 
specification;2 the remote-address of the newly-created agent is re- 
turned. While dynamically created agents may not be referenced sym- 
bolically, their remote-address's may be exchanged freeJy. 

Currently, .g.nt.n,.yb.cr«t«l .t or ne«r .peclfi«! CARE .iic CAOS mak.* 

no attempt at dynamic load balancing. 

4.3    Communications Between Agents 
Agents communicate with each other by exchanging messages, CAOS 

does not guarantee that messages reach their destinations: due to ex- 
cessive message traffic or processing element failure, messages may be 
delayed or lost during routing. It is the responsibility of the application 
program to detect and recover from lost messages. Commensurate with 
the facilities provided by CARE, messages may be tagged with routing 
priorities; however, higher priority messages are not guaranteed to arrive 
before lower-priority messages sent concurrently. 

Two classes of messages are defined: those which return values 
(called value-desired messages), and those which do not (called side- 
eject messages). The value-desired-messages are made to return their 
values to a special cell called a future. Processes attempting to access 
the value of a future are blocked until that future has bad itF value set. 
It is possible for the value of a future to be set more than once, and it 
is possible for there to be multiple processes awaiting a future's value 
to be set.3 

4.3.1    Sending messages 

The CARE primitive post-packet, which sends a packet from one pro- 
cess to another, is employed in CAOS to produce three basic kinds of 
message sending operations: 

post: The post operator sends a side-effect message to an agent. The 
sending process supplies the name or pointer to the target agent, 
the message routing priority, the message name and arguments. 
The sender continues executing while the message is delivered to 
the target agent. 

post-future: The post-future operator sends a value-desired mes- 
sage to the target agent. The sending process supplies the same 
parameters as for post, and is returned a pointer to the future 
which will eventually by set by the target agent. As for post, the 
sen 'er continues executing while the message is being delivered 
and executed remotely. 

A process may later check the state of the future with the future- 
satisfied? operator, or access the future's value with the value- 
future operator, which will block the process until the future has 
a value. 

post-value; The post-value operator is similar to the post-future 
operator; however, the sending process is delayed until the target 
agent has returned a value, post-value is defined in terms of 
post-future and value-future. 

4.3.2 Detecting Lost Messages 

It is possible to detect the loss of value-desired messages by attaching a 
timeout to the associated future. The functions post-clocked-future 
and post-clocked-value are similar to their untimed counterparts, but 
allow the caller to specify a timeout and timeout action to be performed 
if the future is not set within the timeout period. Typical actions include 
setting the future's value with a default value, or resending the original 
message using the repost operator. 

4.3.3 Sending to Multiple Agents 

There exist versions of the basic posting operators which allow the same 
message to be sent to multiple agents.4 multipost sends a side effect 
message to a list of agents; multipost-future and multipost-value 
send a value-desired message to a list of agents. In the latter case, the 
associated future is actually a list of futures; the future is not considered 
set until all target agents have responded. The value of such a message 
is an association-list; each entry in the list is composed of an agent 
name or remote-address and the returned message value from that 

~~ 3 Futures were also used in QLUp and Multilisp [9]. The HEP Supercomputer [6] 
implemented a simple version of futures as a process synchronization mechamsm. 

4Neither CAOS nor CARE currently support a predicated multicait mode, wherein 
messages would sent to all agents satisfying a particular predicate; messages can only 
be sent to a fully-specified list of agents. 
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agent. There exist clocked versions of these functions (called, naturally, 
multipost-clocked-luture and multipost-clocked-value) to aid in 
detecting lost multicast messages. 

4.4 Communications Between Processes 

Processes in each agent communicate using the shared local variables 
declared in the agent. Besides sharing previously computed results this 
way, processes may also share the results of ongoing computations. 

Consider the following scenario: within an agent, some process is 
currently computing some answer. At the same time, another process 
begins executing, and realizes somehow that the answer it needs to 
compute is the same answer the other process is already computing. 
The second process could take one of two actions: it could continue 
computing the answer, even though tuis would mean redundant work, 
or it could wait for the first process to complete, and return its answer. 
The second approach is feasible, but it does tie up resources in the form 
of an idle process. 

The CAOS operators attach and my-handl« offer a third alternative 
solution. If a process knows it may ultimately produce an answer needed 
by more than one requesting agent, it obtains its "handle" (Section 5.-1) 
by calling my-handle, and places it in a table for other processes to 
reference. Any other process wishing to return the same answer as the 
first call» attach, with the first process's handle as argument. The first 
process returns its answer to all requesting agents waiting for answers 
from the other processes, and the other processes return no value at all. 

4.5 What CAOS Offers Over CARE 
CAOS is a large system. It is reasonable to ask what advantages there 
are to programming in CAOS as opposed to programming in CARE. We 
believe there are three major advantages: 

Clarity: The framework in which an agent is declared makes explicit 
its storage requirements and functional behavior. In addition, the 
agent concept is a helpful abstraction at which to view activity 
in a multiprocessing software architecture. The concept lets us 
partition a flat collection of processes on a site into groups of 
processes attached to agents on a site. CAOS guarantees the only 
interaction between processes attached to different agents is by 
message-passing. 

Convenience; The programmer is freed from interfacing to CARE'S low- 
level communications primitives. As we said earlier, CAOS is basi- 
cally an operating system, and as such, it shields the programmer 
from the same class of details a conventional operating system 
does in a conventional hardware environment. 

Flexibility: Currently, CARE schedules processes in a strict first-in, first- 
out manner. CAOS, on the other hand, can implement arbitrary 
scheduling policies (though at a substantial performance cost; we 
discuss this in Section 6). 

5    The Runtime Structure of CAOS 

CAOS is structured around three principal levels: site, agent, and pro- 
cess. Two of these levels-site and process reflect the organization of 
CARE; the remaining (agent) level is an artifact of CAOS. We discuss 
first the general design principles underlying CAOS, and then describe 
in greater detail the functions and structure of each of CAOS'S levels. 

5.1    General Design Principles 
The implementation of CAOS described in this paper is written in ZETAL- 

ISP, ad'alect of Lisp which runs on a number of commercially available 
single-user Lisp workstations. ZETALISP includes an object-oriented pro- 
gramming tool, called Flavors, which has proved to be a very powerful 
facility for structuring large Lisp applications. 

In Flavors, the behavior of an object is described by templates known 
a» classes. An insfance, a representation of an individual object, is cre- 
ated by instantiating a class. Instances respond to messages defined by 

their class, and contain static local storage in the form of instance vari- 
ables. Classes are defined within an inheritance network, each instance 
contains the instance variables and responds to the messages defined in 
its class, as well as those of the classes from which its class inherits. 

An appropriate usage for Flavors is the modelling of the behavior of 
objects in some (not necessarily real) Aorld. For example, CAOS site and 
agents structures are realized as Flavors instances. The characteristics 
to be modelled are codified in instance variables and message names. 
In a well-designed application, messages and variables are consistently 
named; thus, the implementation of a particular behavior is totally en- 
capsulated in the anonymous function which responds to a message. 

5.1.1    Extending the Notion 

In some sorse, a Flavors instance is an abstract data type. The instance 
holds state, and provides advertised, public interfaces (messages) to 
functions which change or access its state. The internal data represen- 
tation and implementations of the access functions are private. 

In Flavors, the abstract data type notion is unavailable within an 
individual instance. Frequently, the individual instance variables hold 
complex structures (such as dictionaries and priority queues) which 
ought to be treated as abstract data types, but there exist no common 
means within the standard Flavors mechanism for doing so. 

CAOS, however, supports such a mechanism, by providing a means 
of sending messages to instance variables (rather than to the instances 
themselves). The instance variables are thus able to store anonymous 
structures, which are initialized, modified, and accessed through mes- 
sages sent to the variable. Similar mechanisms exist in the Unit Package 
[14] and in «'le STROBE system [13], both frameworks for representing 
structured knowledge. 

The CAOS environment includes a number of abstract data types 
which were found to be useful in supporting its own implementation. 
The most commonly used are: 

Dictionary; The dictionary is an association list. It responds to put, 
get, add, forget, and initialize messages. 

Sorted Dictionary: The sorted-dictionary is also implemented as an as- 
sociation list, and responds to the same messages as does the stan- 
dard dictionary. However, the sorted-dictionary invokes a user- 
supplied priority function to merge new items into the dictionary 
(higher-priority items appear nearer the front of the dictionary). 
This dictionary is able to respond to the greatest message, which 
returns the entry with the highest priority, and to the next mes- 
sage, which returns the entry with the next-highest priority as 
compared to a given entry. 

The sorted-dictionary is used primarily to hold time-indexed data 
which may be collected out-of-order (e.g. when data for time n +1 
may arrive before data foi time n). 

Hash Dictionary; The hash-dictionary is implemented with a hash ta- 
ble, and responds to the same messages as the unsorted association 
list dictionary. 

Queue; The queue data type is a conventional first-in, first-out storage 
structure. The put message enqueues an item on the tail of the 
queue, while the got message dequeues an item from the head of 
the queue. 

Priority Queue; The priority-queue data type supports a dynamic heap- 
sort, and is implemented as a partially-ordered binary tree. It re- 
sponds to put, get, and initialize messages. Associated with 
the queue is a function which computes and compares Ihe priority 
of two arbitrary queue elements; this function drives the rebalanc- 
ing of the binary tree when elements are added or deleted. 

Monitor; A monitor provides mutual exclusion within a dynamically- 
scoped block of Lisp code. It is similar in implementation to the 
monitors of Interlisp-D and Mesa [10]. 

If the monitor is unlocked, the obtain-lock message stores the 
caller's process id as the monitor's owner, and marks the monitor 
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as locked; otherwise, if the monitor is locked, the obtain-lock 
message places the caller's process id on the tail of the monitor's 
waiting queue, and suspends the calling process. 

The re: 'ase-lock message removes the process id from the head 
of the monitor's waiting queue, marks the monitor's owner to be 
that id, and r>js ,hedules the associated process. 

Monitors are normally accessed using the with-nonitor form, 
which accepts the name of an instance variable containing a mon- 
itor, and which cannot be entered until the calling process obtains 
ownership of the monitor. The with-monitor form guarantees 
ownership of the monitor will be relinquished when the calling 
process leaves the scope of the form, even if an error occurs. 

5.2    The CAOS Site Manager 

The site manager com its of a Flavors instance containing information 
global to the site-information needed by all agents located on the site. In 
addition, the site manager includes a CARE-level process which performs 
the functions of creating new agents and translating agent names into 
agent addresses, as described below. 

The following instance variables are part of the site manager: 

incoming-straan: This instance variaule contains the CARE inpu' 
stream address on which the site manager process listens for re- 
quests. Agents needing to send messages to their site manager may 
reference this instance variable in order to discover the address to 
which to direct site requests. 

«tatic-agent-strsam-table: This instance variable is a dictionary 
which maps agent names into the CARE streams which may be used 
to communicate with the agents. The entries in this dictionary 
reflect statically-created agents; new entries are added as the result 
of ne»-lnitial-agent-onlin« messages directed to the site (see 
below). The dictionary is used to resolve agent name-to-address 
requests from agents created locally. 

unresolved-agant-stre'uii-table: The site manager keeps track of 
agent names it is not able to translate to addresses by placing 
unsatisfiable request-symbolic-reference requests in this dic- 
tionary. The keys of the dictionary are unresolvable agent names. 
As the agent names become resolvable, the unsatisfied requests 
are satisfied, and the corresponding entries are removed from the 
dictionary. 

After the initialization phase of a CAOS application has completed, 
there will be no entries in this dictionary in any of the sites. 

local-agent«: This instance variable is a dictionary whose keys are the 
names of agents located on the site, and whose values are point- 
ers to the Flavors instances which represent each agent, local- 
agents is used only for debugging aud status-reporting purposes. 

free-process-queue: When a CARE process which was created to ser- 
vice a request finishes its work, it tries to perform another taj>k 
for the agent in which it was created. If the agent has no work 
to do, the process suspends itself, after enqueuing identifying in- 
formation in this instance variable, which holds a queue abstract 
data type. When any agent on the same site needs a new process 
to service some request, it checks this queue first; if there are any 
suspended (free) processes waiting in this queue, it dequeues one 
and gives it a task to perform. If this queue is empty, the agent 
asks CARE to Cieate a new process. 

The site manager responds to the following messages; 

nea-mitial-agent-online: As each static agent starts running dur- 
ing initialization of a CAOS run, it broadcasts its name and CARE 
input stream to every site in the system, using this message. The 
correspondence between the sending agent's name and address is 
placed in the »tatic-agent-stream-table dictionary for future 
reference by agents located on the receiving sites. If any agents 
have placed requests for this new agent in the unresolved-agent- 
stream-table, messages containing the new agent's name and 
address are sent to the waiting agents. 

request-symbolic-ieference: Whenever a static agent is created, it 
runs an initialization function, which among other tasks, caches 
needed agent name-to-address translations. For each translation, 
the agent sends this message to its site manager. If the site man- 
ager can resolve the name upon rec .'ipt of the message, it responds 
immediately; otherwise, it queues the request in the unresolved- 
agent-stream-table, and defers answering until it is able to sat- 
isfy the request. The requesting agents waits until it has received 
the answer before requesting another translation. 

make-neu-agent: This message is sent to a site to cause a new agent 
to be created during the course of a CAOS run. The site manager 
creates the new (dynamic) agent and returns the agent's input 
stream to the sender of this message. The newly-created agent 
is not placed in the static-agent-stream-table; thus, the only 
way to advertise the existence of such a dynamically-created agent, 
is by the creator of an agent passing the returned input stream to 
other agents. 

5.3    The CAOS Agent 

As discussed above, CAC:J agents are implemented as Flavors instances. 
Their class definitions are defined by translating defagent expres- 
sions into defflavor expressions. CAOS itself defines two basic agent 
classes: vanilla-agent and process-agenda-agent, vanilla-agent 
defines the minimal agent; process-agenda-agent is defined in terms 
of vanilla-agent, but adds the ability to assign priorities to messages.5 

These basic agents are fully-functional, but lack domain-specific "knowl- 
edge " and cannot be used directly in problem solving applications. 

As stated in the previous section, a CAOS agent is a multiple-process 
entity. Most of these processes are in created in the course of problem- 
solving activity; we refer to these as user processes. At runtime, however, 
there are always two special processes associated with each CAOS agent. 
One of these processes monitors the CARE stream by which the agtnt 
is known to other agents. The other participates in the scheduling of 
user processes. We shall refer to the first of these processes as the 
agent input monitor, and to the second of these processes as the agent 
scheduler. We explain in detail the functioning of these two processes 
in the next subsection. 

We describe here the role of important instance variables in a basic 
CAOS agent: 

self-address: This iistance variable is an analogue of Flavors' self 
variable. Whereas self is bound to the Flavors instance un- 
der which a message is executing, self-address is bound to the 
stream of the agent under which a CAOS message is executing. 
Thus, an agent can post a message to itself by posting the mes- 
sage to self-address. 

numable-process-stream: This instance variable points to the 
stream on which the scheduler process listens. Processes which 
need to inform the scheduler of various conditions do so by send- 
ing CARE-level messages to this stream. 

running-processes: This variable holds the list of user processes 
which are currently executing within 'he agent. The current CARE 
architecture supports only a single evuluator on each site. CAOS 
tries to keep a number of user processes ready to execute at all 
times; thus, the single CPU is kept as busy as possible. 

runnable-piocess-list: A priority queue containing the runnable 
user processes. As a process is entered on the queue, its priority is 
calculated to determine its ranking in the partial ordering. There 
are two available priority evaluation functions: the first computes 
the priority based solely on the time ihe process entered the sys- 
tem; the second considers the assigned priority of the executing 
message before considering the entry time of the process. These 
two functions are used to implement the scheduling algorithms of 
the vanilla-agent and the process-agenda-figent, respectively. 

^This is important for applications in which one agent must respond rapidly to 
a posting from another agent. Assigning a message a high priority will cause that 
message to be processed ahead of any other messages with lower priorities. 
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scheduler-lock: The scheduler data structures are subject to modifi- 
cation by any number of processes concurrently. The scheduler- 
lock is a monitor which provides mutual exclusion against simul- 
taneous access to the scheduler database. 

5.4    The CAOS Process 

In this subsection, we describe the mechanism by which CAOS user pro- 
cesses are scheduled for execution on CARE sues. User processes are 
created in response to messages from other agents. Associated with 
each user process is a data structure called a runnable-item. The 
runnable-item contains the following fields: 

message-nama,-args,-id,-answer-targets: These fields store the 
information necessary to handle a message request and send the 
resulting answer back to the proper agents. 

f or-elf ect: This field is a boolean, and indicates whether the message 
is being executed for effect or value. This corresponds directly to 
the source of the message coming from a poet operation or a 
post-luture operation. 

state: This field indicates the state of the process. The possible states 
that a process may enter, and the finite state machine which de- 
fines the state transition are discussed in the next subsection. 

context: This field contains a pointer to the CARE stream upon which 
the process waits when it not runnable. A process (such as the 
scheduler) wishing to wake another process simply sends a messag'. 
to this stream. The suspended process will thus be awakened (by 
CARE). 

time-stamp: This fie'd contains the time at which the process entered 
the system. It is used by the functions which calculate the execu- 
tion priority of processes. 

The CAOS scheduler's only handle on a process is the process's 
runnable-item In fact, the only communication between a user process 
and the CAOS "neduler consists of the exchange of runnable-item's. 

5.5    Flow of Control 

In the following, we detail how a user process, the CAOS input moni- 
tor, and the CAOS scheduler interact to process a message request from 
a remote agent. For purposes of exposition, we assume the following 
sequence of events; 

1. An agent, agent-1, executes a post operation, with agent-2 as 
the target. The posting is for the message named message-a. 

2. agent-2 receives and executes the posting. In order to complete 
the execution of message-a, it must perform a post-value oper- 
ation to a third agent, agent-3. 

We begin at the point where agent-1 has performed its post oper- 
ation. 

5.5.1     Input Processing 

The input monitor process handles requests and responses from remote 
agents. When the message from agent-1 enters agent-2, its input 
monitor creates a new runnable-item to hold the state of the request. 
The message name, arguments, id, and answer targets are copied from 
the incoming message into the runnable-item. The runnable-item's 
state is set to never-run, and its time stamp is set to the current time. 
In order to queue the message for execution, the input monitor takes 
one of two actions. 

If the agent's runnable-process-list is empty, the runnable- 
item is sent in a message to the agent scheduler process (by send- 
ing the item in a message to the stream whose address is found in 
the agent's runnable-process-stream instance variable). When the 
agent's runnable-process-list is empty, the scheduler process is guar- 
anteed to be waiting for messages sent to the scheduler stream, and 

hence, will be awakened by the message sent from the input monitor. 
The scheduler then computes the priority of the message, and places the 
runnable-item in its runnable-process-list. 

If the agent's runnable-process-list is not empty, the input mon- 
itor computes the message's priority and places the runnable-item on 
the runnable-process-list itself. When the queue is not empty, it is 
guaranteed that the scheduler will examine the queue sometime in the 
future to make scheduling decisions; thus, it is not necessary to send any 
messages to the scheduler to inform it of the existence of new processes. 

5.5.2 Creating Processes 

Eventually, the newly-created runnable-item will reach the head of 
agent-2's runnable-process-list. At this time, there is still no pro- 
cess associated with the item, so the scheduler creates a process using 
the facilities of CARE, adds the process to the running-processes list, 
and passes it its runnable-item. The process will eventually gain con- 
trol of the evaluator, and will set the state of its runnable-item to 
running. It then begins executing the requested posting. 

5.5.3 Requesting Remote Values 

At some point, the process executing on agent-2 requires a value from 
agent-3, and performs a post-value operation to acquire it. The pro- 
cess looks up the address of agent-3, and posts a message which con- 
tains the appropriate message name, arguments, id, and answer target. 
The message-id unambiguously identifies the future upon which the 
process will be waiting for the value to be returned. The answer target 
is the agent's own sell-address; when the answer is received by the 
input monitor process, it will be forwarded to the appropriate future, 
and the process will be reawakened. 

In the meantime, the process sets its state to suspended, removes 
its runnable-item from the running-processes list, and appends it to 
the list of processes already waiting for the future to be satisfied. If the 
runnable-process-list is not empty, the suspending process wakes 
the process at the head of the queue.6 The suspending process then 
waits for a message on its wakeup stream, the stream whose address is 
in the context field of its runnable-itum. 

5.5.4 Answer Processing 

Some time later, agent-3 will have completed its computations, and 
will have returned the desired answer to agent-2. The answer will be 
received by agent-2's input monitor process, which will recognize the 
input as a value to be placed in a future. The input monitor sets the 
value field of the appropriate future, and moves the runnable-items of 
the processes waiting on the future to the runnable-process-list. 

If the queue was previously empty, the agent must have been (or 
will soon be) entirely idle; thus, the runnable-items are sent to the 
scheduler in a message, causing the scheduler to be reawakened. If the 
queue was not previously empty, the agent must be busy, so the items 
are simply added to the queue according to their priorities. In both 
cases, the runnable-items are placed in the runnabls state. 

5.5.5 Reawakening Suspended Processes 

When the runnable runnable-item reachep the head of agent-2's 
runnable-procsss-list, a message (which contains no useful infor- 
mation) is sent to its associated process's wakeup stream. As a result, 
process eventually wa,ces up, gains control of the evaluator, and sets its 
state to running. 

5.5.6 Completing Computation 

A process may perform any number of post, post-luture, or post- 
value operations during its lifetime. Eventually, however, the process 

«In effect, the process take« on the role of the scheduler. Although the system 
would continue to work with only a designated scheduler process performing sched- 
uler duties, this arrangement permits scheduling to take place with mm.mal latenry. 
As a result, fewer evaluator cycles are wasted waiting for the scheduler process to 

run the next user process. 

' 
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will complete, having computed a value which may or may not be sent 
back to the requesting agent. If the process was suspended for any 
portion of its lifetime, another process may have attached to it; in this 
case, the process may have more than one requesting agent to which to 
return an answer. 

Before the process terminates, it examines the head of the runnabl«- 
process-list. If the queue is empty, the process simply goes away. 
If the runnable-itam at the hea^ of the queue is runnabln, it sends 
the appropriate message to awaken the associated process. Finally, if 
the item is never-run, the process makes itself the process associated 
with this new runnable-item, and executes the new message in its own 
context.7 Barring this possibility, the process "queues" itself on a free 
process queue associated with the site manager; when a new process 
is needed by an agent on the site, one is preferentially removed from 
this queue and recycled before a entirely new process is created. This 
way, processes, which are expensive to create, are reused as often as 
possible. 

6    Results and Conclusions 

The CAOS system we have described has been fully implemented and 
is in use by two groups within the Advanced Architectures Project. 
CAOS runs on the Symbolics 3600 family of machines, as well as on 
the Texas Instruments Explorer Lisp machine, ELINT, as described in 
Section 3.2, has also been fully implemented. We are currently analyzing 
its performance on various size processor grids and at various data rates. 

6.1    Evaluating CAOS 

CAOS is a rather special-purpose environment, and should be evaluated 
with respect to the programming of concurrent real-time signal inter- 
pretation systems. In this section, we explore CAOS's suitability along 
the following dimensions: 

• Expressiveness 

e Efficiency 

e Scalability 

6.1.1 Expressiveness 

When we ask that a language be suitably expressive, we ask that its 
primitives be a good match to the concepts the programmer is trying to 
encode. The programmer shouldn't need to resort to low-level "hack- 
ery" to implement operations which ought to be part of the language. 
We believe we have succeeding in meeting this goal for CAOS (although 
to date, only CAOS's designers have written CAOS applications). Pro- 
gramming in CAOS is programming in Lisp, but with added features 
for declaring, initializing, and controlling concurrent, real-time signal 
interpretation applications. 

6.1.2 Efficiency 

CAOS has a very complicated architecture. The lifetime of a message, 
as described in Section 5.5, involves numerous processing states and 
scheduler interventions. Much of this complexity derives from the de- 
sire to support alternate scheduling policies within an agent. The cost 
of this complexity is approximately one order of magnitude in process- 
ing latency. For the common settings of simulation parameters, CARE 

messages are exchanged in about 2-3 milliseconds, while CAOS mejsages 
require about 30 milliseconds. It is this cost which forces us to decom- 
pose applications coarsely, since more fine-grained decompositions would 
inevitably require more message traffic. 

We conclude that CAOS does not make efficient use of the under- 
lying CARE architecture. A compromise, which we are just beginning 
to explore, would be to avoid the complex flow of control described in 
Section 5.5 in agents whose scheduling policies are the sane as CARE'S 

This is another situation in which an application process prrforms scheduling 
duties. 

(FIFO). In such agents, we could reduce the CAOS runtimes to simple 
functional interfaces to CARE. We anticipate such an approach would 
be much more efficient. 

6.1.3    Scalability 

A system which scales well is one whose performance increases com- 
mensurately with its size. Scalability is a common metric by which 
multiprocessor hardware architectures are judged: does a lOO-processor 
realization of a particular architecture perform 10 times better than a 
lO-processor realization of the same architecture? Does it perform 5 
times better? Only just as well? Or Worse? In hardware systems, scal- 
ability is typically liirnted by various forms of contention in memories, 
busses, etc. The 100-processor system might be slower than the 10- 
processor system because all intcrprocessor communications are routed 
through an element which is only fast enough to support 10 processors. 

We ask the same question of a CAOS application: does the through- 
put of ELINT, for example, increase as we make more processors available 
to it? This question is critical for CAOS-based real-time interpretation 
systems; our only means of coping with arbitrarily large data rates is 
by increasing the number of processors. Section 6.2 discusses this issue 
in detail. 

We believe CAOS scales well with respect to the number of available 
processors. The potential limiting factors to its scaling are (I), increased 
software contention, such as inter-pipeline bottlenecks described in Sec- 
tion 3.1.2, and (2), increased h* Iware contention, such as overloaded 
processors and/or communicati ■n channels. Software contention can be 
minimized by the design of the application. Communications contention 
can be minimized by executing CAOS on top of an appropriate hardware 
architecture (such as that afforded by CARE); CAOS applications tend 
to be coarsely decomposed-they are bounded by computation, rather 
thai, communication-and thus, communications loading has never been 
a problem. 

Unfortunately, processor loading remains an issue. A configuration 
with poor load balancing, in which some processors are busy, while oth- 
ers are idle, does not scale well. Increased throughput is limited by 
contention for processing resources on overloaded sites, while resources 
on unloaded sites go unused. The problem of automatic load balancing 
is not addressed by CAOS, agents are assigned to processing sites on 
a round-robin basis, with no attempt to keep potentially busy agents 
apart. 

6.2    Evaluating ELINT Under CAOS 

Our experience with ELINT indicates the primary determiner of through- 
put and answer-quality is the strategy used in making individual agents 
cooperate in producing the desired interpretation. Of secondary impor- 
tance is the degree to which processing load is evenly balanced over *he 
processor grid. We now discuss the impact of these factors on ELINT'S 

performance. 
The following three strategies were used in our experiments: 

NC: This strategy represents limited inter-agent conirol. No attempt 
is made to prevent concurrent creation of multiple copies of the 
"same" agent (this possibility arises when multiple requests to 
create the agent arrive simultaneously at a single manager). As 
a result, multiple, non-communicating copies of an abstraction 
pipeline are created; each receives ao.ily portion of the input data 
it requires. The NC strategy was expected to produce poor results, 
and was intended oniy as a baseline against which to compare more 
realistic control strategies. 

CC: In this strategy, the manager agents assure that only one copy of 
a agent is created, irrespective of the number of simultaneous cre- 
ation requests; all requestors are returned pointers to the single 
new agent. Originally, we believed the cc (for "creation control") 
strategy would be sufficient for ELINT to produce correct high-level 
interpretations. 

CT: The CT ("creation and time control") strategy was designed to 
manage skewed views of real-world time which develop in agent 
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ELINT 

Performance 
Dimension 

Control Type/Grtd Size                    l 
NC CG cc CT CT CT 

4x4 4x4 6x6 2x2 4x4 6x6 
FALSE ALARMS 1 0 0 0 0 0 
REINCARNATION 49 42 2 0 0 0 
CONFIDENCE LEVEL 19 20 90 89 93 95 
FIXES 48 42 99 100 100 100 
FUSION 0 0 77 85 88 89 

Table 1: Quality of ELINT performance of various grid sizes and control 
strategies (1 ELINT time unit = 0.1 seconds). 

Control 
Type 

5imu/a(eJ Time (sec) 
2x2 4x4 6x6 

NC > 11.198 

CC 10.87 5.12 
CT 11.80 8.10 4.17 

Table 2:  Simulated time required to complete an ELINT run (1 ELINT 
time unit = 0.1 seconds). 

pipelines. In particular this strategy prevents an emitter agent 
from deleting itself when it has not received a new observation 
in a while, yet some observation-handler agent has sent the 
emitter an observation which it has yet to receive. 

fable 1 illustrates the effects of various control strategies and grid 
s zes. The table presents six performance attributes by which the quality 
jf an ELINT run is measured. 

False Alarms: This attribute is the percentage of emitter agents that 
ELINT should not have hypothesized as existing. 

ELINT was not severely impacted by false alarms in any of the 
configurations in which it was run. 

Reincarnation; This attribute is the percentage of recreated emitter 
agents {e.g., emitters which had previously existed but had 
deleted themselves due to lack of observations). Large numbers of 
reincarnated emitters indicate some portion ELINT is unable to 
keep up with the data rate (i.e., the data rate may be too high 
globally, so that all emiiters are overloaded, or the data rate may 
be too high locally, due to poor load balancing, so that some subset 
of the emitters are overloaded). 

The CT ont'ol strategy was designed to prevent reincarnations; 
hence, none occurred when CT was employed c : any size grid. 
When cc was used, only the 6 x 6 grid was large enough for EI INT 
to keep up with the input data rate. 

Confidence Level: This attribute is the percentage of correctly-deduced 
confidence levels of the existence of an emitter. 

The correct calculation of confidence levels depends heavily on the 
system being able to cope with the incoming data rate. One way 
to improve confidence levels was to use a large processor grid. The 
other was to employ the CT control strategy, since fewer reincar- 
nations result in fev/er incorrect {e.g., too low) confidence levels. 

Fixes; This attribute is the percentage of correctly-calculated fixes of 
an emitter. 

Fixes can be computed when an emitter has seen at least two 
observations in the same time interval. If an emitter is undergo- 
ing reincarnation, it will not accumulate enough data to regularly 
compute fixes. Thus, the approaches which minimized reincarna- 
tion maximized the correct calculation of fix information. 

'This run wa» f»r from completion when il WM hailed due to excessive «ccumu- 
lated wall-clock time. 

Control 
Type 

Message Count 
2x2 4x4 6x6 

NC > 16118 
cc 7375 
CT 4516 4703 4616 

Table 3: Number of messages exchanged during an ELINT run (1 ELINT 
time unit = 0.1 seconds). 

GRID 

SIZE 1 x 1 2x2 3x3 4x4 5x5 6x6 
SIMULATED 

TIME (sec) 9.42 3.20 1.49 0.74 0.52 0.56 

Table 4:  Overall Simulation Times for CT Control Strategy (1 ELINT 

time unit = 0.01 seconds, debugging agents turned off). 

Rjsion; This attribute is the percentage of correct clustering of emitter 
agents to cluster agents. 

The correct computation of fusion appeared to be related, in part, 
to the correct computation of confidence levels. The fusion pro- 
cess is also the most knowledge-intensive computation in ELINT, 

and our imperfect results indicate the extent to which ELlNT's 
knowledge is incomplete. 

We interpret from Table 1 that control strategy has the greatest 
impact on the quality of results. The CT strategy produced high-quality 
results irrespective of the number of processors used. The cc strategy, 
which is much more sensitive to processing delays, performed nearly as 
well only on the 6x6 processor grid. We believe the added complexity 
of the CT strategy, while never detrimental, is only beneficial when the 
interpretation system would otherwise be ovei loaded by high data rates 
or poor load balancing. 

Tables 2 and 3 indicate that cost of the added control in the CT 
strategy is far outweighed by the benefits in its use. Far less message 
traffic is generated, and the overall simulation time is reduced (In Ta- 
ble 2, the last observation is fed into the system at 3.6 seconds; hence, 
this is the minimum possible simulated run time for the interpretation 
problem). 

Finally, Table 4 illustrates the effect of processor grid size when the 
CT control strategy is employed. This table was produced with the data 
rate set ten times higher than that used to produce tables 1-3; the 
minimum possible simulated run time for the interpretation problem is 
0.36 seconds. The speedup achieved by increasing the processor grid 
size is nearly linear with the square root of the size; however, the 6x6 
grid was slightly slower than the 5 x 5 grid. In this last case, we believe 
the data rate was not high enough to warrant the additional processors. 

6.3    Unanswered Questions 
CAOS has been a suitable framework in which to construct concurrent 
signal interpretation systems, and we expect many of its concepts to 
be usefui in our future computing architectures. Of principal concern 
to us now is increasing the efficiency with which the underlying CARE 
architecture is used. In addition, our experience suggests a number of 
questions to be explored in future research' 

• What is the appropriate level of granularity at which to decompose 
problems for CARE-like architectures? 

• What is the most efficient means to control the actions of concur- 
rent problem solvers when necessary? 

• How can flexible scheduling policies be implemented withcaL sig- 
nificant loss of efficiency? What is the impact on problem solving 
if alternate scheduling policies are not provided? 

< 
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We have started to investigate these questions in the context of a 
new CARE environment. The primary difference between the original 
environment and the new environment is that the process is no longer 
the basic unit of computation. While the new CARE system still supports 
the use of processes, it emphasizes the use of contexts: computations 
with less state than those of processes. 

When a context is forced to suspend to await a value from a stream, 
it is aborted, and restarted from scratch later when a value is available. 
This behavior encourages fine-grained decomposition of problems, writ- 
ten in a functional style (individual methods are small, and consist of a 
binding phase, followed by an evaluation phase). 

In addition, CARE now supports arbitrary prioritization of messages 
delivered to streams. As a result, it is no longer necessary to include in 
CAOS its complex and expensive scheduling strategy. Early indications 
are that the new CARE environment with a slightly modified CAOS en- 
vironment performs between two and three orders of magnitude faster 
than the configuration described in this paper. 
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Abstract 
CAREL is a Lisp designed for interactive programming of a 

distributed-memory multiprocessor. CAREL insulates the user 
from the machine language of the multiprocessor architecture, 
but still makes it possible for the user to specify explicitly the 
assignment of tasks to processors in the multiprocessor 
network. CAREL has been implemented to run on a TI 
Explorer Lisp machine using Stanford's CARE multiprocessor 
simulator [Delagi 86]. 

CAREL is more than a language: real-time graphical 
displays provided by the CARE simulator make CAREL a 
novel graphical programming environment for distributed 
computing. CAREL enables the user to create programs 
interactively and then watch them run on a network of 
simulated processors. As a CAREL program executes, the 
CARE simulator graphically displays the activity of the 
processors and the transmission of data through the network. 
Using this capability, CAREL has demonstrated its utility as an 
educational tool for multiprocessor computing. 

Layer 

Applications 

Research Question 

Where is the potential concurrency 
in signal understanding tasks? 

Problem-solving How do we maximize useful 
frameworks      concurrency and minimize 

serialization in problem-solving 
architectures? 

Knowledge 
representation 
and vnference 

Systems 
programming 
language 

Hardware 
architecture 

How do we develop knowledge 
reprgsef, l ations to maximize 
parr.illiäli um in inference and 
search? 

How can a general-purpose symbolic 
programming language support 
concurrency and help map multitask 
programs onto a distributed-memory 
multiprocessor? 

What multiprocessor architecture 
best supports the concurrency in 
signal understanding tasks? 

1. Context 
CAREL was developed within the Advanced Architectures 

Project of the Stanford Knowledge Systems Laboratory. The 
goal of the Advanced Architectures Project is to make 
knowledge-based programs run much faster on multiple 
processors than on one processor. Knowledge-based programs 
place different demands on a computing system than do 
programs for numerical computation. Indeed, multiprocessor 
implementations of expert systems will undoubtedly require 
specialized software and hardware architectures for efficient 
execution. The Advanced Architectures Project is performing 
experiments to understand the potential concurrency in signal 
understanding systems, and is developing specialized 
architectures to exploit this concurrency. 

The project is organized according to a number of 
abstraction layers, as shown in Figure 1-1. Much of the work 
of the project consists of designing and implementing 
languages to span the semantic gap between the applications 
layer and the hardware architecture. 

The design and implementation of CAREL depends mainly 
on the hardware architecture level. At the hardware level, the 
project is concentrating on MIMD, large grain, locally- 
connected, distributed memory multiprocessors communicating 
via buffered messages. This class was chosen to match the 
needs of large-scale parallel symbolic computing with the 
constraints imposed by the desire for VLSI implementation and 

Figure 1-1:  Multiple layers in implementing signal 
understanding expert systems on multiprocessor 

hardware 

replication. Like the FAIM-1 project [Davis and Robison 85], 
we consider each processing node to have significant 
processing and communication capability as well as a 
reasonable amount of memory — about as much as can be 
included on a single VLSI circuit (currently a fraction of a 
megabit, but several megabits within a few years). Each 
processor can support many processes. As both application 
and architecture are better understood, the detailed design of 
the hardware architecture will be modified to support the needs 
of the application. 

The hardware architecture level is implemented as a 
simulation running on a (uniprocessor) Lisp machine. The 
simulator, called CARE for "Concurrent ARray Emulator", 
carries out the operation of the architecture at a level 
sufficiently detailed to capture both instruction run times and 
communication overhead and latency. The CARE simulator 
has a programmable instrumentation facility which permits the 
user to attach "probes" to any object or collection of objects in 
the simulation, and to display the data and historical summaries 
on "instruments" on the Lisp machine screen. Indeed, the 
display of the processor grid itself is one such instrument. 

< 
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2. Introduction 
The CAREL (for CARE Lisp) language is a distributed- 

memory variant of QLAMBDA [Gabriel and McCarthy 
84] and an extension of a Scheme subset [Abelson and 
Sussman 85]. CAREL supports futures (like Multilisp 
[Halstead 84]), truly parallel LET binding (like QLAMBDA), 

programmer or automatic specification of locality of 
computations (like Par-Alfl [Hudak and Smith 86] or 
Concunrent Prolog [Shapiro 84], and both static assignment of 
process to processor and dynamic spread of recursive 
computations through the network via remote function call 
Despite the length of this list of capabilities, CAREL is perhaps 
best described as a high-level systems programming language 
for distributed-memory multiprocessor computing. 

The CAKEL environment provides both accessibility and 
visibility. CAREL is accessible because, being a Lisp, it is an 
interactive a; j interpreted language. The user may type in 
expressions directly and have them evaluated immediately or 
load CAREL programs from files. If the multiprocessing 
features are ignored, using CAREL is just using Scheme The 
multiprocessing extensfom in CAREL are derived from those 
of QLAMBDA. For example, PARALLEL-LET is a simple 
extension of i^ET which c imputes the values for the LET- 
bindings ccncurrentiy, at locations specified by the 
programmer or determined automatically. 

CAREL gains its visibility through the CARE simulator: 
CAREL programmers can watch their programs execute on a 
graphic display of the multiprocessor architecture. Figure 5-1 
shows CARE and CAREL with a typical six-by-six grid of 
processors. A second window on the Lisp machine screen is 
used as the CAREL listener, where programs are entered. As a 
CAREL program runs, the simulator illuminates each active 
processor and each active communication link. The user may 
quickly gain an understanding of the processor usage and 
information flow in distributed CAREL programs. CARE 
instruments may also be used to gather instantaneous and 
historical data about the exection of CAREL programs. 

The rest of the paper is divided into a discussion of the 
philosophy of CAREL, a description of the language CAREL, 
and some illustrated examples of CAREL in action on the 
CARE simulator. 

3. Philosophy and Design 
The CAREL language was developed with the following 

assumptions in mind: 
1. CAREL (like Multilisp) was designed to augment 

a serial Lisp with "discretionary" concurrency: 
the programmer, rather than the compiler or the 
run-time support system, decides whut parts of a 
program will be concurrent. CAREL provides 
parallelism through both lexical elaboration and 
explicit processes [Filman and Friedman 84]. 

2. Similarly, CAREL was designed to provide 
discretionary locality: the programmer also 
decides where concurrent routines will be run. A 
variety of abstract mechanisms are provided to 
express locality in terms of direction or distance 
or both. 

3. CAREL generally implements eager evaluation: 
when a task is created, it is immediately started 
running, even if the result is not needed 
immediately. When the result is needed by a 
strict operator, the currently running task blocks 
until the result is available. 

4. CAREL is designed to automatically manage the 
transfer of data, including structures, between 
processors. CAREL supports general methods to 
copy lists and structures from one processor to 
another, and specialized methods to copy 
programs and environments. 

5. CAREL is designed to maintain "architectural 
fidelity": all communication of both data and 
executable code is explicitly handled by the 
simulator so that all costs of communication may 
be accounted for. 

6. CAREL provides certain specialized "soft 
architectures", such as pipelines and teams, 
superimposed on the processor network. 

7. Through CARE, CAREL graphically displays the 
runtime behavior of executing programs. 

8. Finally, and unfortunately, CAREL ignores 
resource management, including the problem of 
garbage collecting data and processes on multiple 
processors. Resource management is a very 
important problem, but CAREL doesn't yet have 
a solution for it. CAREL currently depends on 
the memory management of the Lisp machine on 
which it runs in simulation. 

4. The Language 
This section presents a language description of CAREL and 

examples ~ with graphics - of its use. The functions and 
special forms of CAREL were selected roughly as the union of 
the capabilities of QLAMBDA (as extended for distributed 
memory) and Par-Alfl. There has been no attempt as yet to 
create a minimal but complete subset of CAREL. 

On top of a Scheme subset, CAREL supports the following 
functions and special forms: 

PARALLEL-LET: a special form for parallel evaluation of LET 
binding. Optionally, the programmer may specify the 
locations at which the values for binding are to be 
evaluated. 

PARALLEL-LAMBDA: a special form to create asynchronously 
running closures. Optionally, the programmer may 
specify the location where the closure is to reside. The 
closure may also include state variables so that its 
behavior may vary over time. 

PARALLEL: a parallel PROGN, evaluating the component 
forms concurrently. 

PARALLEL-MAP: a parallel mapping function which applies a 
single function to multiple arguments at multiple 
locations, returning a list of the results. 
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MULTICAST-MAP: a parallel trapping function which evaluates 
the same form at multiple locations and gathers up the 
values returned in the order in which they are returned. 

FUTURE: a special form specifying a form to be evaluated and 
the site at which the evaluation should take place. 
Returns a future encapsulating the value that will 
eventually be returned. 

TOUCH/FORCE: a function to force a future to give up its value. 

ON: evaluates a form at a specified location. Equivalent to 
(TOUCH (FUTURE...)). 

PIPELINE: a special-form to create a software pipeline of 
processes spread across multiple processors. 

TEAM: a special form to create a team of processes spread 
across multiple processors. Each member of the team 
executes the same function. The team manager assigns 
a new task to the least loaded team member. 

DEFINE-STRUCTURE: a simple version of DEFSTRUCT. 

DEFINE-SERIALIZED-STRUCTURE: a serialized version of 
DEFINE-STRUCTURE. Each     structure     created 
incorporates a queue to serialize access to the structure. 

CAREL   augments   standard   Lisp   datatypes   with   the 
following: 
FUTURE-OBJECT: a datÄtype to encapsulate a value to be 

returned eventually after computing at a specified 
location 

REMOTE-ADDRESS: a pointer to an object at a remote site 

LOCATION: grid coordinates, neighbor/polar coordinates, or a 
keyword (:ANY,:ANY-NEIGHBOR, :ANY-OTHER) 

STRUCTURE: a structure with named slots 

SERIALIZED-STRUCTURE: a serialized structure with named 
slots 

The following describes the syntax of CAREL's functions 
and special forms, and gives illustrated examples of their use. 
Certain expressions are used repeatedly in the paragraphs that 
follow, so their definitions appear first: 

location-form is any form that evaluates to something that 
can be interpreted as a location in the CARE network. 

body is an arbitrary list of forms. 

PARALLEL-LET: 

(PARALLEL-LET parallel? bindings . body) 

parallel? is an arbitrary form, used to control the parallelism 
of the evaluation 

bindings is a list of triples {variable value-form 
location-form) 

As in QLAMBDA, parallel? is used to control whether the 
bindings should indeed be evaluated in parallel. If parallel? 
evaluates to () or #!FALSE, then the PARALLEL-LET is 
evaluated as an ordinary LET, with the bindings being 
evaluated in (an unspecified) sequence, and the body being 
evaluated in an environment including those bindings. 

If parallel? evaluates to T or #!TRUE, then the location- 
forms are evaluated concurrently and the concurrent evaluation 
of the value-forms is begun. The variables are immediately 
bound to the future-objects corresponding to the values to be 
returned, and the evaluation of the body is begun. The body 
may block temporarily on unfinished futures. 

In all these cases, the value returned by the PARALLEL- 
LET is the (forced) value of the last form in the body. 

PARALLEL-LAMBDA: 

(PARALLEL-LAMBDA para/Zei. args 
location-form state-bindings 
. body) 

Evaluating a PARALLEL-LAMBDA sets up a closure at a 
remote site specified by location and returns a function of the 
specified arguments. When this function is applied, the list of 
evaluated arguments is sent to the remote closure, the remote 
evaluation is initiated, and a future is immediately returned. 
The remote closure created by PARALLEL-LAMBDA 
contains some state variables, bound in state bindings. A state 
variable is changed by applying the PARALLEL-LAMBDA 
function to the arguments (:SET variable-name value). 

parallel? is used, as in PARALLEL-LET, to determine 
whether parallelism is actually employed. 

PARALLEL: 
(PARALLEL . body) 

The PARALLEL special form initiates the concurrent 
evaluation of the forms in the body. Control returns from 
PARALLEL when all of the forms have been evaluated. The 
value returned by PARALLEL is undefined. 

PARALLEL-MAP: 
{PARALIEL-MAPfunction-form arguments-form 

locations-form) 

function-form evaluates to a function of one argument 

argitments-form evaluates to a list, each member of which is 
to be used as an argument to the function 

locations-form evaluates to a list of locations. 

PARALLEL-MAP, like MAP, applies a function repeatedly 
to arguments drawn from a list and returns a list of results. 
Unlike MAP, PARALLEL-MAP performs the function 
applications concurrently and remotely, and returns a list of 
futures that will eventually evaluate to the results. 
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MULTICAST-MAP: 

(MULTICAST-MAP/u/icr/ort-/omi locations-form) 

MULTICAST-MAP invokes a function of no arguments at 
each location in a list of locations. MULTICAST-MAP 
immediately returns a list of futures corresponding to the 
values that will eventually be returned. Since the function 
called takes no arguments, the values returned can be different 
only if they depend on the local state of the processor at the 
location of evaluation, as embodied in the "global" 
environment of that processor. 

MULTIC AST-M AP-NQ.REPI ,Y: 

(MULTICAST-MAP-NO-REPLY/M«crion-/orrn/ocarionj-/omi) 

MULTICAST-MAP-NO-REPLY invokes a function of no 
arguments at each location in a list, but does not cause results 
to be returned. The value returned by MULTICAST-MAP- 
NO-REPLY is undefined. 

DEFINE-STRUCTURE: 

(DEFINE-STRUCTURE structure-name. slot-names) 

DEFINE-STRUCTURE is a simple analog of the Common Lisp 
DEFSTRUCT. Evaluating a DEFINE-STRUCTURE special 
form creates: 

1. a MAKE-structure-name function with required 
arguments corresponding to the slot-names. 
(MAKE-structure-name args) creates an 
instance of structure-name with slot values 
specified by args. 

2. structure-name-slot-name functions for each slot. 
These functions are used to access the slot values 
of a structure instance. 

3. SEY-structure-name-slot-name functions for each 
slot. These functions are used to set the slot 
values of a structure instance. 

PIPELINE: 

(PIPELINE stagel ... stagen) 

where a stage is: 

{name args location-form state-variables . output-forms) 
For each stage expression, PIPELINE establishes a remote- 

closure at the specified location, and then links the remote 
closures so that the output of one stage becomes the input of 
the next stage. The linked closures form the working part of 
the pipeline. PIPELINE then returns a function which, when 
applied, passes its arguments on to the first stage of the 
pipeline and immediately returns a future which will eventually 
contain the result that comes out of the pipeline. To ensure that 
the n suits that comes out of the pipeline correspond one-for- 
one with the sets of arguments that went in, the future-object to 
hold the result is created aiomically with the entry of the 
arguments into the pipeline and is passed along with the data 
through the pipeline. 

TEAM: 

(TEAM args location-forms . body) 

The TEAM special form creates a set of closures, called a 
team, plus a single distinguished closure called the manager of 
the team. Each closure, or member of the team, is identical, 
except perhaps for its location within the processor network. 
When the manager of the team is applied to a list of arguments, 
the manager selects a member of the team and applies that 
member to the arguments, immediately returning a future 
which will eventually contain the value computed. 

The purpose of the team is to spread a workload among a 
number of identical processes. Like the stages of a pipeline, 
the members of a team are created with a fixed functionality 
and are statically assigned to processors. Because of this, the 
overhead of invoking a team member is less than creating and 
invoking a new process. 

DEFINE-SERIALIZED-STRUCTURE: 

(DEFINE-SERIALIZED-STRUCTURE structure-name . slot-names) 

DEFINE-SERIALIZED-STRUCTURE is the same as 
DEFINE-STRUCTURE, except that access to the structure created 
is serialized. Only one process at a time may modify the 
structure. 

5. Some Examples 

PARALLEL-LET: 

This subroutine concurrently performs trivial 
computations at the four corner neighbors of a 
given location and collects the results. 

(define (cycle-corners-1 where) 
(parallel-let t 

((xl (list 1 2) (neighbor 0 where)) 
(x2 (list 3 4) (neighbor 2 

(neighbor 1 
where))) 

(x3 (list 5 6) (neighbor 3 where)) 
(x4 (list 7 8) (neighbor 5 

(neighbor 4 
where)))) 

(append xl  x2  x3  x4))) 

CYCLE calls the  subroutine  starting at the 
current  processor 

(define   (cycle)    (cycle-corners-l   *here*)1 

\ 

•174- 

^  I 



PARALLEL-MAP (see Figure 5-1): 
I   FOUR-CYCLE calls the CYCLE program at 
; four different locations in the 
; processor grid. 

(define (four-cycle) 
(parallel-map cycle-corners-1 

' ((2   5)    (5  2)    (2  2)    (5  5)) 
' ((2  5)    (5  2)    (2  2)    (5  5))) 

MULTICAST-MAP-NO-REPLY (see Figure 5-2): 
This  activates the processor at  each  location 
in  SITES,   but  does  no  worthwhile  computation. 

(define   (activate-locations  sites) 
(multicast-map-no-reply   (lambda   0   *here*) 

sites)) 

nm      m 

nnnrmn 

[SSggSg 
Figure S-1:PARA  I-EL-MAP: Execution of the 

FOi R CVCLE     program. Active 
ivi.ors   are   displayed   in   inverse 
» V- o   Active < onununications links are 
drawn as lines joining pa-ticular ports of 
the processoi nodes.    The processors 
nnotated wilh astensks MC the cycle 
triters.  Each processor -s »t a different 

.nt in the cycle. 

PARALLEL-LAMBDA: 

; This creates a process at j.jme  her node i' 
; the network, returning an object 'hich, when 
; applied as a function to two arg.*.-rtsr 
; evaluates a linear expression on 
, arguments. 

(define (linear-evaluator al bl) 
(parallel-lambda t (x y) ':any-other 

((a al) (b bl)) 
(+ (* a x) (* b y)))) 

' 

1 

\ 

Figure 5-2: MULTICAST-MAP-NO-REPLY: 
Samples from the execution of the 
ACTIVATE-LOCATIONS program, 
showing how the multicast message is 
distrihi' ,(i and how the processors 
receiving the message are activated. 
Sim 'no reply is required, the 
compulsion just dies out once the 
distributed programs are run. 
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MULTICAST-MAP (see Figure 5-3): 
I This sends a message to each location 
; in the list SITES, asking it to return 
; its location. 

(define (identify-yourself sites) 
(multicast-map (lambda 0 *here*) sites)) 

-kuu 

momam 

Figure 5-3: MULTICAST-MAP: Samples from the exccutior of the IDßMTIHy-tl 'JRSF' I 
program.  The multicast method is distributed as in Figure 5-2, but in Lii>      .m^li the 
processors must send a value back to the requesting ptocess.   T>»« net.'        ,ccomr<; 
congested as all the processors respond thei gradually return; U re.i :    A^ .. 's-ap 
reach their destination. The notion of a network "hot-spot" U dnrly    inoi   : afe 1. 
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PIPELINE: 

; This sets up a pipeline across the bottom and 
; up the right-hand side of the processor array. 
; This trivial pipeline simply adds 1 to the 
; input value at each stage and passes the result 
; on to the next stage.  It also prints out the 
; result at each stage, using a printing 
; mechanism "outside" the simulation. 

(define (make-test-pipeline) 
(pipeline 
(si (x) ' (1 6) 
(s2 (x) ' (2 6) 
(s3 (x) ' (3 6) 
(s4 (x) ' (4 6) 
(s5 (x) ' (5 6) 
(s6 (x) ' (6 6) 
(s7 (x) ' (6 5) 
(s8 (x) ' (6 4) 
(s9 (x) ' (6 3) 
(slO (x) 

((a 
((a 
((a 
((a 
((a 
((a 
((a 
((a 
((a 

(sll (x) 
' (6 2) 
' (6 1) 

D) 
D) 
D) 
D) 
D) 
D) 
D) 
D) 
D) 

((a D) 
((a D) 

(print 
(print 
(print 
(print 
(print 
(print 
(print 
(print 
(print 
(print 

(+ a 
(+ a 
(+ a 
(+ a 
(+ a 
(+ a 
(+ a 
(+ a 
(+ a 

( + 

Part II, entitled MONAD; A Hierarchical Morfri Paradigm 
for Reasoning by Anabgy, describes a methodology for ana- 
logical reasoning. The philosophy for the implementation 
in progress is described for the problem solving strategy 
x))) 
x))) 
x))) 
X))) 
X))) 

ä X))) 

I 

(print (+ a x) )) ) ) 

□□□□□□ □□□□□□ 
ll 1 I 1 I  

□□□□□□ 
t          

\ 

SSgSSI 
Figure 5-4: PIPELINE: Samples from the execution of programs constructing and using a CAREL 

software pipeline. The pipeline runs along the bottom and up the right side of the 
processor array. The pipeline is constructed in two passes. The first pass (a) establishes 
a process at each site and the second pass (b) links the processes together. The execution 
of the pipeline on a single argument (c) shows data flowing through the pipeline using 
only local communication. The last figure (d) shows that multiple data items may flow 
through the pipeline simultaneously, keeping multiple processors busy. 
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6. Implementation 
CAREL is implemei.ted by a "semicircular"1 interpreter, 

implemented in Zetalisp and drawing heavily on the CARE 
simulator. Details of the representation will appear in a later 
paper [Davies 86]. These include the representation of CAREL 
datatypes in terms of Lisp and CARE primitives, the use of a 
"global" environment (full copies of which exist at each 
processor) and processor-local environments, and the interface 
to the CARE hardware simulator. 

7, CAREL and Other Languages 
CAREL was strongly influenced by three other languages: 

QLAMBDA [Gabriel and McCarthy 84], Par-Alfl [Hudak and 
Smith 86], and Actors [Agha 85]. QLAMBDA provided the 
idea of having two kinds of parallelism (which Filman and 
Friedman called farallelism by lexical elaboration and 
parallelism by cexplicit processes). CAREL addresses the 
question, "What would QLAMBDA look like on a distributed- 
memory multiprocessor?". 

Par-Alfl provided the notion of a dynamic variable $SELF 
that a process could use, reflectively, to determine where it was 
executing. The part of CAREL that implements parallelism by 
lexical elaboration is very similar to Par-Alfl. CAREL adds 
the ability to deal with processes as first class objects. 

CAREL differs from Actors in its emphasis on discretionary 
parallelism and in its reliance on the programmer to manage 
process resource allocation. These are consequences of 
CAREL's design as simple extension of an existing serial Lisp. 
CAREL's primitives for concurrency and locality are powerful 
enough to implement a wide variety of interesting programs, 
but still provide less concurrency, less capability for managing 
synchroniation, and less theoretical elegance than Actors. For 
example, CAREL enforces synchronization at the inputs and 
outputs of a function or closure: when APPLY is invoked, all 
the arguments must have been pre-evaluated, and multiple 
outputs are considered to be generated in a single list. In the 
Actor language SAL described by Agha, the inputs to an Actor 
may arrive at any time and in any order and outputs likewise 
may be generated asynchronously. 
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'Semicircular, not metacircular, because it is implemented in Lisp, but 
not in CAREL itself. 
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ABSTRACT 

Blackboards are an Al problem solving methodology. 
A blackboard system consists of a structured data base (the 
blackboard) holding Input and derived inferences and a 
collection of procedures for deriving inferences (knowledge 
sources). Each knowledge source is specialized to operate 
on some portion of the blackboard. The knowledge sources 
are invoked opportunistically as the information on the 
blackboard increases. 

The best known applications of the blackboard 
methodology have been In speech understanding and 
passive sonar data interpretation. ThR inputs in these cases 
were a single form of raw senoor data. But the 
methodology is also well suited to integrating multiple 
streams of fully reduced and qualitatively different data such 
as active radar track reports, passive electronic intelligence 
reports, and human intelligence reports about enemy 
intentions. 

This paper sketches the nature of the blackboard 
problem solving methodology with an emphasis on those 
features suiting it to such applications. The sketch is 
illustrated with examples from a relatively simple multi- 
system report integration problem. Relevant applications 
currently under development at Stanford's Knowledge 
Systems Laboratory are also described. 

INTRODUCTION 

"Multi-System Report Integration" Is an odd phrase. 
An alternative would have been "Sensor Data Fusion . But 
fhat Jhrase "often implies a less reduced form of mfonnation 
to  ntegrate than is Intended here. The reporting systems In 
his pane   a e presumed to reduce the data they sense as 
ufyas'fs practical with only that data available. The degree 

nf nrocessinq can vary from 8, stem to system. For a radar 
backing system   the reports would be samples of on-gomg 
tracks IntegratTng ail measurements up to the present. For 
an  ELINT  sys em  dealing   with   Intermittent  emissions,  the 
feoortfT  might    be    just    current    emitter    and    bearing 
characteristics      And   for   a   human   intelligence   gathering 
Jstem  the reports might be informed guesses about near- 
term enemy intentions. ,   . ,hD 

"Sensor Data Fusion"  also usually  implies that the 
information   to   be   integrated   appears   at   comparable  time 
n er^als or is static. But the reporting systems m this pape 
are presumed to provide reduced data over a wide range of 
fime Tnte^vals    The   radar,   ELINT,   and   "humint"   systems 
mentioned  abS

ove  could  produce  reports  at  very  different 
Nervals with very different degrees of regularity. Assuming 
hat some reports are locally of comparable frequency while 

others are locally static information is Procrustean. 

This'woVk   was   supported    by   the   Defense   Advanced 
SarrhProiects    Agency,    Je ^NASA-Ames    Research 
Center,    Boeing    Computer    bervices.,    auu 
Institutes of Health. 

"Blackboards" refers to a particular Al problem 
solving methodology. The best known applications of the 
blackboard methodology are HEARSAY-ll a speech 
understanding system (2), and the HASP/SIAP sonar da a 
interpretation system (4,5). These applications effectively 
processed regular streams of data from * single sensor^ 
treating any other information as locally static But the 
blackboard methodology Is more generally applicable In 
oarticular, it provides a convenient framework for integrating 
maximally reduced information from multiple sources with 
different temporal characteristics. Just what is needed for 
multi-system report integration. 

In the first section below, the fundamental features of 
blackboard systems are described abstractly. A consistent 
set of examples are used In the following section to clarity 
those features in context of multi-system report mtegratioa 
The next section reviews those aspects of the blackboard 
methodology particularly suited to multi-system report 
integration. The last section briefly describes work in 
progress at Stanford's Knowledge System Laboratory on 
two more ambitious examples. It also explains how that work 
is embedded in a larger effort. 

NATURE OF BLACKBOARDS 

The     blackboard     problem     solving     methodology 
oriainated   approximately   10   years   ago   and   has   been 
evolving ever since. The hallmarks of a blackboard system 

are: 

. A global data store holding input data and 
hypotheses about the solution of the problem 
derived from that data. Related information is 
kept together. This data store is known as the 
blackboard. 

. A collection of procedures for deriving 
hypotheses about the solution of the problem 
from the input data and/or from other 
hypotheses. Each procedure is specialized to 
operate on a particular portion of the 
blackboard. These procedures are known as 
knowledge sources. 

. A mechanism for invoking a knowledge source 
on relevant parts of the blackboard. A 
knowledge source is invoked on a particular 
piece of the blackboard when the invocation 
would incrementally advance the solution of the 
problem. This mechanism Is known as the 
.ontrol structure. 

Each of these hallmarks Is described abstractly in the 
remainder of this section with simple examples appearing in 
the next. 

The blackboard holds the state of the problem 
solving system as the solution evolves. In conventional 
terms," the dimensionality of the state varies witu time^The 
elements may be discretely or continuously valued. And the 
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elements change values at discrete times. But such 
observations miss the most significant feature of the 
blackboard,   it structures the information It holds. 

Closely related input data or hypotheses are 
collected together in the form of blackboard nodes having 
certain attributes and values for those attributes. Related 
nodes form blackboard levels. Ail the nodes in a given 
level having the same attributes but (potentially) different 
attribute values. Levels can in turn form hierarchies of 
analysis or abstraction, usually with Input data nodes at the 
base of each hierarchy. The most common nodal attributes 
are links between nodes on different levels. Such links 
connect hypotheses to input data or other hypotheses 
which support them. They can be links up and down levels 
within a hierarchy or they can be across hierarchies. 

Knowledge sources transform the state of the 
problem solving system by adding nodes to the blackboard, 
by removing them, or by modifying their attribute values. 
Knowledge sources are effectively parametric procedures 
for transforming the state. A knowledge source could be 
Invoked on any node at a given level or a tuple of nodes at 
one or more levels. It operates only on the node(s) upon 
which It is Invoked plus those nodes linked directly or 
indirectly to them. Knowledge sources are also effectively 
typed procedures; a knowledge source can be invoked only 
on a node of a particular level or on a tuple of nodes, each 
of a particular level. This feature of knowledge sources 
provides them with a degree of modularity. In particular, 
knowledge sources do not interact directly. 

The procedure carried out by a knowledge source 
expresses knowledge of how to advance the problem 
solution. It is expressed in the creation, modification, and/or 
elimination of particular sorts of hypotheses In the form of 
nodes of particular levels, in this sense, a knowledge 
source is a specialist in the solution of some part of the 
overall problem. The details of the procedure can be 
expressed in any form. A typical form is a set of 
production rules and a policy for using them. 

Fach production rule specifies a logical condition on 
the attribute values of the node(s) upon which the 
knowledge source is invoked and an action to be carried 
out If that condition Is true. Both the condition and action 
can be compound. The value of a compound condition is 
TRUE If the values of ail Its component conditions have 
TRUE values. A compound action is simply a sequence of 
individual nodal creations, deletions, or modifications. 
Evaluating a logical condition or modifying a node may 
require the application of complex numeric functions to 
attribute values, in this way, production rules mix symbolic 
and numeric computations. 

Different policies for using a set of production rules 
allow at most one action to occur, or multiple actions but 
never the same one twice, or the same one repeatedly. In 
the first case, the rules are scanned In order of definition 
with the scan terminating immediately If a rule's action is 
carried out. In the second case, the logical conditions of 
the rules are all tested before any actions take place. Then 
any actions are carried out in parallel. The third case is 
simply the second case repeated until no logical condition 
Is TRUE. While this style of programming many seem 
bizarre at first. It has proved quite successful in past and 
existing blackboard systems. 

A knowledge source describes the procedure by 
which it changes the blackboard when Invoked. It also 
describes when It Is invocable. The most general form of 
this description is a (possibly compound) logical condition 
on attribute values of the node(s) upon which it could be 
Invoked, in this manner, a knowledge source resembles a 
production rule. The condition Is parametric In the same 
sense that each knowledge source Is parametric. As a 
result the same knowledge source may be invocable on 
several nodes or tuples of nodes simultaneously Each such 
combination of a knowledge source and a node or tuple of 
nodes is called a potential Invocation.    At any time, there 

are typically many potential invocations. The control 
structure determines the set of potential Invocations, picks 
one, and causes It to be carried out. 

Many blackboard systems do not use the most 
general form to describe when a knowledge source is 
Invocable. They use events and logical combinations 
thereof. An event is a summary of a blackboard change. A 
knowledge source posts the appropriate event or events 
when It completes. A pointer to the affected node is 
associated with each event. These systems may also use 
events for an additional purpose as explained below. 

The control structure is intended to operate in an 
opportunistic manner analogous to the manner in which 
people solve jigsaw puzzles. Initially, the puzzle solver 
scans for pieces with singular small-scale characteristics. If 
two such pieces have similar characteristics, they are 
tested for fit. Gradually, clusters of pieces accrete as the 
puzzle solver continues to scan through the unused pieces. 
Once the clusters become sufficiently large, scanning the 
pieces is replaced by searches for specific pieces to 
extend a cluster. But pieces plausibly belonging another 
cluster are tested for fit there If they are chanced upon 
during a search. Eventually, large clusters are recognized 
as connected on the basis of large scale characteristics and 
are jointed, if progress while searching for specific pieces 
bogs down, the puzzle solver reverts to scanning for pieces 
with similar characteristics for a time, it choses that activity 
which, at the moment, seems likely to make the best 
contribution to the overall solution of the problem. 

A variety of techniques are used by the control 
structures of different blackboard svstems to decide which 
potential Invocation would. If earned out, make the best 
contribution to the overall solution. The topic Is being 
actively researched One system has an additional 
blackboard for handling hypotheses about the best choice 
(3) and another allows all potential invocations to be carried 
out in parallel (6). 

Several blackboard systems use events in their 
control structures. After a particular event or sequence of 
events, particular knowledge sources are preferred to 
others. And they are prefered for invocation on the affected 
node or nodes. These same systems also use events to 
describe when a knowledge source is invocable. So the 
control structures of these systems need only attend to 
events and not to the blackboard nodes themselves. 

Some of these blackboard systems also use 
expectations in their control structures. Expectations are 
posted by knowledge sources just as events are posied 
Generally speaking, they are Instructions to invoke a 
particular knowledge source on a particular node or nodes 
when, if ever, a certain event or pattern of events occurt, 
involving the node(s). Expectations can also he negative. 
Such expectations cause a particular knowledge source to 
be Invoked If a certain event or pattern of events does not 
occur within a specified time interval. 

BLACKBOARDS ILLUSTRATED 

Consider the problem of producing a situation map of 
aircraft flying over an area of interest. The situation map Is 
based on track reports from an air surveillance radar 
tracking system, emitter/bearing reports from an EL1NT 
system sensing airborne radar emissions, and warnings from 
a human Intelligence system. The warnings are that 
particular aircraft or groups of aircraft may soon enter the 
area of interest with particular objectives in mind. The 
situation map should Identify the type of each aircraft as 
well as its current position and velocity. The radar track 
reports are regular for aircraft in the area of interest. The 
ELINT reports are intermittent by comparison. There are no 
reports unless an emitter Is on. And the detection range of 
an active emitter can depend on its type and, in some 
cases, on the aircraft's aspect.   ELINT reports are also less 
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Figure A Blackboard with 7 levels of nodes in 4 hierarchies 

accurate geometrically than radar reports. Intelligence 
reports are generally less frequent than the ELINT reports, 
but can be updated rapidly on occasion. 

Figure 1 illustrates a possible blackboard 
configuration during the course of solving this problem. 
There are seven levels on the blackboard, a typical number. 
The situation map and aircraft levels form one hierarchy of 
levels. Nodes on these two levels hierarchically express 
alternative hypotheses about the map of aircraft in the area 
of interest. Two situation map hypotheses exist in this 
case, both including the same two hypothetical aircraft and 
one Including a hypothetical third aircraft as shown by links 
between the corresponding nodes in the figure. One 
attribute of a situation map node is thus a set of component 
aircraft nodes. Hypothesis credibility is also a situation map 
node attribute. A posteriori probability would be a 
reasonable credibility measure. The value of that attribute 
is a function of the credibilities of the supporting aircraft 
hypotheses. 

The intelligence report level is treated as a separate, 
degenerate hierarchy in the figure. The figure shows two 
intelligence report nodes. Links indicate that one of these 
reports supports both situation map hypotheses while the 
second report supports only one of them. The credibility 
attribute value of each situation map node is also a function 
of the credibility of each intelligence report node linked to 
it. 

The radar track and radar report levels form another 
hierarchy. So do the ELINT track and ELINT report levels. 
A sequence of report nodes is linked to a corresponding 
track node to represent the hypothesis that they were all 
caused by the same object, aircraft or emitter.    Similarly, 

the links between the aircraft nodes and both kinds of track 
nodes represent the hypothesis that the tracks are all of the 
same aircraft. The credibility of ?n aircraft hypothesis Is a 
function of the credibilities of the two kinds of track 
hypotheses supporting it. 

It will prove useful later to have explicit definitions of 
certain attributes of radar report and radar track nodes. We 
do so In pseudo-computerese as follows: 

Level: radar-report 

Attributes: report-time 
track-identifier 
state-estimate 

North position 
East position 
North velocity 
East velocity 

state-covariance 

associated-tracks 

Level: radar-track 
Attributes: last-associated-report 

report-history 
track-credibility 

The names of the attributes suggest their intended 
meanings. But attributes are given pragmatic meaning by the 
way the attributes are manipulated by knowledge sources. 
They are analogous to the elements of a state vector In this 
sense. 

Knowledge sources embody knowledge about how to 
solve   a   problem.    Consider   the    following   fragment   of 
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i knowledge about radar tracking: 

A sequence of radar reports caused by a 
particular aircraft usually have the sarm track 
identifier. An exception may occur if two aircraft 
approach closely at some time, in which case the 
treck identifiers are swapped at roughly the time 
of closest approach. 

It can be converted into the following fragments of 
knowledge about collecting radar reports into radar tracks: 

Given a radar report node that is not 
associated with any radar track node and given a 
radar track node, if the radar report node's track 
identifier is the same as that of the radar track 
node's last associated radar report node, then 
associate them. 

Given two radar track nodes, if their histories 
of associated radar report nodes indicate a close 
approach, then create two new radar track nodes 
with histories composed by splitting the original 
track nodes' histories at the time of closest 
approach and rejoining them with the track 
identifiers swapped after that time. 

A  knowledge  source  based  on  the   first   of  these 
fragments is expressed in pseudo-computerese as follows: 

Applies-to: 
a-radar-track a-radar-report 

invocation-condition: 
associated-tracks of a-radar-report = 

empty-set 

Use-policy: 
ail-true-c ^e 

Production-rule 1: 
Condition: 

track-identifier of last-associated-report 
of a-radar-track = 

track-identifier of a-radar-report 

Action: 
last-associaled-report of a-radar-track 

:=   link to a-radar-report ; 
report-history of a-radar-track 

:== link to a-radar-report ; 
associated-tracks of a-track-report 

:= link to a-radar-track 

Here ":=" symbolizes assignment, ":==" signifies addition to 
a set, and ";" sequences simple actions In a compound one. 

The knowledge source is quite simple, with just one 
production rule. That Is atypical. Knowledge sources using 
production rules typically employ between ten and thirty 
production rules. A knowledge source realizing the second 
fragment would be more complex. It would include one or 
more production rules used to determine whether a possible 
close approach occurred and when. 

The details of any particular control structure are 
complex. And the motivation for that complexity is not 
apparent in an example Involving just one or two knowledge 
sources and a few nodes. So no attempt is made to include 
control structure details In this illustration. A sketch of the 
blackboard changes one would prefer under particular 
circumstances provides a better feel for the control 
structure's gross behavior. It also Illustrates how the 
different components of a blackboard system can come 
together to solve a problem. 

Assume that no reports have been received of any 
sort by the blackboard system. Then one situation map 
node exists with no links to aircraft nodes. This represents 
the hypothesis that no aircraft are In the area of Interest. 
Then an Intelligence report is posted on the blackboard. It 
warns that some number of aircraft of a particular type or 

types are expected to enter the area during a specified 
time interval across a specified portion of the area's 
boundary. Aircraft nodes are then created with the 
appropriate types, ail linked to a new situation map node. 
The credibility of this new situation map nude is the same 
as that of the intelligence report. The Ciedibility of the old 
situation map node is appropriately adjusted downward 

The radar track attribute of each new aircraft node is 
not filled In at this point. There are no radar track nodes 
yet. But an expectation is established that later examines 
newly created radar track nodes. If one is created in the 
appropriate time Interval and the appropriate place, a link to 
that radar track becomes the value of the associated track 
attribute. If the expectation goes unsatisfied, the aircraft 
node is deleted and the credibility of each associated 
situation map is reduced. Whenever the credibility of a 
situation map node slips below a certain level, that node is 
also deleted. Any aircraft nodes linked only to that situation 
map node are also deleted. The credibilities of all 
remaining situation maps are then re-normalized. 

Receipt of the first few radar track reports causes 
them to be posted on the blackboard, but no more. Only 
when three report nodes having the same track identifier 
appear on the blackboard is a radar track node created to 
represent the hypothesis that they are from a single aircraft. 
In this manner, the creation of false radar track nodes based 
on radar false alarms is largely avoided. The resulting node 
may then be linked to an existing aircraft node by the 
aforementioned expectation. 

Falling that, a new aircraft node is created to which 
the new radar track node Is linked. Then the cross-product 
is formed of the old situation map hypotheses and the pair 
of hypotheses that the radar track was or was not caused 
by an aircraft. One new situation map node is created 
corresponding to each existing one. The new situation map 
nodes are copies of the old nodes, each with a link to this 
aircraft node added. Some portion of the credibility of each 
old situation map hypothesis must also be transferred to the 
corresponding new hypothesis. At this point, the knowledge 
source which removes insufficiently credible situation map 
nodes is again applied to reduce the number of situation 
map hypotheses maintained. 

The accretion of ELINT reports into ELINT tracks is 
similar to that of radar reports into radar tracks. But the 
creation an of ELINT track does not satisfy any expectations 
or trigger the creation of an aircraft node. Rather it triggers 
a search for aircraft nodes of a type which could produce 
the sensed emission and which has a history of estimated 
positions (implicit In the radar tracks' report history) 
consistent with the ELINT track's history of bearings 
(similarly implicit). The ELINT track node is linked with any 
and all such aircraft nodes. The credibility of any such 
aircraft nodes is increased appropriately to reflect evidence 
that the hypothesis ii represents Is correct. Such a 
credibility increase must also be propagated up to the 
situation map nodes. Creation of a new aircraft node 
triggers a similar search for supporting ELINT tracks. 

Prioritization among the knowledge sources carrying 
out the aforementioned actions can be relatively simple. The 
arrival of a new input datum should trigger a locus of 
activity on the blackboard which propagates up the network 
of levels, with pauses to spread down along different 
hierarchies as appropriate. All of the activity directly 
triggered by one datum should be completed before the 
next Input datum is posted. To keep the amount of Inter- 
input processing reasonable, the diversity of hypotheses 
created In the normal course of processing must be limited. 
Thus as additional radar reports arrive, the posted nodes 
are simply associated with radar tracks on the basis of 
track identifiers as in the above knowledge source example. 
It would be possible to create track nodes expressing all 
possible hypothetical combination of track reports without 
regard to track identifiers. But the processing required to 
create, qualify, and eventually delete most of these nodes 
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would    be    wasteful    given    the    number     of    possible 
combinations. 

But when should the control structure Invoke the 
knowledge source which tests for a close approach of two 
aircraft and creates new track nodes to reflect a possible 
confusion of track identifiers? One answer would be after 
the completion of every invocation of the knowledge source 
associating a new radar report with an existing radar track 
But that would mean frequent invocations, usually producing 
no change. An alternative Is to invoke that knowledge 
source only when some other, less frequent, occurrence 
suggests the possibility of a close approach by two aircraft 
and consequent track identifier confusion be considered. 

In the scheme described above, ELINT tracks are 
associated with an aircraft if they are consistent with the 
aircraft's hypothesized type and with the radar track. If the 
tracks are geometrically consistent but the nature of the 
tracked emission is inconsistent with the aircraft type, one 
possibility Is that the aircraft hypothesis was wrong with 
regard to type and should be discarded or modified. But 
another possibility is that the radar track history actually 
corresponds to two different aircraft at two different times 
due to a track Identifier confusion during a close approach. 
If ELINT tracks are already linked with the aircraft node as 
support for the hypotheses, the possibility of a close 
approach should be Investigated first. 

The above sketch does not reflect the only manner 
In which the example problem mipht be solved. It reflects 
various options for incrementally advancing the problem 
solution. Choosing which option to use In a particular 
situation can require subtlety if one wishes to be 
computationally efficient. Not illustrated are the additional 
subtleties of advising the control structure how to achieve 
that sequencing. Experience is required to make such 
choices wisely. Experience is also important In the 
construction of knowledge sources, the choice of 
blackboard levels, and the selection of nodal attributes. 
Simple examples can only suggest the subtleties involved. 

SUITABILITY OF BLACKBOARDS 

The above sketch of possible blackboard changes 
illustrates a major reason why the blackboard problem 
solving methodology is suitable for multi-system report 
integration. The ordering of changes adapts appropriately to 
the arrival of very different sorts of input data in different 
orders. 

If any intelligence report involving a particular aircraft 
arrives after radar track reports corresponding to it, the 
hypothesis that it exists will still have been formed. The 
credibility of the situation map hypotheses supported by 
that aircraft hypothesis will be Increased once the 
intelligence report is incorporated into the support for those 
situation map hypotheses. ELINT reports are not discarded 
Immediately If they do not confirm an existing aircraft 
hypothesis. They are saved for possible confirmation in the 
future. And exceptional occurrences need be considered 
only when evidence suggests they occur. The close 
approach of two aircraft leading to track identifier confusion 
beinp the case in point. 

This adaptability In the operation of a blackboard 
system is a consequence of the control structure's 
opportunistic invocation of knowledge sources, the 
knowledge sources' modularity of forming or altering 
hypotheses, and the blackboard's structured composition of 
hypotheses. Any knowledge source can be Invoked after 
any other completes, depending on the state of the 
blackboard, i.e., of the problem's solution, at that point in 
time. 

The blackboard methodology also provides a means 
for managing the complexity of large multi-system report 
integration problems. Knowledge sources are modular In 
their applicability to all nodes 01 a given level, or tuples of 
given levels, but only to those nodes. Modularity is also 
achieved    by   expressing   a   partial   problem   solution   as 

hypotheses supported by a hierarchy, or a set of linked 
hierarchies, of sub-hypofheses ultimately based on input 
data. Solution to individual parts of a particular multi-system 
report integration problem can be conceptualized and 
implemented without dwelling on the details of how the 
results of solving one part are used in the solutions of other 
parts. 

Standard algorithms can be used where appropriate 
to solving part of the problem. But special pre- or post- 
processing may be required. Such pragmatic features of a 
standard algorithm's use in a particular context can be 
isolated from the algorithm itself by encapsulating them in 
separate knowledge sources. Explicitly separating formal 
and heuristic aspects of a problem's solution can highlight 
the heuristic aspects. It illuminates the assumptions, explicit 
or implicit, upon which they are based. Modifying the 
heuristic aspects without compromising the formal aspects 
also becomes easier. 

WORK IN PROGRESS 

The Heuristic Programming Project Group of 
Stanford's Knowledge System I aboratory Is trying to 

« realize a new generation of software 
architectures using parallel computation to 
speed up Al applications and 

• specify multiprocessor system architectures for 
carrying out those computations efficiently. 

Among the issues being investigated are 

• recognition of opportunities for parallelism In 
the solution to a problem and 

• expression of that potential parallelism in a 
problem solving framework that can exploit It. 

In particular, this effort is focusing on signal understanding 
problems and blackboard-like frameworks. 

Blackboard systems appear to be Intrinsically parallel. 
At any time, there can be many potential invocations of 
knowledge sources. Those involving different nodes seem 
eligible for parallel execution. Within knowledge sources, 
production rule conditions could be evaluated In parallel. 
And some production rule actions could be safely executed 
In parallel. Currently two different blackboard systems are 
under development, each investigating a different approach 
to expressing opportunities for parallel computation or 
requirements for serial computation. Applications of these 
experimental systems used In evaluating their effectiveness, 

The focus on signal understanding problems follows 
in large part from the focus on blackboard systems. The 
two mate well. But signal understanding problems are 
important in their own right. When signal understanding is 
defined broadly, it includes sensor data fusion and multi- 
system report integration. That class of problems is large 
and of considerable interest to the military. 

Two signal understanding problems have been 
investigated so far as part of the current project, They are 
referred to as the TRICERO/ELINT and AIRTRAC problems. 
While generally similar, each problem Is expected to push 
the research into recognizing opportunities for, and 
expressing, parallel computation in different directions. 

In the TRICERO/ELINT problem, streams of ELINT 
emitter/bearing measurements must be combined to 
estimate the flight paths and operating modes of non- 
cooperating aircraft. The problem is named after ESL's 
TRICERO blackboard system for solving a problem of which 
this one is just a component. The knowledge of how to 
solve the TRICERO/ELINT problem has already been worked 
out, albeit without attention to opportunities for parallel 
computation. So work on this problem Is further along. 
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The AIRTRAC problem is recognizing aircraft fiying 
across a national border and heading for particular airfields 
used by smugglers. The smugglers' aircraft must be picked 
out of the normal air traffic across that border. To solve 
the problem, aircraft destinations must be recognized not 
just flight paths and types, Streams of radar reports from 
multiple radar systems are avail-'jle. But the low altitude 
coverage of those radars is assumed to be limited and the 
smugglers are assumed to know the coverage limits So 
smugglers can try to avoid detection. They can also 
maneuver their aircraft evasively to disrupt tracking. Such 
behavior is a sure sign of a smuggler's aircraft, but makes 
the recognition of a destination difficult. 

To complicate the AIRTRAC problem further 
distributed aeroacoustic tracking systems using modest 
batteries of acoustic sensor arrays(1,7) are placed across 
large holes In radar coverage These systems provide 
tracking reports within their limited coverage. Because such 
systems are passive and readily moved, the smugglers are 
assumed to be unaware of their coverage and so unable to 
avoid detection by these systems. These systems also use 
acoustic signature information to provide aircraft class 
estimates along with tracking reports. 

Initial solutions to both problems should be 
completed in both experimental blackboard systems by the 
eno of the year. Moreover, each solution should have been 
appl.ed to several problem scenarios on realistic simulated 
mult-processors. These experiments will determine how 
much parallelism was realized and may suggest alternative 
ways of realizing more parallelism. 

< 

REFERENCES 

(1) JM. Delaney and R.R. Tenney, "Broadcast 
Communication Policies for Distributed Aeroacoustic 
Tracking", Proceedings of the 8th MIT/ONR Workshop 
on C3 Systems, Cambridge, MA, July, 1985, 
pp.195-199. 

(2) L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R. 
Reddy, "The HEARSAY-il Speech Understanding 
System: Integrating Knowledge To Resolve 
Uncertainty", Computing Surveys, v. 12, December 
198C, pp. 213-253. Also reprinted in (8). 

(3) B.Hayes-Roth, "A Blackboard Architecture for Control", 
Artificial Intelligence, vol. 26, no. 3, July 1985 pp 
251-321. 

(4) H.P. Nil and E.A. Feigenbaum, "Rule-Based 
Understanding of Signals", in D.A. Waterman and 
F. Hayes-Roth, Pattern-Directed Inference Systems. 
Academic Press, San Francisco, 1978, pp. 483-501. 

(5) H.P. Nil, E.A. Felgenbaum, J.J. Anton, and A.J. 
Rockmore, "Signal-to-Symbol Transformation: 
HASP/SIAP Case Study", Al Magazine, vol. 3, no. 2, 
Spring 1982, pp. 23-35. 

(6) J. Rice, "POLIGON: A System for Parallel Problem 
Solving", Knowledge Systems Laboratory Technical 
Report 86-19, Stanford University, 1986 

(7) R.R. Tenney and J.R. Delaney, "A Distributed 
Aeroacoustic Tracking Algorithm', Proceedings of the 
1984 American Control Conference. San Diego, CA, 
June 1984, pp. 1440-1450. 

(8) B.L. Webber and N.J. Nilsson (eds.). Readings In 
Artificial Intelligence, Tioga Press Company, Palo Alto, 
1981. 

-184- 



r ̂ ^ ^^P 

AIDE : A Distributed Environment for Design and Simulation 

•** Working Paper ••* 

Nakul P. Saraiya 
Knowledge Systems Laboratory 

Department of Computer Science 

Stanford University 

April, 1986 

Abstract 
AIDE is an environment that provides facilities for the design and 

simulation of systems, specifically multiprocessor computer systems. 

In addition, AIDE has facilities to do distributed simulation of such a 

system using a network of hosts. We are currently evaluating the 

performance of the distributed simulation algorithm on a network of 

workstations for a simulated multiprocessor system. 

1. Introduction 
A design system is expected to provide a framework for a designer to 

adequately implement representations of certain interesting physical 

or abstract entities that perform some function. In doing so, it must 

provide a suitably precise formalism and an integrated set of tools 

allowing the designer to conveniently specify, modify and evaluate 

such representations 

framework. 
1,9).    AIDE-' is an attempt to provide such a 

AIDE evolved in the context of the Advanced Architectures for Expert 

Sys-, project of the •iristic Programming Project. The project 

requ;;' s simulating a l;iT$e distributed-memory message-passing 

MIMD architecture (CARE J|) running several additional software 

layers (for example, CAOS, POLIGON, and ELINT). This led naturally 

to investigating the -itility of distributed simulation both as a means 

of reducing simulation turnaround time and in ensuring that the 

simulated machine was being programmed fairly (without making use 

of the real shared memory available on the host machine). 

Furthermore, implementing the distributed simulation algorithm was 

in itself a useful exercise in symbolic programming of a multiprocessor 

system, addressing some of the same concerns as an application 

written for CARE. 

This document describes the essential aspects of the AIDE system. The 

first part of the document concerns design representation and capture, 

and the second part deals with design validation, specifically 

sequential and distributed simulation. More detailed documentation 

for the system is contained in the user's manual |7]. 

2. Design Capture 
Design capture denotes the process of specifying a representation of an 

abstract entity to a design system. Below we discuss the formalism 

and supporting tools provided by AIDE to facilitate this process. 

'Support for this work was provided by the following : DARPA/RADC, under 

control F30602-85-C-0012; NASA, under contract number NCC 2-220; Boeing 

Computer Services, under contract number W-266875. 

AlDR Is-a Distributed Environment. 

2.1. Representation 

Every real-world or abstract entity may be characterized by its 

structure and its behavior. A structural view of an entity is any 

organizational view of the entity that decomposes it into (functionally 

or otherwise) semi-independent components. The behavior of an 
entity is a conceptual formalization of the way certain interesting 

properties of the entity change over time; different formulations 

(possibly emphasizing different concerns) lead to different 

specifications of behavior. A design or model in AIDE is exactly the 

totality of its specified structure and behavior. 

The process of design is "partially-structured" [l]; designers often 

work both top-down and bottom-up. AIDE provides a structural 

formalism that supports this notion. 

2.1.1. Hierarchical Partitioning 
The well-known technique of hierarchical decomposition is one of the 

ways in which a designer makes the process of designing a complex 

system more tractable. For example, PALLADIO |l] viewed the process 

of circuit design as the incremental refinement of a functional 

description of the circuit into its physical realization. Here the basic 

design refinement step was partitioning the circuit at some abstract 

structural level into constituent components specified at either the 

same level or a less abstract level. 

AIDE supports hierarchical partitioning directly and simply by 

allowing the designer to define a component3 structurally in terms of 

arbitrary (perhaps incompletely specified) subcomponents. 

2.1.2. Design Libraries 

Complementing hierarchical partitioning is the use of prototypes to 

build on previous work |4, l]. This allows the designer to rapidly 

create new designs by modifying existing components or by applying 
new composition rules to extant components. AIDE supports this idea 

through the use of libraries, which are collections of prototypical 

components that the may be stored between sessions and re-used in 

the creation of new components. 

2.1.3. Behavior 
Component behavior specifications must be efficient both in 

expression and simulation. AD > uses the ZETALISP [10] language and 

programming environment directly in addressing both these concerns, 

paying the penalty of expecting the user to be a reasonably competent 

LISP programmer. 

3 
A component is the basic unit of design in AIDE. 
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2.1.4. Implementation 

It is natural to use the object-oriented programming paradigm to 
implemsnt the components of a design, direc'ly mapping from entities 
in some "real" world (of the designer's choosing) to the data objects 
manipulated by the design system; AIDE uses the objec(>oriented 
programming facilities provided by the FLAVOR system [10], Every 
component is an instance of some component class, where the class 
defines a component type and is implemented as a flavor* Structure 
is specified in terms of these flavors and behavior in terms of methods 
relevant to them. 

2.2. Structure 

To the design system, a component's structure consists of two parts : 

• the component's own properties, and, 

• the component's relationships with other components. 

2.2.1. Component Properties 

The designer sees a component as a "black box" of a particular type 
that has a collection of local named attributes with associated values. 
The allowable attributes of a component are defined by its type, while 
the values on these attributes may (and usually do) differ for each 
component instance. A subset of these properties5, the state 
properties, are used by the behavior of the component. Special state 
properties known as ports (input and output) constitute a 
component's interface to its environment. Other automatically 
inherited properties are used by the system to maintain and display 
components. 

AIDE provides the def component form for a designer to define the 
properties of a new component type and it has a graphical editor to 
capture and alter display properties held by components.6 

Figure 2-1 is a simple example of the component class declaration for 
an abstracted D-type nip-flop. Each instance of d-fllp-flop has 
three mput ports (named d, clock, and clear), one output port 
(named q), and no internal state. 

(defcomponont D-Fllp-Flop 
(: Input D Cloclc Clear) 
(:output Q) 
(:documentation  -ClaBs of posltlve-edge-trKwered D-tra. 

nip-flop with direct clear/ Uses  •hlgs,   'lo^Md   'x    " 

anf ^Ätpu^r" "'^ '""""■ "^ "™™°* 

Figure 2-1:    Definition of the d-fllp-flop Component Class 

For a complete description of the def component form see (7); suffice 
it   to   say   here   that   it   translates   into   the   appropriate   FLAVORS 
declarations. 

In the usual inheritance network. 

We use the term "properties" loosely to mean the collection of attributes and their 
values. 

A large part of the graphical interface was modelled after that used by HEUos and 
PALLADIO. 

2.2.2. Structural Relationships 

There are two structural relationships that hold between components 

• Composition. Any component may be a subcomponent 
of exactly one component and every component may be 
composed of any number of subcomponents. When a 
component is composite (made up of subcomponents), it 
may share its ports, for behavioral purposes, with those of 
its subparts through the "connection" relation. 

• Connection. This relation holds between individual 
ports of two components and is specified by lines which 
connect the relevant ports. Lines may connect an output 
port of some component to an input port of another 
component except when connecting ports between a 
composite component and one of its subcomponents, in 
which case the connected ports are of the same type (port 
sharing). Usually a line connects just two ports; contacts 
are special entities that provide fan-in and fan-out 
capabilities lor lines. 

These  structural   relationships   are   captured   by  AIDE  through  its 
graphical structure editor. 

2.2.3. Prototypes 

Traditionally, object (frame) systems have had difficulty in 
implementing a general mechanism for capturing complex 
relationships that must hold between sets of instances of various 
classes. The "connection" structural relation is just such a relation 
- it is difficult to declare this information in the class definition of a 
composite component. The solution we have adopted in AIDE is to 
store connectivity information about a composite component type as a 

canonical" instance of the relevant component class; this canonical 
instance .s called the prototype of its class. The structure of a 
component class is therefore fully specified by the existence (in the 
environment) of both a def component declaration and a prototype. 

8.2.4. The Editor 

A component in AIDE may be accessed through the graphic^based 
menu-dr.ven interface which provides operations for viewing and 
selecting components. Top-level components (devices) are maintained 
in book-keeping entities known as worlds, each of which may have 
several windows [vttmpeH») viewing the relevant device. The editor 
uses the graphics-based interface in providing operations to create 
new devices and edit their structure, allowing the designer to create 
alter and delete components, lines, ports and contacts. There are also 
faciht.es to copy devices into permanent file storage, prototUe devices 
for inclusion m libraries, and load devices and libraries from file A 
complete desciption of the operations provided by the editor may be 
found in [7]. ' 

2.3. Behavior 

Behavior is defined by AIDE to be the interaction of a component with 
its environment over (simulated) time. A behavioral specification 
applies to a class of component; it is implemented by a method on the 
class that interacts with the simulator to generate the time-varying 
behavior of a component of that class. Since the simulator in AIDE is 
event-driven, this interaction takes the form of the consumption and 
production of events, which are encapsulations of the time-stamped 
state changes in the simulated system. Behavior for a component is 
therefore simply a specification that relates values on input ports with 
values on output ports over (simulated) time; components whose 
output values depend on a history of input values mak. use of their 
internal state properties. 
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AIDE provides the def behavior form to declare the behavior of a 

component class. Events relevant to a component are consumed when 

the simulator propagates the specified state change and then invokes 

the relevant component's behavior method; the simulator is informed 

of new events through the execution of the assert function within a 

behavior method, which specifies a change that will be true of some 

state of the component at some future simulated time. 

2.3.1. An Example 
Figure 2-2 is an abstract behavioral specification for the d-flip- 

flop component class. The signal on the d input is transferred to the 

q output when the i.lock input goes from low to high. If, however, 

the clear input goes lo,', then so does the q output. The q output 

is unaffected by the d input whenever the clock is stable. The clock 

period is two simulated time units, and input setup time is ignored. 

(defbetiavlor D-Fllp-Flop  (Ignore state signal now) 
Clear    Cloclt    D          I    Q 
 1  

low        X I I     low 
high      t M-S*     I    Illgl1 

high low      I     low 
high      low        i I    QO 

(selectq state 
(Cloclt 

(when   (eq  (state-value   (port-signal Clear))   'high) 
(when  (eq signal   'high) 

(when  (<  (- now  (state-time  (port-signal D))  2)) 
(assert q  (state-value  (port-signal D)) 

(H- now)))))) 
(Clear 

(when  (eq dlgnal   'low)   (assert a  'low (1+ now)))))) 

Figure 2-2:    Behavior Declaration for the d-flip-flop Class 

There are a couple of points worth noting in the example of Figure 

2-2. 

• The style illustrates one of the benefits of event^driven 

simulation : only the state changes are propagated as 

opposed to recomputing the state of the entire system at 

every step [8]. 

• T .e declaration has an explicit notion of the passage of 

time; simulated time units have user-defined semantics 

and it is up to the designer to ensure that the units be 

used consistently by different components. 

behavior of the shift-register, that is, the composite behavior of its 

flip-flops; later, when using a shift-register in the design of a control- 
unit, we might use a "top-level" characterization of its functionality. 

How does composite behavior work? During simulation, events on 

output ports are immediately transformed into events on the furthest 

participating connected input ports (if any), and then forwarded to 

the simulitor to be consumed by the relevant component at the 

specified simulated time.7. Hence, the effects of a local change 
propagate through the system along connection paths, achieving the 

required overall system behavior. 

2.3.3. Behavior Requirements 
A top-level behavioral specification is usually required to satisfy the 

following properties |2, 5] : 

1. Functionality. Events generated on output ports of a 

component depend only on events consumed on its input 

ports and internal states. 

2. Realirability. An event generated for simulated time ( 

cannot depend on any events consumed by the component 

for simulated times greater than (. This simply reflects 

the notion that no real system can predict the future. 

3. Finite Delay. An event on an input port or internal 

state with simulateo time ( cannot generate events on 

output ;'orts with simulated time less than t. This reflects 

the idea that no real system can alter the past. 

A quick inspection of Figure 2-2 should verify that the behavior 

specified for d-f lip-flop satisfies these properties. 

3. Design Validation 
Once a design has been specified to a design system, the designer must 

be able to validate it by ensuring that it meets both its functional and 

performance goals. In the absence of formal verification methods, 

simulation is a common technique to establish the functionality of a 

design [81. Furthermore, since simulation (unlike emulation) 

automatically carries with it an explicit notion of time8 it can also be 

used to compare the performance of a design with other designs or 

real systems that realize the same function; this is often as important 

to the designer as verifying its functionality [2]. 

• The state changes specified by the events for a given 

simulated time are all made before behavior methods are 

invoked on the events. (This, however, excludes zero- 

delay events generated by the behavior methods, which 

must be dealt with more carefully. These are not 

considered in this report, but are handled by AIDE.) 

Hence, there is no need to specify a clause to handle a 

change in d occurring at the same simulated time as a 

Cloclt transition from low to high, where the clocK 

event is "processed" earlier in real time than the d event. 

2.3.2. Composite Behavior 
The benefits to be gained by hierarchical simulation are well-known; 

once the behavior of a multi-component system is verified, the 

designer may reduce simulation turnaround time by abstracting this 

behavior into a less detailed behavior that realizes the same function. 

AIDE directly supports this by allowing a designer to specify whether a 

composite component's behavior is its own defined behavior ("top- 

level") or the compounded behaviors of its connected subcomponents 

("internal"). For example, if we designed a shift-register from D-type 

flip-flops, we might initially verify the design using the "internal" 

3.1. Discrete Event Simulation 
While there are various types of simulation (see [6] for a good 
characterization of simulation methods), we are concerned here only 

with discrete-time, eventrdriven simulation. Before proceeding with 

our discussion, it is useful to consider some definitions. 

3.1.1. Consistency and Acceptability 
An event is an atomic state change in the simulated system during 

the execution of a simulation. It is represented as a record consisting 

of (1) a component. (2) the state or port of the component that 

changes, (3) the value that it gets, and (4) the simulated time of this 

change. Two events are equivalent if they are isomorphic (thus they 

represent the same state change to the simulated system, though for 

different executions of the simulation). 

7Event transformation is done cooperatively by the components themselves through 

essage-passing 

As construed by the designer. 
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Simulated time is the designer's abstraction of real time, so that 
the state of the real system (Jevice) at any real time corresponds to 
the state of the simulated system (device) at the corresponding 
simulated time |6]. Simulated time takes on non-negative, discrete, 
and, for convenience, integer values. 

The simulation of a component (device) refers to the execution of a 
simulation of a component (device) under the control of some 
simulation algorithm which regulates the consumption and production 
of events relevant to that component (device) over real time. For a 
given simulation, there is an associated set of events. We say that 
two simulations are equivalent if they produce equivalent event sets 
(given that the device being simulated is deterministic); two 
simulation algorithms are consistent if any two simulations under 
the control of each algorithm, respectively, are equivalent. The 
actions of a simulator to achieve consistency (using a simulation 
algorithm) are collectively called synchronisation; hence the 
algorithm is often called a «i/nc/ironizafton algorithm. 

Lastly, we call a synchronization algorithm acceptable if it is 
consisten», with itself and if it accurately reflects the behavioral 
specification of the simulated system. Intuitively, this means that a 
synchronization algorithm is acceptable if it always generates all and 
only those events induced by the initial state (including initial events) 
of the simulated system and the behaviors of the components being 
simulated. 

3.1.2. Synchronization 
Acceptability is the goal of every synchronization algorithm. Since 
almost every implementation of a simulator (including AIDE) depends 
directly on side-effects to changeable state9, acceptability 
operationally means that the simulation algorithm must control the 
consumption of events during execution so that behavior-generating 
code is invoked in the correct context. (This is not necessarily the 
case; for example, a simulation system that uses a strict logic 
programming system to implement structural and behavioral 
specifications need not concern itself with this issue since all "state 
changes" will persist in such a s-stem; of course, the burden of 
storage management has now been thrust upon the logic 
programming system.) With this implementation model in mind, we 
provide below an informal relation on events that will be useful in 
analyzing the acceptability of synchronization algorithms. 

An event e, preempts another event ej if either of the following is 

true : 

1. e- and e, specify a change to the same state entity but the 
simulated time of e; is greater than the simulated time of 

ej; 

2. the state change specified by e, overwrites information 
that is used by e, and the behavior of the relevant 
component to generic an event. 

Two events are independent if neither preempts the other. 

We claim that an acceptable simulation algorithm is one that 
generates an event set such that for every e, and e^ in the set, if ej 
preempts ej then e; is "processed after" ej. 

In theory a simulator has to run the entire simulation to determine 
the set of preemption relationships between every two events; in 
practice, however, it computes a set of possible event preemptions. 

with the requirement that this set be a superset of the set of actual 
event preemptions. The problem of synchronization (distributed or 
otherwise) is thus essentially the problem of dynamically determining 
potential event preemptions and processing those events that cannot 
be preempted. 

3.2. Sequential Simulation 
We discuss briefly the mechanism by which sequential simulation 

works in AIDE. 

3.2.1. Synchroniiation Using Simulated Time 
The standard sequential synchronization algorithm makes use of the 
simulated time of an event and the requirement that the device is 
realizable to achieve acceptability. Events with lower simulated times 
are always "processed before" events with higher simulated times; 
therefore, whenever an event is processed, all the events that could 
possibly have preempted it have already been processed. 

The main advantage of this synchronization algorithm is that it is 
simple and easily implementable in a serial system. However, it is too 
conservative in its computation of possible event preemptions to be 
viable in a distributed environment. 

3.2.2. Implementation 
AIDE implements a simulator as a flavor-instance that maintains a 
simulated-time-ordered eventtist and an associated global clock for a 
given device. At every step, the simulator removes the event at the 
head of the eventlist, moves the clock to the specified simulated time, 
makes the appropriate state change, and invokes the behavior method 
of the relevant component. Events generated by the behavior of a 
component are passed back to the simulator, which sorts them into 
the eventlist to be processed when they get to its head. 

AIDE uses the graphical interface to allow the designer to access the 
simulator associated with a device. It provides operations to reset, 
initialize, and run a simulation with or without breakpoints [7|. 

Current facilities for "observing" a simulation are limited; a general 
instrumentation interface is under design. 

3.3. Distributed Simulation 
The motivation for distributed simulation is doing event processing in 
parallel using multiple machines to gain a reduction in the overall 
simulation turnaround time as compared to a sequential simulation. 
Thus, synchronization algorithms for distributed simulation systems 
seek ways of processing non-preemptable events in parallel. These 
algorithms must trade off the cost of determining potential event 
preemptions against the cost of processing the events themselves in 
minimizing the total execution time of the simulation. Such costs, 
naturally, depend on various factors, including the target machine 
environment. Our discussion below assumes a machine environment 
that consists of small number of fairly powerful machines (Symbolics 
3600s) communicating over a shared network (the ETHERNET). 

Though there are various classes of synchronization algorithms for a 
distributed environment [6], we only consider those which distribute 
control of the simulation to the participating machines, that is, 
algorithms that are run individually by each machine. 

"There is a direct correspondence between a state variable in the specification and 
one in the implementation of the specification, dictated by storage management 

considerations. 
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i  design,  but  also  in 
latural   to   consider 
if   simulation   into 

■cipating machines 
keep in mind that 

3.3.1. Partitioning 
Decomposition is not only a powerful tool 
distributed problem-solving. It is then 
various ways of partitioning the pro' 
subproblems which may be tackled by t; 
individually. In doing this partitioning, we 
we would like each machine to operate as autonomously as possible 
and also that there are costs associated with communicating 
information between machines which we would like to minimize. 

Usually the structure of a device (system) directly reflects its 
functionality Given the nature of the design representation, this 
implies that the subcomponents of the device themselves behave fairly 
autonomously. This in turn points to the obvious utility of 
partitioning the simulation problem by assigning to each machine the 
subproblem of simulating some subset of the components of the device 
(system) as this will tend to reduce the gross interactions (and shared 
state) between the machines, thus reducing the costs associated with 
communicating and keeping consistent such information. This 
partitioning will also allow each machine to operate reasonably 
independently. Furthermore, if the system being modelled itself 
exhibited concurrent activity (a multiprocessor computer system, for 
example), then this partitioning scheme may enable the overall 
simulation of the system to directly exploit the natural parallelism 
visible in the events that represented the "actual" concurrency. The 
above are, in fact, basic assumptions of the AIDE distributed 
simulation approach, as th(y are of most other distributed simulation 
schemes |5, 2, 61. 

3.3.2. Using the Device Specification in Synchronization 
Synchronization based on the simulated times of events alone 
unnecessarily (and, in most cases, severely) restricts the amount of 
exploitable parallelism by assuming that an event with simulated time 
( could be preempted by any event for simulated time less than (. 
Very few abstract models (for example, CARE, which mixes detailed 
simulation of inter-processor communication with more abstract 
simulation of processing activities) exhibit such synchronicity at the 
event level, thus there will be very few opportunities for parallel 
processing in their simulation. The device specification and the 
behavior requirements provide additional information for better 
estimating potential event preemptions. 

Since the preemption relation applies between events, the more 
information within an event used by the synchronization algorithm, 
the closer its synchronization activities come to using the results of 
the simulation itself, and the better the estimation of preemption 
relationships. We may organize these pieces of information in terms 
of the "fields" of an event. 

1. Simulated time is already essential, as the definition of 
preemption and the implementation of a behavior 
specification suggests. We may make use of the property 
that two events with the same simulated time are always 
independent to find inherent parallelism. 

2. The component is also useful within the partitioning 
scheme we have chosen. Since each component has a 
minimum (non-zero) simulated time delay between 
consuming an event and generating one on an output port, 
and since it is also directly connected to only some small 
subset of the other components, an event for that 
component will have a simulated time "lag" before it may 
preempt an event on a component more "distant" in 
terms of connections. This enables a machine simulating 
the "distant" component to process existing events for it 
up to "lag" simulated time units beyond the event for the 

original component in parallel. Connection information is 
available in the structural specification of a device; 
minimum delays may be extracted from behavior 
specifications. 

3. The state being changed within a component is useful 
when a component has a number of internal states that 
affect its output ports with varying delays. This gives 
better bounds for "lag" on a per-event basis within such a 
component, thereby giving a better overall approximation 
of possible preemptions. Such information can be 
determined as for the component itself.. 

Much of the above information can be efficiently "compiled" before 
the actual execution of a partitioned simulation. However, part of it 
must still be computed dynamically by the machines, communicated 
between them and finally used by them, perhaps undercutting the 
increased opportunities for parallelism. 

3.3.3. The First Cut 
We describe here the first synchronization approach used in AIDE, 
which reflects a particular choice of only the first two information 
sources described above for implementation simplicity. 

Distributed simulation in AIDE starts with the designer selecting the 
partitioning level for the device in terms of its subcomponents. At 
this level, the component and all its subcomponents form a logical 
process or 'p within which simulated time will be consistent. 
Different Ips may have different simulated times during a simulation, 
even within a machine. Thereafter, the designer partitions the 
simulation by assigning Ips to machines. 

At this point, AIDE compiles synchronization information and 
distributes components to simulation servers on each (previously 
obtained) machine; a server is essentially a sequential simulator plus 
support for synchronization. 

The synchronization information compiled here is at two levels. 
Between machines, the system first computes a table that represents 
gross minimum delays along connections between any Ip on one 
machine and any Ip on another. Within a machine, Ips are organized 
in terms of simulated time windows. Window-out(lp,) is the 
minimum simulated time delay before an event consumed at lp| could 
generate an event at for any non-local Ip. Similarly, window-in(lpj) is 
the minimum simulated time delay before an event consumed by an 
"edge" Ip (one with a direct connection from any remote Ip) could 
generate an event for Ipp These quantities are static for a given 
partition and are directly computed from the structure and a 
predeclared minimum delay for each component type. 

During execution, a simulation server runs a cycle with two phases. 

• Synchronize. If the server was active (processed some 
local events) in the last step, it computes the minimum 
time that an existing local event could affect any remote 
server. This quantity is the next event time (NET) of the 
server and is equal to the minimum over all the local 
events of the simulated time of the event plus the window- 
out of the Ip specified in that event. It sends this time to 
every other server in a synchronization message. 

Each server now waits for all servers active in the last step 
to send their NETs. Then it uses the compiled inter- 
machine delay table to form the next set of active servers 
as follows : 
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For server I,, VSj {NBT^) < ^BT(»j) + delay(Sj.Si)]} =» 
active(s|). 

Each server also computes the local preemption time. 

PT(s,ocJ = minimumlVsjlNET^) + delayfys^J]}. 

• Simulate. Each server processes all the existing local 
events thit cannot be preempted by an event that occurs 
at an edge Ip with time not less than PT(s|oca|) («sing the 
window-in of Ips). Events from remote machines may be 
asynchronously received for input ports of local edge 
components, but they will be for simulated times greater 
than PT(S|oca|). Similarly, events on local edge output 
ports may be transmitted asynchronously to remote input 
ports. 

The calculations of activity and preemption times ensure that the set 
of event preemptions computed by each server is acceptable. 
Deadlock is avoided by requiring non-zero delays within 
components (6). Lastly, inconsistent information regarding NETs is 
avoided by using the same reliable stream to transmit events as well 
as synchronization messages between servers and by having each 
server include in the synchronization messages the minimum times of 
remote events generated for every server during that step. 

3.3.4. Evaluation and Implications 
To evaluate the AIDE algorithm, we use a probabilistic model of a 
simulated multiprocessor (CARE) induced from its event history in a 
serial simulation. As mentioned earlier, CARE exhibits clusters of 
"communication" events (representing packet routing between nodes) 
that are localized in simulated time as well as over the processor grid 
intermixed with slower "computation" events (representing processing 
activity within a node) that have larger, more varying simulated time 
periods. In using a probabilistic model, we bypass many of the 
additional issues involved in distributing CARE programs while still 
retaining information that allows us to predict the performance of a 
distributed simulation of the model. 

Preliminary runs of this model and others using a small number of 
machines (1 to 4) indicate that the implementation does attain 
speedup when concurrency is available. In the probabilistic CARE 
model, the "window" mechanism seems to reduce synchronization 
points by a factor roughly proportional to the number of components 
on a machine. However, we also observe that there are very few 
opportunities for parallelism across the machines; rarely is more than 
one machine active during any given step. This immediately places 
an upper bound (somewhere between 1 and 2) on the speedup that 
may be gained by the distrilmteu simulation. 

We can suggest two reasons for the above. The first is that the 
probabilistic CARE model was generated from early applications that 
did not themselves demonstrate much low-level concurrency atop 
CARE. The second (more probable) is that the preemption 
calculations were too simplistic. 

We are taking steps to alleviate the above difficulties. One step is to 
use a probabilistic model extracted from the event history of a 
demonstrably concurrent application in CARE. Another is to increase 
the complexity of compiled synchronization information in attempting 
to increase the number of active machines at any step. The latter 
involves the following specific actions : 

• make use of the third facet of information present in an 
event in determining preemptions, either through 
declarations or by "wiring" such information into the 
behavior specification of a component class; 

• at compile time, compute better lower-bound delays 
between machines by searching connection paths between 
all machines (the first implementation only did it for 
neighbors and then used a plane assumption); 

• compute preemption times on a per-machine basis as 
opposed to the conservative strategy of using only the 
"most dangerous" machine. 

We anticipate that the above changes will result in increased parallel 
activity for the machines (a necessary condition for speedup); 
thereafter, we will determine whether the added cost of maintaining 
and using this information will negate (or worse) this gain. 
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Abstract 

NIKL (a New Implementation of KL-ONE) is one of 
the members of the KL-ONE family of knowledge 
representation languages. NIKL has been in use for 
several years and our experiences have led us to define 
and implement various extensions to the language, its 
support environment and the implementation. This 
article reports on the extensions that we have found 
necessary based on using NIKL in several different 
testbeds. The motivations for the extensions and 
future plans are also presented. 

1. Introduction 
Our work on NIKL is mot.vated by a desire to build a principled 

knowledge representation system that can be used to provide 
terminological competence in a variety of applications. To this 
end, we have solicited use of the system in the following 
applications: natural language processing, expert systems, and 
knowledge-based software. Our research methodology is to allow 
application needs, rather than theoretical interests, to drive the 
continued development of the language. This methodology has 
allowed us to perform an empirical evaluation of the strengths and 
weaknesses of NIKL. Also it has helped us identify some 
requirements for any knowledge representation tool that would be 
used in a wide range of intelligent systems. 

We classify the improvements that we have made or plan to 
make into three broad categories: 

1. Expressiveness - enhancements to the terminological 
competence represented in NIKL and the inferences 
NIKL can make regarding the subsumption 
relationship, 

2. Environment - enhancements to the tools that 
accompany NIKL for both maintaining knowledge 
bases (knowledge acquisition) and reasoning about 
the terminology defined in the knowledge base, and 

3. Support ■ enhancements to user documentation, the 
reliability and the availability of the implementation. 

This paper will concentrate on enhancements made to the 
expressiveness of NIKL but will also describe some improvements 
and additions made to the NIKL environment. An introduction to 
NIKL will be included as background material and enhancements 
to the support of NIKL will be mentioned for the sake of 
completeness. 

2. Background 
KL-ONE was designed by[Brachman 78) to "circumvent 

common expressiveness shortcomings." It was designed to 
embody the principles that concepts are formal representational 
objects and that epistemological relationships between formal 
objects must be kept distinct from conceptual relations between 
the things that the formal objects represent. KL-ONE defined an 
"epistemologically explicit representation language to account for 
this distinction." 

A KL-ONE concept is described by "a set of functional roles tied 
together by a structuring gestalt." Concept definitions "capture 
information about the functional role, number, criteriality and 
nature of potential roles fillers; and 'structural conditions', which 
express explicit relationships between the potential role fillers and 
give functional roles their meaning." A overview of the KL-ONE 
system has been published by [Brachman and Schmölze 85]. 

2.1. The classifier 
An important consequent of the well-defined semantics of KL- 

ONE is that it is possible to define a classification procedure to 
determine the subsumption relationship for concepts in a KL-ONE 
network. A detailed description of the semantics of the KL-ONE 
classifier have been published by [Schmölze and Lipkis 83]. The 
classifier for KL-ONE deduces "that the set denoted by some 
concept necessarily includes the set denoted by a second 
concept but where no subsumption relation between the concepts 
was explicitly entered." Classifiers for KL-ONE and NIKL have 
been dew loped at ISI. 

The desirable properties for the classification algorithm are 
soundness (no incorrect inference is made), completeness (all 
correct inferences are made), and totality (the algorithm always 
halts). Theoretical analysis work done by [Brachman and 
Levesque 84] has determined the limits on the expressiveness if 
completeness of the classification algorithm is to be maintained. 
Work on NIKL has concentrated on the issue of soundness, 
forgoing completeness in favor of increased expressiveness. An 
efficient implementation has also been a goal of the NIKL effort 
and the NIKL classifier is in fact nearly two orders of magnitude 
faster for large networks than the KL-ONE classifier. 

2.2. Classification-based reasoning 
The NIKL classifier provides a general weak m thod for 

categorizing descriptions of objects. It is insufficient as the sole 
inference mechanism for an intelligent system but it can be used 
very effectively (and efficiently) in what we have termed 
classification-based reasoning. 

\ 
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Most uses of KL-ONE a;^d NfKL rely heavily on this kind of 
reasoning. It consists of a classification-reasoning cycle. The 
application first creates a new description of some partial result 
and then classifies this in a static network describing knowledge 
of the problem domain. Based on the result of classification, 
additional inferences are drawn about the partial result and a new 
description is constructed. These inferences are the result of 
some rule or procedure that examines the network looking for 
inferences that it is capable of making. Th- new description that 
results may achieve the goal of the reasoning cycle, in which case 
reasoning terminates. More typically, further classification and 
redescription are required and there is a continuation of the 
reasoning cycle. 

One way of thinking ahout this reasoning cycle is to think of the 
classifier as selecting applicable rules based on the terminology 
that is used to describe the task domain and the problem at hand. 
The selection of the rules is within the terminologica' 'vstem, i.e., 
based on the definitions of terms. However, the rui jtside 
the terninological component and expressed In stuia other 
language. 

2.3. NIKL's evolutiot. from KL-ONE 
NIKL's name is evidence of the fact that it is thought of as a New 

Implementation of KL-ONE. Despite this, there are major 
differences between NIKL and KL-ONE. These are in addition to 
the emphasis on the efficiency of the classification algorithm 
already mentioned. Many of the differences are a direct result of 
the influence of work on KRYPTON by[Brachman, Ftkes, and 
Levesque 83). Close cooperation between the NIKL design team 
and the KRYPTON designers resulted in many system similarities 
despite a strong distinction pn the issue of completeness. 

The major difference between NIKL and KL-ONE involves the 
representation and use of roles.1 At the time NIKL was designed, 
use of KL-ONE had uncovered a need for revisions of the ideas 
about roles. For example, explicit structural conditions were no 
longer used to define the meaning of roles partially because of the 
inadequacy of the original formalization and lack of useful 
consequences of these conditions. In addition, the notation 
required in KL-ONE for relating roles in concepts (which included 
relations such as modifies, differentiates, and Individuates) were 
cumbersome. The idea of thinking of roles as two-place relations 
and concepts as one-place relations emerged, and roles took on a 
new significance. Roles were defined as having a domain and a 
range, organized in a separate taxonomy, thought of as 
representatio/vs of relations, and assumed to be used consistently. 

3. The status of NIKL 
A NIKL implementatior, was first developed approximately two 

years ago. Since then it has been in use principally at ISI and at 
Bolt, Beranek, and Newman Inc., which contributed to the design 
of the system. Several "browsing" tools, syntactic support, and 
graphing tools have been developed and used to construct ai.d 

maintain knowledge bases. A natural language paraphraser to 
assist users in understanding networks was also developed but 
has not been heavily used. Various inference mechanisms driven 
by the classifier have also been implemented. 

Actually there are significant differences beyond those having to do with roles 
if one takes KL-ONE to be defined by the original formalization rather than the then 
current implementation, which did not support much of the formalism. 

Applications of KL-ONE and NIKL have been in the areas of 
natural language processing (see the publications of [Bobrow and 
Webber 80, Sondheimer 84, Sidner 85, Mark 81]), expert systems 
(see the work of [Neches, Swartout, and Moore 85]), and software 
description (see the publications of [Kaczmarek, Mark and 
Wilczynski 83, Wilczynski 84]). Large networks, in excess 1500 
concepts, have been developed in these environments. 

This experience with NIKL has led us to consider certain 
extensions to the language, its environment, and the 
implementation. The following sections will describe the 
extensions we consider important and explain the motivation and 
status of each. The extensions have been divided into roughly 
three categories; terminological competence, environment, and 
implementation. 

3.''. Teftniniilogreal Comp^tcice 
; terminological competence we mean the ability of the system 

to represent and reason about various distinctions that a modeler 
might need to capture in defining concepts. For example, the 
ability to restrict the range and number of role fillers for a 
particular functional role adds to the verminological competence. 
Inferring that if a person has at least one son, then the person has 
at least one child (based on the fact that son is a specialization of 
child) is another example of terminological competence. The 
following sections will describe our efforts in this area. 

3.1.1. Disjolntness and covers 
One addition to NIKL that was absent in KL-ONE is support for 

disjoint and covering sets. A collection of concepts can be 
declared as being disjoint, i.e., have no common extensions in the 
world. A collection cen also be declared as a cover of another 
concept, i.e., all extensions of the covered concept must be 
described by at least one of the members of the covering. These 
two declarations can be combined to form partitions. 

NIKL supports limited inferences based on these notions. 

- As a result of disjoint classes, NIKL can determine If a 
concept is coherent or not. For example, a person all 
of whose children are both males and females, would 
be marked as being incoherent if male in.:' female 
were declared as being disjoint. An '.icoherent 
description is admissible in NIKL but U assumed to 
not have any extension in the world. 

- With respect to covers, a simple inference procedure 
M available to deduce the existence of other covers. 
For example, suppose male and female cover sex, 
spouses have a sex role that is restricted to sex, and 
that husband and wife are specializations of spouse. 
Further assume the only difference between husband 
and wif« is a restriction of the sex role to male and 
female respectively, then NIKL can infer that husband 
and wife cover spouse. Needs for this kind of 
reasoning have come about in using NIKL for expert 
systems where certain methods of problem solving 
are applicable only when some covering exists. 
NIKL's current inferential capabilities for covers are 
limited to simple cases such as the one presented in 
this example. Plans call for expanding these 
capabilities as needed by applications. 
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3.1.2. Reasoning about role restrictions 
The inclusion vf an explicit role hierarchy in NIKL allows the 

system to infer certair properties of concepts. The example of 
calculating minimum number restrictions for the son and child 
roles presented above illustrates one kind of inference. In that 
example, we have propagated a minimum number restriction up to 
a more general role. Obviously, we can also propagate a 
maximum down to a specializing role. These are two inferences 
that we have recently added to NIKL. 

Another inference involves value restrictions for roles. It is 
illustrated by the network definition seen in Figu1 3-1. The NIKL 
specification for this example .-an be paraphrased as follows: 

• doctors, famous, and 'ich are primitive concepts2, 
• surgeons are a primitive specialization of doctors, 
- very famous is a primitive specialization of famous, 
- all the rich cousins of an "A" must be doctors, 
■ all the famous cousins of any "B" must be surgeons 

and all the rich relatives of any "B" must be very 
famous, 

- relative is a primitive relation, 
• cousin is a primitive specialization of relative 
- any concept that fills the role of famous cousin must 
fill the role of cousin and be famous, 

■ any concept that fills the role of rich relative must fill 
tlie role of relative and be rich and, 

- any concept that fills the role of rich cousin must fill 
the roles of rich relative and cousin. 

(DEFCONf.EPT Doctor primitive) 
(DEFCONCEPT Famous primitive) 
(DEFCONCEPT Rich primitive) 
(DEFCONCEPT Surgeon primitive 

(specializes Doctor)) 
(DEFCONCEPT Very-Famous 

(specializes Famous)) 

(DEFRELATION Relative p-iraitive) 
(DEFRELATION Cousin primitive 

(specializes Relative)) 
(DEFRELATION Famous-Cousin 

(specializes Cousin) (range Famous)) 
(DEFRELATION Rich-Relative 

(specializes Relative) (range Rich)) 
(DEFRELATION Rich-Cousin 

(specializes Rich-Relative Cousin)) 

(DEFCONCEPT A 
(restrict Rich-Cousin (VR Doctor))) 

(DEFCONCEPT B 
(restrict Rich-Relative (VR Very-Famous)) 
(restrict Famous-Cousin (VR Surgeon))) 

Figu re 3-1:   Example of role reasoning 

From this specification, NIKL infers the following: 

■ all of A's rich cousins are rich doctors, 

• all of B's rich cousins are rich and very famous 
surgeons, 

• all of B's famous cousins are famous surgeons, and 

• all of B's rich relatives are rich and very famous. 

Figure 3-2 graphically depicts the network after classification 
has been performed. 

The conclusions illustrated in the figure are derived from the 
following line of reasoning. All of B's rich cousins are rich 
relatives and therefore very famous, so they are all also surgeons 
(since all the famous cousins of B are surgeons), making them 
doctors as well. It follows then that B specializes A since all of its 
rich cousins are rich and very famous surgeons, which is a 

specialization of rich doctors. The current classifier for NIKL 
supports this kind of reasoning based on the role hierarchy. 

rrrnm 

A primitive concept or relation corresponds to the notion of a "natural kind", 
i e , a predication that can only be determined by an oracle. To NIKL this means 
that no concept may be placed beneath this one in the hierarchy unless the 
concept specification explicitly says to do so. 

Figure 3-2:  Graph of taxonomy defined in Figure 3-1 

Our plans for enhancing reasoning about role restrictions 
include adding logic to account for coverings and disjointness in 
the role hierarchy. For example, if we knew that the roles, son and 
daughter, are disjoint and that they cover the role, child (i.e., form 
a partition) then we can determine the maximum and minimum 
number restrictions for child based on the number restrictions for 
son and daughtet. Similar kinds of inferences can be made 
involving the value restrictions. 

3.1.3. Roles and relations 
One of the criticisms of KL-ONE and NIKL was an incomplete 

treatment of roles. In KL-ONE the semantics for roles was 
determined only by other constructs that were described for 
concepts. In previous versions of NIKL, all roles were primitive. 
Work in natural language text generation has pointed out the need 
for a more uniform treatment because sometimes a sentence 
needs to describe the relationships that exist between concepts. 
This requires giving relations the same status as concepts in the 
network and establishing a correspondence between restrictions 
of roles at a concept and the relations those restrictions refer to. 
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We have thus adapted a position where roles are thought of as two 
place relations that are defined In the concept hierarchy. We have 
Implemented this strategy by allowing the user to define relations 
that may then be used as roles. The example above in Figure 3-1 
illustrates this capability. Under this new implementation, 
relations are represented as concepts In the same hierarchy with 
all other concepts. All relations have at least two roles, a range 
and a domain. 

One Implication of this support Is that it has allowed the user a 
simple way to say things such as "a car, one of whose tires Is flat." 
In the previous implementation, the user would have to specify 
and name a primitive role that specialized the tire role for a car 
and then restrict the value of that role. 

A more significant improvement results from removing an 
unfortunate consequence of this old procedure (which resulted 
from the primitiveness of the role). The result of that procedure 
was that nothing would classify as a kind of the concept being 
defined unless the user added the same role (presumably by 
referring to it by name) and restricting if to the same range (or 
some specialization of it). In the current implementation, we 
"gensym" a relation that specializes tire and restrict its range to 
flat. Any other similar or more specialized relation resulting from a 
restriction, for example, the one generated by "a car with a blown- 
out tire," will either merge with the gensymed relation or classify 
as a specialization of it. Thus, classification of a car with a blown- 
out tire under a car with a flat tire can happen without having to 
refer to a specific (and primitive) flat-tire role in the specification of 
the car with a blow-out. 

Since relations are now part of the concept hierarchy, we can 
define other properties for roles and declare disjointness and 
coverings. One consequence of this Is that we have simplified the 
development of support for reasoning about number and value 
restrictions for roles based on these notions. Another is that we 
can specify more completely the meaning of a relation. 

3.1.4. Cycles In the network 
The current NIKL classifier cannot reason effectively about 

cycles in the network. A cycle occurs whenever one classification 
depends on another. In general, the classifier stops trying to draw 
inferences about any of the concepts In a cycle when one Is 
encountered. Typically a large collection of static concept 
specifications are presented to the classifier. It recursively 
descends the known hierarchy to find and classify those new 
concepts that have no dependencies on any other new concepts. 
It then unwinds the recursion and forms the newly classified 
hierarchy as a result. If it discovers a cycle, it simply declares the 
concepts classified and warns the user about the existence of the 
cycle. 

The exception to this processing involves cycles that result from 
roles being defined as concepts. For example, if the son relation 
is used to define a person, then person cannot be classified until 
the relation son has been classified. But If the domain of son Is 
person, then it cannot be classified until person is classified. 
Obviously, a cycle results. The current NIKL classifier detects this 

special case of a cycle and marks the relation as being classified 
and it continues to attempt to classify the concept that used the 
relation. 

A more sophisticated classification control strategy could 
obviously result in a more complete classification. We have 
designed, and are In the process of implementing and testing, 
what we call the incremental classification control strategy. Under 
this regime, the classifier will maintain dependency links for all 
concepts and use an Iterative approach to classification. When a 
cycle is encountered, the classifier will do the best it can with the 
concept with the fewest dependencies. It will then classify all 
those concepts that depend on that one and evenV ally (because 
of the cycle) try to reclassify the original OOnctfrf -fter having 
done its best on the dependent concepts. This approach 
obviously cycles and needs a termination condition. The 
incremental classifier will stop classification when the network has 
reached a quiet state, i.e., no new inferences can be drawn, or 
some user-settable number of dependency cycles have been 
completed. This strategy will allow more inferences to be made by 
the classifier and will also provide the basis for a much improved 
Knowledge acquisition environment. Details of the implications for 
acquisition will be presented later in Section 3.2.4. 

3.1.5. Partial orderings 
One glaring shortcoming of KL-ONE and NIKL has been an 

inability to define sequences. Requests for this capability have 
come from nearly all applications3. We have examined the 
requirements and designed a more general capability that 
supports partial orderings on roles. 

The partial orderings in NIKL represent relations that e^ist 
between role fillers. Support includes knowledge (in the classifier) 
about the reflexive, antisymmetric, and transitive nature of partial 
orderings. One partial ordering may be a specialization of another 
and they are defined in the concept hierarchy like all other 
relations. 

The NIKL user can make several different kinds of statements 
about the partial orderings of the role fillers. One states that all 
the fillers of a particular role must be ordered by a particular 
relation. For example, the statements of a computer program are 
ordered by the lexically-before relation. A second kind of 
statement is that all the fillers of one role are related to all the 
fillers of another role by a particular ordering.   An example Is a 

statement that the Initialization steps of a while loop come before 
the termination tests, which in turn come before the steps in the 
body. The final kind of statement declares that the fillers of one 
role are the immediate predecessors (or successors) of the fillers 
of another. An example Is the statement that one statement of a 
program is immediately lexically-before another. 

Classification will involve the determination of subsumption 
between partially ordered sets (posets), which is a fairly expensive 
operation. The expense includes the construction of the 
representation of posets as graphs and the determination of 
whether one graph is a subgraph of another. The design of the 
implementation Is such that overhead caused by this 
enhancement will be minimal for concepts that do not involve use 
of this feature. 

Various extra-NIKL scbames ha1 d been timfttH in past work to handle this 
problem. In past applications, it was not necessary for the classifier to deal with 
sequences so a special purpose sequence reasoner could be used. 
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3.1.6. Necessary and sufficient conditions 
The NIKL classifier represents a particular kind of classification, 

one that depends on certain logical properties. There are other 
kinds of classification that depend on domain specific knowledge. 
One such kind of classification involves the definition of sufficient 
conditions. The idea is that the presence of certain evidence is 
sufficient to draw a conclusion if there is no contradictory 
evidence. For example, one might be willing to say that any 
mammal with a human DNA structure must be a kind of human 
unless there is evidence to the contrary even though we do not 
have evidence for upright posture, opposing thumbs and "o forth. 

Such reasoning has heretofore been unavailable in NIKL and 
KL-ONE. In light of this one can characterize the definitions of 
current NIKL concepts as stating necessary conditions (since no 
part of the description could be missing) and sufficient conditions 
(since the presence of them is sufficient evidence for the classifier 
to draw specialization conclusions). The exception to this is for 
concepts marked as primitive, which indicates that no set of 
sufficient conditions can be found. 

The proposal for adding sufficient conditions would allow the 
user to state that some collection or collections of roles were 
sufficient. For examplfi, if you know that an animal has four legs 
and a trunk or a finger on the end of Its nose (and there is no 
contradictory evidence, such as it lives in a tree) then it is an 
elephant. Still in question is the proper handling and possible 
inclusion of other constructs of the description language, such as 
structural descriptions and partial orderings. Our plan is to 
proceed with defining sufficient conditions in terms of roles and 
role sets and see if applications will require more complex 
support. An initial investigation indicates that this limited support 
will suffice. 

3.1.7. Negation 
Negation is a problem for the classification algorithm as has 

been shown by the work of [Brachman and Levesque 84]. 
Nevertheless, it is a notion that nearly all applications find useful. 
Since we cannot admit negation and maintain decidability for the 
classifier, we have provided other mechanisms and conventions 
that seem to satisfy most users. One convention is the use of zero 
as the minimum and maximum number restriction for a role 
restriction. For example, a verb phrase with no time modifier can 
be modeled this way. 

The ability to define partitions as disjoint covers provides a way 
to talk about complements, which are akin to negation. This is 
another addition to NIKL that was the result of expressed desires 
for negation. The strategy exemplified in these two capabilities, 
namely, providing something different than what the user asked 
for but which meets the requirements of the application is very 
much a part of our methodology for continuing the evolution of 
NIKL. 

3.2. The Environment 
The NIKL environment consists of tools that aid in knowledge 

acquisition and reasoning. Our experience has led to the 
generation of tools in both of these areas. 

NIKL itself and nart of the environment. An ad hoc assertional 
mechanism4 was developed for use with the CUE and Consul 
applications (see, [Kaczmarek, Mark, and Sondheimer 83]). A 
more systematic approach has led to the development of a major 
tool for reasoning about assertions by [Vilain 84] of Bolt Beranek 
and Newman. This tool, KL-TWO, combined the RUP package of 
[McAllester 82] with NIKL. KL-TWO provides a truth maintenance 
package that is very useful in some applications. However, it is 
inappropriate for large data bases and for certain kinds of 
applications where efficient implementations of the assertions are 
required. 

To correct these deficiencies (for certain applications) we have 
planned two other hybrid systems. The first involves coordination 
between the conceptual hierarchy defined in NIKL with the 
schemata for a commercial relational data base. With this scheme 
we plan to use NIKL in applications requiring the kinds of semantic 
browsing techniques found in the work of [Patel-Schneider, 
Brachman, and Levesque 84] and [Tou, Williams, Fikes, 
Henderson and Malone 82]. The second involves using NIKL in 
coordination with the knowledge representation aspects of a 
knowledge-based software development paradigm. Here we are 
actively involved in using NIKL to define a type hierarchy and 
relations for the AP5 language of [Cohen and Goldman 85]. 

3.2.2. Reformulation 
As was previously mentioned, classification-based reasoning is a 

common mode of use of NIKL. The terms, reformulation and 
mapping, have been used in KL-ONE applications to refer to this 
kind of activity. Currently there is a reformulation facility available 
that is used in the expert system resea-ch of [Neches, Swartout, 
and Moore 85]. This mechanism is used to satisfy goals by 
expanding plans. Within the paradigm of their project, 
reformulation is used to generate an expert system based on a 
knowledge of the domain and expert problem solving knowledge. 
In this methoaology, goals, methods, and plans are all expressed 
in NIKL and the expert system shell uses these to generate the 
expert system for a particular domain and set of goals and 
methods. While the facility provided was designed for a particular 
use, the mechanism Is generic and can be applied to any number 
of other applications. 

3.2.3. Graphic-based editing 
The KL-ONE community has a rich tradition of drawing pictures 

with "circles and arrows." A graphical representation of concepts 
and networks has always been a part of the language. As the 
expressiveness of NIKL has increased, the cleanliness of the 
graphs has diminished, but nevertheless, the graphs remain 
useful. 

We have developed an integrated set of acquisition tools in a 
window-based workstation environment. The tools include a 
graph of the concept hierarchy, an EMACS editing window, and a 
LISP interaction window. Within the LISP interaction window, the 
environment can produce highly formatted ("pretty-printed") 
descriptions of concepts. The atoms in these formatted displays, 
which refer to concepts and relations, as well as the nodes of the 
graph and the text in the edit buffer are all mouse sensitive and 
known to be NIKL constructs by the environment. This allows the 

3.2.1. Assertions 
Recording and reasoning about extensions of the terminological 

knowledge represented in NIKL is considered to be outside of 
This scheme was built around the KL-ONE notion of a nexus 
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user to move from one window to another in a coordinated way. It 
also allows the user to refer to a NIKL object simply by pointing at 
it in any of the various views of the network. A natural language 
paraphraser has also been added to this environment to assist in 
the understanding of the network. 

We also have a tool to graph the definition of a particular 
concept. This tool has proven to be less useful than originally 

thought. While drawing concept specifications on paper with a 
pencil is extremely useful, we haven't been able to duplicate the 
free flowing expressiveness of that mode of design. Work on the 
human factors of the tool and the inclusion of higher level 
operations (the current level is, for example, add a role) are 
anticipated. However, the tool is useful in terms of providing a 
graphin presentation of a concept. The deficiencies become 
obvious in creating or editing a concept definition. 

3.2.4. Incremental classification 
A major problem with the NIKL environment arises from the 

batch nature of the classifier. The example in Figure 3-1 illustrates 
some of the many inferences that the classifier makes. For 
example, deciding that the user really meant rich cousins to be 
rich doctors, not just doctors. This kind of inference can be 
particularly troublesome for the user because NIKL frequently 
needs to generate new concepts that the user hasn't explicitly 
defined. Usually NIKL cannot pick an appropriate name for the 
concepts it generates. In many cases the need to generate a new 
concept arises from the fact that the user has inadvertently 
omitted the concept or made some modeling error. A better 
acquisition environment can be obtained by having the classifier 
interact with the user whenever such a concept must be 
generated. The user could then choose an appropriate name, 
decide there is an error, or tell NIKL that the concept will be 
defined later. 

The example of interaction arising from new concepts being 
generated is just one case in which interaction during 
classification can improve the modeling environment. The control 
strategy that will be employed in the incremental classifier will be 
much more supportive of the kind of interaction that knowledge 
acquisition requires. 

The dependency information that the incremental classifier will 
keep can also be used to enhance the modeling environment. 
This information is particularly useful for editing a concept 
definition and then making sure the network is properly updated 
and for supporting various kinds of analysis tools. 

3.2.5. Surface language support 
As part of our efforts we have used a general lexical analysis and 

semantic interpretation package developed by [Wile 81]. This 
package gives a flexible surface language that allows easy 
modifications to accommodate extensions to NIKL as we develop 
them. It also opens up the possibility of defining highly application 
dependent surface languages. 

3.3. The Implementation 
The current version of NIKL is in Common LISP and we have 

experimented with its use on a variety of workstations and 
mainframe implementations of Common LISP. The integrated 
acquisition environment depends on some specific tools found in 
the Symbolics ZETALISP environment. We are actively pursuing 
the development of similar facilities that rely on a Common LISP 
implementation of a form and graphics package that requires only 
modest customizations for various graphic environments. 

4. Summary 
NIKL is an evolving knowledge representation tool based on KL- 

ONE. The experiences gained In a variety of applications have 
shaped the current implementation. Principal enhancements 
made to NIKL that were in direct response to applications needs 
were: the representation of roles more uniformly with concepts, 
support for negation, a connection to an assertional truth 
maintenance system, support for domain specific reasoning 
(triggered by classification), and more complete inferences drawn 
as a result of having a relation hierarchy. Further enhancements 
have also been suggested and continue to be developed. They 
include; the representation of sequences and orderings, the 
availability of sufficiency reasoning in the classifier, more 
complete inferences regarding cycles in the models, and 
coordination with an assertional component that supports efficient 
data base access. 

In addition we have implemented and continue to develop tools 
for the knowledge acquisition environment. This work has also 
been sensitive to the needs that have arisen out of several 
application environments. Principle developments include a 
Common LISP implementation, and an integrated tool set that 
features graphic representations, formatting and paraphrasing 
tools, and flexible lexical analysis support. The addition of a more 
interactive editing style and various analysis tools is forthcoming. 
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